
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Algorithms For Haplotype Inference And Block Partitioning Algorithms For Haplotype Inference And Block Partitioning

Satya Ravi Vijaya
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Vijaya, Satya Ravi, "Algorithms For Haplotype Inference And Block Partitioning" (2006). Electronic Theses
and Dissertations, 2004-2019. 1104.
https://stars.library.ucf.edu/etd/1104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1104?utm_source=stars.library.ucf.edu%2Fetd%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Algorithms for Haplotype Inference and Block Partitioning

by

Ravi Vijaya Satya
B. Tech. Jawaharlal Nehru Technological University, 1999

M.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Major Professor: Amar Mukherjee

c© 2006 Ravi Vijaya Satya

Abstract

The completion of the human genome project in 2003 paved the way for studies to better

understand and catalog variation in the human genome. The International HapMap Project

was started in 2002 with the aim of identifying genetic variation in the human genome

and studying the distribution of genetic variation across populations of individuals. The

information collected by the HapMap project will enable researchers in associating genetic

variations with phenotypic variations.

Single Nucleotide Polymorphisms (SNPs) are loci in the genome where two individuals

differ in a single base. It is estimated that there are approximately ten million SNPs in

the human genome. These ten million SNPS are not completely independent of each other

- blocks (contiguous regions) of neighboring SNPs on the same chromosome are inherited

together. The pattern of SNPs on a block of the chromosome is called a haplotype. Each

block might contain a large number of SNPs, but a small subset of these SNPs are sufficient

to uniquely identify each haplotype in the block. The haplotype map or HapMap is a map

of these haplotype blocks. Haplotypes, rather than individual SNP alleles are expected to

effect a disease phenotype.

The human genome is diploid, meaning that in each cell there are two copies of each

chromosome - i.e., each individual has two haplotypes in any region of the chromosome.

iii

With the current technology, the cost associated with empirically collecting haplotype data

is prohibitively expensive. Therefore, the un-ordered bi-allelic genotype data is collected

experimentally. The genotype data gives the two alleles in each SNP locus in an individual,

but does not give information about which allele is on which copy of the chromosome. This

necessitates computational techniques for inferring haplotypes from genotype data. This

computational problem is called the haplotype inference problem.

Many statistical approaches have been developed for the haplotype inference problem.

Some of these statistical methods have been shown to be reasonably accurate on real genotype

data. However, these techniques are very computation-intensive. With the international

HapMap project collecting information from nearly 10 million SNPs, and with association

studies involving thousands of individuals being undertaken, there is a need for more efficient

methods for haplotype inference.

This dissertation is an effort to develop efficient perfect phylogeny based combinatorial

algorithms for haplotype inference. The perfect phylogeny haplotyping (PPH) problem is to

derive a set of haplotypes for a given set of genotypes with the condition that the haplotypes

describe a perfect phylogeny. The perfect phylogeny approach to haplotype inference is

applicable to the human genome due to the block structure of the human genome.

An important contribution of this dissertation is an optimal O(nm) time algorithm for

the PPH problem, where n is the number of genotypes and m is the number of SNPs in-

volved. The complexity of the earlier algorithms for this problem was O(nm2). The O(nm)

complexity was achieved by applying some transformations on the input data and by making

iv

use of the FlexTree data structure that has been developed as part of this dissertation work,

which represents all the possible PPH solution for a given set of genotypes.

Real genotype data does not always admit a perfect phylogeny, even within a block of

the human genome. Therefore, it is necessary to extend the perfect phylogeny approach to

accommodate deviations from perfect phylogeny. Deviations from perfect phylogeny might

occur because of recombination events and repeated or back mutations (also referred to as

homoplasy events). Another contribution of this dissertation is a set of fixed-parameter

tractable algorithms for constructing near-perfect phylogenies with homoplasy events. For

the problem of constructing a near perfect phylogeny with q homoplasy events, the algorithm

presented here takes O(nm2 + mq+1(n + m)) time. Empirical analysis on simulated data

shows that this algorithm produces more accurate results than PHASE (a popular haplotype

inference program), while being approximately 1000 times faster than phase.

Another important problem while dealing real genotype or haplotype data is the presence

of missing entries. The Incomplete Perfect Phylogeny (IPP) problem is to construct a perfect

phylogeny on a set of haplotypes with missing entries. The Incomplete Perfect Phylogeny

Haplotyping (IPPH) problem is to construct a perfect phylogeny on a set of genotypes with

missing entries. Both the IPP and IPPH problems have been shown to be NP-hard. The

earlier approaches for both of these problems dealt with restricted versions of the problem,

where the root is either available or can be trivially re-constructed from the data, or certain

assumptions were made about the data. We make some novel observations about these

problems, and present efficient algorithms for unrestricted versions of these problems. The

v

algorithms have worst-case exponential time complexity, but have been shown to be very

fast on practical instances of the problem.

vi

To the unfortunate millions that are denied the right to basic education

vii

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Amar Mukherjee. This dis-

sertation would not have been possible without his support and guidance. I thank him for

allowing me to pursue topics in bioinformatics and computational biology. He gave me a lot

of freedom in selecting the problems that I wanted to work on. He encouraged to me to take

an independent approach to these problems. All these factors were critical in obtaining the

results that I have achieved throughout the course of this dissertation. His expectations for

the highest quality of work pushed me to do my best.

I thank all the committee members, Dr. Chris Parkinson, Dr. Annie Wu, Dr. Mark

Heinrich, Dr. Guy Schiavone, and Dr. Eric Hoffman for their support and encouragement.

Special thanks are due to Dr. Parkinson for clarifying many concepts in molecular biology

and evolutionary biology. Special thanks are also due to Dr. Hoffman for closely working

with me on a grant proposal and bringing to my notice related papers that I had previously

overlooked. I thank my cousin, Dr. Uday Kumar Ranga, for introducing me to the codon

optimization problem, which led to my first publication in bioinformatics.

I acknowledge funding from NSF grant no. IIS 0312724 which supported my initial

research in data compression, and continued to support my early work in bioinformatics.

viii

I thank Dr. Ajay Royyuru of IBM T. J. Watson Research Center for giving me the op-

portunity to work on the genographic project as a summer intern. Above all, this internship

gave me the opportunity to work with Dr. Gabriela Alexe, Dr. Gyan Bhanot, and Dr.

Laxmi Parida, all of whom helped me in understanding many concepts in phylogenetics and

population genetics. The experience and exposure I obtained while working at IBM helped

me look into new problems, and ultimately led to some very good publications. Gabriela

and Gyan have proved to be very good friends. They continue to provide encouragement,

guidance, and valuable advice about critical career decisions.

I would not have been able to pursue a Ph.D. without the help of Dr. Guy Schiavone.

I am indebted to him for funding me for more than three years. He always believed in me

and encouraged me to pursue a Ph.D. when I had no intentions to do so. The experience I

gained while working under him is invaluable. I also thank Mr. Art Cortes of IST and Dr.

David Hagan of CREOL, for funding me at different stages of my graduate career.

My aunt Ranganayakamma and my uncle B.R. Bapuji have been a great inspiration to me

in my life. My aunt was my first teacher. She taught me everything from English grammar

to basic science and math. She taught me critical thinking and problem solving skills that

help me to this day in my work. I could not have reached this far without her training.

Acknowledgements are also due to all the friends, colleagues and lab mates that provided

encouragement and support. I thank fellow graduate students Nan Zhang, Tao Tao and

Weifeng Sun for valuable discussions and the publications that I co-authored with them.

Friends Sridher Sathi and Sameer Joshi have provided invaluable support and encourage-

ix

ment. I could always count on them for help, and I thank them for their support during

rough times in my life.

x

TABLE OF CONTENTS

LIST OF TABLES . xviii

LIST OF FIGURES . xx

CHAPTER 1 INTRODUCTION . 1

1.1 Building A Haplotype Map of the Human Genome 4

1.1.1 Populations studied by the HapMap project 6

1.2 SNPs and Haplotypes in the Human Genome 7

1.2.1 SNPs . 7

1.2.2 Haplotypes in the human genome . 8

1.2.3 Block structure of the human genome 10

1.3 The Haplotype Inference Problem . 11

1.3.1 The Coalescent Model . 12

1.4 Contributions of this dissertation . 13

1.4.1 Necessity for faster algorithms . 14

1.4.2 Significant results obtained . 15

xi

1.4.3 Organization of this dissertation . 17

CHAPTER 2 CONCEPTS AND TERMINOLOGY 18

2.1 Molecular Biology Basics . 18

2.1.1 Meiosis . 20

2.2 Phylogenetics . 21

2.2.1 Phylogenies on characters . 24

2.2.2 Parsimony . 25

2.2.3 Perfect Phylogeny . 28

2.3 Haplotype Inference . 29

2.3.1 Formal Statement of the Haplotype Inference Problem 30

2.3.2 The Maximum Resolution Haplotype Inference Problem 31

2.3.3 Block structure of the human genome and the perfect phylogeny hap-

lotyping problem . 33

2.3.4 Formal statement of the perfect phylogeny haplotyping problem . . . 34

2.3.5 Utilizing Pedigree Data for Haplotype Inference 36

2.3.6 Limitations of the pedigree data . 38

2.4 Haplotype Inference on Real Genotype Data 39

2.4.1 Homoplasy Events . 39

xii

2.4.2 Recombinations . 40

2.4.3 Block partitioning on real genotype data 41

2.5 Constructing Perfect Phylogenies on Haplotypes 42

2.5.1 Necessary and sufficient conditions for M to admit a perfect phylogeny 43

2.5.2 Rooted Perfect Phylogenies . 45

2.5.3 Algorithms for the perfect phylogeny problem on binary characters . 47

CHAPTER 3 PERFECT PHYLOGENY HAPLOTYPING: THE FLEXTREE

DATA STRUCTURE AND THE OPPH ALGORITHM 48

3.1 The Perfect Phylogeny Haplotyping Problem 48

3.1.1 Solution via graph realization . 50

3.1.2 A direct approach for the PPH problem 51

3.1.3 Improvements to the direct approach 53

3.1.4 Other solutions . 53

3.2 Some Lemmas and Properties . 55

3.2.1 Columns sums . 56

3.2.2 Pre-processing the input matrix A . 56

3.2.3 Implied relationships . 60

3.2.4 Realizability of the matrix Ac . 64

xiii

3.3 The FlexTree Data Structure . 66

3.3.1 Motivation for the FlexTree data structure 66

3.3.2 The FlexTree . 73

3.3.3 Representing the interdependence between phase relationships 75

3.3.4 Haplotypes represented by the FlexTree 77

3.3.5 Representation of the FlexTree . 79

3.4 The opph Algorithm . 80

3.4.1 Building the FlexTree for the first row 85

3.4.2 The Scan Forward procedure . 87

3.4.3 Trace Up . 88

3.4.4 Fixing a flexible site . 94

3.4.5 Trace Down . 99

3.4.6 Correctness . 101

3.4.7 Obtaining a PPH Tree from the FlexTree 105

3.5 Complexity . 106

3.5.1 Pre-processing . 106

3.5.2 Scan Forward . 106

3.5.3 Trace Up . 107

3.5.4 Trace Down . 109

xiv

3.6 Results . 109

3.7 Discussion . 110

3.7.1 MPPH problem . 110

3.7.2 Selecting a PPH tree . 111

3.8 Pseudocode for Some Procedures . 112

CHAPTER 4 CONSTRUCTING NEAR-PERFECT PHYLOGENIES . . 114

4.1 Imperfect Phylogenies . 114

4.1.1 Previous work on constructing near-perfect phylogenies 115

4.2 Constructing Near-Perfect Phylogenies from Haplotype data 117

4.2.1 The H1-NPP construction problem 119

4.2.2 The H1-NPP Construction Algorithm 124

4.2.3 Multiple Homoplasy Events in a Single Site 127

4.2.4 Allowing Homoplasy Events in Multiple Sites 129

4.3 Near-Perfect Phylogeny Haplotyping . 134

4.3.1 The H1-NPPH Problem . 135

4.3.2 Making use of the conflict graph . 140

4.3.3 The H(1, q)-NPPH problem . 143

4.3.4 The H(p, q)-NPPH problem . 143

xv

4.4 Results . 144

4.5 Discussion . 145

CHAPTER 5 THE INCOMPLETE PERFECT PHYLOGENY PROBLEM147

5.1 Missing Data . 147

5.2 Problem statement and Previous Work . 148

5.3 Realizability conditions for the IPP problem 151

5.3.1 Significance of the forbidden pairs . 152

5.3.2 The 3-way compatibility expression 153

5.3.3 Conditions for any matrix M . 155

5.3.4 Properties of the forbidden pairs . 159

5.4 Realizability Conditions for the IPPH problem 161

5.5 Algorithms . 165

5.5.1 An algorithm for the IPP problem . 166

5.5.2 Algorithm for the IPPH problem . 168

5.6 Results . 169

5.6.1 Results for the IPP algorithm . 170

5.6.2 Results for the IPPH algorithm . 173

5.6.3 Discussion . 173

xvi

CHAPTER 6 CONCLUSION . 175

6.1 Block Partitioning Based on Perfect Phylogeny 175

6.1.1 Identification of blocks . 176

6.1.2 Block scoring . 177

6.1.3 Optimal block partitioning . 178

6.2 Application to Real Genotype Data . 179

6.3 Future Work . 180

6.3.1 Constructing Phylogenies with Recombination Cycles 180

6.3.2 Constructing Imperfect Phylogenies on Incomplete Data 181

6.3.3 Incorporating Statistical Methods . 181

6.4 Conclusion . 182

GLOSSARY . 183

LIST OF REFERENCES . 185

xvii

LIST OF TABLES

3.1 Illustration of Theorem 3.1. 62

3.2 PAc [x, z] can be obtained from PAc [x, y1] and PAc [x, y0] 73

3.3 The column-table (above) and the partition-table (below) for the FlexTree in

Figure 3.6. 80

3.4 Performance results - all times are in seconds on a P4 3GHz machine 110

4.1 Comparison of our H1-NPPH method with PHASE for different datasets. The

running times are on Pentium 3.2 GHz PC 145

4.2 Properties of the data sets generated . 145

5.1 Percentage of input data sets in which a complete column is directly available

from F . 171

5.2 Percentage of input data sets in which a complete column was available from F after

applying R(i, j, k) = 1 on triplets of columns . 171

5.3 Performance on a pentium 3.2 Ghz pc - all times are in seconds, and are

averages over 100 matrices . 172

xviii

5.4 Accuracy of the results - Percentage of loci incorrectly recovered 172

5.5 Results of the IPPH algorithm on 200× 30 matrices. All values are averages

over 100 test runs. For calculation purposes, the algorithm is considered to

have failed for test runs that took more than 10 seconds. 173

xix

LIST OF FIGURES

1.1 Ambiguity in phasing a genotype . 10

2.1 The relative lengths of the twenty four chromosomes 20

2.2 Different stages of meiosis . 22

2.3 Inheritance of the chromosomes . 23

2.4 An un-rooted phylogenetic tree. 24

2.5 A character-based phylogeny. (a) A character matrix with five taxa and six

characters. (b)The most parsimonious phylogeny for the taxa in (a). (c) A

non-parsimonious phylogeny for the taxa in (a) 27

2.6 (a) A genotype matrix A (b) A PPH tree T for the matrix A (c) The haplotype

matrix B that explains A . 35

2.7 The only possible topology for perfect phylogeny with two sites 44

2.8 Illustration of the proof for Theorem 2.1 . 45

3.1 Properties of the two haplotypes of a genotype 49

3.2 (a) A matrix Bc with four columns (b) The phase matrix for Bc 58

xx

3.3 (a) A fixed column z with parent y; Possible scenarios when z is flexible =

(b) Case 1; (c)Case 2; (d) Case 3 . 68

3.4 (a) A genotype matrix Ac; (b) The Phase matrix for Ac; (c) The FlexTree T

for Ac - the broken edges represent the glue edges; 74

3.5 (a) A genotype matrix Ac; (b) The Phase matrix for Ac; (c) General structure of a

partition; (d) The complete FlexTree T for the matrix in (a); (e) and (f) - The two

PPH trees T1 and T2 represented by the FlexTree in (d) 75

3.6 (a) A matrix Ac; (b) The FlexTree T for the matrix Ac 77

3.7 (a) and (b) - Situations in which the j can follow i;(c) and (d) - Situations in

which j can not follow i even though i is reachable from j. 78

3.8 ProcessNewRow procedure . 84

3.9 The opph algorithm . 85

3.10 (a) part of the matrix M ; (b) part of the FlexTree before processing row r in

matrix M ; (c)The FlexTree after processing row r 91

3.11 (a) h[sr] is reachable only from p0 and k[sr] only from p1; (b) h[sr] is reachable

from p1 and k[sr] from p0; (c) both h[sr] and k[sr] are reachable from both p0

and p1 . 94

3.12 TraceUp procedure . 95

3.13 (a) Part of a FlexTree; (b) The FlexTree after fixing the site y to the site x

in the TraceUp procedure; (c) The FlexTree after the TraceDown procedure 96

xxi

3.14 (a) A part of the FlexTree with a partition; (b) The FlexTree in (a) after

fixing the site y; (c)Another FlexTree; (d) The FlexTree in (c) after fixing the

site y to c2 . 97

3.15 The TraceDown() procedure . 100

3.16 The BuildPPHTree() procedure . 105

3.17 ScanForward procedure - finds er and sr . 106

3.18 Illustration of how the TraceUp procedure deals with partitions (a) The par-

tition P0 just before TraceUp reaches the site y; (b) The sites on the side of

the partition P0 that should be fixed to y are removed from P0 and fixed to y;

(c) fy, the FlexEnd of y, is added to P0 and the f-parents of P0 are updated

to those of fy . 108

3.19 The fixNonZeroPath() procedure . 113

3.20 The advanceNonZeroPath() procedure . 113

4.1 (a) A haplotype matrix M ; (b) A phylogeny T for M 118

4.2 (a) The tree T before removing the vertices x and y; (b) The three connected

components T1, T2 and T3 after removing the vertices x and y 119

4.3 Illustration of Theorem 4.1 . 121

4.4 (a) The perfect phylogeny T ′, showing {T1, ...Tk}, the connected components

in T ′
/{x,y}; (b) Constructing T from T ′

/{x,y} 122

xxii

4.5 (a) A matrix M (b) Conflict graph for M (c) Perfect phylogeny T ′ after

removing c3. (d) The H1-NPP T for M . 126

4.6 (a) Matrix M ; (b) The conflict graph for the matrix M ;(c) The tree T ′ after

removing c10 and c11 . 129

4.7 An example of phylogenies (a) Tx and (b) Ty that must replace two adjacent

vertices x and y when x and y are not independent. The node labels of each

node over three sites i, j and k are shown. 134

4.8 (a) Matrix A; (b) The tree T ′; (d) Components in T ′
/{x,y} overlaid with the

edges in Ga; (d) Matrices M ′ and M ; (e) The H1-NPP T for the matrix M . 137

4.9 Any solution must involve a vertex from T1 and a vertex from T2 141

5.1 The two possible topologies for any three sites i, j and k in a perfect phylogeny 152

5.2 (a) The rows r1 and r2 in M ; (b) A matrix representation of the forbidden

pairs . 155

5.3 (a) Illustration of Property 5.1; (b) Columns c1 and c2 in the original tree;(c)

Columns c1 and c2 after splitting the edge (A,B) 157

5.4 For any site labeling an edge (U, V), the state of any other site i at both the

vertices U and V will be fic . 159

5.5 (a) A perfect phylogeny T ; (b) The forbidden matrix F for T 161

xxiii

5.6 (a), (b) and (c): The three possible relative arrangements of the columns i, j

and k that are all ‘2’ in row r of A, in any perfect phylogeny T for A 164

5.7 The algorithm for the IPP problem . 167

5.8 The algorithm for the IPPH problem . 170

6.1 The graph G = (V,E, W) . 178

xxiv

CHAPTER 1

INTRODUCTION

Since ancient times, it was common knowledge that a child inherits features from its parents.

Beginning with Mendel’s experiments, we have been trying to understand how inheritance

works. There are many aspects to inheritance, and we now know quite a lot about some

of them. For example, we know that the genetic information is carried through DNA. We

know that there are 23 pairs of chromosomes. We even know the DNA sequence for all the

chromosomes to an acceptable level of accuracy.

Though all humans have almost the same DNA sequence, each person is unique. The

exact DNA sequence of a person is different from that of any other person (except from that of

an identical twin). These differences arise mostly due to mutation and recombination events

that occur in the germ line of the individual. We understand that genetic variation is the

basic source of diversity in the phenotype - the color of the skin, the shape of the nose, how

the body reacts to stimuli in the environment, the risk of developing a cancer, etc. Studying

genetic variation will help in understanding, diagnosis and treatment of many diseases. The

human genome is three billion base pairs long, so there are uncountable number of ways in

1

which the DNA sequence of two people can differ. So how do we correlate genetic variation

with variation in the phenotype? A good place to start will be the genetic polymorphisms

that are common to many individuals. The variations in the phenotype caused by these

common polymorphisms will be much easier to identify and analyze.

Throughout history of mankind, infectious diseases had the most devastating effect on

human populations. In the past hundred or so years, rapid progress in medicine has helped

lessen the impact of infectious diseases on human populations. The mankind has succeeded

in controlling many infectious diseases like polio and smallpox. Infectious diseases like AIDS

and malaria continue to kill millions of people every year in developing countries. However,

failure in combating these diseases is more due to socio-economic factors than due to the

lack of technological capability to combat these diseases. Effective treatments and preventive

measures are available for these diseases, and some of these diseases have either been wiped

out or contained in the developed world.

Genetic factors are believed to play a major role in most common non-infectious diseases

today, like cancer, diabetes and obesity. Identifying the genetic variations associated with

these diseases will eventually revolutionize the treatment for many of these genetically inher-

ited diseases. In the near future, it might be possible to develop customized treatments for

at least some of these diseases that are targeted for the specific phenotype of the individual,

and hence are more likely to succeed in combating the disease.

Due to change in life styles and increase in life expectancy, genetically inherited diseases

are increasingly becoming a major concern in both developed and the developing parts of the

2

world. Evolution, via natural selection, is successful in purging genetically inherited diseases

that affect the early (pre-reproductive) stages of life of an organism. However, late-onset

genetically inherited diseases are largely unaffected by evolution. With rapid increase in

life expectancy, an increasingly larger percentage of the population are having to face these

genetically inherited diseases that were mostly unaffected by evolution.

There are many instances where a specific genetic variation has been associated with a

particular genetic risk. The following are a couple of instances.

• A gene in chromosome 17, named Breast Cancer 1 (BRCA1) was discovered in 1994

through genetic analysis of families affected by hereditary breast cancer. Two mu-

tations in BRCA1 gene were later associated with increased risk of breast cancer. A

mutation in the gene BRCA2 in chromosome 13 has also been associated with increased

risk of breast cancer. However, it is not yet completely understood how these muta-

tions lead to breast cancer. For example, only 15% of the women with the mutations

in the BRCA1 gene actually develop breast cancer. The mutations in BRCA1 appear

in only 5% of the individuals that develop breast cancer [Law06].

• An extremely rare mutation in the CDH1 gene has been associated with a high risk

of stomach cancer. According to a news article in Washington Post that appeared

on June 18th, 2006 [CR06], this mutation was first discovered in 1998 in a large New

Zealand family with a history of stomach cancer. The article reports about an extended

family in United States that is affected by stomach cancer. The mutation could be

3

traced to a woman in the family who died in 1960 due to stomach cancer. Seven of

her children inherited the mutation, six of whom died with stomach cancer in their

40s and 50s. One of the eighteen grand children of the woman died of stomach cancer

in 2003. The remaining 17 grand children got tested for the mutation and 11 of them

tested positive. All 11 of them chose to have their stomachs removed to avoid the risk

of stomach cancer.

1.1 Building A Haplotype Map of the Human Genome

The completion of the human genome project in 2003 paved the way for studies to better

understand and catalog polymorphisms in the human genome. The International HapMap

Project (www.hapmap.org) was started in 2002 with the aim of identifying polymorphisms

in the human genome and studying the distribution of these polymorphisms both within

the genome of an individual, and across populations. The information collected by the

HapMap project will enable researchers in finding the polymorphisms that are the source for

phenotypic variation.

The most common types of genetic variations are Single Nucleotide Polymorphisms

(SNPs). SNPs are sites in the genome where individuals differ in a single base. It is es-

timated [Int05] that there are as many as 10 million SNPs in the human genome, which

translates to a density of one SNP every three hundred base pairs of DNA. Blocks of neigh-

boring SNPs on the same chromosome are inherited together. The pattern of SNPs on a

4

block or continuous region of the chromosome is called a haplotype. Each block might contain

a large number of SNPs, but a small subset of those SNPs are sufficient to uniquely identify

each haplotype in the block. The haplotype map (or HapMap) is a map of these haplotype

blocks. The SNPs that uniquely identify a block are called as haplotype tag SNPs, also

referred to as htSNPs.

The objective of the HapMap project is not to draw associations between genetic poly-

morphisms and disease phenotypes, but to make these association studies feasible. Identify-

ing the blocks and tag SNPs is essential for making the disease association studies feasible.

According to the HapMap web site (www.hapmap.org), the number of tag SNPs for the

10 million SNPs in the human genome is expected to be around 500,000. This twenty-fold

reduction in the number of SNPs will reduce the cost of disease association studies. This will

also enable the association studies to be more comprehensive, since the association studies

can cover all regions of the genome due to reduced costs.

The fundamental approach of association studies is to compute the haplotype frequencies

in individuals with a specific phenotype and individuals without the specific phenotype

(controls). The ‘phenotype’ can be a disease, response to a drug or susceptibility to an

infection, among other things. The association studies are based on the assumption that the

genetic variations that have some effect on the phenotype occur more frequently in individuals

with the phenotype than in the individuals without the phenotype. Using just the tag SNPs,

biomedical researchers will be able to identify regions within each chromosome that exhibit

different haplotype frequencies in individuals with the phenotype and individuals without

5

the phenotype. These regions can then be examined more closely to identify the specific

genetic variations that cause the phenotype. This in turn, will help in developing tests and

drugs that are targeted for the individuals with a specific genetic variation.

1.1.1 Populations studied by the HapMap project

The HapMap project is collecting SNP data from 270 individuals belonging to four differ-

ent populations/ethnicities. The 270 individuals are distributed among the following four

populations.

1. Ninety Yoruba individuals from Ibadan, Nigeria (YRI). This dataset consists of 30 trios.

Each trio consists of three related individuals - two parents and an adult child. All

these individuals belong to a single community in Ibadan, Nigeria. All the individuals

selected had four Yoruba grand parents.

2. Ninety individuals of European origin (CEU). This dataset consists of 30 trios from

Utah with northern and western European ancestry. These samples were collected by

the Centre d’Etude du Polymorphisme Humain (CEPH) in 1980.

3. Forty-five individuals from Tokyo, Japan (JPT). These are forty-five unrelated indi-

viduals from Tokyo. Each individual selected had all the four Japanese grand parents.

4. Forty-five Han Chinese from Beijing (HCB). These are forty-five unrelated individuals

living in the residential community of Beijing Normal University. These are all in-

6

dividuals who described themselves as having at least three out of four Han Chinese

grandparents.

The first phase of the HapMap project was completed in March 2005. The first phase

covered approximately one million (1,007,329) SNPs. The SNPs were evenly spaced across

the whole genome, except on chromosome Y and mtDNA. The second phase of the HapMap

project, which covers an additional 5.6 million SNPs, is currently underway. As of June

2006, data from approximately 4 million of these SNPs is available for download from the

HapMap web site.

1.2 SNPs and Haplotypes in the Human Genome

1.2.1 SNPs

Genetic polymorphisms can be of many different types. They can be anything from a single

nucleotide being different to having an extra copy of an entire chromosome. The most com-

mon, and the most significant, type of genetic variation is a Single Nucleotide Polymorphism

(SNP). A SNP(pronounced ‘snip’) is a location in the human genome where a significant

percentage (at least 2%, 5%, or 10%, depending on what is considered ‘significant’) of the

population has a different nucleotide base than the rest of the population. For instance, 2%

of all people might have a ‘C’ in a certain SNP location, whereas the rest have some base

7

other than ‘C’ in that location. Each individual variation at a particular location is called

an allele. Most of the SNPs are bi-allelic, meaning there are only two possible variations at

that particular location. If more than two variations are possible in a particular location,

the location is called multi-allelic. SNPs are quite common in the human genome - it is

estimated that on average, there is one SNP for every 1200 base pairs [Hap03]. That comes

to approximately 10 million SNPs in the whole genome.

1.2.2 Haplotypes in the human genome

The human genome is diploid, meaning that in each cell there are two copies of each chro-

mosome. Due to the bi-parental nature of heredity in diploid organisms, one of these copies

is derived from the mother and the other is derived from the father. Understandably, the

two copies are not completely identical, as they are derived from two different individuals.

In a given SNP location, the two copies of the chromosome in an individual may or may not

have the same allele. If the two copies do have the same allele in an individual, the SNP

location is said to homozygous in that individual. If the two copies have different alleles, the

location is said to be heterozygous.

A single SNP variation may not be responsible for any given phenotype. Rather, it might

be a particular pattern over multiple SNPs that causes the phenotype. Therefore, we are

interested in knowing the state of all the SNPs in a region of the chromosome. As described

before, a Haplotype is the pattern of SNPs on a single copy of the chromosome. i.e., in any

8

region of a chromosome, each individual will have two haplotypes - one haplotype on each

of the two copies of the chromosome.

Obtaining the haplotype information is essential in associating a haplotype with a dis-

ease/variation in the phenotype. However, obtaining the haplotype information involves

isolating each copy of the chromosome, which is an expensive procedure, especially when

thousands and thousands of individuals need to be analyzed. Therefore, the conflated infor-

mation about the two copies of the chromosome is collected. This gives us an un-ordered

pair of alleles at each location. We will know the two alleles at each SNP site in the indi-

vidual, but we will not know which allele comes from which copy of the chromosome. For

example, if the two possible alleles at a particular SNP location are A and C, we will know

if the two alleles for that SNP in an individual are (A,A), (A,C) or (C,C). This information

is called the genotype of the individual. Obtaining the haplotype information from the geno-

type information at a particular site is easy if the site is homozygous. However, if the site

is heterozygous, we cannot tell which allele comes from which copy of the chromosome. For

example, refer to Figure 1.1. Loci 1, 3 and 6 in the genotype are homozygous, and hence

the two alleles in each haplotype must be as shown. However, for positions 2, 4, and 5, it is

not clear from the genotype data which allele belongs to which haplotype.

9

1 2 3 4 5 6

Genotype (A,A) (T,C) (T,T) (A,G) (C,G) (G,G)

Haplotype1 A ? T ? ? G

Haplotype2 A ? T ? ? G

Figure 1.1: Ambiguity in phasing a genotype

1.2.3 Block structure of the human genome

Recent studies [DRS01, PBH03, GSN02, WP03] have shown that the human genome can be

divided into blocks of limited diversity. The haplotypes within each block can be represented

by a subset of the SNPs that are covered by the block. It has been observed that there

are regions within which there is strong association among the SNPs. This association is

assessed as the degree of linkage disequilibrium (LD) between pairs of SNPs. There are

various measures such as D′ and r2 [Hud01] for calculating the LD between a pair SNPs.

Due to these regions of high LD, the number of haplotypes within a block is much smaller

than the number of possible haplotypes in the block. Identifying these blocks of high LD,

or Block partitioning, reduces the dimensionality of problems in disease association, and

hence is essential in making many of the disease association studies feasible. It is important

to correctly assess these linkage (haplotype) blocks because they may be tightly associated

with regions of the genome influenced by positive selection (such as selective sweeps) or

negative selection and disease association [Cla04]. Further more, block-partitioning enables

10

identification of a smaller set of representative SNPs (haplotype tag SNPs or ’htSNPs’) that

describe a block unambiguously. Therefore, collecting genotype data for these representative

SNPs will be sufficient for any association study. To minimize the costs of these association

studies, it is necessary to identify the minimal set of tag SNPs for each block. Statistical

and combinatorial methods are then used to associate the haplotypes with diseases.

1.3 The Haplotype Inference Problem

If k SNP sites are heterozygous in a given genotype, 2k−1 distinct pairs of haplotypes are

possible that result in the same genotype. In other words, the genotype can have 2k−1 possible

explanations. Each explanation can be called a phasing of the genotype. The question is -

which one of these explanations is the most ‘accurate’ for the given genotype? If we have a

single genotype to deal with, all the 2k−1 haplotype pairs are equally likely, and we have no

way of telling which one of these haplotype pairs is an ‘accurate’ explanation of the given

genotype. However, if we have multiple genotypes, we can use information from the other

genotypes to limit the possibilities for this genotype. The Haplotype Inference (HI) problem

deals with finding the ‘correct’ explanation out of all these possible explanations.

Studies [GW02, RCB01, HSN05] have shown that the actual observed diversity within

any region of a chromosome is much less than what we can expect from the number of SNPs

covered by that region. Therefore, we expect many haplotypes to be common to many of

the individuals. i.e, if there are 100 genotypes, we expect to see a lot fewer than 200 distinct

11

haplotypes in the set of haplotypes that explain all the given genotypes. Therefore, given

a population, we should obtain the smallest set of distinct haplotypes that explain all the

individuals in the population. However, this problem was proven to be NP-complete [Gus01].

Sometimes, parent-child relationships between the individuals are available. This is called

the pedigree of the individuals. When available, the pedigree data helps in disambiguating,

(or phasing) some SNP locations. But the problem is NP-hard even when the pedigree data

is available [LJ03].

1.3.1 The Coalescent Model

It is possible to obtain a more reasonable and efficient solution by assuming a biological

model. Hence, Gusfield [Gus02] proposed application of the coalescent model to the haplo-

type inference problem. The coalescent model assumes that the evolutionary history of all

the haplotypes in the population can be explained by a rooted tree, where each haplotype

labels a vertex in the tree. The infinite sites model is also assumed, which stipulates that

the number of sites is so large, and the frequency of mutation so small, that it is impos-

sible for the same site to mutate more than once in the recent evolutionary history under

consideration. This formulation of the haplotype inference problem is called as the Perfect

Phylogeny Haplotyping (PPH) problem.

12

This dissertation solves many open problems related to the perfect phylogeny approach

to the haplotype inference problem.

1.4 Contributions of this dissertation

The primary focus of this dissertation is to develop new, efficient combinatorial approaches

for haplotype inference, based on the perfect phylogeny approach. Different statistical and

combinatorial algorithms and approaches do exist for haplotype inference, but there are

situations in which the nature of true genotype data renders some of these techniques in-

adequate, and in some cases, not applicable. One of the challenges when dealing with real

genotype data is that as high as 10% of the data might be missing [HK04]. The existing

combinatorial techniques for dealing with the missing data [KS05, HK04, PPS04] are appli-

cable only in specific scenarios, and in some cases entirely rely on the availability of a large

number of genotypes without any missing data. A drawback of the existing block parti-

tioning approaches is that they rely heavily on the empirical observations like those made

in [DRS01] that each block has no more than 4 or 5 common haplotypes. The approach

presented in [HK04] rejects a block if the block has more than 5 common haplotypes. These

parameters are highly sensitive to the size and ethnicity of the population considered. As

the number of genotypes in the study increases, many blocks might not fit into the rather

restrictive definition of block described above. Hence, there is a necessity to develop robust

techniques that are not sensitive to the input sample size or ethnicity.

13

One of the fundamental contribution of this dissertation is extending the applicability of

the perfect phylogeny approach to haplotype inference by incorporating imperfect and in-

complete perfect phylogenies. The ability to construct imperfect phylogenies and the ability

to handle missing data are essential in making the combinatorial approaches applicable to

real genotype data. The ultimate goal is to enable incorporation of combinatorial methods

into statistical approaches for haplotype inference. Empirical analysis on simulated data

demonstrates that the combinatorial algorithms are faster and highly accurate when com-

pared to statistical algorithms. Therefore, incorporating these combinatorial algorithms into

statistical approaches is expected to improve their accuracy and performance.

1.4.1 Necessity for faster algorithms

Faster algorithms for haplotype inference are not just of theoretical interest. The HapMap

project will ultimately collect data from 10 million SNPs in 270 individuals. The existing

algorithms will be inadequate for dealing with problems of this magnitude. For example,

the PHASE program [SSD01] takes nearly 15 minutes to phase 100 genotype over 100 loci.

Even if the program were to scale linearly with n and m, this means that the program will

take nearly three hundred days to phase the entire HapMap database. Any improvement in

speed is certainly desirable.

The problems are expected to get bigger in the near future, when data from genome-

scale association studies starts becoming available. For instance, the Framingham heart

14

study plans to collect data from nine thousand individuals [Nat06] covering 500,000 SNPs

in each individual. If the exponential growth of sequence databases over the past decade is

an indication, the SNP databases will also experience an exponential growth in the coming

years.

1.4.2 Significant results obtained

It is important to note that the contributions of this dissertation are not limited to the

haplotype inference problem. This dissertation also presents some fundamental results in

phylogenetic reconstruction.

The following are the major contributions of this dissertation:

• Linear algorithm for the PPH problem. An optimal algorithm for the PPH

problem presented in this dissertation is among the first linear-time (in terms of the

input) solutions for the PPH problem. This dissertation introduces the FlexTree data

structure, which allows the representation of all the perfect phylogenies for a given

PPH instance. The optimal algorithm utilizes the properties FlexTree data structure

to achieve the linear-time complexity.

• Algorithms for constructing near-perfect phylogenies. Polynomial time al-

gorithms for constructing near-perfect phylogenies with homoplasy events on both

15

haplotype and genotype data. The algorithms on genotype data can be used to infer

haplotypes when the input data does not admit a perfect phylogeny.

• Algorithms for constructing incomplete perfect phylogenies. Necessary and

sufficient conditions for a given set of incomplete haplotypes or genotypes to allow a

perfect phylogeny. These conditions, which were previously unknown, greatly simplify

phylogenetic analysis on haplotypes or genotypes with missing data. New, efficient

algorithms for constructing perfect phylogenies on both haplotype and genotype data

with missing entries have been presented based on these conditions.

• A new algorithm for optimal block-partitioning. A new algorithm for selecting

optimal block partitioning has been developed as part of this dissertation work. This

new block-partitioning algorithm can be used with various optimization criteria like

minimizing the number of tagSNPs, maximizing coverage, etc.

• Experimental results on simulated data. Empirical analysis on simulated data

shows that the haplotype inference algorithms above are faster than existing methods.

Comparison of the near-perfect phylogeny and incomplete perfect phylogeny algorithms

with existing statistical algorithms shows that these algorithms have better accuracy

in spite of being orders of magnitude faster than the statistical algorithms.

16

1.4.3 Organization of this dissertation

Chapter 2 introduces some relevant terminology, and presents some fundamental results in

phylogeny construction. A formal description of the haplotype inference problem and the

perfect phylogeny haplotyping problem are introduced.

Chapter 3 deals with perfect phylogeny haplotyping problem on complete genotype data.

A review of the previous work on the perfect phylogeny haplotyping problem is provided.

The FlexTree data structure and an optimal algorithm for the HI problem and the PPH

problem are presented. A performance of analysis of the optimal algorithm with the previous

algorithms is presented.

Chapter 4 deals with constructing near-perfect phylogenies on haplotypes and genotypes.

Previous work on these problems is presented. New practical formulations of the problems

are introduced, and fixed parameter tractable algorithms are presented for these problems.

Performance of these algorithms on simulated data is compared with that of the PHASE

program.

Chapter 5 introduces the problem of constructing perfect phylogenies on incomplete hap-

lotype and genotype data. Previous results on these problems are presented. New algorithms

that do not make any assumptions about the input data are presented.

Chapter 6 discusses some issues in applying the perfect phylogeny based algorithms on

real genotype data. Some open problems in this area that need to be solved are presented,

along with possible future directions of research.

17

CHAPTER 2

CONCEPTS AND TERMINOLOGY

This chapter introduces some fundamental concepts and terminology that will be used

throughout this dissertation. A detailed, formal description of the haplotype inference prob-

lem is presented.

2.1 Molecular Biology Basics

The genetic information of an organism is given by the DNA (DeoxyriboNucleic Acid) of the

organism. The DNA is a polymer, a long chain of molecules connected to each other. Each

unit of DNA is called a nucleotide, and consists of two parts - a sugar called as deoxyribose,

and a base. There are four different bases - Adenine(A), Guanine(G), Cytosine(C) and

Thymine(T). Each nucleotide in the DNA is connected to the next through a covalent bond,

called the phospho-diester bond. Such a chain of nucleotides is called a strand of DNA.

However, DNA seldom exists in single-stranded form. Most of the DNA exists in a double-

stranded form - two strands of the DNA are connected to each other through a series of weak

18

hydrogen bonds. The hydrogen bonds that connect the two strands are only possible between

two pairs of bases: either between A and T or between C and G. Hence, the two strands in

any double stranded DNA are complementary two each other. If we know the sequence of

bases on one strand, the other strand can be deduced through the complementarity between

the (A,T) and (G,C) pairs.

The double-stranded DNA that is present in each cell of the organism is called as the

genome of the organism. Through evolution, higher organisms have found it convenient to

break up their genomes into smaller pieces, rather than having the entire genome as a single

contiguous string. Each piece is called a chromosome. Most of the cells in an organism

actually have two copies of each chromosome - and are called diploid. One copy of the

chromosome is derived from the mother, while the other is derived from the father. The two

copies of each chromosome are mostly similar, but not exactly identical to each other.

The human genome is divided into 23 pairs of chromosomes. Out of these, 22 pairs

are called autosomes - both men and women have two copies of these chromosomes. The

autosomes are numbered from 1 to 22. There are two other chromosomes, X and Y. The

23rd pair in women consists of a two copies of the X chromosome. The 23rd pair in men

consists of a copy of the X chromosome and a copy of the Y chromosome. X and Y are called

as the sex chromosomes. In each pair, the two copies are attached to each other through a

protein complex. The length of each chromosome is fixed and is different from that of any

other chromosomes. A schematic representation of the 24 different chromosomes is shown in

Figure 2.1.

19

Figure 2.1: The relative lengths of the twenty four chromosomes

2.1.1 Meiosis

During reproduction, the diploid cells undergo a special process of cell division, and produce

cells that have a single copy of each chromosome. This process is called meiosis. The

cells produced through this process are called haploid cells, since they have only a single

copy of each chromosome. These cells participate in reproduction, and are also called germ

cells. Meiosis consists of two rounds of cell division. In the first cell division, the two

copies of the chromosome (henceforth called paternal and maternal chromosomes) are first

duplicated, producing two copies of the paternal chromosome and two copies of the maternal

chromosome, as shown in Figure 2.2. The four copies of each chromosome then arrange them

selves in such a way that each paternal copy is lined up against a maternal copy. Then some

20

thing called chromosomal crossing over takes place, and parts of the maternal copy will be

swapped with parts of the paternal copy.

The chromosomal crossover is generally called recombination. Recombinations are quite

common. According to [AJL03], 2-3 recombination events take place in each chromosome

during meiosis. After the chromosomal crossover, the first cell division takes place, and two

diploid cells are created. Each such diploid cell then undergoes a second round of cell division,

this time without any DNA replication, thus producing four haploid cells. Each haploid cell

has only one copy of each chromosome. Due to the crossover, none of the chromosomes in

the haploid cells are exact copies of the paternal or the maternal chromosomes in the original

diploid cell.

During fertilization, the DNA from a haploid cell (sperm cell) of the father is delivered

into the a haploid cell (the egg) of the mother. The fertilized egg has two copies of each

chromosome again, and is a complete diploid cell. In the child, exactly one of the two copies

of each chromosome is derived from the father and the other is derived from the mother. A

schematic representation of this inheritance is shown in Figure 2.3.

2.2 Phylogenetics

Phylogenetics is the study of evolutionary relationships between organisms. A phylogeny is

typically a tree whose leaves are a set of taxa. The taxa for a given phylogeny is a set of

21

Maternal

copy

Paternal

copy

(a) Original diploid cell (b) DNA replication (c) Alignment

(d) Cross over (e) Before cell division 1 (e) The two diploid cells after cell division 1

(f) The four haploid cells after cell division 2

Figure 2.2: Different stages of meiosis

22

Mother Father

Child

Recombinations Recombinations

Mother Father

Child

Recombinations Recombinations

Figure 2.3: Inheritance of the chromosomes

species or set of individuals of the same species. Figure 2.4 shows a phylogeny for a set of

taxa. The taxa in this particular case are a set of species.

A rooted phylogeny gives the direction of evolution. The root represents the common

ancestor of all the taxa in the phylogeny. Taxa that have a more recent common ancestor

are more closely related. Phylogenetic reconstruction methods generally construct un-rooted

trees. This is because of the difficulty in determining the root without external information.

Un-rooted trees are generally rooted with the help of an outgroup, a taxon that is known to

have diverged from the rest of taxa before they diverged from each other.

In a rooted tree, a monophyletic group is a group of taxa so that all the descendants of

the most recent common ancestor of the group are in the group. A monophyletic group is

23

Gorilla

Chimp

Man

Orangutan

Figure 2.4: An un-rooted phylogenetic tree.

some times referred to as a clade. A paraphyletic group is a group of taxa that does not

include all the descendants of the most recent common ancestor of the group.

2.2.1 Phylogenies on characters

Phylogenies are constructed on a set of characters. A character is an encoding of any kind

of polymorphism - it can be a SNP site, a microsatellite, a restriction fragment length poly-

morphism (RFLP) site, or a morphological feature, among other things. These characters

can be broadly classified into molecular characters and morphological characters. Molecu-

lar characters represent polymorphisms in DNA, RNA, or amino acid sequences, where as

morphological characters represent external, observable features like the presence of fins, the

color of eyes, etc. Molecular characters are generally discrete in that they have finite set

24

of states in practice. Morphological characters, on the other hand can be continuous - for

example, the length of the tail of a peacock.

This dissertation deals with phylogenies constructed on molecular characters. Each vari-

ation of the character is called an allele. If only two variations (or states) are possible for a

given character, the character is said to be biallelic. If more than two states are possible for

the character, the character is said to multiallelic.

The data for constructing a phylogeny is generally provided as a two-dimensional matrix.

The rows of the matrix represent the taxa, and the columns represent the characters. Figure

2.5-(a) represents five species over six bi-allelic characters. For simplicity, the two alleles in

each character are encoded using the symbols ‘0’ and ‘1’.

2.2.2 Parsimony

Each taxon can be represented as a character vector, where each position in the vector

represents a character, and consists of the state of that character in the taxon. Given the

character vectors of each taxon, the edges in any phylogeny on a set of taxa can be labeled to

indicate where the state changes occur in the phylogeny. Obviously, any given phylogeny can

be labeled in multiple ways for the same set of taxa. However, we are generally interested

only in those labelings that incur the least number of state changes. Such a labeling is called

as the most parsimonious labeling of the given phylogeny. Algorithms to determine the most

25

parsimonious labeling of a give phylogeny have been developed by Fitch [Fit71] and Sankoff

[San75, SR75]. These algorithms are included in the book by Dr. Felsenstein [Fel04].

A phylogeny is the most parsimonious phylogeny if it involves the minimum number

of states changes among all the possible phylogenies for the given taxa. For example, the

phylogeny in Figure 2.5-(b) is the most parsimonious phylogeny for the taxa described by

the matrix in Figure 2.5-(a). The phylogeny in Figure 2.5-(b) requires eight state changes.

The state changes are indicated using the horizontal bars on the edges. These bars are, in

effect, the edge-labels of the edges. Because of the edge labels, we can determine the state of

each character at each internal node of the phylogeny. i.e., each internal node can be labeled

by a character vector.

Parsimony is generally accepted as the criterion for obtaining the best tree for the given

taxa. It is generally agreed upon that evolution takes the ‘shortest path’, and hence parsi-

mony is a biologically relevant criterion. However, building the most parsimonious tree for

the given set of taxa is an NP-hard problem [DJS86]. Several heuristics have been devel-

oped for obtaining the parsimonious tree. Implementations of these heuristics are available

through the popular phylogeny reconstruction packages PHYLIP [phy06] and PAUP [pau06].

Even with these heuristics, parsimony criterion can only be used with data sets with small

number of taxa. The number of possible trees increases quickly (faster than exponential)

with the increase in the number of taxa. This makes parsimony based approaches impractical

for data sets involving a large number of taxa.

26

A B C D E

1,3,6

2

4

2

5

6

101100

001110

010100

100011

100001

654321

E

D

C

B

A

(a) (b)

A E C B D

4

2

4,6

(c)

5,6
1,31,3

Figure 2.5: A character-based phylogeny. (a) A character matrix with five taxa and six

characters. (b)The most parsimonious phylogeny for the taxa in (a). (c) A non-parsimonious

phylogeny for the taxa in (a)

27

2.2.3 Perfect Phylogeny

A phylogeny is called a perfect phylogeny if every character state is generated only once in

the phylogeny. In other words, the phylogeny is a perfect phylogeny if for each character

state, the taxa that have that character state form a sub-tree of the phylogeny. Perfect

phylogeny is relevant since mutation events are generally unique within a population. If a

set of taxa admit a perfect phylogeny for a given set of characters, the perfect phylogeny will

be the most parsimonious phylogeny for the given taxa. This, combined with the fact that

perfect phylogenies can be constructed in linear time makes them very useful in practice.

The problem of determining if a given set of taxa admit a perfect phylogeny is NP-

complete [Ste92, BFW92]. However, the problem can be solved in polynomial time when

each character has a constant number of alleles. Many polynomial time algorithms have

been developed for this fixed character state problem [AF94, KW97]. The complexity of

the best algorithm so far is O(22rm2n), where n is the number of taxa, m is the number of

characters, and r is the maximum number of states of a character, which is assumed to be

a constant.

However, the problem is much simpler when r = 2, i.e., when each character has only

two alleles. In this case, the problem has a linear time (O(nm)) solution, as presented

in [Gus91]. As most SNPs in the human genome are bi-allelic, this version of the perfect

phylogeny problem will be frequently encountered in the rest of this dissertation.

28

2.3 Haplotype Inference

As explained in Chapter 1, diploid organisms have two copies of each chromosome. To

obtain the haplotype data, the two copies need to be isolated, and analyzed separately. As

described by Niu [Niu04], many methods for obtaining haplotype data empirically do exist

[SRR90, MTB96, DBG01, WGC00, OHE02, MKE02, ZLH01]. However, all these methods

are currently prohibitively expensive.

Hence, the practical approach is to analyze both the copies of a chromosome from an

individual simultaneously. Through this approach, the two alleles at each SNP locus are

obtained. The data thus obtained is referred to as un-phased genotype data, or simply the

genotype data. Computational methods are necessary to obtain the haplotype data from

the genotype data.

Given a set of genotypes, the haplotype inference problem is to compute a pair of hap-

lotypes for each input genotype. This dissertation will assume that all the loci in the input

genotypes are bi-allelic. This assumption is justified because of the fact that more than

99% of the SNPs (with Minimum Allele Frequency (MAF) > 2%) in the human genome are

bi-allelic [Int05].

29

2.3.1 Formal Statement of the Haplotype Inference Problem

Since we are dealing with bi-allelic data, the two alleles in each SNP locus can be represented

using the symbols ‘0’ and ‘1’. Using this notation, a haplotype over m loci is a vector of length

m over the alphabet {0,1}. i.e, a haplotype h = {0, 1}m. Homozygous loci in a genotype can

be represented by the corresponding allele. Heterozygous loci in a genotype are represented

using the symbol ‘2’. i.e., a genotype can be represented by a vector g = {0, 1, 2}m.

The input to the haplotype inference problem consists of n genotype vectors, each of

length m. A pair of haplotypes < h, k >, each of length m, are called an explanation of the

a genotype g if h[i] = k[i] = g[i] ∀ i such that g[i] 6= 2, and h[i] 6= k[i] ∀ i such that g[i] = 2.

In other words, h and k are a pair of haplotypes that explain or resolve the genotype g. The

vectors h and k are said to be compatible with g. Given any two out of g, h and k, it is

easy to deduce the third. If the genotype g has p heterozygous sites (p > 0), there will be

2p−1 distinct pairs of haplotypes that can explain g (if p = 0, h = k = g). However, the

problem is to determine which one of these 2p−1 haplotype pairs is the ‘true’ explanation for

g. Without additional information, each one of the 2p−1 haplotype pairs is equally likely to

be the ‘true’ explanation of g. Therefore, we need additional information in order find the

‘true’ explanation, or even to limit the number of possible explanations.

There could be many ways of defining the ‘correct’, or most likely explanation for the

given set of genotypes. As in many other problems, parsimony is generally used as the

criterion to define the correct solution. One possible way of defining parsimony in this case

30

is in terms of the number of distinct haplotypes. With respect to this definition of parsimony,

the correct explanation will be the one requires the fewest number of distinct haplotypes.

2.3.2 The Maximum Resolution Haplotype Inference Problem

Clark [Cla90] introduced the haplotype inference problem. He proposed a practical, parsi-

mony based version of the Haplotype inference problem, and provided a heuristic for the

problem. The following paragraph introduces some terminology necessary to explain Clark’s

algorithm.

Any genotype vector that has less than two heterozygous sites has a unique explanation,

and therefore is called unambiguous. A genotype vector that has two or more heterozygous

sites is called ambiguous. Given a set G of genotype vectors that contain both ambiguous and

unambiguous genotype vectors, the unambiguous genotype vectors can be resolved directly,

as they have a unique solution. Clark’s approach first resolves these unambiguous genotype

vectors, and adds the resulting haplotypes to a set of haplotype vectors H, which is initially

empty. Once a genotype vector is resolved, it is removed from G. Clark defined the following

inference rule:

31

Inference Rule:

Select a genotype g ∈ G and a haplotype h ∈ H such that h is compatible with

G. Deduce the haplotype k such that the pair h, k resolves g. Now set G ← G−g

, and H ← H
⋃

k.

Clark’s heuristic algorithm works by applying the inference rule repeatedly until the set

G is empty or until none of the haplotypes in H are compatible with any of the genotypes

in G. At any step in the procedure, there might be multiple options for selecting h and g,

and each option might lead the procedure in a different direction. Therefore, in each run

of the algorithm, depending on the series of steps taken, we might end up with a different

solution, or might get stuck after resolving a different set of genotypes. The goal is to find a

series of applications of the inference rule that resolves the maximum number of genotypes.

This problem is known as the maximum resolution (MR) problem. Formally stated:

MR Problem:

Given a set of genotypes G and a set of haplotypes H what is the size of the

minimum cardinality set G achievable by repeatedly applying the inference rule?

The problem was shown to be NP-hard [Gus01]. Clark’s original approach was to perform

thousands of runs, randomly selecting h and g whenever the inference rule has to be applied.

The best solution obtained during these runs is adopted as the solution for the instance.

The complexity of the MR problem is due to the fact that it does not assume any biological

32

model. Assuming a biological model might simplify the algorithm, and result in an efficient

solution.

2.3.3 Block structure of the human genome and the perfect phy-

logeny haplotyping problem

Linkage Disequilibrium (LD) is defined as the non-random association between two or more

loci on a chromosome. Two or more loci are said to be in linkage equilibrium when the

observed frequencies of haplotypes covering the loci agree with the haplotype frequencies

predicted by multiplying the individual frequencies of the allele at each locus. The loci are

said to be in linkage disequilibrium when they deviate from linkage equilibrium. Different

measures like D’ and r2 have been developed to measure LD. A detailed description of

different measures for LD was presented by Hudson [Hud01].

Many studies [DRS01, PBH03, RCB01] have shown that the human genome can be

divided into regions with high LD. The regions with high LD are called blocks. Few recom-

binations are expected to have occurred within regions of low LD. This, combined with the

fact that repeated mutations are rare in the human genome, leads to the possibility that the

phylogeny of the haplotypes within each block is close to a perfect phylogeny.

As described earlier, the perfect phylogeny model assumes that the evolutionary history

of all the haplotypes in a given population can be described by a rooted tree, also known as a

33

coalescent. Since the haplotypes in a population evolve on phylogeny, applying a phylogenetic

model to the haplotype inference problem is biologically relevant.

The Perfect Phylogeny Haplotyping (PPH) problem is to determine if there is a set of

haplotypes H that is an explanation of a given set of genotypes G so that H admits a perfect

phylogeny.

Even though the PPH model imposes severe restrictions on the phylogenetic network, it

is practically applicable because of the block structure of the human genome. The perfect

phylogeny formulation of the problem was first presented by Gusfield [Gus02].

2.3.4 Formal statement of the perfect phylogeny haplotyping prob-

lem

We are given a n×m matrix A over the alphabet {0, 1, 2}, in which the rows represent the

genotype vectors, and the columns represent the SNP sites. The problem is to find a 2n×m

binary matrix B which has the following properties:

1. Every row in the matrix A is explained by a pair of rows in the matrix B.

2. There is a rooted perfect phylogeny T for the matrix B:

(a) The root of the tree is labeled by an all-zero vector.

34

00000

00010

10010 00110

01000

01001

4

3 1

2

5

(a) (b) (c)

















=

22220

02022

01202

54321

A



























=

10010

01100

00010

01001

01100

01001

54321

B

Figure 2.6: (a) A genotype matrix A (b) A PPH tree T for the matrix A (c) The haplotype

matrix B that explains A

(b) Each node label in T is a compact representation of the sites that label the

edges in the unique path from the node to the root. i.e, the sites that label the edges

in the path from the node to the root are ’1’ in the node label, and all the other sites

are ’0’.

(c) Every edge in T is labeled by a site.

Each row in the matrix B represents a haplotype. Since all the rows in B label the nodes

in T , the evolutionary history of the haplotypes is a perfect phylogeny. A genotype matrix

A that covers five SNP sites is shown in Figure 2.6(a). A PPH tree T for the matrix A is

shown in Figure 2.6(b). The corresponding haplotype matrix B is shown in Figure 2.6(c).

35

2.3.5 Utilizing Pedigree Data for Haplotype Inference

Pedigree data is the information about the relationships between individuals in the popula-

tion. In some cases, limited pedigree data might be available. The pedigree data provides

valuable information that can be used in order to infer haplotypes that are more accurate.

Representation of the pedigree data

Pedigree data is generally represented by a pedigree graph. The pedigree graph is a

directed acyclic graph G =< V, E >, where V = M
⋃

F
⋃

N . M represents the male

nodes, F represents the female nodes, and N represents the mating nodes. The edges in E

connect a mating node to a male or female node, or connect a male or female to a mating

node. The in-degree of a each individual is at most 1, and the in-degree of a mating node

is 2. A mating node defines a parent-child relationship between the individual nodes that

are adjacent to it. The individuals that have edges from the mating nodes are called as the

children of the individuals that have edges to the mating node. The individuals that have

no parents are called the founders.

Practically speaking, in general, the pedigree data consists only of mother-father-child

trios. i.e., each connected component in the pedigree graph consists of two parents, a mating

node and a child. The pedigree data provides additional information in the following ways:

• Inferring the alleles at some loci: Two rules can be applied at some locations

in order to obtain the two alleles at that loci - (1) If at least one of the parents is

homozygous, we can determine which allele comes from which parent (also called as

36

the parental source of each allele) in the child. (2) If the child is homozygous and

one of the parents is heterozygous, we can determine which allele in the parent was

inherited by the child.

• Inferring missing data: Using the rules mentioned above, we can infer the missing

data at some alleles.

• Detecting errors in the data: If none of the alleles in the child match any of the

alleles in the parent, we can infer that there is some error in the data in the child or

in the parent, or both. For example, if the child is homozygous with the 0-allele and

a parent is homozygous with the 1-allele, at a particular loci, it indicates that there is

definitely some error with the data at that loci.

• Detecting recombination sites: It might be possible to determine that a recom-

bination has taken place between two loci during the process of inheritance from the

parent. However, the recombinations that occur in evolutionary history of the parent

can not be determined.

The MRHC problem

The Minimum Recombinant Haplotype Configuration problem can be stated as follows:

Given a set of genotypes and the pedigree data, find the haplotype assignment

that results in the minimum number of recombination events within the pedigree.

37

Unfortunately, the problem was shown to be NP-hard in [LJ03]. However, a heuristic,

called the block extension algorithm, was presented in [LJ03]. The authors claim that the

algorithm performs well in practice. Though their approach seems to perform better than

some of the earlier approaches for the same problem [QB02], the effectiveness of the algorithm

on real life genotype data has not been established.

2.3.6 Limitations of the pedigree data

The main limitation of algorithms based on pedigree data is the availability of pedigree data.

As far as humans are concerned, very little or no pedigree data is available in general. For

example, in the four sample populations that are being analyzed by the HapMap project

[Hap03], the pedigree data is available only for two of the populations. Even in those two

populations, the pedigree data comprises of a set of un-related trios. However, the algorithms

in [LJ03, QB02] assume that all the individuals in the population are related by a single,

connected pedigree graph. When the pedigree consists of unrelated trios, there is very little

useful information that can be obtained from the algorithms in [LJ03, QB02]. A comparison

of different pedigree-based programs was presented in [LZH04]. The comparison was done

using simulated data for nuclear families with 1-5 children. The study concluded that mis-

assignments were unacceptably high for small nuclear families. It was concluded that the

programs needed at least 4-5 children in a family to predict haplotypes with acceptable levels

of accuracy.

38

However, the pedigree data provides a lot of information which can be quite helpful in

arriving at the ‘true’ haplotype configuration. The best way to use pedigree data is to use

the pedigree to validate the results obtained without using the pedigree data. The pedigree

data can be used to infer missing data, and detect errors. Apart from that, the pedigree

data can be used to restrict the number of solutions, if there are multiple valid haplotype

resolutions for some genotype data.

2.4 Haplotype Inference on Real Genotype Data

Applying any of the PPH algorithms to actual genotype data is another challenge. The geno-

type data (like any other biological data) is often populated with missing data. In addition,

real genotype data may be very deviate from a perfect phylogeny quite often. Therefore

more robust approaches are necessary that can handle missing data and/or deviations from

perfect phylogeny. Pedigree data, when available, might assist in the imputation of some

missing entries.

2.4.1 Homoplasy Events

Violations of the infinite sites assumption, i.e, repeated or back mutations, are called as

homoplasy events. One reason why true genotype data deviates from perfect phylogeny is

39

because of homoplasy events. Though homoplasy events are generally rare in the human

genome, mutation rates vary from site to site, and is possible to have loci that have mutated

multiple times in the evolutionary history of a given population.

2.4.2 Recombinations

Recombination events are quite common. According to [AJL03], between two and three

recombination events occur in each chromosome during meiosis. If we consider the evolu-

tionary history of the mankind, millions of recombination events would have accumulated in

each chromosome. Therefore, any algorithm that can handle data with recombinations, even

a limited number of them, will be very helpful. It was shown in [LZ01] that the problem of

finding a phylogenetic network for data with recombinations is NP-hard in general. How-

ever, [LZ01, GEL03] attempted to introduce some recombinations into the perfect phylogeny

model, calling it a phylogenetic network. An algorithm was presented in [GEL03] that can

deal with phylogenetic networks in which the recombination cycles are node-disjoint. Such a

phylogenetic network is called a galled tree. If there is a galled tree for the genotype data, the

galled tree can be obtained in O(nm + n3) time using the algorithm presented in [GEL03].

It was also established that any set of sequences that can be derived on a galled tree can

also be derived on a PPH tree that allows one back mutation per site. A lower bound on

the minimum number of recombinations required in a phylogenetic network was obtained in

[BB04, GH04].

40

2.4.3 Block partitioning on real genotype data

Block partitioning of the human genome is the ultimate goal of the HapMap project. The

ability to divide the chromosomes into blocks with limited diversity is absolutely essential

for high-throughput genotyping. The motivation is to come up with a few ‘tag’ SNPs for

each block. The tag SNPs have to be selected in such a fashion that a high percentage

(80-100) of the haplotypes can be distinguished by just knowing the states of the tag SNPs.

Therefore, it will be sufficient to collect data about just the tag SNPs. For example, Patil

et. al. [PBH03] could divide a region covering 24,047 SNPs from chromosome 21 into 4,135

blocks containing just 4,563 tag SNPs. Most of the current techniques for block partitioning

rely on linkage disequilibrium(LD) measures (see glossary).

A major drawback of the current block partitioning techniques is that they assume that

the haplotypes are directly available. The fact that it is the genotype data that is experi-

mentally obtained, and that the haplotype data has to be computationally derived from the

genotype data is conveniently ignored in most approaches. The inaccuracies that creep in

during haplotype inference result in errors in the haplotype data. The block-partitioning

techniques are themselves heuristics or statistical approaches, and introduce new inaccura-

cies. On the whole, the quality of the block partitioning achieved by this two-step procedure

might not be very reliable.

The coalescent model is very promising in that it allows block partitioning directly from

the genotype data. The resulting blocks will be such that all the SNPs within in each block

41

label the edges of a PPH tree. Determining the tag SNPs becomes a trivial problem, as the

edges incident on the extant leaves of the tree become the tag SNPs for the block.

2.5 Constructing Perfect Phylogenies on Haplotypes

The input to this problem is a set of n haplotypes. Each haplotype is a binary vector of

length m, where 0 and 1 represent the two alleles. These n haplotypes can be represented by

an n×m matrix M over the integer alphabet {0,1}. Each row in M represents a haplotype,

and each column represents a character. Through out this dissertation, the terms ‘character’,

‘column’ and ‘site’ are used interchangeably. The problem is to construct a perfect phylogeny

T for the matrix M , or to determine that the matrix M does not admit a perfect phylogeny.

The following definitions will be necessary.

A column i is said to be polymorphic in M if there is at least one row r0 in M with

M [r0, i] = 0 and at least one row r1 so that M [r1, i] = 1. An underlying assumption about

M is that all columns in M are polymorphic. This is because no mutation events will be

necessary in a non-polymorphic site in any phylogeny for the matrix M . Hence the matrix

M can be pre-processed to remove all non-polymorphic columns from M . Two columns i

and j are said to equivalent in M if one of the following two conditions are satisfied:

1. M [r, i] = M [r, j] for every row r in M .

2. M [r, i] = 1−M [r, j] for every row r in M .

42

If two columns i and j are equivalent, they both label the same edge in any phylogeny

for M . It is sufficient to consider only one column out of the two columns i and j for the

purpose of constructing a phylogeny. Therefore, M can be pre-processed to ensure that there

are no two columns that are equivalent to each other.

An ordered pair (a, b), a ∈ {0, 1}, b ∈ {0, 1}, is said to be induced by a pair of ordered

columns (i, j) if there is a row r in M such that M [r, i] = a and M [r, j] = b. The set of

ordered pairs induced by a pair of columns (i, j) is denoted by I(i, j).

2.5.1 Necessary and sufficient conditions for M to admit a perfect

phylogeny

The following theorem has been stated many times before, using different terminology:

Theorem 2.1 The matrix M admits a perfect phylogeny iff |I(i, j)| ≤ 3 for every pair of

columns (i, j).

Proof Let us first consider the only if part of the theorem. This part of the theorem

implies that the matrix M does not admit a perfect phylogeny if |I(i, j)| = 4 for any pair

of columns (i, j). To see why this is true, consider the matrix restricted to just the two

columns i and j. We denote this matrix by M [∗, ij]. There is a unique topology for a perfect

phylogeny with two sites, as shown in Figure 2.7. Since the phylogeny has just two edges,

it will have three vertices U , V and W , as shown. Let the state of site i at vertex U be a,

43

 i j U V W

),(ba),(ba),(ba

Figure 2.7: The only possible topology for perfect phylogeny with two sites

where a ∈ {0, 1}. Similarly, let the state of site j at vertex U be b, where b ∈ {0, 1}. Since

the site i labels the edge (U, V). The states of the sites i and j at vertex V must be a and b,

respectively. Similarly, the states of sites i and j at vertex W will be a and b, respectively.

If M [∗, ij] admits a perfect phylogeny, each row in M [∗, ij] must have been derived from

the vertices U , V or W . Therefore, the set of ordered pairs induced by the pair of columns

(i, j) will be I(i, j) = {(a, b), (a, b), (a, b)}. i.e., irrespective what the actual values of a and

b might be, |I(i, j)| can never be greater than 3. Therefore, the matrix M [∗, ij] admits a

perfect phylogeny only if |I(i, j)| ≤ 3.

Now, consider the if part of Theorem 2.1. We need to show the matrix M admits a

perfect phylogeny if |I(i, j)| ≤ 3 for every pair of columns (i, j). Consider any column x.

The following discussion will demonstrate that there will be a phylogeny for M in which

there is only one edge labeled with the site x. Divide the rows of the matrix M into two

non-overlapping sets S0 and S1 using the following criterion - a row r ∈ S0 if M [r, x] = 0,

and r ∈ S1 if M [r, x] = 1. In any phylogeny for T for M , let (U, V) be the edge labeled with

the site x, with the state of x being 0 at vertex U and 1 at vertex V , as shown in Figure

2.8. All the haplotypes in S0 form a subtree T0 rooted at U and the haplotypes in S1 form

a subtree T1 rooted at S1, as shown.

44

x
S0 S1

U V

0 1

T

T0 T1

Figure 2.8: Illustration of the proof for Theorem 2.1

By definition, the site x is non-polymorphic in both the sets S0 and S1. Hence, there

will be no edge labeled with x in either T0 or T1. Let C0 be the set of columns that are

polymorphic in S0 and C1 be the set of columns that are polymorphic in S1. We know that,

for every column i 6= x, I(i, x) ≤ 3. Therefore, no column i 6= x can be polymorphic in both

S0 and S1. i.e., any column i 6= x in M will either be in C0 or in C1, but not in both. Since

|I(i, j)| ≤ 3 for all pairs of columns in M , |I(i, j)| ≤ 3 for all pairs of columns in C0 and C1.

Therefore, similar to x in T , it is possible to construct T0 and T1 so that any site c0 ∈ C0

will label a single edge in T0, and any site c1 ∈ C1 will label a single edge in T1. Therefore,

M admits a perfect phylogeny if |I(i, j)| ≤ 3.

This completes the proof for Theorem 2.1. ♦

2.5.2 Rooted Perfect Phylogenies

It is often easier to construct a rooted perfect phylogeny than to construct a un-rooted

perfect phylogeny. A rooted phylogeny is sometimes also referred to as a directed phylogeny.

45

Correspondingly, an un-rooted phylogeny is referred to as an undirected phylogeny. An un-

rooted phylogeny can be converted into a rooted phylogeny by designating any vertex in the

phylogeny as the root. By convention, the root is generally assumed to be an all-zero vector.

For any given matrix M , ensuring that every column is majority-zero guarantees that there

will be a vertex labeled with an all-zero vector in any phylogeny T for M . We can then

root the phylogeny at the all-zero vector. In other words, ensuring that each column in M

is majority-zero guarantees that the root is an all-zero vector. If any column in M has more

‘1’s than ‘0’s, it can be converted to a majority-zero column by simply complementing each

entry in the column.

The only if part of Theorem 2.1 is also known as the four-gamete test [HK85]. Tradition-

ally, the perfect phylogeny problem is dealt with as a rooted, or directed perfect phylogeny

problem with the root being an all-zero vector. In this context, with the all-zero vector as

the root, Theorem 2.1 is stated as in the following statement - The haplotype matrix M does

not admit a perfect phylogeny if any sub-matrix formed by two columns in M contains the

three rows {01, 10, 11}.

46

2.5.3 Algorithms for the perfect phylogeny problem on binary

characters

Many O(nm) algorithms have been presented for the perfect phylogeny problem on binary

characters. One of the simplest algorithms is presented in [Gus97]. The following is a high

level description of the algorithm:

1. Treat the columns in M as binary strings, and sort the columns according to their

numerical value.

2. For each row in the sorted matrix, construct the string of characters, in sorted order.

3. Build the keyword tree T for the n character strings formed in step 2.

4. Test if T is a perfect phylogeny.

All the steps except for the sorting step can be trivially completed in O(nm) time. The

sorting step can be implemented to run in O(nm) time using radix sort.

One other O(nm) time algorithm has been presented in [SM97].

47

CHAPTER 3

PERFECT PHYLOGENY HAPLOTYPING: THE

FLEXTREE DATA STRUCTURE AND THE OPPH

ALGORITHM

3.1 The Perfect Phylogeny Haplotyping Problem

In the case of the PPH problem, we are given an n×m genotype matrix A. The problem is

to determine if there is an 2n×m haplotype matrix B ssuch that:

1. Each row (i.e., genotype vector A[r]) can be produced by conflating the two haplotypes

vectors B[2r − 1, ∗] and B[2r, ∗] in B.

2. The haplotype matrix M admits a perfect phylogeny T .

Gusfield [Gus02] introduced the rooted version of the PPH problem (with the root being

an all-zero vector) and made some important observations about the problem. Let hr and

kr be the two haplotypes for the row r in the matrix A. The following three observations,

48

0000000

LCA(hi,ki)

These edges are labeled
by the sites that are '1' in
the ith row

The sites that are '2' in the
ith row are distributed
between these two paths

hi ki

Figure 3.1: Properties of the two haplotypes of a genotype

first made in [Gus02], are used, directly or indirectly, in every solution to the problem (see

Figure 3.1:

Observation 3.1 The set of columns that are ‘1’ in a row r of A specify the exact set of

edge labels from the root to the lowest common ancestor of nodes labeled with hr and kr, in

every perfect phylogeny for A.

Observation 3.2 Any column c that is ‘2’ in the row r of A must be in the path from the

root to exactly one of the nodes labeled with hr and kr in any perfect phylogeny for A.

Observation 3.3 Any column c that is ‘0’ in the row r of A must not be in the path to

either of the nodes labeled with hr or kr, in any perfect phylogeny for A.

The concept of column sums was also noted in [Gus02]. The column sum ηi of a column

i in A is the number of ‘1’s in column i in any binary matrix B that is a explanation of A.

49

ηi is given by the following expression, where A[∗, i] denotes the ith column in matrix A:

ηi = (# of 1’s in A[∗, i]× 2) + (# of 2’s in A[∗, i]) (3.1)

The column sum gives the exact number of haplotypes that must be in the subtree under

the edge labeled with i in any perfect phylogeny for the matrix A. The column sums impose

an order on the columns in any perfect phylogeny for A - no column with a smaller column

sum than ηi can label an edge in the path from the root to the edge labeled with the column

i. Though the significance of the column sums was noted in [Gus02], the algorithm itself

does not make complete use of the ordering imposed by the column sums. Other solutions

for the PPH problem [BGL02, EHK03, Wiu04] have mainly ignored this property and failed

to take advantage of it. The ordering imposed by the column sums plays a crucial role in

the optimal O(nm) opph algorithm that is presented in this chapter.

3.1.1 Solution via graph realization

In [Gus02], the PPH problem is solved by mapping the problem to a graph realization

problem. The algorithm first builds an initial perfect phylogeny T11 for the columns that

have at least one ‘1’. The algorithm then defines path sets for each row in A. Each path

set for a row i consists of all the columns that are ‘1’ in the row and a set of columns that

are ‘2’ in the row. The algorithm uses deep results in matroid theory and graph realization

in order to arrive at a tree that realizes all these path sets. A complete algorithm is not

50

presented in [Gus02], but the complexity of the approach was stated as O(nm2), based on

the complexity of the underlying graph realization problem. It was mentioned in [Gus02]

that the implementation of the algorithm is complicated. It was conjectured that a direct

approach might provide a simpler solution to the problem, that is easier to implement and

understand.

3.1.2 A direct approach for the PPH problem

Consequently, a direct approach for the PPH problem was presented in [BGL02]. The direct

approach defines pair-wise relationships between the columns in the matrix A. The approach

makes use of the standard four-gamete test, first presented in [HK85]. A pair of columns i

and j are defined as companion columns if both of them are ‘2’ in any row of A. All the rows

in which both the columns i and j are ‘2’ are called the companion rows for the columns i

and j. Any companion row in the matrix A can be expanded in two ways in the matrix B,

w.r.t the columns i and j: it can be expanded as the rows {00,11} or as the rows {10,01}.

In the former case, the companion row is said to have been expanded equally w.r.to columns

i and j. In the later case, the companion row is said to have been expanded unequally w.r.t.

columns i and j. The approach taken in [BGL02] is based on the fact that unless all the

companion rows of a pair of columns are expanded in the same way, the resulting matrix B

will not be realizable by a perfect phylogeny. This is obvious, as the matrix B will fail the

four gamete test for the columns i and j if one of the companion rows is expanded equally and

51

the other expanded unequally. Therefore, some of the companion columns are forced to be

expanded equally or unequally based on the state of the two columns in the non-companion

rows in the matrix A. The solution in [BGL02] essentially constructs a graph G in which

each site is represented by a vertex. Companion sites in the matrix A are connected by an

edge in G. There are three types of edges: the companion sites are connected by an equal

edge if they are forced to expand equally. They are connected by an unequal edge if they

are forced to expand unequally. Finally, they are connected by a neutral edge if they are

neither forced to expand equally, nor forced to expand unequally. Each neutral edge can be

converted into an equal edge or an unequal edge. The matrix A is realizable by a perfect

phylogeny if there is an assignment of equality or un-equality to each neutral edge such that

there are no cycles in the graph that contain an odd number of unequal edges.

Clearly, the approach requires all the pairwise relationships between all pairs of compan-

ion columns. Since there are O(m2) pairs of companion columns and since collecting the

equality/unequality relation ships between a pair of columns takes O(n) time, the overall

complexity of the algorithm is O(nm2). Out of all the algorithms presented for the PPH

problem, this was the algorithm that came closest to an O(nm) solution. However, the algo-

rithm has completely ignored the relative ordering induced by the column sums, and hence

could not achieve the O(nm) bound.

52

3.1.3 Improvements to the direct approach

Wiuf [Wiu04] attempted to improve upon the approach taken in [BGL02], and made some

interesting observations, among which is the observation that there will be no cycles in the

graph G with odd number of unequal edges unless there is at least one row in the matrix

that has three ’2’s. Consequently, the algorithm tries to establish transitive relationships

between pairs of columns. However, the algorithm does not make use of the ordering induced

by the column sums, and hence fails to achieve an O(nm) bound.

3.1.4 Other solutions

The most significant among the other solutions for the PPH problem is presented in [EHK03].

One important contribution of [EHK03] is that it clearly establishes the fact that if the

matrix A can be explained by an un-rooted tree T , then the matrix A can be explained by

a rooted tree in which the root is an all-zero vector. It also presents a generalized concept

of realizability for the binary matrix B. It states that a binary matrix B is realizable by

a perfect phylogeny only if the number of distinct rows is less than four in the sub-matrix

induced by each pair of columns. This statement might seem like a re-statement of the

4-gamete test, but actual significance of the statement is that it establishes a realizability

criteria in which the root does not have to be an all-zero vector.

53

The algorithm works by defining a set of pair-wise relationships between the columns.

Some of the relationships do impose an order on the columns. However, since the column

sums are not utilized in building these pair-wise relationships, this ordering is not apparent

until all the pair-wise relationships are built. However, building the pair-wise relationships

takes O(nm2), and hence the overall complexity of the algorithm is O(nm2).

Eskin et.al. [EHK03] also provide some useful insights on how to tackle the problem of

realizing an imperfect phylogeny. They present a criteria for quantifying the discrepancies

in T induced by a pair of columns in B that fail the four-gamete test. This leads to a

heuristic approach to realizing imperfect phylogeny which defines certain error thresholds.

The approach makes it possible to determine if there is a tree T in which none of the pairs

of columns in B exceed the error threshold.

As mentioned in [Gus02], the column sums induce an order on the columns. However,

the algorithm in [Gus02] did not make complete use of this ordering - the ordering was only

used in case of columns that have at least one ‘1’. The method failed to take advantage

of the fact that the ordering applies even to the columns that do not have any ‘1’s. Other

algorithms [BGL02, EHK03, Wiu04] completely ignored this ordering, and mostly rely on

building all pairwise relationships between the columns. The fact that the columns can be

ordered leads to this idea - can the rows be ordered in some fashion, so that an algorithm

can take advantage of the row ordering? Given the row ordering, can there be an algorithm

that spends O(m) time in each row, but collects all the information necessary to build a

PPH tree?

54

In order to determine if a matrix is realizable and to represent all possible PPH trees

for the matrix we need all pairwise relationships between the columns. However, since the

columns are ordered, it might be possible to store only some of these pair wise relationships

explicitly, and implicitly infer the rest. Hence, we will need a robust data structure that

allows us to manage and maintain all these relationships. The FlexTree data structure

presented that is introduced in this chapter is such a data structure that allows us to represent

most of the pairwise relationships implicitly.

3.2 Some Lemmas and Properties

This section will introduce some lemmas and properties in order to simplify the presentation

of the problem. Throughout this chapter, we assume that the root of the phylogeny is an

all-zero vector. For any genotype matrix that admits a perfect phylogeny, if the number of

‘1’s in every column is less than or equal to the number of ‘0’s, the root for the phylogeny

will be an all-zero vector. Though every column in the input matrix A might not always

satisfy this condition, there is a simple transformation that guarantees that the root is an

all-zero vector. The transformation is to invert all columns with column sums greater than

m - the ‘1’s in the column are changed to ‘0’s, the ‘0’s are changed to ‘1’s, and the ‘2’s are

left unchanged.

55

3.2.1 Columns sums

The column sum ηj of a column j gives the exact number of haplotypes in B that are in the

subtree under the edge labeled with j in any perfect phylogeny for A. Consequently, we can

define certain properties with respect to the column sums.

Lemma 3.1 If two columns i and j in A are such that ηi > ηj then the site j cannot be in

the path from the root to the site i in any perfect phylogeny T for A.

Proof The proof is trivial. let Ti be the subtree under i and Tj be the subtree under j in

T . If j is in the path from the root to i, Tj will include Ti. But, this is not possible since

ηi > ηj. Hence the site j cannot be in the path from the root to the site i. ♦

Lemma 3.1, when combined with Observation 3.1 leads to the following property:

Property 3.1 If there is a row r in A such that A[r, i] = A[r, j] = 1 for any two columns i

and j such that ηi > ηj, then the site i must be in the path to site j in any perfect phylogeny

T for the matrix A.

3.2.2 Pre-processing the input matrix A

It is clear from Lemma 3.1 that the column sums of the matrix A impose an ordering on

the sites in any perfect phylogeny T for A. Let Ac be a matrix derived by re-arranging the

columns of A sorted left to right according to non-increasing columns sums η. In Ac, if we

56

take any two columns i and j such that i < j, it implies that ηi ≥ ηj. This means that if

i and j appear in a path from the root to any node in T , then the site i must precede the

site j. Only one column out of any set of identical columns is retained. Hence, two columns

with ηi = ηj can not lie in the path to each other. The column-sorted matrix Ac has the

following property:

Property 3.2 Each realization of the matrix Ac will be a realization of the matrix A.

Proof The matrix Ac is just a re-arrangement of the columns in the matrix A. Therefore,

every column ic in Ac corresponds to a column i in A. Any realization T c of the matrix Ac

can be transformed into a realization T of the matrix A just by re-labeling every column ic

in Ac with the corresponding column i in A. ♦

To determine the realizability criteria for the matrix Ac, we will need to interpret the

standard four-gamete test in the context of the column-sorted matrix Ac. Let Bc be a

haplotype matrix for Ac. To begin with, since the root is always an all-zero vector, the pair

(0,0) is induced by any pair of columns (i, j). i.e., (0,0) is always in I(i, j). Consequently,

we need not test for the presence of a 00 row in M [∗, ij], and the four gamete test reduces

to testing just for the three rows {01,11,10}. Further, since the matrix Bc is column-sorted,

the four-gamete test reduces to testing for just two rows:

2-gamete test: In any column-sorted binary matrix Bc, if any sub-matrix formed by a

pair of ordered columns consists of both the rows 01 and 11, then the matrix Bc cannot be

realized by a perfect phylogeny.

57



















=

1011

0100

0011

0001

4321

c
B

(a) (b)

−−−−

−−−

−−

−

4

13

012

0101

4321c
B

P

Figure 3.2: (a) A matrix Bc with four columns (b) The phase matrix for Bc

Extending 2.1 to the column-sorted matrix Bc implies that the matrix Bc admits a perfect

phylogeny iff the sub-matrix formed by any ordered pair of columns does not contain more

than one row from the set {01,11}. Each column in Bc has at least one ‘1’, and hence the

sub-matrix formed by each pair of columns in Bc has at least a 01 row or a 11 row. A pair

of columns (x,y), x < y in Bc are said to be in-phase if Bc[∗, xy] has a 11 row. The columns

x and y are said to be out-of-phase if Bc[∗, xy] has a 01 row. For any binary matrix Bc

that has a perfect phylogeny, these phase relationships can be represented by a m×m phase

matrix PBc , in which PBc [x, y] gives the phase relationship between the columns x and y.

PBc [x, y] = 0 if x and y are in-phase and PBc [x, y] = 1 if x and y are out of phase. If the

matrix Bc is not realizable by a perfect phylogeny, Bc[∗, xy] can have both rows 01 and 11,

in which case the PBc [x, y] = ψ. A haplotype matrix Bc and the corresponding phase matrix

PBc are shown in Figure 3.2. As the columns x and y have to be ordered, PBc [x, y] is defined

only if x < y, and hence only the upper triangle of the matrix Bc is defined.

To use the 2-gamete test to determine the realizability of the column-sorted genotype

matrix Ac, we need to be able to interpret the ‘2’s in each column. Every row except a 22

58

row in a sub-matrix Ac[∗, ij] of Ac induces certain rows in the sub-matrix Bc[∗, ij] of any

matrix Bc that is an explanation of Ac. A 00, 01, 10 or 11 row in Ac[∗, ij] induces itself

in Bc[∗, ij], where as a 02, 20, 12 or 21 row in Ac[∗, ij] induces the rows {00,01}, {00,10},

{11,10}, or {01,11} in Bc[∗, ij], respectively. If the matrix Ac is to be realizable, both 01

and 11 rows should not be forced in sub-matrix Bc[∗, ij]. A phase matrix PAc for Ac can be

defined based on these forced rows. For the matrix Ac, PAc [i, j] = 0 if a 11 row is forced in

Ac[∗, ij], PAc [i, j] = 1 if a 01 row is forced in Ac[∗, ij] and PAc [i, j] = ψ if both 01 and 11

rows are forced in Ac[∗, ij]. However, if a sub-matrix Ac[∗, ij] of Ac has only 00,22 and 20

rows, the columns i and j are neither forced in-phase nor forced out-of-phase, and PAc [i, j]

is then designated as φ. Extending the 2-gamete test to a column-sorted genotype matrix

Ac, we can now state the 2-gamete test for a column sorted genotype matrix Ac as follows:

Extended 2-gamete test: The column sorted genotype matrix Ac is not realizable by

a perfect phylogeny if there are two columns i and j, i < j, such that PAc [i, j] = ψ.

An interesting result from the extended 2-gamete test is that in some situations, we can

deduce that the matrix Ac is not realizable just by looking at a single row in Ac. A 21 row

in any sub-matrix of Ac induces both 01 and 11 rows in the corresponding sub-matrix in Bc,

and hence:

Property 3.3 The matrix Ac is not realizable if a ‘2’ occurs to the left of a ‘1’ in any row.

Thus, a necessary condition for Ac to be realizable is that each row can be partitioned

into two parts, the left part containing no ‘2’s and the right part containing no ‘1’s. Checking

59

if a row satisfies Property 3.3 is a simple procedure that takes O(m) time. In the rest of the

discussion, we assume that each row in the matrix Ac satisfies Property 3.3.

Property 3.4 If a column j in Ac has at least one ‘1’, then PAc [i, j] 6= φ for every column

i < j.

Proof Let r be the row in Ac such that Ac[r, j] = 1. For any column i < j, there are three

possibilities:

• Case 1: Ac[r, i] = 0. Ac[r, ij] = 01, and hence PAc [i, j] = 1.

• Case 2: Ac[r, i] = 1. Ac[r, ij] = 11, and hence PAc [i, j] = 0.

• Case 3: Ac[r, i] = 2. Ac[r, ij] = 21, and hence PAc [i, j] = ψ. ♦

3.2.3 Implied relationships

The in-phase and out-of-phase relationships described above are direct relationships. These

relationships between any pair of columns i and j can be directly deduced from the sub-

matrix Ac[∗, ij]. However, a row in the matrix Ac might force some additional implied phase

relationships on pairs of columns. The matrix Ac will be realizable by a perfect phylogeny

only if the implied relationships forced by a row do not contradict the direct relationships

or the implied relationships forced by other rows. The following discussion describes some

relationships that are indirectly forced.

60

Theorem 3.1 In any realizable matrix Ac, given three columns x, y and z, if PAc [x, y]ε{0, 1},

PAc [x, z]ε{0, 1}, and if Ac[r, x] = Ac[r, y] = Ac[r, z] = 2 in any row r, then PAc [y, z] =

PAc [x, y]⊕ PAc [x, z], where ⊕ is the exclusive-or operator.

Proof Let r1 and r2 be the two rows in Bc corresponding to the row r. The following

situations are possible:

• Case 1: PAc [x, y] = PAc [x, z] = 0. Since PAc [x, z] = 0, x and z have to be expanded

as 00 and 11 rows in Bc[∗, xz]. w.l.o.g., let Bc[r1, xz] = 00 and Bc[r2, xz] = 11. Since

PAc [x, y] = 0, x and y have to be expanded as 00 and 11 rows in Bc, and hence

Bc[r1, y] = 0 and Bc[r2, y] = 1. However, this results in Bc[r2, yz] being a 11 row.

Hence, the relationship PAc [y, z] = 0 is indirectly forced by the row r. The situation is

illustrated by the columns x1, y1 and z1 in the Table 3.1.

• Case 2: PAc [x, y] = 1 and PAc [x, z] = 1. Since PAc [x, z] = 1, x and z have to be

expanded as 01 and 10 rows in Bc[∗xz]. w.l.o.g., let Bc[r1, xz] = 01 and Bc[r2, xz] = 10.

Since PAc [x, y] = 1, x and y have to be expanded as 01 and 10 rows in Bc[∗, xy]. Hence,

Bc[r1, y] = 1 and Bc[r2, y] = 0. However, this results in Bc[r1, yz] being 11. Hence, the

relationship PAc [y, z] = 0 is indirectly forced by the row r. The situation is illustrated

by the columns x2, y2 and z2 in the Table 3.1.

• Case 3: PAc [x, y] = 1 and PAc [x, z] = 0. Since PAc [x, y] = 1, x and y have to be

expanded as 01 and 10 rows in Bc[∗, xy]. w.l.o.g., let Bc[r1, xy] = 01, and Bc[r2, xy] =

10. Since PAc [x, z] = 0, x and z have to be expanded as 00 and 11 rows in Bc[∗, xz].

61

Hence, Bc[r1, z] = 0 and Bc[r2, z] = 1. However, this results in Bc[r2, yz] being 01.

Hence, the relationship PAc [y, z] = 1 is indirectly forced by the row r. The situation is

illustrated by the columns x3, y3 and z3 in the Table 3.1.

• Case 4: PAc [x, y] = 0 and PAc [x, z] = 1. Identical to case 3. The implied relationship

PAc [y, z] = 1 is forced on the columns y and z.

Therefore, PAc [y, z] = PAc [x, y]⊕PAc [x, z] in all the four cases. ♦ Note: The relative order

Bc x1 y1 z1 x2 y2 z2 x3 y3 z3

r1 0 0 0 0 1 1 0 1 0

r2 1 1 1 1 0 0 1 0 1

Table 3.1: Illustration of Theorem 3.1.

of the columns x, y and z is insignificant in Theorem 3.1. The relative orders shown in Table

3.1 are only one of the many possible relative orders between the columns x, y and z.

The essence of Theorem 3.1 has been presented in [BGL02], using different terminol-

ogy. However, the direct relationships and implied relationships were treated differently in

[BGL02]. The input matrix is first checked to make sure that the matrix does not fail the

4-gamete test. The implied relationships are then built and checked to make sure that none

of them contradict with each other or the direct relationships. In the opph (Optimal Per-

fect Phylogeny Haplotyping) algorithm presented in Section 4, both the direct and implied

relationships are built and checked simultaneously.

62

Theorem 3.2 In any realizable matrix Ac, given three columns x, y and z, x < y < z, if

there is a row r in which Ac[r, x] = Ac[r, y] = Ac[r, z] = 2, then PAc [x, y] will be in {0,1} if

PAc [x, z] is in {0,1}.

Proof The proof is trivial if the column y or column z have at least one ‘1’, due to Property

3.4. The proof is trivial also when PAc [y, z] is {0,1}- PAc [x, y] can be derived from PAc [y, z]

and PAc [x, z] using Theorem 3.1. Let us consider the case when the columns y and z do not

have any ‘1’s, and PAc [y, z] is not directly forced. i.e, the column y is ‘2’ in every row in

which column z is ‘2’. There are two possibilities:

• Case 1: The column z is directly forced out-of-phase or in-phase with x. This means

that there is a row r in which Ac[r, x] ∈ {0, 1} and Ac[r, z] = 2. But, since the column

y is ‘2’ in every row in which column z is ‘2’, Ac[r, y] = 2. This means that Ac[r, xy]

is either 02 or 12, and hence a 01 row or a 11 row is forced in Bc[∗, xy]. Therefore,

PAc [x, y] is in {0,1} if PAc [x, z] is directly forced.

• Case 2: The column z is forced out-of-phase or in-phase with x through an implied

relationship. i.e, x is ‘2’ in every column in which z is ‘2’. There must be at least

one other column w such that all the three columns x, w and z are ‘2’ in some row r,

and the phase between the pairs (x,w) and (w, z) is directly forced. PAc [x, z] must be

derived by applying Theorem 3.1 on w, x and z. Again, there are two possibilities:

– w < y: Since PAc [w, z] is directly forced, there must be some row r1 in which

Ac[r1, w] ∈ {0, 1} and Ac[r1, z] = 2. But, since y must be ‘2’ in every row in

63

which z is ‘2’, Ac[r1, y] = 2, and PAc [w, y] will be equal to PAc [w, z]. Hence,

PAc [x, y] can be obtained by applying Theorem 3.1 on columns x, y and w.

– y < w: Since PAc [x,w] is directly forced, there must be some row r2 in which

Ac[r2, x] ∈ {0, 1} and Ac[r1, w] = 2. Therefore, either PAc [y, w] or PAc [x, y] must

be directly forced. In the first situation, PAc [x, y] can be obtained by applying

Theorem 3.1 on columns x, y and w. In the second situation, PAc [x, y] is directly

available.♦

3.2.4 Realizability of the matrix Ac

The direct and implied phase relationships described above enable us to extend the 2-gamete

test and state the necessary and sufficient conditions for the realizability of a genotype matrix

Ac.

Theorem 3.3 (The Realizability Theorem) A column-sorted genotype matrix Ac is re-

alizable by a perfect phylogeny iff PAc [x, y] 6= ψ for every pair of columns x and y, x < y, in

Ac.

Proof The only if part of the theorem is obvious. If PAc [x, y] = ψ, then the rows 01 and

11 will be forced in the matrix Bc[∗, xy]. Hence the matrix Bc will fail the 2-gamete test,

and is therefore not realizable by a perfect phylogeny. Now let us look at the if part of the

Theorem.

64

In any matrix Bc that has a perfect phylogeny, any pair of columns are either in-phase

or out-of-phase. Therefore, to prove that the matrix Ac has a perfect phylogeny, we need to

prove that there will be an explanation Bc for the matrix Ac in which PBc [x, y]ε{0, 1} for

every pair of columns x and y, x < y.

Let us assume that we know all the pairwise relationships (direct and implied) between

columns in the matrix Ac, and that no entry in PAc is ψ. Let x be the column with the

lowest index in Ac such that all pairs of columns up to x are either forced in-phase or out-

of-phase with each other. i.e, for every pair i and j, i < j < x, PAc [i, j] ∈ {0, 1}. Therefore,

PAc [i, j] = PBc [i, j] for all these columns. From the definition, column x is neither forced

in-phase nor forced out of phase with at least one column before x. i.e., there is at least one

column i, i < x, such that PAc [i, x] = φ. Let S be the set of all such columns. i.e., for every

column i ∈ S, i < x and PAc [i, x] = φ. From Property 3.4, S can be non-empty only if the

column x does not have any ‘1’s.

First, we show that every column c1 such that c1 < x and there is a row r in which

Ac[r, c1] = Ac[r, x] = 2, is in the set S. Since every column i ∈ S is ‘2’ in every row in which

x is ‘2’, all the columns in S are ‘2’ in row r. Let us consider any column c2 ∈ S. Since all

the three column c1, c2 and x are ‘2’ in row r, Theorem 3.1 can be applied on the columns

c1, c2 and x if any two pairwise phase relationships are in {0,1}. Since both c1 and c2 are to

the left of x, we know that PAc [c1, c2] is in {0,1}. Therefore, if PAc [c1, x] is in {0,1}, we can

apply Theorem 3.1, and PAc [c2, x] will be in {0,1}. However, we know that PAc [c2, x] = φ

since c2 is in S. Hence, c1 must also be in S. Hence, every column j < x that is ‘2’ in a

65

row in which x is 2 is in S. Expanding the column x in-phase or out-of-phase with any one

column c1 ∈ S will force the column x in-phase or out-of-phase with every other column c2

∈ S, due to Theorem 3.1. Therefore, column x can be expanded so as not to violate the

2-gamete test with any column j < x.

Now, let us consider the columns with higher index than x. Let Ś be the set of columns

with higher index than x that are ‘2’ in some row in which x is ‘2’. For any column y ∈ Ś,

PAc [j, y] must be φ for every column j ∈ S, since PAc [x, y] will be in {0,1} otherwise (due

to Theorem 3.2). Hence, none of the newly implied phase relationships that can be inferred

because of setting PAc [x, y] to 0 or 1 can make PAc [x, y] to be ψ. Hence, it is possible to

expand column x in such way as not to violate the 2-gamete test with any column y > x.

Once we account for all the newly implied/introduced phase relationships, we can proceed to

the next column z which is neither forced in-phase nor forced out-of-phase with at least one

column before it. The same conditions apply at z, and there will be at least one explanation

Bc of Ac such that Bc has a perfect phylogeny. ♦

3.3 The FlexTree Data Structure

3.3.1 Motivation for the FlexTree data structure

The in-phase and out-of-phase relationships described in the previous section directly trans-

late to relative positions in the PPH tree. If two columns y and z, y < z, are forced in-phase,

66

then the edge labeled with column y must be in the path from the root to the edge labeled

with column z in any rooted perfect phylogeny for the matrix Ac. Similarly, if two columns x

and y, x < y, are forced out-of-phase, then the edge labeled with column x can not be in the

path to the edge labeled with column y in any perfect phylogeny for the matrix Ac. Assume

we have three columns x < y < z, so that y is forced in-phase with z. If x is forced in-phase

with y, x must always be in the path to y, and since y must always be in the path to z, x

will always be in the path to z. If x is forced out of phase with y, x must never be in the

path to y, and hence x can never be in the path to z. In either case, we need not explicitly

know the relationship between the columns x and z, as this can always be inferred through

the column y. Therefore, at any column z, if we know the column y with the highest index

such that z is forced in-phase with y, we can infer the relation ship of z with any column

with lower index than y.

In any given perfect phylogeny, a site z is said to follow a site y if the site y is the first site

in the path from site z to the root. For any column z, let the column y be the column with

the highest index such that y < z and y is forced in-phase with z. If all the columns between

y and z are forced out-of-phase with z, then z must follow the column y in every perfect

phylogeny for the matrix Ac. Under these circumstances, the column z can be considered

fixed to column y, and we call the column y as the parent of column z. The situation is

depicted in Figure 3.3a. On the other hand, if there are columns between y and z that are

not forced out-of-phase with z, z might follow different columns in different phylogenies for

Ac. In this case, as there is some flexibility in the columns that z can follow, we call the

67

y

z

(a)
y

z

(b)

x

(c)
y

w

x

z

(d)
y

x

z

Figure 3.3: (a) A fixed column z with parent y; Possible scenarios when z is flexible = (b)

Case 1; (c)Case 2; (d) Case 3

column z flexible. Let S be the set of columns between y and z that are not forced out of

phase with z. When z is a flexible column, let the column x be the column with the highest

index such that x ∈ S. i.e., x is the column with the highest index that z can follow in any

perfect phylogeny. We call the column x as the f-parent0 of column z. The relative positions

of z and x in different situations are shown in Figures 3.3b, 3.3c and 3.3d. In each one of

these situations, the other columns that z can follow can either be defined or deduced with

respect to the column x. Let Sx be the set of columns in S that are forced out of phase with

x. We introduce a new term called f-parent1.

Case 1: PAc [y, x] = 0 and PAc [w, x] = 0 for every column w ∈ S. The column z can follow

either column x or column y. Column y is called the f-parent1 of column z. The situation

is depicted in Figure 3.3b.

68

Case 2: Sx is not empty, and w is the column with the highest index in Sx. i.e, PAc [w, x] = 1.

Since both w and x are not forced in-phase or out-of-phase with z, there must at least one row

in which all three columns x, w and z are ‘2’. Hence, Theorem 3.1 applies, and PAc [w, z] = 1

if PAc [x, z] = 0 or PAc [x, z] = 1 if PAc [w, z] = 0. In the first case, z must follow x and in the

second case, z must follow w. Again, there are only two columns that z can follow, and we

call w as the f-parent1 of column z. The situation is depicted in 3.3c.

Case 3: PAc [y, x] = φ and Sx is empty. There are more than two columns that z can follow.

In fact, z can follow any column that x can follow. Hence, all we need to know about column

z is that z can follow x. In this situation, f-parent1 of column z is not defined(null). The

situation is shown in Figure 3.3d.

For any flexible column f-parent1 and f-parent0 are collectively referred to as the flexible

parents of the column. If we introduce a dummy all-1 column with index 0 to the matrix Ac,

every column will be forced in-phase with column 0. This will ensure that either the parent

or f-parent0 are defined for every column except column 0. The added dummy column will

not violate the column ordering since it has the highest possible column sum.

Theorem 3.4 In any realizable matrix Ac, if two columns y and z are such that y < z and

PAc [y, z] = 0, then PAc [x, z] = PAc [x, y] for any site x < y.

Proof The proof is divided into three cases:

• Case 1: PAc [x, y] = 0. i.e., in any PPH tree, the edge labeled with site x must be in

the path from the root to the edge labeled with site y. But, since PAc [y, z] = 0, the

69

edge labeled with site y must be in the path from the root to the edge labeled with

the site z. Hence, the site x will be in the path from the root to the edge labeled with

site z in any PPH tree for the matrix Ac. Hence, PAc [x, z] = 0 = PAc [x, y].

• Case 2: PAc [x, y] = 1. Similar to Case 1. x cannot be in the path to y in any PPH

tree. Since y must be in the path to z in every PPH tree for Ac, x can not be in the

path to z. Hence, PAc [x, z] = 1 = PAc [x, y].

• Case 3: PAc [x, y] = φ. This means that are no ‘1’s in column y, due to Property

3.4. Hence there must be at least one row r in Ac such that Ac[r, yz] = 22. But, since

PAc [x, y] = φ, the columns x must be ‘2’ in every row in which column y is ‘2’. Hence,

Ac[r, x] = 2. As all the three columns x, y and z are ‘2’ in row r, Theorem 3.1 applies,

and PAc [y, z] = PAc [x, y] ⊕ PAc [x, z]. Since we know that PAc [y, z] = 0, PAc [x, y] must

be equal to PAc [x, z] in order to satisfy Theorem 3.1.♦

Theorem 3.4 allows us to build the phase matrix by explicitly storing only parts of the

phase matrix. The FlexTree data structure utilizes this property, and stores only the absolute

minimum phase relationships necessary to reconstruct the phase matrix. It will be clear from

the following discussion that we need to explicitly store at most two entries in any column

of the phase matrix. The rest of PAc can be inferred by just knowing a small portion of PAc .

Theorem 3.5 tells us exactly what information in PAc is necessary in order to deduce the rest

of PAc .

70

Theorem 3.5 In any realizable matrix Ac, the phase matrix PAc can be constructed if we

know the parent, f-parent0 and f-parent1 of each column.

Proof The proof is by induction. Let us assume that we are at a column z, and that we

could construct the matrix PAc completely up to the column z−1 by just knowing the parent

f-parent0 and f-parent1 of every column up to z−1. We will show that we can obtain all the

pairwise relationships of the column z with any column x < z by just knowing the parent

(Case 1) or f-parent0 and f-parent1 (case 2).

Case 1: The column z has a parent y. By definition, PAc [x, z] = 1 for every column x

such that y < x < z. Also, PAc [y, z] = 0 by definition. It is clear from Theorem 3.4 that

PAc [x, z] = PAc [x, y] for every column x such that x < y. Therefore, for every column x < y,

since y ≤ z−1 and since we have the phase matrix PAc built up until column z−1, we know

PAc [x, y], from which we can obtain PAc [x, z].

Case 2: Column z does not have a parent. Column y0 is f-parent0 of column z and column

y1 is an f-parent1 of column z. There are three possibilities:

Case 2-(a): y1 6= null and PAc [y1, y0] = 1. We divide the columns into three ranges:

1. y0 < x < z: By definition, PAc [x, z] = 1

2. y1 < x < y0: There are three possibilities:

(a) PAc [x, y0] = 1. PAc [x, z] cannot be φ or 0, as y1 will be equal to x if PAc [x, z] = φ

or 0. As y1 < x by definition, PAc [x, z] must be 1.

71

(b) PAc [x, y0] = 0. PAc [x, z] cannot be 0, as y1 will be equal to x if PAc [x, z] = 0.

By applying Theorem 3.4 on the three columns y1, x and y0, PAc [y1, x] = PAc [y1, y0].

Let r be any row such that Ac[r, z] = 2. Both the columns y1 and y0 must be ‘2’ in row

r, as PAc [y0, z] = PAc [y0, z] = φ. Therefore, Ac[r, x] must be ‘2’, since Ac[r, x] being 0

or 1 will contradict with what we already know about the columns y1, x and y0. Hence

all the three columns x, y0 and z are ‘2’ in row r. Theorem 3.1 will apply, and PAc [x, z]

will be in {0,1} if PAc [y0, z] is in {0,1}. But, since we know that PAc [y0, z] = φ, PAc [x, z]

must be φ.

(c) PAc [x, y0] = φ. Not possible. As in (b) above, there must be at least one row

in which all four columns y1, x, y0 and z are ‘2’. Hence, Theorem 3.2 applies on the

columns y1, x and y0, and PAc [y1, y0] ∈ {0, 1}, as PAc [y1, y0] = 1. Applying Theorem

3.1 on y1, x and y0, we see that PAc [x, y0] has to be in {0,1}.

3. x < y1: There are 5 valid pairwise relations between the columns x, y1 and y0. We can

infer PAc [x, z] in all five cases, as shown in Table 3.2

Case 2-(b): y1 6= null and PAc [y1, z] = 0. Proof similar to case 2-(a).

Case 2-(c): y1 = null. Proof similar to case 2-(a). ♦

72

PAc [x, y1] PAc [x, y0] PAc [y1, y0] PAc [x, z]

0 0 1 0

0 1 1 φ

0 φ 1 not possible

1 0 1 φ

1 1 1 1

1 φ 1 not possible

φ 0 1 not possible

φ 1 1 not possible

φ φ 1 φ

Table 3.2: PAc [x, z] can be obtained from PAc [x, y1] and PAc [x, y0]

.

3.3.2 The FlexTree

The FlexTree data structure is a special kind of weakly connected directed acyclic graph

(DAG). The FlexTree provides an intuitive and simple representation of all the pairwise

relationships between pairs of columns. The FlexTree has a tree-like structure. In fact,

if the matrix Ac has a unique perfect phylogeny, the underlying undirected graph of the

FlexTree for Ac will be a rooted tree.

In the FlexTree, each site is represented by a directed edge labeled with the site. Every

edge in the FlexTree is directed toward the root. If column i is the parent of column j,

the relationship is represented by the edge labeled with column i being adjacent to the edge

labeled with column j. The flexible parent relationships are represented by directed un-

labeled glue edges. If column i is the f-parent1 or f-parent0 of column j, the relationship is

represented by an unlabeled directed edge from the edge labeled with column j to the edge

73

1

2 3

4

5

6

(a) (b) (c)



















=

220021

002221

000021

000201

654321

c
A

−−−−−−

−−−−−

−−−−

−−−

−−

−

6

5

114

113

12

000001

654321

φ

φ

φφφ

c
A

P

Figure 3.4: (a) A genotype matrix Ac; (b) The Phase matrix for Ac; (c) The FlexTree T for

Ac - the broken edges represent the glue edges;

labeled with the column i. Figure 3.4 shows a matrix Ac, the phase matrix PAc of Ac, and

the flex tree T for the matrix Ac.

The phase relationships reduce to reachability in the FlexTree. For two sites i < j, if

PAc [i, j] = 1, the edge labeled with site i is not reachable from the edge labeled with site j.

If PAc [i, j] = 0, every path from edge labeled with site j to the root will include the edge

labeled with i. If PAc [i, j] = φ, then there will at least one glue edge in the path from the

edge labeled with site j to the edge labeled with site i. As the FlexTree represents all the

phase relationships given by the phase matrix PAc , any PPH tree for Ac can be built from

the FlexTree by removing some glue edges and contracting the others. (We will show how

to do this in Section 3.4.7).

74

(a)

(b)

i

j

x

y
z

out-vertices

in-vertices

(c)

1

2

3 4

(d) T

1

2

3
4

(e) T1

(f)

1

2

4
3

T2

















=

2221

0221

2021

4321

c
A

−−−−

−−−

−−

−

4

13

2

0001

4321

φφ

c
A

P

Figure 3.5: (a) A genotype matrix Ac; (b) The Phase matrix for Ac; (c) General structure of a

partition; (d) The complete FlexTree T for the matrix in (a); (e) and (f) - The two PPH trees T1

and T2 represented by the FlexTree in (d)

3.3.3 Representing the interdependence between phase relation-

ships

The FlexTree, as described above, correctly represents all the phase relationships between

pairs of columns. However, some of the phase relationships are dependent on each other

as per Theorem 3.1. These dependencies need to be represented in the FlexTree. For

example, consider the matrix Ac and the phase matrix PAc shown in Figures 3.5a and 3.5b.

Columns 2, 3 and 4 are all ‘2’ in row 4, and hence the pairwise phase relationships are linked

- PAc [2, 3] = PAc [2, 4] ⊕ PAc [3, 4] . Therefore, setting any one of the phase relationships

PAc [2, 3] or PAc [2, 4] to ‘0’ will result in the other being ‘1’.

75

In order to represent the interdependence between phase relationships, we introduce a

special system of vertices that we call a partition. A partition consists of four vertices, as

shown in Figure 3.5c. Two of these vertices are the in-vertices of the partition - the in-degree

is at least 1 and the out-degree is 0 for each of them. The other two are out-vertices - the

in-degree is 0 and the out-degree is 1 for each of them. Each of the two out-vertices is

incident on an un-labeled glue edge. The four vertices in the partition represent two vertices

in any PPH tree. In any PPH tree, one of the in-vertices merges with one of the out-vertices,

and other in-vertex merges with the remaining out-vertex. The condition is that the two

in-vertices have to be distinct vertices in any PPH tree. Hence, both in-vertices are not

allowed to merge with the same out-vertex. The complete FlexTree for the matrix in Figure

3.5a is shown in Figure 3.5d. The two PPH trees described by the FlexTree in Figure 3.5d

are shown in Figure 3.5e and Figure 3.5f.

In the FlexTree, all the edges that are incident on any of the in-vertices are interpreted

as being connected to both the glue edges coming out of the partition. This is because of

the fact that any edge i incident on one of the in-vertices has two possibilities as given by

the two glue edges. Each choice leads to one PPH tree for Ac.

Any given column can be involved in at most one partition. For example, refer to figure

3.6. The column-pairs (4,6), (3,5) and (3,4) are all out-of-phase. But, since there is a row

in which the columns 2, 4 and 6 are ‘2’, columns 4 and 6 must be in a partition. The same

situation applies for columns (2,3,5) and (2,3,4). All these relationships can be expressed

using a single partition as shown in Figure 3.6b.

76



























=

002221

020221

000221

202021

020021

200021

654321

c
A

5

4 3
6

1

2

(b) (a)

Figure 3.6: (a) A matrix Ac; (b) The FlexTree T for the matrix Ac

3.3.4 Haplotypes represented by the FlexTree

It is essential that the reader understands how the FlexTree represents the possibilities for

each column. If a column i is reachable from a column j, it does not necessarily imply that

the column j can follow column i, even if the column j is flexible. The column j can follow

column i only if the following conditions are satisfied:

1. The column i is reachable from column j.

2. Either: (a) Column i is the parent of column j. For example, columns i and j in Figure

3.7a. or:

(b) The first and last edges in at least one of the paths between the edges i and j

(not including the edges labeled with sites i and j) are both unlabeled glue edges. For

example, columns i and j in Figure 3.7b.

77

i

j

(a) (b)
i

j

x

(c)
i

j

x

(d)
i

j

x

Figure 3.7: (a) and (b) - Situations in which the j can follow i;(c) and (d) - Situations in

which j can not follow i even though i is reachable from j.

Two situations in which column i is reachable from column j, but not in one of the

columns that j can follow are shown in Figures 3.7c and 3.7d.

If we fix each flexible column in the FlexTree to one of the columns that it can follow,

the resulting graph will be a DAG that is free of partitions and glue edges, and will contain

only directed labeled edges. The underlying undirected graph of this DAG will be a per-

fect phylogeny. Each node in the perfect phylogeny describes a haplotype. Therefore, the

FlexTree represents every haplotype that labels a node in some perfect phylogeny described

by the FlexTree. Given a haplotype H, we can easily check if H is among the haplotypes

represented by the FlexTree. Let i and j be two columns such that H[j] = 1, and i is the

column with the highest index such that i < j and H[i] = 1. i.e., all the columns (if any)

between i and j are ‘0’ in H. The haplotype H will be in the haplotypes represented by the

FlexTree if and only if i is one of the columns j can follow, for every such pair of columns i

and j in H.

78

3.3.5 Representation of the FlexTree

Because of the partitions, the FlexTree is not exactly a DAG. As is evident from the de-

scription of a partition, all the columns involved in a partition have the same set of flexible

parents. Each partition involves two groups of sites, each group representing the sites that

are incident on one of the two in-vertices of the partition. The two groups are arbitrarily

numbered as group-0 and group-1. Therefore, for each partition, we need to store the infor-

mation about the f-parents and the two groups of sites involved in the partition. For each

site that is not in a partition, we need to know the parent, f-parent1, f-parent0 of the site. If

the site is involved in a partition, we need to store a pointer to the partition. In order to op-

timize the performance of the algorithm, each site involved in a partition also needs to store

which group of the partition it is in. The FlexTree is stored as two tables, the column-table

and the partition-table, which give information about the sites and partitions, respectively.

The representation of the FlexTree in Figure 3.6 is given in Table 3.3. The partition field in

the column-table stores a pointer to the partition that the column is involved in. The group

field gives the group number of the column within the partition.

For each column, we need a constant amount of space in the column-table. Hence the

total space required by the column-table is O(m). The partition table stores the index of

each partition, the two f-parents, and the list of sites in each group of the partition. The size

of a partition is defined as the total number of columns involved in the partition. The size of

a partition is equal to the sum of the in-degrees of the two in-vertices. As each column can

79

Column parent f-parent0 f-parent1 partition group FlexEnd

1 root - - - - 1

2 1 - - - - 1

3 - - - 1 0 3

4 - - - 1 1 4

5 - - - 1 1 5

6 - - - 1 0 6

Partition Number f-parent0 f-parent1 group[0] group[1]

1 2 1 3,6 4,5

Table 3.3: The column-table (above) and the partition-table (below) for the FlexTree in

Figure 3.6.

be involved in only one partition at any given time, the combined size of all the partitions in

the FlexTree is O(m). The total number of partitions in the partition table cannot exceed

m/2.

3.4 The opph Algorithm

The fundamental idea behind the opph algorithm is to start with an empty FlexTree and

process the rows of the matrix one after the other. When a row is processed, the FlexTree

should be updated to represent the pairwise relationships and dependencies imposed by the

row. An edge labeled with column i must be added to the FlexTree when the first row

in which column i takes a non-zero value is processed. At any point in the algorithm, the

FlexTree must correctly represent all the pairwise relationships and dependencies induced

by the rows that have already been analyzed.

80

From Property 3.4, we know that a ‘1’ in a column i will either force the column i in-

phase or out-of-phase with every column before it, or render the matrix unrealizable. In the

FlexTree, a ‘1’ in the column i ensures that column i is fixed. Therefore, a row with a ‘1’

in column i gives us the maximum information about column i. Hence, we would like to

process the rows with a ‘1’ in column i before we process the rows in which the column i

is ‘0’ or ‘2’. This observation suggests that the rows in the matrix should be ordered using

the lexicographic order 1 < 0 < 2. We denote this row-sorted matrix using M . As the

phase relationships and the column ordering in M are no different from those is Ac, the

phase matrix for M is the same as that for Ac. In the rest of the chapter, we refer to the

phase matrix as PM . An extra, all-1 column with index 0 is added to M , as explained in the

previous section.

The row ordering is not just a matter of convenience - it provides a ‘context’ for adding

new rows to the FlexTree. This context is essential in limiting the complexity of the opph

algorithm to O(nm). Because of the row ordering, each row shares a prefix with the row

before it. The length of this shared prefix must be at least 1, since the column with index 0

is ‘1’ in every row. The maximum length of the shared prefix can be m + 1, in which case

the row is a copy of the row before it. Assume that the first r − 1 rows in M have been

processed, and the FlexTree has been constructed for the first r − 1 rows. Let the length of

the shared prefix for the rows r and r−1 be er, where er ≤ m. Since the FlexTree represents

the (r − 1)th row, we know that the FlexTree also represents the two haplotypes for the

genotype represented by the length-er prefix of row r. The ends of these two haplotypes

81

correspond to either one or two vertices in the FlexTree. The haplotypes for the complete

row r are extensions of these two haplotypes, and hence the ends of these two haplotypes

provide a context for the complete haplotypes. Due to the row ordering, we can be sure

that it is the first time that we are encountering the (er + 1)-length prefix of row r, and

this helps in deciding how each column with index er or greater is effected by adding row

r to the FlexTree. Every column with higher index than er that takes a non-zero

value in row r and is already in the FlexTree must be either forced in-phase or

out-of-phase with column er. This property, proved by the lemmas and theorems in the

rest of this section, forms the basis for the opph algorithm, shown in Figure 3.9.

In the following, we introduce some terms that will be used in describing the opph

algorithm. A column is said to be in the FlexTree if an edge labeled with the column is in

the FlexTree. The FlexEnd of a fixed column i is the first flexible column in the path from

the edge labeled with i to the root in the FlexTree. By convention, a flexible column is the

FlexEnd for itself. A partial genotype vector is a prefix of a row in M , to which a string of

0’s have been appended so that the length of resulting vector is exactly m + 1 (The vector

needs to be of length m + 1 so that it remains to be a valid genotype vector even when the

columns are re-arranged to represent the original order of the sites in matrix A.). The ith

partial genotype vector of a row r, denoted by M [r, 0...i], is the prefix of row r of length

i+1, to which m− i zeros have been appended at the end. The mth partial genotype vector

of row is the row itself. A haplotype vector (or a genotype vector) h is said to end in a site

j if j is the non-zero column with the highest index in h. We denote the two haplotypes

82

of a partial genotype vector M [r, 0...i] using hi
r and ki

r. By convention, hi
r is the haplotype

vector that ends in the column with the higher index among the two haplotypes hi
r and ki

r.

For simplicity of notation we denote the site in which hi
r ends by hi

r itself, and the site in

which ki
r ends by ki

r itself. From the context, it will be clear whether it is the haplotype hi
r

or the site hi
r that is being referred to.

A partial genotype vector is said to be split if both the sites hi
r and ki

r are defined (not

null). Because of the convention, the site hi
r is always defined. The site ki

r will be defined if

there is only one possible column in which the haplotype ki
r can end. If there are multiple

sites in which the haplotype ki
r can end, then site ki

r is not defined. During the construction

of the FlexTree, the algorithm maintains two additional arrays h[] and k[], each of size m+1,

in addition to the fields shown in Table 3.3. When the algorithm is processing row r, the

fields h[i] and k[i] represent the sites hi
r−1 and ki

r−1.

Constructing the FlexTree for the first row is trivial as shown in the ProcessNewRow

procedure in Figure 3.8. When the algorithm reaches a row r, the FlexTree correctly repre-

sents the solutions for the first r− 1 rows. The algorithm is based on the fact that the row r

is a result of combining at most two distinct haplotypes. Prefixes of the two haplotypes will

correspond to at most two distinct paths in the FlexTree. Let P0 and P1 be the two paths.

After processing the row r, any non-zero column (by non-zero column, we mean a column

that takes a value other than zero, i.e., 1 or 2) in the row r must be in P0 or P1. Based on

this principal, the opph algorithm identifies the paths P0 and P1, adds new columns to the

83

FlexTree and makes changes to the columns already in the FlexTree so that combining the

two haplotypes described by the paths P0 and P1 results in the genotype given by row r.

Figure 3.8: ProcessNewRow procedure
inputs : T (the column table and partition table) r, er

Result: updates T to accommodate row r

for ci ← er to m do1

if M [r, ci] 6= 0 and ci is in T then2

M is not realizable by a perfect phylogeny, stop3

if M [r, ci] = 0 then h[ci] ← h[ci − 1], k[ci] ← k[ci − 1]4

else if M [r, ci] = 1 then5

if h[ci − 1] 6= k[ci − 1] then M is not realizable by a perfect phylogeny, stop6

parent[ci] ← h[ci − 1]7

FlexEnd[ci] ← FlexEnd[parent[ci]]8

h[ci] ← ci, k[ci] ← ci9

else10

if h[ci − 1] = k[ci − 1] then11

parent[ci] ← h[ci − 1]12

h[ci] ← ci, k[ci] ← k[ci − 1]13

FlexEnd[ci] ← FlexEnd[parent[ci]]14

else15

set fp0(ci, h[ci − 1])16

set fp1(ci, k[ci − 1])17

FlexEnd[ci] ← ci18

h[ci] ← ci, k[ci] ← null19

The paths P0 and P1 are essential for the algorithm because of the following properties:

1. All the ‘1’s in the row r must be in the shared path between the paths P0 and P1.

2. Any non-zero column not reachable from any column in P0 must be in P1.

3. Any non-zero column but reachable from any column in P1 must be in P0.

84

For any row r in the matrix M such that r ≥ 1, the EntryPoint(denoted by er) is the

column i with the lowest index such that M [r − 1, i] 6= M [r, i]. i.e, the entry point is the

first column from the left in which the rows r − 1 and r differ. The SplitPoint (denoted by

sr) of a row r is the column with the highest index before er at which the row r− 1 is split.

i.e., sr is the highest column i such that i < er and the site k[i] (i.e, the site ki
r−1) is defined.

Figure 3.9: The opph algorithm
inputs : Ac, n, m

Result: The FlexTree T for Ac

Sort the rows in Ac and add an all-1 column with index 0 to produce the matrix M1

Initialize every entry in the column table and partition table to null2

h[0] ← 0, k[0] ← 0, FlexEnd[0] ← 03

ProcessNewRow(1, 1)4

for r = 2 to n do5

(er, sr) ← ScanForward(M , T , r)6

if er ≤ m then7

if M [r, er] = 0 then8

ProcessNewRow(r,er)9

else10

TraceUpRow(r, er, sr)11

TraceDown(r)12

The algorithm consists of three steps - ScanForward, TraceUp and TraceDown. We

describe each one of the steps in detail in the following sections.

3.4.1 Building the FlexTree for the first row

As none of the pairwise relationships are known before we start with the first row, the row

will have a FlexTree as long as it does not violate Property 3.3. i.e., if there are no ‘2’s to

85

the left of a ‘1’. The column with index 0 is the dummy all-1 column, hence Parent[0] is

initialized to 0, by convention. All other values in the column table are set to null, except

for h[0] and k[0], which are set to 0.

The procedure for building the FlexTree T for the first row directly follows from the

observations 3.1, 3.2 and 3.3 in section 3.1. The procedure ProcessNewRow, shown in Figure

3.8, is called with the parameters r = 1, er = 1. The ProcessNewRow function takes the

suffix of the row r starting at er and adds all non-zero elements in this suffix to the FlexTree.

The ProcessNewRow procedure requires that none of the sites already in the FlexTree be

non-zero in the suffix of the row starting with er. Since none of the sites are in the FlexTree

before processing the first row, this condition is always satisfied for the first row of the matrix

M .

Lemma 3.2 After procedure ProcessNewRow(1,1) the FlexTree accurately represents the

phase relationships imposed by the first row.

Proof This is trivially true for any pair of columns i and j such that i < j, M [1, i] = 0, and

M [1, j] 6= 0. PM [i, j] = 1 for any such pair since the column i is not in the FlexTree and

hence not reachable from the column j.

Without loss of generality, assume that there are at least two columns that are ‘2’ in the

first row. Let c1 be the column with the lowest index such that M [1, c1] = 2, and let c2 be

first column to the right of c1 such that M [1, c2] = 2. Let l1 be the column with the highest

index such that l1 < c1 and M [1, l1] = 1. Each non-zero column with index less than or

86

equal to c1 is fixed to the non-zero column immediately to the left, and hence PM [i, j] = 0

for any two such columns i and j, i < j. For the column c2, f-parent0 is c1 and f-parent1 is

l1. Hence, PM [l1, c2] = 0, since l1 will always be reachable from c2. Since c2 is not fixed to

c1, PM [c1, c2] = φ. For any column i > c2 such that M [1, i] = 2, f-parent0 is the immediate

non-zero column to the left, and f-parent1 is null. Hence, for any two such columns i and j

such that i < j, PM [i, j] = PM [c1, i] = PM [c1, j] = PM [c2, i] = PM [c2, j] = φ. l1 is always in

the path to any such column i, and hence PM [l1, i] = 0. All the remaining relationships are

correctly represented due to Theorem 3.4. ♦

3.4.2 The Scan Forward procedure

The algorithm processes the rows in M in lexicographic order and makes modifications to

the FlexTree to accommodate the pairwise relationships induced by the rows. Hence, when

the algorithm is at a row r, all the pairwise relationships induced by the first r− 1 rows are

correctly represented in T . In the scan forward step, the algorithm mainly finds er and sr,

the EntryPoint and SplitPoint for the row r. The partial genotype vector M [r, 0...er − 1] is

exactly identical to the partial genotype vector M [r− 1, 0...er− 1], from the definition of er.

Hence, there can be no new pairwise relation ships induced by the partial genotype vector

M [r, 0...er], as all the pairwise relationships in M [r − 1, 0...er] are already represented in T .

The scan forward procedure also finds sr. As both h[sr] and k[sr] are defined, one of them

87

must be in the path to hm
r and the other must be in the path to km

r . A high-level description

for the scan forward step is shown in Figure 3.17.

3.4.3 Trace Up

As can be seen from Figure 3.9, the TraceUp procedure is called only when M [r, er] = 2

(Since M [r, 1...er] follows M [r − 1, 1...er] lexicographically, M [r, er] can not be ‘1’). In

this step, the algorithm first tries to find the site p0 in T with the highest index such that

M [r, p0] = 2 and p0 ≥ er.

Lemma 3.3 Given that matrix M is realizable by a perfect phylogeny and that the TraceUp

step is invoked for row r, if there is a column that satisfies the conditions for p0 in row r,

then there will be a column j ≤ er such that M [r, j] = 2 and PM [j, p0] ∈ {0, 1}.

Proof By the time the algorithm reaches the rth row, all the non-zero columns within the

first r − 1 rows will be in the FlexTree. Since p0 is already in the tree by definition, there

must be a row r0 < r such that M [r0, p0] 6= 0. Now, since both rows r0 and r−1 precede the

row r lexicographically, there must be at least one column j ≤ er such that (M [r0, j],M [r, j])

is (1,0), (0,2) or (1,2). If M [r0, j] = 1 and M [r, j] = 0, the matrix M will not be realizable by

a perfect phylogeny, which contradicts our assumption that the matrix is realizable. Hence

there are only two possibilities in a realizable matrix:

Case 1: M [r0, j] = 0 and M [r, j] = 2. Since M [r0, p0] 6= 0, PM [j, p0] = 1.

88

Case 2: M [r0, j] = 1 and M [r, j] = 2. Since M [r0, p0] 6= 0, PM [j, p0] = 0.

Hence, there must be a column j ≤ er such that M [r, j] = 2 and PM [j, p0] ∈ {0, 1}. ♦

Theorem 3.6 In TraceUp step for row r, if p0 is defined, then every site i such that er ≤

i < p0, M [r, i] = 2 and i is reachable from p0 must be forced in-phase with p0.

Proof From Lemma 3.3, we know that there must be a column j ≤ er such that M [r, j] = 2

and PM [j, p0] ∈ {0, 1}. Since the column i is reachable from p0, we know that PM [i, p0] ∈

{0, φ}. If PM [i, p0] is already 0, there is nothing to prove. Let us consider the case when

PM [i, p0] = φ. This implies that the column i is ‘2’ in every row less than r in which the

column j is ‘2’, including the row r0 in which M [r0, j] 6= 2. Hence, from the same discussion

as in Lemma 3.3, we know that PM [j, i] must be equal to PM [j, p0]. All the three columns j, i

and p0 are ‘2’ in row r, and hence the Theorem 3.1 applies, and PM [i, p0] = PM [j, i]⊕PM [j, p0].

Since PM [j, i] = PM [j, p0], PM [i, p0] = 0 irrespective of whether PM [j, p0] is 0 or 1. ♦

The TraceUp procedure finds the column p0, and uses Theorem 3.6 to force all the non-

zero columns between er and p0 that are reachable from p0 in-phase with p0. Simultaneously,

it tries to find the column p1 with the highest index such that M [r, p1] = 2 and PM [p1, p0] = 1.

Lemma 3.4 In the row r, if p0 and p1 are defined, every non-zero column i ≥ k[sr] such

that M [r, i] = 2 that is not reachable from p0 must be forced in-phase with p1.

Proof Since i is not reachable from p0, PM [i, p0] = 1. By definition, PM [p1, p0] = 1. Applying

Theorem 3.1 on i, p1 and p0, we have PM [i, p1] = PM [i, p0]⊕ PM [p1, p0] = 0. ♦

89

Lemma 3.5 In the row r, if both p0 and p1 are defined, any column i ≥ k[sr] such that

M [r, i] = 2 that is forced in-phase with any one column out of p0 and p1 must be forced

out-of-phase with the other.

Proof Direct application of Theorem 3.1 on i, p0 and p1. ♦

Hence, once the site p0 is found, all the new pairwise relationships induced by the row

r on the non-zero columns with index less than r can be deduced using Theorem 3.6 and

lemmas 3.4 and 3.5. In addition, any column that is zero in row r and reachable from p0(p1)

is obviously forced out of phase with p0(p1), and hence must be rendered unreachable from

p0(p1). Figure 3.10 illustrates the effect of the above lemmas and theorems. A part of the

matrix is shown in Figure 3.10a and the FlexTree just before processing row r is shown in

Figure 3.10b. From the definition of p0 and p1, p0 = c11 and p1 = c9 for the row r. Columns

c7 and c10 are reachable from p0 but ‘0’ in row r, and hence must not be reachable from

p0 after processing row r. Column c8 is not reachable from p0, and hence must be forced

in-phase with p1. Column c6 is reachable from c8, but ‘0’ in the row r, and hence must

not be reachable from c8 (and therefore from p1) after processing row r. The FlexTree after

processing row r is shown in Figure 3.10c.

The trace up procedure starts by scanning the row from right to left, and tries to find p0.

If the procedure reaches er without finding p0, then the row r does not involve any non-zero

columns after er that are already in the tree, and the algorithm moves to the TraceDown

procedure directly. If M [r − 1, er] = 1 and M [r, er] = 0, then there should be no non-zero

90

c2 c1

c3 c4

c6 c7

c10

c11

c8

20220002222

22002020222

00020202022

00000000020

1110987654321 ccccccccccc

row r

(a)
 (b)

sites that are '2' in

row r and

reachable from p0

sites that are '0' in

row r and

reachable from p0

c6 c3

c11 c10
c8

c9

c4 c7

c1 c2
(c)

Figure 3.10: (a) part of the matrix M ; (b) part of the FlexTree before processing row r in

matrix M ; (c)The FlexTree after processing row r

91

column with higher index that er that is already in T if matrix M is to be realizable, and the

algorithm directly invokes the ProcessNewRow procedure instead of the TraceUp procedure.

Once the column p0 is found, the TraceUp procedure effectively traces up the tree starting

at the edge labeled with p0. It uses four pointers n p0, n p′0, p p0 and p p′0 to keep track of

where it is in the tree:

p p0: The latest site (the site with the lowest index, since the scanning is from right to left

in M) that is reachable from p0 and is ‘2’ in row r. From Theorem 3.6 and Lemma 3.5, it is

clear that either PM [p p0, p0] is already known to be ‘0’, or must be set to ‘0’ because of row

r. Initially, p p0 is set to p0 immediately after finding p0.

n p0: The next site that is reachable from p0 and non-zero in the row r.

p p′0: The latest site that is reachable from p0 and is ‘0’ in row r. Clearly, M [r, (p p′0)p0] is

02, and hence PM [p p′0, p0] must be 1. Hence, p p′0 must be rendered unreachable from p0

during the processing of row r.

n p′0: The next site that is reachable from p0 and is ‘0’ in row ‘r’. Like p p′0, n p′0 must

be forced out of phase with p0, and hence must be rendered unreachable from p0. Also, by

applying Theorem 3.1 on the columns n p′0, p p′0, and p0, we can infer that PM [n p′0, p p′0]

must be 0.

Similarly, the algorithm maintains four variables n p1, n p′1, p p1 and p p′1 in order to

keep track of the columns that are reachable from p1. All these variables are initially set to

92

null. Once p0 is defined, p p1 is used to keep track of the columns that are ‘2’ in row r but

not reachable from p0.

Beyond er, the TraceUp procedure must continue until one of the following conditions

are satisfied:

• Case (a): Until the TraceUp procedure establishes fixed paths from p0 to h[sr] and

from p1 to k[sr].

• Case (b): Until the TraceUp procedure establishes fixed paths from p1 to h[sr] and p0

to k[sr].

• Case (c): A site y < er such that M [r, y] = 2 and the site y is neither forced in-phase

with p0 nor forced in-phase with p1 is reached.

• Case (d): A site with index greater than or equal to k[sr] is reached, at which it can

be determined that the matrix M is not realizable by a perfect phylogeny.

The site k[sr] is the site with the lowest index that the TraceUp procedure can reach.

Since both k[sr] and h[sr] are defined, one of the two haplotypes for the partial genotype

vector M [r, 0...sr] must end in h[sr] and the other must end k[sr], in any PPH tree for the

matrix M . Therefore, either one of the two sites (k[sr], h[sr]) must be reachable from p0, and

the other must be reachable from p1, or both must be reachable from both p0 and p1. The

TraceUp procedure can terminate as soon as it can ensure this reachability criteria. Figure

3.11 shows the three possible scenarios in which the TraceUp procedure can stop.

93

h[sr] k[sr]

p0 p1

h[sr] k[sr]

p0 p1

h[sr] k[sr]

p0 p1

(a) (b) (c)

All the sites that are

reachable from p0 and

'2' in the row r must be

in this path.

All the sites that are

reachable from p1 and

'2' in the row r must be

in this path.

y

Figure 3.11: (a) h[sr] is reachable only from p0 and k[sr] only from p1; (b) h[sr] is reachable

from p1 and k[sr] from p0; (c) both h[sr] and k[sr] are reachable from both p0 and p1

A high level description of the TraceUp procedure is given in Figure 3.12. The advan-

ceNonZeroPath procedure (called from the TraceUp procedure) is shown in Figure 3.20. The

advanceZeroPath procedure is similar to the advanceNonZeroPath procedure. Whenever a

flexible site i is about to be fixed, the variable L[i] is used to store the f-parent of i that will

not be the parent of i. The L[i] values are used later in the TraceDown step for correctly

maintaining f-parents for sites that are connected to i through a flexible edge.

3.4.4 Fixing a flexible site

Assigning a parent to a flexible site may effect other sites in the FlexTree. The following

things have to be taken care of when assigning a parent to a site:

94

Figure 3.12: TraceUp procedure
inputs : T , er, sr

Result: Modifications to T to accommodate row r
p p0 ← null, p p′0 ← null, n p0 ← null, n p0 ← null1

p p1 ← null, p p′1 ← null, n p1 ← null, n p1 ← null2

p0 = null, p1 = null3

P0Flag ← false, P1Flag ← false4

L[i] = null ∀ i, 0 ≤ i ≤ m5

done ← false, ci ← m6

while done = false and ci > k[sr] do7

if ci = n p0 then fixNonZeroPath(r, ci, n p0,n p′0,p p0,p p′0, P0Flag)8

if ci = n p1 then fixNonZeroPath(r, ci, n p1,n p′1,p p1,p p′1, P1Flag)9

if ci = n p′0 then fixZeroPath(r, ci, n p0,n p′0,p p0,p p′0, P0Flag)10

if ci = n p′1 then fixZeroPath(r, ci, n p1,n p′1,p p1,p p′1, P1Flag)11

if M [r, ci] = 1 then M not realizable by a perfect phylogeny. Stop12

else if M [r, ci] = 2 then13

if if ci ≥ er AND (ci = n p′0 OR ci = n p′1 OR (n p0 6= null AND n p0 = n p1)) then14

M not realizable by a perfect phylogeny. Stop15

if p0 = null then16

if ci in T then { p0 ← ci, advanceNonZeroPath(r, ci, L, n p0, n p′0, p p0,p p′0)}17

else18

if ci = n p0 then19

if ci = n p′1 then done ← true. stop TraceUp.20

advanceNonZeroPath(r,ci, er, n p0, n p′0, p p0, p p′0, P0Flag)21

else if ci = n p1 then22

if ci = n p′0 then done ← true. stop TraceUp.23

advanceNonZeroPath(r,ci, er, n p1, n p′1, p p1, p p′1, P1Flag)24

else if p1 = null then25

if ci = n p′0 then done ← true. stop TraceUp.26

if ci not in T then27

if p p1 6= null then fix p p1 to ci28

p p1 ← ci29

else30

p1 ← ci31

if p p1 6= null then fix p p1 to ci32

advanceNonZeroPath(r,ci, er, n p1, n p′1, p p1, p p′1, P1Flag)33

else M is not realizable. Stop34

else if M [r, ci] = 0 then35

if n p′0 = n p′1 AND FlexEnd[n p′0] 6= 0 then M is not realizable. Stop36

if ci = n p′0 then advanceZeroPath(r, ci, L, n p0, n p′0, p p0, p p′0)37

if ci = n p′1 then advanceZeroPath(r, ci, L, n p1, n p′1, p p1, p p′1)38

if n p0 6= null AND M [r, n p0] = 0 then M is not realizable. Stop39

if n p1 6= null AND M [r, n p1] = 0 then M is not realizable. Stop40

if ci ≤ er then41

if p0 = null then done ← true. Stop trace Up42

done ← checkIfTraceUpDone(r,ci,n p0, n p1, p p0, p p1)43

ci ← ci − 144

95

x w

y

z

(a)

x w

y

z

(b)

x w

y

z

(c)

Figure 3.13: (a) Part of a FlexTree; (b) The FlexTree after fixing the site y to the site x in

the TraceUp procedure; (c) The FlexTree after the TraceDown procedure

1. orphan sites: Consider the sites w, x, y and z as shown in Figure 3.13a. For the site y,

f-parent0 is x and f-parent1 is w. For site z, f-parent0 is site x, and f-parent1 is null.

Now, while processing some row r, if M [r, x] = M [r, y] = 2, M [r, w] = M [r, z] = 0, and

if p0 < z, the trace up procedure will fix the site y to the site x. However, simply doing

so will make the site w not reachable from site z, as shown in Figure 3.13b. Clearly,

this is not correct, as PM [w, z] is still φ and hence w must be reachable from z, as

shown in Figure 3.13c. In this situation, the site z is an orphan site. The algorithm

uses the array L[] to handle these situations. During the TraceUp procedure, L[y] is

set to w. During the TraceDown procedure, if the f-parent1 of a flexible site z is null,

then f-parent1 is set to L[fp0(z)], where fp0(z) is f-parent0 of column z. Hence the

TraceDown step makes sure that the site w is reachable from the site z.

2. Dealing with partitions - Fixing a partition: When a flexible site that is involved in a

partition needs to be fixed, all the other sites involved in the partition also get effected.

96

x

y

w

z

c2

c1

(d)

x

y w

z

c2

c1

(c)

x

y w

z

c2

c1

(a)

c3

x

y

w

z
c2

c1

(b)

c3

 partition P1

 partition P1

 partition P1

Figure 3.14: (a) A part of the FlexTree with a partition; (b) The FlexTree in (a) after fixing

the site y; (c)Another FlexTree; (d) The FlexTree in (c) after fixing the site y to c2

For example, consider the situation in Figure 3.14a. In some row r, if it is discovered

that PM [c2, y] = 0, then the site c2 must become the parent of site y. However,

PM [y, i] = 1 for every site i on the opposite side of the partition. Also because the

sites y and i are in a partition, we know that all three sites c2, y and i were ‘2’ in

some row before r. Hence Theorem 3.1 can be applied on the columns c2, y, and i,

and we can infer that PM [c2, i] = 1. The same logic applies to columns c3, c2 and i,

and we can infer that PM [c3, i] = 0. Similarly, for every site i on the same side of the

partition as y, there will be at least one site j on the other side of the partition so that

the Theorem 3.1 can be applied on the columns c2, i and j to infer that PM [c2, j] = 0.

Hence, when we fix y to c2, all the sites on the same side of the partition as y also

get fixed to c2, and all the sites on the other side of the partition get fixed to c3. The

impact of fixing y to c2 is shown in figure 3.14b.

97

3. Dealing with partitions - Fixing one side of a partition: Consider the scenario shown in

Figure 3.14c. In some row r, if it is discovered that PM [c2, y] = 0, the column y needs

to get fixed to column c2. As explained before, this also means that all the sites on the

same side of the partition must get fixed to c2. However, as f-parent(1) of partition P1

is null, the sites on the other side of the partition do not get fixed to any site. However,

if c1 is the FlexEnd of c2, PM [c1, i] = 1 for every site i on the other side of the partition

P1. Hence the partition P1 must now involve c1. The overall effect is shown in Figure

3.14d. The f-parents of site c1 now become the f-parents of partition P1.

Lemma 3.6 After the TraceUp step, the phase relationships between every pair of columns

i and j such that (i, j) ≤ p0, i 6= j, M [r, i] 6= 0, M [r, j] 6= 0 are correctly represented in the

FlexTree.

Proof The Trace Up procedure forces every non-zero column between er and p0 either in-

phase with p0 or in-phase with p1 due to Theorem 3.6 and Lemma 3.4. Hence all the columns

between er and p0 that are forced in-phase with p0 are forced in-phase with each other. The

same is true for the columns between er and p0 that are forced in-phase with p1. Hence the

pair-wise relationships between any pair of non-zero columns between er and p0 are correctly

represented in the FlexTree.

Since the partial genotype vectors M [r−1, 1...er−1] and M [r, 1...er−1] are both identical,

no new pair-wise relationships are directly forced between any pair of such non-zero columns

i and j. Therefore, any new pair-wise relationships between i and j must be indirectly

98

inferred through a third column x ≥ er. It is clear from Lemmas 3.4 and 3.5 that these

relationships are correctly interpreted in the TraceUp procedure. Hence, all the pairwise

relationships between any pair of non-zero columns with index less than or equal to p0 are

correctly represented in the FlexTree by the end of the TraceUp step. ♦

3.4.5 Trace Down

Trace down procedure mainly does four things: (1) Update the FlexEnd of every site (2)

Correct orphan sites - the flexible edges that have only one path to the root, with the

alternate path not defined (3) Update h[] and k[] arrays (4) Add the non-zero columns with

index greater than p0 to the FlexTree. The trace down procedure is simple and very straight

forward. At each flexible site i at which f-parent1[i] is not defined, f-parent1[i] is set to

L[f-parent0[i]]. At each fixed site, the FlexEnd of the parent is copied onto itself. Also, at

any fixed site i, if L[i] is not defined, L[i] is set to L[parent[i]]. A high level description of

the TraceDown procedure is shown in figure 3.15.

Lemma 3.7 For any flexible site i with f-parent1[i] not defined, L[f-parent0[i]] must be the

f-parent1 of i.

Proof In the TraceUp procedure, when any flexible column j is about to be fixed to a

column p, L[j] is set to the flexible parent of j that is not equal to p. If both the flexible

parents of j were defined before j gets fixed, then j must get fixed to one of them. Therefore,

99

Figure 3.15: The TraceDown() procedure
inputs : The column table, the partition table of T , r, L,h, k

Result: updates h and k, adds new non-zero sites beyond p0 to T , adds f-parent1 to some sites if
necessary

for ci ← 1 to m do1

if ci is a fixed site then2

if L[i] = null then L[i] ← L[parent[i]]3

FlexEnd[i] ← FlexEnd[parent[i]]4

if M [r, ci] = 1 then h[ci] ← ci, k[ci] ← ci5

else if M [r, ci] = 2 then6

h[ci] ← ci7

if h[ci − 1] = parent[ci] then k[ci] ← k[ci − 1]else k[ci] ← h[ci − 1]8

else h[ci] ← h[ci − 1],k[ci] ← k[ci − 1]9

else if ci is not in T then10

if M [r, ci] = 1 then declare M not realizable11

else if M [r, ci] = 2 then12

if h[ci − 1] = k[ci − 1] then13

fix ci to h[ci − 1]14

h[ci] ← ci, k[ci] ← k[ci − 1]15

else16

set fp0(ci, h[ci − 1]),set fp1(ci, h[ci − 1])17

h[ci] ← ci, k[ci] ← ci18

else h[ci] ← h[ci − 1],k[ci] ← k[ci − 1]19

else if fp1(ci) = null then20

if L[fp0(ci)] 6= null then set fp1(ci,L[fp0(ci)])21

if M [r, ci] = 2 then22

h[ci] ← ci; if h[ci − 1] 6= fp0[ci] then k[ci] = h[ci − 1]else k[ci] ← null23

else h[ci] ← ci, k[ci] ← k[ci − 1]24

else25

if M [r, ci] = 2 then h[ci] ← ci else h[ci] ← h[ci − 1]26

k[ci] = null27

100

the other flexible parent will no longer be connected to j through a glue edge, and hence

L[j] is set to be equal to this flexible parent. When only f-parent0 of j is defined, j may or

may not get fixed to f-parent0[j]. When j gets fixed to f-parent0[j], there is no column that

is rendered unreachable from j. Hence L[j] need not be set. However, if j is getting fixed to

some column other than f-parent0[j], f-parent0[j] will be rendered unreachable from j, and

hence L[j] is set to f-parent0[j].

The TraceDown step processes the row from left to right. Hence, the trace down step

always visits the parents of fixed sites and flexible parents of flexible sites before it visits

the sites themselves. At any fixed site j, if L[j] is not defined, L[j] is set to L[parent[j]].

Now, let us consider the flexible column i with only f-parent0[i] defined. If L[f-parent0[i]] is

defined, it means that L[f-parent0[i]] was reachable from i before processing row r. Therefore,

L[f-parent0[i]] must be the f-parent1 of i after processing row r, in order to leave the phase

relation ships between i and L[f-parent0[i]] unaltered. ♦

3.4.6 Correctness

Theorem 3.7 Assuming the FlexTree correctly represents the pairwise relationships induced

by the first r−1 rows before processing the row r, the FlexTree correctly represents the pairwise

relationships induced by the first r rows after processing the row r.

Proof There are many possible scenarios. we will consider each one of them.

101

Case 1: M [r − 1, er] = 1 and M [r, er] = 0. Let j < er be the column with the highest

index such that M [r, j] 6= 0. Since M [r − 1, er] = 1, there are no ‘2’s in M [r − 1, 1...er − 1].

Since M [r−1, 1...er−1] and M [r, 1...er−1] are identical, there are no ‘2’s in M [r, 1...er−1].

Therefore, sr = er−1, and h[sr] = k[sr] = j. Now, the matrix M is not realizable by a perfect

phylogeny if there is any column i ≥ er that is already in the FlexTree. Therefore, all the

non-zero elements in M [r, er...m] must be ‘0’ in every row before r. The non-zero columns

in M [r, er...m] describe a new sub tree rooted in column j. The situation is identical to that

of processing the first row. The ProcessNewRow procedure is called with the parameters

(r, er), and represents all the new pairwise relationships introduced by row r correctly, based

on the same reasoning as in Lemma 3.2.

Case 2: M [r, er] = 2 and p0 is not defined. Since p0 is not defined, none of the non-

zero columns in M [r, er...m] are already in the FlexTree. The TraceDown procedure be-

haves exactly like the ProcessNewRow Procedure when M [r, 1...er − 1] is not split. When

M [r, 1...er−1] is split, i.e. when er−1 = sr, there will be two possibilities - (a) h[sr] = k[sr],

which implies that M [r, h[sr]] = 1. The situation is the same as in Case 1 above, and the

TraceDown procedure behaves exactly like the ProcessNewRow Procedure. (b) h[sr] 6= k[sr],

which implies that M [r, h[sr]] = 2. h[sr] will be the f-parent0 of er and k[sr] will be f-parent1

of er. For every non-zero column after er, the TraceDown procedure behaves exactly like the

ProcessNewRow procedure, and hence represents the phase relationships correctly.

Case 3: p0 is defined, and every non-zero column in row r between h[er−1] and p0 is reachable

from p0. This implies that p1 is not defined until h[er− 1] is reached. Every nonzero column

102

between er and p0 must now be forced in-phase with p0, according to Theorem 3.6. Let r0 be

the row with the highest index such that r0 < r and M [r0, er] 6= 0. Now, since M [r0, 1...er]

is lexicographically smaller than M [r, 1...er], there must be at least one column j ≤ er such

that either M [r0, j] = 1 and M [r, j] = 2 or M [r0, j] = 0 and M [r, j] = 2. Using the same

argument as in Theorem 3.6, we can show thater must now be forced in-phase with h[er−1].

Since PM [h[er − 1], er] = 0, the phase relationship of er with any column with index less

than h[er − 1] can be deduced from Theorem 3.4. Hence, all the phase relationships are

correctly represented, and the TraceUp procedure does not have to reach beyond h[er − 1].

In the TraceDown step after p0, the every new non-zero column is dealt with as in the

ProcessNewRow procedure.

Case 4: Both p0 and p1 are defined. The TraceUp procedure stops when one of the following

conditions are satisfied:

• A non-zero column j between h[sr] + 1 and h[er − 1] that is forced out-of-phase with

both p0 and p1 is reached. The matrix is unrealizable, since Theorem 3.1 is violated on

the columns j, p0 and p1.

• A non-zero column j between h[sr] + 1 and h[er− 1] that is neither forced in-phase nor

forced out-of-phase with both p0 and p1 is reached. The latest column in the path to

p0 (p p0) and latest column in the path to p1 (p p1) must be on the opposite sides of a

partition. Hence, a new partition is introduced, for which f-parent0 is j and f-parent1

is not defined.

103

• Every non-zero column until h[sr] + 1 is forced in-phase with p0 or p1 and both h[sr]

and k[sr] are neither forced in-phase nor forced out-of-phase with p0 and p1. Similar

to the situation above. A partition with flexible parents h[sr] and k[sr] is introduced

between p p0 and p p1.

• Every non-zero column until h[sr] + 1 is forced in-phase with p0 or p1, and at least one

of h[sr] and k[sr] is forced in-phase or out-of-phase with p0 or p1. If h[sr] is forced

in-phase with p p0 or k[sr] is forced out-of-phase with p p0, p p1 must get fixed to

k[sr]. The matrix is not realizable if p0 and p1 are both forced in-phase with h[sr] and

h[sr] 6= k[sr]. The matrix is also not realizable when both p0 and p1 are either forced

out-of-phase with either h[sr] or k[sr].

In the TraceDown step after p0, every new non-zero column is dealt with as in the Process-

NewRow procedure. ♦

If the matrix is not realizable by a perfect phylogeny, there can be no FlexTree that

describes all the phase relationships imposed by all the rows in the matrix, and hence the

algorithm fails to build a FlexTree and reports the same.

104

3.4.7 Obtaining a PPH Tree from the FlexTree

The total number of PPH trees represented by the FlexTree is given by the following expres-

sion:

γ = 2([no. of partitions] + [no. of flexible sites not in a partition]) (3.2)

Any of these γ solutions can be computed in O(m) time from the FlexTree. The high

level description of the BuildPPHTree procedure is shown in Figure 3.16. Please refer to

the Appendix for the explanation of the functions fp0() and fp1(). The procedure fixes each

flexible site, starting from the site with the lowest index and processing the sites in M from

left to right. There will be only two possibilities at any flexible site, as all the sites with

higher indices are already fixed. Different criteria can be applied to choose between the two

choices, in order to obtain the deepest or the broadest tree.

Figure 3.16: The BuildPPHTree() procedure
inputs : The column table and the partition table of T

Result: A PPH Tree described by T

L[i] ← null ∀i, 1 ≤ i ≤ m1

for i ← 1 to m do2

if i both f-parents are defined then3

arbitrarily set L[i] to one of the f-parents4

fix i to the other f-parent5

else if fp0(i) 6= null but fp1(i) = (null) then6

arbitrarily set L[i] to either fp0(i) or L[fp0(i)]7

fix i to the column out of (fp0(i),L[fp0(i)]) that is not equal to L[i]8

else L[i] ← L[parent[i]]9

105

3.5 Complexity

3.5.1 Pre-processing

It takes O(nm) time to compute the column sums. Once the column sums are computed,

it takes mlog(m) time to sort the columns (using quick sort) according to the column sums.

The lexicographic ordering of the rows takes O(nm) time and space, using radix sort. The

total time required for the preprocessing step is O(nm).

3.5.2 Scan Forward

The ScanForward step is straight forward, as shown in Figure 3.17. Takes O(m) time.

Figure 3.17: ScanForward procedure - finds er and sr

inputs : M , k[], r

outputs: er, sr

i ←− 1,er ←− 1, sr = 01

while M [r, i] = M [r − 1, i] do2

er ← i + 13

if k[i] 6= null then4

sr ← i5

i ← i + 16

106

3.5.3 Trace Up

As long as partitions are not involved, the Trace Up procedure takes constant time at each

site. However, the Trace Up procedure might spend up to O(m) time at sites that are

involved in partitions. Introducing a new partition is always a constant-time operation,

as a new partition always involves just two sites. Adding a single partition to an existing

partition is also a constant time operation. Merging two partitions into one, or fixing one

side or both sides of the partition, takes time in the order of the size of the partition(s)

involved. However, the total amortized cost for all the mergers and fixings while processing

any single row is O(m). This is because of the fact that the algorithm has to deal with at

most two ‘independent’ partitions at any time, one involving p p0, and the other involving

p p1. The first time the site p p′0 is encountered, the algorithm introduces a partition P0

between the FlexEnd of p p′0 and the p p0. Another partition reachable from p0 will not be

encountered until the TraceUp procedure reaches beyond the current FlexEnds of both p p′0

and p p0. After this point, whenever the TraceUp reaches the next site y that is reachable

from p0, the algorithm does the following:

• Depending on whether y has to be forced in-phase with p p0 or p p′0, removes all the

sites from the corresponding side of the partition and fixes them to site y.

• Adds the FlexEnd of site y to the appropriate (the empty) side of partition P0. If the

FlexEnd of y is already in a partition, removes all the sites from that partition and

adds them to the appropriate side of P0.

107

y

fy

(c)

p_p0

p_p0'

y

(a)

 Partition P0

fy

p_p0

p_p0'

y

(b)

 Partition P0

fy

p_p0

p_p0'

 Partition P0

Figure 3.18: Illustration of how the TraceUp procedure deals with partitions (a) The partition

P0 just before TraceUp reaches the site y; (b) The sites on the side of the partition P0 that

should be fixed to y are removed from P0 and fixed to y; (c) fy, the FlexEnd of y, is added

to P0 and the f-parents of P0 are updated to those of fy

• Updates the f-parents of the partition P0 to those of FlexEnd[y] just before FlexEnd[y]

was inserted into P0.

Clearly, nothing needs to be done for the sites that are on the opposite side of the partition

that was fixed to y. The above steps are shown in Figure 3.18. In some cases, both sides

of the P0 get fixed, and P0 will be completely empty. Therefore, as the TraceUp procedure

proceeds, sites enter (become part of P0) and exit P0 (get fixed). A constant amount of

time needs to be spent on every site that enters or exits P0. Once a site gets fixed, it exits

P0, it has no way of re-entering P0. As at most O(m) sites can enter or exit P0, the total

amortized cost is O(m).

108

Similar will be the case with the partition P1 that involves the FlexEnd of p p1. When

the TraceUp procedure terminates, either one or both sides of P0 and P1 get fixed, or P0

and P1 merge into a single partition. In any case, the time required will be O(m), as the

combined size of P0 and P1 is at most m.

3.5.4 Trace Down

The trace down is also straight forward. It involves a constant number of operations at each

site. Therefore, takes O(m) time for each row.

3.6 Results

A opph algorithm has been implemented in C++. The results indicate that the performance

is as expected, indicating that there are no hidden constraints. Table 3.4 shows how the

opph algorithm performs in comparison to algorithms gpph[Gus02] and dpph[BGL02]. The

times for opph are averages over 1000 test cases. The times for gpph and dpph are aver-

ages over five cases. It is clear that the opph algorithm outperforms both gpph and dpph

algorithms. The tests were carried on simulated data. A random PPH tree was generated,

and the genotypes were obtained by selecting two random haplotypes from the tree and

109

combining them together. The binaries for the implementation are available for download

from http://www.cs.ucf.edu/∼rvijaya/opph/.

Test case (n×m) gpph dpph opph

50× 50 0.11 0.01 0.007

100× 100 0.71 0.07 0.017

200× 200 4.49 0.53 0.06

500× 500 83.2 7.99 0.28

1000× 1000 662 66.5 0.43

1000× 2000 did not complete 302.78 0.97

Table 3.4: Performance results - all times are in seconds on a P4 3GHz machine

.

3.7 Discussion

The FlexTree data structure presented in this chapter is a simple, intuitive data structure

for representing all the PPH solutions for a given genotype matrix. The applications of this

data structure extend beyond opph algorithm and the PPH problem.

3.7.1 MPPH problem

The Minimum Perfect Phylogeny Problem (MPPH) problem is to find the PPH solution that

uses the minimum number of distinct haplotypes. The problem was proven to be NP-hard

in a recent paper [BGH04]. The FlexTree data structure helps in defining a non-trivial lower

110

bound on the number of distinct haplotypes in the MPPH solution. If row r in the matrix

is split, the two ending sites are defined for the row. In any PPH tree, the two haplotypes

must end in the sites given by hm
r and km

r . i.e., in any PPH tree the nodes represented by

the two haplotypes for the row r are well-defined. Even in case of a row that is not split,

hm
r is defined. Therefore, the cardinality of the set of distinct hm

r and km
r values for all

the rows in the matrix Ac gives a non-trivial lower bound for the problem. If every row in

the matrix is split, then this quantity will be the exact number of haplotypes in the PPH

problem. In general, there will be very few PPH solutions for any given genotype matrix,

and the FlexTree data structure might be used to develop an efficient, practical solution for

the MPPH problem.

3.7.2 Selecting a PPH tree

If the input matrix has multiple PPH solutions, the FlexTree helps in finding the most

desirable solution under certain criteria. Intuitively, the deepest and broadest possible PPH

trees can be built by making minor modifications to the BuildPPHTree procedure in section

3.4.7. In addition, the PPH solution that includes or excludes a given haplotype can be

easily obtained by first making simple modifications to the FlexTree in order to force the

inclusion or exclusion of a given haplotype.

111

3.8 Pseudocode for Some Procedures

The following figures provide a high-level description of some of the fundamental procedures

used by the opph algorithm.

fp0(i): Returns the f-parent0 of column i. If the site i is not involved in a partition, returns

f-parent0 from the column table. If the site i is in a partition P , returns f-parent0 of the

partition in the partition table.

fp1(i): Similar to fp0(). Returns f-parent1 of the site i.

set fp0(i, c): Sets the f-parent0 of site i to c. If the column i is in a partition P , sets f-parent0

of the partition P in the partition table.

set fp1(i, c): Similar to set fp0(). Sets the f-parent1 of site i to c.

Fix site i to c: Assigns site c to be the parent of site i, while modifying the other columns

if necessary, as described in section 3.4.4.

checkIfTRaceUpDone(): The routine checks if TraceUp procedure can stop. Performs the

necessary operations if the TraceUp procedure can stop (like introducing a partition between

the FlexEnd of p0 and the FlexEnd of p1, if necessary).

112

Figure 3.19: The fixNonZeroPath() procedure
inputs : r, ci, L[], n p, n p′, p p, p p′, PFlag
Result: fixes p p to n p or to ci

if p p 6= null then1

if n p 6= null then fix p p to ci2

else if (p p) is not fixed then3

if PFlag is true then fix p p to n p and set L[p p] to n p′4

else fix p p to ci5

Figure 3.20: The advanceNonZeroPath() procedure
inputs : The column table, the partition table of T , r, ci, n p, n p′, p p, p p′, L

Result: fixes p p, updates n p,p p and/or n p′ if necessary
if parent[ci] 6= null then1

n p ← parent[ci]2

if M [r, n p] = 0 then declare that M is not realizable, Stop3

else4

if ci < n p′ AND P0Flag is false then5

if fp1(ci) = null then6

if M [r, fp0(ci)] 6= 0 then n p ← fp0(ci)7

else8

n p′ = fp0(ci)9

L[ci] ← n p′10

if partition[ci] =null then create a partition between ci and FlexEnd[n p′]11

else fix the group in partition[ci] that does not include ci to n p′12

else13

if M [r, fp0(ci)] 6= 0 then14

n p ← fp0(ci),n p′ ← fp1(ci)15

if M [r, n p′] 6= 0 then P0Flag ← true16

else L[ci] ← n p′17

else n p′ ← fp0(ci),n p ← fp1(ci), L[ci] ← n p′18

if M [r, n p′] = 0 then fix ci to n p19

p p ← ci20

113

CHAPTER 4

CONSTRUCTING NEAR-PERFECT

PHYLOGENIES

4.1 Imperfect Phylogenies

Biological data rarely, if ever, conforms to perfect phylogeny. Deviations from perfect phy-

logeny are common due to repeated mutations and recombinations. With repeated muta-

tions, the phylogeny is a tree with multiple edges labeled with the same character. With

recombinations, the phylogeny will no longer be a tree, but a network with recombination

cycles. Ability to construct imperfect phylogenies is critical for applying perfect-phylogeny-

based haplotype inference methods on real-life genotype data.

In the human genome, the deviations from perfect phylogeny are expected to be small

within a ‘block’ of the genome. When the deviations from perfect phylogeny are small,

and are due to repeated/back mutations, the phylogenies are referred to as near-perfect

phylogenies. This chapter deals with algorithms for constructing near-perfect phylogenies

on both haplotype and genotype data.

114

The previous chapter dealt with constructing rooted phylogenies. In case of a perfect

phylogeny, it is always possible to transform the input data so that the root must be an all-

zero vector. There is no such known transformation in case of an imperfect phylogeny. Hence,

we deal with unrooted phylogenies in this chapter. In case of an unrooted phylogeny, there

is no distinction between a repeated mutation and a back mutation. The term homoplasy

event is used to refer to a repeated/back mutation.

4.1.1 Previous work on constructing near-perfect phylogenies

The problem of constructing near-perfect phylogenies with multiple homoplasy events has

been tackled before [FL03]. The complexity of their algorithm for constructing near perfect

phylogenies on a set of n haploid taxa is given by O(nmq2q2r2
), where r is maximum number

of alleles in any site, and q is the number of repeated/back mutations. Here, we are only

concerned with bi-allelic SNP data, and hence r = 2. Even in case of bi-allelic data, the

above algorithm is clearly impractical for values of q as small as four. Recently, Sridhar

et al. [SDB05] proposed a more practical algorithm for binary data with complexity (q +

p)O(q)nm + O(nm2) where p is the number of characters that share four gametes with some

other character.

This chapter deals with fixed-parameter versions of the near-perfect phylogeny problem

on both haplotype and genotype data and presents polynomial time algorithms for these

problems. Song et al. [SWG05] have introduced a restricted version of the near-perfect

115

phylogeny haplotyping problem that allows a single homoplasy event. This version of the

problem is called the H1 Near-Perfect Phylogeny Haplotyping (H1-NPPH) problem. The

notation ‘H1’ indicates that there is a single homoplasy event in the phylogeny. Song et al.

[SWG05] first identify the column with the homoplasy event, construct a perfect phylogeny T ′

for the remaining columns, and then convert T ′ into an H1-NPP T that includes the column

with the homoplasy event. In converting T ′ into T , the procedure followed in [SWG05] is

to remove pairs of edges from T ′ and carry out certain tests on the disconnected subtrees

produced as a result of removing the pair of edges from T ′. The overall complexity of the

algorithm is O(n4).

The fundamental approach in this chapter is similar to that presented in [SWG05]. How-

ever, removing pairs of vertices from T ′ leads to a faster algorithm than removing pairs of

edges from T ′. This observation results in a faster O(m2(n+m)) algorithm that can be easily

extended to handle multiple homoplasy events. The framework for constructing near-perfect

phylogenies presented in the rest of the chapter is based on this observation. This frame work

can be generalized to extend to constructing near-perfect phylogenies(NPPs) that involve

multiple homoplasy events, both for haplotype and genotype data.

An H(1, q) NPP is a near-perfect phylogeny involving q homoplasy events in a single site.

Similarly, a H(p, q)-NPP is a near perfect phylogeny in which at most p sites have homoplasy

events, with at most q homoplasy events in each site. Under this notation, a near-perfect

phylogeny with a single homoplasy event is denoted as the H(1, 1)-NPP.

116

Section 4.2, presents a polynomial-time algorithms for constructing near-perfect phylo-

genies for haplotype data. In Section 4.3, these algorithms are extended to genotype data.

4.2 Constructing Near-Perfect Phylogenies from Haplotype data

In the following, we present polynomial-time algorithms for restricted versions of Near-

Perfect Phylogeny (NPP) problem. In all the problems that we describe in this section, the

input is an n×m matrix M over the alphabet {0, 1}, where the columns c1, c2, ..., cm indicate

sites and the rows r1, r2, ..., rn indicate samples. Given that the matrix M does not admit a

perfect phylogeny, we want to construct a near-perfect phylogeny for M that is the closest

to a perfect phylogeny.

We define the following terms. An ordered pair of values (a, b), a ∈ {0, 1}, b ∈ {0, 1},

is said to be induced by a pair of ordered columns (i, j) if there is a row r in M such that

M [r, i] = a and M [r, j] = b. The set of ordered pairs induced by a pair of columns (i, j) is

denoted by I(i, j). According to the well-established four-gamete test [HK85], the matrix M

does not admit a perfect phylogeny if |I(i, j)| = 4 for any pair of columns (i, j). We say that

two columns i and j conflict with each other if |I(i, j)| = 4. A conflict graph Gc = (V, E) is

a graph in which each vertex vi ∈ V corresponds to a column ci in M . An edge (vi, vj) is in

E if the sites ci and cj conflict with each other.

117

c4

c1

c2

c3

c5

c1

11000

01000

00100

00011

10010

00010

00000

(a) (b)

11000

01001

00100

00010

00011

5

4

3

2

1

54321

r

r

r

r

r

ccccc

Figure 4.1: (a) A haplotype matrix M ; (b) A phylogeny T for M

The general definition of a phylogeny is that the phylogeny is a tree in which the leaves

represent the input taxa. As we are constructing character-based phylogenies, we are only

interested in the topology of the phylogeny. Therefore we use the term phylogeny to refer to

an edge and vertex labeled tree T . Each edge in T is labeled by a site in M , and indicates a

mutation in that site. An example of a phylogeny is shown in Figure 4.1. Each vertex in the

phylogeny is labeled by a 0-1 vector of length m, and indicates the state of each site at the

vertex. For any vertex v, we denote the vertex label of v as L(v). Since T is a phylogeny for

M , for each row r in M , there must be a vertex v such that L(v) = M [r]. This mapping of

a row r to a vertex v is represented using the notation ν(r) = v. Multiple rows in M might

map to the same vertex in T , and some vertices in T might not represent any row in M .

Notice that the phylogeny in Figure 4.1 is not a perfect phylogeny. There are two edges in

T labeled with column c1.

Removing a set of vertices Sc from any tree T divides T into a set of connected (trivial

or non-trivial) components denoted by T/Sc . Note that, since T is a tree, each connected

component Ti ∈ T/Sc will also be a tree. For any connected component Ti of T , we define

118

(b)c 4c 1 c 2 c 3 c 5c 1x y c 5c 1yx T 1 T 2 T 3(a)
Figure 4.2: (a) The tree T before removing the vertices x and y; (b) The three connected

components T1, T2 and T3 after removing the vertices x and y

R(Ti) as the set of rows of M that map to any vertex in Ti. A column c is said to be non-

polymorphic in Ti if the column c has the same state in each row r ∈ R(Ti). For example,

refer to Figure 4.2a, which is the same phylogeny as in Figure 4.1. The three connected

components produced by removing the vertices x and y in Figure 4.2a are shown in Figure

4.2b (in dotted regions). In the matrix M , the row r2 maps to T1, r3 maps to T2, and the

set of rows {r4, r5} map to T3. All the columns are non-polymorphic in T1 and T2. However,

columns c5 and c1 are polymorphic in T3. Columns c2, c3 and c4 are non-polymorphic in T3.

4.2.1 The H1-NPP construction problem

In the following, we describe the conditions under which a given set of haplotypes admit

an H1-NPP. There are efficient algorithms to determine if the matrix M admits a perfect

phylogeny. When M does not admit a perfect phylogeny, the problem is to construct an

119

H1-NPP for the matrix M , or determine that M does not admit an H1-NPP. For simplicity,

we call the H1-NPP construction problem as the H1-NPP problem in the rest of the chapter.

Let M be a matrix that does not admit a perfect phylogeny, but admits an H1-NPP. Let

cb be the column with the recurrent mutation. Let T be the H1-NPP for M . By definition,

if an edge (u, v) is labeled by a site i, it implies that L(u)[i] = L(v)[i]. Clearly, there will

be two edges in T that are labeled with cb. Let the two edges be (u, v) and (w, x), as shown

in Figure 4.3. We call the path between the two vertices v and w as the recurrent mutation

path, or RMP. Let S be the set of all sites, i.e., S = {c1, c2, ..., cm}. Let SRMP be the set

of sites that label an edge in RMP. Let Se be the set of sites other than cb that are not in

RMP. i.e., Se = S − {SRMP

⋃{cb}}.

Theorem 4.1 Every site c ∈ SRMP conflicts with cb, and every site c ∈ Se does not conflict

with cb.

Proof Let L(u)[cb] = a. Clearly, L(v)[cb] = a = L(w)[cb] and L(x)[cb] = a. For any

site c ∈ SRMP , L(v)[c] = L(w)[c]. The site c1 connecting the vertices y and z in Figure 4.3

is such a site. Let L(y)[c1] = b, which implies that L(y)[c1] = b. The phylogeny T can be

divided into four subtrees T1, T2, T3 and T4 with respect to the sites cb and c1, as shown in

Figure 4.3. The pair of sites (cb, c1) take the states (a, b), (a, b), (a, b) and (a, b), in subtrees

T1, T2, T3 and T4, respectively. Now, R(T1), R(T2), R(T3) and R(T4) are all non-empty. This

is because the matrix M will admit a perfect phylogeny if R(T1) or R(T4) are empty, and

120

cb
cb

T1

u v w x

c3

c1 y z

T2

T4

T3
c4 c2

Figure 4.3: Illustration of Theorem 4.1

c1 need not be in RMP if R(T2) or R(T3) are empty. Therefore, |I(cb, c1)| = 4, and hence cb

conflicts with c1.

It can similarly be shown that every site c ∈ Se will not conflict with cb. Sites c2, c3

and c4 in Figure 4.3 are examples of such sites. ♦ As explained before, T/{u,v,w,x} is the set

of connected components generated by removing vertices u, v, w and x from T . Removing

the vertices u, v, w and x removes both the edges labeled with cb from T . Therefore, no

connected component in T/{u,v,w,x} will have an edge labeled with cb. Therefore, the column

cb will be non-polymorphic within any connected component Ti ∈ T/{u,v,w,x}.

We will now state and prove a theorem that gives the necessary and sufficient conditions

for a haplotype matrix to admit a H1-NPP. Let M be a matrix such that M does not admit

a perfect phylogeny, but the matrix M ′ produced by removing a column cb from M admits

a perfect phylogeny T ′. Since the rows in M correspond one-to-one with rows in M ′, the

rows in M can be mapped to vertices in T ′. It will be helpful to visualize the matrix M as

the matrix M ′ with a single column cb appended as the rightmost column of M . We state

the following theorem:

121

x y

Tj

T1 Tj+1

Tj+2

Tk

x0

x1 y1 y0
cb

cb
Tj+1

Tj+1 is connected to either

x0 and y0 or x1 and y1

T�

T

Each subtree in the range T1 to

Tj is connected to either x0 or x1

Each subtree in the range Tj+2 to

Tk is connected to either y0 or y1

(a) (b)

Figure 4.4: (a) The perfect phylogeny T ′, showing {T1, ...Tk}, the connected components in

T ′
/{x,y}; (b) Constructing T from T ′

/{x,y}

Theorem 4.2 The matrix M admits an H1-NPP iff there are two vertices x and y in T ′

such that the site cb is non-polymorphic in every connected component in T ′
/{x,y}.

Proof Let T ′
/{x,y} = {T1, T2,Tk}, as shown in Figure 4.4a, where k = d(x)+d(y)− 1, d(x)

is the degree of x and d(y) is the degree of y in T ′. We show that we can construct an H1-

NPP T for M by expanding the vertices x and y into edges labeled with cb. We start with an

empty tree T . We replace x with two new vertices x0, x1, and y with two new vertices y0 and

y1, and add two edges (x0, x1) and (y0, y1), both labeled with cb. The two vertices x0 and x1

are labeled based on the label of the vertex x in T ′ as - L(x0)[i] = L(x1)[i] = L(x)[i] for every

column i 6= cb. This is equivalent to taking the matrix M ′ and associating the vertex label

of x in T ′ to both the vertices x0 and x1. The site cb is now associated with the edge (x0, x1)

as follows: L(x0)[cb] = 0, and L(x1)[cb] = 1. The vertices y0 and y1 are similarly labeled

based the label of the vertex y in T ′ in every site other than cb. In site cb, L(y0)[cb] = 0

and L(y1)[cb] = 1. With reference to Figure 4.4b, in each component Ti, 1 ≤ i ≤ j, there

will be a vertex vi so that (x, vi) is an edge in T ′. Since Ti is non-polymorphic in cb, we

122

introduce an edge (x0, vi) or (x1, vi) in T , depending on whether L(v)[cb] = 0, or L(v)[cb] = 1,

respectively. Similarly, each component from Tj+2 to Tk are connected to either y0 or y1 by

an edge, as shown in Figure 4.4b. If Tj+1 is non-empty, there will be vertices v1 and v2 in

Tj+1 so that (x, v1) and (y, v2) are edges in T ′. If L(v1)[cb] = 0, we can introduce the edges

(x0, v1) and (y0, v2) in T . If L(v1)[cb] = 1, we can introduce the edges (x1, v1) and (y1, v2) in

T . If Tj+1 is empty (i.e., if x and y are adjacent in T ′), we can arbitrarily introduce either

the edge (x0, y0) or (x1, y1) in T . Therefore, all the edges in T ′ can be inserted back into T

in addition to the two edges labeled with cb. Every row in M can be mapped to vertex in

T , and hence T is an H1-NPP for M . This proves that the existence of the two vertices x

and y is a sufficient condition for the matrix M to admit an H1-NPP.

To prove that the existence of the two vertices x and y is a necessary condition, assume

that a given matrix M admits an H1-NPP T . We prove that there must be two vertices x

and y in T so that T ′
/{x,y} is non-polymorphic in cb. Since T is an H1-NPP, there must be

exactly two edges labeled with cb in T . Remove the two edges, by collapsing the edges into

vertices. Call these vertices x and y. Now obtain the set of trees T ′
/{x,y}. Since cb does not

appear as an edge in any of the trees in T ′
/{x,y}, cb is non polymorphic in each component

tree. Hence, the existence of the vertices x and y is a necessary condition. ♦

123

4.2.2 The H1-NPP Construction Algorithm

Theorem 4.1 and Theorem 4.2 allow us to determine if a given matrix M admits an H1-NPP

and lead to an efficient algorithm to determine a H1-NPP solution for the given matrix M .

The heart of the algorithm consists of determining the vertices x and y satisfying Theorem

4.2 and expanding the nodes into edges labeled with cb. We have already observed the

following properties of the conflict graph Gc:

• The conflict graph Gc for M must have a single non-trivial connected component and

there must be at most one vertex with degree greater than one in the conflict graph. If

there is any vertex with degree greater than one in Gc, cb must be that column. If the

conflict graph is a single edge connected by two sites, cb must be one of the two sites.

• Let M ′ be the matrix produced by removing the column cb from M . All the sites

connected to cb in the conflict graph must form a path P in the perfect phylogeny T ′

for the matrix M ′.

• Let e1 and e2 be the two terminal vertices of the path P in T ′. The site cb should be

non-polymorphic in each connected component Ti ∈ T ′
/{e1,e2}.

These properties lead to an algorithm for the construction of an H1-IPP for M .

Algorithm Steps

124

1. Build the conflict graph Gc for M . If Gc has more than one non-trivial connected

components, or if there is more than one vertex in Gc with degree greater than 1, M

does not admit an H1-NPP. Otherwise proceed to Step 2.

2. Select the column cb. cb will be the column with degree greater than 1 in Gc. If the

connected component in Gc is a single edge, arbitrarily pick any of the two vertices

that form the edge.

3. Remove the column cb from M , and construct a perfect phylogeny T ′ for the resulting

matrix.

4. Construct the set of columns Sc that are adjacent to cb in Gc. If M admits an H1-NPP,

the columns in Sc must define a path P in T ′. Obtain the two terminal ends x and y

of this path. If Sc does not define a path in T ′, M does not admit an H1-NPP.

5. Check if every connected component in T ′
/{x,y} is non-polymorphic in cb. If any con-

nected component in T ′
/{x,y} is polymorphic in cb, M does not admit a perfect phylogeny.

6. Expand the vertices x and y into the edges (x0, x1) and (y0, y1), both labeled with the

column cb. Build the phylogeny T as described in the proof of Theorem 4.2.

Figure 4.5 illustrates the algorithm. Figure 4.5a shows a matrix M with nine sites and ten

rows. The conflict graph Gc for M is shown in Figure 4.5b. From the conflict graph, it is

clear that removing column c3 will result in a perfect phylogeny. The perfect phylogeny T ′

after removing c3 is shown in Figure 4.5c. The site c3 conflicts with sites c5 and c7, Hence

125

c3 c7

c5

c1

c2

c4 c6

c8

c9

(c)

(d)

c6
c7

c5

c4

c2

c1
c9 c8

r1

r2
r3

r4

r5

r6
r9

r8 r10

x0 y0 r7

c3
y1

c3

x1

M
Gc

(b)
(a)

x c2 y

r1 r4

r5

r6

r10

r7,r9

c9 c4 c1

r8

c6 c8

c5 c7 r2 r3

101100100

001100100

011100000

001100000

000110110

000110101

000111000

000110000

000100000

000000000

10

9

8

7

6

5

4

3

2

1

987654321

r

r

r

r

r

r

r

r

r

r

ccccccccc

Figure 4.5: (a) A matrix M (b) Conflict graph for M (c) Perfect phylogeny T ′ after removing

c3. (d) The H1-NPP T for M .

the path defined by the edges c5 and c7 should be the path between the two mutations in

site c3. Hence the vertices x and y in Figure 4.5c must be replaced by the edges (x0, x1) and

(y0, y1) in Figure 4.5d. In Figure 4.5c, the edges labeled with c1, c2, c4 and c5 are incident

in x. In Figure 4.5d, the edges c1 and c2 are incident on x1 and c4 and c5 are incident on x0,

because of the state of c3 in r5, r6, r4 and r2, respectively. The row r3 now maps to x0, since

M [r3, c3] = 0. Similarly the edges out of y in T ′ are distributed between the vertices y0 and

y1 in T .

Complexity Analysis

Building the conflict graph Gc takes O(nm2) time. Finding the connected components

in G takes O(m) time using depth-first search. Constructing the perfect phylogeny T ′ takes

O(nm) time, using the opph [VM05, VM06] algorithm. The mapping ν(r) of each row in

M to a vertex in T ′ can be done in using O(n) space and O(nm) time. Finding the two

126

vertices x and y takes O(nm) time. Building and checking each component in T ′
/{x,y} for

being non-polymorphic in cb takes O(m) time. The overall complexity of the algorithm is

thus entirely dominated by the construction of the conflict graph Gc and hence is O(nm2).

4.2.3 Multiple Homoplasy Events in a Single Site

An extension of the H1-NPP problem is the case when multiple homoplasy events within

the same site are allowed. This situation occurs quite frequently with true haplotype data.

For example, the site 16519 in human mtDNA is expected to have mutated multiple times.

We call this problem the H(1, q)-NPP problem. Formally, the H(1, q)-NPP problem is to

construct a phylogeny for the input taxa in which a single site has mutated at most q + 1

times, where q is an integer greater than 0.

The solution to the H(1, q)-NPP problem is an obvious extension of the solution to the

H1-NPP problem. As before, the conflict graph Gc for M must have a single connected

component, and there should be a single site cb with degree greater than 1 within this

connected component. We can build a perfect phylogeny T ′ for the matrix M ′ obtained by

removing the column cb from M . Now, we need to find if there are q + 1(or fewer) vertices

in T ′ so that expanding each one of these q + 1 vertices into an edge labeled with cb will

result in a phylogeny T for M . This can be done by testing all possible combinations of q+1

vertices in T ′ to check if they can lead to an H(1, q)-NPP solution. A set Q of q + 1 vertices

admits an H(1, q)-NPP solution if each component in T ′
/Q is non-polymorphic in cb. For any

127

set of vertices Q, this can be tested in O(m) time. We repeat this procedure for values of q

starting from 1 to a given maximum value k for q. There are exactly m vertices in T ′, and

there are (m
q+1)

∼= mq+1 ways in which q + 1 vertices can be selected from the m vertices.

Therefore, in theory, the complexity of the algorithm is O(nm2 + mq+2) for a given q.

In practice, however, the algorithm can be implemented to run much faster. The following

observations reduce the search space significantly:

• If two rows r1 and r2 in M with M [r1, cb] = 0 and M [r2, cb] = 1 both map to the same

vertex z in T ′, then we call the vertex z as a polymorphic vertex with respect to cb. For

obvious reasons, all polymorphic vertices in T ′ must be expanded into edges labeled

with cb in any H(1, q)-NPP for M . Let Vp be the set of polymorphic vertices in T ′ with

respect to cb.

• Let Sc be the set of sites in Gc that are adjacent to cb. Each one of the q + 1 vertices

selected for expansion must be incident on an edge labeled with a site in Sc. Therefore,

the q + 1 vertices have to be selected out of l vertices, where l ≤ m is the number of

distinct vertices in T ′ that are incident on a edge labeled with a site in Sc. In general,

if the degree of cb in Gc is d, l will be less than or equal to 2d. Let Va be the set of

vertices in T ′ that are incident on an edge in Sc.

• Let Tc be the subtree(or forrest) in T ′ formed exclusively by the sites in Sc. All the

leaves of Tc must always be selected for expansion into edges labeled with cb. Let Vl

be the leaves of Tc in T ′.

128

c3

c7

c5

c1

c2

c4 c6

c8

c9

Gc

c10 c11

c6

c2

c4

c3

c5

c9

c7
c8

T'

c1

(b) (a) (c)

10100101000

01010101000

11001101000

00000011000

11000000100

01000000010

10000000001

7

6

5

4

3

2

1

1110987654321

r

r

r

r

r

r

r

cccccccccccM

x

Figure 4.6: (a) Matrix M ; (b) The conflict graph for the matrix M ;(c) The tree T ′ after

removing c10 and c11

Let mc = |Va|, and let mg = |Vp

⋃
Vl|. The actual number of sets Q that need to be

searched is given by (
mc−mg

q+1−mg
). Hence, for any matrix M , q will be greater than or equal to

mg − 1.

4.2.4 Allowing Homoplasy Events in Multiple Sites

Extending the problem even further, we define the H(p, q)-NPP problem. An H(p, q)-NPP

is a phylogeny in which at most p sites have homoplasy events, with at most q homoplasy

events in each site. The conflict graph in this case will have multiple connected components

and/or multiple vertices with degree greater than 1.

Let G′
c be the graph obtained by removing all degree-0 vertices from Gc. If the matrix M

is to admit an H(p, q)-NPP, G′
c must have a vertex cover with size less than or equal to p. If

such a vertex cover C is found, removing the vertices in C from Gc will result in a graph with

no non-trivial connected components. We will be able to construct a perfect phylogeny T ′

129

for the vertices in S−C. Once T ′ is constructed, adding any site in C to T ′ is an H(1, q)-NPP

problem.

A necessary (but not sufficient) condition for the existence of an H(p, q) solution is that

for each site i ∈ C, the set of sites {S − C}⋃{i} must have a H(1, q) solution. However,

adding multiple sites in C to T ′ is a more difficult problem. Even if each of the p sites in C

can be added to T ′ to form H(1, q)-NPPs, it does not necessarily imply that the matrix M

has an H(p, q)-NPP solution. For example, refer to Figure 4.6. The conflict graph for matrix

M in Figure 4.6a is shown in Figure 4.6b. The tree T ′ after removing c10 and c11 is shown

in Figure 4.6c. A H(1, 2)-NPP can be constructed by adding either c10 or c11 T ′, but there

is no H(2, 2)-NPP that includes both c10 and c11.

Therefore, to solve the H(p, q)-NPP problem, we need to determine if there is a way to

combine the p individual H(1, q)-NPP solutions into a H(p, q)-NPP solution. For each site i

in C, let Qi be the set of vertices in T ′ which have to be expanded into edges labeled with

site i in order to add the site i to T ′ to form an H(1, q)-NPP. For each vertex x in T ′, let

Px = {i|x ∈ Qi}.

Definition. A site i ∈ C is fully specified at a vertex x ∈ T ′ with respect to an H(1, q)

solution consisting of the vertices Qi if any one of the following conditions are satisfied:

1. At least one row in M maps to the vertex x.

2. The vertex x is in a connected component Tx ∈ T ′
/Qi

, and at least one row in M maps

to a vertex in Tx.

130

Let x and y be two vertices that are adjacent to each other in T ′. We define that the two

vertices x and y are pair-wise independent with respect to a set of H(1, q) solutions for the

sites in C if all of the following conditions are satisfied:

1. Every site i ∈ Px is fully specified with respect to Qi at the vertex y.

2. Every site j ∈ Py is fully specified with respect to Qj at the vertex x.

3. |Px

⋂
Py| = 0.

A vertex x in T ′ is defined to be isolated (w.r.to the given set of H(1, q) solutions) if x

is pair-wise independent with all the vertices adjacent to it.

Each vertex x in T ′ must be replaced by a phylogeny Tx over the sites in Px. The

phylogeny Tx should be a phylogeny where the taxa include the following:

• The states of the sites in Px in each row (if any) of M that map to the vertex x.

• For each site y adjacent to x, the state of the sites in Px at the vertex y.

For example, the vertex x in Figure 4.6 should be replaced by a phylogeny Tx over the

sites {c10, c11}, where the taxa are {00, 01, 10, 11}.

When the vertex x is isolated, it can be trivially shown that the following conditions hold

true:

1. All the node labels that must label some node in the phylogeny Tx are known.

131

2. For any vertex y adjacent to x, there will be a vertex u in Tx and a vertex v in Ty such

that L(u) = L(v). Therefore, the edge (x, y) in T ′ can be replaced by the edge (u, v)

in a phylogeny that includes all the vertices in C, and edge (u, v) will not require any

more mutations than the edge (x, y).

When any vertex x in T ′ is not isolated, and/or if Tx is not a perfect phylogeny, the

H(p, q)-NPP problem is quite complicated. The phylogenies Tx and Ty that replace adjacent

vertices will be interdependent, and replacing the edge (x, y) with an edge between some

node in Tx and some node in Ty might incur additional cost. For example, refer to Figure

4.7. Let x and y two vertices adjacent to each other with |Px

⋂
Py| = 3. Let i, j and k be

the sites that are common in Px and Py, and let Tx be the phylogeny shown in Figure 4.7a

and Ty be the phylogeny shown in Figure 4.7b. As there are no common vertices in Tx and

Ty, connecting a vertex in Tx to a vertex in Ty requires at least one additional mutation in

the sites i, j or k.

We leave the unrestricted H(p, q)-NPP problem as an open problem. However, when the

following conditions are satisfied, there is a simple solution to the H(p, q)-NPP problem:

1. Each vertex in T ′ is isolated with respect to the given set of H(1, q) solutions.

2. For each vertex x in T ′, the phylogeny Tx that must replace the vertex x is a perfect

phylogeny.

132

When the above two conditions are satisfied, each vertex x can be simply replaced by

the perfect phylogeny Tx. As x is isolated, each edge incident on the vertex x in T ′ can be

replaced by an edge incident on some vertex in Tx, without incurring any additional cost.

4.2.4.1 Complexity

Finding all vertex covers in G′
c with size at most p takes exponential time with respect to p.

Assuming the size of Gc is O(m), finding all such vertex covers takes O(mp+1) time. For each

vertex cover, we need to construct the initial perfect phylogeny T ′, and find a H(1, q)-NPP

solution for each site in C. If the set of H(1, q)-NPP solutions satisfy the conditions described

above, replacing each vertex in T ′ by a perfect phylogeny takes O(np) time. Hence the over

all complexity of the restricted version of the problem is O(nm2 + mp+1 + ηpmq+2) time,

where η is the number of distinct vertex covers of G′
c with size less than or equal to p.

4.2.4.2 Special Scenarios

A special situation arises when each non-trivial connected component in Gc has at most one

site with degree greater than 1. In that case, p will be equal to the number of non-trivial

connected components in Gc. The set C is fixed. This reduces the problem to p completely

independent H(1, q)-NPP problems that can be solved in O(nm2 + pmq+2) time. In general,

133

000

100 010

001

i j

k

111

011 101

110

i j

k

(a) (b)

Figure 4.7: An example of phylogenies (a) Tx and (b) Ty that must replace two adjacent

vertices x and y when x and y are not independent. The node labels of each node over three

sites i, j and k are shown.

each connected component in Gc that is either a single edge or involves a single vertex with

degree greater than 1 will reduce the effective value of p by 1.

4.3 Near-Perfect Phylogeny Haplotyping

In case of the NPPH problem, the input is a set of genotypes. The aim in general is

to construct a set of haplotypes that are the most likely explanation for the given set of

genotypes. Parsimony is widely accepted as the most accurate criterion to reconstruct the

phylogeny. Therefore, the aim is to obtain, out of all possible explanations for the given

genotypes, the set of haplotypes that admit a phylogeny with the least number of recurrent

mutations.

134

4.3.1 The H1-NPPH Problem

We formally state the H1-NPPH problem as follows. We are given an n×m genotype matrix

A over the alphabet {0, 1, 2}. Each row in A represents a genotype. As before, the columns

represent SNP sites. The aim is to construct a 2n×m haplotype matrix M such that:

1. Each row r in A is a result of combining the rows r and r′ in M

2. The matrix M admits an H1-NPP.

The solution to the H1-NPPH problem is very similar to that for the H1-NPP problem,

except that it might not be possible to fully construct the conflict graph for a genotype

matrix. In a genotype matrix A, an ordered pair of values (a, b), a ∈ {0, 1}, b ∈ {0, 1} is in

I(i, j) for a pair of columns (i, j) if

1. There is a row r in A such that A[r, i] = a and A[r, j] = b,or

2. A[r, i] = a and A[r, j] = 2, or

3. A[r, i] = 2 and A[r, j] = b.

If two columns i and j are ‘2’ in some genotype, the states of i and j in the two haplotypes

for the genotype could be either {(0, 0), (1, 1)} or {(0, 1), (1, 0)}. Therefore, we might not be

able to completely specify I(i, j). I(i, j) can be completely specified only in two situations:

when |I(i, j)| = 4 because of rows in A in which either the column i or the column j is

not ‘2’, or when there are no rows in A in which both i and j are ‘2’. Hence, though we

135

might be able to construct some edges in the conflict graph in Gc, we might not be able to

construct all the edges in Gc. Therefore, we need other ways to find the column cb that has a

recurrent mutation. One obvious procedure for finding cb is to remove each column from A,

and check if the rest of the matrix admits a perfect phylogeny. If we can find such a column

cb, then there might be a H1-NPPH solution for A. This is the procedure used in [SWG05]

to find the column cb. We adopt the same procedure to find cb. Then, we propose our new

algorithm to construct H1-NPPH solution.

Once the column cb is found, we can build the perfect phylogeny T ′ for the matrix A′

obtained by removing cb from A. In general, the matrix A′ might have multiple perfect

phylogenies. Chung and Gusfield [CG02] have empirically shown that the likelihood for the

phylogeny being unique increases quickly with the number of genotypes. In the following, we

assume that A′ has a unique perfect phylogeny T ′. If A′ admits multiple perfect phylogenies,

the following procedure has to be repeated for each such perfect phylogeny.

Using the phylogeny T ′, we construct the haplotype matrix M ′ for A′. We denote the

rows of A′ by r1, r2, ..., rn and the corresponding pairs of rows in M ′ as r1, r
′
1, r2, r

′
2, .., rn, r′n.

The matrix M should now be built by adding the column cb to M ′. We can also assign

values to some rows in column cb of the matrix M . In a row ri of A, if A[ri, cb] is either

0 or 1, then both the haplotypes for this row will also be either 0 or 1, respectively, in

column cb. We can then set M [ri, cb] = M [r′i, cb] = A[ri, cb]. When A[r, cb] = 2, we know

that M [ri, cb] = M [r′i, cb], but we can not determine which one of them must be 0 for M

to admit an H1-NPP. We call such a pair of rows (ri, r
′
i) in M as an ambiguous pair. Thus

136

1

1

1

1

?

?

?

?

0

0

?

?

?

?

00001010'

00001001

01100000'

10100000

01100000'

00001100

00100000'

10100000

00010000'

00001000

00010000'

00001010

00001001'

00001100

3

7

7

6

6

5

5

4

4

3

3

2

2

1

1

98765421 c

r

r

r

r

r

r

r

r

r

r

r

r

r

r

cccccccc

c5

c1

c2

c4

c6

c7

c8

c9

r1',r 7

r2, r7'

r1, r5

r2', r 3' r4, r6

r5', r 6'

r4'
x

y

(b) T'

 r3

x y

T1

T2

T3

T4

T5

T6

(c)

r5', r 6' r1',r 7

r2, r7' r4, r6

r2', r 3'

r1, r5

000010122

221000100

022022200

201000200

000220000

000220220

000012202

7

6

5

4

3

2

1

987654321

r

r

r

r

r

r

r

ccccccccc

A (a)
M' (d)

c5

c1

c3

c2

c4

c6

c7 c3

c8

c9

M

(e)
T

Figure 4.8: (a) Matrix A; (b) The tree T ′; (d) Components in T ′
/{x,y} overlaid with the edges

in Ga; (d) Matrices M ′ and M ; (e) The H1-NPP T for the matrix M

the problem of determining whether A admits an H1-NPP solution reduces to determining

whether there is an assignment of values to each such ambiguous pair so that matrix M

admits an H1-NPP.

Each row in M ′ (and hence in M) can be mapped to a vertex in T ′. As in the H1-NPP

case, we represent this mapping using the notation ν(ri) = v, where ri is a row in M , and v

is a vertex in T ′. For any vertex v in T ′, zero or more rows in M can map to vertex v.

The underlying idea of our algorithm is based on Theorem 1. We need to identify

two vertices x and y, if they exist, such that each connected component in T ′
/{x,y} is non-

polymorphic with respect to cb. We will show how to use this property to actually obtain

an assignment of values to each ambiguous pair of rows in M . We arbitrarily choose two

vertices x and y in T ′ and construct a graph Ga = (V,E), where the vertices in V correspond

137

one-to-one to connected components in T ′
/{x,y}. For each ambiguous pair (ri, r

′
i) in M , we

know that M [ri, cb] = M [r′i, cb]. Therefore, if ν(ri) is in a component Ti, and ν(r′i) is in Tj, we

add the edge (vi, vj) to E. As each connected component Ti has to be non-polymorphic in cb,

if any un-ambiguous row rj maps to a vertex in Ti, we assign the value M [rj, cb] to the vertex

vi. Since the value of M [rj, cb] is either 0 or 1, we can imagine these two values to represent

two ‘colors’. Thus, if the chosen pair of vertices {x, y} leads to a valid assignment of values

to the ambiguous pairs of rows, each connected component in Ga should be two-colorable

with the coloring scheme of vertices in Ga as described. Intuitively, a valid two coloring is

possible only if the following is true: Let R0 be the set of rows in M such that M [r, cb] = 0

and similarly let R1 be the set of rows in M such that M [r, cb] = 1. Then each component

Ga has a valid two coloring if and only if for each Ti ∈ T ′
/{x,y}, R(Ti) is a subset of either R0

or R1.

If Ga is two colorable given the current coloring of the vertices, each un-colored vertex in

Ga can be assigned a color (value) of 0 or 1. When a vertex vi is assigned a value a ∈ {0, 1},

we can assign M [r, cb] = a for every row r such that ν(r) is in Ti and M [r, cb] is un-assigned.

After every unknown entry in column cb of M is filled like this, each connected component

Ti ∈ T ′
/{x,y} will be non-polymorphic in cb, and hence T ′ can be converted into an H1-NPP

T for M .

Figure 4.8 shows each step of the procedure. A matrix A is shown in 4.8a. The perfect

phylogeny after removing column c3 from A is shown in Figure 4.8b. The matrices M ′ and

M , constructed through T ′ are shown in Figure 4.8d. The components in T ′
/{x,y} are shown

138

in Figure 4.8c. Since the rows r1 and r′1 in M form an ambiguous pair, components T1

and T3 in Ga are connected. Similarly, components T2 and T4 will be connected due to the

ambiguous pair (r2, r
′
2), and components T3 and T5 are connected due to ambiguous pair

(r5, r
′
5). These edges are shown using dashed lines in Figure 4.8c. Though the rows r4 and

r′4 also form an ambiguous pair, no edge is added to Ga since one of them (r′4) maps to the

vertex y. Since y will be expanded into two vertices y0 and y1, r′4 can map to any of the two

vertices y0 and y1, and hence the pair of rows (r4, r
′
4) does not impose any restriction on the

coloring of the vertices in Ga. Components T1, T2, T4, T5 and T6 can similarly be assigned a

color of 1 because of the rows r7, r′7, r′3, r′6 and r6, respectively. The connected component

T3 can not directly be assigned any color, since no unambiguous row maps to it. It can be

seen that Ga is two-colorable, and the only possible coloring is to assign color 0 T3. The final

H1-NPP T is shown in Figure 4.8e.

The fundamental problem now is how to find the two sites x and y in T ′. In case of the

H1-NPP problem in Section 4.2, the conflict graph Gc could be constructed, RMP could be

deduced from Gc, and the two vertices x and y could be directly selected as the terminal

ends of RMP. In case of the H1-NPPH problem, since we can not construct the conflict

graph completely (unless in very obvious special scenarios), we must exhaustively search for

the vertices by checking each pair of vertices in T ′. Since there are exactly m vertices in T ′,

there will O(m2) pairs of vertices that we need to check.

For each pair of vertices, the graph Ga can be constructed in O(n + m) time, allowing

parallel edges. Since there are at most O(n) edges in Ga (at most one for each row in A),

139

the connected components in Ga can be identified in O(n+m) time using depth-first search.

Two-coloring of Ga can be obtained in O(n+m) time using breadth-first search. Hence, the

overall complexity of the algorithm is O(m2(n + m)).

It might seem that the O(n4) algorithm of Song et al. [SWG05] might perform better if

m > n. However, m can never be greater than O(n) without having duplicate rows in M .

This is because even if each of the 2n haplotypes are distinct, there can be no more than

4n−4 edges in the tree. With only one homoplasy event, each column except cb has to label

a distinct edge, and hence there can be at most 4n− 3 distinct columns in the matrix M . If

the matrix M has more than 4n− 3 distinct columns, it will not admit an H1-NPP.

On the other hand, n can be as high as O(m2). Hence, our algorithm has better time-

complexity than the previous O(n4) algorithm for any value of n and m.

4.3.2 Making use of the conflict graph

The conflict graph provides useful information that can be utilized to speed up the above

algorithm. Even though it might not be possible to build the conflict graph completely, we

can make use of what is available of the conflict graph in order to reduce the O(m2) search

space of the pairs of vertices.

Inferring the recurrent mutation path

140

c1 c3

u u� v�
v

T�

c2

T1 T2

Figure 4.9: Any solution must involve a vertex from T1 and a vertex from T2

From the discussion in Section 4.2, it is clear that the set Sc of sites adjacent to cb in

the conflict graph must all lie in a path in T ′. Let Sc = {c1, c2, c3}, and let all three of them

lie in a path in T ′, as shown in Figure 4.9. If the matrix A admits an H1-NPP, the path

between the two vertices x and y that are selected to be expanded must clearly include all

the sites in Sc. Therefore, one of them (say, x) has to be in T1 and the other (say, y) has

to be in T2, as shown in Figure 4.9. Therefore, the conflict graph can be effectively used to

reduce the pairs (x, y) that need to be checked. The following is another interesting result:

Lemma 4.1 The sites in Sc must form a contiguous path in T ′ if the matrix A admits an

H1-NPP.

i.e, the sites c1, c2 and c3 must form a contiguous path, instead of a broken path as depicted

in Figure 4.9.

4.3.2.1 Using the ambiguous pairs more effectively

For any ambiguous pair of rows (r, r′) in M , the path between the vertices ν(r) and ν(r′)

must include an edge (in general, an odd number of edges) labeled with cb. This means that

141

any pair of vertices x and y in T ′ that are a possible solution must be such that ν(r) and

ν(r′) are not in the same connected component Ti ∈ T ′
/{x,y}. The following lemma states this

property formally:

Lemma 4.2 For any two vertices x and y in T ′ that can be expanded to form a H1-NPPH

solution for matrix A, the path between the vertices ν(r) and ν(r′) for every ambiguous pair

(r, r′) must include the vertex x or y or both.

Proof Let there be an ambiguous pair (r, r′) in M so that the path in T ′ between the two

vertices ν(r) and ν(r′) does not include both x and y. This means that the vertices ν(r)

and ν(r′) are in the same connected component Ti ∈ T ′
/{x,y}. Since M [r, cb] = M [r′, cb], this

implies that Ti is polymorphic with respect to cb. Hence, there must be an edge within Ti

labeled with cb in addition to the two edges labeled with cb inserted at the vertices x and

y. Hence the two vertices x and y can not lead to an H1-NPPH solution for the matrix A.

Therefore, for any pair of vertices x and y in T ′ that can be expanded into an H1-NPPH

solution for matrix A, the path between the vertices ν(r) and ν(r′) for every ambiguous pair

(r, r′) must include the vertex x or y or both. ♦

Lemma 4.2 can be used to avoid checking some vertex pairs. Let R be the set of rows in

A such that A[r, cb] = 2 for every r ∈ R. Let Rx ⊆ R be the set of rows in A such that, for

every r ∈ Rx, the path between the vertices ν(r) and ν(r′) in T ′ includes the vertex x in T ′.

Similarly, let Ry be the corresponding set of rows for the vertex y in T ′. The pair of vertices

x and y can not be a solution unless R = Rx

⋃
Ry.

142

4.3.3 The H(1, q)-NPPH problem

The solution for the H(1, q)-NPPH problem is a simple extension to the solution for the

H1-NPPH problem. All the discussion above applies to H(1, q)-NPPH problem, with the

only difference being that instead of finding a pair of vertices x and y, we need to find a set

of q + 1 vertices Q so that T ′ can be converted into an H(1, q)-NPP T by expanding each

one of q + 1 vertices in Q into an edge labeled with cb.

In case of the H(1, q)-NPP problem, we could use Gc to narrow down the possible sets

of vertices for Q. We can not do the same thing here, since Gc is not complete. Therefore,

we need to try all-possible sets of vertices of size q + 1. There are (m
q+1) such possible

sets of vertices. For each set, testing if the set of vertices form a solution is identical to the

procedure for the H1-NPPH problem - we build the graph Ga in which each vertex represents

a connected component in T ′
/Q. As before, two vertices vi and vj have an edge between them

if there is an ambiguous pair (r, r′) in M so that the vertex ν(r) is in vi and the vertex ν(r′)

is in vj. We need to test if the graph Ga is two-colorable. As in the case of the H(1, q)-NPP

problem, This algorithm can be implemented to run in O(nm2 + mq+1(n + m) time.

4.3.4 The H(p, q)-NPPH problem

Like the H(p, q)-NPP problem, the H(p, q)-NPPH problem can be viewed as a set of H(1, q)-

NPPH problems. We first need to find a set of p columns C so that the matrix A′ obtained by

143

removing the columns in C from A has a perfect phylogeny T ′. Once T ′ is constructed, we can

solve for each of the sites in C as an H(1, q)-NPPH problem. The haplotype matrix M can

be constructed for a given set of H(1, q)-NPP solutions, and the H(p, q)-NPPH problem on

the matrix A will be equivalent to the the H(p, q)-NPP problem on the matrix M . However,

if any site i ∈ C has multiple H(1, q)-NPP solutions, there will be multiple such matrices M ,

and the matrix A will admit an H(p, q)-NPP if any one of those matrices admit a H(1, q) NPP.

The time complexity of the algorithm will be similar to that of the H(p, q)-NPP algorithm.

4.4 Results

We have implemented our algorithm for the H1-NPPH problem in C++. In this section,

we compare the performance of our algorithm to that of PHASE [SSD01] using simulated

data. To generate the simulated data, we follow the same procedure as in [SWG05]. We first

generate homoplasy-free haplotype matrices with minimum allele frequency (MAF) ≥ 2%

using the program MS [Hud02]. In each matrix, we introduce a homoplasy column by

randomly selecting two vertices in the perfect phylogeny for the dataset and expanding the

two vertices into edges labeled with the newly introduced column. We ensure that the newly

introduced column has a MAF ≥ 2% by selecting two non-adjacent vertices for expansion.

Finally, we construct the genotype matrix by pairing consecutive rows in the haplotype

matrix.

144

Table 4.1: Comparison of our H1-NPPH method with PHASE for different datasets. The

running times are on Pentium 3.2 GHz PC

test case Our H-1 NPPH algorithm PHASE

n×m std. error %of mis-phased 2’s run time std. error %of mis-phased 2’s run time

50× 50 0.0116 0.157% 0.01s 0.0138 0.269% 109s

100× 50 0.0054 0.064% 0.016s 0.0046 0.065% 268s

50× 100 0.011 0.105% 0.031s 0.0156 0.214% 497s

100× 100 0.0048 0.046% 0.047s 0.011 0.136% 874s

Table 4.2: Properties of the data sets generated
test case #of datasets (out of 100) #of datasets admitting H-1 NPPH solutions

that admit a perfect phylogeny (with a unique PPH solution for A′)
50× 50 16 84 (49)
100× 50 10 90 (54)
50× 100 3 97 (55)
100× 100 8 92 (42)

The results are summarized in Tables 4.1 and 4.2. We provide two measures of accuracy.

The first measure, the standard error, is the ratio of the genotypes that are incorrectly

inferred to the total number of genotypes in the data set. The second measure is simply the

percentage of mis-phased 2s. We used 100 datasets for each problem size. The run-times

and error-rates shown are averages for the hundred datasets.

4.5 Discussion

The algorithms and problem formulations we introduced here are applicable in a wide a

variety of problems encountered in genome variation studies and population genetics. With

the help of simulated data, we demonstrated that the algorithms are applicable and practical

145

in case of the haplotype inference problem. We believe that these algorithms will also be

practical for phylogenetic reconstruction problems in general. Specifically, the algorithms

will be extremely useful for inferring phylogenies for haploid genomes, like mtDNA and the

human Y-chromosome.

146

CHAPTER 5

THE INCOMPLETE PERFECT PHYLOGENY

PROBLEM

5.1 Missing Data

Real biological data is generally incomplete. i.e., the state of some loci might not be known

in each taxon. Under these circumstances, the problem of determining if there is a perfect

phylogeny for the given taxa is called as the incomplete perfect phylogeny (IPP) problem. The

IPP problem was proven to be NP-complete [Ste92], even when each character is bi-allelic.

However, if at least one taxon in the input set is complete that taxon can be considered as the

root for the phylogeny, and the problem is called as the incomplete directed phylogeny (IDP)

problem. Peer et al [PPS04] have shown that the IDP problem is solvable in polynomial time,

and presented an algorithm that takes an expected time of Õ(nm), where n is the number

of taxa and m is the number of characters. Halperin et al [HK04] took a different approach,

and made certain assumptions about the input data, and presented a Õ(nm) algorithm for

the IPP problem that can be used when the input data satisfies those assumptions.

When the input consists of incomplete genotypes, the problem is called as the incomplete

perfect phylogeny haplotyping (IPPH) problem. The IPPH problem is clearly NP-complete

since the IPP problem can be viewed as a special case of the IPPH problem in which there

147

are no heterozygous loci. Interestingly, even the rooted version of the IPPH problem was

shown to be NP-complete [KS05].

In this chapter, we handle the IPP and IPPH problems in their original form, without

making any assumptions about the input data. Using empirical analysis, we demonstrate

that the IPP problem can almost always be solved in polynomial time, even when as much

as 50% of the input data is missing. We extend this approach to the IPPH problem, and

present an efficient algorithm for the IPPH problem. As stated in [HK04], the necessary and

sufficient conditions under which an incomplete matrix admits a unique perfect phylogeny

are unknown. We solve this open problem, and formulate a set of necessary and sufficient

conditions under which any given IPP or IPPH instance has a unique solution.

5.2 Problem statement and Previous Work

As in the previous chapters, a complete haplotype is represented by a length-m vector over

the alphabet {0, 1}, where 0 and 1 are representative of the two alleles in each position. An

incomplete haplotype is a length-m vector over the alphabet {0, 1, ?}, where ‘?’ represents

missing data. A complete genotype is represented by a length-m vector over the alphabet

{0, 1, 2}, where ‘0’ or ‘1’ indicate that the corresponding SNP is homozygous in the geno-

type with the ‘0’ or ‘1’ allele respectively, and ‘2’ indicates that the corresponding SNP is

heterozygous. An incomplete genotype is a length-m vector over the alphabet {0, 1, 2, ?}.

148

The input to the IPP problem is an n ×m matrix M over the alphabet {0, 1, ?}. Each

of the n rows in the matrix represent a haplotype. The incomplete perfect phylogeny (IPP)

problem is to determine if there is an assignment of ‘0’ or ‘1’ to each ‘?’ in M so that the

resulting matrix admits a perfect phylogeny.

We define the following terms. An ordered pair (a, b), a ∈ {0, 1}, b ∈ {0, 1}, is said to

be induced by a pair of ordered columns (i, j) if there is a row r in M such that M [r, i] = a

and M [r, j] = b. The set of ordered pairs induced by a pair of columns (i, j) is denoted

by I(i, j). According to the well-established four-gamete test, the matrix M will admit a

perfect phylogeny only if |I(i, j)| ≤ 3 for every pair of columns (i, j).

Halperin et al. [HK04] made the assumption that |I(i, j)| = 3 for every pair of columns

(i, j) in M . They call this assumption rich data hypothesis. When an incomplete matrix M

satisfies the rich data hypothesis, if there is a perfect phylogeny for M , the perfect phylogeny

will be the unique perfect phylogeny for M . Under these conditions, they presented a rather

involved procedure to recover a complete haplotype and construct the perfect phylogeny for

M . In Section 5.5, we present a simple procedure that recovers a complete haplotype when

the rich data hypothesis is satisfied. The procedure is applicable in many situations, even

when the rich data hypothesis is not satisfied.

When the root, i.e., any complete haplotype that must be in the tree is available, the IPP

problem can be solved as the IDP problem. Peer et al [PPS04] present an efficient solution

for the IDP problem when the root is an all-0 vector. If the root is not an all-0 vector, it can

be converted into an all-zero vector by flipping (replacing each ‘0’ by ‘1’ and each ‘1’ by a ‘0’)

149

every column that is not ‘0’ in the root. Kimmel and Shamir [KS05] presented a worst-case

exponential-time algorithm with expected time of Õ(nm2) when certain assumptions about

the input data are satisfied. One of their assumptions is that m = O(n0.5). Their algorithm,

in fact, involves an exhaustive search through all-possible haplotype vectors that could be

the root of the perfect phylogeny. For each root, they try all possible ‘phase’ relationships

between pairs of columns in order to search for the solutions.

They construct a bipartite graph G = (R, C, E), where C is the set of characters

(columns) and R is the set of species (rows) of the matrix. An edge (c, r) is in E if the

column c is ‘1’ in the row r. They make a very interesting observation - if any sub-graph

of G induced by two vertices from C and three vertices from R is connected, then the ma-

trix M will not admit a perfect phylogeny. This observation is equivalent to the 4-gamete

rule stated before, but helps in obtaining an efficient solution for IDP. In case of the IPPH

problem, Kimmel and Shamir [KS05] present an algorithm with expected time of Õ(nm2),

when certain assumptions about the input data are satisfied. The most significant of these

assumptions is that the number of columns in the matrix is much fewer than the number

of rows. Specifically, they assume that m = O(n0.5). Their algorithm, in fact, involves an

exhaustive search through all-possible haplotype vectors that could be the root of the perfect

phylogeny. For each root, they try all possible ‘phase’ relationships between pairs of columns

in order to search for the solutions. Though their algorithm has exponential time worst-case

complexity, they show that the algorithm takes Õ(nm2) time when the assumptions they

make are satisfied.

150

Gramm et al. [GNS04] introduced a special case of IPPH problem, where the perfect

phylogeny is known to be a path. They show even this problem, known as Perfect Path

Phylogeny Haplotyping, is NP-hard.

5.3 Realizability conditions for the IPP problem

In this Section, we present the conditions under which a given undirected IPP instance admits

a perfect phylogeny. Our algorithm for the IPP problem is based on these conditions. In the

following, we introduce some definitions.

For any pair of columns (i, j), the set of non-induced pairs, denoted by U(i, j), is given

by U(i, j) = {(0, 0), (0, 1), (1, 0), (1, 1)} − I(i, j). The four-gamete test can be re-stated in

terms of the non-induced pairs as in the following sentence - any matrix M (complete or

incomplete) does not have a perfect phylogeny if |U(i, j)| = 0 for any pair of columns (i, j).

When |U(i, j)| = 1, the ordered pair (fij, fji) ∈ U(i, j) is defined as the forbidden pair for the

pair of columns (i, j), denoted by F(i, j). Throughout this chapter, we follow the notation

that F(i, j) = (fij, fji).

A column i is said to be non-polymorphic if there are no ‘1’s or ‘0’s in the sub-matrix

M [∗, i]. It can be trivially shown that non-polymorphic columns are un-informative, and

hence can be removed from the matrix without effecting the matrix in any way.

151

i j

k

b

b
a

c

c

a

k

c c b b a a

j i

(a) (b)

T1

T2

Figure 5.1: The two possible topologies for any three sites i, j and k in a perfect phylogeny

5.3.1 Significance of the forbidden pairs

In a perfect phylogeny, there are certain relationships between the forbidden pairs of any

three columns. In any perfect phylogeny, the topology of the tree formed by a triplet of

columns (i, j, k) must be one of the two topologies shown in Figure 5.1. i.e, the three of

them must form a Y-shaped tree as shown in Figure 5.1a, or a path, as in Figure 5.1b.

The edges can be labeled differently, but the overall topology must be either that in Figure

5.1a or that in 5.1b. Let (a, a), (b, b), (c, c), be the pairs of alleles for the sites i, j and k

respectively. Consider the labeling in Figure 5.1a. There can be no vertex in the perfect

phylogeny T1 with the allele a in site i and b in site j. Hence, F(i, j) = (a, b), where fij = a

and fji = b. Similarly, fik = a, fki = c, and fjk = b, fkj = c. Therefore, for the topology

in T1, fij = fik, fji = fjk, and fki = fkj, irrespective of how the edges are actually labeled.

Similarly, for the topology in T2, fij = fji, fki = fkj, and fji = fjk, where j is the column in

the middle. Therefore, in any perfect phylogeny, there are some restrictions and associations

between the forbidden pairs of triplets of columns. In the following Sections, we present a

formalization for these associations.

152

5.3.2 The 3-way compatibility expression

For any three distinct columns i,j and k with F(i, j) = (fij, fji), F(j, k) = (fjk, fkj), and

F(i, k) = (fik, fki), we define the 3-way compatibility expression, denoted by R(i, j, k):

R(i, j, k) = (Ej + Ej)(Ej + Ek)(Ek + Ei) = EiEj + EjEk + EkEi (5.1)

where Ei = 1⊕fij⊕fik, Ej = 1⊕fji⊕fjk and Ek = 1⊕fki⊕fkj. Here, ‘+’ is the logical

OR operator, and ‘⊕’ is the logical XOR operator. We define the three columns i, j and k

to be 3-way compatible if R(i, j, k) = 1, and 3-way incompatible if R(i, j, k) = 0.

Theorem 5.1 A complete matrix M with |I(i, j)| = 3 for every pair of columns i and j
admits a perfect phylogeny iff R(i, j, k) = 1 for every triplet of columns (i, j, k).

Proof We first prove that M does not admit a perfect phylogeny if R(i, j, k) = 0 for any

triplet of columns (i, j, k). Since the expression R is symmetric with respect to Ei, Ej and

Ek, we only prove the case when Ei = Ej = 0. From the definition of Ei and Ej, we get:

fij = fik and fji = fjk (5.2)

Since |I(i, j)| = 3 and F(i, j) = (fij, fji), the pair (fij, fji) is in I(i, j), and there will be

a row r1 in M with M [r1, i] = fij = fik and M [r1, j] = fji = fjk. Similarly, there will be a

row r2 in M with M [r2, i] = fik = fij and M [r2, k] = fki. Without loss of generality, assume

that M [r1, k] =? and M [r2, j] =?. We will show that any assignment of values to M [r1, k]

and M [r2, j] leads to a forbidden pair for some pair of columns.

153

Since M [r1, i] = fik and M [r1, j] = fjk, in order to avoid a forbidden pair in row in r1, we

must assign M [r1, k] = fki = fkj. This implies that fki = fkj. In row r2, since M [r2, i] = fij,

M [r2, j] must be equal to fji in order to avoid F(i, j). However, since fji = fjk, this means

that fki cannot be equal to fkj in order to avoid having F(j, k) in r2. Therefore, it is not

possible to complete both the rows r1 and r2 without introducing the forbidden pair in

some pair of columns. Hence, the matrix M does not admit a perfect a phylogeny when

R(i, j, k) = 0 for any triplet of columns.

Now, we prove that M admits a perfect phylogeny when R(i, j, k) = 1 for every triplet

of columns (i, j, k). This means that we should be able to assign values to all missing

entries in M without inducing the forbidden pair for any pair of columns. The proof is by

contradiction. Assume that there is some entry M [r, k] =? which cannot be assigned a value

without forcing a forbidden pair for some pair of columns. This can only happen if there

are at least two columns i and j such that M [r, i] = fik, M [r, j] = fjk and fki = fkj. If

M [r, k] is set to fki, F(i, k) will be induced into row r. Since R(i, j, k) = 1, fki = fkj (i.e.,

Ek = 0) implies that fij = fik (Ei = 1) and fjk = fji (Ej = 1). This implies that F(i, j) is

already induced by the row r. However, this is not possible, since we know that |I(i, j)| = 3.

Therefore, there can be no such entry M [r, k] in M , and every ‘?’ in M can be assigned a 0

or 1 so that there is a perfect phylogeny for the resulting matrix.♦

Theorem 5.1 can be better understood from the matrix representation of the forbidden

pairs shown in Figure 5.2-(b). The variables along the diagonal are not defined. The terms

A, B and C in R(i, j, k) are relationships between the two variables in the rows i, j and k,

154

×

×

×

kjki

jkji

ikij

ffk

ffj

ffi

kji

(a) (b)

kiikij

jkjiikij

fffr

ffffr

kji

?

?

............

2

1

=

==

M

M

Figure 5.2: (a) The rows r1 and r2 in M ; (b) A matrix representation of the forbidden pairs

respectively. A, B or C will be zero if the two variables in the corresponding row are not

equal to each other. The columns (i, j, k) will be 3-way compatible if variables in at least

two rows are equal to each other.

In some situations, Theorem 5.1 allows us to define F(i, j) even if it is not directly induced

by the matrix M . For example, consider the case when F(i, k) and F(j, k) are known, and

fki = fkj. Applying Theorem 5.1 will tell us that fij must be equal to fik and fji must be

equal to fjk if M is to allow a perfect phylogeny. Hence we can indirectly define F(i, j) in

this case, using Theorem 5.1.

5.3.3 Conditions for any matrix M

In the following, we answer this question - given the matrix M in which |I(i, j)| < 3 for

some pairs of columns (i, j), is there an assignment F(i, j) = (fij, fji) for every pair of such

columns (i, j) that leads to a perfect phylogeny? In other words, is it possible to have a

matrix in which the forbidden row cannot be defined for some pairs of columns and every

possible assignment of forbidden pairs results in a matrix that does not admit a perfect

155

phylogeny, but the original matrix allows a perfect phylogeny? To answer this question, we

need to examine under which circumstances |I(i, j)| can be less than 3 for two columns i

and j in a perfect phylogeny.

Property 5.1 directly follows from the fact that each column in the resulting matrix M

is polymorphic:

Property 5.1 For any pair of columns i and j in the perfect phylogeny, 2 ≤ |I(i, j)| ≤ 3.

Also, it can be trivially shown that the following property holds true:

Property 5.2 For any pair of columns i and j in the perfect phylogeny |I(i, j)| = 2 only if
i and j label the same edge in T .

Property 5.1 directly follows from the fact that every column in M in must be polymor-

phic. Property 5.2 is evident from Figure 5.3. Let i and j label the two edges as shown, with

the two alleles of the site i being a and a and the two alleles of the site j being b and b. As

shown, the state of the columns (i, j) is (a, b) at vertex A and (a, b) at vertex B. If there is

any internal node C in the path from A to B (other than A and B), the state of C will be

(a, b). When |I(i, j)| = 2, there can be no such third node C. Therefore, i and j must label

a single edge connecting the nodes A and B.

Property 5.2 leads to an additional result - Since I(i, j) = {(a, b), (a, b)} when |I(i, j)| = 2,

I(i, j) must be either {(0, 0), (1, 1)} or {(0, 1), (1, 0)}.

Theorem 5.2 An incomplete matrix M with |I(i, j)| < 3 for some pairs of columns (i, j)
will admit a perfect phylogeny iff there is a matrix M ′ obtained by adding additional rows
to M so that (a) |I(i, j)| = 3 for every pair of columns (i, j) in M ′; and (b) M ′ admits a
perfect phylogeny.

156

i j

 aa ↔ bb ↔

ab

ba

A

B
C

(a)

(b)

c1

(c)

A B
c2

C

C
�

c1,c2

A B

ba

ba

ba

ba

ab

ba

ba

ab

ba

Figure 5.3: (a) Illustration of Property 5.1; (b) Columns c1 and c2 in the original tree;(c)
Columns c1 and c2 after splitting the edge (A,B)

Proof Let M be a matrix that admits a perfect phylogeny T . From Property 5.1, we know

that I(i, j) ≥ 2 for every pair of columns (i, j) in a complete matrix M . Let c1 and c2 be

two columns that label the same edge in T , as depicted by the edge (A,B) in Figure 5.3-(b).

From Property 5.2, we know that I|(c1, c2)| = 2 in M . Clearly, the node labels of A and B

are identical except in the sites c1 and c2. If c1 = a and c2 = b at A, c1 and c2 will be a

and b at B. We can always introduce a new node C so that c1 labels the edge (A,C) and

c2 labels the edge (B, C) by introducing an extant leaf C ′ as shown in Figure 5.3-(c). At

vertices C and C ′, c1 = a and c2 = b, and every other column takes same value as at nodes

A and B. If we add the label of the leaf C ′ to M ′, |I(c1, c2)| will be equal to 3 in M ′. The

same can be done for every pair of columns (i, j) for which |I(i, j)| = 2 in M . Hence, for

every incomplete matrix M that admits a perfect phylogeny, there will be a matrix M ′ in

which |I(i, j)| = 3. ♦

Because of Theorem 5.2, we can use the 3-way compatibility expression to determine if

a given matrix M allows a perfect phylogeny, even if |I(i, j)| < 3 for some pairs of columns

in M . If M allows a perfect a phylogeny, F(i, j) can be defined for every pair of columns

157

(i, j). Applying the 3-way compatibility expression on any triplet of columns i, j and k, we

obtain the following set of equations:

(1⊕ fij ⊕ fik) + (1⊕ fji ⊕ fjk) = 1

(1⊕ fji ⊕ fjk) + (1⊕ fkj ⊕ fki) = 1 (5.3)

(1⊕ fkj ⊕ fki) + (1⊕ fij ⊕ fik) = 1

In total there will be m(m− 1)(m− 2)/2 such equations, since there are m(m− 1)(m− 2)/6

possible ways to choose i, j and k. The incomplete matrix will admit a perfect phylogeny

only if there is an assignment of 0 or 1 to each variable that satisfies all these equations. In

the special situation in which at least two out of the four variables in each expression can

be assigned a value, the problem can be reduced to the 2-SAT problem, and can be solved

in polynomial time.

For any pair of columns (i, j), if |I(i, j)| = 3, then both fij and fji will be known. When

|I(i, j)| = 2, either fij or fji will be known, or one of them can be expressed as the other or

the complement of the other. For example, I(i, j) = {00, 01} ⇒ F(i, j) ∈ {10, 11} ⇒ fij = 1.

Similarly, I(i, j) = {00, 11} ⇒ F(i, j) ∈ {10, 01} ⇒ fij = fji.

When |I(i, j)| = 1, fij and fji will be related by a disjunction. For example: I(i, j) =

{00} ⇒ F(i, j) ∈ {10, 01, 11} ⇒ fij +fji = 1. For the matrix M to admit perfect phylogeny,

the above disjunctions have to be satisfied in addition to the equations 5.3.

158

c

U V

i j
ic

f
ic

f
jc

f
jc

f 0 1

Figure 5.4: For any site labeling an edge (U, V), the state of any other site i at both the
vertices U and V will be fic

5.3.4 Properties of the forbidden pairs

It is convenient to represent the forbidden pairs using an m×m matrix F , where F [i, j] = fij

∀ (i, j), i 6= j. The diagonal of the matrix, i.e., F [i, i] ∀ i, is not defined. When |I(i, j)| = 3,

both fij and fji can be assigned a value of 0 or 1. When |I(i, j)| < 3, we might be able to

define one of the two variables (fij, fji), or introduce an equality or disjunction relationship

between the two variables.

In any phylogeny T , we denote the node-label of a node V using the notation L(V).

L(V) is a length-m haplotype vector. The following are some interesting properties of F .

5.3.4.1 Each column in F represents two node labels in T

Assume the matrix M admits a perfect phylogeny T . Therefore, every site i in M labels a

unique edge in T . Let a column c label an edge (U, V), where U and V are nodes in T . We

show how to construct the node labels for U and V from F . Without loss of generality, let

L(U)[c] = 0, and L(V)[c] = 1. For any column i in T , the state of the column i at both

159

the nodes U and V will be fic. This is irrespective of which ‘side’ of c the column i appears

in T . Therefore, if we know fic for every site i, we will be able to build the node labels for

both the vertices U and V . i.e., if every entry (except F[c,c], which is not defined) in the

column c in F is known, we can construct the node labels for the two nodes that define the

edge labeled with column c.

Let Hc be a vector formed by transposing the column c in F . The node labels for U and

V can be constructed by setting L(U)[i] = L(V)[i] = Hc[i] ∀i 6= c, and setting L(U)[c] = 0

and L(V)[c] = 1. Hence, if we can assign a value to every entry in a column in F , we can

convert the IPP problem into the IDP problem. Note that the rich-data hypothesis need

not be satisfied on the matrix M for us to be able to fill a column c in F completely. The

algorithm for the IPP problem we present in Section 5.3 makes use of this property of F .

5.3.4.2 Each node label in T can be derived from a column in F

Another interesting property of F is that each node label in T can be obtained directly from

some column in F . As described above, each column c in F describes the two node labels

L(U), L(V) where (U, V) is the edge labeled by the site c in T . Therefore, we can derive the

node label of any node X in T from any column i that labels an edge incident on X. There

can be at most m+1 nodes in T , and we can obtain 2m node-labels from F . The number of

times a node-label is repeated in these 2m node-labels gives the degree of the corresponding

node in T . For example, refer to Figure 5.5. A phylogeny T is shown in Figure 5.5a, and the

160

 00100

10100 01100

01101 01110 10000

1 2

3 4 5

×

×

×

×

×

11115

11114

00003

00112

11011

54321

T

(b)
(a)

Figure 5.5: (a) A perfect phylogeny T ; (b) The forbidden matrix F for T

corresponding forbidden matrix F is shown in Figure 5.5b. The node label {01100} can be

derived from any of the three columns c2, c4, or c5 in F . As the node with the label {01110}

is a leaf in the tree, it can be derived only one column (column c4) in F . Also, notice that

any row that is all-0 or all-1 in F is a site that is incident on a leaf in T . All three leaves of

the tree satisfy this property.

5.4 Realizability Conditions for the IPPH problem

The input to the IPPH problem is a matrix A = {0, 1, 2, ?}n×m. Each row in the matrix A

represents a genotype. Each genotype contains the conflated information about two haplo-

types. Let H1 and H2 be two haplotype vectors that are conflated to produce a genotype

G. If H1 and H2 have the same allele in a site i, i.e, if H1[i] = H2[i] = a, a ∈ {0, 1}, then

G[i] = a. On the other hand, if the site i is heterozygous in G, G[i] = 2.

Formally stated, the IPPH problem is to determine if there is a 2n×m complete haplotype

matrix M so that:

1. M admits a perfect phylogeny

161

2. For every row r in A, there are two rows (r, r′) in M such that M [r, i] = M [r′, i] for

every positions i in which A[r, i] = 2, and M [r, i] = M [r′, i] = A[r, i] in every position

i in which A[r, i] ∈ {0, 1}.

The IPP problem can be viewed as a special case of the IPPH problem in which there are

no ‘2’s in the matrix A. Therefore, the discussion and results in Section 5.3 are applicable

for the IPPH problem too. The only difference is that the definition of the induced rows is

slightly different, and an additional set of constraints apply on triplets of columns that are

all ‘2’ in the same row. For a genotype matrix A, a row ab, a ∈ {0, 1}, b ∈ {0, 1} is in I(i, j)

for a pair of columns (i, j) if there is a row r in A such that A[r, i] = a and A[r, j] = b, or

A[r, i] = a and A[r, j] = 2, or A[r, i] = 2 and A[r, j] = b. The definitions of U(i, j) or F(i, j)

do not change, as they are defined in terms of I(i, j).

A triplet of columns (i, j, k) are said to be a companion triplet if there is a row r in

A such that A[r, i] = A[r, j] = A[r, k] = 2. Since all the three columns i, j and k are

heterozygous, in any perfect phylogeny T for A, i, j and k must mutate in the path between

the two haplotypes for the row r. Hence, any companion triplet of columns must form a

path topology, as shown in Figure 5.1b. There are three ways in which the columns i, j and

k can label three edges in an un-directed path, each corresponding to the columns i, j or k

labeling the ‘inner’ edge in the path. This restriction on a companion triplet of columns can

be expressed in terms of the forbidden pairs as:

EiEjEk + EiEjEk + EiEjEk = 1 (5.4)

162

where Ei, Ej and Ek are as described in Section 5.3.2. It can easily be seen that EiEjEk =

1 iff the columns i, j and k form a path with i in the middle. Similarly the other two terms

in Equation 5.4 correspond to j being in the middle and k being in the middle. Equation

5.4 can be simplified to the following form:

fij ⊕ fji ⊕ fjk ⊕ fkj ⊕ fik ⊕ fki ⊕ (fij ⊕ fik)(fji ⊕ fjk)(fki ⊕ fkj) = 1 (5.5)

The matrix A will admit a perfect phylogeny iff Equation 5.3 is satisfied on every non-

companion triplet of columns and Equation 5.5 is satisfied on every companion triplet of

columns. An alternative way of arriving at Equation 5.5 is through the phase relationships

[VM05, VM06] between pairs of columns. If a pair of columns (i, j) are both ‘2’ in a genotype,

the pair of columns in can be expanded as either {(0, 0), (1, 1)} or {(0, 1), (1, 0)} in the two

haplotypes for the genotype. It has been previously established [BGL03, VM05, VM06] that

every genotype in A in which the columns i and j are ‘2’ must be expanded the same way if

A is to admit a perfect phylogeny. This relationship between a pair of columns is defined as

the phase between the two columns [VM05, VM06]. The phase between the pair of columns

(i, j) is represented as P (i, j). In terms of the forbidden pairs, the phase between a pair of

columns (i, j) can be expressed as P (i, j) = 1⊕ fij ⊕ fji.

Assume that A admits a perfect phylogeny T . If three columns i, j and k are all ‘2’ in some

row r of the matrix A, the pairwise phase relationships will have some interdependencies,

very similar to those introduced in [VM05]. Let H1 and H2 be the two haplotypes that

combine to produce the row r in A. Since i, j and k are all ‘2’ in row r, H1 and H2

163

H1

i j k
H2

H1

i k j
H2

H1

j i k
H2

(a)

(b)

(c)

abc bca cba cba

Figure 5.6: (a), (b) and (c): The three possible relative arrangements of the columns i, j
and k that are all ‘2’ in row r of A, in any perfect phylogeny T for A

differ in all three columns i, j and k. In T , the path between the vertices labeled with H1

and H2 must contain all the three edges labeled with i, j and k. Theorem 5.3 establishes

the interdependencies between the pairwise relationships. Theorem 5.3 for the rooted PPH

problem was first introduced by Bafna et. al. [BGL03] using different terminology. Here, we

present a more general version of the theorem that is applicable to the un-rooted version of

the problem.

Theorem 5.3 In any genotype matrix A that allows a perfect phylogeny, if three columns
i, j and k are all ‘2’ in some row r, then the pairwise phase relationships are related by the
expression P (i, j)⊕ P (j, k) = P (i, k).

Proof Let us consider the arrangement in Figure 5.6-(a). Let the two alleles for columns i,

j and k be {a, a}, {b, b} and {c, c}, respectively. Let a, b, c be the alleles on the left of edges

labeled i, j and k in Figure 5.6-(a). Therefore, the vertex labels will be abc(labeling H1),

abc (any vertex between the edges i and j), abc (any vertex between the edge j and k), and

abc (labeling H2). Clearly, F(i, j) = (a, b), F(i, k) = (a, c), and F(j, k) = (b, c). Hence,

P (i, j)⊕ P (j, k) = 1⊕ fij ⊕ fji ⊕ 1⊕ fjk ⊕ fkj

⇒ P (i, j)⊕ P (j, k) = a⊕ b⊕ b⊕ c

164

⇒ P (i, j)⊕ P (j, k) = 1⊕ a⊕ c = P (i, k)

Similarly, it can be shown that relationships hold for the situations in Figure 5.6-(b) and

Figure 5.6-(c). ♦

Theorem 5.3 is a generalization of 3.1. Adding Theorem 5.3 to Equation 5.3 gives Equa-

tion 5.5.

Hence, the only difference between the solutions for IPP and IPPH problems is the

additional set of expressions as defined by the Equation 5.5 on all possible triplets of columns

that are ‘2’ in the same row. If any four of the six variables in all equations given by equations

5.3 and 5.5 are known, the IPPH problem can be solved in polynomial time. An obvious

algorithm that checks every triplet to see if this is the case takes O(m3 +nm2) time. O(nm2)

time will be necessary to obtain F(i, j) for each pair of columns, and O(m3) to evaluate the

O(m3) expressions given by the equations 5.3 and 5.5.

5.5 Algorithms

An obvious solution for IPP and IPPH problems will be to obtain an assignment for every

entry in F that satisfies the equations 5.3 and 5.5 and build the perfect phylogeny from F .

However, this approach might be impractical, since there can be quite a few un-assigned

entries in F . Our approach, instead, is to apply equations 5.3 and 5.5 in order to fill F to

the fullest extent possible from information available in the matrix. In fact, all we need is

165

to have one complete column in F . Using this complete column in F , we can convert the

un-rooted versions of the problems into rooted versions of the same problem.

5.5.1 An algorithm for the IPP problem

In this Section, we present a practical algorithm for the IPP problem. For simplicity of

illustration, we assume that each column in the input matrix M is polymorphic. As described

earlier, non-polymorphic columns in M are un-informative, and will not label any edges in

the perfect phylogeny for M . If there is a row r in M such that the vector M [r] does not have

any missing entries, then we can treat the vector M [r] as the root, and solve the problem

as an IDP problem, using the Õ(nm) algorithm described in [PPS04]. In the following, we

assume that no such complete row is directly available from the data. The algorithm first

constructs the forbidden matrix F from M and applies the 3-way compatibility expression

on triplets of columns to assign a value to as many entries in F as possible. Once a complete

column in F is available, the root of the phylogeny can be derived, as described in Section

5.3.4. The IPP problem is then solved as the IDP problem.

The first step in the algorithm is to determine the set of induced pairs I(i, j) for each

pair of columns i and j. Constructing I(i, j) for every pair of columns in the matrix takes

O(nm2) time. The next step is to construct the m ×m forbidden matrix F for M . When

|I(i, j)| = 3, we can define (assign a value of 0 or 1) both fij and fji. When |I(i, j)| < 3, we

might be able define one of the two variables (fij, fji), or introduce an equality or disjunction

166

1. Construct the matrix F from M by building I(i, j) and inferring F(i, j) from I(i, j). When 1 ≤
|I(i, j)| < 3, relate fij and fji by a disjunction or an equality so that all the restrictions imposed by
I(i, j) on F(i, j) are accounted for. If a column c in F is complete, derive the root from column c,
and solve the problem as an instance of the IDP problem. Other wise, proceed to step 2.

2. Apply R(i, j, k) = 1 on triplets of columns from M until a column in F is complete or until no new
assignments/equalities/disjunctions can be derived.

3. If a column c in F is complete, derive the root from c, and solve the problem as an IDP problem.
Otherwise select a column c with the fewest un-assigned entries. Let p be the number of un-assigned
entries in c.

(a) For each of the 2p possible ways in which the column c in F can be completed:

i. Derive the root r from column c, and solve the problem as an IDP problem. If the problem
can be solved as an IDP problem rooted at r, report the solution and halt.

4. report that the matrix M does not admit a perfect phylogeny.

Figure 5.7: The algorithm for the IPP problem

relationship between the two variables. A high-level description of the algorithm is given in

Figure 5.7.

5.5.1.1 Obtaining all possible information from F

If there is no complete column in F , we apply condition R(i, j, k) = 1 on triplets of columns

to fill the matrix F further. We continue to do this until either a full column is known, or

until no further information can be obtained from F . For example, for any three columns

c, i and j, if fci = 0 and fcj = 1, then fic must be equal to fij, and fjc must be set equal

to fji, because of Equation 5.3. If any of the two variables fic and fij are known, the other

could be assigned the same value as fij. If neither variable is known, one of them (say fij)

is ‘redirected’ to the other(fic). i.e., all references to fij can be replaced with fic. There

167

are multiple other scenarios where previously unknown variables can be assigned a value. In

general, if two of the four variables in any of the three expressions in Equation 5.3 are known,

it might be possible to infer some information about the others. This step of obtaining all

the possible information from F can be implemented to run in O(m3) time.

5.5.1.2 Uniqueness of the solution

A given incomplete matrix M will have a unique perfect phylogeny if there is a unique way of

filling F so that Equation 5.3 is satisfied on every triplet of columns. Each complete matrix

F that satisfies Equation 5.3 has a unique perfect phylogeny T . This is because a complete

matrix F refers to a hypothetical matrix M ′ in which I|(i, j)| = 3 for all pairs of columns.

The incomplete matrix M consists of a subset of rows from M ′.

5.5.2 Algorithm for the IPPH problem

As the rooted version of the IPPH problem is also NP-complete, just obtaining the root

does not result in a solution. Therefore, the approach is to obtain all the information that

can be obtained by applying Equations 5.3 and 5.5 on triplets of columns until no further

information can be obtained. In practice, this leads to a situation in which most if the

forbidden matrix F is filled. From F , we construct a 2m × m haplotype matrix M by

deriving two haplotypes from each column in F as described in Section 5.3.4.2. If the matrix

A admits a perfect phylogeny T , then T must be among the IPP solutions for the matrix

168

M . Therefore, we can enumerate M all IPP solutions for the matrix M , and check if any

of these solutions satisfy the Equation 5.5 on every companion triplet in A. In any practical

instance of the problem, there will be very few solutions for IPP solutions for M . As a

result, most practical instances of the IPPH problem can be solved in polynomial time.

This algorithm is expected to be faster than the algorithm presented in [KS05], as their

algorithm iterates through all possible phase relationships in A. Further, their algorithm

has to further enumerate through all possible root vectors for A, whereas in our algorithm,

the root might be directly available from the forbidden matrix F . Even when the root is not

directly available from F , the number of candidate roots which are tested by our algorithm

are expected to be fewer. This is because a column in F is more likely to be complete than

a row in A.

A high-level description of the algorithm is presented in Figure 5.8.

5.6 Results

The algorithms were implemented in C++. The algorithms were tested on simulated data.

First, haplotype matrices that admit perfect phylogenies using the program MS [Hud02].

For the IPPH case, we combine consecutive rows in the haplotype matrix to form genotypes.

We then create incomplete haplotype/genotype matrices from these complete matrices by

converting each entry in the matrix to a ‘?’ with a fixed masking probability p. Therefore, any

entry in the matrix has the same probability of being masked, and each entry is independently

169

1. Construct the matrix F from A. Derive all relationships between pairs of variables (fij , fji) from
I(i, j).

2. For every triplet of columns (i, j, k), apply R(i, j, k) = 1, and derive additional assign-
ments/relationships. If i, j and k are all ‘2’ in some row, apply Equation 5.5 on (i, j, k) to obtain
additional assignemnts/relationships. Continue doing so until no new relationships are obtained.

3. If a column c in F is complete, derive the root from c. Otherwise select a column c with the fewest
un-assigned entries. Let p be the number of un-assigned entries in c.

(a) For each of the 2p possible ways in which the column c in F can be completed:

• Derive the root r from column c. Form an instance of a 2m × m incomplete haplotype
matrix M by deriving incomplete haplotypes from each column in F as described in Section
5.3.4.2.

• Construct all possible IDP solutions for the matrix M . If there is any IDP solution for
M that satisfies the phase relationships in matrix A given by the Equation 5.5 on every
triplet of companion columns, report it and halt. If M does not have and IDP solution
or if none of the IDP solutions for M satisfy Equation 5.5 on every triplet of companion
columns, report that the matrix A does not admit a perfect phylogeny.

Figure 5.8: The algorithm for the IPPH problem

subjected to masking. The incomplete haplotype/genotype matrices created in this fashion

are inputs to the IPP/IPPH algorithms.

Practical data sets that admit perfect phylogenies may not involve more than 30-50 loci.

Therefore, we tested our algorithm for values of m up to one hundred. We tried masking

probabilities ranging from 0.1 to 0.5, with increments of 0.1. We repeated the experiment

100 times for each problem size and each value of p.

5.6.1 Results for the IPP algorithm

Interestingly, the input data sets never satisfied the rich data hypothesis on all pairs of sites.

For the 50 × 50 problem size with a masking probability of 0.1, a complete haplotype was

170

Table 5.1: Percentage of input data sets in which a complete column is directly available

from F
n×m p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
50× 50 98 97 91 81 54
50× 100 100 97 80 53 14
100× 50 100 100 100 98 90
100× 100 100 99 99 95 68

Table 5.2: Percentage of input data sets in which a complete column was available from F after applying

R(i, j, k) = 1 on triplets of columns
n×m p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
50× 50 100 100 99 94 82
50× 100 100 100 97 85 66
100× 50 100 100 100 100 99
100× 100 100 100 100 100 98

directly available from the input data 5% of the time. For the 100× 50 problem size with a

masking probability of 0.1, a complete haplotype was directly available in all the 100 input

data sets. The complete haplotypes were not directly available in all the other test cases.

In Table 5.1, we show the percentage of time a complete column was available from F

directly, before applying the 3-way compatibility expression on triplets of columns.

In Table 5.2, we show the percentage of time a complete column was available after

R(i, j, k) = 1 was applied on triplets of columns. It is evident from the results that even

with 50% missing data, the root can be effectively inferred from the matrix F in most

situations. In the cases in which a complete column was not available in F even after

applying R(i, j, k) = 1 on triplets of columns, there were at most two unknown values in the

most complete column. Therefore the maximum number of root vectors tested (number of

IDP instances tried) for any data set never exceeded 4.

171

Table 5.3: Performance on a pentium 3.2 Ghz pc - all times are in seconds, and are averages
over 100 matrices

n×m p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
50× 50 0.014 0.013 0.012 0.011 0.011
50× 100 0.045 0.040 0.038 0.041 0.054
100× 50 0.024 0.023 0.020 0.018 0.017
100× 100 0.077 0.068 0.057 0.050 0.048

Table 5.4: Accuracy of the results - Percentage of loci incorrectly recovered
test case p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
50× 50 0.923 0.458 0.752 1.114 2.510
50× 100 0.121 0.277 0.486 0.781 1.213
100× 50 0.208 0.356 0.598 0.908 1.346
100× 100 0.091 0.216 0.370 0.567 0.853

The performance of the algorithm in terms of speed is shown in Table 5.3. All the times

are averages over 100 runs. The standard deviation for the run times varied greatly, and

was as high as 20% for some test cases. It can be seen that the time taken is less than 0.1

seconds for all problem sizes. Also, it can be seen that time taken for a given problem size

did not vary much for different masking probabilities.

The accuracy of the recovered haplotypes is shown in Table 5.4. The measure presented

here is the percentage of loci in each haplotype on average that are incorrectly recovered,

as compared to the original complete haplotype. It can be seen that the error rate varies

almost linearly with the masking probability p.

172

Table 5.5: Results of the IPPH algorithm on 200× 30 matrices. All values are averages over

100 test runs. For calculation purposes, the algorithm is considered to have failed for test

runs that took more than 10 seconds.
p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

No. of test runs completed 97 98 97 95 94
Average time (seconds) 0.08 0.14 0.08 0.24 0.07
Median time (seconds) 0.06 0.06 0.06 0.06 0.05

Percentage of incorrectly recovered loci 0.3 0.65 1.09 1.66 2.46

5.6.2 Results for the IPPH algorithm

Tests were carried out on matrices with 200 genotypes with 30 SNP loci. As in the IPP

case, the masking probability p is varied from 0.1 to 0.5. As can be expected, the IPPH

problem is considerably harder than IPP problem. Though the algorithm takes less than a

second on most instances of the problem, it took more than 15 minutes on a few instances

of the problem. The accuracy of the recovered haplotypes was comparable to that for the

IPP algorithm. Detailed analysis of the results is shown in Table 5.5.

5.6.3 Discussion

New, faster algorithms for both the IPP an IPPH problems have been presented in this

chapter. Through empirical analysis on simulated data, it was demonstrated that these

algorithms are very fast and highly accurate. The accuracy of the algorithms even on data

with 50% missing entries shows that these algorithms can be used even for input matrices

for which a large fraction of the data is missing.

173

The algorithm for the undirected IPP problem we presented here might be useful in a

lot of other applications like building consensus trees. These problems will be investigated

in the future.

174

CHAPTER 6

CONCLUSION

6.1 Block Partitioning Based on Perfect Phylogeny

Different methods have been proposed for block-partitioning of the human genome [ZSW03,

DZZ05, ZQL04, ZDC02]. Most of these methods assume that the phased haplotype data is

available [ZDC02, ZSW03]. Though some of these methods can deal with genotype data (for

instance, [DZZ05]), all these methods involve a two-step process: the haplotypes are first

inferred, and then the block partitioning is performed on the haplotypes. The disadvantage

of this two-step process is that the haplotype inference procedure does not take into account

the block structure of the human genome. Using perfect phylogeny, we can use the block

structure itself to infer the haplotypes from the genotype data. Highly accurate block-

partitioning can be achieved using this single-step procedure. This section presents an outline

of block partitioning based on perfect phylogeny.

The fundamental idea behind block-partitioning based on perfect phylogeny is to divide

each chromosome into non-overlapping blocks that admit a perfect or near-perfect phylogeny.

The first task in doing so would be to identify all contiguous regions that admit a perfect

or near-perfect phylogeny. Each block should be assigned a score based on the desired

175

optimization criteria. A non-overlapping subset of these blocks should then be selected to

maximize the overall score, thereby achieving optimal block partitioning. Each of these steps

is described below in detail.

As in the previous chapters, the input genotype data can be expressed as an n×m matrix

A. The rows in A represent the genotypes and the columns represent the SNPs.

6.1.1 Identification of blocks

In the context of perfect phylogeny based block partitioning, a block is defined as a contiguous

region of the chromosome that admits a perfect or a near-perfect phylogeny. Incase of near-

perfect phylogeny, the phylogeny should involve no more than ρ number of recombination

events and h number of homoplasy events.

A block of length l that begins at a locus i is represented by the tuple (i, i + l − 1). A

block (i, i + l − 1) is left-maximal if the block cannot be extended to the left any further.

i.e., (i, i + l− 1) is left-maximal if (i− 1, i + l− 1) does not admit a near-perfect phylogeny

with parameters ρ and h. Similarly, a block (i, i + l − 1) is right-maximal if it can not be

extended to the right any further. A block (i, i + l− 1) is maximal if it is both left-maximal

and right-maximal. The first task in obtaining the blocks is to find all the maximal blocks

in the data of length at least 2. At any position i, the algorithm starts with a right-maximal

block of length at least 1, and tries to extend the block to the left, until it finds a maximal

176

block. At each position i, all the blocks starting at position i with length longer than a

certain minimum length are identified.

6.1.2 Block scoring

Each block should be assigned a score which takes into consideration the following factors:

1. Number of SNPs covered by the block

2. Actual length of the chromosome (in base pairs) covered by the block

3. The number of distinct haplotypes in the block

4. The number of recombination events and homoplasy events necessary to construct a

phylogeny for all the haplotypes in the block

5. The number of tagSNPs necessary to uniquely identify each haplotype in the block

Different optimization criterion will be necessary for different applications. The scoring

system should be adjustable in order to accommodate flexible weightage to each of the factors

listed above. The scoring system can be represented by W , where W(i,i+l−1) indicates the

score of the block (i, i + l − 1).

177

V1
V3V2

V4 Vm

W2,4

W1,3

0 0 0 0 0...............

Figure 6.1: The graph G = (V, E, W)

6.1.3 Optimal block partitioning

Once a scoring system is in place, the problem of finding the optimal block partitioning

reduces to the problem of selecting the set of non-overlapping blocks with the maximum

weight. This can be done using the same algorithm as in [VMR03]. The algorithm is briefly

described in the following. A directed acyclic graph G = (V, E, W) is constructed. Each

vertex vi ∈ V represents a locus i. A directed edge (vi, vj) ∈ E if the tuple (i, i − j) is a

block. The weight of the edge (vi, vj) is the weight of the corresponding block. The edges

in the maximum weighted path from the vertex v1 to vm give the optimal block-partitioning

of the given genotypes. The longest weighted path can be calculated in O(m2) time. If the

size of the longest block is M , the longest weighted path can be calculated in just O(mM)

time. Figure 6.1 shows a schematic representation of the graph G = (V,E, W).

178

6.2 Application to Real Genotype Data

Results from applying perfect phylogeny based methods to real genotype data are encourag-

ing. Eskin et al [HE04]have presented block partitioning results using the perfect phylogeny

based HAP program on real genotype data presented in [DRS01]. The data in [DRS01] is

from 103 SNPs from a 500 kb region of chromosome 21. The data is from a total of 387

individuals in 129 mother-father-child trios. A significant portion of the data (10.03%) is

missing. Eskin et al [HE04] used this data to compare the performance of the HAP program

with PHASE [SSD01] and HAPLOTYPER [NQX03], by taking the block-partitioning pre-

sented in [DRS01] as the reference. They showed that the accuracy of HAP is comparable

to that of PHASE.

Marcini et al [MCP06] presented a comprehensive analysis of the performance of different

phasing algorithms on genotype data and haplotype data. Their analysis on simulated

data showed that HAP is 1000 times faster than PHASE. However the error rate for HAP

was 3.7%, where as the error rate for PHASE was 2.33%. This high error rate is due

to the simplistic approach of HAP that constructs only perfect phylogenies. HAP does

not explicitly handle imperfect phylogenies. It handles imperfect phylogenies implicitly by

ignoring violations of the four-gamete rule as long as they occur with a frequency less than

a certain threshold.

More biologically meaningful treatment of the imperfect phylogenies by explicitly allowing

homoplasy events and recombinations will only improve the accuracy of perfect phylogeny

179

based methods, and it is quite possible that these methods might achieve better accuracy

than all of the existing methods. However some open problems have to be addressed before

these imperfect phylogeny based methods on real genotype data, as explained in Section 6.3.

6.3 Future Work

6.3.1 Constructing Phylogenies with Recombination Cycles

An important open problem is that of constructing phylogenies with a limited number of

recombinations events. Gusfield et al [GEL03] presented an efficient algorithm for construct-

ing phylogenies with recombination events on a set of haplotypes when certain restrictions

apply on how the recombinations can occur. Their algorithm deals with constructing galled

trees, where the recombination cycles are node-disjoint with each other. Their algorithm for

this problem is O(nm + m3), where n is the number of haplotypes and m is the number

SNPs.

It is not yet known if the galled tree construction problem on genotype data is solvable

in polynomial time. Song et al [SWG05] posed a much simpler version of the problem - to

determine if the given set of genotypes admit a phylogeny with a single recombination cycle.

Even this simple version of the problem is an open problem.

Recombination events events are very common in the human genome. In many cases,

deviations from perfect phylogeny are likely to be due to recombination events. Hence,

180

solving this problem will be essential in improving the accuracy of the perfect phylogeny

based haplotype inference methods.

6.3.2 Constructing Imperfect Phylogenies on Incomplete Data

Finally, a strategy is necessary for constructing imperfect phylogenies on incomplete genotype

data. Current high throughput genotyping methods produce data that is highly accurate

and complete. It was reported [Int05] that the HapMap phase-I data is 99.7% accurate

and 99.3% complete. The 0.7% missing data is still significant and the imperfect phylogeny

construction algorithms should be modified to effectively handle this missing data

6.3.3 Incorporating Statistical Methods

Even with the ability to construct imperfect phylogenies, perfect phylogeny based methods

may still fail in some regions of the human genome. Using statistical algorithms in these

regions might be necessary to achieve better accuracy.

On the other hand, statistical methods might incorporate phylogeny based methods for

improving their speed and accuracy. Statistical methods might use combinatorial approaches

to quickly arrive at a starting point, and improve upon the results through further statistical

analysis.

181

6.4 Conclusion

Efficient algorithms for haplotype inference based on perfect phylogeny have been developed

as part of this dissertation work. Analysis on simulated data shows that these algorithms are

fast and highly accurate. These algorithms can be used for block partitioning of the human

genome.

The algorithms presented here are also applicable for general phylogeny construction

problems. Specifically, these near-perfect phylogeny construction algorithms presented in

Chapter 4 will be useful for constructing phylogenies on mtDNA and nrY SNP data. It

is possible to extend these algorithms to apply on multi allelic character data like the nrY

microsatellite data.

182

GLOSSARY

Some of the following definitions have been taken from online glossary [Dav06].

Linkage Disequilibrium

Linkage disequilibrium is the non-random association between two or more characters.

A set of loci are said to be in linkage disequilibrium if the observed frequency distribution of

the haplotypes over the given loci is different from the frequency distribution expected from

the individual allele frequencies at each locus.

Consider two bi-allelic SNP loci A and B, with the alleles (A1,A2) and (B1,B2) respec-

tively. Let the observed frequencies of the alleles A1 and A2 at locus A be p and 1− p, and

the observed frequencies of the alleles B1 and B2 at locus B be q and 1 − q, respectively.

Let the frequencies of the four haplotypes over the two loci (A1B1, A1B2, A2B1, A2B2) be

represented by (f11, f12, f21, f22). Clearly, the expected values for (f11, f12, f21, f22) are (pq,

p(1 − q), (1 − p)q, (1 − p)(1 − q)). The two loci are said to be in linkage equilibrium if the

observed frequencies of the haplotypes match these expected frequencies. The two loci are

in linkage disequilibrium otherwise.

There are various measures for linkage disequilibrium. Linkage disequilibrium measure D

is given by D = (f11f22−f12f21). It can be shown [LK60] that any observed set of frequencies

183

can be expressed in terms of D as f11 = pq + D, f12 = p(1− q)−D, f21 = (1− p)q−D and

f22 = (1− p)(1− q) + D. At linkage equilibrium, D will be equal to zero.

The measure D is sensitive to allele frequencies, so the normalized measure D′ = D
Dmax

can be used instead, where Dmax is the theoretical maximum value of D.

Another commonly used measure for linkage disequilibrium is r2, given by r2 = D2

pq(1−p)(1−q)
.

Microsatellites

A microsatellite consists of tandem repeats of a specific short sequence (2-5 bp) of DNA.

A microsatellite marker can be expressed as (P)n, where is P is a DNA sequence of length

3-5 bp, and n is the repeat count. The repeat count varies from individual to individual.

Minimum Allele Frequency, MAF

The frequency of the second most frequent allele in a SNP location.

Restriction Factor Length Polymorphisms (RFLPs)

Variation within the DNA sequences of organisms of a given species that can be identified

by fragmenting the sequences using restriction enzymes. Variations in the population result

in variations in the lengths of the fragments produced by a set of restriction enzymes. RFLPs

can be used to measure the diversity of a gene in a population.

184

LIST OF REFERENCES

[AF94] Richa Agarwala and David Fernandez-Baca. “A polynomial-time algorithm for
the perfect phylogeny problem when the number of character states is fixed.”
SIAM J. Computing, 23:1216–1224, 1994.

[AJL03] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Molecular Biology of the Cell. Garland Science, NewYork, NY, 4
edition, 2003.

[BB04] Vineet Bafna and Vikas Bansal. “The number of recombination events in a sample
history: conflict graph and lower bounds.” IEEE Trans on Comput Biol and
Bioinform, 1(2):78–90, 2004.

[BFW92] H. Bodlaender, M. Fellows, and T. Warnow. “Two strikes against perfect phy-
logeny.” In Proceedings of the 19th International Colloquium on Automata, Lan-
guages and Programming, pp. 273–283. Springer Verlag, Lecture Notes in Com-
puter Science, 1992.

[BGH04] Vineet Bafna, Dan Gusfield, Sridhar Hannenhalli, and Shibu Yooseph. “A note
on efficient computation of haplotypes via perfect phylogeny.” J Comput Biol.,
11(5):858–66, 2004.

[BGL02] Vineet Bafna, Dan Gusfield, Giuseppe Lancia, and Shibu Yooseph. “Haplotyp-
ing as Perfect Phylogeny: A direct approach.” Technical Report CSE-2002-21,
Department of Computer Science, The University of California at Davis, July
2002.

[BGL03] V Bafna, D Gusfield, G Lancia, and S Yooseph. “Haplotyping as perfect phy-
logeny: a direct approach.” J Comput Biol., 10(3–4):323–340, 2003.

[CG02] Ren Hua Chung and Dan Gusfield. “PPH - A program for deducing haplotypes
that fit a perfect phylogeny.” Technical Report CSE-2002-27, Department of
Computer Science, The University of California at Davis, 2002.

[Cla90] Andrew G. Clark. “Inference of Haplotypes from PCR-amplified Samples of
Diploid Populations.” Mol. Biol. Evol., 7:111–122, 1990.

[Cla04] AG Clark. “The role of haplotypes in candidate gene studies.” Genet Epidemiol.,
27:321–333, 2004.

185

[CR06] Alicia Chang and Malcolm Ritter. “Cousins at Risk of Cancer Give Up Stom-
achs.” http://www.washingtonpost.com/wp-dyn/content/article/2006/06/

18/AR2006061800251.html, June 18, 2006.

[Dav06] Richard E. Davis. “Bioinformatics Glossary.” http://www.library.csi.cuny.

edu/∼davis/Bio 326/bioinfo glossary.html, 2006.

[DBG01] JA Douglas, M Boehnke, E Gillanders, JM Trent, and SB Gruber.
“Experimentally-derived haplotypes substantially increase the efficiency of linkage
disequilibrium studies.” Nature Genetics, 28:361–364, 2001.

[DJS86] W.H.E Day, D.S. Johnson, and D. Sanko. “The computational complexity of
inferring rooted phylogenies by parsimony.” Mathematical Biosciences, 81:33–42,
1986.

[DRS01] Mark J. Daly, John D. Rioux, Stephen F. Schaffner, Thomas J. Hudson, and
Eric S. Lander. “High-resolution haplotype structure in the human genome.”
Nature Genetics, 29(2):229–32, Oct 2001.

[DZZ05] K Ding, K Zhou, J Zhang, J Knight, X Zhang, and Shen Y. “The effect of
haplotype-block definitions on inference of haplotype-block structure and htSNPs
selection.” Mol. Biol. Evol., 22(1):148–59, 2005.

[EHK03] Eleazar Eskin, Eran Halperin, and Richard M. Karp. “Large Scale Reconstruction
of Haplotypes from Genotype Data.” In Proceedings of RECOMB, 2003.

[Fel04] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA,
USA, 2004.

[Fit71] Walter M. Fitch. “Toward defining the course of evolution: Minimum change for
a specified tree topology.” Systematic Zoology, 20:406–416, 1971.

[FL03] David Fernandez-Baca and Jens Lagergren. “A polynomial time algorithm for
near-perfect-phylogeny.” SIAM Journal of Computing, 32(5):1115–1127, 2003.

[GEL03] Dan Gusfield, Satish Eddhu, and Charles Langley. “Efficient reconstruction
of phylogenetic networks with constrained recombination.” In Proceedings of
CSB2003, pp. 363–374, Stanford, CA, August 2003.

[GH04] D Gusfield and D Hickerson. “A fundamnetal, efficiently-computed lower bound
on the number of recombinations needed in phylogenetic networks.” Technical
report, University of California at Davis, 2004.

[GNS04] Jens Gramm, Till Nierhoff, Roded Sharan, and Till Tantau. “Haplotyping with
Missing Data via Perfect Path Phylogenies.” In Proceedings of the second RE-
COMB datellite workshop on Computational methods for SNPs and haplotypes,
pp. 35–46, 2004.

186

http://www.washingtonpost.com/wp-dyn/content/article/2006/06/18/AR2006061800251.html
http://www.washingtonpost.com/wp-dyn/content/article/2006/06/18/AR2006061800251.html
http://www.library.csi.cuny.edu/~davis/Bio_326/bioinfo_glossary.html
http://www.library.csi.cuny.edu/~davis/Bio_326/bioinfo_glossary.html

[GSN02] SB Gabriel, SF Schaffner, H Nguyen, JM Moore, J Roy, B Blumensteil, J Higgins,
M DeFelice, A Lochner, M Faggart, SN Liu Cordero, C Rotimi, A Adeyemo,
R Cooper, R Ward, ES Lander, MJ Daly, and D Altshuler. “The structure of
haplotype blocks in human genome.” Science, 296:2225–2229, 2002.

[Gus91] Dan Gusfield. “Efficient Algorithms for Inferring Evolutionary Trees.” Networks,
21:19–28, 1991.

[Gus97] Dan Gusfield. Algorithms on strings, trees and sequences. The Press Syndicate of
Univeristy of Cambridge, NewYork, USA, 1997.

[Gus01] Dan Gusfield. “Inference of haplotypes from samples of diploid populations: Com-
plexity and algorithms.” J Comput Biol., 8(3):305–323, 2001.

[Gus02] Dan Gusfield. “Haplotyping as Perfect Phylogeny: conceptual framework and
efficient solutions.” In Proceedings of RECOMB, 2002.

[GW02] David B. Goldstein and Michael E. Weale. “Poplation genomics: Linkage Dise-
quilibrium holds the key.” Cur Biol, 11:576–579, 2002.

[Hap03] HapMapConsortium. “The International HapMap Project.” Nature, 426:789–
796, December 2003.

[HE04] Eran Halperin and Eleazar Eskin. “Haplotype reconstruction from genotype data
using Imperfect Phylogeny.” Bioinformatics, 20(12):1842–1849, 2004.

[HK85] R Hudson and N Kaplan. “Statistical propertied of the number of recombination
events in the history of a sample of DNA sequences.” Genetics, 111:147–165,
1985.

[HK04] Eran Halperin and Richard Karp. “Perfect Phylogeny and Haplotype Assign-
ment.” In Proceedings of RECOMB, 2004.

[HSN05] DA Hinds, LL Stuve, GB Nilsen, E Halperin, E Eskin, DG Ballinger, KA Frazer,
and DR Cox. “Whole-genome patterns of common DNA variation in three human
populations.” Science, 307:1072–9, 2005.

[Hud01] R Hudson. Handbook of statistical genetics, chapter Linkage disequilibrium and
recombination, pp. 309–324. Wiley & Sons, New York, 2001.

[Hud02] R. Hudson. “Generating samples under the Wright-Fisher neutral model of genetic
variation.” Bioinformatics, 18:337–338, 2002.

[Int05] InternationalHapMapConsortium. “A haplotype map of the human genome.”
science, 437:1299–1320, 2005.

187

[KS05] Gad Kimmel and Ron Shamir. “The Incomplete Perfect Phylogeny Problem.” J
Bioinform Comput Biol., 3(2):1–25, 2005.

[KW97] Sampath Kannan and Tandy Warnow. “A Fast Algorithm for the Computation
and Enumeration of Perfect Phylogenies when the Number of Character States is
Fixed.” SIAM J. Computing, 26:1749–1763, 1997.

[Law06] Lawrence Berkeley National Laboratory. “All about breast cancer genes.” http:

//www.lbl.gov/Education/ELSI/Frames/cancer-genes-f.html, 2006.

[LJ03] Jing Li and Tao Jiang. “Efficient inference of haplotypes from genotypes on a
pedigree.” J Bioinform Comput Biol., 1(1):41–69, 2003.

[LK60] R. C. Lewontin and Ken ichi Kojima. “The evolutionary dynamics of complex
polymorphisms.” Evolution, 42:458–472, 1960.

[LZ01] K Zhang L Wang and L Zhang. “Perfect phylogenetic networks with recombina-
tions.” J Comput Biol., 8:69–78, 2001.

[LZH04] E LindHolm, J Zhang, SE Hodge, and DA Greenberg. “The realizability of haplo-
typing inference in nuclear families: misassignment rates for SNPs and microsatel-
lites.” Hum Hered., 57(3):117–27, 2004.

[MCP06] Jonathan Marchini, David Cutler, Nick Patterson, Matthew Stephens, Eleazar
Eskin, Eran Halperin, Shin Lin, Zhaohui S. Qin, Heather M. Munro, Goncalo R.
Abecasis, and Peter Donnelly. “A comparison of phasing algorithms for trios and
unrelated individuals.” Am J Hum Genet., 78:437–450, 2006.

[MKE02] OG McDonald, EY Krynetski, and WE Evans. “Molecular haplotyping of ge-
nomic DNA for multiple single-nucleotide polymorphisms located kilobases apart
using long-range polymerase chain reaction and intramolecular ligation.” Phar-
macogenetics, 12:93–99, 2002.

[MTB96] S Michalatos-Beloin, SA Tishkoff, KL Bentley, and KK Kidd G Ruano G. “Molec-
ular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR.”
Necleic Acids Res., 24:4841–4843, 1996.

[Nat06] National Institutes of Health. “NHLBI TO LAUNCH FRAMINGHAM
GENETIC RESEARCH STUDY.” http://www.nhlbi.nih.gov/new/press/

06-02-06.htm, February 6, 2006.

[Niu04] T Niu. “Algorithms for inferring haplotypes.” Genet Epidemiol., 27(4):334–347,
2004.

[NQX03] Tianhua Niu, Zhaohui S Qin, Xiping Xu, and Jun S Liu. “Bayesian haplotype in-
ference for multiple linked single-nucleotide polymorphisms.” Am J Hum Genet.,
70:157–169, 2003.

188

http://www.lbl.gov/Education/ELSI/Frames/cancer-genes-f.html
http://www.lbl.gov/Education/ELSI/Frames/cancer-genes-f.html
http://www.nhlbi.nih.gov/new/press/06-02-06.htm
http://www.nhlbi.nih.gov/new/press/06-02-06.htm

[OHE02] J Odeberg, K Holmberg, P Eriksson, and M Uhlen. “Molecular haplotyping by
pyrosequencing.” Biotechniques, 33:1104–1108, 2002.

[pau06] “PAUP.” http://paup.csit.fsu.edu/, 2006.

[PBH03] N Patil, AJ Berno, DA Hinds, WA Barrett, JM Doshi, CR Hacker, CR Kautzer,
DH Lee, C Marjoribanks, DP McDonough, BT Nguyen, MC Norris, JB Sheehan,
N Shen, D Stern, RP Stokowski, DJ Thomas, MO Trulson, KR Vyas, KA Frazer,
SP Fodor, and DR Cox. “Blocks of limited haplotype diversity revealed by high-
resolution scanning of human chromosome 21.” Science, 294:1719–1723, 2003.

[phy06] “PHYLIP.” http://evolution.genetics.washington.edu/phylip.html,
2006.

[PPS04] Itsik Peer, Tal Pupko, Ron Shamir, and Roded Sharan. “Incomplete Directed
Perfect Phylogeny.” SIAM Journal on Computing, 33(3):590–607, 2004.

[QB02] D Qian and L Beckmann. “Minimum-recombinant haplotyping in pedigrees.” Am
J Hum Genet., 70(6):1434–1445, 2002.

[RCB01] David E. Reich, Michele Cargill, Stacey Bolk, James Ireland, Pardis C. Sabeti,
Daniel J. Richter, thomas Lavery, Rose Kouyoumjian, Shelli F. Farhadian, Ryk
Ward, and Eric S. Lander. “Linkage Disequilibrium in the human genome.” na-
ture, 411:199–204, 2001.

[San75] David Sankoff. “Minimal mutation trees of sequences.” SIAM Journal of Applied
Mathematics, 28:35–42, 1975.

[SDB05] Srinath Sridhar, Kedar Dhamdhere, Guy E. Blelloch, Eran Halperin, R. Ravi, and
Russell Schwartz. “FPT Algorithms for Binary Near-Perfect Phylogenetic Trees.”
Technical Report CMU-CS-05-181, Computer Science Department, Carnegie Mel-
lon University, School, September 2005.

[SM97] Joao Setubal and Joao Medanis. Introduction to Computational Molecular Biol-
ogy. PWS Publishing Company, Boston, MA, 1997.

[SR75] David Sankoff and Pascale Rousseau. “Locating the vertices of a Steiner tree in
arbitrary space.” Mathematical Programming, 9:240–246, 1975.

[SRR90] JC Stephens, J Rogers, and G Ruano. “Theoretical underpinning of the single-
molecule-dilution (SMD) method of direct haplotype resolution.” Am J Hum
Genet., 46(6):1149–1155, 1990.

[SSD01] M. Stephens, N.J. Smith, and P. Donnelly. “A new statistical method for hap-
lotype reconstruction from population data.” Am J Hum Genet., 68:978–989,
2001.

189

http://paup.csit.fsu.edu/
http://evolution.genetics.washington.edu/phylip.html

[Ste92] Michael Steel. “The Complexity of Reconstructing Trees from Qualitative Char-
acters and Subtrees.” Journal of Classification, 9:91–116, 1992.

[SWG05] Yun S. Song, Yufeng Wu, and Dan Gusfield. “Algorithms for Imperfect Phy-
logeny Haplotyping (IPPH) with a single Homoplasy or Recombination Event.”
In Proceedings of WABI 2005, pp. 152–164, 2005.

[VM05] Ravi Vijaya Satya and Amar Mukherjee. “An Efficient algorithm for perfect
phylogeny haplotyping.” In Proceedings of CSB2005, pp. 103–110, Stanford, CA,
August 2005.

[VM06] Ravi Vijaya Satya and Amar Mukherjee. “An optimal algorithm for perfect phy-
logeny haplotyping.” Journal of Computational Biology, 13(4):897–928, 2006.

[VMR03] Ravi Vijaya Satya, Amar Mukherjee, and Uday Kumar Ranga. “A pattern match-
ing algorithm for codon optimization and CpG motif-engineering.” In CSB 2003,
pp. 294–305, 2003.

[WGC00] AT Woolley, C Guillemette, C Li Cheung, DE Housman, and CM Lieber. “Direct
haplotyping of kilobase-size DNA using carbon nanotube probes.” Nat Biotechnol,
18:760–763, 2000.

[Wiu04] Carsten Wiuf. “Inference on recombination and block structure using unphased
data.” Genetics, 166(1):537–545, 2004.

[WP03] JD Wall and JK Pritchard. “Haplotype blocks and linkage disequilibrium in the
human genome.” Nat Rev Genet., 4(8):587–597, 2003.

[ZDC02] K Zhang, M Deng, T Chen, MS Waterman, and FA Sun. “A dynamic program-
ming algorithm for haplotype block partitioning.” Proceedings of the National
Academy of Science of United States of America, 99:7335–7339, 2002.

[ZLH01] XB Zhong, Pm Lizardi, XH Huang, PL Bray-Ward, and DC Ward. “Visualization
of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers
using rolling circle DNA amplification.” Proc Natl Acad Sci USA, 98:3940–3945,
2001.

[ZQL04] K Zhang, ZS Qin, JS Liu, T Chen, MS Waterman, and F Sun. “Haplotype block
partitioning and tag SNP selection using genotype data and their applications to
association studies.” Genome Res., 14(5):908–16, 2004.

[ZSW03] Kui Zhang, Fengzhu Sun, Michael S. Waterman, and Ting Chen. “Dynamic pro-
gramming algorithms for haplotype block partitioning: Applications to human
chromosome 21 haplotype data.” In RECOMB 2003, Berlin, Germany, 2003.

190

	Algorithms For Haplotype Inference And Block Partitioning
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Building A Haplotype Map of the Human Genome
	1.1.1 Populations studied by the HapMap project

	1.2 SNPs and Haplotypes in the Human Genome
	1.2.1 SNPs
	1.2.2 Haplotypes in the human genome
	1.2.3 Block structure of the human genome

	1.3 The Haplotype Inference Problem
	1.3.1 The Coalescent Model

	1.4 Contributions of this dissertation
	1.4.1 Necessity for faster algorithms
	1.4.2 Significant results obtained
	1.4.3 Organization of this dissertation

	CHAPTER 2 CONCEPTS AND TERMINOLOGY
	2.1 Molecular Biology Basics
	2.1.1 Meiosis

	2.2 Phylogenetics
	2.2.1 Phylogenies on characters
	2.2.2 Parsimony
	2.2.3 Perfect Phylogeny

	2.3 Haplotype Inference
	2.3.1 Formal Statement of the Haplotype Inference Problem
	2.3.2 The Maximum Resolution Haplotype Inference Problem
	2.3.3 Block structure of the human genome and the perfect phylogeny haplotyping problem
	2.3.4 Formal statement of the perfect phylogeny haplotyping problem
	2.3.5 Utilizing Pedigree Data for Haplotype Inference
	2.3.6 Limitations of the pedigree data

	2.4 Haplotype Inference on Real Genotype Data
	2.4.1 Homoplasy Events
	2.4.2 Recombinations
	2.4.3 Block partitioning on real genotype data

	2.5 Constructing Perfect Phylogenies on Haplotypes
	2.5.1 Necessary and sufficient conditions for M to admit a perfect phylogeny
	2.5.2 Rooted Perfect Phylogenies
	2.5.3 Algorithms for the perfect phylogeny problem on binary characters

	CHAPTER 3 PERFECT PHYLOGENY HAPLOTYPING: THE FLEXTREE DATA STRUCTURE AND THE OPPH ALGORITHM
	3.1 The Perfect Phylogeny Haplotyping Problem
	3.1.1 Solution via graph realization
	3.1.2 A direct approach for the PPH problem
	3.1.3 Improvements to the direct approach
	3.1.4 Other solutions

	3.2 Some Lemmas and Properties
	3.2.1 Columns sums
	3.2.2 Pre-processing the input matrix A
	3.2.3 Implied relationships
	3.2.4 Realizability of the matrix Ac

	3.3 The FlexTree Data Structure
	3.3.1 Motivation for the FlexTree data structure
	3.3.2 The FlexTree
	3.3.3 Representing the interdependence between phase relationships
	3.3.4 Haplotypes represented by the FlexTree
	3.3.5 Representation of the FlexTree

	3.4 The opph Algorithm
	3.4.1 Building the FlexTree for the first row
	3.4.2 The Scan Forward procedure
	3.4.3 Trace Up
	3.4.4 Fixing a flexible site
	3.4.5 Trace Down
	3.4.6 Correctness
	3.4.7 Obtaining a PPH Tree from the FlexTree

	3.5 Complexity
	3.5.1 Pre-processing
	3.5.2 Scan Forward
	3.5.3 Trace Up
	3.5.4 Trace Down

	3.6 Results
	3.7 Discussion
	3.7.1 MPPH problem
	3.7.2 Selecting a PPH tree

	3.8 Pseudocode for Some Procedures

	CHAPTER 4 CONSTRUCTING NEAR-PERFECT PHYLOGENIES
	4.1 Imperfect Phylogenies
	4.1.1 Previous work on constructing near-perfect phylogenies

	4.2 Constructing Near-Perfect Phylogenies from Haplotype data
	4.2.1 The H1-NPP construction problem
	4.2.2 The H1-NPP Construction Algorithm
	4.2.3 Multiple Homoplasy Events in a Single Site
	4.2.4 Allowing Homoplasy Events in Multiple Sites

	4.3 Near-Perfect Phylogeny Haplotyping
	4.3.1 The H1-NPPH Problem
	4.3.2 Making use of the conflict graph
	4.3.3 The H(1,q)-NPPH problem
	4.3.4 The H(p,q)-NPPH problem

	4.4 Results
	4.5 Discussion

	CHAPTER 5 THE INCOMPLETE PERFECT PHYLOGENY PROBLEM
	5.1 Missing Data
	5.2 Problem statement and Previous Work
	5.3 Realizability conditions for the IPP problem
	5.3.1 Significance of the forbidden pairs
	5.3.2 The 3-way compatibility expression
	5.3.3 Conditions for any matrix M
	5.3.4 Properties of the forbidden pairs

	5.4 Realizability Conditions for the IPPH problem
	5.5 Algorithms
	5.5.1 An algorithm for the IPP problem
	5.5.2 Algorithm for the IPPH problem

	5.6 Results
	5.6.1 Results for the IPP algorithm
	5.6.2 Results for the IPPH algorithm
	5.6.3 Discussion

	CHAPTER 6 CONCLUSION
	6.1 Block Partitioning Based on Perfect Phylogeny
	6.1.1 Identification of blocks
	6.1.2 Block scoring
	6.1.3 Optimal block partitioning

	6.2 Application to Real Genotype Data
	6.3 Future Work
	6.3.1 Constructing Phylogenies with Recombination Cycles
	6.3.2 Constructing Imperfect Phylogenies on Incomplete Data
	6.3.3 Incorporating Statistical Methods

	6.4 Conclusion

	GLOSSARY
	LIST OF REFERENCES

