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ABSTRACT 

In this dissertation, the central objective is to achieve fairness in bandwidth sharing 

amongst selfish users in a distributed system. Because of the inherent contention-based nature of 

the distributed medium access and the selfishness of the users, the distributed medium access is 

modeled as a non-cooperative game; designated as the Access Game.  

A p-CSMA type medium access scenario is proposed for all the users. Therefore, in the 

Access Game, each user has two actions to choose from: “transmit” and “wait”.  The outcome of 

the Access Game and payoffs to each user depends on the actions taken by all the users. Further, 

the utility function of each user is constructed as a function of both Quality of Service (QoS) and 

Battery Power (BP). Various scenarios involving the relative importance of QoS and BP are 

considered.  

It is observed that, in general the Nash Equilibrium of the Access Game does not result 

into fairness. Therefore, Constrained Nash Equilibrium is proposed as a solution. The advantage 

of Constrained Nash Equilibrium is that it can be predicated on the fairness conditions and the 

solution will be guaranteed to result in fair sharing of bandwidth.  

However, Constrained Nash Equilibrium is that it is not self-enforcing. Therefore, two 

mechanisms are proposed to design the Access Game in such a way that in each case the Nash 

Equilibrium of the Access Game satisfies fairness and maximizes throughput. Hence, with any of 

these mechanisms the solution of the Access Game becomes self-enforcing.  
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CHAPTER ONE: INTRODUCTION 

Fair sharing of bandwidth in computer networks is a well-researched issue; with the 

underlying philosophy being that users should receive bandwidth proportional to their 

weightages; with higher weightage implying a higher demand for bandwidth. This principle can 

be more or less efficiently implemented in centralized networks [1,2] where a central entity can 

switch to a user with higher requirement more frequently e.g. bit-level fair scheduling of 

Weighted Fair Queuing (WFQ) or packet-level fair scheduling of Weighted Packet Fair Queuing 

(WPFQ).  

However, due to its very structure, a central switching entity can not be incorporated into 

a distributed system [5-10]. Therefore, fair sharing of bandwidth in a distributed system is a 

much more complicated than it is in a centralized system. This issue has been extensively 

researched; yet remains unresolved. Designing a suitable Medium Access Control (MAC) 

protocol holds the key to an efficient solution. The present work proposes a novel type of MAC 

protocol that results in fair sharing of bandwidth amongst users. In this work, considerable 

autonomy is granted to the users so that they can make intelligent decisions in their own selfish 

interest. This, combined with the contention-based nature of medium access in a distributed 

system, enables the formulation of distributed medium access as a Non-Cooperative Game.  

A detailed description of the background work and the motivation behind the present 

work is provided in the next Chapter. In the rest of this Chapter, a general overview of our work 

is presented.  



Consider the simple illustration of the Internet topology as given in figure 1: various 

Local Area Networks (LANs) connected through a Wide Area Network (WAN).  

 

Figure 1: Internet 

For the purpose of this dissertation, a LAN consists of a group of users sharing the local 

physical medium. The local physical medium is an electromagnetic frequency spectrum over 

which computers transmit data as signals. Because multiple computers use the same frequency 

spectrum for data transmission, a computer can successfully transmit its data only when that 

computer has the sole access to the medium. If any other computer transmits signals over the 

same frequency spectrum at the same time, interference occurs and none of the computers 

succeeds in transmitting their respective data successfully. In computer networking parlance, 

this is known as collision.  

The MAC protocols are designed to avoid or reduce the possibility of collision in 

medium access. Collision can be altogether eliminated if a central entity (switch/scheduler) 
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decides which user will transmit when. Centralized MAC protocols viz. HIPERLAN incorporate 

this idea. However, centralized MAC protocols suffer from the problems of scalability and 

robustness. Therefore distributed MAC protocols are more widely used for LANs. Figure 2 

presents an illustration of a LAN using distributed MAC protocol.  

iMac iMac iMac

iMac iMac

 

Figure 2: Distributed LAN 

It can be noted from figure 2 that there is no central entity or switch arbitrating the 

medium access of the users. Moreover, there is no mechanism to coordinate transmission 

activities of the users. Therefore the probability of collision always exists. This probability of 

collision depends on how often the users have packets to transmit and how quickly they transmit 

a packet once they have it. From the previous discussion it is apparent that if a user succeeds in 

accessing the medium more frequently, it would be able to transmit more packets. In other 

words, successful medium access is directly related to issue of bandwidth usage. This linkage 

makes MAC protocols integral to the fair sharing of bandwidth.  
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We address the issue of weighted fairness in a distributed Local Area Network (LAN) 

setting with a finite but fixed number of users with different weightages. The objective is to 

achieve fair sharing of bandwidth where users will receive bandwidth proportional to their 

weightages. For the rest of this dissertation, we would use “fairness” to imply weighted fairness.  

The two principal impediments in achieving fair sharing of bandwidth in distributed 

systems can be expressed as follows:  

1. Lack of information: in a distributed system, users usually do not 

know about the number of other users.  

2. Lack of coordination: in a distributed system, users cannot possibly 

coordinate their activity and determine who is going to transmit when. 

Of these two problems, lack of coordination is more fundamental in nature. Even if all the 

users have complete information about the other users in the network, there is no possible way 

the medium access of users can be coordinated to avoid collision. A user with a packet to 

transmit does not know-unless it is a deterministic system with perfectly synchronized clocks-if 

the other user(s) are also trying to access the medium at the same time. Therefore, the medium 

access scenario in distributed systems is inherently contention-based in nature and the 

probability of collision always exists.  

In order to alleviate the problem of lack of information, we propose a simple technique 

that enables users to have knowledge about other users [3]. However, the problem of lack of 

coordination remains and this inherently contention-based medium access scenario is modeled as 

a Non-Cooperative Game [14]; designated as the Access Game. Our findings are as follows: 
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1. Nash Equilibrium (NE) of the Access Game is usually inefficient.  

2. Constrained Nash Equilibrium Solutions (CNE) of the Access Game 

results in fairness.  

3. CNE is beset with stability problems and the Access Game can be 

suitably designed so that the NE results in fairness.  

The rest of this dissertation is organized as follows: Chapter 2 provides a brief description 

of the related work and the motivation behind the present work, Chapter Three discusses some 

game-theoretic concepts, and models the Access Game, Chapter Five provides a simple analysis 

of an incomplete information game, Chapters 6-9 present the main results of this dissertation, 

Chapter Ten provides some stabilization mechanisms, and Chapter 11 concludes this 

dissertation. 
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CHAPTER TWO: BACKGROUND WORK AND MOTIVATION 

In this Section, we provide a brief overview of the background work. First, we discuss a 

few of the well-known distributed MAC protocols. Secondly, work conducted in the area of fair 

sharing of bandwidth in distributed system is presented. Next, we explain the effect of MAC 

protocols vis-à-vis Quality of Service. Finally, we review the recent application of Non-

Cooperative Game theory in distributed medium access. 

2.1 Distributed MAC Protocols

Simple ALOHA [3] was one of the earliest distributed MAC protocols. ALOHA was 

attractive because of its simplicity. As soon as a user has a packet to transmit, it transmits 

without sensing the medium. However, a low maximum throughput of  could be achieved 

with simple ALOHA; assuming Poisson arrival of transmission packets. Improvements were 

suggested in the form of slotted ALOHA. In slotted ALOHA, transmission times are slotted and 

users can transmit only at the beginning of the slots.  However, in this protocol also users do not 

sense the medium before transmitting. This protocol results in an improvement in throughput: 

assuming Poisson arrival of transmission packets.  

e2/1

e/1

Carrier Sense Multiple Access (CSMA) family of MAC protocols add an important 

functionality to the MAC protocol. As the name suggests, this family of MAC protocols senses 

the medium to determine whether somebody else is transmitting or not. Under the original 

classifications of this protocol, there are basically three types of CSMA protocols based on what 

the users do when the medium is sensed busy. 
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1. 1-persistent: Keep on sensing the medium and as soon as the medium is 

sensed idle, transmit 

2. Non-persistent: Stop sensing the medium for a period of time. 

3. p-persistent: keep on sensing the medium and when the medium becomes 

idle, transmit with probability p and do not transmit with probability p−1 . 

 The CSMA family of MAC protocols is widely implemented in both business and 

academia. Ethernet, by far the most popular choice for media access in Local Area Networks 

(LANs), employs Carrier Sense Multiple Access/Collision Detection (CSMA/CD) algorithm. On 

the other hand, Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) algorithm is 

being widely used for Wireless Local Area Networks (WLANs) [10-12]. A comprehensive 

description of these protocols can be found in [4, Chapter 6].  

2.2 Fairness and MAC Protocols  

Fairness in bandwidth distribution is a well-researched topic. In centralized networks, the 

concept of Generalized Processor Sharing (GPS) forms the basis for achieving fairness. 

Informally, GPS guarantees a user resource allocation proportional to that user’s relative 

weightage [38]. We would follow this simple, yet powerful definition of fairness for the present 

work also. GPS can not be implemented in practice because it relies on bit-by-bit switching 

whereas in computer networks, communication entity of interest is a packet. In [29], a practical 

packet-based implementation of GPS is presented. This algorithm is usually known as the 

Weighted Fair Queuing (WFQ) algorithm. In WFQ, each arriving packet is given virtual “start” 

and “finish” times based on the actual arrival time of the packet and the length of the packet. The 
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packet with the smallest “finish” time is selected for transmission. A similar technique can be 

found in [39]. There, the authors combine the WFQ algorithm-designated as Packet GPS 

(PGPS)-with a Leaky Bucket Admission Control algorithm for a single server GPS and show 

that it is possible for the network to fulfill a wide range of performance guarantees using these 

algorithms. In [40], authors propose an improved GPS approximation algorithm, called Worst-

case Fair Weighted Fair Queuing (WF2Q). Using WF2Q, only packets with a virtual “start” time 

that has been passed are considered for transmission. This scheme approximates GPS more 

accurately but increases the complexity of implementation.  

The objective of bandwidth fair sharing in a distributed system is to resolve this 

contention in such a way that users get bandwidth proportional to their weightages. For 

distributed systems, most of the work concentrates on Carrier Sense Multiple Access (CSMA) 

family of MAC protocols. In [35], a Distributed Fair Scheduling (DFS) scheme based on a 

virtual clock mechanism has been proposed for Wireless Local Area Network (WLAN). As in 

WFQ, “start” and “finish” time of an arriving packet are computed and the packet with the 

smallest “finish” tag is transmitted. A distributed algorithm using the back-off interval 

mechanism of IEEE802.11 MAC [11, 12] is used to determine the packet with the smallest 

“finish” tag. However, in general “virtual clock” mechanism can not be implemented with ease 

in distributed systems. Another approach in differentiated bandwidth sharing in distributed 

systems is the “priority-based” access schemes. One of the earliest works incorporating priority 

in CSMA can be found in [41]. There, Tobagi presented a prioritized CSMA or P-CSMA1. In 

this scheme, access right is granted exclusively to the messages of the current highest priority 

                                                 

1 Different from p-CSMA 

 8



class. In [33], priority-based access schemes using the Carrier Sense Multiple Access (CSMA) 

protocol are analyzed for 1-persistent and non-persistent modes. p-persistence CSMA is not 

considered due to the difficulty in analysis. Specifically, the authors analyze three schemes: a) all 

packets transmitted in 1-persistent mode, b) higher priority packets transmitted in 1-persistent 

mode and lower priority packets transmitted in non-persistent mode and c) all packets 

transmitted in non-persistent mode. Assuming Poisson packet arrival and general packet length 

distributions mean packet delays are computed using approximate techniques. Another priority 

based scheme for CSMA is presented in [34]. Some other related work for distributed systems 

can be found in [31] and [32]. The problem with the “priority-based” access schemes is the lack 

of an explicit relation between and priority and fairness. The medium access strategy proposed 

by us is philosophically similar to the priority-based approach but completely different in 

modeling and analysis. 

From the Quality of Service (QoS) point of view, the moot question is how users with 

different QoS requirements should transmit their packets so that a user with higher bandwidth 

requirement will have higher chance of success.  A possible solution is to assign weightages to 

the users proportional (not necessarily directly) to their bandwidth requirements. However, as 

discussed above users will receive bandwidth directly proportional to their weightage only if the 

MAC protocol is suitably designed. Therefore, it can be seen that weighted fairness, QoS and 

MAC protocol design are interrelated and it is necessary to have suitable MAC protocols to 

satisfy the QoS demand of various users.  

 9



2.3 Non-Cooperative Game Theory and MAC  

The drawbacks of both “virtual clock” and “priority-based” schemes have been indicated 

above. In this dissertation, we present a novel approach for contention resolution by modeling 

the contention for medium access as a Non-Cooperative Game, the Access Game. The Access 

Game model is predicated on an explicit relation between priority and fairness. Therefore, the 

solution of the Access Game satisfies the fairness definition as enunciated by GPS. Game Theory 

has been extensively used in other areas of computer communication [15-21]. However, 

application of Game Theory has been limited in distributed MAC designing. It has been 

introduced only recently in [13]. To the best of author’s knowledge, the present work is the first 

attempt to formulate the fairness problem in a Game-Theoretic framework. There are two 

reasons why Game Theory is a suitable tool for analyzing distributed medium access. First, the 

contention-based nature of the medium access presents a natural application domain for Non-

Cooperative Game Theory. Secondly, it is possible to conceive of “selfish” users in future 

choosing their individual access strategies to optimize their own selfish interests [13, 37, and 30]. 

The “virtual time”- based or “static priority”-based approaches described above are not suited for 

such situations. The Access Game model provides a theoretical formulation for achieving fair 

bandwidth sharing in the presence of “selfish” users. In addition to resolving the fairness 

problem, we also investigate in detail the interaction between the optimal “selfish” user strategies 

and the overall system performance. 
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CHAPTER THREE: MODELING THE ACCESS GAME 

 In this Chapter, we describe some relevant Game-Theoretic concepts and use these 

concepts to model the distributed medium access as a Non-Cooperative Game.  

3.1 Game Theoretic Concepts  

Formally, a finite simultaneous-move game consists of a non-empty finite set G I of 

players. A player, say  has a set of possible strategies/actions . In order to play the game, all 

the players choose an action from the respective strategy sets simultaneously. At the end of the 

game, there is an outcome or result. Clearly, the outcome space of G  can be given by

i iA

ii
AS ×= . 

Let  be a generic outcome of the game. Associated with the outcome  is a payoff to each 

of the players. Let us designate by 

Ss∈ s

)(suu ii = the payoff function for the i th user. The payoff 

function of the game  is given byu ))()...(()( 1 sususu n=  

The concept of “mixed strategy” [26] can be described as follows. Instead of deciding for 

a particular action with certainty (i.e. pure strategy), a user i  randomizes its decision and 

chooses a particular action from  with a probability. Consequently, the elements of the 

outcome set  also become probabilistic in nature. The payoff of the game is associated with the 

outcome of the game. It follows that in a mixed strategy game a non-negative probability is 

attached to the value of the payoff a user receives by playing the game. This entails the 

formulation of the utility function 

iA

S

iu  which is essentially the expected payoff for player i  from 

playing the game. We primarily consider two solution concepts for non-cooperative Game 

Theory: Nash Equilibrium and Constrained Nash Equilibrium. For both these solutions concepts, 
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we assume that the users have complete information about all the other users. In the next 

Chapter, we consider the role of information in Game-Theoretic constructs in some detail.  

Nash Equilibrium (NE) is arguably the most important solution concept for non-

cooperative game theory. For each finite complete information gameG , John Nash [26] proved 

the existence of equilibrium in mixed strategy. For this equilibrium, action of one user is 

completely independent of what other users are doing. Formally, the NE can be presented as 

follows. Let the generic mixed strategy of user i  be denoted by iπ . Let i−π  denote the collective 

strategies of all the users other than , i.e., i ),... n,,...( 111 iii ππ πππ +−− = . For an NE strategy 

 of the game, the following holds ),..( 1
∗∗
nππ

),(),( ∗
−

∗
−

∗ ≥ iiiiii uu ππππ                   i∀

We now provide a simple example to compute NE using best response correspondence of 

the users. Consider two users: X and Y. },{ 21 xxAX = and },{ 21 yyAY = . The payoffs for the 

game can be represented in a matrix form as follows (Table1):  

Table 1: Payoff Matrix 

 

As an example, the entry (5,3) implies that if X plays  and Y plays , the payoff to X 

is 5 and the payoff to Y is 6. 

1x 1y
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If X chooses to play  with probability1x p and Y chooses to play  with probability q , 

the utility function for X can written as  

1y

10)1()1(4)1(2)1(5 ×−×−+××−+×−×+××= qpqpqpqpU X  

Player X’s best response correspondence for a value of q , is the set of p  that would 

maximize . Let us rewrite  as  XU XU

qqpU X 610]89[ −+−=  

 In this case, the “best” value of p will depend on  as follows:  q

 if ,  is maximized by 0]89[ >−q XU 1=p  

 if ,  is maximized by 0]89[ <−q XU 0=p  

 if ,  is maximized by any value of 0]89[ =−q XU p in  )1,0(

 Similarly, ppqppppppqU y 57]12[772]772663[ −+−=−+++−−+−=  

 Therefore,  

 if ,  is maximized by 0]12[ >−p YU 1=q  

 if ,  is maximized by 0]12[ <−p YU 0=q  

 if ,  is maximized by any value of in . 0]12[ =−p YU q )1,0(
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 NE is obtained when both and are maximized simultaneously. From the above 

discussion, it is clear that it will happen when for a value of , both  and  are 

maximized. If 

XU YU

),( qp XU YU

p is plotted as a function of and  is plotted as a function of q q p , the set of NE 

will be the intersections of these two plots.  

 The three NE of this game are ( 1=p , 1=q ), ( 0=p , 0=q ), and ( , ).  2/1=p 9/8=q

In the formulation proposed by Nash, users take actions independent of each other. Rosen 

[28] considered the important case where strategies of users are constrained, i.e., some relations 

exist among the strategies. An example of such a scenario can be found in [42]. For such a case, 

Rosen proved the existence of equilibrium for concave utility functions. We refer to this 

equilibrium concept as the Constrained Nash Equilibrium, or CNE. As users do not communicate 

with each other about their actions, the solution for CNE still remains non-cooperative.  

We use the game-theoretic concepts outlined above to model the distributed medium 

access scenario as the Access Game. Before presenting the model for Access Game, we briefly 

describe the proposed MAC protocol.  

3.2 MAC Protocol  

Consider a MAC protocol using CSMA. When a user has a packet to send, it senses the 

medium. If the medium is sensed busy, it can take several actions. Based on these actions, 

CSMA protocols can be classified as follows [4]:  

1. 1-persistent: keep on sensing the medium and transmit the packet when the 

channel becomes idle. 
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2. Non-persistent: do not sense the medium for some time (i.e. backoff).  

3. p -persistent: keep on sensing the medium as long as the medium is busy 

and when the medium becomes idle transmit with probability p [and wait 

with probability (1-p)].  

We provide the following diagram (figure 3) for a schematic representation of p-CSMA. 

 

Figure 3: Successive States of the System in p-CSMA 

It can be observed from figure 3 that at the end of a transmission period, there is a brief 

idle period after which users contend with each other to access the medium. This idle period 

essentially signals the end of the previous transmission period. Contention is eventually resolved 

in one user’s favor and that user transmits next. Our proposed MAC strategy is similar to the p-

CSMA. The differences are as follows. Different users have different values of “p”. The values 

of these transmission probabilities depend on the number of users present in the system. 

Therefore, the transmission probabilities of users change over time.  

3.3 Modeling  

In order to model the distributed access scenario as a non-cooperative game, it is assumed 

that users are “selfish” [13, 15-21, 30] in nature i.e. users are solely interested in maximizing 

their own utility functions. 
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3.3.1 Players, Actions, and Payoffs 

Players of the Access Game are the users trying to access the medium. We consider n  

users with user i  having a weightage of . All the users use p-CSMA type MAC protocol. At 

the beginning of each contention period, each player has two actions to choose from: “transmit” 

and “wait”. User  transmits with probability . If there are users, then strictly speaking 

outcome space  consists of  elements. However, 

iw

i ip n

S n2 note that from a user’s point of view, the 

above outcomes can be interpreted in three distinct cases: “transmit and success”, “transmit and 

failure” and “wait”. Moreover, if a user “ i ” decides to wait, it should receive the same payoff 

irrespective of whether the game’s outcome is “success” or “failure”. We use subscripts “1”,”2” 

and “3” for “transmit and success”, “wait” and “transmit and failure” respectively. 

The payoffs to the users from playing the Access Game are as follows:  

1. If only user i transmits, then the outcome of the game is “success”. User i  

receives a payoff of  and user ic ,1 ][ ij ≠  receives a payoff of . jc ,2

2. If no user transmits, the game’s outcome is “waste” and the user i  receives 

a payoff of .  ic ,2

3. If more than one user transmits, collision occurs and the outcome of the 

game is “failure”. If user i  had transmitted, then user i  receives a payoff of 

. If user i had not transmitted, it receives a payoff of . ic ,3 ic ,2
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Note that the probability that user i  transmits and succeeds is given by . 

Probability for “transmit and failure” is 1 and probability of “wait” is 

∏
≠

−×
n

ij
ji pp )1(

∏
≠

−×−
n

ij
jip p )1( ip−1 . 

 Therefore, the utility function  of user can be written as  iu i

 iii

n

ij
jii

n

ij
jii cpcppcppu ,2,3,1 )1(])1(1[)1( ×−+×−−+×−×= ∏∏

≠≠

                  (3.1) 

 The NE of the Access Game will be a strategy profile satisfying the 

following 

)......( 1
∗∗∗∗ = ni pppp

 ),(),( ∗
−

∗
−

∗ ≥ iiiiii ppuppu          i∀                            (3.2) 

 Similarly, for the existence of CNE the following condition should hold: 

 02

2

≤
∂
∂

i

i

p
u

                                (3.3) i∀

 We now discuss the nature of the payoffs in the Access Game.  

3.3.2 Payoff Structure 

Payoffs of an outcome underline the physical results of that outcome. When a user 

transmits and succeeds in accessing the medium, it can transmit a packet successfully over the 

network. Clearly, this is beneficial for QoS. However in order to transmit the packet, the user 
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spends some Battery Power (BP) also. Therefore, the payoff for “success” has a positive QoS 

component and a negative BP component. On the other hand, if the user waits, then no or 

minimal BP is expended; however, the QoS component is adversely affected. Therefore, the 

payoff for not transmitting has a positive BP component and a negative QoS component. If the 

outcome is “failure”, both the components are adversely affected. Logically the payoff for 

“failure” should have negative components of both BP and QoS and should be less than the 

payoffs for both “success” and “waste”.

The objective of this dissertation is to achieve fair sharing of bandwidth in distributed 

networks. Consequently, QoS is considered relatively more important than BP  

Following the above discussion, it can be said that the following relation usually holds 

between the payoffs for different outcomes:  

iii ccc ,3,2,1 >>                                     (3.4) 

In order to quantitatively represent the relative importance of QoS and BP in the Access 

Game, we define the payoff ratio  given as ir

)(
)(

,3,1

,3,2

ii

ii
i cc

cc
r

−

−
=                                     (3.5) 

Generally,  will hold. 1<ir
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3.4 Assumptions  

We conclude this Chapter by outlining the assumptions made for the analysis in the 

subsequent Chapters.  

A1. The Access Game is a complete information game.  

A2. Users always have packets to transmit. This assumption has been made for simplicity and it 

is quite straightforward to relax this assumption. This is shown in Chapter Nine. 

A3. Packets are of equal length. This assumption is also made for simplicity.  

A4. The system is stable. 

A5. The number of users playing the game is and this number does not change. As n 1=n  

presents a trivial case,  is assumed. 1>n

In this Chapter, we provided a simple non-cooperative Game Theoretic model for 

distributed medium access. The Access Game is a simultaneous move, single-shot and complete 

information game. However, the assumptions of complete information can not be usually 

realized in realistic scenarios. We tackle this problem through an approximation mechanism to 

be presented subsequently in Chapter Nine. Detailed analysis of the complete information 

Access Game is presented in Chapters 5-8. In Chapter Nine, we present a simple approximation 

scheme to relax most of the assumptions made for the analysis in Chapters 5-8. In the next 

Chapter, we present a simple analysis for the incomplete information Access Game.  
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CHAPTER FOUR: INCOMPLETE INFORMATION GAMES 

In Section 3.4, we outlined the assumptions made for our analysis in this dissertation. 

One of the assumptions was that the Access Game is a complete information game. In other 

words, all the users have complete information about all the users. However, realistically this is 

not true in a distributed medium access scenario. In this Chapter, our objective is to analyze the 

incomplete information Access Game. We show that an optimal access strategy exists for the 

incomplete information Access Game. We also show that users can make better decision in 

complete information Access Game. Consequently, in Chapter Nine, we propose a simple 

scheme to approximate an incomplete information game as a complete information game. 

4.1 Incomplete Information Equilibrium  

From the point of view of an individual user, say player , all the other users can be 

combined together in one single player, 

i

i− . “Transmit” and “wait” for Player  are defined as 

follows: player transmits if one or more of the constituent players transmit. Player  waits if 

none of the constituent players transmit. Using this argument, we describe the following two-

player game  with the payoff matrix in Table 1. 

i−

i− i−

G

 

 

Figure 4: Medium Access in Incomplete Information Game 
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Table 2 : Bi-matrix representation of players’ payoff functions 

Playeri\Player-i Transmit Wait 

Transmit (ui(f),ui-(f)) (ui(s),ui-(w)) 

Wait (ui(w),ui-(s)) (ui(w),ui-(w)) 

 

Formally, is a game with two players i and G i− . Strategy spaces of both i and i− are 

{transmit, wait} and payoff functions are as given in Table 1. The gameG is a game of 

incomplete information [27] because does not know about the payoff functions of and vice 

versa. 

i i−

We consider C classes of traffic. Payoff functions of i− will depend on the number of 

other users (besides player ) of different classes in the system. This information is private to 

and can be expressed as a -tuple

i

i− C )....( 1 Cci nnn=−χ where is the number of users in class 

(other than player ) in the system. Player 

cn

c i i− does not know about the payoff function of the 

player i because it does not know the class of . This is private information of and is expressed 

as 

i i

)(= where j is the class of player i .  jiχ

We use Theorem I in [27] to prove that the incomplete information Access Game has an 

optimal strategy. Before proving Lemma 4.1, we construct a complete information game as 

considered by player , in such a way that it is game-theoretically equivalent to G  (as 

considered by player i ). Our construction is along the line proposed in [27]. Following 

conditions need to be maintained in the construction   

∗G

i
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Condition 1. Payoff functions remain identical in and . G *G

Condition 2. iχ  and i−χ information and their range remain identical in and . G *G

Before proving Lemma 4.1, we first prove the following lemma first.  

Lemma 4.1: exists and it is unique.  *G

Proof: We prove the above by using Theorem 3 in [27].  In , player  computes 

subjective probability

G i

)/( iiiR χχ−  and player i−  computes subjective probability )/( iiiR −χχ . 

The game is consistent [27] if these subjective probabilities can be derived from some basic 

probability. We prove that the game G is consistent. We do so by proving that if 

)..( 1 CP ηη describes the system wide probability distribution of users in different classes, then 

)..( 1 CP ηη can be used to compute )/( iiiR χχ− and )/( iiiR −χχ . Clearly,  

)..1..()]....([)/)....(( 1

,0

11

1

Cj

Nnn

CjiCjii nnnPnnnPjnnnR
C

u
uj

+×

∑

=== ∑
≤>

−

=

χχ  

where, is the maximum number of users allowed in the system.  N

  Similar results can be derived for )/( iiiR −χχ . Therefore, we can see that we can compute 

the subjective probabilities using the basic probability distribution )..( 1 CP ηη . Hence, is 

consistent.  

G

Next, we prove that G is indecomposable [27].  In order for to be decomposable, 

player i should be able to predict each of  within a range with probability 1. However, 

G

Cj nnn ....1
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player has no information regarding these attributes and i )....( 1 CjP ηηη can not predict a range 

with probability 1.  Hence G  is not decomposable2 i.e.  is indecomposable. Hence, by 

Theorem III in [27], the general probability distribution 

G

*R of exists and is unique. Therefore, 

also exists and is unique. Moreover, 

*G

*G PR ≡* . This proves Lemma 4.1. 

█ 

We now use Lemma 4.1 to prove the existence of optimal strategy. 

Lemma 4.2: An optimal strategy exists for each individual player. 

Proof: Using Theorem I in [27] we know that Nash equilibrium of is the Bayesian 

equilibrium ofG .  We have proven in Lemma 4 the existence and uniqueness of . As is a 

finite game, there exists at least one equilibrium point in mixed strategies in  (Theorem I in 

[26]). From the definition of Nash equilibrium, this equilibrium is also an optimal strategy for 

player i .  This completes the proof. 

*G

*G *G

*G

█  

4.2 Expected Utility and Optimal Strategy   

In Section 4.1, we proved the existence of an optimal strategy for player i . In this 

Section, we provide a mechanism to compute these strategies. In order to do this, we first need to 

compute an expression for expected utility to player i in terms of payoff functions.  

                                                 

2 A more rigorous proof has been omitted 
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As mentioned before, there are C classes of users. Probability of a player of class 

j having a packet to transmit at the beginning of the game is denoted as and the probability 

that the user transmits the packet is denoted as .  is the probability that the user does not 

transmit the packet. Naturally,  

jpp ,

jtp , jwp ,

1,, =+ jwjt pp                (4.1) j∀

Hence, the probability that a user of class jWp , j  waits is given by 

jtjpjwjpjpjW pppppp ,,,,,, 1)1( −=+−=                               (4.2) 

Let the number of users including player i , presently playing the game be . Let 

be the probability distribution of the number of users playing the game and we assume 

that all the users know this distribution. , where is the maximum number of users 

allowed in the system. 

n

)(npη

∑
=

=
N

n

np
0

1)(η N

1−n  players other than player i  are distributed amongst C classes. Let us say 1−n  users 

can be distributed amongst C classes inΧ number of ways.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+−
=Χ

1
2

1
11

C
Cn

C
Cn                            (4.3)  

Let us denote by )....( 1 CS ξξχ =  {such that } be the state of the system 

representing number of players in different classes.   

1
1

−=∑
=

C

k
k nn
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We assume that the probability distribution  is also known by the users. Hence, 

we have . 

)(
χχ Sp

1)( =∑
Χ

χ
χ χ

Sp

Let us denote by  and the probability that player  iwp −, itp −, i−  waits and transmits 

respectively.  

Clearly,   

1,, =+ −− iwit pp .                              (4.4)         

With the above assumptions,  can now be computed as follows:  iwp −,

])()()(
1

,,
1

, ∑ ∏∑
==

− =
χ

χχη
S

C

j

n
jW

N

n
iw

jpSpnpp                                                 (4.5) 

Note that (4.5) is an invariant for all the users. 

Player will use (4.5) to make an estimate of the action to be taken by its opponents in a 

collective way. This estimate may or may not be equal to the actual value. However, if player i  

plays the game sufficiently large number of times, the above will be the average probability of 

“wait” for player . player i uses as the “wait” probability. From (4.4) and (4.5) we have 

i

i− iwp −,

])()()(11
1

,,
1

,, ∑ ∏∑
==

−− −=−=
χ

χχη
S

C

j

n
jW

N

n
iwit

jpSpnppp  as the “transmit” probability for player in 

the game described above. Expected utility for player i is given by 

−i

22×
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witfititsiwiti upuppuppU )1( ,,,,, −++= −− . 

For optimal strategy,  

0
,

=
∂
∂

it

i

p
U     i∀  

Before presenting the optimal transmission probability, a general form for (4.5) is 

presented for a special case. 

We now derive a generalized simplification for (4.5).  

Proposition 4.3:  Assuming =)( xx Sp constant p= , we have ∑
∏=

≠=

−+

−
=

−

C

i
C

ijj
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niw
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app
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Proof: For, , we have  2=C

∑
∏

∑
∏ =

≠=
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Let us say the following holds for that for 1−= cC  classes of traffic, 

 ∑
∏=

≠=

−+

−=
−

−
=

C

i
C

ijj
ji

Cn
i

cC
niw

aa

app
1

,1
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1
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For, classes of traffic, we have cC =
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Note that the scenario with 0=n  players is not defined; hence the corresponding 

probabilities are zero. 0| 0, =∴
=
=−

cC
niwp .  

Therefore, for equally likely cases:  

∑
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█ 

4.3 Optimal Transmission Probabilities  

In this Section, we compute optimal probabilities for two important cases. We consider 

two important Cases. In the first Case, all the users belong to the same class and therefore 

identical. In the second Case, users of two classes are considered.  
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4.3.1 Case 1: Single Class of Users 

As all the users are indistinguishable, equilibrium will symmetric i.e. all the users will 

have identical optimal strategy. Let and be the probability for all the players to wait and 

transmit respectively. Expected utility functions for i can formulated as follows [with 

wp tp

tpp = ]: 

wfitsiwi upuppuppU )1(,, −++= −−                           (4.7) 

where u denotes payoff function (as in Table 1) and are subscripts for success (when only 

player  transmits), wait (when player  waits) and failure (when both the players transmit) 

respectively.  

fws ,,

i i

The values of and can be computed as follows [iwp −, itp −, nnSp ,1),( χχ ∀= ]: 

∑
=

−−+==
−

N

j

j
pwpiw pppjnpp

1

1
, )]1()[(η                           (4.8)  

and   iwit pp −− −= ,, 1

We now compute  . If we assume that the users join the system according to a Poisson 

process with parameter 

ηp

λ  and departure time from the system is exponentially distributed with 

parameterµ , we have:  

11
)1()( +−

−
== N

j

jnp
ρ

ρρ
η   where,  

µ
λρ =  

Hence, we have the following: 
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ρρ                             (4.9) 

,where   

)1())1(( pppppk ppwp −=−+= ρρ                         (4.10) 

ρ
ρ
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kp )( −

=⇒                          (4.11) 

Using (4.9) and (4.10) in (4.7), we have 
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Optimization with respect to p requires the following: 

211 FFpF =′+                         (4.12) 

We have:  

f

N

N ud
k

kF +
−
−

−
−

= + 111 )1(
)1(

)1(
)1(

ρ
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fs uudwhere −=1,  
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Using (4.13) in (4.12), we have:  
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In a general case, [optimal solution of ∗p p from (4.14)] can be found out through 

numerical methods. We now consider the limiting case with ∞→N . The above equation 

reduces to 
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Let us now consider normalized payoff functions with 0,1 == fs uu  and swf uuu ≤≤ . 

Furthermore, let . The above equation is simplified as follows:  ruw =
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It can be easily verified that this value of maximizes the utility function. ∗p

We show that for a given value of r  the optimal transmission probability, in (4.16) 

maximizes (4.7). From (4.10), we have 

∗p

0<−=
∂
∂
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p
k ρ                                                    (4.17) 
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Now,  
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]))1(2[()1)(()1(, 2
11 pkkpdFor p ρρρρ −−−−−=′′ −  

11 )1(2 FpkF p ′−−=′′∴ ρ                                                 (4.18) 

We have, from (4.7) 

211 )1( FppFU −+=  

0))1(1(22 1111 <−−′=′′+′=′′∴ kppFFpFU pρ  

Therefore, from (4.17) and (4.18),  

 31



0))1(1(2 11 <−−′=′′ kppFU pρ  

This shows that the value of p obtained maximizes the utility function. 

0* =p for 1=ρ and is not defined when*p 0=ρ .  Bounds on r can be found out from . 

Using the above equation:  

10 ≤≤ ∗p
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From the above relationship, we find that for , 0→pp
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Substituting this value in (4.16), we have 
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This is an intuitive result also in the sense that if the probability of others having a packet 

is slim, go ahead and transmit your packet. 

Value of  

]1[)1(| 1
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−
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ρ                                        (4.21) 
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Throughput and r : An important question is how should r be chosen? We choose  r  such that 

the average throughput is maximized.  

Probability of a slot being successfully used with users in the system is given by  n

1−×××= n
Wpn pppnθ                         (4.22)  

The expected value for throughput is given by  

2
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=

                   (4.23) 

Note that in (4.23), p is given by (4.16). 

For optimization, 0=
∂
∂

r
θ . Differentiating (4.23) with respect to r , we get 
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From (4.16), we have 0]
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Hence, for throughput optimization 0]1[ =−− pppρρ  
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p

ρ
ρ−

=∴
1                                         (4.25)  

From (4.25) and (4.16), we have  
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(4.26) gives the value of r maximizing throughput. 

The optimal value of throughput is given by 
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Equation (4.27) gives the optimal value for throughput for incomplete information games. Let 

us compare this throughput value with an equivalent complete information system. 

In this system, users arrive according to a Poisson process with mean arrival rate λ and all 

exit time of a user is exponentially distribute with mean
µ
1 . The optimal throughput for the system in 

an incomplete scenario is given by [30] 

4
)1( ρθ −

=∗  
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A simple comparison with the corresponding complete information game shows the 

following difference in average throughput for various values of ρ . The corresponding average 

throughput for the complete information case can be given as 

∑
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1)11()1(
n

nn

n
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Let us designate by δ the difference in optimal throughputs.  
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nn
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The following figure (Figure 5) provides an illustration of the relation between δ  and ρ . 

 

Figure 5: Comparison between Incomplete and Complete Information Game 

It is easy to verify that 0>δ  for all values of ]1,25.0[∈ρ  i.e. load factors lying between 

(but not including) and .  In the next figure, 25.0 1 δ has been plotted against ρ . The value of 

δ becomes positive shortly after 2.0=ρ . The point is that 0>δ for most of the values of ρ . 
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4.3.2 Case 2: Two Classes of Users

We now calculate optimal strategies for two classes of traffic. In the previous scenario, 

all the users were indistinguishable with the same transmission probability.  
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                                    (4.28) 

Assuming equally likelihood of every combination we have:  
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Neglecting for  and considering ii ab , 2>i ∞→N  we have:  
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We have the following expression for calculating utility for each player:  
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For maximization, 0
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Similarly,  
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Solving (4.34) & (4.25), we get: 
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In a scenario involving more than one class, it is desirable to have  
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∗=
∗

12 wpp                                    (4.37)  

where, .   1>w

Relationships between and can be derived from (4.36) and (4.37). 1r 2r

We have conducted our analysis of the incomplete information Access Game in this 

Chapter. In Section 4.1, we proved the existence of optimal access strategies. In Section 4.2, we 

analyzed two simple cases of the incomplete information Access Game. Our subsequent analysis 

of the complete information Access Game will demonstrate that the complete information 

Access Game is simpler to analyze and gives more efficient Access Strategies.  
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CHAPTER FIVE: AN IMPORTANT SPECIAL CASE OF COMPLETE 
INFORMATION ACCESS GAME 

In Chapter Four, simple scenarios with incomplete information were considered. In 

Chapters Six-Eight, a general analysis is presented for the complete information scenario. Before 

presenting the general analysis, we consider the important special case of the wired networks in 

this Chapter. In order to analyze this scenario, we first recall the utility function as expressed in 

(3.1), 

iii

n

ij
jii

n

ij
jii cpcppcppu ,2,3,1 )1(])1(1[)1( ×−+×−−+×−×= ∏∏

≠≠

 

 For the subsequent analysis, we drop the “bar” in iu .  

In the case of the wired networks, Battery Power (BP) is not considered important. 

Therefore, we have .  0,3,2 == ii cc

Consequently, ∏
≠

−=
n

ij
jii ppu )1(  

5.1 Nash Equilibrium  

We now prove that the Nash Equilibriums of the Access Game for the wired networks is 

inefficient. 

Theorem 5.1: In the Nash Equilibrium for the wired networks, there is at least one user i  

such that .  1=ip
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Proof: The utility function of user i  is given by  

∏
≠

−=
n

ij
jii ppu )1(                                                                                      (5.1) 

Of interest is the expression . Let us call it ∏
≠

−
n

ij
jp )1( iδ  

∏
≠

−=
n

ij
ji p )1(δ                                                    (5.2) 

Clearly,  

0≥iδ                          i∀

Therefore the best response of user i  to )( ipδ is as follows 

 0>iδ  ⇒                                             (5.3a) 1=ip

0=iδ  ⇒                                    (5.3b) ]}1,0[:{ ∈= xxpi

We now prove the Theorem by contradiction.  

Let us assume that  

1≠ip                                         (5.4a) i∀

It immediately follows that 0>iδ  i∀ and by (5.3a) 

1=ip                                         (5.4b) i∀

It is easy to see that (5.4a) and (5.4b) are clear contradictions. Therefore our assumption 

that   , is not correct.    1≠ip i∀
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█ 

We now discuss the above Theorem with the help of 2=n case. 

Following (5.3a) and (5.3b), we have plotted the best response in  as a function of  

in fig 6a. As a way of explanation, let us start at 

1p 2p

02 =p . The value of  is “1” at 1p 02 =p . The 

value of  remains “1” as long as 1p 12 <p . At 12 =p , the best response in  is any value in the 

interval i.e. there are infinite number of best responses in  for 

1p

]1,0[ 1p 02 =p . This is represented 

by the straight line joining (1,1) and (0,1).  

 

Figure 6a and 6b: Nash Equilibrium 

In fig 6b, we have plotted the best response in  as a function of . It can be clearly 

seen that the best response plots completely overlap. As the NE are given by the intersections of 

the best response correspondences, there are an infinite number of NE for the Access Game.  

2p 2p

Corollary 5.2: There are infinite numbers of NE for the Access” game 

Proof: Using Theorem 5.1 and following the logic for 2=n      

█ 
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Let us introduce the following definition. 

Definition 1: A solution of the Access Game is acceptable if and only if the probability of 

success is non-zero for all the users. 

Using Definition 1, we have the following result, 

Corollary 5.3: Nash Equilibriums for the Access Game are not acceptable.  

Proof:  There are two possible cases. Case1: only one user i  is transmitting with 1=ip . 

 for all the other users. Case2: More than one user are transmitting with 

probability “1”. Hence, 

0}Pr{ =success

0}Pr{ =success  for all the users. 

█ 

From the above results, we see that although an infinite number of NE exist, they are all 

inefficient. Therefore, rational users would be willing to adhere to a set of constraints if these 

constraints benefit them.  

5.2 Constrained Nash Equilibrium 

In the previous Section, we observed that the NE is inefficient in nature. Therefore, the 

selfish users will be willing to follow a set of constraints if this set of constraints results in 

fairness. In order to remove any ambiguity, we will consider a set of explicit fairness constraints 

as the constraint set for the Access Game. First, we investigate the feasibility of solution with 

constraints. 

Before proceeding further, we reproduce Theorem 1 of [28] for completeness and ready 

reference. 
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Theorem 5.4: An equilibrium exists for every concave n-person game. 

For Theorem 5.4 to hold, the utility functions of all the users should be concave in nature 

with respect to their respective strategies. The striking characteristic of this Theorem is that the 

strategy spaces of different users need not be orthogonal (independent). For such strategies, 

Theorem 4 ensures an equilibrium if the utility functions are concave.  

We have  02

2

=
∂
∂

i

i

p
u

. Therefore,  is concave in  and we can apply Theorem 4 to our 

problem.  

iu ip

In order to derive our following results, we now present the concept of fairness as a 

precise set of constraints. In the present context of distributed medium access, the fairness is 

defined as follows [24].   

Definition 2: Fairness is achieved if the probability that user will access the medium 

successfully is proportional to its weightage ( ). 

i

iw 0>

Hence, fairness can be quantitatively expressed as  
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                     (5.5) 

As we are interested in only non-trivial and acceptable solutions,
 

1,0≠ip                                                            (5.6) i∀

Combining (5.5) and (5.6), we have  
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where, K  is a constant and  

0>K                             (5.8)  

From (5.7) we have,  

]11[]11[ −=−
ji
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i pw
w

p
                         (5.9) ji,∀

From the above discussions and Theorem 5.4, we have the following lemma. 

Lemma 5.5:  A CNE exists for the Access Game satisfying the fairness condition in (5.7). 

We now define the concept of “social welfare”. Loosely speaking, social welfare is 

achieved when no body can be made better off without making somebody worse off. In the 

present context, we can have the following definition:  

Definition 3: Social Welfare is achieved if users get fair share of bandwidth. 

 With the above formulations and definitions, we have the following result 

Theorem 5.6: At CNE satisfying social welfare, the transmission probabilities satisfy the 

following:  

1
1

=∑
=

n

i
ip  

Proof: Using (5.1) and (5.6), we have 
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From (5.7), we have 
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We compute 
ip

g
∂
∂ by using (5.13) 
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In order to demonstrate how the proof works, we first prove the case of two users. We 

have  
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Using (5.15) in (5.14) and the fact that 
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For a general case involving  users, following the exact same steps and the chain 

differentiation trick, we have 

n

0
1

)
1

(
=

∂
∂

−
+

∂
−

∂

ii

i

i

i

i

p
g

p
p

p
p

p

g  

and ∑
=−

−=
∂
∂ n

i
i

iii

p
pp

g
p
g

1)1(
 

Hence, we have 
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█ 

Theorem 5.6 leads to the following result. 

Theorem 5.7: The CNE of the Access Game is unique. 

Proof: From (5.7), we have 
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Using (5.16) and (5.17), we have  
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We show that the solution for K  in (5.18) is unique. We prove the uniqueness of the 

solution in 3 parts. 

a. All the solutions of K  in (5.18) are real. 

Proof: Let there be complex solution for K ; βα 1−± . We then have  
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0=β                                    (5. 19) 

b. There is at least one positive root for K . 
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Proof: (5.18) has n solutions in K . Let these roots be . nrr ....1

By expanding (5.18), it can be clearly seen that some of the coefficients are negative. 

Hence, there is at least one positive root. Formally, 

k∃ 0: >kr                                                                 (5.20) 

c. If the number of positive roots in (5.18) is more than one, they are equal. 

Proof: Let there be more than one positive root; . From (5.18), we have:  21,αα
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From (5.19)-(5.21), we have that the solution of K  in (5.18) is unique. Hence, from 

(5.17) the CNE is unique.  

█ 

 A discussion on computing K is presented in Chapter Eight (pp. 64-65). 

5.3 Throughput 

Finally, we show that the system throughput is optimized at the CNE. 

Lemma 5.8: At the CNE satisfying fair share, 0=
∂
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Theorem 5. 9: CNE satisfying fairness maximizes the system throughput.  

Proof: Throughput θ  can be expressed as  
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For throughput maximization,  0=
∂
∂

jp
θ  j∀   

From (5.23) 

 51



∑
= ∂
∂

=
∂
∂ n

i j

i

j p
u

p 1

θ                          (5.24) 

Following Lemma 5.8, we have 

0| =
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∂
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jp
θ                  j∀

█ 

 The results in this Chapter outline some important properties of the MAC strategy 

considered here. We observed that the CNE satisfying social welfare is unique and it optimizes 

the system throughput as well. The implications are as follows:  

• The equilibrium is unique and results in fairness. Consequently, this is a desirable 

equilibrium and the users have no reason to deviate from these equilibrium transmission 

probabilities.  

• Throughput is optimized. Consequently, independence to the user is a feasible idea from 

the system-performance view.   

• The solution is Pareto-optimal. This requires some explanation. While formulating the 

problem, we saw that there were several contradictory objectives: contention amongst 

users and the conflict between fairness for users and the system throughput. As we have 

shown in this Chapter, all these contradictory objectives are fulfilled by the equilibrium 

transmission probabilities. Therefore, the transmission probabilities qualify as Pareto-

Optimal.  
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CHAPTER SIX: CLASSIFICATIONS OF COMPLETE INFORMATION 
ACCESS GAME  

In this Chapter we provide a classification of the Access Game based on the relative 

importance of the QoS and the BP components in the utility functions. 

∏
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jii ppsuccess )1(}Pr{                                          (6.1) 

Hence, fairness can be quantitatively expressed as  

 
n

n

j
jn

i

n

ij
ji

n

j
j

w

pp

w

pp

w

pp ∏∏∏
−

=≠≠

−
=

−
=

−
1

1

1

1
1 )1(

...
)1(

...
)1(

                              (6.2) 

It can be observed from (6.2) that if }1,0{∈ip  i∀ , the fairness criteria are satisfied but 

the probability of success is zero for all or some of the users. Clearly, these solutions are of no 

interest.  

For acceptable solutions 

1,0≠ip                                                                                  (6.3) i∀

6.1 Nash Equilibrium 

As mentioned before, for the sake of convenience, we drop the “bar” in iu . The payoff 

function of user i  is denoted simply as .  iu

Rewriting (3.1), 
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Let, 
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For mixed strategy equilibrium  

0=iδ                       (6.6) i∀

Consequently, for NE 
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Rewriting (6.7)  
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Using (3.5), equation 6.8 can be rewritten as  

i

n

ij
j rp =−∏

≠

)1(                     (6.9) 

From (6.9) it can be seen that for NE to exist, 

10 ≤≤ ir                  (6.10) i∀
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Therefore, for the existence of NE following relations are permissible amongst the payoff 

values of a user  i

iii ccc ,1,2,3 >>        

iii ccc ,1,3,2 ≠=         

iii ccc ,3,2,1 ≠=        

iii ccc ,3,2,1 >>         

It should be noted that although  presents a mathematical possibility, it 

does not reflect any physical reality: payoff for failure is more than payoffs for either success or 

waste. As per our previous discussion, this case is discarded. Therefore, we have the following 

distinct cases:  

iii ccc ,1,2,3 >>

Case 1:                        (6.11a) iii ccc ,1,3,2 ≠=

Case 2:                       (6.11b) iii ccc ,3,2,1 ≠=

Case 3:                       (6.11c) iii ccc ,3,2,1 >>

Comments: All the three cases of 6.11a-c represent interesting situations: 

• Case 1 can represent two distinct scenarios depending on the relationship between  

and . If , then it can be said that QoS is much more important than BP 

constraints. If this is true for all the users, then we have the important special case of 

ic ,2

ic ,1 ii cc ,2,1 >
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wired networks as analyzed in the previous Chapter. On the other hand, if , then 

the scenario can be thought of as the case where BP is much more important than QoS. 

This second scenario does not hold any special significance for the purpose of this 

dissertation. Nevertheless, we combine these two scenarios and present a unified analysis 

in the next Chapter. 

ii cc ,1,2 >

• Discarding the possibility of , Case 2 can be rewritten as  iii ccc ,2,1,3 ,>

    Case 2:                         (6.11d) iii ccc ,3,2,1 >=

Case 2 as represented in (6.11d) can be interpreted as an interesting special scenario 

where both QoS and BP are equally important. 

• Case 3 corresponds to (3.4) i.e. it represents the general case where QoS is more 

important than power constraints.  

We have the following result for Cases 1 and 2.  

Theorem 6.1: Nash Equilibriums for the Access Game with payoff structures as in (6.11a) 

and (6.11d) are not acceptable. 

Proof: In order to prove the Theorem, let us say that Case 1 holds for a particular user i , 

then at the NE, 

0)1( =−∏
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n

ij
jp  
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Therefore,  

0)1(}Pr{ =−= ∏
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Similarly, if Case 2 holds for some user , then   i

1)1( =−∏
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n

ij
jp  

Therefore,  

0=jp   ij ≠∀

0}Pr{ =∴ jsuccess   ij ≠∀

As per Definition 2, the NE for Case 1 and Case 2 are not acceptable.  

█ 

Theorem 6.1 proves that Cases 1 and 2 have only trivial solution in NE. However, both 

these cases represent interesting special scenarios. Therefore, the concept of CNE is used in 

Chapter Four to analyze these two cases. Before presenting the detailed analysis in Chapter Four, 

some preliminary analysis required for computing CNE is conducted in Chapter 6.3. 

6.2 Preliminaries for CNE 

The rationale behind computing CNE is that if NE is inefficient, then selfish users would 

be willing to adhere to some set of constraints; more so if the end-result is beneficial. Clearly, the 
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fairness constraints of (6.2) and (6.3) are beneficial for the users and can be used for the 

computation of CNE.  

In order to compute CNE, the condition in (2.3) needs to be checked first.  

From (6.6),  

02

2

=
∂
∂

i

i

p
u

                            (6.12) i∀

Hence, (2.3) is satisfied. 

The fairness constraints of (6.2) and (6.3) are used as constraints. Combining (6.2) and 

(6.3), the fairness constraints can be expressed as:  

]11[]11[ −=−
ji

j

i pw
w

p
                (6.13) ji,∀

Comments: From (6.13), it can be observed that there are infinite number of ways fairness can be 

achieved. In order to see this note that (6.13) can be rewritten as  

jijjii wwywyw −=−    ji,∀

where, . Therefore, there are iijj ypyp == /1,/1 1−n  independent equations involving  

variables. Consequently, the number of possible solutions is infinite. However, CNE gives the 

solutions that optimize the individual utility functions (i.e. interests) of users with fairness given 

by (6.13) as constraints. Therefore, the solution given by CNE is efficient in nature.  

n
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It should be noted that although (6.13) was derived using (6.3), (6.13) is satisfied 

by . As (6.13) is used for computing CNE, it may so happen that for some user , 

. This is not a problem because these solutions are simply discarded.  

1== ji pp i

1=CNE
ip

From (6.13), following partial derivatives are computed for future use:  

j

i

i

j

i

j

w
w

p
p

p
p

×=
∂

∂
2

2

                           (6.14) 

It is convenient to express (6.14) in terms of the probabilities only. From (6.13), 

]1/1[
]1/1[

−

−
=

i

j

j

i

p
p

w
w

                                    (6.15)    

However, (6.15) is not valid for 1=ip . In order to incorporate , the following 

technique is used. 

1=ip

Multiplying both sides of (6.15) by ]1/1[ −ip we have 

]1/1[]1/1[ −=− j
j

i
i p

w
w

p                           (6.16) 

This is a valid expression. 

In order to use (6.16) in (6.14), (6.14) is multiplied by ]1/1[ −ip . Therefore,  

22

2 11
]1/1[

i

j
j

j

j

i

j

i

j
i p

p
p

p
p

p
p

p
p

p
−

=
−

×=
∂

∂
×−  
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i

j
j

i

j
i p

p
p

p
p

p
−

=
∂
∂

×−∴
1

)1(                          (6.17) 

In this Chapter, we analyzed the Access Game in some detail and delineated three Cases 

of importance. We have also shown that two of these cases result in inefficient Nash 

Equilibriums. In Chapter Seven, we consider these two cases and compute their Constrained 

Nash Equilibrium. Results from Section 6.2 are extensively used for this purpose.  
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CHAPTER SEVEN: TWO SPECIAL CASES OF COMPLETE 
INFORMATION ACCESS GAME 

In Chapter Six, we proved that Case 1 and Case 2 have inefficient and unacceptable Nash 

Equilibriums. In this Chapter, we analyze these two special cases for their Constrained Nash 

Equilibriums.  

7.1 Case 1  

As mentioned before, wired networks present a scenario for Case1. Our following 

analysis is true for wired networks as considered in Chapter Five. However, some of the results 

derived in Chapter Five will not be valid for the unified analysis present here. For the following 

analysis, it is assumed that (6.11a) holds for all the users. Therefore, 

0
,1,3,2

=∴

≠=

i

iii

r
ccc

                               (7.1) i∀

 Note that if , (7.1) represents wired network. However the results in this 

Chapter will also hold for . Another interesting point is that for (7.1), weightages are 

assigned based on only one component: either QoS or BP i.e. a user with higher QoS (or BP) 

requirement should be allocated higher weightage.  

ii cc ,2,1 > i∀

ii cc ,2,1 < i∀

For (7.1), the following result holds: 
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Theorem 7.1: For (7.1), there is a unique acceptable CNE subject to (6.13). 

Proof: The utility function for user i  can be written as  

iii

n

ij
jiCasei cccppu ,2,3,11, )]()1([ +−×−×= ∏

≠

 

Rewriting,  

i

n

ij
j

Case
iiCasei cpdpu ,2

1
1, )1([ +−×= ∏

≠

                            (7.2) 

where,  

0)( ,3,1
1 ≠−= ii

Case
i ccd  

For CNE [28], 

02, =
∂

∂

i

Casei

p
u

                                 (7.3) i∀

subject to (6.13)     

From (7.3) 

0]
))1((

[ =
∂

−×∂
×

∏
≠

i

n

ij
ji

i p

pp
d  

0)1()()1(,
,

=−×
∂
∂

−×+− ∑ ∏∏
≠ ≠≠

n

ij

n

jik
k

i

j
i

n

ij
j p

p
p

ppor            (7.4) 
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In order to use (6.17) in (7.4), both sides of (7.4) are multiplied by . Therefore, ip−1

0)1())1(()1()1(
,

=−×
∂
∂

−−×+−− ∑ ∏∏
≠ ≠≠

n

ij

n

jik
k

i

j
ii

n

ij
ji p

p
p

pppp               (7.5) 

Using (6.17) in (7.5):  

0)1(
)1(

)1(
,1

=−×
−

×−− ∑ ∏∏
≠ ≠=

n

ij

n

jik
k

i

jj
i

n

j
j p

p
pp

pp  

0)1()1(,
1

=×−−− ∑∏∏
≠≠=

n

ij
j

n

ij
j

n

j
j pppor             (7.6a) 

Multiplying both sides of (7.6a) by ip−1 , 

0)1()1()1(
11

=×−−−− ∑∏∏
≠==

n

ij
j

n

j
j

n

j
ji pppp  

0)1()1(,
11

=−×− ∑∏
==

n

j
j

n

j
j ppor              (7.6b) 

For (7.6b) at least one of the following should hold true: 

0)1(

0)1(

1

1

=−

=−

∑

∏

=

=

n

j
j

n

j
j

p

p
 

However, 0)1(
1

=−∏
=

n

j
jp 1: =∃⇒ jpj .  
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Therefore, this is not an acceptable solution 

Hence, the acceptable CNE is given by  

1
1

=∑
=

n

j
jp                (7.7) 

 █ 

Computation of K : A closed form solution for K  from (7.10) cannot be obtained for  

(Abel’s Impossibility Theorem). Expressions for 

5≥n

K  for some special cases are as follows:   

1. Two users: 21wwK =                        (7.8) 

2. identical users:            (7.9) n wnK )1( −=

3. Two classes (1,2) of users and class has users. Each user of class has weight : i in i iw

  
a

bacbK
2
42 −+

=             (7.10) 

where,    

)1( 21 −+= nna           (7.11a) 

)1()1( 2112 −+−= nwnwb          (7.11b) 

21wwc =                       (7.11c) 
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Numerical Results: The following numerical examples show that the value of K  increases with 

the increase in the number of users.  

1. Consider five classes of users. The weightage of class 1 is “1”, weightage of class 2 is “2” etc. 

Each class has  number of users.  N

Table 3: Computation of K 

 

2. Consider classes. Each class has one user and the weightage of class  is “ i ” N i

Table 4: Computation of K 

 

 Both table 1 and table 2 show that the value of K  increases with the increase in number 

of users. This implies that the value of decreases with the increase in number of users. This 

trend points towards the necessity of Call Admission Control (CAC). 

CNE
ip

7.2 Case 2 

For the analysis of Case 2, it is assumed that  
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iii ccc ,3,2,1 >=   1=∴ ir  i∀         (7.12) 

The following result holds for (7.12) 

Theorem 7.2: For (7.12), the CNE subject to (6.13) is unique and it is given by 1=ip  

i∀ . Hence, it is not acceptable. 

Proof: For this case, the utility function can be written as follows:  

i

n

ij
j

Case
iiCasei cpdpu ,2

2
2, ]1)1([ +−×−×= ∏

≠

                    (7.13) 

where,  

ii
Case
i ccd ,2,1

2 −=          

For CNE, 

02, =
∂

∂

i

Casei

p
u

                 (7.14) i∀

subject to (6.13)    

From (7.14),  

0]1
))1((

[ =−
∂

−×∂
×

∏
≠

i

n

ij
ji

i p

pp
d  
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1)1()()1(,
,

=−×
∂
∂

−×+− ∑ ∏∏
≠ ≠≠

n

ij

n

jik
k

i

j
i

n

ij
j p

p
p

ppor    

Using exactly the same techniques as in Section 7.1, we have   

2

11

)1()1()1( i

n

j
j

n

j
j ppp −=−×− ∑∏

==

                                                           

0)]1()1()1()[1(
1

=−−−×−−∴ ∑∏
=≠

i

n

j
j

n

ij
ji pppp            (7.15) 

For (7.15), at least one of the following should hold true: 

1.                     (7.16a) 0)1()1()1(
1

=−−−×− ∑∏
=≠

i

n

j
j

n

ij
j ppp

2.              (7.16b) 01 =− ip

We first consider (7.16a):    )1()1()1(
1

i

n

j
j

n

ij
j ppp −−−×− ∑∏

=≠

Introducing, and  ∏
≠

−=∆
n

ij
jp )1(1 ∑

≠

=∆
n

ij
jp2

 We have 

 21121
1

)1)(1()1()1()1()1()1( ∆∆−∆−−=−−∆−−×∆=−−−×− ∑∏
=≠

iiii

n

j
j

n

ij
j pppppp

Therefore, for (7.16a) to hold, 2∆ must be zero. However, from (6.3)  0≠jp
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0≠jp     j∀ ⇒ 0,1 21 ≠∆≠∆  

Therefore,  0)1()1()1(
1

≠−−−×− ∑∏
=≠

i

n

j
j

n

ij
j ppp

Therefore, (7.16b) must hold true. 

It follows that we have the following unique solution 

1=ip    

Hence, the unique CNE is given by  

1=ip      i∀

█ 

 From Theorem 7.2 it can be concluded that the Access Game model is not a suitable 

model for the scenario described by (7.12). 

In this Chapter, we have computed Constrained Nash Equilibriums for Case 1 and Case 

2.  Case 1 is the generalization of the wired network scenario analyzed in Chapter Five. For Case 

1, the CNE is acceptable and unique. However, for Case 2 the CNE is not acceptable. We 

propose that scenarios represented through Case 2 should be modeled differently.  
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CHAPTER EIGHT: GENERAL CASE OF COMPLETE INFORMATION 
ACCESS GAME 

In the previous Chapter, two special cases were analyzed. In this Chapter we analyze the 

general case as expressed in 6.11c.  

8.1 Nash Equilibrium  

From Theorem 6.1, it can be said that if Case 1 or Case 2 holds for even one user, the 

Nash Equilibrium is not acceptable. 

Therefore, for the analysis in this Chapter, the following holds 

10
,3,2,1

<<∴

>>

i

iii

r
ccc

                  (8.1) i∀

Theorem 8.1: If an NE exists for the Access Game satisfying (8.1), it is unique. 

Proof: Continuing from (6.9).  

Taking natural logarithm on both sides in (6.9) 

i

n

ij
j rp ln])1(ln[ =−∏

≠

                                   (8.2) 

Introducing 0)1ln( <−= jj px  and 0ln <= ii rk , we have from (8.2) 

i

n

ij
j kx =∑

≠

                                    (8.3) i∀
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(8.3) can be expressed in a matrix form 

bxnn

rr
=Α ×                                               (8.4) 

where,  

1),( =Α ji   if ji ≠  

0),( =Α ji    if ji =  

T
nxxx ]...[ 1=

r  

T
nkkb ]...[ 1=

r
 

The unique solution for  in (8.4) is given by xr

bx nn

rr
×Β=                                     (8.5) 

where, and  )(Α=Β inv

)1(
1),(
−

=Β × n
jinn    if ji ≠              (8.6a) 

)1(
2),(

−
−

−=Β × n
njinn   if ji =              (8.6b) 

From (8.5) and (8.6),  
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But  and 0)1ln( <−= jj px 0ln <= ii rk  

Therefore,  

)1(
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lnln
]1ln[
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=
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=−
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=
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=−⇒ 1

)1(
1

][
1                    (8.7) 

Clearly, for an acceptable NE to exist (from (6.3)) 

1
][

0 1

)1(
1

<<
∏
=

−

i

n

j

n
j

r

r
                   (8.8) i∀

As   , the existence condition (8.8) can be rewritten as  0>ir i∀
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1
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1

)1(
1

<
∏
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i

n

j

n
j

r

r
                    (8.9) i∀

Rewriting (8.9), we have 

min1

1
r

n

j
j <∏

=

ρ                  (8.10) 

where,  

)...min{ 1min nrrr = and 
minr
rj

j =ρ  

If (8.10) holds, the unique NE is given by  

i

n

j

n
j

NE
i r

r
p

∏
=

−

−= 1

)1(
1

][
1                    (8.11) i∀

█ 

 Note that the criterion of (6.4) is satisfied by (8.11). Therefore, it is possible to achieve 

fairness. 

The natural question that arises is whether this NE satisfies fairness or not. The answer is 

that for a general set of payoff ratios, the NE will not satisfy fairness. However if there is some 

flexibility in designing the payoff ratios, the NE can satisfy the fairness criteria. We have the 

following result.  
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Consider a set of probability  that satisfies fairness. In order to see that an 

infinite number of such probability sets exist, note that the fairness criteria can be rewritten as  

}...{ 1
∗∗∗ = nppp

]11[]11[ −=−
ji

j

i pw
w

p
                         (8.12)   ji,∀

Equation (8.12) can be rewritten as 

jijjii wwywyw −=−    ji,∀

where,   iijj ypyp == /1,/1 .

Therefore, there are  independent equations involving  variables. Consequently, 

the number of possible solutions is infinite. 

1−n n

For such a set of probabilities, we have the following result  

Lemma 8.2: If , then the Nash Equilibrium given by (8.11) satisfies 

fairness.  

∏
≠

∗−=
n

ij
ji pr )1(

Proof: Let, 

∏
≠

∗−=
n

ij
ji pr )1(                          (8.13) 

First, we check for (8.9) to determine if the NE exists or not. 

Using equation (8.13)  
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                        (8.14) i∀

Therefore, (8.9) is satisfied and NE exists. Moreover, using (8.14) in (8.11) we have 

∗=∴ i
NE
i pp   

█ 

Therefore, if the payoff ratios are designed accordingly, the unique NE satisfies (3.13) 

and maximizes throughput. 

Corollary 8.3: if and only if  ∗= pp NE ∏
≠

∗−=
n

ij
ji pr )1( .

Proof: In Lemma8.2, we have proved the “if” part of the proof. In order to see the 

uniqueness or the “only if” part, note that for a given set of NE we have 
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                    (8.15) 

If the objective is to design payoff ratios such that a particular Nash Equilibrium is 

achieved, then the Right Hand Side of (8.15) is known and (8.15) can be expressed as  

drC nn

rr
=×                            (8.16) 

where,  

)2(],[ −−= njiC if ji = ; if 1],[ =jiC ji ≠  

T
nrrr ]...[ 1=

r ; ;  T
nkknd ]...)[1( 1−=

r

]1ln[ NE
ii pk −=  

Solution of rr from (8.16) is unique and given by 

                        (8.17) ∏
≠

−=
n

ij

NE
ji pr )1(
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In other words, if the Access Game is to operate at a particular known NE, the payoff 

ratios must be as in (8.17). Therefore, if the NE is to operate at , the payoff ratios must be  *p

∏
≠

∗−=
n

ij
ji pr )1(      

█ 

It is easy to see that for , the existence condition of (8.9) or (8.10) is satisfied for 

any values of the payoff ratios. However, for higher values of , the situation becomes 

problematic. Let us give a few numerical examples. For the first two examples 

2=n

n

5.2/1 min =r  and 

for the last example,  10/1 min =r

Example1: Let there be four different users with payoffs of “0.4”, “0.5”, “0.6”, “0.7”. In this 

case, 
min1

11875.3
r

n

j
j >=∏

=

ρ . Hence, (8.10) is not satisfied 

Example2: Consider 11 users. The user has a payoff ratio of thj 01.*)1(4.0 −+= irj . In this 

case,  

min1

15549.3
r

n

j
j >=∏

=

ρ  

Example3: Consider 11 users. The user has a payoff ratio of thj 01.*)1(1.0 −+= irj . In this 

case,  
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min1

10443.67
r

n

j
j >=∏

=

ρ  

These examples show that it is difficult to hold the existence condition if the number of 

users are large. Therefore, CNE is considered for the general case also. 

8.2 Constrained Nash Equilibrium  

For Case 3, the utility function is same as in (3.1). Therefore,  
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     (8.18) 

For CNE,   

03, =
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                            (8.19) i∀

subject to (6.13)  

Following procedures similar to Chapter Seven, we have the following for CNE  
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  i∀              (8.20) 

where,  
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Therefore, 

   22 )1()1( jjii prpr −=− ji,∀
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∴
)1(
)1(                 (8.22) 

As the probabilities in (8.22) satisfy fairness, equation (8.22) can be rewritten using 

(6.13) 

jj

j

ii

i

rw

p

rw
p

//
=                            (8.23) 

 As the CNE is guaranteed to exist, solution of (8.20) will give transmission probabilities 

that satisfy fairness. Moreover these probabilities will satisfy the relationship in (8.23). From 

(8.23) it can be concluded that equilibrium transmission probability is proportional to the 

weightage and inversely proportional to the square root of the payoff ratio. This means that as 

the importance of battery power relative to the importance of QoS increases, equilibrium 

transmission probability decreases to reduce the probability of collision where battery power is 

wasted for no benefit. On the other hand as QoS is more important, equilibrium transmission 

probability increase with increasing weightage. 

We provide some simple numerical examples for the CNE of general case.  
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Example1: Consider two user with 2,1 21 == ww .  

Let,  and .  3.01 =r 6.02 =r

The transmission probabilities satisfying fairness are given by 3135.01 =p ,  4434.02 =p

Example2: Consider the previous example with  5.0,4.0 21 == rr . The transmission probabilities 

satisfying fairness are given by  

1841.01 =p ,  3294.02 =p

Example3: Consider three users with  3,2,1 321 === www  and 4.0,3.0,2.0 221 === rrr . 

The transmission probabilities satisfying fairness can be given by  

3029.0,2332.0,1428.0 321 === ppp  

Theorem 8.4: The CNE computed from (8.15) is unique 

Proof: From (8.20), we have 
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  i∀        

From (8.23), we have  
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/
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where, 
ii

jj
ji rw

rw
c

/

/
, =           (8.25) 

Now, for fairness (from 6.13)  
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From (8.23), we have 
j

i

ii

jj

r
r

wp
wp

=
/
/

  

Therefore,  

)1(
)1(

i

j

j

i

p
p

r
r

−

−
=  

)1()1()1( , ijii
j

i
j pkp

r
r

p −=−=−∴                     (8.26) 

where, 
j

i
ji r

r
k =,            (8.27) 

Using (8.24) and (8.26) in (8.20), it can be seen that  

can be rewritten as follows:  
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Rewriting (8.28) we have 

2
2

1
1

1 )1)(1()1( KpKpK n
i

n
i =−−−− −−                        (8.30) 

As the utility functions are concave, we know from [28] that a positive solution exists for 

 in (8.20) such that . It is easy to see from (8.20) that  in not a solution. 

Therefore, there is a solution of  in (8. 30) such that 

ip 10 ≤< ip 1=ip

ip 10 << ip . From here, we simply apply 

Descartes' Rule of Signs. Descartes' Rule of Signs states that the number of positive roots of a 

polynomial p(x) with real coefficients does not exceed the number of sign changes of the 

nonzero coefficients of p(x). More precisely, the number of sign changes minus the number of 

positive roots is a multiple of two. As , there is exactly one positive real root in this 

case.  

0, 11 >KK
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8.3 Throughput  

The results in the previous Chapter showed that fairness as defined in (6.2) and (6.3) can 

be achieved in a non-cooperative fashion by computing the CNE of the Access Game. In order to 

complete our description of the Access Game, we now analyze the throughput performance of 

the Access Game.  

Throughput is defined as the collective probability of “success”. Therefore, it can be 

given as: 

∑ ∏∑
= ≠=

−×==
n

i

n

ij
ji

n

i
i ppsuccess

11

)1(}Pr{θ              (8.31) 

Theorem 8.5: Consider a set of acceptable transmission probabilities . 

If these probabilities satisfy fairness, then throughput is maximized if and only if  

)......( 1 ni pppp =

1
1

=∑
=

n

i
ip  

Proof: For throughput optimization, the following should hold:  

0=
∂
∂

ip
θ                  (8.32)  i∀

If a set of acceptable transmission probabilities satisfy the fairness criteria in (6.13), 

(8.31) can be rewritten as  
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Therefore, for throughput maximization [from (8.32)] 
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Following the same procedure as in the proof of Theorems 6.1 and 7.1, we have 

0)1()1(
11

=−×− ∑∏
==

n

j
j

n

j
j pp       

The only acceptable solution is  
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█ 

Corollary 8. 6: The CNE for (8.20) subject to (6.13) does not optimize throughput. 

Proof: For an acceptable solution,  is a necessary and sufficient condition for 

throughput optimization. However, from (8.20), it can be seen that for any acceptable CNE in 

Case 3 

1
1

=∑
=

n

j
jp

1
1

3, ≠∑
=

n

i

CaseCNE
ip .   
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Corollary 8. 7: The CNE for (7.1) subject to (6.13) optimizes throughput 

Proof: Theorem 8.5 and (7.7).       

█ 

Corollary 8.8: There is a unique set of transmission probabilities that optimize 

throughput with fairness conditions as the constraints.  

 Theorem 8.5 and Corollaries 8.6 and 8.7 illustrate that throughput is a QoS related issue. 

For Case 1 where QoS is more important than BP, throughput is maximized. However, in the 

general case where both QoS and BP are important, a more general view of the system level 

performance including the expected battery life of the users should be used. We are presently 

working on this aspect. 
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CHAPTER NINE: INCOMPLETE INFORMATION AND 
APPROXIMATION 

As discussed at the onset of the analytical analysis presented in this dissertation, the 

analysis presented in Chapters Five, Six, Seven, and Eight assume that all the users have 

complete information about all the other users. This scenario however does not reflect the reality. 

Therefore, in this Chapter we propose a mechanism so that realistic scenarios-that are incomplete 

information in nature-can be approximated as a complete information scenario.  

The key to our approximation process is as follows: in most of the distributed systems, 

there is usually a registration authority (henceforth designated by R) that performs several 

accounting functions. We use this authority to gather and disseminate information. 

9.1 Information Gathering and Dissemination  

Let us call the approximation scheme as appxm. There are two conceptual steps in 

appxm. Information is sent to R by users (information gathering) and the information 

accumulated from all the users is broadcast over the network by R (information dissemination). 

There is a wide body of work dealing with information gathering and dissemination. Our 

objective is to provide a simple, case-specific mechanism to achieve approximation. The 

particulars of the mechanism are as follows:  

1. Users are divided into classes. Associated with a class  are two 

parameters: weightage  and the probability of having a packet at the 

beginning of a transmission slot 

C c

cw

1,0, ≠cpp . Users know these parameters a 

priori. The parameter  makes the scheme approximate because users do cpp ,
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not know exactly whether the other users have packets to transmit or not. 

Instead, users estimate whether other users have packets to transmit or not.  

2. R maintains a table containing the number of different classes of users in the 

system. 

3. When a user enters the system, it is assigned a class and the number of users in 

the corresponding class is increased by one. Similarly, when a user leaves the 

system, it informs R about its decision to leave. The number of users in the 

corresponding class of users is decreased by one. Separate control channels are 

to be used for the registration and leaving process.  

4. When the number of users changes, R broadcasts the number of users of each 

class present in the system.  

The above steps are depicted in the following figure. 

 

Figure 7: Approximation Scheme appxm 
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9.2 Analysis   

In order to show the equivalence between the analysis conducted in Chapter Eight and the 

analysis to be conducted in this Chapter; we use, instead of using class-specific notations, 

notations used in Chapter Eight.  

When appxm is used, a user knows about the number of other users present in the system. 

In other words, a user also knows about the values of s and s.  iw ipp ,

Utility function of user i can be given as (from (2.1)) 

iiiii

n

ij
jii cccccppu ,2,3,2,3,1 )]()()ˆ1([ +−−−×−×= ∏

≠

                               (9.1) 

where is the “estimated” probability that user jp̂1− j does not transmit a packet. Note that a 

user j does not transmit if   

1. It does not have a packet to transmit OR 

2. It has a packet to transmit but decides not to transmit 

Therefore, can be computed as follows jp̂1−

jjpjpjjpj pppppp ×−=−+−×=− ,,, 1)1()1(ˆ1         

1,0ˆ , ≠×=∴ jjpj ppp                 (9.2) 

Rewriting the utility function in (9.1), we have 
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             (9.3)  

As  is a non-zero positive constant, the value of the utility function is dependent on 

the numerator in (9.3).  

ipp ,

Theorem 9.1: If NE for the utility functions in (9.3) exists, it is unique.  

Proof: NE is given by  

0)]()()ˆ1([ ,3,2,3,1 =−−−×−∏
≠
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j ccccp  i∀                                 (9.4) 

Therefore, following the exact procedures as in Theorem 1, we have  
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(9.6) can be rewritten as follows:  

ip
i

n

j

n
j

p
r

r

,
1

)1(
1

][
10 <−<

∏
=

−

                 (9.7) i∀

If (9.7) is satisfied, then the NE for utility functions in (9.3) can be given as  
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Corollary 9.2: Let ,  where  is given by (9.8). Let  

 where  is given by (8.11). If  exists,  also exists. 

Moreover, the following relation holds:  

TNE
appxmn

NE
appxm

NE
appxm ppp ]...[ ,,1=
r NE

appxmip ,

TNE
exactn

NE
exact
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appxmp NE
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NE
appxm pTp rr
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jiT
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1],[ =  if ji =  and 0],[ =jiT  if ji ≠ . 

Proof: The NE  for the approximate case exists if (9.7) holds. Note that (9.7) can be 

rewritten as follows 

NE
appxmp

1
][

10 ,
1

)1(
1

<<−<
∏
=

−

ip
i

n

j

n
j

p
r

r
 

 89



1
][

10, 1

)1(
1

<−<
∏
=

−

i

n

j

n
j

r

r
or  

Subtracting “1”, we have  

0
][

1 1

)1(
1

<−<−
∏
=

−

i

n

j

n
j

r

r
 

1
][

0 1

)1(
1

<<∴
∏
=

−

i

n

j

n
j

r

r
 

Therefore, if condition of (9.7) holds, the condition of (8.9) also holds. Hence if  

exists,  also exists.  
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Therefore, we have from (9.8) and (8.11) NE
exactnn

NE
appxm pTp rr

×=  

█ 

9.3 Fairness  

Note that for the approximate scenario, the probability of success can be written as  
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Consequently, the fairness constraints can be represented as 
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Corollary 9.3: If the NE of (8.11) satisfies fairness, so will NE of (9.8). 

Therefore, if the payoff ratios can be designed suitably then fairness can be achieved by 

NE. However, if there is no flexibility is designing the fairness ratios NE will not result in 

fairness in a general case. Therefore, we need to compute CNE for the general case. From (9.1), 

it can be said that the utility function is maximized if 
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Therefore, we have for CNE 
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subject to (9.9)  

Lemma 9.4:  CNE for the approximate case is unique. 

Proof: Following the exactly same steps as in Theorem 8.4, we see that solution in terms 

of  is unique and noting that .  ip̂ ipii ppp ,ˆ =

█ 
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 In this Chapter it was shown that the results for the complete information Access Game 

can be easily extended to the incomplete information Access Game. Although these results are 

approximate in nature, with good historical data, reasonable estimates can be made for . 

Consequently, we can design a realistic medium access protocol as proposed in this paper. 

ipp ,
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CHAPTER TEN: STABILIZATION 

In the previous Chapters (Chapter Five-Chapter Eight), the CNE was proposed as a 

solution to the problem of fairness in the Access Game. The CNE is computed by satisfying the 

fairness conditions. Therefore, the CNE satisfies our primary objective of fair bandwidth sharing. 

However, the CNE is not self-enforcing in nature. It is based on a mutual agreement amongst the 

users and each user should optimize its utility function with the fairness conditions as the 

constraints. In case one or more than one users deviate from the mutual agreement for selfish 

reasons, there is no enforcing mechanism in the system to force the deviating users back to the 

point of mutual agreement i.e. the CNE. This is a drawback of the CNE as a solution concept. In 

this Chapter, we provide two mechanisms to provide an effective solution to this problem.  For 

the rest of this Chapter, the scenario of interest is the general scenario considered in Chapter 

Eight. 

Before providing the mechanisms, we briefly discuss the solution strategy. We have 

shown in Theorem 8.1 that the NE of the Access Game, if it exists, is unique. As the NE is 

unique, it is self-enforcing in nature. Even if some users deviate from the NE strategy, they will 

revert back to the equilibrium strategy in their own interest. This self-enforcing nature of the NE 

makes it an attractive and natural solution for the stability problem. However, as noted before the 

NE does not in general result in fair sharing of bandwidth. Therefore, for the NE to be 

considered as a viable solution, it needs to satisfy the fairness conditions.  In order to achieve this 

goal, our proposed mechanisms design the system parameters in such a way that the NE actually 

satisfies the fairness conditions and maximizes the throughput. From Corollary 8.8, we know that 

there is a unique set of transmission probabilities that satisfies fairness and maximizes 
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throughput. Moreover, this unique set of transmission probabilities ’s are computed from 

(5.17) and (5.18). For convenience, we reproduce the expression these probabilities. 

ip
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i
i wK

w
p

+
=              (10.1)  i∀

where, K  is computed from 1
1

=
+∑

=

n

i i

i

wK
w

.  

In the remainder of this Chapter, we propose two schemes so that the NE of the Access 

Game corresponds to the set of transmission probabilities as described in (10.1). Before 

presenting the results, we provide a short discussion on these schemes. 

The first approach involves choosing the weightages of the users suitably. The 

probabilities in (10.1) are dependent solely on the weightages of the users whereas the NE is 

dependent solely on the payoff ratios. As payoff ratios are intrinsic to the use users, there is little 

scope for modifying the payoff ratios. Weightages on the other hand, can be assigned to the users 

based on their resource requirement. We assign the weightages so that the NE corresponds to 

(10.1). The second approach is based on punishing the deviating users. Under this scheme, if a 

user transmits with a probability higher than the  as in (10.1), the system takes a punitive 

action against the user. The idea is to force the user to transmit with  as in (10.1).   

i ip

ip

We now provide our analysis based on these two approaches.  
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10.1 Computing Weightages   

In this Section, we ask the following question: given a set of payoff ratios , how 

should the weightages  be chosen so that the NE of the Access Game satisfies fairness 

and maximize the throughput.  

)...( 1 nrr

)...( 1 nww

Our objective is to design the NE of the general Access Game in such a way that the NE 

corresponds to the transmission probabilities described in (10.1). For convenience, we reproduce 

the formula for NE in the general scenario from (8.11)  
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From (10.2), it is apparent that the Nash Equilibrium is dependent on the payoff ratios. 

Therefore, it can be argued that by choosing the payoff ratios properly the Nash Equilibrium can 

have the desirable properties. However, the payoff ratios are strictly user specified and can not 

modified easily. On the other hand, the transmission probabilities in (10.1) depend solely on the 

weightages and these weightages can be chosen accordingly so that the transmission probabilities 

as computed from the NE satisfy fairness and maximize throughput subject to satisfying fairness. 

Mathematically, this translates to the following:  
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We have the following result. 
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Proposition 10.1  If 
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as given (8.11) satisfies fairness and maximizes the throughput.  
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Using (10.3) and (10.4) together, 
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On the other hand, we have  
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Without the loss of any generality, we can consider 11 =w . Therefore, 
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Using (10.5), (10.6), and (10.7) we have:  
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 The weightages given by Proposition 10.1 ensure that the Nash Equilibrium given by 

(8.11) or (10.2) will result in fairness and maximize the throughput. This precludes the necessity 

for CNE. Moreover, as the NE is unique and self-enforcing, no user benefits by deviating from 

equilibrium point. Therefore, the equilibrium point is stable. However, the drawback with this 

approach is the existence problem of the weightages as evidenced from (10.8). In cases where 

the existence condition is satisfied this approach is recommended.  

We now consider a second approach, designated as the punishment model for achieving 

the same goal.  

10.2 Punishment Model  

The previous mechanism proposed choosing proper weightages to achieve the 

appropriate NE. However, the existence of the suitable weightages is not guaranteed. Therefore, 

we propose another mechanism in this sub-section so that the NE of the Access Game coincides 

with the desirable transmission strategies as in (10.1).   

In order to do so, we adopt a punishment model whereby if the transmission probability 

of users is more than their optimal transmission probability, some punishment is meted out to the 
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users. Let the optimal transmission probabilities be ( ). The utility functions are now 

modified as follows:  
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ik denotes the cost of transmitting at a higher probability. Using this modifies utility functions, 

we have the following result. 

Proposition 10.2 Using (10.9), a sufficient condition for to be the NE of the 

modified Access Game is that 
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Proof:  In the modified game, user i can be thought to have three possible actions:  

1. transmitting with a lower probability than , designated as action “1” ∗
ip

2. transmitting at , designated as action “2” ∗
ip

3. transmitting with a higher probability than , designated as action “3” ∗
ip
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Hence, action “2” for all users is the unique pure strategy Nash Equilibrium for the Game 

considered. Therefore,  is the unique Nash Equilibrium of the game with the modified 

utility functions as in (10.9). 

)...( 1
∗∗
npp

█ 

 In this approach, there is a cost associated with transmitting at a higher transmission 

probability. Therefore, it is in the best interest of the users to transmit at the desirable 

transmission probability. The question is how the punishment should be administered. It is 

plausible that the registration authority (RA) will monitor the activities of the users and will 

charge the deviating users if they transmit at a higher transmission probability. However, the 

intervention by the RA makes the system dependent on centralized intervention; thus violating 

the distributed property of system to certain extent.  
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CHAPTER ELEVEN: CONCLUSIONS 

In this dissertation, our primary objective was to devise a transmission strategy for 

distributed MAC scenarios such that users get their fair share of bandwidth. Our approach to this 

problem is based on the following constructs. First, we propose that the users should have 

autonomy over choosing their own transmission strategies based on the state of the network. 

Secondly, we model the medium access with independent and selfish users as a non-cooperative 

game. We designate this game as the Access Game. Therefore, the fairness problem is mapped to 

a non-cooperative game problem and the solution of the game is analyzed for its fairness 

characteristics. In this dissertation, we have computed and discussed two solution concepts for 

the Access Game.  

Theses solutions are Nash Equilibrium and Constrained Nash Equilibrium. We prove that 

both these solutions are unique for the Access Game. The advantage of the Constrained Nash 

Equilibrium is that the solution is guaranteed to satisfy the fairness conditions. However, the 

Constrained Nash Equilibrium has some stability problems. On the other hand, the Nash 

Equilibrium is stable in nature but does not guarantee fairness. Therefore, we propose two 

techniques that result in a Nash Equilibrium that satisfies fairness and optimizes the system 

throughput. One of these techniques involves choosing proper weightages for the user and the 

other uses a punishment model.  

In Chapter Three we model the distributed medium access as a non-cooperative game and 

designated the game as the Access Game. It is proposed that all the users use p-CSMA type MAC 

protocol for medium access. For analytical tractability, we assumed the game to be a complete 
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information game. We also assumed that the umber of users playing the game remains and 

unchanged and each user has a packet to transmit at the beginning of each transmission slot. 

Later in Chapter Nine, we relax all of these assumptions. Each user receives a payoff after 

playing the game. We have argued that the payoff has two components, Quality of Service (QoS) 

and Battery Power (BP).  The analysis presented in Chapters following Chapter Three, it is seen 

that the relative importance of QoS and BP plays an important role in the computation of the 

equilibrium for the Access Game.  

Before presenting our main body of work for the complete information Access Game in 

Chapters Five-Eight, we provide an analysis of incomplete information Access Game in Chapter 

Four. We compute equilibrium access strategies for simple cases and compare these strategies 

with the corresponding complete information access strategies. It is observed that the access 

strategies of complete information game give users a higher chance of success. This is due to the 

fact that if the users have complete information about the other users, they can a make a more 

efficient choice.  

In Chapter Five, we analyze the special case of the wired networks. Wired networks are 

special because the BP component of the payoff vanishes in this case. The analysis shows that 

there is an infinite number of Nash Equilibrium for the wired networks. However, all these Nash 

Equilibriums are inefficient in nature. Therefore, we propose the Constrained Nash Equilibrium 

as a solution concept. It is shown that the Constrained Nash Equilibrium in this case in unique. 

This Constrained Nash Equilibrium satisfies fairness and maximizes the system throughput.  

In Chapter Six we show that for the existence of Nash Equilibrium in the Access Game, 

the payoff ratios of users should not be greater than “1” or less than “0”. In Chapter Seven, we 
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analyze two special Cases. In Case1, the payoff ratio of all the users is “0” and in Case 2, the 

payoff ratio of all the users is “1”. The general case where the payoff ratio lies between “0’ and 

“1” is analyzed in Chapter Eight and we show that the Nash Equilibrium for this case is unique. 

However, certain existence conditions should be satisfied for the existence of the Nash 

Equilibrium. Moreover, the Nash Equilibrium does not satisfy the fairness conditions in general. 

Therefore, we compute the Constrained Nash Equilibrium for the general case also and show that 

the Constrained Nash Equilibrium is unique for the general case. 

In Chapter Nine, we present an approximation scheme so that the assumptions made for 

the previous analysis can be relaxed. A central Registration Authority plays a key role in the 

approximation scheme. Consequently, more realistic scenarios can also be analyzed through the 

techniques presented in this dissertation. Finally, in Chapter Ten we address the stabilization 

concerns arising out of the solutions computed in the previous Chapters.   

Our contributions can be summarized as follows. We have proposed and analyzed a novel 

framework for medium access, where each user chooses its transmission strategy to maximize its 

utility functions.  We have shown that it is possible to achieve through a non-cooperative 

fashion. This is achieved explicitly in Constrained Nash Equilibrium. Moreover, we have shown 

that by designing the system parameters suitably, fairness can be achieved through the Nash 

Equilibrium also. 

Finally, we note the following area of future research. Let us consider that the players are 

playing the Access Game at some mutually beneficial equilibrium point. What happens if some 

of the users start cheating i.e. deviate from the equilibrium point? Can some optimal control 

strategy be adopted by the other users such that the Access Game reverts back to the original 
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equilibrium point? This question presents an interesting situation and we suggest that a discrete-

time system dynamics approach be used to solve this problem. 
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