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ABSTRACT 

Personal Digital Assistants (PDAs) are becoming more and more powerful with advances 

in technology and are expanding their applications in a variety of fields. This work explores the 

use of PDAs in Virtual Environments (VE). The goal is to support highly interactive bi-

directional user interactions in Virtual Environments in more natural and less cumbersome ways. 

A proxy-based approach is adopted to support a wide-range of handheld devices and have a 

multi-PDA interaction with the virtual world. The architecture consists of three components in 

the complete system, a PDA, a desktop that acts as a proxy and Virtual Environment Software 

Sandbox (VESS), software developed at the Institute for Simulation and Training (IST). The 

purpose of the architecture is to enable issuing text and voice commands from PDA to virtual 

entities in VESS through the proxy. The commands are a pre-defined set of simple words such as 

‘move forward’, ‘turn right’, ‘go’, and ‘stop’. These commands are matched at the proxy and 

sent to VESS as text in XML format. The response from VESS is received at the proxy and 

forwarded back to the PDA. Performance measures with respect to response time characteristics 

of text messages between PDA and proxy over Wi-Fi networks are conducted. The results are 

discussed with respect to the acceptable delays for human perception in order to have real-time 

interaction between a PDA and an avatar in virtual world.   
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CHAPTER ONE: INTRODUCTION 

1.1 PDA 

The Personal Digital Assistant (PDA) is a portable computing device that can include 

data transmission capabilities. PDAs are one of the fastest selling consumer devices in the 

history. The Free Online Dictionary of Computing [3] describes PDA as “A small hand-held 

computer typically providing calendar, contacts, and note-taking applications but may include 

other applications, for example a web browser and media player. Small keyboards and pen-based 

input systems are most commonly used for user input.” With improvements in technology, these 

devices make possible services such as paging, data messaging, electronic mail, facsimile, date 

book and other information handling capabilities like word processing, playing MP3 music files, 

getting news, stock quotes from internet and playing games. Some of latest PDAs also have 

integrated digital cameras, GPS receivers and bar-code readers.  

PDA’s are of interest because they are low cost, multi-modal, of increasing performance, 

programmable, and are becoming ubiquitous. PDAs also offer portability, social interactivity, 

context sensitivity, connectivity, and individuality and hence they could be useful tools in Virtual 

Environments (VEs).  PDAs currently have limitations that must be known to ensure that they 

are optimally used.  These limitations have been widely documented [5] and include battery life 

tradeoffs with software execution and data storage, potential performance issues in 

computational and graphics intensive settings, and programmability.  PDAs also lack sufficient 

screen space to display complex graphics. A proxy based approach was adopted in order to 

minimize some of these limitations and have a multi-PDA interface for VEs in the future. 
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1.2 Virtual Environments 

In a broad sense, an interactive computer model that simulates an actual or imaginary 

world is called a Virtual Environment (VE). Virtual Reality (VR) can be defined [1] as “a 

medium composed of interactive computer simulations that sense  the participant’s position and 

actions and replace or augment the feedback to one or more senses, giving the feeling of being 

mentally immersed or present in the simulation (a virtual world)”. The key features of virtual 

reality as seen from the definition are: a virtual world, immersion, sensory feedback (responding 

to user input), and interactivity. The term virtual environment is often used as a synonym for 

both virtual reality and virtual world. More specifically, a virtual environment is an instance of a 

virtual world presented in an interactive medium such as virtual reality. Thus, VEs are interactive 

computer simulations that immerse users in an alternate, yet believable reality. People move 

around, look at, and manipulate graphics objects using input devices ranging from the commonly 

accessible keyboard and mouse to more exotic devices, such as head-mounted displays and 

instrumented gloves.  

At the University of Central Florida faculty have been investigating the technical and 

human aspects of VEs for several years [19]. The research focus has involved integrating 

existing technologies, such as helmet-mounted displays, and creating new strategies to aid the 

human user in navigating and interacting with other human users in a VE.  Examples have 

included novel pointing devices and unobtrusive placement of a compass rose in the virtual 

environment.  A variety of input and output devices have been used by UCF, but not with a focus 

on how the devices can be used as replacements or adjuncts for other sensory input/output 

devices. 
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1.3 Use of PDAs in Virtual Environment 

With the use of handheld devices becoming common-place, it is natural to investigate 

integrating these devices in VEs to take advantage of their low cost and user familiarity. This is 

the motivation for this thesis. The goal is to investigate and prototype a design and optimize a 

mechanism for efficient, highly interactive multi-modal communications between participants 

(real and computer generated) in VEs using handheld devices over wireless networks. This work 

is a part of the Research in Augmented Virtual Environment Systems (RAVES) [4] program, 

which is a multi-disciplined research program at the University of Central Florida exploring 

various technological and human factors aspects of multi-modal virtual environments. Handheld 

devices hold promise in several areas including off-loading the central processing system for 

selective tasks (e.g., visual processing of maps) and supporting wearable computing for 

untethered VE traversal.  User familiarity with these devices may facilitate better user interaction 

with virtual environments. 

Users employ different devices like head-mounted displays and joysticks to interact with 

virtual entities. A PDA can be an additional tool to interact with virtual worlds.  PDAs are also 

potentially useful tools for users in the real world, providing improved interactivity with other 

humans or computer avatars. An avatar is the real-time graphical representation of an identity of 

the user using the virtual environment. With respect to content, PDA’s are low cost and high 

function communication devices that can also store a variety of information for instant 

presentation. For instance one can envision the PDA storing maps of facilities and instructions. 

This type of usage is relevant to military and civilian uses of virtual environments.   In training 

and operational systems for soldiers, for example, handheld devices are used to exchange 
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information (send and receive messages), share information and retrieves maps as the soldier 

moves. With other modalities like audio, voice recognition and GPS enabled handhelds; users 

could perform their actions using a PDA device on the move and in a convenient way. Users 

could potentially perform their actions hands free, as they could keep the PDA in their pocket 

and have eye-glasses attached to it to see the screen and a voice recognition device to accept 

their commands. Alternatively, haptic or auditory information could be conveyed via the device, 

thereby offloading the visual modality. PDAs can be made to vibrate or flash when certain 

objectives have been accomplished or when there is danger or in situations where a more 

conventional notification might not be appropriate.  PDAs have a variety of buttons that can be 

used to indicate alarms or to coordinate activities between soldiers and avatar that cannot see 

each other.  

An Internet or intranet compatible architecture suitable for using PDA’s in VEs is an 

attractive infrastructure for proxy based study, supporting studies of interactivity performance 

factors, and the subsequent optimization of performance (minimizing network time). It is also 

intended to support user interactions in VEs in a more natural and less cumbersome way and 

navigation in an existing VE in real time from PDA (e.g., by providing ‘you-are’ here maps with 

auditory information). 

The interface for the PDA to the VE is through the Virtual Environment Software Sandbox 

(VESS) [6].  VESS is a suite of libraries created at the University of Central Florida’s Institute 

for Simulation and Training (UCF IST) [7] that are used to create VE applications.  VESS 

provides an application base that is useful and functional using today's hardware and graphics 

and audio libraries, extensible to support future hardware and software libraries, and easily 
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portable to multiple platforms, graphics and audio systems, and application programming 

interfaces (API's). 

This work explores how the PDA can be used in a VE in issuing commands in real-time. A 

set of phonetically different voice commands for navigation purposes is created which can be 

used for navigation. The voice commands are created to be sent over from PDA using the 

Microsoft .NET compact framework, Microsoft Speech Server and a new technology for speech 

applications called Speech Application Language Tags (SALT). The response time in terms of 

number of bytes sent over wireless network from PDA to proxy is calculated.  The effect of 

disabling Nagle algorithm is discussed. Nagle algorithm is used by sockets to concatenate small 

messages to be sent over the network in order to avoid congestion over the network. 

The research is presented in four chapters. Chapter 2 provides the literature review of the 

work that has been done using PDAs in VE. Chapter 3 provides the architecture used and the 

experimental methodology. Results are presented in chapter 4 whereas chapter 5 discusses the 

conclusions, limitations and future scope for this work. The terms PDA, Handheld and Pocket 

PC (a Windows CE device) are used interchangeably. 
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CHAPTER TWO: RELATED RESEARCH 

  An informative and forward thinking article by Mark Weiser [9] was one of the early 

works showing the potential of handheld devices. This work inspiring ubiquitous computing 

suggested that devices such as PDAs and embedded machines could facilitate moving computing 

to a background function needed to support ubiquitous computing. Ubiquitous computing could 

eventually facilitate broader use of virtual environments through miniaturization and higher 

performance.  

When PDAs were introduced into the market, they were thought to have great potential in 

the computing device industry. Keefe et al. [8] summarizes the histories and findings of various 

initiatives of PDAs and how they played out in educational settings. Initially PDAs were 

considered as replacements to desktop PCs or laptops. The focus now is to use PDAs and PCs 

together when both are available. The use of a PDA as augmentation for PCs in controlling 

applications like PowerPoint or WinAmp was investigated [10] using Pebbles Project [11]. In the 

Pebbles architecture, client programs run on one or more PDAs, the server program runs on the 

PC, and a special program called PebblesPC mediates between clients and servers. User studies 

on Multi-Machine User Interfaces (MMUI) were performed on different applications which were 

developed as part of Pebbles project.  

The effective use of PDAs for interacting with other heterogeneous devices is made in 

Magic Lounge [14]. Magic Lounge is a shared virtual meeting environment which has been 

designed to support meetings between physically remote people who would like to interact with 

each other using any one of a number of heterogeneous communication devices like PCs, PDAs, 

palmtops, and mobile telephones. 
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The idea of using a PDA as an interaction device in a VE is not new. It was first 

introduced with the Bamboo Project [16] in order to solve the problem of choosing the 

appropriate interaction techniques among 2-D and 3-D techniques. Bamboo is a multi-platform 

system supporting real-time, networked, virtual environments. The Bamboo project offered the 

user an interface which included a camera, an environment, and geometry functionalities. Each 

functionality was implemented as an applet. Bamboo interacted with the CAVE-like 

environment via the PDA’s wireless serial port. A 3Com PalmPilot was used as PDA and 

Bamboo’s java-based GUI was used for user interface.  

The JAIVE [17] (Java based interface to the virtual environment) project has also 

developed an interaction tool which provided the user with integration of common interaction 

methods such as selecting colors and performing push-button operations with their Immersive 

Projection Technology (IPT) applications. 

The Virtual Harlem [12] project is an effort to create a learning environment that can 

enrich students’ understanding of the Harlem Renaissance by having a collaborative virtual 

reality tour of Harlem in which participants can travel back 80 years to see historical figures and 

hear speeches and music from that period. Virtual Harlem is written using a high-level VR 

toolkit called Yggdrasil and makes use of CAVE [15] immersive environment. PDAs are used in 

Virtual Harlem as the Annotation Management Interface (AMIE) to store and retrieve virtual 

annotations for novice users. Virtual annotations are recordings in VR where both the person’s 

hand and head gestures, as well as their voice are captured. AMIE was developed for iPAQ 

Pocket PC and wireless LAN is used for connectivity between AMIE and the CAVE. Using the 

Pocket PC interface, the user can see all the annotations in the space, people who made the 

annotations, and the time and locations of all the annotations.  
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QuickSet [13] is a wireless, handheld, agent-based, collaborative, multimodal system for 

interacting with distributed application. It consists of a collection of “agents” including speech 

recognition, gesture recognition, natural language understanding, multimodal integration, a map-

based interface, and a database, running standalone on the tablet PC or distributed over a 

network. The system analyses continuous speech and gesture in real time, producing the best 

joint semantic interpretation for multimodal commands. The multimodal interface runs on 

machines as small as Windows CE devices, as well as on wearable, handheld, table-sized, and 

wall-sized displays. 

Applications of 3D virtual humans inside mobile devices are discussed at length by 

Gutierrez et al. [18]. A prototype of a virtual human animation engine compliant with MPEG-4 

for mobile devices was developed. A personal virtual human assistant (PVHA) is constructed in 

form of an autonomous software agent that will look, move, listen and talk as a real person.  

The work done so far has been principally for student teaching methodologies or tourist 

guides, where teaching aids or map-paths in a building appear on the PDA and one progresses 

spatially by just tapping on appropriate links. As pointed out by Gutierrez et al [18], the ultimate 

human-computer interface would include audio/video analysis and synthesis in combination with 

artificial intelligence (AI) techniques, dialog management and face/body gestures to allow an 

intelligent and expressive dialog with the user. Little work has been done on voice-interactions 

using PDAs. Mobile Reality Framework [20] makes use of speech using PDAs in its 

architecture. It makes use of ScanSoft RealSpeak TTS engine and the Siemens ICM Speech 

Recognition Engine. The Mobile reality framework runs entirely on Pocket PC and synchronizes 

a hybrid tracking solution to offer the user a seamless, location-dependent mobile multi-modal 
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interface. The specification used to implement the speech interaction management is proprietary 

and hence has its limitations for wide use.  

The goal of this work is to prototype and to implement an architecture which can be used 

for interactive interactions between the participants (computer generated and real) in real-time. 

This thesis makes effective use of pre-defined speech commands using Speech Application 

Language Tags (SALT), which is an industry standard for developing speech applications and 

Microsoft Speech Server. The proposed architecture supports different types of PDAs and 

multiple modalities. It also tests the performance measurements in terms of response time over 

the wireless network to give an idea for feasibility of such architecture to use in real-time.  
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CHAPTER THREE: METHODOLOGY 

The purpose of this work is to investigate methods for increasing and improving the level 

of interactivity between handheld devices and a VE by first decreasing latency and subsequently 

by allowing multiple modalities to operate simultaneously during runtime.  

3.1 Proposed Architecture 

The proposed architecture is shown in the Figure 1 [36].  The Pocket PC connects to a 

wireless router through a Wi-Fi (IEEE 802.11b) network. The access point (AP) connects to 

VESS through a proxy in a wired Ethernet. The architecture building blocks and functionality of 

each block are briefly explained as follows. 

3.1.1 Pocket PC  

The handheld device enables one to store, retrieve and play multimedia files, exchange 

text and voice messages, browse the Web, and more. The handheld device offers exchange or 

synchronization of information with a desktop computer, takes user input via a stylus or voice 

commands and outputs via audio, graphics, or text. Devices such as this have been used in VE 

research as simple controllers.  These devices are also becoming widely used in a variety of 

fields. The mobile device used for this work is Compaq’s iPAQ h3955 Pocket PC. In terms of 

computing power and equipment, these are the most powerful devices at present [18], compared 

to other devices having PalmOS and EPOC operating system. These kinds of PDAs are situated 

on the high-end systems category, featuring advanced characteristics such as 16-bit color 
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displays, audio reproducing/recording and wireless communication (wireless LAN, infrared, 

Bluetooth). The iPAQ Pocket PC platform has a growing number of software development tools 

and high performance graphics libraries. The details of the device are in Appendix A. 

 

 

Figure 1: PDA-VESS architecture 

3.1.2 Access Point  

An access point (AP) is a hardware device that is a communication hub for users of a 

wireless device to connect to a wired LAN. They are specially configured nodes on Wireless 

Local Area Networks (WLANs) which act as a central transmitter and receiver of WLAN radio 

signals. APs are important for providing heightened wireless security and for extending the 

physical range of service to the users.   
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There are three major IEEE wireless LAN standards (802.11a, 802.11b, and 802.11g) 

operating on different frequency bands (2.4 for 802.11b & 802.11g and 5 GHz for 802.11a). 

Among these WLAN networks, 802.11b was chosen for this work as it is the most widespread 

version of wireless networking, which brings a theoretical throughput of 11 Mbps. A brief 

introduction on how 802.11b works is provided in Appendix B. 

3.1.3 Proxy  

The proxy is a server that handles connections on behalf of Pocket PC. It is a special 

software based server, which stores and manipulates data.  In other words, it is a “network cache”. 

The proxy also executes programs remotely from the handheld and provides results back to the 

handheld.  The implemented architecture includes a proxy between the VESS system and wireless 

devices. The proxy has more functionality than routing and caching.  For example, the proxy can 

re-format VESS communications for different PDA devices in real time. There are special 

functions added to the proxy to support voice for interacting with avatars and avatars’ responses 

to the VE participant.  The design also allows commands to other components and information to 

other players. Simple experiments have been prototyped using text to text and text to graphics for 

performance and connectivity analyses. The benefits of the proxy-based approach are outlined 

below:   

• Flexibility for supporting multiple PDAs: A proxy based approach supports experimenting 

with wide array of personal communications devices. As these items grow in numbers 

and variety over the next few years, only interfaces will need to be changed thereby 
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keeping the core software intact. Thus experimentation can occur without affecting the 

full data content and network backbone.   

• Scalability and Security: The use of a proxy that can process different types of data allows 

for multi-modal interaction with a VE. As modalities increase in the future with different 

types of handheld devices, one can add a small amount of code for each particular modality 

at the proxy server. The proxy also acts as a firewall between VESS and the PDA and hence 

does not allow unauthorized access to the virtual world. 

• Support for distributed computing and caching: A proxy based approach will also be useful 

for using multi-PDA–VESS multimodal interactions. By making PDAs thin clients, 

distributed computing can be made possible where major computation is done at proxy and 

support for caching can be provided on it.  

3.1.4 VESS 

VESS [6] provides a public domain application software environment that is useful and 

functional using today's hardware, graphics and audio libraries; is extensible to support future 

hardware, graphics, audio libraries, and easily portable to multiple platforms, graphics and audio 

systems, and other application programming interfaces (APIs). VESS is designed to simplify and 

expedite the development of applications where VEs are required. It does this by providing a 

simple interface into the underlying graphics API and other output devices, such as haptics, 

while integrating support for various input devices, such as joysticks and motion tracking 

systems, and display devices, such as head-mounted displays and shutter glasses. Additionally, 

VESS provides behaviors and motion models to allow the user to manipulate his or her 
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viewpoint as well as control and interact with objects in the virtual environment.  The user's 

viewpoint can be independent or attached to any transformable object in the scene. Also, VESS 

provides a seamless audio API that integrates directly into the VESS scene graph, giving 

developers the ability to easily add sound to the environment (including moving objects). Other 

useful routines, such as collision detection and terrain following, are also provided. 

VESS provides a high-level library allowing complex virtual entities (avatars), complete 

with geometry and motion/articulation models, to be generated with a few simple lines of code. 

This is useful for dynamic networked virtual environments, which may involve many users 

and/or computer-generated forces at once. VESS provides the developer with the ability to 

handle avatars at a high level and leave the details of movement, articulations, and behaviors to 

the system.  

VESS is also designed for easy portability. Its multi-layered architecture allows the 

developer to focus on the details of the application, without worrying about the specifics of the 

graphics API or hardware interfaces. Thus, applications built using the VESS libraries will be 

easily portable to any other platform. Currently, VESS runs on IRIX and Linux platforms using 

the SGI Open Performer API. Other platforms and API's will be supported in the future.  

VESS is currently being enhanced by researchers at UCF IST to support experimentation 

in sequencing and latency in multi-modal virtual environments. The global multi-modal 

objective is to allow researchers to adjust sequencing of inputs and outputs to optimize 

information flow to the human user.  The need for modal shifts should be sensed and switched 

seamlessly during runtime.  This work complements this global objective by providing a 

handheld device to receive and transmit multi-modal information and architecture to minimize 

transmission and processing time to support experimentation. 
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Figure 2: PDA-VESS Interface Block Diagram 

 

Figure 2 shows the iPAQ Pocket PC as a user interface, a Windows based machine as a 

proxy and a Linux machine hosting VESS. This single threaded network is for controlled study 

to baseline network performance for text messages and images and to improve performance from 

that baseline.  

3.2 Implementation  

The implementation issue was a choice of technology to be used. Two approaches for 

implementation were considered: 

1. Use of a Stand-alone client program:  Use voice recording software on the PDA, record 

the commands, save them as .wav or any other recording format and send the audio file to 

proxy. At the proxy, run voice-to-text software to convert the commands into text, match 

the converted text with the pre-defined dictionary of words and if there is match, send the 

command to VESS.  
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2. Use of web-based approach: Run a web server with speech recognition and synthesis 

capability at the proxy. Issue commands from Pocket Internet Explorer (PIE) on the 

PDA. The speech engine at the proxy will convert this speech into text. The text is 

matched with the dictionary of pre-defined words at the proxy. If there is match between 

the text recognized from spoken word and the dictionary word, then that text is sent to 

VESS and the acknowledgement is received. 

The second option is chosen, as it is an integrated approach and it makes PDA a thin 

client. As handheld devices grow in future with different platforms, the first approach would 

require them to build a specialized application for each of these devices. Microsoft .NET 

technology is adopted by taking advantage of its portability and excellent support for speech 

related applications for handheld devices. Speech Application Language Tags (SALT) is 

preferred over VoiceXML [26] as it supports wider variety of devices and is designed for 

multimodal and telephonic applications. VoiceXML was originally designed for Interactive 

Voice response (IVR) applications and is well suited for telephonic applications.  

3.2.1 Microsoft .NET 

Microsoft .NET (formerly Next Generation Windows Services) is a set of software 

technologies for connecting information, people, systems, and devices [21]. This new generation 

of technology is based on Web services—small building-block applications that can connect to 

each other as well as to other larger applications over the Internet. Essentially .NET represents an 

integrated approach to software development, deployment, and usage. Hence there is no need for 

developers to build separate applications for a mobile platform, a Pocket PC platform, or a 
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desktop platform. Each of these platforms is seen as a greater part of the whole with users able to 

seamlessly transfer data between the platforms. 

The .NET Framework is the infrastructure for the Microsoft .NET Platform. The .NET 

Framework is a common environment for building, deploying, and running Web Services and 

Web Applications. 

 

 

Figure 3: Overall block diagram of .NET framework 

 

The .NET Framework contains Common Language Runtime (CLR), .NET framework 

class library and Common Language Specifications (CLS), .NET languages and Visual Studio as 

shown in Figure 3 [22]. CLR is the platform’s execution engine. The code written for .NET runs 

under CLR’s control. The .NET Framework class library consists of large number of classes for 

common functionalities, which can be used by all .NET languages. The CLS provides rules for 

multiple languages that .NET supports. 

The Visual Studio.NET is a common development environment for the new .NET 

Framework. This What You See Is What You Get (WYSIWYG) tool provides a feature rich 
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application execution environment, simplified development and easy integration between a 

number of different development languages. 

The Microsoft .NET Compact Framework [23] (CF) is a scaled down version of 

Microsoft .NET specifically designed for small form factor devices, such as Pocket PC. The 

.NET CF greatly simplifies the process of creating and deploying applications to mobile and 

embedded devices while also taking full advantage of the capabilities of the device.  The .NET 

CF enables the execution of secure, downloadable applications on devices such as PDAs, mobile 

phones, and set-top boxes.  .NET CF and C# are used for application development for this work. 

3.2.2 Speech Application Concepts and Standards 

The speech application uses a set of voice commands to define grammar. The three 

important concepts to build a speech application are dialogues, prompts and grammar. A 

dialogue is a composition of questions, answers, statements, and digressions. It is the 

conversation between the system and the user. This is the presentation logic of an application. 

Prompts are what the system says to the user to ask a question or provide status to the user. In a 

Graphical User Interface (GUI) application, the equivalent for prompts is labels and message 

boxes. Grammar is used to define and constrain the user input that the system recognizes. 

Additionally, the grammar provides a way to associate multiple phrases with a single semantic 

meaning. For example, the phrases “Help” and “what can I say” would be mapped to a single 

meaning of “Help.” Thus, grammar and prompts deal specifically with the input and output of a 

speech application while dialogue weaves the two together in the most natural manner possible. 
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These concepts are developed using industry standards. The four open standards for speech 

application development are: 

1. Speech Application Language Tags (SALT) is the core API for spoken interaction with a 

user. It provides the core constructs of prompts (questions), listens (answers), and related 

APIs. This specification is being driven by the SALT Forum [24] 

2. Speech Recognition Grammar Specification (SRGS) provides a way to define the phrases 

and phrase combinations that an application recognizes from a user – generally referred 

to as just “grammar.” This specification is driven by the World Wide Web Consortium 

(W3C) [29]  

3. Speech Synthesis Markup Language (SSML) is the text-to-speech specification being 

driven through the W3C. It defines output (prompts) in the application. The specification 

is available at [30] 

4. ECMAScript (ECMA-262) is commonly seen in its implemented forms as JScript, 

JScript.NET, and JavaScript. JScript and JScript.NET (depending on the client) are used 

throughout the Speech Application Software Development Kit (SASDK). The 

specification for ECMAScript is available at [31]. 

3.2.3 Speech Application Language Tags (SALT) 

The focus of this work is to have voice interaction from PDAs to VE. As speech 

recognition systems are becoming more practical, they provide an excellent opportunity for 

natural communication with computer systems. This is especially true with VEs, where the goal 

is to provide the most natural form of interface possible. The ultimate speech recognition system 
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would understand context and use it to interpret speech, and it would be able to process a steady 

stream of speech from any speaker. Speech Application Language Tags (SALT) [24] is an effort 

to achieve this goal. SALT, an open industry standard, is a speech interface markup language. It 

consists of a small set of XML elements, with associated attributes and Document Object Model 

(DOM) object properties, events and methods, which apply a speech interface to web pages. It 

provides the core constructs of prompts (questions), listens (answers), and related APIs. SALT 

tags are a lightweight set of extensions to existing markup languages; in particular HTML, 

XHTML and XML that enable multimodal and telephony access to information, applications and 

Web services from PCs, telephones, tablet PCs and wireless PDAs. Multimodal access enables 

users to interact with an application in a variety of ways: input with speech, a keyboard, keypad, 

mouse and/or stylus; and output as synthesized speech, audio, plain text, motion video and/or 

graphics. Each of these modes could be used independently or concurrently. 

The Microsoft Speech Server [25] contains a complete solution for developing, testing, 

deploying, and managing telephony (speech only) and multimodal (speech/visual) applications. 

Specifically, the product contains the following: 

• Microsoft Speech Server 

• Microsoft Speech Application SDK 

The Microsoft Speech Server (MSS) contains all of the server components for deploying 

telephony and multimodal applications. MSS runs on Windows Server 2003 and performs speech 

recognition and speech synthesis for telephone, cell phone and Pocket PC devices. The Microsoft 

Speech Application Software Development Kit (SASDK) addresses the needs of the speech 

application developer with APIs, controls, and tools that extend Visual Studio .NET into the 
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speech domain. SASDK includes the client-side speech add-ins, Speech Add-in for Microsoft 

Internet Explorer and Speech Add-in for Microsoft Pocket Internet Explorer (PIE) which 

incorporates the means for desktop PCs, Tablet PCs, and Pocket PC devices to understand 

speech tags embedded in HTML pages as defined by the SALT specification. The SDK also 

contains a desktop version of the new Microsoft speech recognition engine, a test-level version 

of the Microsoft Text-to-Speech (TTS) engine, and tools necessary for building and testing 

speech applications. Fig. 4 shows a high-level view of a deployed speech solution with Pocket 

PC which is a multimodal client, the speech server components, and a Web server hosting a 

speech application. 
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Figure 4: Implementing Architecture 

 

Figure 4 is a detailed implementation diagram of Figure 1. The web browser, that is, 

pocket Internet Explorer (PIE) on the PDA provides user interaction, where the user can make a 
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request to the proxy server for a particular task such as getting a map, playing an audio clip etc. 

PIE has a speech add-in provided into SASDK. The Speech Add-in for PIE is a SALT interpreter 

that supports speech-enabled Web applications deployed over 802.11 wireless networks. The 

Speech Add-in for PIE supports all Basic Speech Controls and Dialog Speech Controls delivered 

in the SASDK, using MSS to perform all the actual speech processing. It also supports a Pocket 

PC hardware button event that developers can bind to listen and prompt elements. On a Pocket 

PC, the user enters a Uniform Resource Locator (URL) in Pocket Internet Explorer, which opens 

an .aspx file on the Web Server. The Web Server on the proxy hosts the .aspx page and sends 

HTML, SALT and script to the Pocket PC. The Pocket PC sends a compressed representation of 

the audio and a pointer to the recognition grammar to the Speech Server that performs 

recognition and returns results to the Pocket PC. The VESS interface program on the server takes 

the matched command and forwards that request to VESS through TCP/IP sockets for further 

action. VESS performs the necessary action corresponding to that instruction and acknowledges 

the request by sending appropriate information back to the Pocket PC via the proxy server. The 

requests and acknowledgements are cached at the Speech Engine Services (SES) proxy for future 

use.  The acknowledgement to PDA can be sent as a text, an image or audio to provide server-

side speech recognition and speech playback services for multimodal and telephony clients using 

the MSS. A multimodal client on a Pocket PC device accesses SES directly for both speech 

recognition and speech playback. 

The commands in text format are sent via a predefined XML format to VESS through a 

socket connection over wired Ethernet. 
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3.2.4 Voice Commands 

For the controlled study, few frequently used movement strings, which are phonetically 

different, were used as voice commands. Being phonetically different, there are fewer chances of 

confusing similar sounding phrases, e.g. “kiss this guy” instead of “kiss the sky.” Each 

movement string is composed of a movement word and a direction word. Movement words and 

direction words are listed in Table 1 and Table 2 along with their usual pronunciations and 

frequencies of use. Frequencies are taken from the British National Corpus (BNC) database and 

word frequency [27]. The frequency is the number of occurrences in the whole 100 million word 

collection in the BNC database. The pronunciations are taken from American Heritage 

Dictionary (AHD) [28]. 

 

Table 1 
Movement words (can be combined with direction words) 

Movement Word AHD Pronunciation Key  Frequency 

Turn turn, turn 45487 

Go gow, g  249540 

Move moov, m v 37836 

Stop stâp, stop 25066 

Halt holt, hɔ ːlt 1483 
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Table 2 
Direction words  

Movement Word AHD Pronunciation Key  Frequency 

Forward 'forwurd, fôr w rd 12582 

Back Bak, b k 75494 

Up up, p 195426 

Left left, l ft 11343 

Right rIt, r t 40460 

 

 

The voice commands built from these words are: 

• Halt 

• Stop 

• Turn Left 

• Turn Right 

• Go Forward 

• Go Back 

• Go Up 

• Go Down 

• Move Forward 

• Move Back 

• Move Up 

• Move Down 
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3.2.5 Working of Speech Application 

The two major components of a speech application are a client (Web browser) and a Web 

server. In addition, a component generically referred to as Speech Services comes into play. The 

Web server stores an ASP.NET application, built with Web Forms and Microsoft ASP.NET 

Speech Controls. The speech controls render speech-specific markup to the client rather than the 

HTML rendered by other types of Web controls. Grammar files (.GRXML files) and prompt 

databases (containing the recorded prompts) are also stored on the Web server. The HTTP 

request lifecycle in a typical Web application is the same in a speech application. However, 

during the rendering phase, what is rendered to the client is a document containing SALT, 

SSML, SRGS, and CSTA tags in addition to the HTML and JScript that a typical Web 

application generates. When the client receives this document, two things happen: 

1. The Speech Services downloads and parses the grammar in preparation for running it. 

The Speech Services also downloads the prompt database (if specified) for playback as 

prompts are encountered. 

2. The SALT client and Web browser invoke the <listen> and <prompt> elements as 

specified in the script. Note that rather than executing elements linearly as a standard 

HTML client would, elements are executed in their order of invocation as indicated by 

calling their start() methods. 

The Speech Services start listening for input from the user when a <listen> element is 

invoked. Once it receives the audio (an utterance), it compares its analysis of the audio stream to 

what is stored in the grammar, looking for a matching pattern. If the recognizer finds a match, a 

special type of XML document is returned to the client. The document contains markup called 
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Semantic Markup Language (SML) and is used by the client as the interpretation of what the 

user said – this is effectively what the grammar, or at least its recognized parts, is transformed 

into. The client then uses this document to determine what to do next (execute a prompt or listen 

element), and the cycle repeats itself until the application is done collecting data and the session 

ends. Figure 5 shows the grammar file created for this application using Visual Studio.NET. 

 

 

Figure 5: Grammar file in Visual Studio.NET 2003 

 

The architecture described in chapter three requires Microsoft Speech Server with Speech 

Engine Services (SES) in it. At the time of experiments, this product was in beta testing and was 

not available commercially. Hence a speech application was created for the Pocket PC and was 
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tested on the desktop machine, since the SASDK contains desktop version of speech engine. The 

same application can be ported and used for Pocket PC with the availability of SES.  

 One advantage that the SALT and Speech server offers is that the system does not need 

training of voice. It recognized voices of different people in a similar manner.  

 While the speech application described above enables the interaction between a human 

and an avatar in more natural and less cumbersome way, the performance over the wireless 

communication between the PDA and proxy is important in order to achieve real-time 

interaction. There are two major transport protocols used to send data, a reliable Transmission 

Control Protocol (TCP) and unreliable User Datagram Protocol (UDP). The UDP provides best 

effort service in the sense that it doesn’t make sure that packets did reach destination nor does it 

retransmit them. Transmission Control Protocol on the other hand makes sure that packets 

reached destination by using acknowledgements and retransmissions. TCP is used as it is reliable 

and it scores over UDP for multimedia applications in terms of fair share of bandwidth [34].  

3.3 Transmission Control Protocol and Sockets 

TCP [32] is a transport layer network protocol that offers a reliable, connection-oriented, 

byte-stream service. It is a full-duplex protocol, which means that each TCP connection supports 

a pair of byte-streams, one flowing in each direction. TCP supports flow control, which prevents 

the sender from overrunning the buffer capacity of the receiver. In addition, TCP implements 

congestion control, which prevents the sender from injecting too much traffic into the network. 

TCP adds connection information to the data packet. This allows programs to create an end-to-

end connection between two network devices, providing a consistent path for data to travel. TCP 
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guarantees the data will be reliably delivered to the destination device or that the sender will 

receive an indication that a network error occurred. Because of this feature, TCP is called a 

connection-oriented protocol. Each TCP connection, or session, includes a certain amount of 

packet overhead related to establishing the connection between the two devices. Once the 

connection is established, data can be sent between the devices without the application having to 

check for lost or out-of-place data.  TCP is an end-to-end protocol. That is, TCP turns a host-to-

host packet delivery service, provided by IP, into a process-to-process communication channel. 

The Internet Protocol (IP) is the inter-networking protocol that TCP usually relies upon. IP is a 

network layer protocol in the 7-layer Open System Interconnection (OSI) model. 

 In order to communicate with an application on a remote device, the following 

information is needed: 

1. The remote device’s IP address 

2. The TCP port assigned to the remote application 

For a TCP connection to be established, the remote device must accept incoming packets 

on the assigned port. Because there could be many applications running on a device that use 

TCP, the device must allocate specific port numbers to specific applications. This tells the client 

which port to use for a particular application and tells the host which application an incoming 

packet should be forwarded to. Figure 6 shows how clients and servers use TCP ports to channel 

data between applications. 

 In Figure 6, network device A is running two server applications, waiting for incoming 

packets from remote devices. One application is assigned TCP port 8000 on the device and the 

other is assigned port 9000. Network device B is a client that wants to connect to the applications 

on the server. For a device to send a packet to a remote device, it must obtain a free TCP port 
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from the operating system, which remains open for the duration of the session. The client TCP 

port number is usually not important and can be assigned to any available port on the device. The 

client forwards the packet from an available port on Device B to the application TCP ports on 

Device A. 
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Figure 6: Simple TCP Connection 

 

 The combination of an IP address and a port number defines an IP endpoint. A TCP 

session is defined as the combination of a local IP endpoint and a remote IP endpoint. Only one 

session can have both these properties the same time. A single network application can use the 

same local IP endpoint, but each remote connection must have either a separate IP address or 

remote port number. 

 TCP maintains packet reliability by using sequence number and acknowledgement fields 

in its header. It uses connection states to determine the status of the connection between devices. 
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A specific handshaking protocol is used to establish these connections and to monitor the status 

of the connection during the session. The TCP session has three phases: 

• Opening handshake 

• Session communication 

• Closing handshake 

Figure 7 shows graphically the three states during TCP session. 
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Figure 7: Simple TCP Connection 

 

The opening handshake is often called the three-way handshake and requires three steps 

to establish a connection through synchronize (SYN) and acknowledgement (ACK) flags. 

1. The originating host (client) sends a SYN flag to indicate the start of a session. 
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2. The receiving host sends a both a SYN flag and an ACK flag in the same packet to 

indicate it accepts the start of the session. 

3. The originating host sends an ACK flag to indicate the session is open and ready for 

packets. 

After the session is established, the ACK flag is set on packets, indicating that the device 

is acknowledging the receipt of a packet with a particular sequence number. To close the session, 

closing handshake is done using FIN flag. 

1. The host initiating the close sends a FIN flag. 

2. The remote host sends both an ACK flag and a FIN flag in the same packet to indicate it 

accepts the end of the session. 

3. The initiating host sends an ACK flag to officially close the session. 

 The SYN flag indicates starts of session. The ACK flags indicates acknowledgement. The 

FIN flag indicates close of session. The phases of the TCP session are associated with connection 

state names. Each connection state indicates the session’s current position in the handshaking 

sequence. The connection states apply equally to clients as well as servers. Both devices in the 

TCP session follow the same TCP states. 

 To ensure the integrity of data, TCP keeps all sent data in a local buffer until positive 

acknowledgement of reception is received from the remote device. Similarly, when receiving 

data from the network, TCP keeps a local buffer of received data to ensure that all of the pieces 

are received in order before passing the data to the application program.  

 From the programming point of view, an application does not directly access the network 

interface device to send and receive packets. Instead, an intermediary file descriptor is created to 

handle the programming interface to the network. The special file descriptors used to reference 
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network connections are called sockets. A socket defines specific communication domain, a 

specific communication type and a specific protocol. In our case, the communication domain is 

Internet, communication type is stream and specific protocol is TCP.  

 After the socket is created, it is bound either to a specific network address and port on the 

system or to a remote network address and port. Once the socket is bound, it can be used to send 

and receive data from network. Figure 8 shows how this process works. 
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Figure 8: The Socket Interface 

 

 For the experimental setup, a socket program was created using Microsoft .NET Compact 

Framework on Pocket PC and a socket program was created on the proxy using .NET 

Framework. C# programming language was used for the network application programming [33]. 

The performance of the PDA-Proxy was measured based on response time characteristics. For 

this study, text data of various sizes was sent over the wireless network and the response time 

was noted. Text size varied from 1 byte till 8500 bytes. The round trip time (RTT) was 
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calculated as the difference between the time instance at which text was sent from PDA to the 

time instance when the acknowledgement in the form of a string “Received” is received at the 

PDA from the proxy. The same text was sent 100 times, 500 milliseconds after the previous 

transmission. A new connection was established between the PDA and the proxy for each 

request. Initially the number of bytes sent from PDA was increased in steps of 100 until it 

reaches 1000 bytes. Then the number of bytes sent over the network then was increased in steps 

of 500 bytes. 

 The operating system for proxy is Microsoft Windows XP Professional Version 2002 

Service Pack 1 and processor is Intel Pentium 4 with speed of 2.4 GHz. The proxy is connected 

to VESS via wired Ethernet (100BaseT) at the Institute for Simulation and Training (IST). The 

experiment was performed by making use of two networks, first using the 802.11b wireless 

router in IST and another using the wireless router at UCF. This was to see if there were 

differences in the readings as UCF network is more congested than IST. When connected to the 

IST network, the PDA gets a class ‘C’ private address (192.168.0.100), while when connected to 

the UCF network; the PDA gets a class ‘A’ private address (10.171.33.35). The effect of Nagle 

Algorithm [35] on RTT is also studied. 
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CHAPTER FOUR: FINDINGS  

4.1 Nagle Algorithm 

 The Nagle Algorithm is used by sockets to automatically concatenate a number of small 

buffer messages; this process (called nagling) increases the efficiency of a network application 

system by decreasing the number of packets that must be sent over the network. The algorithm 

applies when a TCP sender is deciding whether to transmit a packet of data over a connection. If 

it has only a "small" amount of data to send, then the Nagle algorithm permits sending the packet 

only if all previously transmitted data has been acknowledged by the TCP receiver. In this 

situation, "small" is defined as less data than the TCP Maximum Segment Size (MSS) for the 

connection, the largest amount of data that can be sent in one datagram. If more small segments 

are generated while awaiting the acknowledgement (ACK) for the first one, then these segments 

are coalesced into one larger segment. Any full-sized segment is always transmitted 

immediately, assuming there is a sufficient receive window available. The Nagle algorithm is 

effective in reducing the number of packets sent by interactive applications, such as Telnet, 

especially over slow links. The Nagle algorithm delays transmission of these short messages in 

the hope that more messages will become available soon, thereby avoiding packet congestion.  

 In the current speech application, the priority is to have real-time interaction and the 

voice messages in the form of commands are quite small. The Nagle algorithm will restrict 

sending such small packets increasing delay for sending the voice commands. Also, if the big 

packet is lost, the risk is much more in terms of packet loss. This is especially true for packets in 

wireless networks, which follow multipath. Each packet may follow some particular path and the 
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risk of packet loss is evenly spread if more small packets are sent. With the use of TCP, 

reliability can be added to each small packet. Large packet meant more delay and hence 

reliability can be increased by sending small packets. Hence experiments are performed to see 

the effect of Nagle algorithm on the round-trip time of the requests sent over Wi-Fi network. The 

Nagle algorithm can be disabled by setting TCP_NODELAY option to true.  

4.2 Results 

From the readings, the Average RTT and minimum RTT were plotted. Figure 9 shows 

the Average RTT in milliseconds for the number of bytes sent from the PDA by making use of 

the UCF wireless router. The Nagle algorithm is enabled. 
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Figure 9: Average RTT using UCF wireless router – Nagle ON 
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Figure 10 shows the Minimum RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the UCF wireless router. The Nagle algorithm is enabled. 
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Figure 10: Minimum RTT using UCF wireless router – Nagle ON 

 

Figure 11 shows the Average RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the IST wireless router with Nagle Algorithm enabled. 
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Figure 11: Average RTT using IST wireless router – Nagle ON 

 

Figure 12 shows the Minimum RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the IST wireless router with Nagle Algorithm enabled. 

 

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T 

m
Se

c

 

Figure 12: Minimum RTT using IST wireless router – Nagle ON 
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Figure 13: Comparison of Average RTTs with wireless routers at UCF and IST – Nagle ON 

 

Figure 13 shows the comparison of Average RTTs in milliseconds for the number of 

bytes sent from the PDA by making use of the UCF wireless router and IST wireless router with 

Nagle Algorithm enabled. 

Figures 9 to 12 shows that with increase in size of data, the RTT increases almost linearly 

with the size of data.  Figure 13 shows that the RTT is almost same when comparing the IST and 

the UCF network. 

Figure 14 shows the Average RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the UCF wireless router with Nagle Algorithm disabled. 
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Figure 14: Average RTT using UCF wireless router – Nagle OFF 

 

Figure 15 shows the Minimum RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the UCF wireless router with Nagle Algorithm disabled. 
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Figure 15: Minimum RTT using UCF wireless router – Nagle OFF 
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Figure 16 shows the Average RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the IST wireless router with Nagle Algorithm disabled. 
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Figure 16: Average RTT using IST wireless router – Nagle OFF 

 

Figure 17 shows the Minimum RTT in milliseconds for the number of bytes sent from the 

PDA by making use of the IST wireless router with Nagle Algorithm disabled. 
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Figure 17: Minimum RTT using UCF wireless router – Nagle OFF 

 

Figure 18 shows the comparison of Average RTTs in milliseconds for the number of 

bytes sent from the PDA by making use of the UCF wireless router and IST wireless router with 

Nagle algorithm disabled. 

0
5

10
15
20
25
30
35
40
45
50

0 2000 4000 6000 8000 10000

No. of Bytes

R
TT

 m
Se

c

IST_LAN
UCF_LAN

 

Figure 18: Comparison of Average RTT using UCF & IST wireless router – Nagle OFF 

41 



 

Figures 14 to 17 show similar results as that of 9 to 12 with lower RTT for Nagle 

algorithm disabled. Figure 18 shows that the results are almost identical for both the IST and the 

UCF networks. 

Figure 19 shows the comparison of Average RTTs in milliseconds for the number of 

bytes sent from the PDA by making use of the UCF wireless router with Nagle algorithm 

enabled and disabled.  
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Figure 19: Comparison of Average RTT using UCF wireless router for Nagle ON and OFF 

 

Figure 20 shows the comparison of Minimum RTTs in milliseconds for the number of 

bytes sent from the PDA by making use of the UCF wireless router with Nagle algorithm 

enabled and disabled.  
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Figure 20: Comparison of Minimum RTT using UCF wireless router for Nagle ON and OFF 

 

Figure 21 shows the comparison of Average RTTs in milliseconds for the number of 

bytes sent from the PDA by making use of  the IST wireless router with Nagle algorithm enabled 

and disabled.  
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Figure 21: Comparison of Average RTT using IST wireless router for Nagle ON and OFF 
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Figure 22 shows the comparison of Minimum RTTs in milliseconds for the number of 

bytes sent from PDA by making use of IST wireless router with Nagle algorithm enabled and 

disabled.  
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Figure 22: Comparison of Minimum RTT using IST wireless router for Nagle ON and OFF 

4.3 Discussions 

Figures 19, 20, 21 and 22 show that disabling Nagle algorithm gives a better performance in 

terms of reduced latency.   

A similar work [36] shows the difference between the RTTs with Nagle enabled and 

disabled is more compared to the results obtained in this study. One reason for this difference 

could be that a different version of the operating system (Pocket PC 2002) was used in that work 

and also a server-based technology (Java servlets) was used. In this latter case, all the processing 

was done at the proxy and only results were sent back to the PDA. In the current application, the 
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code is native to the PDA and it runs on it. It also has newer version of Windows Mobile 2003 

operating system.   

Interactivity can be thought of as needed to support a 140 milliseconds response time 

[35]. This time represents a nominal measure of the time needed for a human to sense, perceive, 

and act on a stimulus. In order to have a highly interactive interaction for computationally 

intensive applications like that between users and avatars, it is necessary to provide interactivity 

within the human response time to keep the round trip time over wireless networks as small as 

possible. The RTT over wired Ethernet from the proxy to VESS is found to be 15 milliseconds. 

Since the RTT from the proxy to VESS over wired Ethernet is small and almost constant, a 

smaller RTT over a wireless network can make it possible for more interactive and 

computational tasks to be carried out in real-time. There will be processing time at the proxy and 

at VESS and then the acknowledgement would be sent back to PDA. Smaller RTT will 

compensate for these processing times. 

Usability of the PDA for VE applications was also briefly and informally calculated 

using Nielsen’s [37] heuristics as a guide. The outcome of this evaluation suggested that, as a 

minimum, scale and orientation are features that need to be included in the PDA if it is to be used 

to guide user navigation. Orientation refers to the user’s angular position in the virtual 

environment. Scale refers to some means of quickly determining the distance between objects, as 

well as the extent of natural and man-made features. Additional consideration needs to be given 

to the use of alternative modalities to convey information via this device, such as a vibration to 

indicate when one is moving away from the target location (e.g., when trying to find a specific 

room in a burning building) or auditory cues to indicate a specific state, such as arrival of new 
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data. With additional modalities, consideration will need to be given to ensure consistency and 

smooth transition between modes. 

The architecture has been implemented to study different utilities of PDA’s in Virtual 

Environments. One particular usability pilot study that has been performed at UCF IST involved 

the use of a PDA to control movement and show positioning of users in a virtual environment 

using an interactive map. This pilot study used an interactive map to place users in a virtual 

world where they were allowed to freely explore and move around. The user can control their 

movements using the interactive map by touching a desired position on the map, which was 

presented on the PDA screen. When a position was selected on the map, the position point was 

sent to the VESS system and the location of the user was updated within the perceptible delay. 

The pilot study indicated that it was very important that the cycle of getting input from the user 

and updating the output to the user be completed within the perceptible delay. The previously 

explained architecture proved to be effective in performing this task. 

 There were several lessons learnt during this pilot study. The first drawback observed 

was the small screen space of PDAs to give sufficient information about the map. Although the 

virtual environment in use was fairly small, it was difficult to present enough detail on the 

limited sized PDA screen to allow users to easily determine their current location on the map and 

to input the desired destination onto the PDA. A possible future study that has arisen because of 

this drawback is to evaluate the effect of screen size of input/output devices on the usability of 

such devices to interact with virtual environments. 
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CHAPTER FIVE: CONCLUSION 

This work investigated how PDAs can be used to interact with Virtual Environments in 

real-time and in a more natural way. Text messages and speech were used to study the 

interactivity. The architecture presented gave satisfactory results for usability pilot studies. The 

proxy based approach can increase the scalability and interoperability with other virtual 

environments. Making use of a speech application and other services like specially made goggles 

to display the PDA screen would allow hands free usage of the PDA. 

The results show that by disabling Nagle algorithm, average response time is reduced 

over wireless network. It is suggested to disable Nagle’s algorithm to take advantage of small 

packet size of multimedia (audio and video) packets [34]. Researchers have presented evidence 

[38] [39] that the Nagle algorithm should be disabled in order to reduce the latency as observed 

by the client and to protect against unforeseen interactions between TCP and HTTP with 

persistent connections. The results obtained have confirmed these findings. 

 This reduction in RTT can be used by high performance applications such as speech 

recognition, voice to text conversion, and gesture movement to enable natural response between 

the users in VE. Additionally the PDA might be useful in other VE roles, such as supporting so-

called ‘on-board’ tracking calculations thereby minimizing or eliminating the need for line of 

sight in VE tracking applications. The reduced RTT also makes the messages to be sent with 

minimal delay to improve interactivity, especially when there are a large number of users and 

messages. Performance is found to depend on the type of application, its transmitting frequencies 

and size of message. 
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Since the Microsoft Speech Server was not available at the time of study, the 

performance for integrated speech application could not be studied. The pilot tests of speech 

recognition using desktop engine showed good results for speech recognition for different 

speakers. With the availability of SES component of Microsoft Speech Server, same application 

can be used to test speech applications using PDA.  
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APPENDIX A: COMPAQ’S iPAQ POCKET PC  
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Figure 23 shows Compaq iPAQ Pocket PC H3955 

 

Figure 23: Compaq iPAQ Pocket PC H3955  

Following are specifications for Compaq iPAQ Pocket PC H3955: 

About Pocket PC: Microsoft® Pocket PC version 4.20.1081 (Build 13100) 

Processor: Intel® PXA250 

Identity: 

Asset Tag #: 4G27KVL1S0PW 

Serial #: 4G27KVL1S0PW 

Memory: 

 System RAM Size: 64 MB 

 System ROM Size: 32 MB 
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 ROM Is Flash: Yes 

 Memory Technology: SDRAM 

 Flash Manufacturer: INTEL 

 Flash Chip Type: 28F128 

 Flash Block Size: 128 KB 

Version: 

 Product Revision Level: 2.5 

 ROM Date: 06/27/03 

 ROM Version: 3.00.08 ENG 

 OS Version: Windows CE4.20 

Display: 

 Panel ID: Z 

 Display Size: 3.78 in 

 Display Type: LCD Display  

 Display Screen: Transreflective color TFT 

 Color Depth: 16-bit (64K colors), 0.24-dot pitch 

 Display Horizontal Pixels: 240 pixels 

 Display Vertical Pixels: 320 pixels 

System:  

 Manufacturer: Compaq Computer Corp. 

 Product ID: Pocket PC 

 Model ID: Compaq iPAQ H3900 

 Processor Type: Intel® PXA250 
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 Processor Revision: B1 

 Processor Speed: 400 MHz 

 Language: ENGLISH 

 Country ID: U.S.A 

Bluetooth: 

 Module Type: 

 Radio Revision: 1.0 

 Radio Present: N 

Communications: 

 Slot Types Provided: SD Memory Card 

 Wireless Connectivity: IrDA 

Interface Provided: 1 x USB, 1 x infrared - IrDA, 1 x headphones - output - mini-phone 

stereo 3.5 mm , 1 x serial - RS-232 

Expansion Slot: In use for wireless LAN Network interface card (NIC). 

Battery: 

 Average Battery Life: 14 Hours 

 Battery Technology: Lithium Polymer 

Backlight:  

Multi-level brightness adjustment, light sensor for automatic adjustment of brightness 

level. 

Audio: 

 Speaker, 3.5 mm stereo headphone jack 

Indicators:  
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3 mode alarm notification: flashing green LED, tone, pop-up message. Charge active: 

flashing/solid amber LED, Bluetooth active: flashing/sound blue LED 

Table 3 
Physical Specifications 
 

Compaq iPAQ Pocket PC H3900  

US Metric 

Height 5.28 in 134.0 mm 

Width 3.30 – 3.03 in tapering 84.0 – 77.0 mm tapering 

Depth 0.63 in 15.9 mm 

Weight 6.49 oz 184 g 

 

Table 4 
Operating Environment 

  US Metric 

Operating 320 to 1040F 00 to 400C Temperature 

Nonoperating -220 to 1400F -300 to 600C 

Operating 10 to 90% 10 to 90% Relative 

Humidity 
Nonoperating 10 to 90% 10 to 90% 

Operating 0-15,000 ft 14.7 to 10.1 psia Maximum 

altitude 
Nonoperating 0-15,000 ft 14.7 to 10.1 psia 

 

More details:  http://h18000.www1.hp.com/products/quickspecs/11346_na/11346_na.HTML
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APPENDIX B: Wi-Fi (IEEE 802.11b) 
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802.11, or IEEE 802.11, is a type of radio technology used for wireless local area 

networks (WLANs). It is a standard that has been developed by the IEEE (Institute of Electrical 

and Electronic Engineers), http://standards.ieee.org. Wi-Fi , 802.11, is composed of several 

standards operating in different radio frequencies: 802.11b is a standard for wireless LANs 

operating in the 2.4 GHz spectrum with a bandwidth of 11 Mbps; 802.11a is a different standard 

for wireless LANs, and pertains to systems operating in the 5 GHz frequency range with a 

bandwidth of 54 Mbps. Another standard, 802.11g, is for WLANS operating in the 2.4 GHz 

frequency but with a bandwidth of 54 Mbps.  

The 802 subgroup (of the IEEE) develops standards for local and wide area networks 

with the 802.11 section reviewing and creating standards for wireless local area networks. 

802.11b is International standard for wireless networking that operates in the 2.4 GHz frequency 

range (2.4 GHz to 2.4835 GHz) and provides a throughput of up to 11 Mbps. The 802.11b 

wireless LAN standard specifies the lowest layer of the OSI network model (physical) and a part 

of the next higher layer (data link). In addition, the standard specifies the use of the 802.2 

protocol for the logical link control portion of the data link layer. The OSI network model is 

shown in Figure 24. 

The difference between wireless LANs and wired networks such as Ethernet is the 

transmission medium. Whereas Ethernet sends electrical signals through wires, wireless LANs 

send radio frequency (RF) energy through the air. Wireless devices are equipped with a special 

network interface card (NIC) with one or more antennae, a radio transceiver, and circuitry to 

convert between the analog radio signals and the digital pulses used by computers. 
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Figure 24: OSI network Model 

 Radio waves broadcast on a given frequency can be picked up by any receiver within 

range tuned to that same frequency. Effective or usable range depends on signal power, distance, 

and interference from intervening objects or other signals. Information is carried by modulating 

the radio waves.  

Wireless LAN topologies / Operation Modes  

IEEE 802.11b defines two pieces of equipment, a wireless station, which is usually a PC, a PDA 

or a Laptop with a wireless network interface card (NIC), and an Access Point (AP),which acts 

as a bridge between the wireless stations and Distribution System (DS) or wired networks. There 

are two operation modes in IEEE 802.11b viz. Infrastructure Mode and Ac Hoc Mode. 
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Figure 25: Wireless LAN topologies  

1. Infrastructure Mode  

Infrastructure Mode consists of at least one Access Point connected to the Distribution 

System. 

o Basis Service Set (BSS)  

An Access Point provides a local bridge function for the BSS. All wireless stations 

communicate with the Access Point and no longer communicate directly. All frames 

are relayed between wireless stations by the Access Point. 

o Extended Service Set (ESS)  

An Extended Service Set is a set of infrastructure BSS’s, where the Access Points 

communicate amongst themselves to forward traffic from one BSS to another to 

facilitate movement of wireless stations between BSS’s. 
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2. Ad Hoc Mode  

o Independent Basic Service Set (IBSS) or Peer to Peer  

The wireless stations communicate directly with each other. Every station may 

not be able to communicate with every other station due to the range limitations. 

There are no Access Points in an IBSS. Therefore, all stations need to be within 

the range of each other and they communicate directly. 

 

More Information:  

http://grouper.ieee.org/groups/802/11/index.html
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APPENDIX C: C#/SALT CODE FOR SPEECH APPLICATION 
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Figure 26: Graphical interface for Speech application 

Default.aspx Code behind 

using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Configuration; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
using System.Xml; 
using Microsoft.Speech.Web.UI; 
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namespace PDAVESS_Speech 
{ 
 public class Default: System.Web.UI.Page 
 { 
  protected System.Web.UI.HtmlControls.HtmlImage VoiceCommands; 
  protected System.Web.UI.LiteralControl literalControl1; 
  protected System.Web.UI.LiteralControl literalControl2; 
  protected System.Web.UI.LiteralControl literalControl3; 
  protected System.Web.UI.WebControls.DropDownList CommandList; 
  protected Microsoft.Speech.Web.UI.Listen AskCommandListen; 
  protected Microsoft.Speech.Web.UI.Prompt Prompt1; 
  protected Microsoft.Speech.Web.UI.Prompt Prompt2; 
  protected System.Web.UI.LiteralControl literalControl4; 
  protected Microsoft.Speech.Web.UI.Value value2; 
  protected System.Web.UI.LiteralControl literalControl5; 
  protected System.Web.UI.LiteralControl literalControl6; 
  protected Microsoft.Speech.Web.UI.Value value3; 
  protected System.Web.UI.LiteralControl literalControl7; 
  protected Microsoft.Speech.Web.UI.Value value4; 
  protected Microsoft.Speech.Web.UI.Value value5; 
  protected Microsoft.Speech.Web.UI.Value value1; 
  
  private void Page_Load(object sender, System.EventArgs e) 
  { 
   // Put user code to initialize the page here 
   if(!Page.IsPostBack) 
   { 
    PopulatePullDownControls(); 
   } 
   if(ConfigurationSettings.AppSettings["SpeechServer"]!=null) 
   { 
    String 
speechServer=ConfigurationSettings.AppSettings["SpeechServer"].ToString(); 
    Param param = new Param(); 
    param.Name="server"; 
    param.Value=speechServer; 
    AskCommandListen.Params.Add(param); 
   } 
  } 
 
 //Web Form Designer Generated Code 
 
  private void PopulatePullDownControls() 
  { 
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   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("","")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Halt","Halt")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Stop","Stop")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Turn Left","Turn Left")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Turn Right","Turn Right")); 
   CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go 
Forward","Go Forward")); 
   CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go 
Back","Go Back")); 
   CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go 
Up","Go Up")); 
   CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go 
Down","Go Down")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Move Forward","Move Forward")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Move Back","Move Back")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Move Up","Move Up")); 
   CommandList.Items.Add(new 
System.Web.UI.WebControls.ListItem("Move Down","Move Down")); 
  } 
 
  private void InitializeComponent() 
  { 
   this.Prompt2.Complete += new System.EventHandler(this.Page_Load); 
   this.Load += new System.EventHandler(this.Page_Load); 
 
  } 
 
  private void AskCommandListen_Reco(object sender, System.EventArgs e) 
  { 
   string recognizedText=AskCommandListen.RecoResult.InnerText; 
   if(recognizedText!=null) 
   { 
    CommandList.DataTextField=recognizedText; 
   } 
   else 
   { 
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    throw new InvalidOperationException("Recognized Command not 
found.The recognized text was " + AskCommandListen.RecoResult.OuterXml); 
   } 
  } 
 
 } 
} 
 

 

GUI.js ( Used to act on an event) 

 
function SetDropDown() 
{ 
var 
theNode=event.srcElement.recoResult.selectSingleNode("PDAVESSSpeech.grxml/Commands")
; 
var theResult=""; 
var listCommands=""; 
 
if(theNode !=null) 
{ 
 theResult=theNode.text; 
 /* Pocket IE and IE have different ways of accesing an element on the page*/ 
 if(typeof(window["CommandList"])!="undefined") 
 { 
  listCommands=window["CommandList"]; 
 } 
 else 
 { 
  listCommands=document.all["CommandList"]; 
  document.all('CommandList').style.backgroundColor = 'red'; 
 } 
 listCommands.value=theResult; 
} 
} 
function DropDownLabelOnClick() 
{ 
 AskCommandListen.start(); 
} 
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function noRecognition() 
{ 
 alert("Recognition Failed... Try Again"); 
} 
 
function timeOut() 
{ 
 alert("Its timeOut...Try Again"); 
} 
 
function sendToVess() 
{ 
 var result=theNode.text; 
} 
 
function error() 
{ 
 alert("Error in Recognition.."); 
} 
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APPENDIX D: C# CODE FOR TCP/IP NETWORK COMMUNICATION 
BETWEEN POCKET PC, PROXY AND VESS 
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Figure 27: PDA-Client.cs [Design View] 

PDA-Client.cs Codebehind: (This runs on Pocket PC) 

using System; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.Data; 
using System.IO; 
using System.Net; 
using System.Text; 
using System.Net.Sockets; 
using System.Threading; 
 
namespace PDAProxy 
{ 
 /// <summary> 
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 /// Summary description for Form1. 
 /// </summary> 
 public class Form1 : System.Windows.Forms.Form 
 { 
  //private Socket mySocket; 
 
  private System.Windows.Forms.Button button1; 
  private System.Windows.Forms.TextBox textBox1; 
  private System.Windows.Forms.Label label1; 
  private System.Windows.Forms.StatusBar statusBar1; 
  private System.Windows.Forms.TextBox textBox2; 
  private System.Windows.Forms.Button button2; 
  public System.Windows.Forms.ComboBox Nagle; 
  private System.Windows.Forms.MainMenu mainMenu1; 
  static string fileLocation="\\myFile.txt"; 
   
  public Form1() 
  { 
   // Required for Windows Form Designer support 
   InitializeComponent(); 
   // TODO: Add any constructor code after InitializeComponent call 
  } 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  protected override void Dispose( bool disposing ) 
  { 
    
    base.Dispose( disposing ); 
  } 
 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
   System.Resources.ResourceManager resources = new 
System.Resources.ResourceManager(typeof(Form1)); 
   this.button1 = new System.Windows.Forms.Button(); 
   this.textBox1 = new System.Windows.Forms.TextBox(); 
   this.label1 = new System.Windows.Forms.Label(); 
   this.statusBar1 = new System.Windows.Forms.StatusBar(); 
   this.textBox2 = new System.Windows.Forms.TextBox(); 

67 



   this.button2 = new System.Windows.Forms.Button(); 
   this.Nagle = new System.Windows.Forms.ComboBox(); 
   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   //  
   // button1 
   //  
   this.button1.Location = new System.Drawing.Point(40, 64); 
   this.button1.Text = "Send it"; 
   this.button1.Click += new System.EventHandler(this.button1_Click); 
   //  
   // textBox1 
   //  
   this.textBox1.Location = new System.Drawing.Point(8, 32); 
   this.textBox1.Multiline = true; 
   this.textBox1.Size = new System.Drawing.Size(136, 24); 
   this.textBox1.Text = "Enter Text Here"; 
   //  
   // label1 
   //  
   this.label1.Location = new System.Drawing.Point(16, 8); 
   this.label1.Size = new System.Drawing.Size(200, 16); 
   //  
   // statusBar1 
   //  
   this.statusBar1.Location = new System.Drawing.Point(0, 248); 
   this.statusBar1.Size = new System.Drawing.Size(240, 32); 
   //  
   // textBox2 
   //  
   this.textBox2.Location = new System.Drawing.Point(8, 88); 
   this.textBox2.Multiline = true; 
   this.textBox2.ScrollBars = System.Windows.Forms.ScrollBars.Vertical; 
   this.textBox2.Size = new System.Drawing.Size(224, 144); 
   this.textBox2.Text = ""; 
   //  
   // button2 
   //  
   this.button2.Location = new System.Drawing.Point(136, 64); 
   this.button2.Size = new System.Drawing.Size(48, 20); 
   this.button2.Text = "Exit"; 
   this.button2.Click += new System.EventHandler(this.button2_Click); 
   //  
   // Nagle 
   //  
   this.Nagle.DisplayMember = "Delay"; 
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   this.Nagle.Items.Add("NoDelay"); 
   this.Nagle.Items.Add("Delay"); 
   this.Nagle.Location = new System.Drawing.Point(160, 32); 
   this.Nagle.Size = new System.Drawing.Size(64, 22); 
   this.Nagle.Visible = true; 
   this.FormBorderStyle = 
System.Windows.Forms.FormBorderStyle.Fixed3D; 
   //  
   // Form1 
   //  
   this.BackColor = System.Drawing.Color.WhiteSmoke; 
   this.ClientSize = new System.Drawing.Size(240, 280); 
   this.Controls.Add(this.Nagle); 
   this.Controls.Add(this.button2); 
   this.Controls.Add(this.textBox2); 
   this.Controls.Add(this.statusBar1); 
   this.Controls.Add(this.label1); 
   this.Controls.Add(this.textBox1); 
   this.Controls.Add(this.button1); 
   this.Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon"))); 
   this.Menu = this.mainMenu1; 
   this.Text = "Form1"; 
 
  } 
  #endregion 
 
  /// <summary> 
  /// The main entry point for the application. 
  /// </summary> 
 
  static void Main()  
  { 
   Application.Run(new Form1()); 
  
  } 
 
  public void connect() 
  { 
 
   try  
   { 
    // The default SendBuffer size is 16384 and receiveBuffer size is 
32768 
     int dwStart = 0; 
     int dwStop = 0; 
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     string destIP="132.170.190.142"; 
     int destPort=8001; 
     int Port=8002; 
     TcpClient tcpclnt; 
     statusBar1.Text=String.Format(""); 
    try 
    {  
        // Getting DNS info 
     IPHostEntry 
ihe=Dns.GetHostByName(Dns.GetHostName()); 
     // Getting local IP Address 
     IPAddress localIPAd=ihe.AddressList[0];    
     // Assigning sending port 
        IPEndPoint ipep=new IPEndPoint(localIPAd,Port); 
     label1.Text=localIPAd.ToString()+ ":"+Port.ToString(); 
     textBox2.Text= String.Format("Client IP:{0}:{1} 
",localIPAd.ToString(),Port.ToString()); 
     tcpclnt = new TcpClient(ipep); 
     if(Nagle.Text=="NoDelay") 
     { 
      //Disabling Nagle Algorithm 
      tcpclnt.NoDelay=true; 
     } 
     else 
     { 
      tcpclnt.NoDelay=false; 
     } 
     textBox2.Text+= String.Format("\r\n Nagle Algorithm is: 
{0} ",tcpclnt.NoDelay); 
     //IPAddress IPAd=IPAddress.Parse("132.170.190.125"); 
     //server IP address 
     IPAddress IPAd=IPAddress.Parse(destIP); 
     statusBar1.Text=Convert.ToString("Trying to 
Connect"+IPAd+"::"+destPort+"..."); 
     textBox2.Text+= String.Format("\r\nServer IP: {0} : {1} ", 
destIP.ToString(),destPort.ToString()); 
     // Connect to server 
     tcpclnt.Connect(IPAd,destPort); 
     statusBar1.Text="Connected"; 
     //connected=true; 
     } 
     catch(SocketException se) 
     { 
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      DialogResult dr=MessageBox.Show( se.Message 
+" Unable to connect to server.. ", 
se.ErrorCode.ToString(),MessageBoxButtons.AbortRetryIgnore,MessageBoxIcon.None,Messag
eBoxDefaultButton.Button1); 
      if(dr==DialogResult.Abort) 
      { 
       Application.Exit(); 
      } 
      if(dr==DialogResult.Retry) 
      { 
       connect(); 
      } 
      if(dr==DialogResult.Cancel) 
      { 
       Application.Exit(); 
      } 
      return;      
     } 
    // Create network stream that we will use to send and receive data. 
    NetworkStream stm = tcpclnt.GetStream();  
 //    if(stm.CanWrite) 
    for(int i=0;i<100;i++) 
    { 
    try 
    { 
     // Assigning the text entered in textbox  
     string str; 
     str=textBox1.Text; 
//     int sendBuffer=tcpclnt.SendBufferSize; 
//     textBox2.Text+=String.Format("\r\nSending 
BufferSize:{0}",sendBuffer); 
//     // Getting the text in Textbox in byte format 
     byte[] sendingBytes=Encoding.ASCII.GetBytes(str);  
     statusBar1.Text="Transmitting....."; 
     // Start timing 
     dwStart=System.Environment.TickCount;   
     // Send the bytes using networkStream 
     stm.Write(sendingBytes,0,sendingBytes.Length);   
     stm.Flush(); 
    // textBox2.Text+=String.Format("\r\nStart Time 
is:{0}",DateTime.Now.Millisecond); 
     textBox2.Text+=String.Format(" \r\nNumber of bytes 
sent:{0}", sendingBytes.Length); 
     //textBox2.Text+=String.Format(" \r\nNumber of bytes 
sent:{0}", str.Length); 
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    } 
 
    catch (Exception noTx) 
    { 
     MessageBox.Show(" Can not send the information.. " + 
noTx.Message); 
     return; 
    } 
     
//    if(stm.CanRead) 
 
    try 
    { 
     //byte[] b=new byte[tcpclnt.ReceiveBufferSize]; 
      
     //Get the value of TCP receiveBuffer 
     //int receiveBuffer=tcpclnt.ReceiveBufferSize; 
     //textBox2.Text +=String.Format("\r\nReceive Buffer Size: 
{0}",receiveBuffer); 
     // Set the value of block of bytes to be read from TCP 
receiveBuffer 
      byte[] received=new byte[10]; 
     // Read the response using networkSteram 
     stm.Read(received,0,received.Length);  
       
     // stop timing 
     dwStop = System.Environment.TickCount;  
     int responseTime=dwStop-dwStart; 
     //textBox2.Text +=String.Format("\r\n The response is 
received at: {0}", DateTime.Now.Millisecond); 
     string 
instring=Encoding.ASCII.GetString(received,0,received.Length); 
     textBox2.Text +=String.Format(" \r\n {0}",instring); 
     textBox2.Text+=String.Format(" \r\n The bytes received 
are:{0} ",instring.Length); 
     textBox2.Text +=String.Format("\r\nThe response time 
is:{0} milliseconds ",responseTime); 
     writeToFile(responseTime); 
     statusBar1.Text="Successfully Received Ack....."; 
    } 
      
    catch (Exception noAck) 
    { 
     MessageBox.Show(" Can not read the acknowledgemtnt.." 
+ noAck.Message); 
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     return;     
    } 
     //Thread.Sleep(500);  
    } 
 
    stm.Close(); 
    tcpclnt.Close(); 
    //MessageBox.Show("Clsoing Connection"); 
   } 
   catch (Exception ee)  
   { 
    MessageBox.Show(" Error..... "+ ee.Message); 
    return; 
   } 
  } 
 
  static void writeToFile(float a) 
  { 
   try 
   { 
    
   // string 
file=fileLocation.Insert(fileLocation.Length,count.ToString()+".txt"); 
    StreamWriter sw; 
    sw=File.AppendText(fileLocation); 
    sw.WriteLine(a); 
    sw.Close(); 
     
   } 
   catch(Exception noWr) 
   { 
    MessageBox.Show(" Unable to write to file.. "+ noWr.Message); 
    return; 
   } 
  } 
 
  private void button1_Click(object sender, System.EventArgs e) 
  { 
   try 
   { 
    StreamWriter cf; 
    cf=File.CreateText("\\myFile.txt"); 
    cf.Close(); 
   } 
   catch(Exception fileError) 
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   { 
    MessageBox.Show("Error creating File... " + fileError.Message); 
    return; 
   } 
   try 
   { 
//    for(int i=0;i<100;i++) 
//    { 
     connect();      
     // Giving some time gap between sending messages 
//     Thread.Sleep(500);  
//    } 
    StreamWriter sw; 
    sw=File.AppendText(fileLocation); 
    sw.WriteLine(textBox1.Text.ToString()); 
    sw.WriteLine(textBox1.Text.Length); 
    sw.Close(); 
     
   } 
   catch(Exception noCon) 
   { 
    MessageBox.Show("Error: " + noCon.Message); 
    return; 
   } 
  } 
 
  private void button2_Click(object sender, System.EventArgs e) 
  { 
   Application.Exit(); 
  } 
 
 } 
} 
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server.cs: (This runs on the server) 

// The default ReceiveBuffer size is 8192 and SendBuffer size is 8192 
 
using System; 
using System.Data; 
using System.IO; 
using System.Net; 
using System.Text; 
using System.Net.Sockets; 
 
 
 
public class server_p 
{ 
 public static void Main() 
 { 
   try  
    { 
  string hostName; 
  //string IP="132.170.190.125"; 
  int port =8001; 
  int InByte=8820; 
  string instring=""; 
  int buffer=16384; 
  int recv; 
  int count=0; 
 
    //Get the Hostname of the server  
    hostName =Dns.GetHostName(); 
    //IPAddress ipAd = IPAddress.Parse(IP.ToString()); 
    // Get the IP address from the addresslist 
    IPAddress ipAd = Dns.Resolve(hostName).AddressList[0]; 
    
   
    Console.WriteLine("The server IP address is {0} and it is running at port 
{1}...",ipAd.ToString(),port);     
 
    Console.WriteLine("The input block is {0} bytes",InByte); 
     
    // Declaring TCPlistener 
    TcpListener proxyServer; 
    // Declaring TCP Client 
    TcpClient client; 
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    proxyServer=new TcpListener(ipAd,port); 
    proxyServer.Start(); 
    Console.WriteLine("Waiting for a connection....."); 
    client = proxyServer.AcceptTcpClient(); 
    // Disabling Nagle's algorithm 
    // client.NoDelay=true; 
    
    Console.WriteLine(" Accepted connection ..."); 
        
    // Console.WriteLine("The local End point is  :" + proxyServer.LocalEndpoint ); 
    
    //Setting the size of receiveBuffer 
    client.ReceiveBufferSize=buffer; 
   
    // Getting the size of receivebuffer 
    int receiveBuffer=client.ReceiveBufferSize; 
    Console.WriteLine("The Receive Buffer Size is :{0}",receiveBuffer); 
    // Defining the size of block to get the data from TCP receiveBuffer 
    byte[] inData=new byte[InByte];     
    ASCIIEncoding asen=new ASCIIEncoding();   
    // Declairing the NetworkStream object 
    NetworkStream ns =client.GetStream(); 
 
  while(true) 
    {     
     //string connected=" Connected to the Server"; 
     //data=asen.GetBytes(connected); 
     //ns.Write(data,0,data.Length); 
   
     //if(ns.CanRead) 
 
     //byte[] inData=new byte[client.ReceiveBufferSize]; 
      
     try 
     { 
    //Receiving data using networkStream 
    recv=ns.Read(inData,0,inData.Length); 
    instring=Encoding.ASCII.GetString(inData); 
    Console.WriteLine("Received "+instring +" from client with " 
+instring.Length +" bytes: iteration="+count++ ); 
     } 
     
     catch (Exception noRead) 
     { 
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      Console.WriteLine("Networkstream Unable to read data" + 
noRead.Message); 
      return; 
     } 
   
     byte[] OutData=Encoding.ASCII.GetBytes("Received"); 
 
     try 
     { 
      int sendBuffer=client.SendBufferSize; 
      Console.WriteLine("The Send Buffer Size is: {0}",sendBuffer); 
     client.NoDelay=true; 
    //Sending the acknowledgement using networkStream 
      ns.Write(OutData,0,OutData.Length); 
      ns.Flush(); 
     } 
     
     catch(Exception noAck) 
     { 
      Console.WriteLine("Networkstream Unable to send 
acknowledgement... " + noAck.Message); 
      return; 
     } 
 
    } // End While 
 
    ns.Close(); 
    client.Close(); 
    proxyServer.Stop(); 
       
  } // End Try 
 
 catch(Exception e) 
 { 
  Console.WriteLine(" Error...."+ e.StackTrace); 
 } 
 
  } // End Main 
}  // End Class 
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Proxy_VESS.cs: (This runs on the proxy to connect to VESS) 

/* This function connects to VESS and receives acknowledgment. The RTT is 
recorded at C:\myFile.txt*/ 
 
using System; 
using System.Data; 
using System.IO; 
using System.Net; 
using System.Text; 
using System.Net.Sockets; 
 
 
public class proxy_vess 
{ 
 public static void Main() 
 { 
  try 
  { 
   StreamWriter cf; 
   cf=File.CreateText("C:\\myFile.txt"); 
   cf.Close(); 
  } 
  catch(Exception fileError) 
  { 
   Console.WriteLine("Error creating File... " + 
fileError.Message); 
   return; 
  } 
  bool connected; 
  int dwStart = 0; 
  int dwStop = 0; 
         
  string destIP="132.170.190.134"; 
  int destPort=8001; 
  int Port=8004; 
   
  TcpClient tcpclnt; 
  NetworkStream stm; 
  // Getting DNS info 
  IPHostEntry  ihe=Dns.GetHostByName(Dns.GetHostName()); 
  // Getting local IP Address 
  IPAddress  localIPAd=ihe.AddressList[0];    
  // Assigning sending port 
  IPEndPoint ipep=new  IPEndPoint(localIPAd,Port); 
  tcpclnt = new TcpClient(ipep); 
    //Disabling Nagle Algorithm 
  tcpclnt.NoDelay=true; 
  
  IPAddress IPAd=IPAddress.Parse(destIP); 
  try 
  { 
   tcpclnt.Connect(IPAd,destPort); 
  } 
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   catch(SocketException se) 
   { 
    Console.WriteLine("Could not connect to VESS " + 
se.Message); 
    connected=false; 
         
   } 
   stm = tcpclnt.GetStream();  
   String instring="Please review UCF’s thesis and dissertation 
formatting requirements, as found in the Thesis and Dissertation Manual at 
www.graduate.ucf.edu > Current Students > Forms and Files, prior to using 
this template. This template is pre-formatted using MS Word styles and will 
not function well if improperly formatted text is used. Please read the 
tutorial “Using Microsoft Word to Format Your Document” at 
www.graduate.ucf.edu > Current Students > Forms and Files prior to using this 
template. Sample style settings for headings, subheadings, body text and 
captions can be found in the tutorial as well. In order for bookmarks to be 
automatically created in the PDF, styles must be used in the document, and 
the Table of Contents, List of Tables and List of Figures must be generated 
using Word’s Insert > Index and Tables function.Do not include a copy of the 
Thesis and Dissertation Approval Page in the manuscript; this should be a 
separate file. If removing this page causes difficulty with page numbers, 
you may leave it in the Word file but delete it from the PDF."; 
   for(int i=0;i<10;i++) 
   { 
   try 
   { 
    // Assigning the text entered in textbox  
    byte[] 
sendingBytes=Encoding.ASCII.GetBytes(instring);  
    dwStart=System.Environment.TickCount; 
    stm.Write(sendingBytes,0,sendingBytes.Length);   
    stm.Flush(); 
   } 
   catch (Exception noTx) 
   { 
    Console.WriteLine(" Can not send the information.. " 
+ noTx.Message); 
    connected=false; 
     
   } 
   try 
   { 
  
    byte[] received=new byte[10]; 
    // Read the response using networkSteram 
    stm.Read(received,0,received.Length);  
    // stop timing 
    dwStop = System.Environment.TickCount;  
    int responseTime=dwStop-dwStart; 
    string 
receivedString=Encoding.ASCII.GetString(received,0,received.Length); 
    Console.WriteLine(receivedString); 
    writeToFile(responseTime); 
    connected=true; 
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   } 
   catch (Exception noAck) 
   { 
    Console.WriteLine(" Can not read the 
acknowledgemtnt.." + noAck.Message); 
    connected=false; 
        
   } 
   } 
   stm.Close(); 
   tcpclnt.Close();  
 } 
 
 static void writeToFile(float a) 
 { 
  try 
  { 
   
  // string 
file=fileLocation.Insert(fileLocation.Length,count.ToString()+".txt"); 
   String fileLocation="C:\\myFile.txt"; 
   StreamWriter sw; 
   sw=File.AppendText(fileLocation); 
   sw.WriteLine(a); 
   sw.Close();   
  } 
  catch(Exception noWr) 
  { 
   Console.WriteLine(" Unable to write to file.. "+ 
noWr.Message); 
  } 
 } 
 
} 
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