
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Supporting Real-time Pda Interaction With Virtual Environment Supporting Real-time Pda Interaction With Virtual Environment

Radhey Shah
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Shah, Radhey, "Supporting Real-time Pda Interaction With Virtual Environment" (2004). Electronic Theses
and Dissertations, 2004-2019. 240.
https://stars.library.ucf.edu/etd/240

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/240?utm_source=stars.library.ucf.edu%2Fetd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SUPPORTING REAL-TIME PDA INTERACTION WITH VIRTUAL ENVIRONMENT

by

RADHEY SHAH
B.Tech. Kakatiya University, 2002

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in Modeling and Simulation
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2004

© 2004 Radhey Shah

ii

ABSTRACT

Personal Digital Assistants (PDAs) are becoming more and more powerful with advances

in technology and are expanding their applications in a variety of fields. This work explores the

use of PDAs in Virtual Environments (VE). The goal is to support highly interactive bi-

directional user interactions in Virtual Environments in more natural and less cumbersome ways.

A proxy-based approach is adopted to support a wide-range of handheld devices and have a

multi-PDA interaction with the virtual world. The architecture consists of three components in

the complete system, a PDA, a desktop that acts as a proxy and Virtual Environment Software

Sandbox (VESS), software developed at the Institute for Simulation and Training (IST). The

purpose of the architecture is to enable issuing text and voice commands from PDA to virtual

entities in VESS through the proxy. The commands are a pre-defined set of simple words such as

‘move forward’, ‘turn right’, ‘go’, and ‘stop’. These commands are matched at the proxy and

sent to VESS as text in XML format. The response from VESS is received at the proxy and

forwarded back to the PDA. Performance measures with respect to response time characteristics

of text messages between PDA and proxy over Wi-Fi networks are conducted. The results are

discussed with respect to the acceptable delays for human perception in order to have real-time

interaction between a PDA and an avatar in virtual world.

iii

Dedicated to my wonderful parents, Bhaiya (elder brother) and Bhabhi (sister-in-law), with all

my love…

iv

ACKNOWLEDGMENTS

I am grateful to my advisor Dr. Mainak Chatterjee for his continuous guidance and

encouragement throughout my thesis studies. I would also like to express my gratitude and

special thanks towards Mr. Brian Goldiez at the Institute for Simulation and Training who

supported me throughout the duration of my thesis. He is a great person to work with and I learnt

a lot from him. I am sure that the knowledge I have gained under Mr. Goldiez and Dr. Chatterjee

will help me throughout my professional career. I would also like to thank Dr. Turgut for serving

on my thesis committee.

Aside from academic help, I would like to thank my roommates Parikshit, Karthik and

Jignesh and my friends Ashish and Shailesh for their encouragement and help.

Finally, I would like to thank my beloved parents, Madhuri and Kiran, my elder brother

Shon, my sister-in-law Gauri who have always been a constant source of inspiration and

encouragement throughout my life.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES.. x

LIST OF ACRONYMS/ABBREVIATIONS.. xi

CHAPTER ONE: INTRODUCTION... 1

1.1 PDA... 1

1.2 Virtual Environments.. 2

1.3 Use of PDAs in Virtual Environment ... 3

CHAPTER TWO: RELATED RESEARCH.. 6

CHAPTER THREE: METHODOLOGY ... 10

3.1 Proposed Architecture... 10

3.1.1 Pocket PC... 10

3.1.2 Access Point... 11

3.1.3 Proxy .. 12

3.1.4 VESS.. 13

3.2 Implementation ... 15

3.2.1 Microsoft .NET.. 16

3.2.2 Speech Application Concepts and Standards... 18

3.2.3 Speech Application Language Tags (SALT)... 19

3.2.4 Voice Commands... 23

3.2.5 Working of Speech Application... 25

3.3 Transmission Control Protocol and Sockets ... 27

vi

CHAPTER FOUR: FINDINGS.. 34

4.1 Nagle Algorithm ... 34

4.2 Results... 35

4.3 Discussions ... 44

CHAPTER FIVE: CONCLUSION... 47

APPENDIX A: COMPAQ’S iPAQ POCKET PC.. 49

APPENDIX B: Wi-Fi (IEEE 802.11b) ... 54

Wireless LAN topologies / Operation Modes... 56

APPENDIX C: C#/SALT CODE FOR SPEECH APPLICATION ... 59

Default.aspx Code behind... 60

GUI.js (Used to act on an event).. 63

APPENDIX D: C# CODE FOR TCP/IP NETWORK COMMUNICATION BETWEEN

POCKET PC, PROXY AND VESS ... 65

PDA-Client.cs Codebehind: (This runs on Pocket PC) .. 66

server.cs: (This runs on the server) ... 75

Proxy_VESS.cs: (This runs on the proxy to connect to VESS) ... 78

LIST OF REFERENCES.. 81

vii

LIST OF FIGURES

Figure 1: PDA-VESS architecture .. 11

Figure 2: PDA-VESS Interface Block Diagram ... 15

Figure 3: Overall block diagram of .NET framework .. 17

Figure 4: Implementing Architecture.. 21

Figure 5: Grammar file in Visual Studio.NET 2003... 26

Figure 6: Simple TCP Connection.. 29

Figure 7: Simple TCP Connection.. 30

Figure 8: The Socket Interface.. 32

Figure 9: Average RTT using UCF wireless router – Nagle ON ... 35

Figure 10: Minimum RTT using UCF wireless router – Nagle ON... 36

Figure 11: Average RTT using IST wireless router – Nagle ON ... 37

Figure 12: Minimum RTT using IST wireless router – Nagle ON... 37

Figure 13: Comparison of Average RTTs with wireless routers at UCF and IST – Nagle ON ... 38

Figure 14: Average RTT using UCF wireless router – Nagle OFF.. 39

Figure 15: Minimum RTT using UCF wireless router – Nagle OFF ... 39

Figure 16: Average RTT using IST wireless router – Nagle OFF.. 40

Figure 17: Minimum RTT using UCF wireless router – Nagle OFF ... 41

Figure 18: Comparison of Average RTT using UCF & IST wireless router – Nagle OFF.......... 41

Figure 19: Comparison of Average RTT using UCF wireless router for Nagle ON and OFF..... 42

viii

Figure 20: Comparison of Minimum RTT using UCF wireless router for Nagle ON and OFF .. 43

Figure 21: Comparison of Average RTT using IST wireless router for Nagle ON and OFF....... 43

Figure 22: Comparison of Minimum RTT using IST wireless router for Nagle ON and OFF 44

Figure 23: Compaq iPAQ Pocket PC H3955.. 50

Figure 24: OSI network Model ... 56

Figure 25: Wireless LAN topologies .. 57

Figure 26: Graphical interface for Speech application ... 60

Figure 27: PDA-Client.cs [Design View]... 66

ix

LIST OF TABLES

Table 1 Movement words (can be combined with direction words) .. 23

Table 2 Direction words.. 24

Table 3 Physical Specifications .. 53

Table 4 Operating Environment.. 53

x

LIST OF ACRONYMS/ABBREVIATIONS

AHD American Heritage Dictionary

AI Artificial Intelligence

AMIE Annotation Management Interface

AP Access Point

API Application Programming Interfaces

CF Compact Framework

CLR Common Language Runtime

CLS Common Language Specifications

CSTA Computer Supported Telecommunications Applications

DOM Document Object Model

GPS Global Positioning System

GUI Graphical User Interface

HTML Hyper Text Markup Language

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPT Immersive Projection Technology

IST Institute for Simulation and Training

JAIVE JAva based Interface to the Virtual Environment

LAN Local Area Network

MMUI Multi-Machine User Interfaces

MSS Microsoft Speech Server

xi

MSS Maximum Segment Size

NIC Network Interface Card

OSI Open System Interconnection

PDA Personal Digital Assistant

PIE Pocket Internet Explorer

PVHA Personal Virtual Human Assistant

RAVES Research in Augmented Virtual Environment Systems

RF Radio Frequency

RTT Round Trip Time

SALT Speech Application Language Tags

SASDK Speech Application Software Development Kit

SDK Software Development Kit

SES Speech Engine Services

SML Semantic Markup Language

SRGS Speech Recognition Grammar Specification

SSML Speech Synthesis Markup Language

TCP Transmission Control Protocol

TTS Text-to-Speech

UCF University of Central Florida

UDP User Datagram Protocol

URL Uniform Resource Locator

VE Virtual Environments

VESS Virtual Environment Software Sandbox

xii

VR Virtual Reality

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

WYSIWYG What You See Is What You Get

XHTML eXtended Hyper Text Markup Language

XML eXtensible Markup Language

xiii

CHAPTER ONE: INTRODUCTION

1.1 PDA

The Personal Digital Assistant (PDA) is a portable computing device that can include

data transmission capabilities. PDAs are one of the fastest selling consumer devices in the

history. The Free Online Dictionary of Computing [3] describes PDA as “A small hand-held

computer typically providing calendar, contacts, and note-taking applications but may include

other applications, for example a web browser and media player. Small keyboards and pen-based

input systems are most commonly used for user input.” With improvements in technology, these

devices make possible services such as paging, data messaging, electronic mail, facsimile, date

book and other information handling capabilities like word processing, playing MP3 music files,

getting news, stock quotes from internet and playing games. Some of latest PDAs also have

integrated digital cameras, GPS receivers and bar-code readers.

PDA’s are of interest because they are low cost, multi-modal, of increasing performance,

programmable, and are becoming ubiquitous. PDAs also offer portability, social interactivity,

context sensitivity, connectivity, and individuality and hence they could be useful tools in Virtual

Environments (VEs). PDAs currently have limitations that must be known to ensure that they

are optimally used. These limitations have been widely documented [5] and include battery life

tradeoffs with software execution and data storage, potential performance issues in

computational and graphics intensive settings, and programmability. PDAs also lack sufficient

screen space to display complex graphics. A proxy based approach was adopted in order to

minimize some of these limitations and have a multi-PDA interface for VEs in the future.

1

1.2 Virtual Environments

In a broad sense, an interactive computer model that simulates an actual or imaginary

world is called a Virtual Environment (VE). Virtual Reality (VR) can be defined [1] as “a

medium composed of interactive computer simulations that sense the participant’s position and

actions and replace or augment the feedback to one or more senses, giving the feeling of being

mentally immersed or present in the simulation (a virtual world)”. The key features of virtual

reality as seen from the definition are: a virtual world, immersion, sensory feedback (responding

to user input), and interactivity. The term virtual environment is often used as a synonym for

both virtual reality and virtual world. More specifically, a virtual environment is an instance of a

virtual world presented in an interactive medium such as virtual reality. Thus, VEs are interactive

computer simulations that immerse users in an alternate, yet believable reality. People move

around, look at, and manipulate graphics objects using input devices ranging from the commonly

accessible keyboard and mouse to more exotic devices, such as head-mounted displays and

instrumented gloves.

At the University of Central Florida faculty have been investigating the technical and

human aspects of VEs for several years [19]. The research focus has involved integrating

existing technologies, such as helmet-mounted displays, and creating new strategies to aid the

human user in navigating and interacting with other human users in a VE. Examples have

included novel pointing devices and unobtrusive placement of a compass rose in the virtual

environment. A variety of input and output devices have been used by UCF, but not with a focus

on how the devices can be used as replacements or adjuncts for other sensory input/output

devices.

2

1.3 Use of PDAs in Virtual Environment

With the use of handheld devices becoming common-place, it is natural to investigate

integrating these devices in VEs to take advantage of their low cost and user familiarity. This is

the motivation for this thesis. The goal is to investigate and prototype a design and optimize a

mechanism for efficient, highly interactive multi-modal communications between participants

(real and computer generated) in VEs using handheld devices over wireless networks. This work

is a part of the Research in Augmented Virtual Environment Systems (RAVES) [4] program,

which is a multi-disciplined research program at the University of Central Florida exploring

various technological and human factors aspects of multi-modal virtual environments. Handheld

devices hold promise in several areas including off-loading the central processing system for

selective tasks (e.g., visual processing of maps) and supporting wearable computing for

untethered VE traversal. User familiarity with these devices may facilitate better user interaction

with virtual environments.

Users employ different devices like head-mounted displays and joysticks to interact with

virtual entities. A PDA can be an additional tool to interact with virtual worlds. PDAs are also

potentially useful tools for users in the real world, providing improved interactivity with other

humans or computer avatars. An avatar is the real-time graphical representation of an identity of

the user using the virtual environment. With respect to content, PDA’s are low cost and high

function communication devices that can also store a variety of information for instant

presentation. For instance one can envision the PDA storing maps of facilities and instructions.

This type of usage is relevant to military and civilian uses of virtual environments. In training

and operational systems for soldiers, for example, handheld devices are used to exchange

3

information (send and receive messages), share information and retrieves maps as the soldier

moves. With other modalities like audio, voice recognition and GPS enabled handhelds; users

could perform their actions using a PDA device on the move and in a convenient way. Users

could potentially perform their actions hands free, as they could keep the PDA in their pocket

and have eye-glasses attached to it to see the screen and a voice recognition device to accept

their commands. Alternatively, haptic or auditory information could be conveyed via the device,

thereby offloading the visual modality. PDAs can be made to vibrate or flash when certain

objectives have been accomplished or when there is danger or in situations where a more

conventional notification might not be appropriate. PDAs have a variety of buttons that can be

used to indicate alarms or to coordinate activities between soldiers and avatar that cannot see

each other.

An Internet or intranet compatible architecture suitable for using PDA’s in VEs is an

attractive infrastructure for proxy based study, supporting studies of interactivity performance

factors, and the subsequent optimization of performance (minimizing network time). It is also

intended to support user interactions in VEs in a more natural and less cumbersome way and

navigation in an existing VE in real time from PDA (e.g., by providing ‘you-are’ here maps with

auditory information).

The interface for the PDA to the VE is through the Virtual Environment Software Sandbox

(VESS) [6]. VESS is a suite of libraries created at the University of Central Florida’s Institute

for Simulation and Training (UCF IST) [7] that are used to create VE applications. VESS

provides an application base that is useful and functional using today's hardware and graphics

and audio libraries, extensible to support future hardware and software libraries, and easily

4

portable to multiple platforms, graphics and audio systems, and application programming

interfaces (API's).

This work explores how the PDA can be used in a VE in issuing commands in real-time. A

set of phonetically different voice commands for navigation purposes is created which can be

used for navigation. The voice commands are created to be sent over from PDA using the

Microsoft .NET compact framework, Microsoft Speech Server and a new technology for speech

applications called Speech Application Language Tags (SALT). The response time in terms of

number of bytes sent over wireless network from PDA to proxy is calculated. The effect of

disabling Nagle algorithm is discussed. Nagle algorithm is used by sockets to concatenate small

messages to be sent over the network in order to avoid congestion over the network.

The research is presented in four chapters. Chapter 2 provides the literature review of the

work that has been done using PDAs in VE. Chapter 3 provides the architecture used and the

experimental methodology. Results are presented in chapter 4 whereas chapter 5 discusses the

conclusions, limitations and future scope for this work. The terms PDA, Handheld and Pocket

PC (a Windows CE device) are used interchangeably.

5

CHAPTER TWO: RELATED RESEARCH

 An informative and forward thinking article by Mark Weiser [9] was one of the early

works showing the potential of handheld devices. This work inspiring ubiquitous computing

suggested that devices such as PDAs and embedded machines could facilitate moving computing

to a background function needed to support ubiquitous computing. Ubiquitous computing could

eventually facilitate broader use of virtual environments through miniaturization and higher

performance.

When PDAs were introduced into the market, they were thought to have great potential in

the computing device industry. Keefe et al. [8] summarizes the histories and findings of various

initiatives of PDAs and how they played out in educational settings. Initially PDAs were

considered as replacements to desktop PCs or laptops. The focus now is to use PDAs and PCs

together when both are available. The use of a PDA as augmentation for PCs in controlling

applications like PowerPoint or WinAmp was investigated [10] using Pebbles Project [11]. In the

Pebbles architecture, client programs run on one or more PDAs, the server program runs on the

PC, and a special program called PebblesPC mediates between clients and servers. User studies

on Multi-Machine User Interfaces (MMUI) were performed on different applications which were

developed as part of Pebbles project.

The effective use of PDAs for interacting with other heterogeneous devices is made in

Magic Lounge [14]. Magic Lounge is a shared virtual meeting environment which has been

designed to support meetings between physically remote people who would like to interact with

each other using any one of a number of heterogeneous communication devices like PCs, PDAs,

palmtops, and mobile telephones.

6

The idea of using a PDA as an interaction device in a VE is not new. It was first

introduced with the Bamboo Project [16] in order to solve the problem of choosing the

appropriate interaction techniques among 2-D and 3-D techniques. Bamboo is a multi-platform

system supporting real-time, networked, virtual environments. The Bamboo project offered the

user an interface which included a camera, an environment, and geometry functionalities. Each

functionality was implemented as an applet. Bamboo interacted with the CAVE-like

environment via the PDA’s wireless serial port. A 3Com PalmPilot was used as PDA and

Bamboo’s java-based GUI was used for user interface.

The JAIVE [17] (Java based interface to the virtual environment) project has also

developed an interaction tool which provided the user with integration of common interaction

methods such as selecting colors and performing push-button operations with their Immersive

Projection Technology (IPT) applications.

The Virtual Harlem [12] project is an effort to create a learning environment that can

enrich students’ understanding of the Harlem Renaissance by having a collaborative virtual

reality tour of Harlem in which participants can travel back 80 years to see historical figures and

hear speeches and music from that period. Virtual Harlem is written using a high-level VR

toolkit called Yggdrasil and makes use of CAVE [15] immersive environment. PDAs are used in

Virtual Harlem as the Annotation Management Interface (AMIE) to store and retrieve virtual

annotations for novice users. Virtual annotations are recordings in VR where both the person’s

hand and head gestures, as well as their voice are captured. AMIE was developed for iPAQ

Pocket PC and wireless LAN is used for connectivity between AMIE and the CAVE. Using the

Pocket PC interface, the user can see all the annotations in the space, people who made the

annotations, and the time and locations of all the annotations.

7

QuickSet [13] is a wireless, handheld, agent-based, collaborative, multimodal system for

interacting with distributed application. It consists of a collection of “agents” including speech

recognition, gesture recognition, natural language understanding, multimodal integration, a map-

based interface, and a database, running standalone on the tablet PC or distributed over a

network. The system analyses continuous speech and gesture in real time, producing the best

joint semantic interpretation for multimodal commands. The multimodal interface runs on

machines as small as Windows CE devices, as well as on wearable, handheld, table-sized, and

wall-sized displays.

Applications of 3D virtual humans inside mobile devices are discussed at length by

Gutierrez et al. [18]. A prototype of a virtual human animation engine compliant with MPEG-4

for mobile devices was developed. A personal virtual human assistant (PVHA) is constructed in

form of an autonomous software agent that will look, move, listen and talk as a real person.

The work done so far has been principally for student teaching methodologies or tourist

guides, where teaching aids or map-paths in a building appear on the PDA and one progresses

spatially by just tapping on appropriate links. As pointed out by Gutierrez et al [18], the ultimate

human-computer interface would include audio/video analysis and synthesis in combination with

artificial intelligence (AI) techniques, dialog management and face/body gestures to allow an

intelligent and expressive dialog with the user. Little work has been done on voice-interactions

using PDAs. Mobile Reality Framework [20] makes use of speech using PDAs in its

architecture. It makes use of ScanSoft RealSpeak TTS engine and the Siemens ICM Speech

Recognition Engine. The Mobile reality framework runs entirely on Pocket PC and synchronizes

a hybrid tracking solution to offer the user a seamless, location-dependent mobile multi-modal

8

interface. The specification used to implement the speech interaction management is proprietary

and hence has its limitations for wide use.

The goal of this work is to prototype and to implement an architecture which can be used

for interactive interactions between the participants (computer generated and real) in real-time.

This thesis makes effective use of pre-defined speech commands using Speech Application

Language Tags (SALT), which is an industry standard for developing speech applications and

Microsoft Speech Server. The proposed architecture supports different types of PDAs and

multiple modalities. It also tests the performance measurements in terms of response time over

the wireless network to give an idea for feasibility of such architecture to use in real-time.

9

CHAPTER THREE: METHODOLOGY

The purpose of this work is to investigate methods for increasing and improving the level

of interactivity between handheld devices and a VE by first decreasing latency and subsequently

by allowing multiple modalities to operate simultaneously during runtime.

3.1 Proposed Architecture

The proposed architecture is shown in the Figure 1 [36]. The Pocket PC connects to a

wireless router through a Wi-Fi (IEEE 802.11b) network. The access point (AP) connects to

VESS through a proxy in a wired Ethernet. The architecture building blocks and functionality of

each block are briefly explained as follows.

3.1.1 Pocket PC

The handheld device enables one to store, retrieve and play multimedia files, exchange

text and voice messages, browse the Web, and more. The handheld device offers exchange or

synchronization of information with a desktop computer, takes user input via a stylus or voice

commands and outputs via audio, graphics, or text. Devices such as this have been used in VE

research as simple controllers. These devices are also becoming widely used in a variety of

fields. The mobile device used for this work is Compaq’s iPAQ h3955 Pocket PC. In terms of

computing power and equipment, these are the most powerful devices at present [18], compared

to other devices having PalmOS and EPOC operating system. These kinds of PDAs are situated

on the high-end systems category, featuring advanced characteristics such as 16-bit color

10

displays, audio reproducing/recording and wireless communication (wireless LAN, infrared,

Bluetooth). The iPAQ Pocket PC platform has a growing number of software development tools

and high performance graphics libraries. The details of the device are in Appendix A.

Figure 1: PDA-VESS architecture

3.1.2 Access Point

An access point (AP) is a hardware device that is a communication hub for users of a

wireless device to connect to a wired LAN. They are specially configured nodes on Wireless

Local Area Networks (WLANs) which act as a central transmitter and receiver of WLAN radio

signals. APs are important for providing heightened wireless security and for extending the

physical range of service to the users.

11

There are three major IEEE wireless LAN standards (802.11a, 802.11b, and 802.11g)

operating on different frequency bands (2.4 for 802.11b & 802.11g and 5 GHz for 802.11a).

Among these WLAN networks, 802.11b was chosen for this work as it is the most widespread

version of wireless networking, which brings a theoretical throughput of 11 Mbps. A brief

introduction on how 802.11b works is provided in Appendix B.

3.1.3 Proxy

The proxy is a server that handles connections on behalf of Pocket PC. It is a special

software based server, which stores and manipulates data. In other words, it is a “network cache”.

The proxy also executes programs remotely from the handheld and provides results back to the

handheld. The implemented architecture includes a proxy between the VESS system and wireless

devices. The proxy has more functionality than routing and caching. For example, the proxy can

re-format VESS communications for different PDA devices in real time. There are special

functions added to the proxy to support voice for interacting with avatars and avatars’ responses

to the VE participant. The design also allows commands to other components and information to

other players. Simple experiments have been prototyped using text to text and text to graphics for

performance and connectivity analyses. The benefits of the proxy-based approach are outlined

below:

• Flexibility for supporting multiple PDAs: A proxy based approach supports experimenting

with wide array of personal communications devices. As these items grow in numbers

and variety over the next few years, only interfaces will need to be changed thereby

12

keeping the core software intact. Thus experimentation can occur without affecting the

full data content and network backbone.

• Scalability and Security: The use of a proxy that can process different types of data allows

for multi-modal interaction with a VE. As modalities increase in the future with different

types of handheld devices, one can add a small amount of code for each particular modality

at the proxy server. The proxy also acts as a firewall between VESS and the PDA and hence

does not allow unauthorized access to the virtual world.

• Support for distributed computing and caching: A proxy based approach will also be useful

for using multi-PDA–VESS multimodal interactions. By making PDAs thin clients,

distributed computing can be made possible where major computation is done at proxy and

support for caching can be provided on it.

3.1.4 VESS

VESS [6] provides a public domain application software environment that is useful and

functional using today's hardware, graphics and audio libraries; is extensible to support future

hardware, graphics, audio libraries, and easily portable to multiple platforms, graphics and audio

systems, and other application programming interfaces (APIs). VESS is designed to simplify and

expedite the development of applications where VEs are required. It does this by providing a

simple interface into the underlying graphics API and other output devices, such as haptics,

while integrating support for various input devices, such as joysticks and motion tracking

systems, and display devices, such as head-mounted displays and shutter glasses. Additionally,

VESS provides behaviors and motion models to allow the user to manipulate his or her

13

viewpoint as well as control and interact with objects in the virtual environment. The user's

viewpoint can be independent or attached to any transformable object in the scene. Also, VESS

provides a seamless audio API that integrates directly into the VESS scene graph, giving

developers the ability to easily add sound to the environment (including moving objects). Other

useful routines, such as collision detection and terrain following, are also provided.

VESS provides a high-level library allowing complex virtual entities (avatars), complete

with geometry and motion/articulation models, to be generated with a few simple lines of code.

This is useful for dynamic networked virtual environments, which may involve many users

and/or computer-generated forces at once. VESS provides the developer with the ability to

handle avatars at a high level and leave the details of movement, articulations, and behaviors to

the system.

VESS is also designed for easy portability. Its multi-layered architecture allows the

developer to focus on the details of the application, without worrying about the specifics of the

graphics API or hardware interfaces. Thus, applications built using the VESS libraries will be

easily portable to any other platform. Currently, VESS runs on IRIX and Linux platforms using

the SGI Open Performer API. Other platforms and API's will be supported in the future.

VESS is currently being enhanced by researchers at UCF IST to support experimentation

in sequencing and latency in multi-modal virtual environments. The global multi-modal

objective is to allow researchers to adjust sequencing of inputs and outputs to optimize

information flow to the human user. The need for modal shifts should be sensed and switched

seamlessly during runtime. This work complements this global objective by providing a

handheld device to receive and transmit multi-modal information and architecture to minimize

transmission and processing time to support experimentation.

14

Figure 2: PDA-VESS Interface Block Diagram

Figure 2 shows the iPAQ Pocket PC as a user interface, a Windows based machine as a

proxy and a Linux machine hosting VESS. This single threaded network is for controlled study

to baseline network performance for text messages and images and to improve performance from

that baseline.

3.2 Implementation

The implementation issue was a choice of technology to be used. Two approaches for

implementation were considered:

1. Use of a Stand-alone client program: Use voice recording software on the PDA, record

the commands, save them as .wav or any other recording format and send the audio file to

proxy. At the proxy, run voice-to-text software to convert the commands into text, match

the converted text with the pre-defined dictionary of words and if there is match, send the

command to VESS.

15

2. Use of web-based approach: Run a web server with speech recognition and synthesis

capability at the proxy. Issue commands from Pocket Internet Explorer (PIE) on the

PDA. The speech engine at the proxy will convert this speech into text. The text is

matched with the dictionary of pre-defined words at the proxy. If there is match between

the text recognized from spoken word and the dictionary word, then that text is sent to

VESS and the acknowledgement is received.

The second option is chosen, as it is an integrated approach and it makes PDA a thin

client. As handheld devices grow in future with different platforms, the first approach would

require them to build a specialized application for each of these devices. Microsoft .NET

technology is adopted by taking advantage of its portability and excellent support for speech

related applications for handheld devices. Speech Application Language Tags (SALT) is

preferred over VoiceXML [26] as it supports wider variety of devices and is designed for

multimodal and telephonic applications. VoiceXML was originally designed for Interactive

Voice response (IVR) applications and is well suited for telephonic applications.

3.2.1 Microsoft .NET

Microsoft .NET (formerly Next Generation Windows Services) is a set of software

technologies for connecting information, people, systems, and devices [21]. This new generation

of technology is based on Web services—small building-block applications that can connect to

each other as well as to other larger applications over the Internet. Essentially .NET represents an

integrated approach to software development, deployment, and usage. Hence there is no need for

developers to build separate applications for a mobile platform, a Pocket PC platform, or a

16

desktop platform. Each of these platforms is seen as a greater part of the whole with users able to

seamlessly transfer data between the platforms.

The .NET Framework is the infrastructure for the Microsoft .NET Platform. The .NET

Framework is a common environment for building, deploying, and running Web Services and

Web Applications.

Figure 3: Overall block diagram of .NET framework

The .NET Framework contains Common Language Runtime (CLR), .NET framework

class library and Common Language Specifications (CLS), .NET languages and Visual Studio as

shown in Figure 3 [22]. CLR is the platform’s execution engine. The code written for .NET runs

under CLR’s control. The .NET Framework class library consists of large number of classes for

common functionalities, which can be used by all .NET languages. The CLS provides rules for

multiple languages that .NET supports.

The Visual Studio.NET is a common development environment for the new .NET

Framework. This What You See Is What You Get (WYSIWYG) tool provides a feature rich

17

application execution environment, simplified development and easy integration between a

number of different development languages.

The Microsoft .NET Compact Framework [23] (CF) is a scaled down version of

Microsoft .NET specifically designed for small form factor devices, such as Pocket PC. The

.NET CF greatly simplifies the process of creating and deploying applications to mobile and

embedded devices while also taking full advantage of the capabilities of the device. The .NET

CF enables the execution of secure, downloadable applications on devices such as PDAs, mobile

phones, and set-top boxes. .NET CF and C# are used for application development for this work.

3.2.2 Speech Application Concepts and Standards

The speech application uses a set of voice commands to define grammar. The three

important concepts to build a speech application are dialogues, prompts and grammar. A

dialogue is a composition of questions, answers, statements, and digressions. It is the

conversation between the system and the user. This is the presentation logic of an application.

Prompts are what the system says to the user to ask a question or provide status to the user. In a

Graphical User Interface (GUI) application, the equivalent for prompts is labels and message

boxes. Grammar is used to define and constrain the user input that the system recognizes.

Additionally, the grammar provides a way to associate multiple phrases with a single semantic

meaning. For example, the phrases “Help” and “what can I say” would be mapped to a single

meaning of “Help.” Thus, grammar and prompts deal specifically with the input and output of a

speech application while dialogue weaves the two together in the most natural manner possible.

18

These concepts are developed using industry standards. The four open standards for speech

application development are:

1. Speech Application Language Tags (SALT) is the core API for spoken interaction with a

user. It provides the core constructs of prompts (questions), listens (answers), and related

APIs. This specification is being driven by the SALT Forum [24]

2. Speech Recognition Grammar Specification (SRGS) provides a way to define the phrases

and phrase combinations that an application recognizes from a user – generally referred

to as just “grammar.” This specification is driven by the World Wide Web Consortium

(W3C) [29]

3. Speech Synthesis Markup Language (SSML) is the text-to-speech specification being

driven through the W3C. It defines output (prompts) in the application. The specification

is available at [30]

4. ECMAScript (ECMA-262) is commonly seen in its implemented forms as JScript,

JScript.NET, and JavaScript. JScript and JScript.NET (depending on the client) are used

throughout the Speech Application Software Development Kit (SASDK). The

specification for ECMAScript is available at [31].

3.2.3 Speech Application Language Tags (SALT)

The focus of this work is to have voice interaction from PDAs to VE. As speech

recognition systems are becoming more practical, they provide an excellent opportunity for

natural communication with computer systems. This is especially true with VEs, where the goal

is to provide the most natural form of interface possible. The ultimate speech recognition system

19

would understand context and use it to interpret speech, and it would be able to process a steady

stream of speech from any speaker. Speech Application Language Tags (SALT) [24] is an effort

to achieve this goal. SALT, an open industry standard, is a speech interface markup language. It

consists of a small set of XML elements, with associated attributes and Document Object Model

(DOM) object properties, events and methods, which apply a speech interface to web pages. It

provides the core constructs of prompts (questions), listens (answers), and related APIs. SALT

tags are a lightweight set of extensions to existing markup languages; in particular HTML,

XHTML and XML that enable multimodal and telephony access to information, applications and

Web services from PCs, telephones, tablet PCs and wireless PDAs. Multimodal access enables

users to interact with an application in a variety of ways: input with speech, a keyboard, keypad,

mouse and/or stylus; and output as synthesized speech, audio, plain text, motion video and/or

graphics. Each of these modes could be used independently or concurrently.

The Microsoft Speech Server [25] contains a complete solution for developing, testing,

deploying, and managing telephony (speech only) and multimodal (speech/visual) applications.

Specifically, the product contains the following:

• Microsoft Speech Server

• Microsoft Speech Application SDK

The Microsoft Speech Server (MSS) contains all of the server components for deploying

telephony and multimodal applications. MSS runs on Windows Server 2003 and performs speech

recognition and speech synthesis for telephone, cell phone and Pocket PC devices. The Microsoft

Speech Application Software Development Kit (SASDK) addresses the needs of the speech

application developer with APIs, controls, and tools that extend Visual Studio .NET into the

20

Microsoft Windows Server 2003

 Grammars,

Microsoft Speech Server

 Prompt Dbs,
 Wavs

Pocket PC
(Pocket IE)

Web Server (IIS 6.0)

Speech Engine
Services

VESS Interface
application

Speech-enabled Web
Application

VESS

speech domain. SASDK includes the client-side speech add-ins, Speech Add-in for Microsoft

Internet Explorer and Speech Add-in for Microsoft Pocket Internet Explorer (PIE) which

incorporates the means for desktop PCs, Tablet PCs, and Pocket PC devices to understand

speech tags embedded in HTML pages as defined by the SALT specification. The SDK also

contains a desktop version of the new Microsoft speech recognition engine, a test-level version

of the Microsoft Text-to-Speech (TTS) engine, and tools necessary for building and testing

speech applications. Fig. 4 shows a high-level view of a deployed speech solution with Pocket

PC which is a multimodal client, the speech server components, and a Web server hosting a

speech application.

 Audio/
 SOAP
 TCP/ IP

 HTML/
 SALT

Figure 4: Implementing Architecture

Figure 4 is a detailed implementation diagram of Figure 1. The web browser, that is,

pocket Internet Explorer (PIE) on the PDA provides user interaction, where the user can make a

21

request to the proxy server for a particular task such as getting a map, playing an audio clip etc.

PIE has a speech add-in provided into SASDK. The Speech Add-in for PIE is a SALT interpreter

that supports speech-enabled Web applications deployed over 802.11 wireless networks. The

Speech Add-in for PIE supports all Basic Speech Controls and Dialog Speech Controls delivered

in the SASDK, using MSS to perform all the actual speech processing. It also supports a Pocket

PC hardware button event that developers can bind to listen and prompt elements. On a Pocket

PC, the user enters a Uniform Resource Locator (URL) in Pocket Internet Explorer, which opens

an .aspx file on the Web Server. The Web Server on the proxy hosts the .aspx page and sends

HTML, SALT and script to the Pocket PC. The Pocket PC sends a compressed representation of

the audio and a pointer to the recognition grammar to the Speech Server that performs

recognition and returns results to the Pocket PC. The VESS interface program on the server takes

the matched command and forwards that request to VESS through TCP/IP sockets for further

action. VESS performs the necessary action corresponding to that instruction and acknowledges

the request by sending appropriate information back to the Pocket PC via the proxy server. The

requests and acknowledgements are cached at the Speech Engine Services (SES) proxy for future

use. The acknowledgement to PDA can be sent as a text, an image or audio to provide server-

side speech recognition and speech playback services for multimodal and telephony clients using

the MSS. A multimodal client on a Pocket PC device accesses SES directly for both speech

recognition and speech playback.

The commands in text format are sent via a predefined XML format to VESS through a

socket connection over wired Ethernet.

22

3.2.4 Voice Commands

For the controlled study, few frequently used movement strings, which are phonetically

different, were used as voice commands. Being phonetically different, there are fewer chances of

confusing similar sounding phrases, e.g. “kiss this guy” instead of “kiss the sky.” Each

movement string is composed of a movement word and a direction word. Movement words and

direction words are listed in Table 1 and Table 2 along with their usual pronunciations and

frequencies of use. Frequencies are taken from the British National Corpus (BNC) database and

word frequency [27]. The frequency is the number of occurrences in the whole 100 million word

collection in the BNC database. The pronunciations are taken from American Heritage

Dictionary (AHD) [28].

Table 1
Movement words (can be combined with direction words)

Movement Word AHD Pronunciation Key Frequency

Turn turn, turn 45487

Go gow, g 249540

Move moov, m v 37836

Stop stâp, stop 25066

Halt holt, hɔ ːlt 1483

23

Table 2
Direction words

Movement Word AHD Pronunciation Key Frequency

Forward 'forwurd, fôr w rd 12582

Back Bak, b k 75494

Up up, p 195426

Left left, l ft 11343

Right rIt, r t 40460

The voice commands built from these words are:

• Halt

• Stop

• Turn Left

• Turn Right

• Go Forward

• Go Back

• Go Up

• Go Down

• Move Forward

• Move Back

• Move Up

• Move Down

24

http://www.hyperdictionary.com/dictionary/back

3.2.5 Working of Speech Application

The two major components of a speech application are a client (Web browser) and a Web

server. In addition, a component generically referred to as Speech Services comes into play. The

Web server stores an ASP.NET application, built with Web Forms and Microsoft ASP.NET

Speech Controls. The speech controls render speech-specific markup to the client rather than the

HTML rendered by other types of Web controls. Grammar files (.GRXML files) and prompt

databases (containing the recorded prompts) are also stored on the Web server. The HTTP

request lifecycle in a typical Web application is the same in a speech application. However,

during the rendering phase, what is rendered to the client is a document containing SALT,

SSML, SRGS, and CSTA tags in addition to the HTML and JScript that a typical Web

application generates. When the client receives this document, two things happen:

1. The Speech Services downloads and parses the grammar in preparation for running it.

The Speech Services also downloads the prompt database (if specified) for playback as

prompts are encountered.

2. The SALT client and Web browser invoke the <listen> and <prompt> elements as

specified in the script. Note that rather than executing elements linearly as a standard

HTML client would, elements are executed in their order of invocation as indicated by

calling their start() methods.

The Speech Services start listening for input from the user when a <listen> element is

invoked. Once it receives the audio (an utterance), it compares its analysis of the audio stream to

what is stored in the grammar, looking for a matching pattern. If the recognizer finds a match, a

special type of XML document is returned to the client. The document contains markup called

25

Semantic Markup Language (SML) and is used by the client as the interpretation of what the

user said – this is effectively what the grammar, or at least its recognized parts, is transformed

into. The client then uses this document to determine what to do next (execute a prompt or listen

element), and the cycle repeats itself until the application is done collecting data and the session

ends. Figure 5 shows the grammar file created for this application using Visual Studio.NET.

Figure 5: Grammar file in Visual Studio.NET 2003

The architecture described in chapter three requires Microsoft Speech Server with Speech

Engine Services (SES) in it. At the time of experiments, this product was in beta testing and was

not available commercially. Hence a speech application was created for the Pocket PC and was

26

tested on the desktop machine, since the SASDK contains desktop version of speech engine. The

same application can be ported and used for Pocket PC with the availability of SES.

 One advantage that the SALT and Speech server offers is that the system does not need

training of voice. It recognized voices of different people in a similar manner.

 While the speech application described above enables the interaction between a human

and an avatar in more natural and less cumbersome way, the performance over the wireless

communication between the PDA and proxy is important in order to achieve real-time

interaction. There are two major transport protocols used to send data, a reliable Transmission

Control Protocol (TCP) and unreliable User Datagram Protocol (UDP). The UDP provides best

effort service in the sense that it doesn’t make sure that packets did reach destination nor does it

retransmit them. Transmission Control Protocol on the other hand makes sure that packets

reached destination by using acknowledgements and retransmissions. TCP is used as it is reliable

and it scores over UDP for multimedia applications in terms of fair share of bandwidth [34].

3.3 Transmission Control Protocol and Sockets

TCP [32] is a transport layer network protocol that offers a reliable, connection-oriented,

byte-stream service. It is a full-duplex protocol, which means that each TCP connection supports

a pair of byte-streams, one flowing in each direction. TCP supports flow control, which prevents

the sender from overrunning the buffer capacity of the receiver. In addition, TCP implements

congestion control, which prevents the sender from injecting too much traffic into the network.

TCP adds connection information to the data packet. This allows programs to create an end-to-

end connection between two network devices, providing a consistent path for data to travel. TCP

27

guarantees the data will be reliably delivered to the destination device or that the sender will

receive an indication that a network error occurred. Because of this feature, TCP is called a

connection-oriented protocol. Each TCP connection, or session, includes a certain amount of

packet overhead related to establishing the connection between the two devices. Once the

connection is established, data can be sent between the devices without the application having to

check for lost or out-of-place data. TCP is an end-to-end protocol. That is, TCP turns a host-to-

host packet delivery service, provided by IP, into a process-to-process communication channel.

The Internet Protocol (IP) is the inter-networking protocol that TCP usually relies upon. IP is a

network layer protocol in the 7-layer Open System Interconnection (OSI) model.

 In order to communicate with an application on a remote device, the following

information is needed:

1. The remote device’s IP address

2. The TCP port assigned to the remote application

For a TCP connection to be established, the remote device must accept incoming packets

on the assigned port. Because there could be many applications running on a device that use

TCP, the device must allocate specific port numbers to specific applications. This tells the client

which port to use for a particular application and tells the host which application an incoming

packet should be forwarded to. Figure 6 shows how clients and servers use TCP ports to channel

data between applications.

 In Figure 6, network device A is running two server applications, waiting for incoming

packets from remote devices. One application is assigned TCP port 8000 on the device and the

other is assigned port 9000. Network device B is a client that wants to connect to the applications

on the server. For a device to send a packet to a remote device, it must obtain a free TCP port

28

from the operating system, which remains open for the duration of the session. The client TCP

port number is usually not important and can be assigned to any available port on the device. The

client forwards the packet from an available port on Device B to the application TCP ports on

Device A.

Device A (Server)
 192.168.0.100

Port
8000

Port
9000

Server 1 Server 2

Device B (Client)
 192.168.0.200

Client 1 Client 2

Figure 6: Simple TCP Connection

 The combination of an IP address and a port number defines an IP endpoint. A TCP

session is defined as the combination of a local IP endpoint and a remote IP endpoint. Only one

session can have both these properties the same time. A single network application can use the

same local IP endpoint, but each remote connection must have either a separate IP address or

remote port number.

 TCP maintains packet reliability by using sequence number and acknowledgement fields

in its header. It uses connection states to determine the status of the connection between devices.

29

A specific handshaking protocol is used to establish these connections and to monitor the status

of the connection during the session. The TCP session has three phases:

• Opening handshake

• Session communication

• Closing handshake

Figure 7 shows graphically the three states during TCP session.

 Device A (Server) Device B (Client)

Session Data

 ACK
FIN-ACK

 FIN

 ACK

SYN-ACK

 SYN
Start of session

End of session

Figure 7: Simple TCP Connection

The opening handshake is often called the three-way handshake and requires three steps

to establish a connection through synchronize (SYN) and acknowledgement (ACK) flags.

1. The originating host (client) sends a SYN flag to indicate the start of a session.

30

2. The receiving host sends a both a SYN flag and an ACK flag in the same packet to

indicate it accepts the start of the session.

3. The originating host sends an ACK flag to indicate the session is open and ready for

packets.

After the session is established, the ACK flag is set on packets, indicating that the device

is acknowledging the receipt of a packet with a particular sequence number. To close the session,

closing handshake is done using FIN flag.

1. The host initiating the close sends a FIN flag.

2. The remote host sends both an ACK flag and a FIN flag in the same packet to indicate it

accepts the end of the session.

3. The initiating host sends an ACK flag to officially close the session.

 The SYN flag indicates starts of session. The ACK flags indicates acknowledgement. The

FIN flag indicates close of session. The phases of the TCP session are associated with connection

state names. Each connection state indicates the session’s current position in the handshaking

sequence. The connection states apply equally to clients as well as servers. Both devices in the

TCP session follow the same TCP states.

 To ensure the integrity of data, TCP keeps all sent data in a local buffer until positive

acknowledgement of reception is received from the remote device. Similarly, when receiving

data from the network, TCP keeps a local buffer of received data to ensure that all of the pieces

are received in order before passing the data to the application program.

 From the programming point of view, an application does not directly access the network

interface device to send and receive packets. Instead, an intermediary file descriptor is created to

handle the programming interface to the network. The special file descriptors used to reference

31

network connections are called sockets. A socket defines specific communication domain, a

specific communication type and a specific protocol. In our case, the communication domain is

Internet, communication type is stream and specific protocol is TCP.

 After the socket is created, it is bound either to a specific network address and port on the

system or to a remote network address and port. Once the socket is bound, it can be used to send

and receive data from network. Figure 8 shows how this process works.

Host 1

 Network Application

Socket

Port

Host 2

Socket

Port

Network Application

Figure 8: The Socket Interface

 For the experimental setup, a socket program was created using Microsoft .NET Compact

Framework on Pocket PC and a socket program was created on the proxy using .NET

Framework. C# programming language was used for the network application programming [33].

The performance of the PDA-Proxy was measured based on response time characteristics. For

this study, text data of various sizes was sent over the wireless network and the response time

was noted. Text size varied from 1 byte till 8500 bytes. The round trip time (RTT) was

32

calculated as the difference between the time instance at which text was sent from PDA to the

time instance when the acknowledgement in the form of a string “Received” is received at the

PDA from the proxy. The same text was sent 100 times, 500 milliseconds after the previous

transmission. A new connection was established between the PDA and the proxy for each

request. Initially the number of bytes sent from PDA was increased in steps of 100 until it

reaches 1000 bytes. Then the number of bytes sent over the network then was increased in steps

of 500 bytes.

 The operating system for proxy is Microsoft Windows XP Professional Version 2002

Service Pack 1 and processor is Intel Pentium 4 with speed of 2.4 GHz. The proxy is connected

to VESS via wired Ethernet (100BaseT) at the Institute for Simulation and Training (IST). The

experiment was performed by making use of two networks, first using the 802.11b wireless

router in IST and another using the wireless router at UCF. This was to see if there were

differences in the readings as UCF network is more congested than IST. When connected to the

IST network, the PDA gets a class ‘C’ private address (192.168.0.100), while when connected to

the UCF network; the PDA gets a class ‘A’ private address (10.171.33.35). The effect of Nagle

Algorithm [35] on RTT is also studied.

33

CHAPTER FOUR: FINDINGS

4.1 Nagle Algorithm

 The Nagle Algorithm is used by sockets to automatically concatenate a number of small

buffer messages; this process (called nagling) increases the efficiency of a network application

system by decreasing the number of packets that must be sent over the network. The algorithm

applies when a TCP sender is deciding whether to transmit a packet of data over a connection. If

it has only a "small" amount of data to send, then the Nagle algorithm permits sending the packet

only if all previously transmitted data has been acknowledged by the TCP receiver. In this

situation, "small" is defined as less data than the TCP Maximum Segment Size (MSS) for the

connection, the largest amount of data that can be sent in one datagram. If more small segments

are generated while awaiting the acknowledgement (ACK) for the first one, then these segments

are coalesced into one larger segment. Any full-sized segment is always transmitted

immediately, assuming there is a sufficient receive window available. The Nagle algorithm is

effective in reducing the number of packets sent by interactive applications, such as Telnet,

especially over slow links. The Nagle algorithm delays transmission of these short messages in

the hope that more messages will become available soon, thereby avoiding packet congestion.

 In the current speech application, the priority is to have real-time interaction and the

voice messages in the form of commands are quite small. The Nagle algorithm will restrict

sending such small packets increasing delay for sending the voice commands. Also, if the big

packet is lost, the risk is much more in terms of packet loss. This is especially true for packets in

wireless networks, which follow multipath. Each packet may follow some particular path and the

34

risk of packet loss is evenly spread if more small packets are sent. With the use of TCP,

reliability can be added to each small packet. Large packet meant more delay and hence

reliability can be increased by sending small packets. Hence experiments are performed to see

the effect of Nagle algorithm on the round-trip time of the requests sent over Wi-Fi network. The

Nagle algorithm can be disabled by setting TCP_NODELAY option to true.

4.2 Results

From the readings, the Average RTT and minimum RTT were plotted. Figure 9 shows

the Average RTT in milliseconds for the number of bytes sent from the PDA by making use of

the UCF wireless router. The Nagle algorithm is enabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

R
TT

 m
S

ec

Figure 9: Average RTT using UCF wireless router – Nagle ON

35

Figure 10 shows the Minimum RTT in milliseconds for the number of bytes sent from the

PDA by making use of the UCF wireless router. The Nagle algorithm is enabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 10: Minimum RTT using UCF wireless router – Nagle ON

Figure 11 shows the Average RTT in milliseconds for the number of bytes sent from the

PDA by making use of the IST wireless router with Nagle Algorithm enabled.

36

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 11: Average RTT using IST wireless router – Nagle ON

Figure 12 shows the Minimum RTT in milliseconds for the number of bytes sent from the

PDA by making use of the IST wireless router with Nagle Algorithm enabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 12: Minimum RTT using IST wireless router – Nagle ON

37

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

R
TT

 m
Se

c

IST_LAN
UCF_LAN

Figure 13: Comparison of Average RTTs with wireless routers at UCF and IST – Nagle ON

Figure 13 shows the comparison of Average RTTs in milliseconds for the number of

bytes sent from the PDA by making use of the UCF wireless router and IST wireless router with

Nagle Algorithm enabled.

Figures 9 to 12 shows that with increase in size of data, the RTT increases almost linearly

with the size of data. Figure 13 shows that the RTT is almost same when comparing the IST and

the UCF network.

Figure 14 shows the Average RTT in milliseconds for the number of bytes sent from the

PDA by making use of the UCF wireless router with Nagle Algorithm disabled.

38

0
5

10
15
20
25
30
35
40
45
50

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 14: Average RTT using UCF wireless router – Nagle OFF

Figure 15 shows the Minimum RTT in milliseconds for the number of bytes sent from the

PDA by making use of the UCF wireless router with Nagle Algorithm disabled.

0
5

10
15
20
25
30
35
40
45

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 15: Minimum RTT using UCF wireless router – Nagle OFF

39

Figure 16 shows the Average RTT in milliseconds for the number of bytes sent from the

PDA by making use of the IST wireless router with Nagle Algorithm disabled.

0
5

10
15
20
25
30
35
40
45
50

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 16: Average RTT using IST wireless router – Nagle OFF

Figure 17 shows the Minimum RTT in milliseconds for the number of bytes sent from the

PDA by making use of the IST wireless router with Nagle Algorithm disabled.

40

0
5

10
15
20
25
30
35
40
45

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Figure 17: Minimum RTT using UCF wireless router – Nagle OFF

Figure 18 shows the comparison of Average RTTs in milliseconds for the number of

bytes sent from the PDA by making use of the UCF wireless router and IST wireless router with

Nagle algorithm disabled.

0
5

10
15
20
25
30
35
40
45
50

0 2000 4000 6000 8000 10000

No. of Bytes

R
TT

 m
Se

c

IST_LAN
UCF_LAN

Figure 18: Comparison of Average RTT using UCF & IST wireless router – Nagle OFF

41

Figures 14 to 17 show similar results as that of 9 to 12 with lower RTT for Nagle

algorithm disabled. Figure 18 shows that the results are almost identical for both the IST and the

UCF networks.

Figure 19 shows the comparison of Average RTTs in milliseconds for the number of

bytes sent from the PDA by making use of the UCF wireless router with Nagle algorithm

enabled and disabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Nagle Disabled
Nagle Enabled

Figure 19: Comparison of Average RTT using UCF wireless router for Nagle ON and OFF

Figure 20 shows the comparison of Minimum RTTs in milliseconds for the number of

bytes sent from the PDA by making use of the UCF wireless router with Nagle algorithm

enabled and disabled.

42

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c
Nagle Disabled
Nagle Enabled

Figure 20: Comparison of Minimum RTT using UCF wireless router for Nagle ON and OFF

Figure 21 shows the comparison of Average RTTs in milliseconds for the number of

bytes sent from the PDA by making use of the IST wireless router with Nagle algorithm enabled

and disabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Nagle Disabled
Nagle Enabled

Figure 21: Comparison of Average RTT using IST wireless router for Nagle ON and OFF

43

Figure 22 shows the comparison of Minimum RTTs in milliseconds for the number of

bytes sent from PDA by making use of IST wireless router with Nagle algorithm enabled and

disabled.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

No. of Bytes

RT
T

m
Se

c

Nagle Disabled
Nagle Enabled

Figure 22: Comparison of Minimum RTT using IST wireless router for Nagle ON and OFF

4.3 Discussions

Figures 19, 20, 21 and 22 show that disabling Nagle algorithm gives a better performance in

terms of reduced latency.

A similar work [36] shows the difference between the RTTs with Nagle enabled and

disabled is more compared to the results obtained in this study. One reason for this difference

could be that a different version of the operating system (Pocket PC 2002) was used in that work

and also a server-based technology (Java servlets) was used. In this latter case, all the processing

was done at the proxy and only results were sent back to the PDA. In the current application, the

44

code is native to the PDA and it runs on it. It also has newer version of Windows Mobile 2003

operating system.

Interactivity can be thought of as needed to support a 140 milliseconds response time

[35]. This time represents a nominal measure of the time needed for a human to sense, perceive,

and act on a stimulus. In order to have a highly interactive interaction for computationally

intensive applications like that between users and avatars, it is necessary to provide interactivity

within the human response time to keep the round trip time over wireless networks as small as

possible. The RTT over wired Ethernet from the proxy to VESS is found to be 15 milliseconds.

Since the RTT from the proxy to VESS over wired Ethernet is small and almost constant, a

smaller RTT over a wireless network can make it possible for more interactive and

computational tasks to be carried out in real-time. There will be processing time at the proxy and

at VESS and then the acknowledgement would be sent back to PDA. Smaller RTT will

compensate for these processing times.

Usability of the PDA for VE applications was also briefly and informally calculated

using Nielsen’s [37] heuristics as a guide. The outcome of this evaluation suggested that, as a

minimum, scale and orientation are features that need to be included in the PDA if it is to be used

to guide user navigation. Orientation refers to the user’s angular position in the virtual

environment. Scale refers to some means of quickly determining the distance between objects, as

well as the extent of natural and man-made features. Additional consideration needs to be given

to the use of alternative modalities to convey information via this device, such as a vibration to

indicate when one is moving away from the target location (e.g., when trying to find a specific

room in a burning building) or auditory cues to indicate a specific state, such as arrival of new

45

data. With additional modalities, consideration will need to be given to ensure consistency and

smooth transition between modes.

The architecture has been implemented to study different utilities of PDA’s in Virtual

Environments. One particular usability pilot study that has been performed at UCF IST involved

the use of a PDA to control movement and show positioning of users in a virtual environment

using an interactive map. This pilot study used an interactive map to place users in a virtual

world where they were allowed to freely explore and move around. The user can control their

movements using the interactive map by touching a desired position on the map, which was

presented on the PDA screen. When a position was selected on the map, the position point was

sent to the VESS system and the location of the user was updated within the perceptible delay.

The pilot study indicated that it was very important that the cycle of getting input from the user

and updating the output to the user be completed within the perceptible delay. The previously

explained architecture proved to be effective in performing this task.

 There were several lessons learnt during this pilot study. The first drawback observed

was the small screen space of PDAs to give sufficient information about the map. Although the

virtual environment in use was fairly small, it was difficult to present enough detail on the

limited sized PDA screen to allow users to easily determine their current location on the map and

to input the desired destination onto the PDA. A possible future study that has arisen because of

this drawback is to evaluate the effect of screen size of input/output devices on the usability of

such devices to interact with virtual environments.

46

CHAPTER FIVE: CONCLUSION

This work investigated how PDAs can be used to interact with Virtual Environments in

real-time and in a more natural way. Text messages and speech were used to study the

interactivity. The architecture presented gave satisfactory results for usability pilot studies. The

proxy based approach can increase the scalability and interoperability with other virtual

environments. Making use of a speech application and other services like specially made goggles

to display the PDA screen would allow hands free usage of the PDA.

The results show that by disabling Nagle algorithm, average response time is reduced

over wireless network. It is suggested to disable Nagle’s algorithm to take advantage of small

packet size of multimedia (audio and video) packets [34]. Researchers have presented evidence

[38] [39] that the Nagle algorithm should be disabled in order to reduce the latency as observed

by the client and to protect against unforeseen interactions between TCP and HTTP with

persistent connections. The results obtained have confirmed these findings.

 This reduction in RTT can be used by high performance applications such as speech

recognition, voice to text conversion, and gesture movement to enable natural response between

the users in VE. Additionally the PDA might be useful in other VE roles, such as supporting so-

called ‘on-board’ tracking calculations thereby minimizing or eliminating the need for line of

sight in VE tracking applications. The reduced RTT also makes the messages to be sent with

minimal delay to improve interactivity, especially when there are a large number of users and

messages. Performance is found to depend on the type of application, its transmitting frequencies

and size of message.

47

Since the Microsoft Speech Server was not available at the time of study, the

performance for integrated speech application could not be studied. The pilot tests of speech

recognition using desktop engine showed good results for speech recognition for different

speakers. With the availability of SES component of Microsoft Speech Server, same application

can be used to test speech applications using PDA.

48

APPENDIX A: COMPAQ’S iPAQ POCKET PC

49

Figure 23 shows Compaq iPAQ Pocket PC H3955

Figure 23: Compaq iPAQ Pocket PC H3955

Following are specifications for Compaq iPAQ Pocket PC H3955:

About Pocket PC: Microsoft® Pocket PC version 4.20.1081 (Build 13100)

Processor: Intel® PXA250

Identity:

Asset Tag #: 4G27KVL1S0PW

Serial #: 4G27KVL1S0PW

Memory:

 System RAM Size: 64 MB

 System ROM Size: 32 MB

50

 ROM Is Flash: Yes

 Memory Technology: SDRAM

 Flash Manufacturer: INTEL

 Flash Chip Type: 28F128

 Flash Block Size: 128 KB

Version:

 Product Revision Level: 2.5

 ROM Date: 06/27/03

 ROM Version: 3.00.08 ENG

 OS Version: Windows CE4.20

Display:

 Panel ID: Z

 Display Size: 3.78 in

 Display Type: LCD Display

 Display Screen: Transreflective color TFT

 Color Depth: 16-bit (64K colors), 0.24-dot pitch

 Display Horizontal Pixels: 240 pixels

 Display Vertical Pixels: 320 pixels

System:

 Manufacturer: Compaq Computer Corp.

 Product ID: Pocket PC

 Model ID: Compaq iPAQ H3900

 Processor Type: Intel® PXA250

51

 Processor Revision: B1

 Processor Speed: 400 MHz

 Language: ENGLISH

 Country ID: U.S.A

Bluetooth:

 Module Type:

 Radio Revision: 1.0

 Radio Present: N

Communications:

 Slot Types Provided: SD Memory Card

 Wireless Connectivity: IrDA

Interface Provided: 1 x USB, 1 x infrared - IrDA, 1 x headphones - output - mini-phone

stereo 3.5 mm , 1 x serial - RS-232

Expansion Slot: In use for wireless LAN Network interface card (NIC).

Battery:

 Average Battery Life: 14 Hours

 Battery Technology: Lithium Polymer

Backlight:

Multi-level brightness adjustment, light sensor for automatic adjustment of brightness

level.

Audio:

 Speaker, 3.5 mm stereo headphone jack

Indicators:

52

3 mode alarm notification: flashing green LED, tone, pop-up message. Charge active:

flashing/solid amber LED, Bluetooth active: flashing/sound blue LED

Table 3
Physical Specifications

Compaq iPAQ Pocket PC H3900

US Metric

Height 5.28 in 134.0 mm

Width 3.30 – 3.03 in tapering 84.0 – 77.0 mm tapering

Depth 0.63 in 15.9 mm

Weight 6.49 oz 184 g

Table 4
Operating Environment

 US Metric

Operating 320 to 1040F 00 to 400C Temperature

Nonoperating -220 to 1400F -300 to 600C

Operating 10 to 90% 10 to 90% Relative

Humidity
Nonoperating 10 to 90% 10 to 90%

Operating 0-15,000 ft 14.7 to 10.1 psia Maximum

altitude
Nonoperating 0-15,000 ft 14.7 to 10.1 psia

More details: http://h18000.www1.hp.com/products/quickspecs/11346_na/11346_na.HTML

53

http://h18000.www1.hp.com/products/quickspecs/11346_na/11346_na.HTML

APPENDIX B: Wi-Fi (IEEE 802.11b)

54

802.11, or IEEE 802.11, is a type of radio technology used for wireless local area

networks (WLANs). It is a standard that has been developed by the IEEE (Institute of Electrical

and Electronic Engineers), http://standards.ieee.org. Wi-Fi , 802.11, is composed of several

standards operating in different radio frequencies: 802.11b is a standard for wireless LANs

operating in the 2.4 GHz spectrum with a bandwidth of 11 Mbps; 802.11a is a different standard

for wireless LANs, and pertains to systems operating in the 5 GHz frequency range with a

bandwidth of 54 Mbps. Another standard, 802.11g, is for WLANS operating in the 2.4 GHz

frequency but with a bandwidth of 54 Mbps.

The 802 subgroup (of the IEEE) develops standards for local and wide area networks

with the 802.11 section reviewing and creating standards for wireless local area networks.

802.11b is International standard for wireless networking that operates in the 2.4 GHz frequency

range (2.4 GHz to 2.4835 GHz) and provides a throughput of up to 11 Mbps. The 802.11b

wireless LAN standard specifies the lowest layer of the OSI network model (physical) and a part

of the next higher layer (data link). In addition, the standard specifies the use of the 802.2

protocol for the logical link control portion of the data link layer. The OSI network model is

shown in Figure 24.

The difference between wireless LANs and wired networks such as Ethernet is the

transmission medium. Whereas Ethernet sends electrical signals through wires, wireless LANs

send radio frequency (RF) energy through the air. Wireless devices are equipped with a special

network interface card (NIC) with one or more antennae, a radio transceiver, and circuitry to

convert between the analog radio signals and the digital pulses used by computers.

55

http://standards.ieee.org/

Application

Presentation

Session

Transport

Network

Data Link

Physical

LLC

MAC

Network Protocols
(TCP/IP)

IEEE 802.11b

LLC: Logical Link Control (Sub-layer)

MAC: Media Access Control (Sub-layer)

Figure 24: OSI network Model

 Radio waves broadcast on a given frequency can be picked up by any receiver within

range tuned to that same frequency. Effective or usable range depends on signal power, distance,

and interference from intervening objects or other signals. Information is carried by modulating

the radio waves.

Wireless LAN topologies / Operation Modes

IEEE 802.11b defines two pieces of equipment, a wireless station, which is usually a PC, a PDA

or a Laptop with a wireless network interface card (NIC), and an Access Point (AP),which acts

as a bridge between the wireless stations and Distribution System (DS) or wired networks. There

are two operation modes in IEEE 802.11b viz. Infrastructure Mode and Ac Hoc Mode.

56

Figure 25: Wireless LAN topologies

1. Infrastructure Mode

Infrastructure Mode consists of at least one Access Point connected to the Distribution

System.

o Basis Service Set (BSS)

An Access Point provides a local bridge function for the BSS. All wireless stations

communicate with the Access Point and no longer communicate directly. All frames

are relayed between wireless stations by the Access Point.

o Extended Service Set (ESS)

An Extended Service Set is a set of infrastructure BSS’s, where the Access Points

communicate amongst themselves to forward traffic from one BSS to another to

facilitate movement of wireless stations between BSS’s.

57

2. Ad Hoc Mode

o Independent Basic Service Set (IBSS) or Peer to Peer

The wireless stations communicate directly with each other. Every station may

not be able to communicate with every other station due to the range limitations.

There are no Access Points in an IBSS. Therefore, all stations need to be within

the range of each other and they communicate directly.

More Information:

http://grouper.ieee.org/groups/802/11/index.html

58

http://grouper.ieee.org/groups/802/11/index.html

APPENDIX C: C#/SALT CODE FOR SPEECH APPLICATION

59

Figure 26: Graphical interface for Speech application

Default.aspx Code behind

using System;
using System.Collections;
using System.ComponentModel;
using System.Configuration;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Xml;
using Microsoft.Speech.Web.UI;

60

namespace PDAVESS_Speech
{
 public class Default: System.Web.UI.Page
 {
 protected System.Web.UI.HtmlControls.HtmlImage VoiceCommands;
 protected System.Web.UI.LiteralControl literalControl1;
 protected System.Web.UI.LiteralControl literalControl2;
 protected System.Web.UI.LiteralControl literalControl3;
 protected System.Web.UI.WebControls.DropDownList CommandList;
 protected Microsoft.Speech.Web.UI.Listen AskCommandListen;
 protected Microsoft.Speech.Web.UI.Prompt Prompt1;
 protected Microsoft.Speech.Web.UI.Prompt Prompt2;
 protected System.Web.UI.LiteralControl literalControl4;
 protected Microsoft.Speech.Web.UI.Value value2;
 protected System.Web.UI.LiteralControl literalControl5;
 protected System.Web.UI.LiteralControl literalControl6;
 protected Microsoft.Speech.Web.UI.Value value3;
 protected System.Web.UI.LiteralControl literalControl7;
 protected Microsoft.Speech.Web.UI.Value value4;
 protected Microsoft.Speech.Web.UI.Value value5;
 protected Microsoft.Speech.Web.UI.Value value1;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 if(!Page.IsPostBack)
 {
 PopulatePullDownControls();
 }
 if(ConfigurationSettings.AppSettings["SpeechServer"]!=null)
 {
 String
speechServer=ConfigurationSettings.AppSettings["SpeechServer"].ToString();
 Param param = new Param();
 param.Name="server";
 param.Value=speechServer;
 AskCommandListen.Params.Add(param);
 }
 }

 //Web Form Designer Generated Code

 private void PopulatePullDownControls()
 {

61

 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("",""));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Halt","Halt"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Stop","Stop"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Turn Left","Turn Left"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Turn Right","Turn Right"));
 CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go
Forward","Go Forward"));
 CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go
Back","Go Back"));
 CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go
Up","Go Up"));
 CommandList.Items.Add(new System.Web.UI.WebControls.ListItem("Go
Down","Go Down"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Move Forward","Move Forward"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Move Back","Move Back"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Move Up","Move Up"));
 CommandList.Items.Add(new
System.Web.UI.WebControls.ListItem("Move Down","Move Down"));
 }

 private void InitializeComponent()
 {
 this.Prompt2.Complete += new System.EventHandler(this.Page_Load);
 this.Load += new System.EventHandler(this.Page_Load);

 }

 private void AskCommandListen_Reco(object sender, System.EventArgs e)
 {
 string recognizedText=AskCommandListen.RecoResult.InnerText;
 if(recognizedText!=null)
 {
 CommandList.DataTextField=recognizedText;
 }
 else
 {

62

 throw new InvalidOperationException("Recognized Command not
found.The recognized text was " + AskCommandListen.RecoResult.OuterXml);
 }
 }

 }
}

GUI.js (Used to act on an event)

function SetDropDown()
{
var
theNode=event.srcElement.recoResult.selectSingleNode("PDAVESSSpeech.grxml/Commands")
;
var theResult="";
var listCommands="";

if(theNode !=null)
{
 theResult=theNode.text;
 /* Pocket IE and IE have different ways of accesing an element on the page*/
 if(typeof(window["CommandList"])!="undefined")
 {
 listCommands=window["CommandList"];
 }
 else
 {
 listCommands=document.all["CommandList"];
 document.all('CommandList').style.backgroundColor = 'red';
 }
 listCommands.value=theResult;
}
}
function DropDownLabelOnClick()
{
 AskCommandListen.start();
}

63

function noRecognition()
{
 alert("Recognition Failed... Try Again");
}

function timeOut()
{
 alert("Its timeOut...Try Again");
}

function sendToVess()
{
 var result=theNode.text;
}

function error()
{
 alert("Error in Recognition..");
}

64

APPENDIX D: C# CODE FOR TCP/IP NETWORK COMMUNICATION
BETWEEN POCKET PC, PROXY AND VESS

65

Figure 27: PDA-Client.cs [Design View]

PDA-Client.cs Codebehind: (This runs on Pocket PC)

using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;
using System.IO;
using System.Net;
using System.Text;
using System.Net.Sockets;
using System.Threading;

namespace PDAProxy
{
 /// <summary>

66

 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 //private Socket mySocket;

 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.StatusBar statusBar1;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.Button button2;
 public System.Windows.Forms.ComboBox Nagle;
 private System.Windows.Forms.MainMenu mainMenu1;
 static string fileLocation="\\myFile.txt";

 public Form1()
 {
 // Required for Windows Form Designer support
 InitializeComponent();
 // TODO: Add any constructor code after InitializeComponent call
 }
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {

 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof(Form1));
 this.button1 = new System.Windows.Forms.Button();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.label1 = new System.Windows.Forms.Label();
 this.statusBar1 = new System.Windows.Forms.StatusBar();
 this.textBox2 = new System.Windows.Forms.TextBox();

67

 this.button2 = new System.Windows.Forms.Button();
 this.Nagle = new System.Windows.Forms.ComboBox();
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(40, 64);
 this.button1.Text = "Send it";
 this.button1.Click += new System.EventHandler(this.button1_Click);
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(8, 32);
 this.textBox1.Multiline = true;
 this.textBox1.Size = new System.Drawing.Size(136, 24);
 this.textBox1.Text = "Enter Text Here";
 //
 // label1
 //
 this.label1.Location = new System.Drawing.Point(16, 8);
 this.label1.Size = new System.Drawing.Size(200, 16);
 //
 // statusBar1
 //
 this.statusBar1.Location = new System.Drawing.Point(0, 248);
 this.statusBar1.Size = new System.Drawing.Size(240, 32);
 //
 // textBox2
 //
 this.textBox2.Location = new System.Drawing.Point(8, 88);
 this.textBox2.Multiline = true;
 this.textBox2.ScrollBars = System.Windows.Forms.ScrollBars.Vertical;
 this.textBox2.Size = new System.Drawing.Size(224, 144);
 this.textBox2.Text = "";
 //
 // button2
 //
 this.button2.Location = new System.Drawing.Point(136, 64);
 this.button2.Size = new System.Drawing.Size(48, 20);
 this.button2.Text = "Exit";
 this.button2.Click += new System.EventHandler(this.button2_Click);
 //
 // Nagle
 //
 this.Nagle.DisplayMember = "Delay";

68

 this.Nagle.Items.Add("NoDelay");
 this.Nagle.Items.Add("Delay");
 this.Nagle.Location = new System.Drawing.Point(160, 32);
 this.Nagle.Size = new System.Drawing.Size(64, 22);
 this.Nagle.Visible = true;
 this.FormBorderStyle =
System.Windows.Forms.FormBorderStyle.Fixed3D;
 //
 // Form1
 //
 this.BackColor = System.Drawing.Color.WhiteSmoke;
 this.ClientSize = new System.Drawing.Size(240, 280);
 this.Controls.Add(this.Nagle);
 this.Controls.Add(this.button2);
 this.Controls.Add(this.textBox2);
 this.Controls.Add(this.statusBar1);
 this.Controls.Add(this.label1);
 this.Controls.Add(this.textBox1);
 this.Controls.Add(this.button1);
 this.Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon")));
 this.Menu = this.mainMenu1;
 this.Text = "Form1";

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 static void Main()
 {
 Application.Run(new Form1());

 }

 public void connect()
 {

 try
 {
 // The default SendBuffer size is 16384 and receiveBuffer size is
32768
 int dwStart = 0;
 int dwStop = 0;

69

 string destIP="132.170.190.142";
 int destPort=8001;
 int Port=8002;
 TcpClient tcpclnt;
 statusBar1.Text=String.Format("");
 try
 {
 // Getting DNS info
 IPHostEntry
ihe=Dns.GetHostByName(Dns.GetHostName());
 // Getting local IP Address
 IPAddress localIPAd=ihe.AddressList[0];
 // Assigning sending port
 IPEndPoint ipep=new IPEndPoint(localIPAd,Port);
 label1.Text=localIPAd.ToString()+ ":"+Port.ToString();
 textBox2.Text= String.Format("Client IP:{0}:{1}
",localIPAd.ToString(),Port.ToString());
 tcpclnt = new TcpClient(ipep);
 if(Nagle.Text=="NoDelay")
 {
 //Disabling Nagle Algorithm
 tcpclnt.NoDelay=true;
 }
 else
 {
 tcpclnt.NoDelay=false;
 }
 textBox2.Text+= String.Format("\r\n Nagle Algorithm is:
{0} ",tcpclnt.NoDelay);
 //IPAddress IPAd=IPAddress.Parse("132.170.190.125");
 //server IP address
 IPAddress IPAd=IPAddress.Parse(destIP);
 statusBar1.Text=Convert.ToString("Trying to
Connect"+IPAd+"::"+destPort+"...");
 textBox2.Text+= String.Format("\r\nServer IP: {0} : {1} ",
destIP.ToString(),destPort.ToString());
 // Connect to server
 tcpclnt.Connect(IPAd,destPort);
 statusBar1.Text="Connected";
 //connected=true;
 }
 catch(SocketException se)
 {

70

 DialogResult dr=MessageBox.Show(se.Message
+" Unable to connect to server.. ",
se.ErrorCode.ToString(),MessageBoxButtons.AbortRetryIgnore,MessageBoxIcon.None,Messag
eBoxDefaultButton.Button1);
 if(dr==DialogResult.Abort)
 {
 Application.Exit();
 }
 if(dr==DialogResult.Retry)
 {
 connect();
 }
 if(dr==DialogResult.Cancel)
 {
 Application.Exit();
 }
 return;
 }
 // Create network stream that we will use to send and receive data.
 NetworkStream stm = tcpclnt.GetStream();
 // if(stm.CanWrite)
 for(int i=0;i<100;i++)
 {
 try
 {
 // Assigning the text entered in textbox
 string str;
 str=textBox1.Text;
// int sendBuffer=tcpclnt.SendBufferSize;
// textBox2.Text+=String.Format("\r\nSending
BufferSize:{0}",sendBuffer);
// // Getting the text in Textbox in byte format
 byte[] sendingBytes=Encoding.ASCII.GetBytes(str);
 statusBar1.Text="Transmitting.....";
 // Start timing
 dwStart=System.Environment.TickCount;
 // Send the bytes using networkStream
 stm.Write(sendingBytes,0,sendingBytes.Length);
 stm.Flush();
 // textBox2.Text+=String.Format("\r\nStart Time
is:{0}",DateTime.Now.Millisecond);
 textBox2.Text+=String.Format(" \r\nNumber of bytes
sent:{0}", sendingBytes.Length);
 //textBox2.Text+=String.Format(" \r\nNumber of bytes
sent:{0}", str.Length);

71

 }

 catch (Exception noTx)
 {
 MessageBox.Show(" Can not send the information.. " +
noTx.Message);
 return;
 }

// if(stm.CanRead)

 try
 {
 //byte[] b=new byte[tcpclnt.ReceiveBufferSize];

 //Get the value of TCP receiveBuffer
 //int receiveBuffer=tcpclnt.ReceiveBufferSize;
 //textBox2.Text +=String.Format("\r\nReceive Buffer Size:
{0}",receiveBuffer);
 // Set the value of block of bytes to be read from TCP
receiveBuffer
 byte[] received=new byte[10];
 // Read the response using networkSteram
 stm.Read(received,0,received.Length);

 // stop timing
 dwStop = System.Environment.TickCount;
 int responseTime=dwStop-dwStart;
 //textBox2.Text +=String.Format("\r\n The response is
received at: {0}", DateTime.Now.Millisecond);
 string
instring=Encoding.ASCII.GetString(received,0,received.Length);
 textBox2.Text +=String.Format(" \r\n {0}",instring);
 textBox2.Text+=String.Format(" \r\n The bytes received
are:{0} ",instring.Length);
 textBox2.Text +=String.Format("\r\nThe response time
is:{0} milliseconds ",responseTime);
 writeToFile(responseTime);
 statusBar1.Text="Successfully Received Ack.....";
 }

 catch (Exception noAck)
 {
 MessageBox.Show(" Can not read the acknowledgemtnt.."
+ noAck.Message);

72

 return;
 }
 //Thread.Sleep(500);
 }

 stm.Close();
 tcpclnt.Close();
 //MessageBox.Show("Clsoing Connection");
 }
 catch (Exception ee)
 {
 MessageBox.Show(" Error..... "+ ee.Message);
 return;
 }
 }

 static void writeToFile(float a)
 {
 try
 {

 // string
file=fileLocation.Insert(fileLocation.Length,count.ToString()+".txt");
 StreamWriter sw;
 sw=File.AppendText(fileLocation);
 sw.WriteLine(a);
 sw.Close();

 }
 catch(Exception noWr)
 {
 MessageBox.Show(" Unable to write to file.. "+ noWr.Message);
 return;
 }
 }

 private void button1_Click(object sender, System.EventArgs e)
 {
 try
 {
 StreamWriter cf;
 cf=File.CreateText("\\myFile.txt");
 cf.Close();
 }
 catch(Exception fileError)

73

 {
 MessageBox.Show("Error creating File... " + fileError.Message);
 return;
 }
 try
 {
// for(int i=0;i<100;i++)
// {
 connect();
 // Giving some time gap between sending messages
// Thread.Sleep(500);
// }
 StreamWriter sw;
 sw=File.AppendText(fileLocation);
 sw.WriteLine(textBox1.Text.ToString());
 sw.WriteLine(textBox1.Text.Length);
 sw.Close();

 }
 catch(Exception noCon)
 {
 MessageBox.Show("Error: " + noCon.Message);
 return;
 }
 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }

 }
}

74

server.cs: (This runs on the server)

// The default ReceiveBuffer size is 8192 and SendBuffer size is 8192

using System;
using System.Data;
using System.IO;
using System.Net;
using System.Text;
using System.Net.Sockets;

public class server_p
{
 public static void Main()
 {
 try
 {
 string hostName;
 //string IP="132.170.190.125";
 int port =8001;
 int InByte=8820;
 string instring="";
 int buffer=16384;
 int recv;
 int count=0;

 //Get the Hostname of the server
 hostName =Dns.GetHostName();
 //IPAddress ipAd = IPAddress.Parse(IP.ToString());
 // Get the IP address from the addresslist
 IPAddress ipAd = Dns.Resolve(hostName).AddressList[0];

 Console.WriteLine("The server IP address is {0} and it is running at port
{1}...",ipAd.ToString(),port);

 Console.WriteLine("The input block is {0} bytes",InByte);

 // Declaring TCPlistener
 TcpListener proxyServer;
 // Declaring TCP Client
 TcpClient client;

75

 proxyServer=new TcpListener(ipAd,port);
 proxyServer.Start();
 Console.WriteLine("Waiting for a connection.....");
 client = proxyServer.AcceptTcpClient();
 // Disabling Nagle's algorithm
 // client.NoDelay=true;

 Console.WriteLine(" Accepted connection ...");

 // Console.WriteLine("The local End point is :" + proxyServer.LocalEndpoint);

 //Setting the size of receiveBuffer
 client.ReceiveBufferSize=buffer;

 // Getting the size of receivebuffer
 int receiveBuffer=client.ReceiveBufferSize;
 Console.WriteLine("The Receive Buffer Size is :{0}",receiveBuffer);
 // Defining the size of block to get the data from TCP receiveBuffer
 byte[] inData=new byte[InByte];
 ASCIIEncoding asen=new ASCIIEncoding();
 // Declairing the NetworkStream object
 NetworkStream ns =client.GetStream();

 while(true)
 {
 //string connected=" Connected to the Server";
 //data=asen.GetBytes(connected);
 //ns.Write(data,0,data.Length);

 //if(ns.CanRead)

 //byte[] inData=new byte[client.ReceiveBufferSize];

 try
 {
 //Receiving data using networkStream
 recv=ns.Read(inData,0,inData.Length);
 instring=Encoding.ASCII.GetString(inData);
 Console.WriteLine("Received "+instring +" from client with "
+instring.Length +" bytes: iteration="+count++);
 }

 catch (Exception noRead)
 {

76

 Console.WriteLine("Networkstream Unable to read data" +
noRead.Message);
 return;
 }

 byte[] OutData=Encoding.ASCII.GetBytes("Received");

 try
 {
 int sendBuffer=client.SendBufferSize;
 Console.WriteLine("The Send Buffer Size is: {0}",sendBuffer);
 client.NoDelay=true;
 //Sending the acknowledgement using networkStream
 ns.Write(OutData,0,OutData.Length);
 ns.Flush();
 }

 catch(Exception noAck)
 {
 Console.WriteLine("Networkstream Unable to send
acknowledgement... " + noAck.Message);
 return;
 }

 } // End While

 ns.Close();
 client.Close();
 proxyServer.Stop();

 } // End Try

 catch(Exception e)
 {
 Console.WriteLine(" Error...."+ e.StackTrace);
 }

 } // End Main
} // End Class

77

Proxy_VESS.cs: (This runs on the proxy to connect to VESS)

/* This function connects to VESS and receives acknowledgment. The RTT is
recorded at C:\myFile.txt*/

using System;
using System.Data;
using System.IO;
using System.Net;
using System.Text;
using System.Net.Sockets;

public class proxy_vess
{
 public static void Main()
 {
 try
 {
 StreamWriter cf;
 cf=File.CreateText("C:\\myFile.txt");
 cf.Close();
 }
 catch(Exception fileError)
 {
 Console.WriteLine("Error creating File... " +
fileError.Message);
 return;
 }
 bool connected;
 int dwStart = 0;
 int dwStop = 0;

 string destIP="132.170.190.134";
 int destPort=8001;
 int Port=8004;

 TcpClient tcpclnt;
 NetworkStream stm;
 // Getting DNS info
 IPHostEntry ihe=Dns.GetHostByName(Dns.GetHostName());
 // Getting local IP Address
 IPAddress localIPAd=ihe.AddressList[0];
 // Assigning sending port
 IPEndPoint ipep=new IPEndPoint(localIPAd,Port);
 tcpclnt = new TcpClient(ipep);
 //Disabling Nagle Algorithm
 tcpclnt.NoDelay=true;

 IPAddress IPAd=IPAddress.Parse(destIP);
 try
 {
 tcpclnt.Connect(IPAd,destPort);
 }

78

 catch(SocketException se)
 {
 Console.WriteLine("Could not connect to VESS " +
se.Message);
 connected=false;

 }
 stm = tcpclnt.GetStream();
 String instring="Please review UCF’s thesis and dissertation
formatting requirements, as found in the Thesis and Dissertation Manual at
www.graduate.ucf.edu > Current Students > Forms and Files, prior to using
this template. This template is pre-formatted using MS Word styles and will
not function well if improperly formatted text is used. Please read the
tutorial “Using Microsoft Word to Format Your Document” at
www.graduate.ucf.edu > Current Students > Forms and Files prior to using this
template. Sample style settings for headings, subheadings, body text and
captions can be found in the tutorial as well. In order for bookmarks to be
automatically created in the PDF, styles must be used in the document, and
the Table of Contents, List of Tables and List of Figures must be generated
using Word’s Insert > Index and Tables function.Do not include a copy of the
Thesis and Dissertation Approval Page in the manuscript; this should be a
separate file. If removing this page causes difficulty with page numbers,
you may leave it in the Word file but delete it from the PDF.";
 for(int i=0;i<10;i++)
 {
 try
 {
 // Assigning the text entered in textbox
 byte[]
sendingBytes=Encoding.ASCII.GetBytes(instring);
 dwStart=System.Environment.TickCount;
 stm.Write(sendingBytes,0,sendingBytes.Length);
 stm.Flush();
 }
 catch (Exception noTx)
 {
 Console.WriteLine(" Can not send the information.. "
+ noTx.Message);
 connected=false;

 }
 try
 {

 byte[] received=new byte[10];
 // Read the response using networkSteram
 stm.Read(received,0,received.Length);
 // stop timing
 dwStop = System.Environment.TickCount;
 int responseTime=dwStop-dwStart;
 string
receivedString=Encoding.ASCII.GetString(received,0,received.Length);
 Console.WriteLine(receivedString);
 writeToFile(responseTime);
 connected=true;

79

 }
 catch (Exception noAck)
 {
 Console.WriteLine(" Can not read the
acknowledgemtnt.." + noAck.Message);
 connected=false;

 }
 }
 stm.Close();
 tcpclnt.Close();
 }

 static void writeToFile(float a)
 {
 try
 {

 // string
file=fileLocation.Insert(fileLocation.Length,count.ToString()+".txt");
 String fileLocation="C:\\myFile.txt";
 StreamWriter sw;
 sw=File.AppendText(fileLocation);
 sw.WriteLine(a);
 sw.Close();
 }
 catch(Exception noWr)
 {
 Console.WriteLine(" Unable to write to file.. "+
noWr.Message);
 }
 }

}

80

LIST OF REFERENCES

[1] Sherman W.R., Craig A.B., “Understanding Virtual Reality” (2003), Morgan Kaufmann

Publishers

[2] Card S.K, Moran T.P., Newell A., “The Psychology of Human-Computer Interaction”

(1983), Lawrence Erlbaum Associates, Publishers

[3] The Free On-Line Dictionary of Computing http://foldoc.doc.ic.ac.uk/foldoc/index.html

[4] Reeves L., Goldiez B., Kingdon K., Stanney K. “Raves: Developing a Testbed for Advancing

Augmented and Virtual Environment Systems” MP 08, 23rd Annual Army Science Conference

[5] Satyanarayanan, M., “Pervasive Computing: Vision and Challenges”, Personal

Communications, IEEE, Volume: 8 Issue: 4, Aug. 2001 Page(s): 10 –17

[6] Daly, J., Kline, B., Martin, G.A., “VESS: coordinating graphics, audio, and user interaction

in virtual reality applications” Virtual Reality, 2002. Proceedings. IEEE.

[7] Institute for Simulation and Training, http://www.ist.ucf.edu

[8] Keefe, D., Farag, P., & Zucker, A. (2003). Annotated Bibliography of Ubiquitous Computing

Evaluations. Retrieved, from http://www.ubiqcomputing.org/Reference.pdf

[9] Weiser, M. “The Computer for the 21st Century”, Scientific American, September, 1991.

[10] Myers B. “Using Handhelds and PCs Together”, Communications of the ACM, November

2000, Volume 44, Number 11.

[11] Pebbles, http://www.cs.cmu.edu/~pebbles

[12] Park, K., Leigh, J., Johnson, A., Carter, B., Brody, J., Sosnoski, J., “Distance Learning

Classroom Using Virtual Harlem”, Virtual Systems and Multimedia, 2001. Proceedings.

81

http://foldoc.doc.ic.ac.uk/foldoc/index.html
http://www.ist.ucf.edu/
http://www.ubiqcomputing.org/Reference.pdf

Seventh International Conference on, (VSMM 2001), Berkeley CA, Oct 25-27, 2001, pp. 489-

498.

[13] Cohen, P.; McGee, D.; Oviatt, S.; Wu, L.; Clow, J.; King, R.; Julier, S.; Rosenblum, L.;

“Multimodal interaction for 2D and 3D environments [virtual reality]”, Computer Graphics and

Applications, IEEE , Volume: 19 Issue: 4

[14] Masoodian, M.; Luz, S.;, “Heterogeneous client-server architecture for a virtual meeting

environment”, Proceedings of 8th Euromicro Workshop on Parallel and Distributed Processing,

2000., 19-21 Jan. 2000, pp. 67 - 74.

[15] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, John C.

Hart, “The CAVE: audio visual experience automatic virtual environment” June 1992,

Communications of the ACM, Volume 35 Issue 6 pp. 64-72

[16] Watsen K., Darken R. P., Capps M.V., “A handheld computer as an interaction device to a

virtual environment”. In Proceedings of the 3rd International Immersive Projection Technology

Workshop, 1999. http://watsen.net/Bamboo/papers/iptw99.pdf

[17] Hill, L., Cruz-Neira, C., “Palmtop Interaction Methods for the Immersive Projection

Technology Virtual Reality Systems”. 4th Immersive Projection Technology Workshop. June

2000, Ames, Iowa

[18] M. Gutierrez, F. Vexo, D. Thalmann, “Controlling Virtual Humans Using PDAs”. The 9th

International Conference on Multi-Media Modeling (MMM'03), January 7-10, 2003, Taiwan

[19] Stanney, K.M., Kingdon, K., Graeber, D., & Kennedy, R.S. (2002). “Human performance

in immersive virtual environments: Effects of duration, user control, and scene complexity”

Human Performance, 15(4), 339-366.

82

http://watsen.net/Bamboo/papers/iptw99.pdf

[20] Goose S., Wanning H., Schneider G., “Mobile Reality: A PDA-Based Multimodal

Framework Synchronizing a Hybrid Tracking Solution with 3D Graphics and Location-Sensitive

Interaction”, Proceedings of the 4th international conference on Ubiquitous Computing,

Göteborg, Sweden, 2002 Pp: 33 - 47

[21] Microsoft Corporation, http://www.microsoft.com/net/basics/

[22] Oberg R.J., “Introduction to C# Using .NET”, Prentice Hall PTR, Upper Saddle River, NJ

07458, 2002.

[23] Wigley A., Wheelwright S., “Microsoft .NET Compact Framework”, Microsoft Press,

Redmond, Washington-98052-6399, 2003.

[24] The SALT Forum, http://www.saltforum.org/

[25] Microsoft Speech, http://www.microsoft.com/speech/

[26] VoiceXML Forum, http://www.voicexml.org/

[27] BNC database and word frequency lists, http://www.itri.bton.ac.uk/~Adam.Kilgarriff/bnc-

readme.html

[28] American Heritage Dictionary, http://dictionary.reference.com/help/ahd4/pronkey.html

[29] Speech Recognition Grammar Specification (SRGS)

http://www.w3.org/TR/speech-grammar/

[30] Speech Synthesis Markup Language (SSML)

http://www.w3.org/TR/speech-synthesis/

[31] ECMAScript (ECMA-262)

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[32] Tanenbaum, A., “Computer Networks, 3rd edition”, Prentice Hall, 1996

[33] Blum R., “C# Network Programming”, SYBEX, 2003

83

http://www.microsoft.com/net/basics/
http://www.saltforum.org/
http://www.microsoft.com/speech/
http://www.voicexml.org/
http://www.itri.bton.ac.uk/~Adam.Kilgarriff/bnc-readme.html
http://www.itri.bton.ac.uk/~Adam.Kilgarriff/bnc-readme.html
http://dictionary.reference.com/help/ahd4/pronkey.html
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-synthesis/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[34] Negi A., Bose B., “Impact of Nagle Algorithm and Jitter Buffer in Multimedia

Applications”, 5th World Wireless Congress, May 25-28, 2004, San Francisco.

[35] Card S. K., Moran T. P., Newell A., “The Psychology of Human-Computer Interaction”,

Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

[36] Goldiez B., Shah R., Srinivasan R., Stanney K., Jones D., “PDAs in Virtual Environments”,

Proc. of the 10th International Conference on Cybernetics and Information Technologies,

Systems and Applications (CITSA-2004), July 2004, Orlando, Florida.

[37] Nielsen, J., “Usability Engineering”, Academic Press, Boston, 1993.

[38] Heidemann J., “Performance interactions between P-HTTP and TCP implementations,”

ACM Comput. Commun. Rev., vol. 27, pp. 65–73, Apr.1997.

[39] Nielsen H. F., Gettys J., Baird-Smith A., Prud’hommeaux E., Lie H.W., Lilley C., “Network

performance effects of HTTP/1.1, CSS1, and PNG,” presented at the ACM SIGCOMM Symp.

Commun. Architectures Protocols, Cannes, France, Sept. 1997.

84

	Supporting Real-time Pda Interaction With Virtual Environment
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 PDA
	1.2 Virtual Environments
	1.3 Use of PDAs in Virtual Environment

	CHAPTER TWO: RELATED RESEARCH
	CHAPTER THREE: METHODOLOGY
	3.1 Proposed Architecture
	3.1.1 Pocket PC
	3.1.2 Access Point
	3.1.3 Proxy
	3.1.4 VESS

	3.2 Implementation
	3.2.1 Microsoft .NET
	3.2.2 Speech Application Concepts and Standards
	3.2.3 Speech Application Language Tags (SALT)
	3.2.4 Voice Commands
	3.2.5 Working of Speech Application

	3.3 Transmission Control Protocol and Sockets

	CHAPTER FOUR: FINDINGS
	4.1 Nagle Algorithm
	4.2 Results
	4.3 Discussions

	CHAPTER FIVE: CONCLUSION
	APPENDIX A: COMPAQ’S iPAQ POCKET PC
	APPENDIX B: Wi-Fi (IEEE 802.11b)
	Wireless LAN topologies / Operation Modes

	APPENDIX C: C#/SALT CODE FOR SPEECH APPLICATION
	Default.aspx Code behind
	GUI.js (Used to act on an event)

	APPENDIX D: C# CODE FOR TCP/IP NETWORK COMMUNICATION BETWEEN
	PDA-Client.cs Codebehind: (This runs on Pocket PC)
	server.cs: (This runs on the server)
	Proxy_VESS.cs: (This runs on the proxy to connect to VESS)

	LIST OF REFERENCES

