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ABSTRACT 

DC-DC power converters play an important role in powering telecom and 

computing systems. With the speed improvement and cost reduction of digital control, 

digital controller is becoming a trend for DC-DC converters in addition to existed digital 

monitoring and management technology. In this thesis, digital control is investigated for 

DC-DC converters applications.  

To deeply understand the whole control systems, DC-DC converter models are 

investigated based on averaged state-space modeling. Considering half-bridge isolated 

DC-DC converter with a current doublers rectifier has advantages over other topologies 

especially in the application of low-voltage and high-current DC-DC converters, the 

thesis take it as an example for digital control modeling and implementation.  

In Chapter 2, unified steady-state DC models and small-signal models are 

developed for both symmetric and asymmetric controlled half-bridge DC-DC converters. 

Based on the models, digital controller design is implemented. In Chapter 3, digital 

modeling platforms are established based on Matlab, Digital PID design and 

corresponding simulation results are provided. Also some critical issues and practical 

requirements are discussed. In Chapter 4, a DSP-based digital controller is implemented 

with the TI’s DSP chip TMS320F2812. Related implementation methods and 

technologies are discussed. Finally the experimental results of a DSP-based close-loop of 

HB converter are provided and analyzed in Chapter 5, and thesis conclusions are given in 

Chapter 6.  
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CHAPTER ONE: INTRODUCTION  

Power control schemes have been revolutionized over the past few decades. Compared 

with analog controller, digital controller is receiving much attention because of its stable 

performance, flexibility and ability of more complicated control techniques.  

The advent of programmable digital signal processors (DSPs) in recent years is creating 

thriving opportunities in power electronics. The special architecture and high performance of 

DSPs make it possible to implement a wide variety of control and measurement algorithms at a 

high sampling rate and reasonable cost. Power electronics systems are typically a complex 

combination of linear, nonlinear and switching elements. High-frequency converters add another 

dimension of complexity because of their fast dynamics. Real-time power electronics systems, 

therefore, demand the use of high-speed data-acquisition and control. High performance DSPs 

meet the processing requirements imposed by such systems.  

1.1 DC-DC Converter 

DC-DC converters are used in power electronics circuits to convert an unregulated DC 

input voltage to a regulated or variable DC output voltage. The circuit’s main commercial 

application is in systems that require a stable and regulated DC output voltage. Switching 

devices are normally operated at very high frequency reaching as high as a few hundred 

kilohertz.  
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Switching converters use power semiconductor devices to operate in either the on state or 

the off state. Since the recent advances in semiconductor technology allow the capabilities of 

very high switching speed and high power handling, it is possible to convert DC to DC with 

higher efficiency using a switching regulator [1]. 

 

 

 

Figure1.1 Block diagram of a switch mode power supply with multiple output [1] 

 

Figure 1.1 shows a typical block diagram for a switched mode AC-DC power converter 

with multiple output application. The front end of the DC-DC converter is a low-frequency 

transformer, used to provide input electrical isolation and to step up or step down the voltage, 
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which is followed by a full wave bridge rectifier to converter the AC to DC This DC input to the 

DC-DC converter, , is unregulated DC and can’t be used to drive the load directly. DC-DC 

converter provides a stable DC output, . 

inV

oV

DC-DC converters store energy in an inductor, capacitor or both during operation. This 

energy is then distributed to the load over a period of time. This distribution of the stored energy 

is accomplished efficiently by varying the charging time for the energy storage device, 

depending on the load, for every time period. The charging time period corresponds to the 

switching action of the power converter, which is controlled by an external circuitry. 

Depending on whether or not an output transformer is used, high-frequency DC-DC 

switching converters are classified as isolated or nonisolated. For isolated DC-DC converters, the 

main types of converters are as follows: buck, boost, buck-boost and Cuk. However, in most of 

the practical applications, isolation is required for the DC-DC converters, which include some 

widely used topologies, such as the flyback, forward, push-pull, half-bridge and full bridge 

converters.  

1.2 Controller for DC-DC Converter 

 In a DC-DC converter application, it is desired to obtain a constant output voltage in spite 

of disturbances in input voltage and load current. Therefore, the idea behind the use of negative 

feedback for control is to build a circuit that automatically adjusts the duty cycle as needed to 

obtain the desired output voltage with high accuracy, regardless of disturbances in input and 

load. 
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 A block diagram of a feedback system is shown in Figure 1.2. The output voltage is 

measured using a “sensor” with transfer function of  [9]. The sensor output  is 

compared with a voltage reference . The error between  and  is feed to 

compensator that amplifies error signal and makes the output voltage regulated around reference 

voltage. In practice, the error is usually nonzero and nonetheless small enough. A compensator 

gain helps to obtain a small error and improve the stability and performance of the system. 

The PWM (pulse width modulator) modulator is used to generate “digital” pulse width feed into 

the switch of converter.  The pulse width changes with the comparator output voltage . 

)(tv

)(sH )()( svsH

)(sVref )()( svsH )(sVref

)(sGc

( )cV t

 

 

 

Figure1.2 Feedback loop for switching converter [9] 
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The traditional approaches for controllers of DC-DC converters based on duty ratio 

adjustment have relied on analog implementation schemes. The above mentioned control 

strategies based on analog techniques offer robust control, but suffer from serious limitations 

such as sensitivity to noise and temperature change. Hence, this trend has moved towards digital 

control schemes, which offer multitudinous benefits. Digital controllers for switching power 

supplies offer a number of advantages including a reduction of the number of passive 

components, programmability, implementation of more advanced control algorithms and 

additional processing options, as well as reduced sensitivity to parameter variations. 

Generally, there are several implementation approaches for digital controllers today, 

which include Microprocessor/DSP’s (Digital Signal Processors), FPGA (Field Programmed 

Gates Array) and Custom IC Design. The features of these approaches are compared in the 

following list. 

 
DSP: 

• DSP chips can be reprogrammed; 

• The speed is generally slower than ICs; 

• Implementation is exceedingly complex for the intended application; 

• DSP is costly over custom IC design; 

• High frequency power converters have to use high performance DSPs; 

 

FPGA:       

• FPGA can be programmed on site; 

• The processing is faster than a general purpose DSP;  

• For FPGA design there is no physical manufacturing step, which results in very short 

design time; 

• FPGA’s typical price is higher than DSPs; 
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Custom IC Design: 

• Due to physical design consideration the typically better performance than FPGA; 

• However it results in much longer design time than FPGA since there is a layout step; 

• Custom IC design has lower price than FPGA and DSP. 

 

In this thesis, the features that make DSPs effective computational engines for high 

frequency switching power converters are presented. A case study is introduced in which a DSP-

based solution was developed as a controller for a half-bridge DC-DC converter with a current 

doubler, which is widely used in low voltage applications. The design, implementation and 

testing of a DSP-based system are illustrated, and the techniques and challenges in system design 

based on DSPs are also addressed. DSP designs are optimized to handle real-time applications 

with high bandwidth requirements.  

1.3 Limitations of Digital Controller 

Over analog controller for power converters digital controller has some limitations. Due to 

digital controller’s inevitable involving of ADC, the system’s performance must be affected by 

the ADC. A complete analog system is simpler than a high speed and high resolution ADC.  

Moreover, available microcontroller or DSP now are still too slow and too costly for the power 

converters. A high speed and high resolution of DPWM is also too costly for the power 

application. Furthermore, digital controller increases the complexity of the system due to ADC 

and digital processing. 
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1.4 Thesis Chapter Synopses 

Chapter two focuses on analyzing the topology and operation of the half-bridge DC-DC 

converter with current doublers. The modeling of the topology, including steady state average 

model and small-signal dynamic model, are established and the related controller compensation 

design issues are addressed based on the models and analysis. 

Chapter Three discusses digital control, which includes the theory, methodology and 

critical issues of a digital controller. As a case study, a digital PID compensator is designed 

based on the specifications of the given power stage. Also, this chapter explores the modeling 

and simulation of a digital controller with an 8-bits microprocessor in Matlab/Smulink. Finally, 

digital controller design issues are addressed. 

Chapter Four explores DSP implementation of a digital controller, which brings in the 

introduction of DSP chips, to be specific, TI C24X and TMS320F2812. Then, the PWM 

generators and ADC of TMS320F2812 are emphasized as the important devices in the controller. 

Controller implementation based on the TMS320F2812 is described as one of the important part 

of the thesis. 

Chapter Five provides and analyzes the experimental results of closed-loop DSP 

controlled half-bridge DC-DC converter. Also Practical issues for DSP-based controller design 

on the platform are discussed. Finally the conclusion of future work will be presented in chapter 

six. 
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CHAPTER TWO: HALF-BRIDGE CONVERTERS WITH CURRENT 
DOUBLERS 

The half-bridge (HB) DC-DC converter is an attractive topology for middle-power level 

applications due to its simplicity. There are two conventional control schemes for the HB DC-

DC converter, namely symmetric control and asymmetric (complimentary) control. A HB DC-

DC converter with a Current Doubler Rectifier (CDR) is suitable for high-current low-voltage 

applications, since the CDR structure has lower conduction loss compared to the center-tap 

rectifier.  

In this chapter, an average space-state model is established for the half-bridge DC-DC 

converter with current doubler rectifier while taking into consideration the parasitic DC 

parameters. Based on the DC model, a unified small-signal model is established, and design 

issues are provided with both symmetric HB and asymmetric HB DC-DC converters. Also, 

utilizing the small-signal model, some design guidelines and issues of close loop design are 

discussed and investigated.  

2.1 Topology and Operation 

The half-bridge DC-DC converter with a current doubler rectifier (CDR) is shown in Figure 

2.1, which can be controlled symmetrically or asymmetrically. Neglecting the leakage 

inductance and transient commutation, and considering the converter operating at CCM mode 
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due to the synchronous rectifier, the converter has three typical modes as shown in Figure. 2.2 

(a)(b)(c). The operation modes are well known and readers can refer to [2] for more details. 
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Figure 2.1 CDR half-bridge DC-DC converter 
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             (a) Mode 1: S1 is on                        (b) Mode 2: S2 is on                       (c) Mode 3: Both S1 and S2 are off 

 Figure 2.2 Operation modes 
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2.2 State-Space Model and DC Bias Analysis for Symmetrical and Asymmetrical HB 

Converters with Current Doublers 

In the operation modes, the load is assumed as a constant current source, since the 

voltage ripple is ignorable. In a switching cycle, the converter can be denoted using three linear 

state-space equations, respectively. The three corresponding space-state equations can be 

expressed as:   

                                                                                                  (2-1)                                    ( 1,2,3)m mx A x B u m
•

= + = y Cx Eu= +

       

  where   T
mcoLLc iviivx ]        [ 211= dxx

dt
=&      [ ]Tin ou V I=       ovy =                                                                

During the on time of switch S1, the corresponding matrices are A1 and B1; during the on 

time of switch S2, the corresponding matrices are A2 and B2; during the off time of both switch 

S1 and S2, the corresponding matrices are A3 and B3. All matrixes above are as follows:  

 

1 2 2

1
2 2 2

1 10 0

1 ( ) ( )

0 ( ) ( ) 1
0 1 1 0
1 0 0

L C SR T C SR

C SR L C SR

n n

R R R R R R
n

A R R R R R

n

⎡ ⎤0

1 0

0
0

0 0

− −⎢ ⎥
⎢ ⎥
⎢ ⎥− + + + − + −
⎢ ⎥

= ⎢ ⎥− + − + + −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

1 1 1

2 1 2 1

1 10 0 0

0 ( ) ( ) 1 0
1 ( ) ( ) 1

0 1 1 0
1 0 0

L C SR C SR

C SR L C SR T

n n
R R R R R

A R R R R R R
n

n

⎡ ⎤

0

0

0 0

−⎢ ⎥
⎢ ⎥

− + + − + −⎢ ⎥
⎢ ⎥

= − − + − + + + −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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1 1 1

3 2 2

1 2 1

0 0 0 0 0
0 ( ) 1
0 ( ) 1
0 1 1 0 0
0 0

L C SR C SR

C L C SR SR

SR SR SR SR

R R R R R
A R R R R R

R R R

⎡ ⎤
⎢ ⎥− + + − − −⎢ ⎥
⎢ ⎥= − − + + −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

2

2( )R+

T

c c
B

R R
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
1

0 0 0 0 0
0 1 0

     
2

1 10 0 0

0 1

T

c c

n n
R R 0

B
⎡ ⎤−⎢ ⎥=
⎢ ⎥

−⎢ ⎥⎣ ⎦
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T

c c
B

R R
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   ]010[ cc RRC = [0 ]cE R= −  

Assuming the switch S1 on-time is D1T and switch S2 on-time is D2T, the switching cycle 

is T. The key concept in state-space averaging is the replacement of the above three sets of state-

space equations by a single equivalent set: 

x Ax Bu
•

= +                                                                                                  (3-2) y Cx Eu= +

where the equivalent matrices are defined by:         

                3212211 )1( ADDADADA −−++= 3212211 )1( BDDBDBDB −−++=  

The steady-state solution, with DC values indicated by capital letters, is obtained by 

setting:  

0x
•

= :                                                                           (3-3)                       1X A B−= − U

From Equation 3-3, the steady-state DC quiescent point can be obtained, where the 

inductor and magnetizing average currents are as follows: 

 2 2
1

1 2 1 2( )
T L

L o
T L L

d R RI I
d d R R R

+
=

+ + +
      

 1 1
2

1 2 1 2( )
T L

L o
T L L

d R RI I
d d R R R

+
=

+ + +
    

 2 1 1 2
2

1 2 1 2( )( ) ( 1 2)
L L

M o
L L T

d R d RI I
d d R R d d R

−
=

+ + + +
                                                                             (3-4) 
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The equations derived above are general solutions for both symmetric and asymmetric 

half-bridge DC-DC converters. From the equations above, it can be observed that: 

(1)  Only DC resistances and duty cycles, other than capacitance and inductance, have an 

effect on the DC current’s distribution.  

(2) Unbalanced inductor average currents and DC bias of a magnetizing current exist due to 

either asymmetry of equivalent DC resistance (DCR) or duty cycles. 

(3) On-resistance of synchronous rectifiers has no effect on the DC current’s distribution and 

averaged magnetizing current.  

For the HB converter, peak-current-mode control cannot be applied. The natural current 

sharing between the two inductors is needed. However, the DC current sharing cannot be 

achieved due to unbalanced DC resistive parameters
1 2L LR R≠  or unbalanced duty cycle 1 2D D≠ . 

The PCB layout of two-channel inductors should be as symmetric as possible, and both the 

driving channel and switch should match to achieve symmetric duty cycles. If the PCB layout 

has to be asymmetric, synchronous rectifiers can be asymmetric instead of inductors. As a result 

of asymmetry, there is a DC magnetizing current bias in the transformer, which should be 

estimated when designing the transformer [2].  

For an asymmetric HB converter, DC solutions can be obtained by substituting 

2 1 1D D= −  into the DC solutions. From the solution, one may conclude: 

(1) The current sharing between two inductors is uneven because of the asymmetric duty 

cycle.  

(2) The transformer has DC bias of magnetizing current due to asymmetric duty cycle, and 

an air gap has to be added to avoid the transformer saturation. 
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2.3 Unified Small-Signal Model for Half-Bridge DC-DC Converter 

The unified small-signal model of the half-bridge converter with a current doubler can be 

derived based on the unified model shown in Equation 2-3 and a small-signal assumption. 

Disturbing the unified state-space average Equation 2-2 as follows: 

yYy )+=    xXx )+=    uUu )+=      111 dDd
)

+=      222 dDd
)

+=                                    (2-5) 

Substituting Equation 2-5 into Equation 2-2 and removing the DC bias from the obtained 

equation and ignoring high-order terms, one can derive the unified small-signal linear models for 

both symmetrical and asymmetrical HB converters: 

1 1 1
1 1 3 2 2 3 1 1 3 2 2 3( ) ( ) ( ) ( ) [ ( )( ) ( )( )] ( ) [ ( )( ) ( )( )]x s sI A Bu s sI A d s A A d s A A X sI A d s B B d s B B U− − −= − + − − + − + − − + −
) ) ) )) )

        

(2-6) 

1 1 1
1 1 3 2 2 3 1 1 2 2 2 3( ) ( ) ( ) ( ) [ ( )( ) ( )( )] ( ) [ ( )( ) ( )( )] ( )y s C sI A Bu s C sI A d s A A d s A A X sI A d s B B d s B B U Eu s− − −= − + − − + − + − − + − +
) ) ) )) ) )

  

(2-7) 

The unified output-to-control transfer function can be obtained:  

1 1
( ) 0 1 1 2 2 1 2 3 1 1 3 2 2 3 1 1 2 2 1 2 3 1 1 2 2 1 2 3

1
1 1 2 2 1 2 3 1 1 2 2

( ) ( (1 ) ) [ ( )( ) ( )( )][ (1 ) ] [ (1 ) ]
( ) ( )

                      ( (1 ) ) [ ( )( )
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The open-loop output impedance of the half-bridge converter can be derived as: 

      1
12( ) 0 [ ( ) ]o

output d s
o

VZ C sI A B E
i

−
== = − +)

)

)                                                                                       (2-9) 

Even the symmetric HB and asymmetric HB have different average matrixes A and B.  

They have identical open-loop output impedance.  
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For symmetrical HB, the two switches operate at the same steady-state duty cycle  

D1 = D2 = D, and the duty cycles of the two switches disturbance are 1( ) ( )d s d s=
) )

 and 

2( ) ( )d s d s=
) )

. Substituting the two conditions into Equation 2-6, the linearized small-signal state-

space equation of symmetric HB is obtained: 

[ ] [ ]1 1
1 2 3 1 1 2 3 1 2 3( ) ( ) (1 2 ) ( 2) (1 2 ) 3 ( ) ( ) [( 2 ) ( 2 ) ] ( )x s sI D A A D A D B B D B u s sI A A A A X B B B U d s− −= − + − − + + − + − + − + + −

)) )

 

                                                                                                                                  (2-10)   

The output-to-control transfer function of symmetric HB is:                                                                                     

1 1
1 2 3 1 2 3( ) ( ) ( ) ( ) [( 2 ) ( 2 ) ] ( ) ( )y s C sI A Bu s C sI A A A A X B B B U d s Eu s− −= − + − + − + + − +

)) ) )                                   (2-11) 

If the HB converter has half-bridge circuits balanced, it means 1 2L L L= = , , from 

Equation 2-11 yields the output-to-control transfer function:  

1 2L LR R R= = L

2
( )( 1)

( 2
o in T o o c

o o T o L o c

v V R I n sC R
d n s C L sC DR sC R sC R

− +
=

+ + + + 2)

)
)                                                                                   (2-12) 

From Equation 2-12, we can see that symmetric HB is a second-order system. Due to the 

symmetric control, the magnetizing inductance and input capacitance has no impact on the 

dynamic system model. From a control point of view, this is a advantage over asymmetric HB, 

because it makes the system design easier. The output impedance is given in Equation 2-13, and 

the bode diagram and output impedance is plotted in Figure 3-13. 

RsCRsCdRsCLCs
RdRRCsRRCsdRsLRLCs

i
VZ

oLoToo

LTcoLcoTco
sd

o

o
output 22

2

0)( +++
+++++

== =
))

)
                                                 (2-13)         

For asymmetric HB, the two switches operate at duty cycle D and 1-D, so we set the steady-state 

values D1 = D and D2 = 1-D. Substituting them into Equation 2:  

                     221 )( AAADA +−= 221 )( BBBDB +−=                                                                 (2-14) 
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Setting the disturbance dd
))

=1 , dd
))

−=2  and substituting them into Equation 2-7 yields: 

     1 1
1 2 1 2( ) ( ) ( ) ( ) [( ) ( ) ] ( ) ( )y s C sI A Bu s C sI A A A X B B U d s Eu s− −= − + − − + − +

)) ) )                                           (2-15)                        

      1
( ) 0 1 2 1 2

( ) ( ) [( ) ( )
( ) u s

y s C sI A A A X B B U
d s

−
= = − − + −) ]

)
)                                                                         (2-16)      

The bode diagram has been calculated and plotted for the following set of parameters and is 

shown in the following figures from Figure 2.3~Figure 2.5. 

 

 

Figure 2.3: Symmetric and asymmetric HB output impedance 
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Figure 2.4: Bode diagram of symmetric and asymmetric HB converters (blue: symmetric HB, 

green: asymmetric) 

 

 

Figure 2.5: Asymmetric HB bode diagram with changing duty cycle 

 

The asymmetric HB bode diagram is illustrated in Figure 2.3. Compared with symmetric 

HB, the asymmetrical HB is a fourth-order system. It has two pairs of LC poles. A LC pole is 
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constituted of transformer magnetizing inductance and the input equivalent capacitance . 

Another LC pole is determined by equivalent output inductance  and output capacitor Co.  

mL 12C

2/L

2.4 Analysis and Controller Design Issues 

Utilizing the described small-signal model, close loop could be designed. Generally, the 

criteria for a feedback loop design is [9]: 

• Provide the gain slope at crossover –20db/dec. 

• Provide maximum possible open loop gain at DC for good static regulation. 

• Provide maximum possible gain at low frequencies for good ripple rejection. 

• The switching frequency is at least 10 to 15 times higher than the open loop crossover 

frequency. 

For the asymmetrical HB, some close loop design issues have to be considered: 

• In order to get wider bandwidth, the resonant frequency 
2/2

1
2

oLC
f

π
=

should be much 

larger than the resonant frequency of the input LC network, which is 
pmCL

f
22
1

1 π
=

.  

Therefore, high input capacitance and large magnetizing inductance are good for the 

close loop design.  

• When the input fitter LC pole appears in the low-frequency band, the system is close to 

symmetric HB, which is good for the control loop compensation.   

With decreasing duty cycle, the gain increases and results in lower phase margin. Therefore, 

when doing the feedback loop design, the worst case must be considered first.  
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CHAPTER THREE: DIGITAL CONTROLLER DESIGN 

Digital controllers offer a number of advantages in DC-DC power converters, and various 

analysis, design and implementation aspects of this emerging area are receiving increasing 

attention. A digital controller system is one or more silicon chips that combine ADC conversion 

with control law processing, PWM and communication elements operating entirely (or mostly) 

in digital mode.   

From what has been demonstrated so far, it is clear that benefits will be derived from 

digital control. With digital controller, compensator and protection features can be 

programmable, reducing or eliminating the need for passive components for tuning. Digital 

controllers have inherently lower sensitivity to process and parameter variations. Furthermore, 

digital controllers allow the system to have communications and data management, such as 

storing data for operational purposes. Also, it is possible to implement control schemes that are 

considered impractical for analog realizations. For example, a what-if process can be made easily 

available for a digital controller versus an analog controller. In transformer-isolated DC-DC 

converters, digital signal transmission through isolation can be used to address limited bandwidth 

and/or large gain variations associated with standard analog approaches. In general, more 

sophisticated control methods can be applied to achieve improved dynamic responses. 
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3.1 Theory and Methodology 

As the Shannon sampling theorem shown in Figure 3.1, a function that contains no 

frequency components greater than  is uniquely determined by the values of at any set of 

sampling points spaced 

)(te

of )(te

02
1
f

seconds apart. This means that when choosing the sampling rate for 

a control system, the sampling frequency should be greater than twice the highest-frequency 

component of the significant amplitude of the signal being sampled [4]. 

 

 

Figure 3.1 Shannon sampling theorem [4] 

 

A typical digital control system is shown in Figure 3.2. The system contains a sampler to 

detect continuous analog signal at discrete instances of time. Before a data hold is employed to 
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reconstruct the original signal, a digital compensator block is added to improve system 

performance. 

 

Sampler

Plant

Digital
compensatorData hold

C(t)

e(t)

 

Figure 3.2. Typical digital control system 

 

 A commonly used method of data reconstruction is polynomial extrapolation. Using a 

Taylor’s series expansion, one can express as: )(te

.....)(
!2

)())(()()( 2 +−
′′

+−′+= nTtnTenTtnTenTete                                                    (3-1) 

If the first term above is used, the data hold is called a zero-order hold, which is expressed as 

. The corresponding transfer function is )()()(0 Ttutute −−=
s
esG

Ts

h

−−
=

1)(0 , so the frequency 

response of the zero-order hold can be obtained as )/(
0 /

)/sin()( sj

s

s
h eTjG ωπω

ωπω
ωπωω −= , and the 

bode diagram in frequency domain is shown in Figure 3.3.  

  20  



 

Figure 3.3 Frequency responses bode diagram [4] 

 

According to the Shannon sampling theorem, when the input signal is reconstructed, any 

frequencies 2/sωω >  will reflect into the frequency range 2/0 sωω << . This effect is called 

frequency aliasing. The frequency aliasing can be prevented either by increasing sω or by placing 

an analog antialiasing filter in front of the sampler. The antialiasing filter is a low pass filter that 

removes any frequency components in that is greater than )(te 2/sω , since the low pass filters 

introduce phase lag. However, the cutoff freuqency of the antialiasing filter cannot be made so 

low as to destablilize the control system. 

From the phase plot of zero-order hold, we can see that the zero-order hold introduces the 

phase lag into the system. When the bandwidth of the system is equal to the sampling frequency, 

the phase delay goes to . Generally, in order to make the phase delay of the zero-order hold 0180
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as small as possible, the sampling frequency should be greater than the system bandwidth by at 

least 10 times, which means the phase delay goes to . 01810/ =sω

3.2 Digital Compensator Design  

The analog controller design procedure generally includes following steps: 

• Develop an average small-signal model of a switching converter at the quiescent 

operating points. 

• Solve the uncompensated loop gain . )(sTH

• Design the compensator to shape in frequency domain to achieve the desired 

stability margin and performance. 

)(sT

For the buck converter closed-loop system shown in Figure 3.4, the loop gain is  

        
M

vdc

V
sGsGsHsT )()()()( =                                                                                        (3-2) 

Analog controller design has many benefits. The analog large- and small-signal models of the 

system blocks are readily available and well understood. The design can be completely 

implemented in frequency domain.  
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Figure 3.4 Buck converter closed-loop system [9] 

 

Compared with analog controller, the digital controller shown in Figure 3.5 consists of 

AD, digital compensator and PWM. The output signal is sensed and sampled by AD and is 

compared with the reference signal and generate an error signal. The digital compensator 

generates the duty cycle control signal according to the input error signal and feeds the control 

signals into PWM to get the drive signal to power stage.  

For the digital controller design, generally there is two design methods: Digital redesign 

approach and direct digital design approach. Digital redesign assumes the sampling frequency is 

much greater than the system crossover frequency, so the design equivalent approach is accurate. 

This approach first models the discrete components as analog components approximately, and 

then designs the analog controller with standard analog control technique. Finally, it maps the 

analog compensator into digital with some equivalent mapping methods.  
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For direct design approach, first a discrete model of sampled analog components is 

modeled. Then, the compensator design is directly in Z-domain including the accurate models of 

sampling functions. In the direct design, the frequency response techniques, like gain margin and 

phase margin, can be used also. 
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Figure3.5 Digital controller 

 

Taking the buck converter shown in Figure 3.5 as an example, we start redesign with the 

small-signal model of the buck converter in Equation 3-3.  With specified parameters, the bode 

diagram of the model is shown in Figure 3.6. 

                    (3-3) 
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 Assuming the feedback gain is unit, bode plot of the power stage is the same as loop gain 

and it indicates that this system has a very small phase margin. A compensator must be 

designed to ensure that the gain at low frequencies is high enough to minimize the steady-

state error and that the crossover frequency is as high as possible under stability condition 

with enough phase margin and gain margin. The phase margin of the compensated system 

should be in the range of 45° to 60° to meet the transient response requirements.   

 

 

Figure 3.6 Bode plot of the buck converter 

 

The compensator is a PID controller, which is described by the following transfer 

function:  

                                                                        (3-4) 
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where KP is the proportional coefficient, KI is the integral coefficient and KD is the derivative 

coefficient. This PID controller has one pole and two zeros. The PID controller was designed in 

the continuous time domain and then converted to the discrete time domain using bilinear 

mapping method. The frequency response of the compensator in continues time domain and 

discrete time domain are shown in figure 3.7. The figure indicates that the two frequency 

responses are very similar except for the region close to the sampling frequency. Generally, the 

bandwidth of the system is much less than sampling frequency, so the error around the sampling 

frequency can be ignored. 

 

Figure 3.7 Compensator frequency responses of continuous-time (red) and discrete-time (blue) 

 

 Regarding the discretization methods, there are several methods listed in Table 3.1. The 

different discretization methods have advantages and disadvantages respectively, which are not 

going to be discussed in this thesis.  
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Converting the PID controller in the continuous s-domain to the discrete z-domain using 

the backward integration method (Euler rule), the following difference equation can be derived 

from the discrete time transfer function [5]. 

)]1()([)()()(
0

−−++= ∑
=

keke
T
KieTKkeKkU

k

i

D
IP                                      (3-5) 

where, u(k) is the new duty cycle calculated from the kth sample, and e(k) is the error of the kth 

sample. The error e(k) is calculated as e(k) = Ref-ADC(k), where ADC(k) is the converted 

digital value of the kth sample, and Ref is the digital value corresponding to the desired output 

voltage. The second term in the equation is the sum of the errors and e(k)-e(k-1) is the difference 

between the error of the kth sample and the error of the (k-1)th sample [13]. 

 

 

 

Figure 3.8 Transfer methods from s-domain to z-domain 
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The closed-loop bode diagram is shown in Figure 3.9. With PID compensator, the close 

loop phase margin is improved up to 50 degree. The red line is the curve of continuous-time PID 

and the green line is the discrete-time PID compensator. 

 

 

Figure 3.9 Closed-loop bode diagram 

3.3 Digital Controller Design Issues 

 For the digital controller, the sensitivity of the ADC converter, inherent time delay of the 

calculation/sampling and the precision of the numerical value degrade the performance of the 

system. Therefore, some practical issues should be considered when designing a digital 

controller, including: 

� ADC sampling frequency and resolution. 

� PWM resolution. 
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� Computational delay time. 

� Quantization/word length effects and calculation precision. 

3.3.1 ADC Requirement 

For the ADC of a digital system, generally, the dynamic voltage regulation requires that 

output voltage Vo must always follow reference voltage Vref during load or input voltage 

transients. As matter of fact, only a small window around Vref is needed to sample. 

Therefore, ADC converter can be used to sample the error signal instead of output voltage 

and the resolution can be improved and less bits of ADC converter is required [5]-[7][10].  

 

 

Figure 3.10. A/D conversion characteristic [10] 

 

 Figure 3.10 shows the A/D conversion characteristic, which indicates that the output 

voltage is sampled by an A/D converter and produces the digital error signal. Vq is the smallest 

difference corresponding to the least level of A/D analog equivalent voltage difference of LSB. 

In order to meet the requirement that A/D can sense the smallest change of the output voltage, 
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the Vq should not be greater than the smallest change of output, which means  . So the 

smallest output change that can be distinguished determinates the resolution of ADC. 
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Figure 3.11 Resolution requirement of the DPWM [10] 

 

Another important issue for ADC is to determine the sampling frequency. Theoretically, 

higher the sampling frequency is better for the system due to less time delay. However, in 

practice, the cost of hardware implementation and the calculation capability have to be 

considered. In the discussion of the zero-order hold in the early chapter, we recognize that a 

sampling frequency must be two times greater than the bandwidth of the system to reconstruct 

the input without errors. Even at this case, the zero-order hold still introduces significant phase 

lag into the system. Generally, in order to make the phase delay as small as possible, we pick up 

the sampling frequency at least 10 times greater than the system bandwidth, which means the 

phase delay goes to . For a switching power system, one option is to sample at the 

switching frequency [4]. 

01810/ =sw
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3.3.2 DPWM Requirement 

In a digital controller, a DPWM acts as a DA conversion, which is used to generate pulse 

width for a switch. Obviously, the minimal time increment of duty ratio depends on N, which is 

the resolution of DPWM. Because the discrete change of duty ratio causes the discrete change of 

output voltage, if the smallest change of  caused by the discrete change of duty cycle is 

greater than the smallest difference of , AD can be distinguished. This means the DPWM 

resolution is too low, and in this case, a so-called limit cycle can occur. The basic requirement of 

the DPWM is that the resolution of DPWM should be greater than the resolution of ADC 

[5][6][7][10]. 

outV

outV

 

 

Figure 3.12  “Limit cycle” happens when the resolution of the DPWM is too coarse  
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3.3.3 Quantization and Finite Word Effect 

In a practical implementation, the digital controller is implemented with the hardware, so 

the values of signal variables and filter coefficients are restricted to a finite set of discrete 

magnitude values, which is called quantization or finite word effect. The quantization and finite 

word length in the controller require consideration in following areas [4]. 

Fixed-point numbers could cause round-off or truncation errors for the coefficients of the 

calculation, which can be modeled as the worst case bound or random noise input. Those round-

off effects also can be reduced by choosing a suitable filter structure, since different filter 

structures have different sensitivity for the given coefficients. Furthermore, coefficient round off 

can perform differentiation to derive sensitivity equations for poles and zeros to coefficients 

variations. 

Overflow has been shown to impose disastrous consequences on the digital filter so the 

overflow oscillations must be avoided. By scaling the input to the filter so that only small signal 

levels exist in the filter, the overflow can be avoided. Or a digital filter structure, which is free of 

overflow oscillation, can be used [4]. 

3.4 Modeling and Simulation of Digital Controller with an 8-bits Microprocessor 

In the early chapters, we discussed how to design a digital compensator based on the 

given specifications of power stage theoretically and the critical issues for a digital controller in 

the practice. In this chapter, we investigate the modeling and simulation of a DC-DC converter 

controlled by an 8-bit microcontroller, and many of these critical issues have been modeled using 

Matlab/Simulink [12]. 
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The figure 3.13 shows the closed-loop system of a buck converter with an 8-bit digital 

controller, which includes the ADC, digital compensator and DPWM simulation models with 

quantization effect respectively. 

 

 

Figure 3.13: The close loop of buck converter with an 8-bit digital controller 
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Figure 3.14: ADC simulation model with quantization effect 

 

Figure 3.15: 8-bits digital compensator simulation models with quantization effect 

 

 

  

 

Figure 3.16: DPWM simulation model with quantization effect 
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The objective of this model is to include non-ideal effects such as ADC conversion range, 

time delay, calculation delay, quantization and numerical precision. The digital controller is 

basically a PID compensator, which is designed by the procedures mentioned in the chapter 3.2. 

In order to simulate the non-ideal effects, some delay blocks and limiter blocks are added. Note 

the limiters in both the proportional and integral paths of the controller, which impose bounds on 

the intermediate numerical calculations similar to that in the actual software. Since the 

microcontroller is 8-bits, the duty cycle, which is the output of the block, must be limited to 

between 0-255. It is rounded up to the nearest integer and then converted to a number between 0-

1.  Figure 3-17 through Figure 3-21 show the simulation results. 
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Figure 3.17: Output voltage and inductor current with a step-changed load in the ideal simulation 

case without the resolution issues and quantization effects 

 

 

 

 

Figure 3.18: The sampling frequency of ADC is twice that of the switching frequency; the speed 

of transient response is increased and without any effects on the steady state because the 

bandwidth of the system is low 
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Figure 3.19; Resolution issues of ADC and DPWM result in limit cycles 

 

 

Figure 3.20: Simulation results with non-ideal ADC and DPWM  

(resolution of ADC: 8 bits; resolution of DPWM: 12 bits) 

  37  



 

 

 

 

 

 

 

 

 

 

Figure 3.21: Simulation results based on the 8-bits PID controller with finite precision effects 

including finite word length, round off and quantization effect 

 

 From the simulation platform, we can summarize the following conclusion based on the 

above results and waveforms: 

• A digital simulation platform is established and provides the platform to try an advanced 

control algorithm and more practical issues. 

• The offset circuit increases ADC resolution resulting in smaller steady-state error. In 

addition, reducing the resolution increases the magnitude of the limit cycles. 

• The simulation results are not affected by the delay within one switching cycle, but lower 

sampling frequency degrades transient response due to the sampling delay. 

• If the resolution of DPWM is smaller than ADC, limit cycle occurs. 
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• Quantization and finite word length effects will cause the limit cycles and also result in 

larger steady-state error. 
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CHAPTER FOUR: DSP IMPLEMETATION FOR DIGITAL 
CONTROLLERS 

Power electronics systems are typically a complex combination of linear, nonlinear and 

switching elements. High-frequency converters add another dimension of complexity because of 

their fast dynamics. Real-time power electronics systems, therefore, demand the use of high-

speed data acquisition and control. DSPs (Digital Signal Processors) meet the processing 

requirements posed by such systems. DSPs are used in multiple applications in power electronics 

including AC motor drives, high-frequency converter control, motion control, robotics and real-

time testing and monitoring.  

4.1 Introduction of DSPs 

Because of the DSP’s special architecture, it is more useful than a general-purpose 

microprocessor for the high-speed processing applications and real-time systems such as control 

system. DSPs are built with Harvard architecture, and this configuration employs separate 

program and data buses [14]-[17]. The benefit of this arrangement is the increased speed because 

instructions and data can move in parallel instead of sequentially. DSPs, like many advanced 

microprocessors, use pipelining to operate on several instructions simultaneously. 

1) Hard-Wired Logic: In DSPs, most instructions execute in one machine cycle because 

all functions are performed internally in hard-wired logic. Hardware multipliers in DSPs perform 

multiplication in a single cycle. 

2) Scaling: Hardware shifters allow the scaling of data used in computations. This helps 

prevent overflows and keep the required precision. 
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3) Saturation: In DSPs, the accumulator handles overflow by saturating to the most 

positive or least negative value, thus eliminating rolling over. 

4) Word Length: Some DSPs support a large word length, thus reducing the quantization 

error. They also support a larger intermediate word length for intermediate computational results. 

5) Other Features: Many DSP chips include input/output (I/O) functionality, timing 

circuitry, direct memory access (DMA) controllers and high-speed memories on-chip.  

DSPs resemble reduced instruction set computers (RISCs), in that a small set of 

frequently used instructions are optimized for numerical processing at the expense of less 

frequently used general-purpose operations. DSP instruction sets efficiently handle mathematical 

operations common to many algorithms that are repeatedly executed in time-critical loops. For 

example, digital filters, which are often used in signal processing and control applications, are 

implemented using recursive difference equations of the form: 

∑ ∑
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)()()()()(                                                             (4-1) 

The equation states that any output can be computed as a weighted sum of the input at the 

present time, past inputs and past outputs. Each step in this computation involves a multiplication 

and addition. The multiply and accumulate (MAC) instruction in DSPs performs this in a single 

instruction cycle. In contrast, in a typical fixed-point microprocessor, a “multiply” and “add” 

typically executes in 15 to 20 machine cycles. MAC is the one instruction that most distinguishes 

DSPs from other micros. 

DSPs also significantly increase execution speed by performing multiple operations in 

parallel. For instance, in the same instruction cycle that a MAC operation is being performed, a 
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parallel data move can be carried out. Thus, the special DSP instructions supplement the 

computational speed of DSPs and make them ideal for high-performance real-time applications. 

4.2 Architecture of TI C2000 and TMS320F2812 

TI has developed the DSP solutions that are driving digital control by providing the 

industry's high performing and code efficient DSPs. The TMS320C2000 family of DSP 

controllers set the standard for performance and peripheral integration by offering a unique 

combination of on-chip peripherals such as flash memory, ultra-fast A/D converters, PWM 

modules and robust CAN modules.  

TMS320C2812 is a member of the TMS320C28x DSP generation, which is a highly 

integrated, high-performance solution for demanding control applications [16]-[17]. These 

devices are based on a 32-bits DSP core delivering 150 MIPS of performance on a flash process 

and an impressive 32x32bit MAC in a single 6.67ns cycle. These DSPs also uniquely feature a 

large amount of fast-access on-chip flash memory so that code can be executed internally 

without adding costly external flash memories. Furthermore, these devices incorporate a high-

precision ultra-fast ADC together with many control and communication peripherals for truly 

single-chip designs. Figure 4.1 is the architecture of the TMS320C2812. 
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Figure 4.1: Architecture of TMS320C2812 

 

Due to its architecture, which is specially optimized for C/C++, these devices offer good 

code efficiency, and give customers the ability to develop their algorithms entirely in high-level 

languages. Further, these devices uniquely enable customers to develop their code in virtual 

floating point via the IQ math capability. 

The TMS320C2812 supports multiple bus architecture, whose memory bus architecture 

contains a program read bus, and data read bus and data write bus. The 32-bit-wide data busses 

enable single cycle 32-bit operations. The F281x and C281x implement the standard IEEE 

1149.1 JTAG interface. Additionally, the TMS320C2812 supports the real-time JTAG mode of 

operation including the contents of memory, peripheral and register locations; that is to say, the 
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real time analysis is allowed. It contains 128K x 16 of embedded Flash memory and 128K x 16 

of ROM, and two blocks of single access memory, each 1K x 16 in size. The TMS320C2812 

supports the 32-bits CPU timers and several serial communication peripherals including CAN, 

McBSP, SPI and SCI. Further, it supports the event managers and ADC as peripherals, which are 

used for embedded control and communication. 

4.3 PWM Generators and ADC of TMS320F2812 

 With digital power applications, ADC and PWM modules are the most important 

peripheral devices inside the DSPs. TMS320F2812 provides high performance ADC and PWM 

generators and makes it possible to meet the high requirement of DC-DC converters. 

 

 

Figure 4.2: Structure of ADC in TMS320F2812 
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 The ADC of TMS320F2812 provides 12-bit core with built-in dual sample-and-hold 

(S/H), simultaneous sampling or sequential sampling modes, very fast conversion time (running 

at 25 MHz), ADC clock, or 12.5 MSPS, and 16-channel, multiplexed inputs and 16 result 

registers to store conversion values. The sequencer of ADC can be operated as two independent 

8-state sequencers or as one large 16-state sequencer. The ADC interrupts can be triggered by 

multiple sources for the start-of-conversion (SOC) sequence, such as S/W — software immediate 

start, event manager A/B or the external pins. 

 The PWM modules of TMS320F2812 are designed to generate pulse width modulated 

waveforms used in motor control and motion control applications. The PWM waveform 

generation capability of each event manager module (A and B) is summarized as follows. 

There are five independent PWM outputs — three of which are generated by the compare 

units, while the other two are generated by the GP timer compares — plus three additional PWM 

outputs, dependent on the three compare unit PWM outputs. TMS320F2812 provides 

programmable dead-band for the PWM output pairs, and the minimum dead-band duration of 

one device clock cycle (6.67ns). The minimum PWM pulse width and pulse width 

increment/decrement is one clock cycle. The PWM supports 16-bit maximum PWM resolution 

and programmable generation of asymmetric, symmetric and space vector PWM waveforms. 

Figure 4.3 is an example of generating the PWM waveform with the controlled dead time based 

on the given PWM period and initial values. 
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Figure 4.3: Generating the PWM waveform in TMS320F2812 

4.4 Controller Implementation with TMS320F2812 

4.4.1 ADC Implementation 

 

The ADC of TMS320F2812 could be triggered by the software, EVA/B or the external 

pins. In our DSP platform, we set up the ADC triggered by the Event Timer A, whose frequency 

is suppose to be equal to the sampling frequency of ADC, since the SOC (start of conversion) of 

ADC is designed to be triggered by the underflow of the timer ramp signal, as shown in Figure 

4.4. 
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Figure 4.4: Set-up of ADC 

 

 The SOC is started by the Timer A, and once the conversion is finished, the EOC (end of 

conversion) interrupt is triggered, and then the ADC interrupt routine is called in the program. In 

ADC interrupt routine, DSP first reads the sample result from the ADC result registers and then 

processes the data, such as filtering or averaging the data. After that, DSP calculates the 

compensator and gets the result, which is supposed to be the new value of the duty cycle. Finally, 

the PWM modulated value is calculated in terms of the new duty cycle, and then the registers are 

updated before the next trigger of the ADC conversion.  

 The resolution of ADC in chip TMS320F2812 is 12 bits, which means the minimum 

value ADC can distinguish is around %24.0
12

1
12 =

−
 of the input, which is small enough over 

the power system’s precision requirement of 1%.   
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 As mentioned in the early chapters, the sampling frequency should be greater than the 

bandwidth of the system by 10 to 20 times in order to reduce the sampling delay. In our 

experiment, the switching frequency is 400kHz, so we pick up the sampling frequency as 2MHz, 

which is sufficient for the system requirement. 

4.4.2 PWM Implementation 

 The PWM modules of TMS320F2812 can set up the period register TxPR and configure 

register TxCON to initialize the frequency and configuration of PWM. To generate the gate 

driver signals for the DC-DC converter, the PWM frequency is designed to be equal to the 

switching frequency, which is 400kHz for our experiment case. As mentioned in Chapter 2, to 

avoid the limit cycle, the resolution PWM must be greater than the resolution of ADC. The 

PWM signal of TMS320F2812 has 16-bits resolution, while the resolution ADC is 12 bits. 

Therefore, TMS320F2812 provides the most reasonable resolution for the digital controller 

implementation.  

 The power stage we are using for the digital control investigation is the half-bridge DC-

DC converter with a current doubler. There are two kinds of cases for the converter, which 

includes symmetrical and asymmetrical cases. For the symmetrical case, the gate signals of 

primary side have the same duty cycle ratio but with 180-degree phase shift, while for the 

asymmetrical case, the gate signals of the primary side are complimentary signals with dead 

time. Further, we should generate the complementary signals with controlled dead time for the 

secondary side signals. TMS320F2812 can provide the minimum increment of PWM signal or 
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the minimum dead time as one clock cycle 6.67ns, which is supposed to be sufficient for the HB 

converters requirement. 

 The figure 4.5 and 4.6 show how to generate the primary and secondary PWM signals 

with PWM generator of TMS320F2812. To get the accurate dead time and phase shift of the 

signals, we generate the signals based on the same timer, which is set up in Event Manager A. 

The symmetrical ramp signals are achieved by using Event Manager A timer in a PWM module. 

Using given duty cycle values from the compensator calculation, the four compare values are 

calculated to get responding values, and then the compare registers are set up respectively.  

 

D

PWM Timer ( freq. = switching freq. )

Compare 3

Delay

Compare 1

D

D

Compare 2

Compare 4

symmetrical case

Secondary signal 1

Secondary signal 2

Primary signal 1
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Figure 4.5: Symmetrical PWM signals generating 
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Figure 4.6: Asymmetrical PWM signals generating 

 

 PWM modules are designed to update the duty cycle every switching cycle, meaning that 

before the next switching cycle begins, the compare values are stored in the buffer and then are 

updated once the new switching cycle comes. 

4.4.3 Controller Implementation 

The specifications of a half-bridge converter with current doublers are as follows: 

Vin=48V, n=6, Vo=1V, Io= 50A, fsw= 400kHz, Co=500 uF, Lo= 270 nH 

With the small signal model we derived in Chapter 2, we can plot the “output to duty 

cycle” frequency response, which the compensator designed is based upon.  We design the 

digital controller with redesign method, which means designing the analog controller first, based 
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on the specifications of power stage, and then transferring it to the digital controller. Using 2 

Poles 2 Zeros Controller Transfer Function, we can get the analog controller transfer function:  

fs=2e6Hz ts=1/fsSec c1=780e-12F c2=0.02e-6F c3=0.01e-6F  R1=1000ohm R2=499ohm 

R3=39ohm 

 

 

ss107.646s101.461
109.276  s 0.9981  s107.221  Hc 27-313-

42-7

+×+×
×++×

=

 

Then with Bilinear method, the Z-transform of the controller is achieved.  

04364.04619.0418.1
2992.05968.02847.06113.0)( 23

23

−+−
+−−

=
zzz

zzzzHc  

For practical reasons, we need the model order reduction for the digital controller, from three 

orders to second order, and then we transform it to the difference function: 

D [n] =1.418 D [n-1] - 0.4619 D [n-2] +0.0436 D [n-3] + 

0.6113 e[n] -0.2847e [n-1]-0.5968 e [n-2]+0.2992e[n-3] 

Figure 4.7 is the frequency response of the compensator. The red curve is the continuous 

domain response, and the blue curve is the discrete domain response. Figure 4.8 shows frequency 

response of the converter, compensator and open loop 
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Figure 4.7: Frequency response of the compensator 
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Figure 4.8: Frequency response of the converter, compensator and open loop 
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To achieve a controller suitable for the implementation, it is decided to limit the control 

law to the second-order equation. Based on the derived small signal model of HB converter in 

Chapter 2, we easily can get the “output to duty cycle” frequency response. The frequency 

response of the converter is not constant value, and it depends on the operating point.  

  The complete real-time controller implementation is interrupt driven. The PWM module 

loads the new value of the duty cycle at the beginning of every switching cycle. All calculations 

regarding the duty cycle are implemented in the ADC interrupt routine. Given the ADC sampling 

frequency of 1.4MHz, the interrupts are 700ns. Taking into account the interrupt response time, 

the time available for the processor to compute the new value of the duty cycle is about 700ns or 

100 instructions.  A flow chart of the controller implementation is shown in Figure 4-9.  
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Figure 4.9: Flow chart of controller implementation in DSP 
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  After the ADC interrupt is recognized, the latest sampled value of the output signal is 

read and pre-processed. If the output signal is less than 1.8 volt, soft starter module is called for 

to avoid the transient overshoot. If the signal is greater than 2.5 volts, the duty cycle is shut 

down. Otherwise, the signal is subtracted from the reference, and the new value of the error 

signal is formed. The error is fed into the PID calculation module, and then the new duty cycle 

value is generated. The duty cycle is limited from 0 to 0.45 as a protection objective, and at the 

end of the ADC interrupt, the ADC is reset to be ready for the start of the next conversion. 

 The PID calculation flow chart is shown in Figure 4.10: 

e[n] = Vref - new sample

D[n] = 1.418 D[n-1] - 0.4619 D[n-2] + 0.0436 D[n-3]
+ 0.6113 e[n] - 0.847 e[n-1] - 0.5968 e[n-2] + 0.2992 e[n-3]

if D[n] > 0.5 D[n]  = 0.5

if D[n] < 0 D[n] = 0

e[n] = e[n-1]
e[n-1] = e[n-2]
e[n-2] = e[n-3]

D[n] = D[n-1]
D[n-1] = D[n-2]
D[n-2] = D[n-3]

Begin

End  

Figure 4.10: PID calculation flow chart 
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 In the practical implementation of a controller in DSP, the following critical issues have 

to be considered: 

• The input signals are sampled, and then the signal is filtered by a low-pass filter to reduce 

the noise. Since the bandwidth of the low-pass filter is going to affect the whole 

bandwidth of the loop, that bandwidth should be considered carefully. 

• The soft start is used to avoid the transient overshoot when a system is started up. In the 

soft start module, the duty cycle is increased with a small step to avoid a sharp ascend of 

the output signal. 

• The duty cycle is limited from 0 to 0.45 as a protection objective. 
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CHAPTER FIVE: TESTING RESULTS AND ANALYSIS 

5.1 Experimental Results 

The specifications of a DSP-controlled half-bridge DC-DC converter with a current 

doubler are as follows: 

Vin=48V, n=6, Vo=1V, Io= 50A, fsw= 400kHz, Co=500 uF, Lo= 270 nH 

Based on the small signal model of HB DC-DC converter and digital controller design theory, 

the digital controller is designed in chapter four as follows:  

04364.04619.0418.1
2992.05968.02847.06113.0)( 23

23

−+−
+−−

=
zzz

zzzzHc                                             (5-1) 

The corresponding difference equation is  

D [n] =1.418 D [n-1] - 0.4619 D [n-2] +0.0436 D [n-3] 

+0.6113 e[n] -0.2847e [n-1]-0.5968 e [n-2]+0.2992e[n-3].                            (5-2) 

 The digital compensator is implemented with DSP program with C language and the flow 

chart is shown in chapter four. A 12 bits ADC with 80 ns conversion time is setup for the digital 

controller in TMS320F2812 DSP chip. And the PWM generator in the chip generates 

symmetrical, asymmetrical and DCS PWM signals for the power stage. 

Figure 5.1 shows the primary and secondary gate signals with 100ns dead time in a 

symmetrical case, which is generated by DSP chip, TMA320F2812. The two primary signals 

have the same duty cyle with a 180-degree phase shift, and the secondary signals are the 
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complementary signals of the primary signals with a controller dead time. In Figure 5.2, the 

asymmetrical primary-side gate signals are shown with 100ns dead time. Actually, the deadtime 

mentioned above is adjustable with the program. 

 

 

Figure 5.1: The primary and secondary gate signals with 100ns dead time in a symmetrical case 
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Figure 5.2: The gate signals with 100ns dead time in an asymmetrical case, the signals 

are complementary signals with controlled dead time. 

 

 Figure 5.3 shows the primary signals with 100ns dead time in a DCS (Duty Cycle Shift) 

case. DCS control technology is used to reduce primary ringing of the signals [3]. In a DCS case, 

the two primary signals have the same duty cycle but with a fixed dead time, which is 

independent of the duty cycle and SR dead time. Figure 5.4 shows the output voltage with the 

significant noise and in this case the output is hard to regulate. 
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ZVS Dead time is Independent of SR Dead times and Duty cycle 

Figure 5.3: The primary signals with 100ns dead time in a DCS case 

 

In the actual experiments, we set up the close loop system with DSP-controlled HB 

power train as shown in Figure 5.5. We use the low-pass filter before DSP board to filter the 

switching noise and this filter behaves as an anti-liaising filter for the sampling of the ADC. The 

protection circuit is used to give a voltage limit from 0 volts to 3 volts for the input signal of the 

DSP since that is the range DSP can accept. 
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Figure 5.4: The output voltage with significant noise 
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Figure 5.5: Close loop diagram with power stage and DSP controller 
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 Figure 5.6 shows the output voltage and the gate signal for the closed-loop DSP 

controller. In this case, the input voltage is 48 volts. We can see the output voltage is regulated to 

the reference voltage of 1.5 volts, which is actually set up in the DSP program. The duty cycle is 

regulated at D=0.26, which is the calculation result of a digital PI compensator based on the error 

difference compared with the reference voltage. And Figure 5.7 and 5.8 are showing the 

transformer current at steady state. 

 

 

Figure 5.6: The output voltage 1.5 volt and gate signal with 0.26 duty cycle at steady state 

With a DSP controller (digital PI compensator) in symmetrical case 
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Figure 5.7: The transform primary current  

 

Figure 5.8: The transform primary current, gate and drain-source signals of the low-side switch  
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5.2 Consideration and Analysis 

5.2.1 Noise Issue 
 

Due to the switching noise and connection noise in the experiment, the low-pass filter is 

necessary for stability of the system. But the bandwidth of the low-pass filter obviously will 

affect the entire bandwidth of the system. This means that if the bandwidth of the low-pass filter 

is too low, the dynamic performance of the system is going to be affected. Therefore, the tradeoff 

should be considered before choosing the bandwidth of the low-pass filter when a system has 

considerable noise. 

One of the approaches to reduce the switching noise is to make the sampling happen after 

the switching noise, which is supposed to appear at the beginning of each switching cycle. This 

approach needs to synchronize the sampling cycle and PWM cycle with fixed phase shift inside 

DSP, which will be discussed in the synchronization section of this chapter. 

5.2.2 Frequency Limitations 

The sampling frequency of the ADC of the TMS320F2812 can reach 12.5MHz 

theoretically. However, the maximum switching frequency at which the converter can be 

operated is dependent upon the time required by the processor to complete all instructions as 

well as the performance requirement. Let τ be the time required to complete one instruction, 

be the number of instructions to be computed, N η be the time required for ADC conversions 

and other delays and be the sampling frequency. Then, we must have: f
f

N 1
<+ητ . 
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In the interrupt routine of the ADC, dealing with the data and calculation of the 

compensator will consume considerable instructions, which makes it impossible to reach the 

maximum sampling frequency of 12.5MHz for the ADC. In our experiment, the interrupt routine 

consumes about 100 instructions, which is around 700ns, so that the sampling frequency we can 

reach is around 1.4MHz. Therefore, optimizing and reducing the number of the instructions for 

the compensator calculation and digital filtering is an important issue. 

5.2.3         Synchronization   

 Synchronization is an important requirement in any digital controller. Signals must be 

sampled at the same relative position in each period, and failing to do so will cause the calculated 

duty cycle to be meaningless — especially when the ripple amplitudes are significant. For 

simplicity and ease of implementation, the processor will take control of: all signals that 

determine the start of a period, the sampling time for the input signals and the time needed to 

issue the duty cycle signal. Furthermore, to minimize the effect of noise, sampling of the input 

signals is scheduled to take place at the instant before the power MOSFET is switched off. 

 In short, the period starts when a triggering signal is sent out to sample all the necessary 

inputs. Immediately after this, the power MOSFET is turned off, and the processor commences 

to calculate the required value of the duty cycle.  

 In our experiment, this synchronization has not been achieved yet, so the low-pass filter 

is used to deal with the switching noise. 
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5.2.4 Software 

 Generally, there are two main considerations in the design of the software, namely 

accuracy and speed. TMS320F2812 supports the 32-bits fixed-point format, and, based on this, 

the C28** IQ math library will provide sufficient accuracy for the arithmetic operations. The IQ 

math library allows the customer to code the algorithms in such a way that it seems like they are 

coding with the ease of floating point, even though this DSP is a cost effective fixed-point 

machine. Numeric precision and dynamic range requirement will vary considerably from one 

application to another, and higher precision results in a lower dynamic range. Hence, the system 

designer must trade off between the range and the resolution before choosing an IQ format. In 

our experiments, we choose IQ18 as the default IQ format for most of the arithmetic operations 

with the considerations of sufficient precision and dynamic range for our application. 

 Of vital importance are the choice of the algorithm and the way in which it is executed. 

Care must be taken to avoid redundant calculations at all costs, which eat up computation time. 
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CHAPTER SIX: CONCLUSION 

6.1 Summary 

The thesis presents the DC state space model and unified small signal model of half-

bridge converters with current doubler both for symmetrical and asymmetrical case. Based on the 

small signal models of HB converters, a digital compensator is designed to stabilize and optimize 

the system. The digital controller with ADC and PWM generators is implemented with a DSP 

chip, which is a high performance DSP chip especially for digital control applications.   

Based on the small-signal models, the digital controller design method and some 

important practical design issues and considerations are discussed in this thesis. Experimental 

work shows that a digital compensator that is implemented in a DSP program can regulate the 

output voltage by adjusting the duty cycle with desired performance.  

 As power-processing equipment becomes more complicated, more sophisticated control 

algorithms will be required. The microprocessors will certainly play an important role in 

controlling such equipments. In addition, as the price of a digital signal processor decreases and 

the performance is expected to be higher in coming years, the use of DSP in processing electrical 

power will become increasingly popular. The high frequency low voltage HB DC-DC converter 

reported in this thesis represents an attempt to control DC-DC converter digitally through a DSP. 
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6.2 Future Work  

 In future work, the system will focus on how to optimize the digital controller, which 

includes: reducing the number of the instructions to increase the achievable sampling frequency, 

implementing the synchronization of the sampling and switching cycle, tuning up the 

coefficients of the compensator and increasing the bandwidth of the low-pass filter to improve 

the transient response of the system. 

 A more complicated and nonlinear algorithm will be attempted in DSP to improve system 

performance, which is generally difficult to implement in analog circuits. This algorithm may 

include adaptive and predictive control or a control based upon efficiency peaking, thermal 

management and other factors. 

 The DSP can also play an important role in managing, monitoring and testing of the 

power system. DSP can be used to execute data acquisition, signal conditioning, filtering, 

spectral analysis and transient capture, and it has the capability to monitor and control systems 

concurrently. This is particularly useful in adaptive control because the controller can 

dynamically change the structure or parameters in real time in response to variations in system 

behavior. Testing capabilities built into power electronics systems are used to identify system 

parameters for automatic tuning of controller gains and to locate faults in the event of a failure. 

Such systems facilitate testing by performing a selected acquisition of data and recording the 

stimulated system responses. 
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