# A Third-order Differential Steering Robot And Trajectory Generation In The Presence Of Moving Obstacles 

Vatana An<br>University of Central Florida

Part of the Electrical and Electronics Commons
Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

## STARS Citation

An, Vatana, "A Third-order Differential Steering Robot And Trajectory Generation In The Presence Of Moving Obstacles" (2006). Electronic Theses and Dissertations, 2004-2019. 1007.
https://stars.library.ucf.edu/etd/1007


by<br>VATANA AN<br>B.S.C.E. University of Florida, 2002<br>B.S.E.E. University of Florida, 2002

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
in the Department of Electrical and Computer Engineering in the College of Engineering and Computer Science at the University of Central Florida

Orlando, Florida

Fall Term
2005
© 2005 Vatana An


#### Abstract

In this thesis, four robots will be used to implement a collision-free trajectory planning/replanning algorithm. The existence of a chained form transformation so that the robot's model can be control in canonical form will be analyzed and proved. A trajectory generation for obstacles avoidance will be derived, simulated, and implemented. A specific PC based control algorithm will be developed.

Chapter two describes two wheels differential drive robot modeling and existence of controllable canonical chained form. Chapter 3 describes criterion for avoiding dynamic objects, a feasible collision-free trjectory parameterization, and solution to steering velocity. Chapter 4 describes robot implementation, pc wireless interface, and strategy to send and receive information wirelessly. The main robot will be moving in a dynamically changing environment using canonical chained form. The other three robots will be used as moving obstacles that will move with known piecewise constant velocities, and therefore, with known trajectories. Their initial positions are assumed to be known as well. The main robot will receive command from the computer such as how fast to move and to turn in order to avoid collision. The robot will autonomously travel to the desired destination collision-free.


## ACKNOWLEDGMENTS

I would like to express my thankfulness to my advisor, Dr. Zhihua Qu, for giving me suggestions, direction, and support, and my committee members, Dr. Wasfy Mikhael and Dr. Michael Haralambous, for their assistance and advice. I would like to thank the control and robotic lab fellows, Dr. Jing Wang, Mr. Jian Yang, and Mr. Ernesto Inoa for meaningful discussion on different research topics and applications. I also would like to thank my parents, my aunt, and my uncle for giving me constant financial support, spiritual support, and most important of all their unconditional love. Finally I would like to thank my brilliant sisters, Ratha, Borey, and Vithia, for their love and their encouragement.

## TABLE OF CONTENTS

LIST OF FIGURES ..... vii
LIST OF TABLES ..... ix
1 INTRODUCTION ..... 1
2 THEORETICAL BACKGROUNDS ..... 3
2.1 Introduction .....  3
2.2 Definition ..... 3
2.3 Modeling a Two-Wheel Differential Drive Robot ..... 4
2.4 Chained Form ..... 6
2.5 Proof ..... 7
3 TRAJECTORY GENERATION ..... 9
3.1 Introduction ..... 9
3.2 Criterion For Avoiding Dynamic Objects ..... 10
3.3 A Feasible Collision-Free Trajectory Parameterization ..... 11
3.4 Solution to Steering Velocity ..... 14
3.5 Simulation ..... 17
4 IMPLEMENTATION ..... 29
4.1 Introduction ..... 29
4.2 Robot Hardware ..... 29
4.3 PC Interface ..... 40
4.4 Transmitting and Receiving Protocals ..... 43
4.5 Result ..... 51
5 CONCLUSION ..... 53
APPENDIX A: CONTROL ALGORITHM CODE IN MATLAB ..... 54
APPENDIX B: ROBOTS' CODES FOR OOPIC-R ..... 69
APPENDIX C: ROBOT'S CODE FOR BRAINSTEM ..... 90
LIST OF REFERENCE ..... 102

## LIST OF FIGURES

Figure 1: A Simple model of two wheels robot ..... 4
Figure 2: A robot in the presence of moving obstacles ..... 10
Figure 3: A robot in the presence of "static" obstacles ..... 11
Figure 4: Wheels at different velocities ..... 17
Figure 5: Determining and calculating a4, u1, u2, and theta ..... 18
Figure 6: Robot and moving obstacles' trajectories ..... 19
Figure 7: Robot’s trajectory for the second sampling instant ..... 21
Figure 8: Robot's trajectory for the third sampling instant ..... 21
Figure 9: Robot's trajectory for the fourth sampling instant ..... 22
Figure 10: Robot’s trajectory for the fifth sampling instant ..... 22
Figure 11: Robot's trajectory for the sixth sampling instant ..... 23
Figure 12: Robot’s trajectory for the seventh sampling instant ..... 23
Figure 13: Robot's trajectory for the eighth sampling instant ..... 24
Figure 14: Robot’s trajectory for the ninth sampling instant ..... 24
Figure 15: Robot's trajectory for the tenth sampling instant ..... 25
Figure 16: Robot’s trajectory for the eleventh sampling instant ..... 25
Figure 17: Robot's trajectory for the last sampling instant ..... 26
Figure 18: Speed Control (inch/second) ..... 26
Figure 19: Steering Control (radian/second). ..... 20
Figure 20: Angle in degree ..... 20
Figure 21: An OOPic-R ..... 30
Figure 22: BrainStem Moto 1.0 Board ..... 31
Figure 23: FWCM ..... 32
Figure 24: Encoder Set ..... 33
Figure 25: Obstacle 1's DC Motors Characteristic ..... 34
Figure 26: Obstacle 2's DC Motors Characteristic ..... 34
Figure 27: Obstacle 3's DC Motors Characteristic. ..... 35
Figure 28: Main Robot's DC Motors Characteristic. ..... 35
Figure 29: Main Robot's Hardware Interface. ..... 36
Figure 30: Obstacles' Hardware Interface ..... 37
Figure 31: Main Robot ..... 38
Figure 32: The Three Obstacles ..... 39
Figure 33: PC-FWCM Interface ..... 40
Figure 34: PC-OOPic R Interface ..... 41
Figure 35: PC-PID Interface ..... 41
Figure 36: PC-Brainstem Interface ..... 42
Figure 37: PC to Robot control architecture ..... 43
Figure 38: PC to Robot and Obstacles control architecture ..... 44
Figure 39: OOPic-R Interface ..... 50

## LIST OF TABLES

Table 1 A Snapshot of Obstacles Detection and the Resulting a4.............................. 28

## 1 INTRODUCTION

In theory, a robot or other objects to be control can be assumed perfect. Realistically, even with today's reasonable price devices, a robot may not behave as well as desired. Typical problems include motor's slow rate of convergence, compass' and encoder's resolution, uneven weight, wear, rounding problem, and uneven floor. However, under empirical experimentations, a robot can be controlled to perform exceptionally well. In [4] and [5], a two-wheel robot was used to implement different control laws. Even when theoretical result guarantee some form of local asymptotic stability or convergence, practical implementations may show sign of oscillatory or even unstable behavior.

In this thesis, a two-wheel differential robot will be used to implement a trajectory generation in the presence of moving obstacles algorithm. A two-wheel differential drive robot to be controlled will be represented by a third order canonical chained form. A robot's trajectory can be generated between any two points as long as its boundary conditions and kinematic constraint are not violate. Obstacle avoidance techniques will be used to steer the robot so that collision-free trajectory can be achieved. Obstacles can be detect on the fly when they come within sensing range. However, for simplicity, the robot are assumed to know the paths of all the obstacles that come within sensing range.

The two wheels robot and moving obstacles will be wirelessly controlled from a PC using a Fast Wireless Communication Module (FWCM). A PC is the central processor that send/receive update information to/from the robot. All robot and obstacles have on board microcontroller (OOPIC-R), magnetic com-
pass, encoder, and FWCM.

## 2 THEORETICAL BACKGROUNDS

### 2.1 Introduction

Murray and Sastry introduced chained form in [3] to steer nonholonomic carlike robot from point A to point B. As will be seen in this chapter, chained form is highly nonlinear. Traditional control technique for linear system cannot be used to study chained form. Fortunately, chained form can be study by using nonlinear tool, Lie Bracket. A model on a two-wheel differential robot is the same as a four-wheel differential robot and will be derived and transformed into chained form. A few terms will be defined in the next section to study chained form.

### 2.2 Definition

The following terms are very important in studying chained form, which is highly nonlinear.

Controllability : Controllability refers to a system that has input $u(t)$ that is able to drive a system from an initial state to a desired state.

Diffeomorphism : A diffeomorphism is a map between manifolds which is differentiable and has a differentiable inverse.

Involutivity: A distribution is involutive if it is closed under Lie Bracket operations.

Lie Bracket : A Lie Bracket takes two n dimensional vectors and returns a new n-vector of linearly independent columns, it satisfies skew symmetry and Jacobi identity.

Linear Independence: A set of n vectors $v_{1}, v_{2}, \ldots, v_{n}$ is linearly independent if and only if the matrix rank of the matrix $\triangle_{o}=\left(v_{1} v_{2} \ldots v_{n}\right)$ is n .

Nonholonomic System : A nonholonomic system can instantly move forward and backward, but cannot move to the right or to the left without wheels slipping. To go to the right, the robot must turn right then drive forward.

Rank: The rank of any matrix A is the maximum number of linearly independent columns in the matrix.

Span: The span of a set of vector $v_{1}, v_{2}, \ldots, v_{n}$ is the set of all their linear combinations.

### 2.3 Modeling A Two-Wheel Differential Drive Robot

The complicity of robot modeling range from simple to complicate systems. A car with one trailer as in [10] is a fifth order kinematic model. A car-like robot as in [1] is a fourth order kinematic model. In this thesis a two-wheel differential drive robot is a third order kinematic model. Unlike modeling of a car-like robot, a two-wheel differential drive robot is very easy to model as seen in figure 1.


Figure 1: A simple model of two wheels robot

The following equations are obtained from figure 1:

$$
\begin{align*}
& \dot{x}=u_{1} \cos (\theta), \\
& \dot{y}=u_{1} \sin (\theta),  \tag{2.1}\\
& \dot{\theta}=u_{2},
\end{align*}
$$

where $u_{1}$ and $u_{2}$ represent speeding and turning respectively. Direct control on $\dot{x}$ can be done by letting $v_{c 1}=u_{1} \cos (\theta)$, and $u_{2}$ is to be determined. Equations in (2.1) can be rewritten as

$$
\begin{align*}
\dot{x} & =v_{c 1}, \\
\dot{y} & =v_{c 1} \tan \theta,  \tag{2.2}\\
\dot{\theta} & =u_{2} .
\end{align*}
$$

To obtain a canonical chained form, let $z_{3}=y$. Section 2.5 will show why $z_{3}=y$ is chosen to begin with. Taking derivative on both sides yield

$$
\begin{equation*}
\dot{z}_{3}=v_{c 1} \tan \theta \tag{2.3}
\end{equation*}
$$

But $\dot{z}_{3}=v_{c 1} z_{2}$ according to a chained form format that will be discussed in the next section, section 2.4. Therefore $z_{2}$ is equal to $\tan \theta$ in (2.3). The sufficient conditions that the assumption can be make will be proved in the next section. Taking derivative of $z_{2}$ yield

$$
\begin{aligned}
& \dot{z}_{2}=\sec ^{2} \theta \dot{\theta}, \\
& \dot{z}_{2}=\sec ^{2} \theta u_{2},
\end{aligned}
$$

and by letting $v_{c 2}=\sec ^{2} \theta u_{2}$, the following transformation will yield the canonical chained form:

$$
\begin{align*}
& z_{1}=x, \\
& z_{2}=\tan \theta, \\
& z_{3}=y  \tag{2.4}\\
& u_{1}=v_{c 1} \sec \theta \\
& u_{2}=v_{c 2} \cos ^{2} \theta
\end{align*}
$$

Replacing $u_{2}$ in term of $v_{c 2}$ in (2.2) yields

$$
\begin{align*}
& \dot{x}=v_{c 1}, \\
& \dot{y}=v_{c 1} \tan \theta,  \tag{2.5}\\
& \dot{\theta}=v_{c 2} \cos ^{2} \theta .
\end{align*}
$$

Equations above can be transform into the following form, the third order chained form:

$$
\begin{align*}
& \dot{z}_{1}=v_{c 1}, \\
& \dot{z}_{2}=v_{c 2},  \tag{2.6}\\
& \dot{z}_{3}=z_{2} v_{c 1} .
\end{align*}
$$

### 2.4 Chained Form

Chained form is a nilpotent form that can be used as a canonical form to describe nonholonomic system. Many mechanical systems with nonholonomic constraints can be locally or globally converted to chained form through coordinate change and control mapping. A canonical form allows one to design open-loop or closed-loop controls for a whole class of nonholonomic systems. A closed form kinematic model of chained form mobile robot is very useful for kinematic analysis, design, and modeling of similar structures.

A chained form, a special triangular form, for n order

$$
\begin{align*}
\dot{z}_{1} & =v_{c 1}, \\
\dot{z}_{2} & =v_{c 2}, \\
\dot{z}_{3} & =z_{2} v_{c 1},  \tag{2.7}\\
& \vdots \\
\dot{z}_{n} & =z_{n-1} v_{c 1},
\end{align*}
$$

can be obtained from system of the form

$$
\begin{equation*}
\dot{\zeta}=g_{1}(\zeta) u_{1}+g_{2}(\zeta) u_{2} \tag{2.8}
\end{equation*}
$$

The requirement is that (2.8) must be locally feedback transformable given

$$
\begin{align*}
\triangle_{o} & :=\operatorname{span}\left\{g_{1}, g_{2}, a d_{g 1} g_{2}, \cdots, a d_{g 1}^{n-2} g_{2}\right\}, \\
\triangle_{1} & :=\operatorname{span}\left\{g_{2}, a d_{g 1} g_{2}, \cdots, a d_{g 1}^{n-2} g_{2}\right\},  \tag{2.9}\\
\triangle_{2} & :=\operatorname{span}\left\{g_{2}, a d_{g 1} g_{2}, \cdots, a d_{g 1}^{n-3} g_{2}\right\} .
\end{align*}
$$

$\triangle_{o}(\zeta)=\Re^{n}$ for all $\zeta$ in open set $U \subset \Re^{n}$ and $\triangle_{1}$ is involutive on U . A locally feedback transformation will be in the following form:

$$
\begin{align*}
& z=\phi(\zeta) \\
& v_{c}=\beta(\zeta, u) . \tag{2.10}
\end{align*}
$$

Note that equations (2.4) are in the same form as equations (2.10). Rewriting (2.5) in the following form

$$
\dot{\zeta}(x, y, \theta, u)=\left(\begin{array}{c}
1  \tag{2.11}\\
\tan \theta \\
0
\end{array}\right) v_{c 1}+\left(\begin{array}{c}
0 \\
0 \\
\cos ^{2} \theta
\end{array}\right) v_{c 2}
$$

a systematic proof can be done to show that it can be locally feedback transform into a third order chained form.

### 2.5 Proof

If $\Delta_{1}$ is an involutive distribution of dimension $\mathrm{n}-2$, there exists a function h such that $d h \cdot \Delta_{2}=0$ and $d h \cdot a d_{g_{1}}^{n-2} g_{2} \neq 0$ that map $\zeta \rightarrow z$ as

$$
\begin{aligned}
z_{1} & =x, \\
z_{2} & =L_{g_{1}}^{n-2} h \\
& \cdot \\
& \cdot \\
& \cdot \\
z_{n} & =y .
\end{aligned}
$$

Since $n=3$ for a third order system, $z_{3}$ is chosen to be $y$ as suggested under equations (2.2). Using Lie Bracket, $L_{g 1} g_{2}$ is obtained as

$$
\begin{align*}
L_{g_{1}} g_{2} & =\frac{\partial g_{2}}{\partial \zeta} g_{1}-\frac{\partial g_{1}}{\partial \zeta} g_{2}  \tag{2.12}\\
L_{g_{1}} g_{2} & =\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) .
\end{align*}
$$

From (2.8), (2.9), and (2.12)

$$
\begin{aligned}
& \Delta_{o}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\tan \theta & 0 & -1 \\
0 & \cos ^{2} \theta & 0
\end{array}\right) \\
& \Delta_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & -1 \\
\cos ^{2} \theta & 0
\end{array}\right), \\
& \Delta_{2}=\left(\begin{array}{c}
0 \\
0 \\
\cos ^{2} \theta
\end{array}\right) .
\end{aligned}
$$

If $h_{1}=x_{1}$ is chosen, then

$$
\begin{aligned}
d h_{1} \cdot \Delta_{1} & =0, \\
d h_{1} \cdot g_{1} & =1, \\
d h_{1} \cdot \Delta_{2} & =0, \\
d h_{2} \cdot \Delta_{2} & =0, \\
d h_{2} \cdot a d_{g_{1}}^{n-2} g_{2} & \neq 0,
\end{aligned}
$$

ensure that there exists a locally feedback transformation.

## 3 TRAJECTORY GENERATION

### 3.1 Introduction

In [1] the authors stated that a trajectory is feasible if the boundary conditions and kinematic constraints are satisfy. In that paper, a fourth order chained form was used to study in determining trajectories in the presence of boundary constraints, kinematic constraints, and moving obstacles. In this thesis, the same idea will be applying on a third order chained form.

Lemma 1: For the kinematic model in chained form (2.6), there exist two inputs $v_{c 1}$ and $v_{c 2}$. To obtain a feasible trajectory $z_{3}=F\left(z_{1}\right)$ between two boundary conditions $z\left(t_{o}\right)=z^{o}=\left[z_{1}^{o}, z_{2}^{o}, z_{3}^{o}\right]^{T}$ and $z\left(t_{f}\right)=z^{f}=\left[z_{1}^{f}, z_{2}^{f}, z_{3}^{f}\right]^{T}$, the following must hold:

$$
z_{1}^{o} \neq z_{1}^{f}
$$

If $z_{1}^{o}=z_{1}^{f}$, there must be an intermediate point $z^{m}$ with $z^{m} \neq z_{1}^{o}=z_{1}^{f}$ so that singularity can be avoided. From (2.4), the boundary conditions in chained form are

$$
\begin{gather*}
z_{1}^{o}=x^{o}, \quad z_{3}^{o}=F\left(z_{1}^{o}\right)=y^{o},\left.\quad \frac{d z_{3}}{d z_{1}}\right|_{z_{1}=z_{1}^{o}}=\tan \left(\theta_{o}\right),  \tag{3.1}\\
z_{1}^{f}=x^{f}, \quad z_{3}^{f}=F\left(z_{1}^{f}\right)=y^{f},\left.\quad \frac{d z_{3}}{d z_{1}}\right|_{z_{1}=z_{1}^{f}}=\tan \left(\theta_{f}\right) . \tag{3.2}
\end{gather*}
$$

### 3.2 Criterion For Avoiding Dynamic Objects

Consider time interval $t \in\left[t_{o}+k T_{s}, t_{o}+(k+1) T_{s}\right]$ that the robot is at coordinate $(x(t), y(t))$ and the $i$ th obstacle is at coordinate $\left(x_{i}(t), y_{i}(t)\right)$ in the figure below. The robot is moving with to be determined vector velocity $v_{r} \triangleq[\dot{x}(t) \dot{y}(t)]^{T}$.


Figure 2: A robot in the presence of moving obstacles

The time-varying obstacle can be model as a moving point at initial location $O_{i}=\left(x_{i}^{k}, y_{i}^{k}\right)$ with radius r , where $x_{i}^{k}=x_{i}\left(t_{o}+k T_{s}\right)$ and $y_{i}^{k}=y_{i}\left(t_{o}+k T_{s}\right)$. The point $O_{i}$ is moving at a known constant velocity $v_{i}^{k} \triangleq\left[v_{i, x}^{k} v_{i, y}^{k}\right]^{T}$.

The relative velocity between the robot and the $i$ th obstacle is defined as

$$
\begin{equation*}
v_{r, i}^{k} \triangleq v_{r}-v_{i}^{k} . \tag{3.3}
\end{equation*}
$$

Considering relative velocity concept, figure 2 can be view as figure 3 in which obstacles are "static."


Figure 3: A robot in the presence of "static" obstacles

Clearly seen from figure 3 , there will be no collision for $x_{i}^{\prime} \in\left[\underline{x}_{i}^{\prime}, \bar{x}_{i}^{\prime}\right]$ if

$$
\begin{equation*}
\left(y_{i}^{\prime}-y_{i}^{k}\right)^{2}+\left(x_{i}^{\prime}-x_{i}^{k}\right)^{2} \geq\left(r_{i}+R\right)^{2} \tag{3.4}
\end{equation*}
$$

where $\underline{x}_{i}^{\prime}=x_{i}^{k}-r_{i}-R, \bar{x}_{i}^{\prime}=x_{i}^{k}+r_{i}+R, x_{i}^{\prime}=x-v_{i, x}^{k} \tau, y_{i}^{\prime}=y-v_{i, y}^{k} \tau$, and $\tau=t-\left(t_{o}+k T_{s}\right)$ for $t \in\left[t_{o}+k T_{s}, t_{o}+T\right]$. In term of state transformation (2.4), (3.4) become

$$
\begin{equation*}
\left(z_{3, i}^{\prime}-y_{i}^{k}\right)^{2}+\left(z_{1, i}^{\prime}-x_{i}^{k}\right)^{2} \geq\left(r_{i}+R\right)^{2} \tag{3.5}
\end{equation*}
$$

where $z_{1, i}^{\prime}=z_{1}-v_{i, x}^{k} \tau$ and $z_{3, i}^{\prime}=z_{3}-v_{i, y}^{k} \tau$.

### 3.3 A Feasible Collision-Free Trajectory Parameterization

The time when a robot first start to move can assume to be 0 . So for the first sampling instant, the robot move from 0 to $k T_{s}$. Using the first equation in
(2.6) where $d z_{1}=v_{c 1} d t$, $z_{1}$ can be find by integrating both sides:

$$
\int_{0}^{k T_{s}} d z_{1}=\int_{0}^{k T_{s}} v_{c 1} d t
$$

Letting $z_{i}^{k}=z_{i}\left(t_{o}+k T_{s}\right)$ and $z_{i}^{k-1}=z_{i}\left(t_{o}+(k-1) T_{s}\right)$, the above equation become

$$
\begin{aligned}
z_{1}^{k} & =z_{1}^{o}+k \frac{z_{1}^{f}-z_{1}^{o}}{\bar{k}} \\
z_{1}(t) & =z_{1}^{k}+\frac{z_{1}^{f}-z_{1}^{o}}{T}\left(t-t_{o}-k T_{s}\right) \quad \forall t \quad \in\left[t_{o}+k T_{s}, t_{f}\right] .
\end{aligned}
$$

From the second equation in (2.6)

$$
\begin{aligned}
\int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} d z_{2} & =\int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} v_{c 2} d t, \\
z_{2}^{k}-z_{2}^{k-1} & =\int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} v_{c 2} d t, \\
z_{2}^{k} & =z_{2}^{k-1}+\int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} v_{c 2} d t .
\end{aligned}
$$

From the third equation in (2.6)

$$
\begin{align*}
\frac{d z_{3}}{d t} & =z_{2} v_{c 1} \\
z_{3}^{k} & =z_{3}^{k-1}+v_{c 1} \int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} z_{2}^{k} d s \tag{3.6}
\end{align*}
$$

Replacing $v_{c 1}$ and $z_{2}^{k}$ from above,

$$
\begin{align*}
& z_{3}^{k}=z_{3}^{k-1}+v_{c 1} z_{2}^{k-1}\left(t_{o}+k T_{s}-\left(t_{o}+(k-1) T_{s}\right)\right)+v_{c 1} \int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} \int_{t_{o}+(k-1) T_{s}}^{s} v_{c 2}^{k-1} d s d t \\
& z_{3}^{k}=z_{3}^{k-1}+v_{c 1} z_{2}^{k-1} T_{s}+v_{c 1} \int_{t_{o}+(k-1) T_{s}}^{t_{o}+k T_{s}} \int_{t_{o}+(k-1) T_{s}}^{s} v_{c 2}^{k-1} d s d t . \tag{3.7}
\end{align*}
$$

Following the same proposition as in [1], a class of feasible and collision-free trajectories can be parameterized in polynomial and matric form as

$$
\begin{align*}
& z_{3}^{k}\left(z_{1}\right)=a_{o}^{k}+a_{1}^{k} z_{1}+a_{2}^{k} z_{1}^{2}+a_{3}^{k} z_{1}^{3}+a_{4}^{k} z_{1}^{4}  \tag{3.8}\\
& z_{3}\left(z_{1}\right)=F\left(z_{1}\right)=a^{k} f\left(z_{1}\right) \tag{3.9}
\end{align*}
$$

respectively, where $a^{k}$ is a constant vector to be determined, and $f\left(z_{1}\right)$ is a vector composed of basis function $z_{1}(t)$ :

$$
\begin{aligned}
a^{k} & =\left[a_{o}^{k}, a_{1}^{k}, a_{2}^{k}, a_{3}^{k}, a_{4}^{k}\right], \\
f\left(z_{1}\right) & =\left[1, z_{1}(t),\left(z_{1}(t)\right)^{2},\left(z_{1}(t)\right)^{3},\left(z_{1}(t)\right)^{4}\right]^{T} .
\end{aligned}
$$

Taking derivative of (2.6) with respect to $z_{1}$ yields

$$
\begin{equation*}
\frac{d z_{3}^{k}}{d z_{1}^{k}}=a_{1}^{k}+2 a_{2}^{k} z_{1}^{k}+3 a_{3}^{k}\left(z_{1}^{k}\right)^{2}+4 a_{4}^{k}\left(z_{1}^{k}\right)^{3} \tag{3.10}
\end{equation*}
$$

where $d z_{3}^{k} / d z_{1}^{k}$ can be found from (2.5) as

$$
\begin{align*}
\frac{d z_{3}^{k}}{d z_{1}^{k}} & =\frac{z_{2}^{k} v_{c 1}^{k}}{v_{c 1}^{k}} \\
\frac{d z_{3}^{k}}{d z_{1}^{k}} & =z_{2}^{k} \\
z_{2}^{k} & =a_{1}^{k}+2 a_{2}^{k} z_{1}^{k}+3 a_{3}^{k}\left(z_{1}^{k}\right)^{2}+4 a_{4}^{k}\left(z_{1}^{k}\right)^{3} \tag{3.11}
\end{align*}
$$

From (3.1) and (3.2), the initial and the final boundary conditions are given as follow

$$
\begin{align*}
& z_{3}^{k}=a_{o}^{k}+a_{1}^{k} z_{1}^{k}+a_{2}^{k}\left(z_{1}^{k}\right)^{2}+a_{3}^{k}\left(z_{1}^{k}\right)^{3}+a_{4}^{k}\left(z_{1}^{k}\right)^{4}, \\
& z_{2}^{k}=a_{1}^{k}+2 a_{2}^{k} z_{1}^{k}+3 a_{3}^{k}\left(z_{1}^{k}\right)^{2}+4 a_{4}^{k}\left(z_{1}^{k}\right)^{3}, \\
& z_{3}^{f}=a_{o}^{k}+a_{1}^{k}\left(z_{1}^{f}\right)+a_{2}^{k}\left(z_{1}^{f}\right)^{2}+a_{3}^{k}\left(z_{1}^{f}\right)^{3}+a_{4}^{k}\left(z_{1}^{f}\right)^{4},  \tag{3.12}\\
& z_{2}^{f}=a_{1}^{k}+2 a_{2}^{k} z_{1}^{f}+3 a_{3}^{k}\left(z_{1}^{f}\right)^{2}+4 a_{4}^{k}\left(z_{1}^{f}\right)^{3} .
\end{align*}
$$

When $a_{4}^{k}$ is determined, the remaining $a$ coefficients can be found from the four equations four unknown variables in (3.12). Matrically,

$$
\begin{equation*}
Y^{k}=\left(B^{k}\right)\left[a_{o}^{k}, a_{1}^{k}, a_{2}^{k}, a_{3}^{k}\right]^{T}+A^{k} a_{4}^{k} \tag{3.13}
\end{equation*}
$$

where

$$
Y^{k}=\left[\begin{array}{c}
z_{3}^{k} \\
z_{2}^{k} \\
z_{3}^{f} \\
z_{2}^{f}
\end{array}\right], \quad A^{k}=\left[\begin{array}{c}
z_{1}^{k^{4}} \\
4\left(z_{1}^{k}\right)^{3} \\
z_{1}^{f^{4}} \\
4\left(z_{1}^{f}\right)^{3}
\end{array}\right],
$$

and

$$
B^{k}=\left[\begin{array}{cccc}
1 & z_{1}^{k} & \left(z_{1}^{k}\right)^{2} & \left(z_{1}^{k}\right)^{3} \\
0 & 1 & 2 z_{1}^{k} & 3\left(z_{1}^{k}\right)^{2} \\
1 & z_{1}^{f} & \left(z_{1}^{f}\right)^{2} & \left(z_{1}^{f}\right)^{3} \\
0 & 1 & 2 z_{1}^{f} & 3\left(z_{1}^{f}\right)^{2}
\end{array}\right] .
$$

Solving for $\left[a_{o}^{k}, a_{1}^{k}, a_{2}^{k}, a_{3}^{k}\right]^{T}$ in (3.12), we have

$$
\begin{equation*}
\left[a_{o}^{k}, a_{1}^{k}, a_{2}^{k}, a_{3}^{k}\right]^{T}=\left(B^{k}\right)^{-1}\left(Y^{k}-A^{k} a_{4}^{k}\right) \tag{3.14}
\end{equation*}
$$

### 3.4 Solution To Steering Velocity

From (3.5)

$$
\begin{equation*}
\left(z_{3}-v_{i, y}^{k} \tau-y_{i}^{k}\right)^{2}+\left(z_{1}-v_{i, x}^{k} \tau^{\prime}-x_{i}^{k}\right)^{2} \geq\left(r_{i}+R\right)^{2} \tag{3.15}
\end{equation*}
$$

The key to simplify the above equation is by simplifying $z_{3}$. Rewriting (3.8) as

$$
z_{3}^{k}\left(z_{1}\right)=\left[\begin{array}{llll}
1 & z_{1} & z_{1}^{2} & z_{1}^{3}
\end{array}\right]\left[\begin{array}{c}
a_{o}^{k}  \tag{3.16}\\
a_{1}^{k} \\
a_{2}^{k} \\
a_{3}^{k}
\end{array}\right]+a_{4}^{k} z_{1}^{4} .
$$

Replacing (3.14) in the above equation, we have

$$
z_{3}^{k}\left(z_{1}\right)=\underline{f}\left(z_{1}\right)\left(B^{k}\right)^{-1}\left(Y^{k}-A^{k} a_{4}^{k}\right)+a_{4}^{k} z_{1}^{4}
$$

Or

$$
\begin{equation*}
z_{3}^{k}\left(z_{1}\right)=\underline{f}\left(z_{1}\right)\left(B^{k}\right)^{-1} Y^{k}+\left(z_{1}^{4}-\underline{f}\left(z_{1}\right)\left(B^{k}\right)^{-1} A^{k}\right) a_{4}^{k} \tag{3.17}
\end{equation*}
$$

Where $\underline{f}\left(z_{1}\right)=\left[\begin{array}{llll}1 & z_{1} & z_{1}^{2} & z_{1}^{3}\end{array}\right]$. Replacing (3.17) in (3.15) yields a second order polynomial

$$
\begin{equation*}
\min _{t \in\left[L_{i}^{*}, \tilde{z}_{i}^{*}\right]} g_{2}\left(z_{1}(t), k\right)\left(a_{4}^{k}\right)^{2}+g_{1, i}\left(z_{1}(t), k, \tau\right) a_{4}^{k}+\left.g_{0, i}\left(z_{1}(t), k, \tau\right)\right|_{\tau=t-t_{0}-k T_{s}} \geq 0 \tag{3.18}
\end{equation*}
$$

where

$$
\begin{aligned}
g_{2}\left(z_{1}(t), k\right) & =\left[\left(z_{1}(t)\right)^{4}-\underline{f}\left(z_{1}(t)\right)\left(B^{k}\right)^{-1} A^{k}\right]^{2}, \\
g_{1, i}\left(z_{1}(t), k, \tau\right) & =2\left[\left(z_{1}(t)\right)^{4}-\underline{f}\left(z_{1}(t)\right)\left(B^{k}\right)^{-1} A^{k}\right]\left[\underline{f}\left(z_{1}(t)\right)\left(B^{k}\right)^{-1} Y^{k}-y_{i}^{k}-v_{i, y}^{k} \tau\right], \\
g_{0, i}\left(z_{1}(t), k, \tau\right) & =\left[\underline{f}\left(z_{1}(t)\right)\left(B^{k}\right)^{-1} Y^{k}-y_{i}^{k}-v_{i, y}^{k} \tau\right]^{2}+\left(z_{1}(t)-x_{i}^{k}-v_{i, x}^{k} \tau\right)^{2}-\left(r_{i}+R\right)^{2} .
\end{aligned}
$$

The next step is to determine the steering control input $v_{c 2} . v_{c 1}^{k}=C$ is assumed to be a known constant, although it can be made varying as long as it does not violate integration rule. Let $v_{c 2}^{k}=C_{o}^{k}+C_{1}^{k}\left(t-t_{o}-k T_{s}\right)+C_{2}^{k}\left(t-t_{o}-k T_{s}\right)^{2}$, where $C_{i}^{k}, i=0,1,2$ are constants. Directly integrating (2.6) yields equations that will lead to solution for steering velocity:

$$
\begin{align*}
z_{1}(t)= & z_{1}^{k}+C\left(t-t_{o}-k T_{s}\right) \\
z_{2}(t)= & z_{2}^{k}+C_{o}\left(t-t_{o}-k T_{s}\right)+\frac{C_{1}}{2}\left(t-t_{o}-k T_{s}\right)^{2}+\frac{C_{2}}{3}\left(t-t_{o}-k T_{s}\right)^{3} \\
z_{3}(t)= & z_{3}^{k}+C z_{2}^{k}\left(t-t_{o}-k T_{s}\right)+\frac{C_{o} C}{2}\left(t-t_{o}-k T_{s}\right)^{2}+\frac{C_{1} C}{6}\left(t-t_{o}-k T_{s}\right)^{3} \\
& +\frac{C_{2} C}{12}\left(t-t_{o}-k T_{s}\right)^{4} \tag{3.19}
\end{align*}
$$

for $t \in\left(t_{o}+k T_{s}, t_{o}+(k+1) T_{s}\right]$. Substituting $z_{1}(t)=z_{1}^{k}+C\left(t-t_{o}-k T_{s}\right)$ into $z_{3}=a^{k} f\left(z_{1}\right)$ yields

$$
\begin{aligned}
z_{3}(t)= & b_{o}+b_{1}\left(t-t_{o}-k T_{s}\right)+b_{2}\left(t-t_{o}-k T_{s}\right)^{2} \\
& +b_{3}\left(t-t_{o}-k T_{s}\right)^{3}+b_{4}\left(t-t_{o}-k T_{s}\right)^{4},
\end{aligned}
$$

where

$$
\begin{align*}
& b_{o}=a_{o}^{k}+a_{1}^{k} z_{1}^{k}+a_{2}^{k}\left(z_{1}^{k}\right)^{2}+a_{3}^{k}\left(z_{1}^{k}\right)^{3}+a_{4}^{k}\left(z_{1}^{k}\right)^{4} \\
& b_{1}=a_{1}^{k} C+2 a_{2}^{k} z_{1}^{k} C+3 a_{3}^{k}\left(z_{1}^{k}\right)^{2} C+4 a_{4}^{k}\left(z_{1}^{k}\right)^{3} C \\
& b_{2}=a_{2}^{k} C^{2}+3 a_{3}^{k} z_{1}^{k} C^{2}+6 a_{4}^{k}\left(z_{1}^{k}\right)^{2} C^{2} \\
& b_{3}=4 a_{4}^{k} z_{1}^{k} C^{3}+a_{3}^{k} C^{3} \\
& b_{4}=a_{4}^{k} C^{4} \tag{3.20}
\end{align*}
$$

Comparing (3.19) and (3.20), the followings are obtained:

$$
\begin{align*}
C_{o}^{k} & =2 a_{2}^{k} C+6 a_{3}^{k} z_{1}^{k} C+12 a_{4}^{k}\left(z_{1}^{k}\right)^{2} C \\
C_{1}^{k} & =6 a_{3}^{k} C^{2}+24 a_{4}^{k} z_{1}^{k} C^{2} \\
C_{2}^{k} & =12 a_{4}^{k} C^{3} \tag{3.21}
\end{align*}
$$

Equations above result in steering inputs to achieve obstacle avoidance path (3.9). For $t \in\left(t_{o}+k T_{s},(k+1) T_{s}\right]$,

$$
\begin{aligned}
v_{c 1}^{k}(t)= & \frac{z_{1}^{f}-z_{1}^{o}}{T} \\
v_{c 2}^{k}(t)= & \left(2 a_{2}^{k}+6 a_{3}^{k} z_{1}^{k}+12 a_{4}^{k}\left(z_{1}^{k}\right)^{2}\right) C \\
& +\left(6 a_{3}^{k}+24 a_{4}^{k} z_{1}^{k}\right)\left(t-t_{o}-k T_{s}\right) C^{2} \\
& +12 a_{4}^{k}\left(t-t_{o}-k T_{s}\right)^{2} C^{3} .
\end{aligned}
$$

which result in the real and steering velocities of $u_{1}$ and $u_{2}$ respectively.
Based on the observation from the figure below, we can use $u_{1}$ and $u_{2}$ to find the speed of left and right wheels of the robot.

$$
\begin{equation*}
\dot{\theta}=\left(V_{R}-V_{L}\right) / L . \tag{3.22}
\end{equation*}
$$

Since the guide point is at the center of the robot,

$$
\begin{equation*}
u_{1}=\left(V_{R}+V_{L}\right) / 2 . \tag{3.23}
\end{equation*}
$$



Figure 4: Wheels at different velocities

### 3.5 Simulation

The second order inequality polynomial that dictate the solution of $a_{4}$ has three different scenarios: both $a_{4 \min }$ and $a_{4 \max }$ are positive, both $a_{4 \min }$ and $a_{4 \max }$ are negative, and both are of different signs. When both $a_{4 \min }$ and $a_{4 \max }$ are positive or both are negative, $a_{4}(k)$ can be chosen to be zero. When both have different signs, $a_{4}(k)$ is the one with smaller magnitude. Appendix A contains code that can easily be changed to different dynamic setting. The code in appendix A follows the methodology displayed in figure 4.


Figure 5: Determining and Calculating a4, u1, u2, and theta

For simplicity, all moving obstacles are assume to start from fixed locations as shown in the figure below:


Figure 6: Robot and moving obstacles' trajectories

The trajectory of the robot is denoted by a solid blue line. The trajectory of the first obstacle is denoted by a dotted light-blue line. The trajectory of the second obstacle is denoted by a dash red line. The trajectory of the third obstacle is denoted by dash light-blue line. Along each trajectory, there exist 10 circles representing the robot's or obstacle's position during that sampling time. Placement of obstacles and robot was designed so that different interesting cases are shown. Below are the setting used to obtained the figure above:
oRobot Parameter: $\mathrm{R}=5$
oBoundary Condition: $q^{0}=(0,0,0)$ and $q^{f}=(70,120, p i / 4)$
oMoving Obstacles: $\mathrm{n}=3$
$O_{1}\left(t_{o}\right)=[0,20]^{T}, O_{2}\left(t_{o}\right)=[63,35]^{T}, O_{3}\left(t_{o}\right)=[31,60]^{T}$, and $r_{i}=5$ for $i=1$, 2, 3.
oDesign Parameters: $t_{o}=0, T=40$ seconds, and $T_{s}=3$ seconds.
oSpeed of Obstacles:
$v_{1}^{0}=v_{1}^{1}=v_{1}^{2}=[0,2.4]^{T}, v_{1}^{3}=v_{1}^{4}=v_{1}^{5}=[3,1.2]^{T}, v_{1}^{6}=v_{1}^{7}=v_{1}^{8}=v_{1}^{9}=v_{1}^{10}=$ $[1.2,1.2]^{T}$, and $v_{1}^{11}=[0,0]^{T}$,
$v_{2}^{0}=v_{2}^{1}=[-4.1,0]^{T}, v_{2}^{2}=[-3,0]^{T}$, and $v_{2}^{3}=v_{2}^{4}=v_{2}^{5}=v_{2}^{6}=v_{2}^{7}=v_{2}^{8}=v_{2}^{9}=$ $v_{2}^{10}=v_{2}^{11}=[3.6,0.6]^{T}$,
$v_{3}^{0}=v_{3}^{1}=v_{3}^{2}=v_{3}^{3}=v_{3}^{4}=v_{3}^{5}=[-1.34,0]^{T}$, and $v_{3}^{6}=v_{3}^{7}=v_{3}^{8}=v_{3}^{9}=v_{3}^{10}=$ $v_{3}^{11}=[0,0.85]^{T}$.
oThe Solution to the parameterized trajectory is listed in table 1.
Observing the figure above which illustrated the first sampling instant, the robot would collide with obstacle one at time $k=5$. The following two figures still illustrate the collision between the robot and obstacle one. At $k=4$, when the robot detect that collision will occur, the algorithm generate a new trajectory to avoid collision. See the figure at $k=4$.


Figure 7: Robot's trajectory for the second sampling instant


Figure 8: Robot's trajectory for the third sampling instant


Figure 9: Robot's trajectory for the fourth sampling instant


Figure 10: Robot's trajectory for the fifth sampling instant


Figure 11: Robot's trajectory for the sixth sampling instant


Figure 12: Robot's trajectory for the seventh sampling instant


Figure 13: Robot's trajectory for the eighth sampling instant


Figure 14: Robot's trajectory for the ninth sampling instant


Figure 15: Robot's trajectory for the tenth sampling instant


Figure 16: Robot's trajectory for the eleventh sampling instant


Figure 17: Robot's trajectory for the last sampling instant

The control inputs that drive the robot from specified initial location to desired location collision free are shown below.


Figure 18: Speed Control (inch/second)


Figure 19: Steering Control (inch/second)


Figure 20: Angle in degree

In table 1 , the 1 or 0 value under obstacle columns represent that obstacle is being seen by the robot or not being seen by the robot during time interval k .

Table 1: A Snapshot of Obstacles Detection and the Resulting a4

| $k$ | Object1 $(k)$ | Object2 $(k)$ | Object3 $(k)$ | $a 4(k) * 10^{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 0 |
| 2 | 1 | 1 | 0 | 0 |
| 3 | 1 | 1 | 0 | 0 |
| 4 | 1 | 1 | 0 | -0.0996 |
| 5 | 1 | 1 | 0 | -0.1282 |
| 6 | 1 | 1 | 0 | -0.1708 |
| 7 | 1 | 1 | 0 | -0.2276 |
| 8 | 1 | 1 | 0 | -0.3046 |
| 9 | 1 | 1 | 0 | -0.3685 |
| 10 | 1 | 1 | 0 | -0.3736 |
| 11 | 1 | 1 | 1 | -0.3736 |
| 12 | 1 | 1 | 1 | -0.3736 |

## 4 IMPLEMENTATION

### 4.1 Introduction

Global positioning system (GPS) allows a relatively precise dynamic measurement in the open considering how big the Earth is. Using a combination of GPS, inertial sensor, compass, and encoder, a desired precision can be obtained. Unfortunately, GPS does not work inside a building. So dynamic measurement has to be done based on dead-reckoning technique that depend on the assumption that the robot know where it begin. As the wheel roll, encoder records the distance and direction travel. At the same time a compass and inertial sensor do their part by measuring the bearing and the rate of turn respectively. Combining all values obtained by encoder, compass, and inertial sensor, a precise measurement allow accurate determination and better control of the robot's movement. However, under careful experimentation, an exceptional result can be obtained without the use of inertial sensor, especially when the robot is very slow.

To communicate between the pc and a robot, a wireless system based on frequency modulation is used. A specific pc interface is written in $\mathrm{C}++$ to communicate with the robots and all of the obstacles. The robot's and obstacles' code are written in Visual Basic. The way pc communicate with the robot and obstacles will be discussed in section 4.4.

### 4.2 Robot Hardware

Every robot and obstacle contains a microcontroller (OOPIC-R), a fast wireless communication module (FWCM), a magnetic compass, and an encoder.

They will be described in the following order: microcontroller, FWCM, encoder set, and dc motors.

## Microcontroller

The OOPic-R board includes a serial port, 16 bidirection lines, serial LCDs, I2C network, two voltage regulators, three programmable push buttons, three indicator LED's, a speaker, and the OOPic2+ firmware built on the capabilities of the PIC16F877. Below is a picture of an OOPic-R microcontroller:


Figure 21: an OOPic-R

The BrainStem Moto 1.0 Module offers two channels of high resolution motion control. The two channel offer flexible pulse width modulation or proportional integral derivative control of motors with various types of feedback including encoders, quadrature encoders, analog input, and Back-EMF speed control.


Figure 22: BrainStem Moto 1.0 Board

## Wireless Communication Module

Fast Wireless Communication Module or FWCM can communicate with up to 255 other FWCMs as far away as 300 meters. FWCM can transmit or receive 9 bytes at a time in just 200 milliseconds. Having 100 percent data accuracy with packet checking and error correction and anti-collision, FWCM is an ideal choice for this experimentation. There are 3 available modes in FWCM such as normal, broadcast, and autonomous. Any mode can be used at any time, but only normal and broadcast mode allow a network of up to 255 nodes. In autonomous mode, no more than 4 nodes network is allowed. Normal mode allows bidirectional transmission among nodes, but only two nodes at a time. Broadcast mode allows a node to communicate up to 254 other nodes at one time. The protocal to communicate with other FWCM will be discussed in section 4.4.


Figure 23: FWCM

## Encoder

Encoder below is specifically for standard servo motors which have been modified to dc motors. It produces standard channel A/channel B raw quadrature outputs, decoded clock, and direction signals. With just channel A/channel B outputs, speed and distance travel can be measured. In each rotation of a wheel, 128 clock ticks is counted. Since the wheel of a robot and obstacles have a diameter of approximately 2.63 inches, the circumference of each wheel is 8.23 inches. Therefore, 15.5 clock ticks is equal to an inch.


Figure 24: Encoder Set

## DC Motor

The dynamic of each motor is very similar to each other. The dc motors used in robot 1 , robot 2 , robot 3 , and robot 4 have characteristics as illustrated by the following figures:


Figure 25: Obstacle 1's DC Motors Characteristic


Figure 26: Obstacle 2's DC Motors Characteristic


Figure 27: Obstacle 3's DC Motors Characteristic


Figure 28: Main Robot's DC Motors Characteristic


Figure 29: Main Robot's Hardware Interface


Figure 30: Obstacles' Hardware Interface


Figure 31: Main Robot


Figure 32: The Three Obstacles


Figure 33: PC-FWCM Interface

### 4.3 PC Interface

There are four different PC interfaces for this application. The first is a specific pc interface between the pc and FWCM I wrote for this experimentation. The second one is the oopic interface which is provided by www.oopic.com. It is used to write basic program and download into the oopic - r's eeprom. The third one is the moto interface provided by www.acroname.com to tune the pid velocity control of both wheels. The last one is the console interface provided by www.acroname.com to program the Brainstem moto 1.0 module and download the code into the board. Below are pictures of all of the interfaces mentioned above:


Figure 34: PC-OOPic R Interface


Figure 35: PC-PID Interface


Figure 36: PC-Brainstem Interface

### 4.4 Transmitting And Receiving Protocals

Figure 33 illustrates a methodological controlling structure from a pc to the robot. Figure 34 illustrates the bigger picture of how a pc communicate with the robot and moving obstacles. In this experimentation, there are only 3 moving obstacles. However, the number of moving obstacles can be expanded to 253 if there are only one robot and only one computer controlling them. Follow are top down approaches for the PC to communicate with a robot and obstacles.


Figure 37: PC to Robot control architecture


Figure 38: PC to Robot and Obstacles control architecture

## PC-FWCM Side

A protocal to send data from a PC to the robot and other obstacles is very simple. First a pc, a robot, and obstacles must have node addresses that are within range of 1 and 255 . Their node address cannot be the same if they are to be unique. However, their node addresses can be the same if they are used in broadcast mode and if they are using the same data. To send data from a PC to FWCM through serial port, the following must be pre-configure:

$$
\begin{aligned}
& \text { Comport = any, } \\
& \text { Rate }=19200, \\
& \text { Stopbits }=1, \\
& \text { Parity }=\text { No. }
\end{aligned}
$$

FWCM can send and receive up to 9 bytes in 200 ms . To send data, two steps must be followed. First set up a protocal to send one byte or more from
a pc side. In C++Builder, a buffer to hold integers to be send to remote node must be declare as unsigned char send[18],

$$
\begin{aligned}
& \operatorname{send}[0]=91, \\
& \operatorname{send}[1]=192, \\
& \operatorname{send}[2]=0, \\
& \operatorname{send}[3]=7, \\
& \operatorname{send}[4]=254, \\
& \operatorname{send}[5]=3, \\
& \operatorname{send}[6]=\text { byte } 1, \\
& \operatorname{send}[7]=7, \\
& \operatorname{send}[8]=\text { byte } 2, \\
& \operatorname{send}[9]=\text { byte3, }, \\
& \operatorname{send}[10]=\text { byte } 4, \\
& \operatorname{send}[11]=\text { byte } 5, \\
& \operatorname{send}[12]=\text { byte } 6, \\
& \operatorname{send}[13]=\text { byte } 7, \\
& \operatorname{send}[14]=\text { byte }, \\
& \operatorname{send}[15]=\text { byte } 9, \\
& \operatorname{send}[16]=93, \\
& \operatorname{send}[17]=93 .
\end{aligned}
$$

The second step is to send the buffer by issue the command ComPort $->$ Write(send,18). send[0] contains 91 which is the start bit. send[1] contains 192 which is the PC's FWCM address. send[2] contains 0 which is the register to configure the node address of the PC's FWCM stored in send[3].

The node address of the PC is 7 which is in send[3]. send[4] contains the remote node address of the robot or obstacles, the value in send[4] can be any integer from 1 to 255. send[5] contains timeout value in millisecond. send[6], send[8], send[9], up to send[15] are the bytes to be received by remote robot or remote obstacles. send[7] points to the $7^{\text {th }}$ register. When the $7^{\text {th }}$ register is pointed at, the $8^{\text {th }}$ up to the $15^{\text {th }}$ register will be available to store data. If the $8^{\text {th }}$ register up to the $15^{\text {th }}$ register contain valid value, a valid value is a value in the range from 1 to 255 , then the $2^{\text {nd }}$ up to the $9^{\text {th }}$ byte will be store in send buffer to be send to remote node. If any register from register 8 to register 15 contain invalid data, then nothing will be send to remote node when a write command is issued. If send[7] is not declare, then the send buffer only send the first byte when a write command is issued. send[16] and send[17] contain 93 which is the end sequence. FWCM needs 2 end sequences.

## Robot-FWCM Side

If sending data from the robot's node is desired, then the same concept above apply. If the PC is wanting to receive data from the robot, the following concept will also apply. To receive data from the pc's node, several steps must be done. For simplicity, a simple and specific example is written to be analyze. The first line defines i2c object so that the OOPic-R can communicate with FWCM. Line 2 defines local node address of the robot or the obstacle. Line 3 to 11 define data the robot expected to receive from the PC. Line 12 defines FWCM's address. The rest are switch statements. Just like most programming languages, Visual Basic require a main prototype.
1 Dim FWCM As New oi2c
2 Dim LocNode As New oByte
3 Dim byte1 As New oByte4 Dim byte2 As New oByte
5 Dim byte3 As New oByte
6 Dim byte4 As New oByte
7 Dim byte5 As New oByte
8 Dim byte6 As New oByte
9 Dim byte7 As New oByte
10 Dim byte8 As New oByte
11 Dim byte9 As New oByte
12 Dim ReadAdr As New oByte
13 Dim Error As New oBit
14 Dim OError As New oBit
15 Dim ReadOK As New oBit
16 Dim Done As New oBit
17 Dim TOut As New oByte
1 Sub Main()
2 oopic.delay $=200$
3 LocNode $=2$
4 RemNode = 7
5 Const WriteTOut = 3
6 Const FWCMAdr = \&h61
7 Call SetUpFWCM
8 Call Read_Data
9 End Sub

It take 2 seconds to initialize the FWCM as seen at line 2 above. Lines 3 and 4 assign local and remote node addresses or robot and the pc's node addresses respectively. Line 5 assigns timeout to be 3 milliseconds. Line 6 assigns FWCM's address. Lines 7 and 8 call other functions. The functions below are very much selves explanatory.

```
Sub Read_Data()
1 Do
2 do
3 call ReadFWCM
4 loop until ReadOK = cvTrue
5 loop ' keep reading
End Sub
Sub SetUpFWCM()
8 FWCM.Node = FWCMAdr ' Setup I2C address for FWCM
9 ' Setup I2C addressing to FWCM
10 FWCM.Width \(=\) cv8bit \(\quad\) ' Control Info is 1 -byte
11 FWCM.Mode = cv10bit ' I2C mode is 10-Bit Addressing
12 FWCM.NoInc = cvFalse ' Increment on every read/write
13 FWCM.Location = \(0 \quad\) ' point to local node address
14 FWCM.Value = LocNode ' and write local node address
End Sub
```

The function above is the most important function. The purpose of the ReadFWCM is to receive meaningful and useful data. No data can be lost. The received data will be used to drive the robot and obstacles. Line 6 in the function above pointed to register 20 so that up to 9 bytes can be read and store. It is analogous to register 7 for writing up to 9 bytes.

```
Sub ReadFWCM()
1 FWCM.Location = \(2 \quad\) ' Start at read status flag (R2)
2 If FWCM.Value \(=255\) then ' Has data been received (R2) ?
3 If FWCM.Value \(=0\) then ' Is there overflow?
4 ReadAdr = FWCM.Value ' If not then store FWCM address
5 byte1 = FWCM.Value
6 FWCM.Location = 20
7 byte2 = FWCM.Value
8 byte3 = FWCM.Value
9 byte4 = FWCM.Value
10 byte5 = FWCM.Value
11 byte6 = FWCM.Value
12 byte7 = FWCM.Value
13 byte8 = FWCM.Value
14 byte9 = FWCM.Value
15 OError = cvFalse ' Indicate no overflow error
16 ReadOK = cvTrue ' Indicate data has been read and stored
17 else
18 OError = cvTrue ' Indicate overflow error has occured
19 ReadOK = cvTrue ' Indicate data has been read
20 ReadAdr = FWCM.Value
21 end if
22 else
23 OError = cvFalse ' If no data read then no error
24 ReadOK = cvFalse ' and no data
25 end if
End Sub
```


## OOPic－R and Brainstem Communication

The OOPic－$R$ and Brainstem communicate with each other through I2C protocal in the same way that OOPic $-R$ communicate with FWCM．Just like the OOPic－R＇s way of obtaining its data from FWCM，the Brainstem＇s way of obtaining the data from the OOPic $-R$ is the same way．Follow is an example of how the OOPic－$R$ and the Brainstem communicate with each other．

The figure below is the program that have to be downloaded to the $O O P i c-R$ ．

```
1 dim i as new obyte
2 dim click as new oDio1
3 sub main()
5 oopic.node = 4
6 i = 1咟
7 click.ioline = 6
9 click.direction = cuoutput
18 do
11 click.invert
12 oopic.delay = i
13 loop
15 end sub
```

-General
Node
Address 126
Inc. Dec Clear Set
Magnitude
$\underbrace{0} \ldots, \ldots, \ldots, \ldots, \ldots 1$
Value $\longdiv { 0 0 0 } \Gamma$.Signed $\Gamma$.NonZero
Bis 「「「「「「「「 「
Stuing 1000
MSB

```
NETWORIK NODE0
```

NETWORIK NODE0
OOPic: OOPic
OOPic: OOPic
8. obyte i
8. obyte i
1- oDio1: click

```
1- oDio1: click
```



```
                                    [Berieक.
```

```
                                    [Berieक.
```

Figure 39：OOPic－R Interface

Line number 5 enable I2C communication with any device，the Brainstem in this case，that have I2C network．The address of the I2C network on the oopic $-R$ is set to 4 ．The oByte i address which is assigned by the OOPic $-R$ compiler is 126 ．The figure below is the program that have to be downloaded to the brainstem．All of the functions seen in that figure are

```
1 void main()
\
    char x;
    aCore_s1eep(30000);
    while (1)
    f
        aOOPic_writeChar(8, (char)ADDR_I_VALUE,0,2);
        x=aOOPic_ReadChar (8, (char)ADOR_I_VALUE);
        aprint_CharDec (x);
        aprint_char(')}\mp@subsup{n}{}{\prime})
        aCore_sleep(20000);
        aOOPic_writeChar(8,(char)ADDR_I_VALUE,0,20);
        x=aOOPiC_ReadChar(8, (char)ADDR_I_VALUE);
        aPrint_CharDec (x);
        aprint_char(')n');
        aCore_sleep(20000);
        }
}
```

provided by Acroname. The first argument in aOOPic-WriteChar (ADDROOPIC, (char)ADDR - I - VALUE, 0,2) is the address of the OOPic $-R$ as seen by the Brainstem; it is 8 in this example. I2C networking require the address to be shifted left by 1 bit. The purpose of the example illustrated here is to show how the byte i in an $O O P i c-R$ can be alter to any 8 -bit value by the Brainstem. The first alteration was done when the Brainstem write a value of 2 to the OOPic $-R$. The second time, the Brainstem write a value of 20. Note that the fourth argument in the aOOPic - WriteChar (ADDR$O O P I C,(\operatorname{char}) A D D R-I-V A L U E, 0,2)$ is the written values.

### 4.5 Result

All of the components used to build the robot has some errors associate with them. The robot platform contribute some errors such as slight different in wheels and the plate that support the robot. This is known as a kinematic imperfection of a mobile robot. The error can be reduce by following the
method used in [11]. A major error contributor is the rounding error. The OOPic controller is configure to use an eight-bit integer, although it can be difficultly configure to use as sixteen-bit integer. Since a lot of rounding were made, a noticeable error is seen. Although there are problem from each and every component, the algorithm provide a very good experimentation result in locally closed loop control at the robot's end.

## 5 CONCLUSION

The algorithm in [1] is indeed a very useful algorithm that provide analytical solution to a class of nonholonomic system. From a simple two-wheel robot, mathematical equations representing the robot's kinematic and dynamic movement were derived, proved, analyzed, simulated, and implemented successfully. The algorithm, although very good, can be improved so that the robot can take less time to avoid the obstacle.

My contributions include designing and building wireless mini robots, writing pc interface in $\mathrm{C}++$ Builder, then matlab, and writing codes to programs the robot and moving obstacles to perform a collision-free trajectory generation. The robot and moving obstacles can easily be reprogram to perform other useful tasks such as formation control. This thesis provided me a lot of experience and insight into theoretical research and practical implementation.

## APPENDIX A: CONTROL ALGORITHM CODE IN MATLAB

matlab code
clc;
global Fx0 Fy0 Fxf Fyf Ftheta0 Fthetaf p1x p1y p2x p2y p3x p3y p1vx1 p1vx2 p1vx3 p1vy1 p1vy2 p1vy3
global p2vx1 p2vx2 p2vx3 p2vy1 p2vy2 p2vy3 p3vx1 p3vx2 p3vx3 p3vy1 p3vy2 p3vy3
global p1vx4 p1vy4 p2vx4 p2vy4 p3vx4 p3vy4 ratio VR VL Tmedium
\%Sensing Range
obstacle = 1;
Rs = 25;
\%The boundary conditions in original space
\%q0=(x0,y0,theta0)^T;
$\mathrm{x} 0=\mathrm{Fx} 0$;
y0 = Fy0;
theta0 $=$ Ftheta0*pi/180;
xf = Fxf;
yf = Fyf;
thetaf = Fthetaf*pi/180;
\%The boundary conditions in transformed space
\%initial point: z0
[z10, z20, z30] = ChainedTransform(x0, y0, theta0);
\%final point: zf
[z1f, z2f, z3f] = ChainedTransform(xf, yf, thetaf);
\%Time to steer the robot from initial point to final point
$\mathrm{T}=40$;
\%Robot speed
$\mathrm{C}=(\mathrm{z} 1 \mathrm{f}-\mathrm{z} 10) / \mathrm{T}$;
\%The vector of sampling time instant
Ts = [0 3691215182124273033 40];
\%We observe the velocity change of objects every 3 seconds.
 vo1y = [p1vy1 p1vy1 p1vy1 p1vy2 p1vy2 p1vy2 p1vy3 p1vy3 p1vy3 p1vy4 p1vy4 0*ratio ];
\%Robot4

```
%-3*ratio
vo2x = [p2vx1 p2vx1 -3*ratio p2vx2 p2vx2 p2vx2 p2vx3 p2vx3 p2vx3 p2vx4 p2vx4 p2vx4 ];
vo2y = [p2vy1 p2vy1 p2vy1 p2vy2 p2vy2 p2vy2 p2vy3 p2vy3 p2vy3 p2vy4 p2vy4 p2vy4 ];
%Robot6
vo3x = [p3vx1 p3vx1 p3vx1 p3vx2 p3vx2 p3vx2 p3vx3 p3vx3 p3vx3 p3vx4 p3vx4 p3vx4 ];
vo3y = [p3vy1 p3vy1 p3vy1 p3vy2 p3vy2 p3vy2 p3vy3 p3vy3 p3vy3 p3vy4 p3vy4 p3vy4 ];
%Computing step time
T1 = 1;%1;
tt = 0:T1:T;
%radius of obstacles
r = 5;
%radius of the robot
R = 5;
%initial position of moving obstacles
%Robot 5
xo10 = p1x;
yo10 = p1y;
%obstacle 6
xo20 = p2x;
yo20 = p2y;
%Robot 2
xo30 = p3x;
yo30 = p3y;
%Path of obstacles
xo1(1) = xo10;
yo1(1) = yo10;
xo2(1) = xo20;
yo2(1) = yo20;
xo3(1) = xo30;
yo3(1) = yo30;
%initial states
z1(1) = z10;
z2(1) = z20;
z3(1) = z30;
```

```
x(1) = x0;
y(1) = y0;
theta(1) = theta0;
%initialize a4 of all 3 obstacles
a41max = 0;
a41min = 0;
a42max = 0;
a42min = 0;
a43max = 0;
a43min = 0;
a4max = 0;
a4min = 0;
clc;
c = fix(clock);
fprintf('started at %2i.%2i.%2i\n\n', ...
c(4),c(5),c(6));
\%checking for each time interval
for k=1:(length(Ts)-1)
    a4min = 0;
    a4max = 0;
    acommon1(k) = 0; %set to 1 if obstacle 1 is detected during time k
    acommon2(k)=0;%set to 1 if obstacle 2 is detected during time k
    acommon3(k) = 0; %set to 1 if obstacle 3 is detected during time k
    %index of changing initial condition
    index = Ts(k)/T1+1;
```

    [B, Y, A] = CalculateBYA(index, z1, z1f, z3, z3f, z2, z2f);
    \%11111111111111111111111111111111111111111111111111111111111111111111111111111111
if (obstacle $==0$ )
a4(k) = 0;
else
if ( ( z3(index)- yo1(index) ) $\left.)^{\wedge}+(\text { z1(index) }- \text { xo1(index) })^{\wedge 2}\right)<=($ Rs-r)*(Rs-r)
[tmin1, tmax1] = TimeCheck(xo1, z10, k, index, vo1x, Ts, C, R, r, T);
if ((tmin1 >=Ts(k)) || (tmax1 <=T))
acommon1 $(\mathrm{k})=1 ; \%$ a switch statement used to check the number of obstacle being seen at anytime interval
[a41min, a41max] = DetermineA4(tmin1, tmax1, z10, C, B, A, Y, k, index, xo1, yo1, a41min, a41max, Ts, vo1x, vo1y, r, R);
else acommon1(k) $=0$;

```
        a41min = 0;
```

        a41max \(=0\);
        end
    else acommon1(k) \(=0\);
        a41min = 0 ;
        a41max \(=0\);
    end
    \%22222222222222222222222222222222222222222222222222222222222222222222222222222
if ( ( z3(index)- yo2(index) )^2 + (z1(index) - xo2(index) )^2 ) <= (Rs-r)*(Rs-r)
[tmin2, tmax2] = TimeCheck(xo2, z10, k, index, vo2x, Ts, C, R, r, T);
if $((\operatorname{tmin} 2>=T s(k)) \|(\operatorname{tmax} 2<=T))$
acommon $2(\mathrm{k})=1$; $\%$ a switch statement used to check the number of obstacle if any
being detected at anytime interval
[a42min, a42max] = DetermineA4(tmin2, tmax2, z10, C, B, A, Y, k, index, xo2, yo2,
a42min, a42max, Ts, vo2x, vo2y, r, R);
else acommon2(k) $=0$;
a42min $=0$;
a42max $=0$;
end
else acommon2(k) $=0$;
a42min $=0$;
a42max $=0$;
end
\%3333333333333333333333333333333333333333333333333333333333333333333333333
if ( ( z3(index)- yo3(index) )^2 + ( z1(index) - xo3(index) )^2 ) <= (Rs-r)*(Rs-r)
[tmin3, tmax3] = TimeCheck(xo3, z10, k, index, vo3x, Ts, C, R, r, T);
if $((\operatorname{tmin} 3>=T s(k)) \|(\operatorname{tmax} 3<=T))$
acommon3(k) $=1$; \% a switch statement used to check the number of obstacle being seen at anytime interval
[a43min, a43max] = DetermineA4(tmin3, tmax3, z10, C, B, A, Y, k, index, xo3, yo3,
a43min, a43max, Ts, vo3x, vo3y, r, R);
else acommon3(k) $=0$;
a43min $=0$;

```
        a43max = 0;
    end
else
    acommon3(k) = 0;
        a43min = 0;
        a43max = 0;
end
```

\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
\%check the number of obstacle during each time interval and calculate
\%a4(k), obstacle avoidance variable, accordingly.
if $((\operatorname{acommon} 1(\mathrm{k})==0) \& \&(\operatorname{acommon2}(\mathrm{k})==0) \& \&(\operatorname{acommon3}(\mathrm{k})==0)) \%$ if no obstacle is detected at k interval $a 4(k)=0$; \%no need to avoid obstacle
end
if $((\operatorname{acommon} 1(\mathrm{k})==0) \& \&(\operatorname{acommon2}(\mathrm{k})==0) \& \&(\operatorname{acommon} 3(\mathrm{k})==1)) \%$ if only
obstacle 3 is detected
\%find a4(k) based on second order nonlinear inequality a4(k) = DetermineA4k(a43min, a43max);
end
if $((\operatorname{acommon} 1(\mathrm{k})==0) \& \&(\operatorname{acommon2}(\mathrm{k})==1) \& \&(\operatorname{acommon3}(\mathrm{k})==0)) \%$ if only
obstacle 2 is detected
\%find a4(k) based on second order nonlinear inequality a4(k) = DetermineA4k(a42min, a42max);
end
if $((\operatorname{acommon} 1(\mathrm{k})==0) \& \&(\operatorname{acommon} 2(\mathrm{k})==1) \& \&(\operatorname{acommon} 3(\mathrm{k})==1)) \%$ if only 2 obstacles, 2 and 3, are detected
\%find a4(k) based on 2 second order nonlinear inequalities
a4(k) = DetermineA4k2(a42min, a42max, a43min, a43max, a4min, a4max);
end
if $(($ acommon1 $(\mathrm{k})==1) \& \&(\operatorname{acommon2}(\mathrm{k})==0) \& \&(\operatorname{acommon3}(\mathrm{k})==0)) \%$ if only obstacle 1 is detected
\%find a4(k) based on 2 second order nonlinear inequalities a4(k) = DetermineA4k(a41min, a41max);
end
if $((\operatorname{acommon} 1(\mathrm{k})==1) \& \&(\operatorname{acommon} 2(\mathrm{k})==0) \& \&(\operatorname{acommon} 3(\mathrm{k})==1)) \%$ if only 2
obstacles, 1 and 3, are detected
\%find a4(k) based on 2 second order nonlinear inequalities
a4(k) = DetermineA4k2(a41min, a41max, a43min, a43max, a4min, a4max);
end
if $((\operatorname{acommon} 1(\mathrm{k})==1) \& \&(\operatorname{acommon2}(\mathrm{k})==1) \& \&(\operatorname{acommon} 3(\mathrm{k})==0)) \%$ if only 2 obstacles, 1 and 2, are detected
\%find a4(k) based on 2 second order nonlinear inequalities

```
        a4(k) = DetermineA4k2(a41min, a41max, a42min, a42max, a4min, a4max);
```

    end
    
obstacles, 1,2 , and 3 , are detected
\%find a4(k) based on 3 second order nonlinear inequalities
a4(k) = DetermineA4k3(a41min, a41max, a42min, a42max, a43min, a43max, a4min, a4max)
end
end \%end if there is obstacle or no obstacle
\% calculate the remaining coefficients a0 to a3
a0123=inv(B)*Y-inv(B)*A*a4(k); \% 4x1 matrix
a0(k)=a0123(1);
a1(k)=a0123(2);
a2(k)=a0123(3);
a3(k)=a0123(4);
\% calculate the steering inputs:
$\mathrm{C} 0(\mathrm{k})=2 * \mathrm{a} 2(\mathrm{k}) * \mathrm{C}+6 * \mathrm{a} 3(\mathrm{k}){ }^{*} \mathrm{z} 1$ (index) ${ }^{*} \mathrm{C}+12 * \mathrm{a} 4(\mathrm{k})^{*} \mathrm{z} 1$ (index) ${ }^{\wedge}{ }^{*} \mathrm{C}$;
$\mathrm{C} 1(\mathrm{k})=6^{*} \mathrm{a} 3(\mathrm{k})^{*} \mathrm{C}^{\wedge} 2+24^{*} \mathrm{a} 4(\mathrm{k})^{*} \mathrm{z} 1$ (index) ${ }^{*} \mathrm{C}^{\wedge} 2$;
$\mathrm{C} 2(\mathrm{k})=12 * \mathrm{a} 4(\mathrm{k})^{*} \mathrm{C}^{\wedge}{ }^{2}$;
\% Produce the trajectory history of robot and obstacles
for $\mathrm{j}=$ index:length(tt)
\% the trajectory in z plane

```
z1(j) = z10+C*tt(j);
z2(j) = z2(index)+C0(k)*(tt(j)-tt(index))+C1(k)*(tt(j)-tt(index))^2/2+...
    C2(k)*(tt(j)-tt(index))^3/3 ;
z3(j) = z3(index)+C*z2(index)*(tt(j)-tt(index))+C*C0(k)*(tt(j)-tt(index))^2/2+...
    C*C1(k)*(tt(j)-tt(index))^3/6+C*C2(k)*(tt(j)-tt(index))^4/12;
```

\% the trajectory in x-y plane
theta(j)=atan(z2(j));
Tita(j) = theta(j)*180/pi;
$\mathrm{x}(\mathrm{j})=\mathrm{z} 1(\mathrm{j})$;
$y(j)=z 3(j)$;
\% steering input
v1(j)=C;
$\mathrm{v} 2(\mathrm{j})=\mathrm{C} 0(\mathrm{k})+\mathrm{C} 1(\mathrm{k})^{*}(\mathrm{tt}(\mathrm{j})-\mathrm{tt}(\mathrm{index}))+\mathrm{C} 2(\mathrm{k}) *(\mathrm{tt}(\mathrm{j})-\operatorname{tt}(\mathrm{index}))^{\wedge} 2 ;$
\% real input
$\mathrm{u} 1(\mathrm{j})=\mathrm{v} 1(\mathrm{j}) * \sec ($ theta(j));

```
u2(j)=v2(j)*(cos(theta(j)))^2;
    % the motion of obstacles:
        xo1(j)=xo1(index)+vo1x(k)*(tt(j)-tt(index)); % The current position of obstacle 1;
        yo1(j)=yo1(index)+vo1y(k)*(tt(j)-tt(index));
        xo2(j)=xo2(index)+vo2x(k)*(tt(j)-tt(index)); % The current position of obstacle 2;
        yo2(j)=yo2(index)+vo2y(k)*(tt(j)-tt(index));
        xo3(j)=xo3(index)+vo3x(k)*(tt(j)-tt(index)); % The current position of obstacle 3;
        yo3(j)=yo3(index)+vo3y(k)*(tt(j)-tt(index));
        end
DTita(1) = atan2((y(2)-y(1)),(x(2)-x(1)))-0;
for i=1:(length(tt) - 2)
    angel1(i)=atan2((y(i+2)-y(i+1)),(x(i+2)-x(i+1)))*180/pi;
    angel2(i)=atan2((y(i+1)-y(i)),(x(i+1)-x(i)))*180/pi;
    DTita(i+1) = (angel1(i)-angel2(i));
end
for i=1:(length(tt) - 1)
    Tmedium(i) = 1;
    if (u2(i) > 0)
    %speed in term of inch/second
    VR(i) = ((2*u1(i)+u2(i)*4.74)/2); %Turn is Right Wheel
    VL(i) = (2*u1(i) - VR(i)); %Tturn is Left Wheel
    %speed in term of setpoint
        VR(i) = round(VR(i)*(128/(8.23))); %128 is the number of clock ticks per wheel revolution
        VL(i) = round(VL(i)*(128/(8.23))); %8.23 is the 2*pi*r (r=1.31 inches)
        %wireless data exchange only work with integer and with number
        %greater than 0
    if (VR(i) < 0)
        VR(i) = 0;
    end
    if (VL(i) < 0)
        VL(i) = 0;
    end
```

end

$$
\text { if }(\mathrm{u} 2(\mathrm{i})<0)
$$

\%speed in term of inch/second
$\mathrm{VL}(\mathrm{i})=(0.5 *(\operatorname{abs}(\mathrm{u} 2(\mathrm{i})) * 4.74+2 * u 1(\mathrm{i}))$ );
VR(i) = (2*u1(i) - VL(i));
\%speed in term of setpoing
$\operatorname{VR}(\mathrm{i})=\operatorname{round}(\operatorname{VR}(\mathrm{i}) *(128 /(8.23)))$; \%128 is the number of clock ticks per wheel revolution
$\mathrm{VL}(\mathrm{i})=\operatorname{round}(\mathrm{VL}(\mathrm{i}) *(128 /(8.23))) ; \% 8.23$ is from $2 *{ }^{*} \mathrm{pi}^{*} \mathrm{r}(\mathrm{r}=1.31$ inches $)$
if $(\mathrm{VR}(\mathrm{i})<0)$
$\operatorname{VR}(\mathrm{i})=0$;
end
if (VL(i) < 0)
VL(i) $=0$;
end
end

```
    VR(i)= VR(i) + 1;
    VL(i) = VL(i) + 1;
end
for p=1:40
VL(p)
end
% keep the comparision trajectories
if k==1
    x1=x;
    y1=y;
end
if k==2
    x2=x;
    y2=y;
end
if k==3
```

```
    x3=x;
    y3=y;
    end
    if k==4
    x4=x;
    y4=y;
end
if k==5
    x5=x;
    y5=y;
end
if k==6
    x6=x;
    y6=y;
end
if k==7
    x7=x;
    y7=y;
end
if k==8
    x8=x;
    y8=y;
end
if k==9
    x9=x;
    y9=y;
end
if k==10
    x10=x;
    y10=y;
end
if k==11
    x11=x;
    y11=y;
end
if k==12
    x12=x;
    y12=y;
end
end %k=1:(length(Ts)-1)
Limit = T/4;
c=fix(clock);
fprintf('end at %2i.%2i.%2i\n\n', ...
c(4),c(5),c(6));
```

```
for j=1:length(tt) % length(tt) = 401
    ttt(j)=tt(j);
end
R=2*R;
r=2*r;
figure
plot(x1,y1,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
hold on
for i=1:Limit
    index1=4/T1*(i-1)+1; % every 3 sec, draw position of robot and objects
    rectangle('Curvature',[1 1],'EdgeColor','b', 'Position', [x1(index1)-R/2 y1(index1)-R/2 R R]);
    %if (obstacle ~= 0)
    rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
    %end
end
hold off
xlabel('x'); % (k=1)
ylabel('y');
figure
plot(x4,y4,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
%x1,y1,'-', x2, y2, '-', x3,y3, '-',
hold on
for i=1:Limit
    index1=4/T1*(i-1)+1; % every 3 sec, draw position of robot and object
    rectangle('Curvature',[1 1], 'EdgeColor','b','Position', [x4(index1)-R/2 y4(index1)-R/2 R R]);
    %if (obstacle ~= 0)
    rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
    % end
end
hold off
xlabel('x');% (k=4)
```

ylabel('y');

```
figure
plot(x12,y12,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
%x8,y8,'-', x9,y9,'-', x10,y10,'-', x11,y11,'-',
hold on
for i=1:Limit
```

    index1=4/T1*(i-1)+1; \% every 3 sec, draw position of robot and object
    rectangle('Curvature',[1 1], 'EdgeColor','b','Position', [x12(index1)-R/2 y12(index1)-R/2 R R]);
    \%if (obstacle ~= 0)
    rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
    rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
    \% end
    end
hold off
xlabel('x'); \% (k=12)
ylabel('y');

## figure

stem(ttt,theta*180/pi);
ylabel('theta');
xlabel('Time (sec)');

```
figure
stem(ttt, u2, ':');
ylabel('u2');
xlabel('Time (sec)');
```

```
figure
stem(ttt,u1,'-');
ylabel('u1');
xlabel('Time (sec)');
```

function [B, Y, A] = CalculateBYA(index, z1, z1f, z3, z3f, z2, z2f);
\%As its name implied, this function is used to calculate matrices: B,Y,A

```
B=[ 1 z1(index) (z1(index))^2 (z1(index))^3;
    0 1 2*z1(index) 3*(z1(index))^2;
    z1f z1f^2 z1f^3;
    0}
```

$\mathrm{Y}=[\mathrm{z} 3($ index $) ;$ z2(index); z3f; z2f];

$$
\mathrm{A}=\left[(\mathrm{z} 1(\text { index }))^{\wedge} 4 ; 4^{*}(\mathrm{z} 1(\text { index }))^{\wedge} 3 ; \mathrm{z} 1 \mathrm{f} \wedge 4 ; 4^{*}(\mathrm{z} 1 \mathrm{f})^{\wedge} 3\right] ;
$$

function [z1, z2, z3] = ChainedTransform(x, y, theta);
\%This function is used to transform the given space into chained form space
z1 = x ;
z2 = tan(theta);
z3 = y ;
function [a4min, a4max, g0] = DetermineA4(tmin, tmax, z10, C, B, A, Y, k, index, xo, yo, a4min, a4max, Ts, vox, voy, r, R);
\%As its name implied, this function is used to determine a4min and a4max for all \%obstacles with the many given input parameters

```
    tau=tmin:0.1:tmax;
    for i=1:length(tau)
        z(i)=z10+C*tau(i);
        g2=(z(i)^4-[1 z(i) z(i)^2 z(i)^3]*inv(B)*A)^2;
        g1=2*(z(i)^4-[1 z(i) z(i)^2 z(i)^3]*inv(B)*A)*([1 z(i) z(i)^2 z(i)^3]*inv(B)*Y-
voy(k)*(tau(i)-Ts(k))-yo(index));
    g0=([1 z(i) z(i)^2 z(i)^3]*inv(B)*Y-voy(k)*(tau(i)-Ts(k))-yo(index))^2+(z(i)-xo(index)-
vox(k)*(tau(i)-Ts(k)))^2-(r+R)^2;
    b4ac=g1^2-4*g2*g0;
    if (g2 ~= 0)
        if b4ac>=0
        if ( sign((-g1-sqrt(b4ac))/(2*g2)) ~= sign((-g1+sqrt(b4ac))/(2*g2)) )
        if (-g1-sqrt(b4ac))/(2*g2)<a4min
                a4min=(-g1-sqrt(b4ac))/(2*g2);
            end
            if (-g1+sqrt(b4ac))/(2*g2)>a4max
            a4max=(-g1+sqrt(b4ac))/(2*g2);
            end
        end
        end
    end
    if ((g2 == 0)||(b4ac < 0) )
        a4min = 0;
        a4max = 0;
    end
end
```

function $\mathrm{a} 4 \mathrm{k}=$ DetermineA4k2(a4imin, a4imax, a4jmin, a4jmax, a4min, a4max);

```
if min([a4imin, a4jmin]) < a4min
    a4min \(=\min ([a 4 i m i n, a 4 j m i n]) ;\)
end
if max([a4imax, a4jmax]) > a4max
    a4max \(=\max ([a 4 i m a x, a 4 j m a x])\);
end
if \((\operatorname{sign}(a 4 m i n)==\operatorname{sign}(a 4 m a x))\)
    \(a 4 \mathrm{k}=0\);
else
    if abs(a4min) <= abs(a4max)
            \(\mathrm{a} 4 \mathrm{k}=\mathrm{a} 4 \mathrm{~min} ;\)
        else
            \(a 4 k=a 4 m a x ;\)
        end
end
```

function $\mathrm{a} 4 \mathrm{k}=$ DetermineA4k3(a4imin, a4imax, a4jmin, a4jmax, a4kmin, a4kmax, a4min,
a4max);
if $\min ([a 4 i m i n, a 4 j m i n, a 4 k m i n])<a 4 m i n$
a4min $=\min ([a 4 i m i n, a 4 j m i n, a 4 k m i n]) ;$
end
if $\max ([a 4 i m a x, a 4 j m a x, a 4 k m a x])>a 4 m a x$
a4max $=\max ([a 4 i m a x, a 4 j m a x, a 4 k m a x])$;
end
if $(\operatorname{sign}(a 4 m i n)==\operatorname{sign}(a 4 m a x))$
$\mathrm{a} 4 \mathrm{k}=0$;
else
if abs(a4min) <= abs(a4max)
$\mathrm{a} 4 \mathrm{k}=\mathrm{a} 4 \mathrm{~min} ;$
else
$a 4 k=a 4 m a x ;$
end
end
function $\mathrm{a} 4 \mathrm{k}=$ DetermineA4k(a4imin, a4imax);
if $(\operatorname{sign}(a 4 i m i n)==\operatorname{sign}(a 4 i m a x))$
a4k = 0;
else
if abs(a4imin) <= abs(a4imax)
$a 4 k=a 4 i m i n ;$
else

$$
\mathrm{a} 4 \mathrm{k}=\mathrm{a} 4 \mathrm{imax} ;
$$

end
end
function [tmin, tmax] = TimeCheck(x, z10, k, index, v, Ts, C, R, r, T);
\%This function is used to find two boundary time constraints: tmin, tmax

```
if \(((\mathrm{C}-\mathrm{v}(\mathrm{k}))==0) \mathrm{v}(\mathrm{k})=\mathrm{v}(\mathrm{k})-0.0001\);
end
time1 \(=(\mathrm{x}(\) index \()-\mathrm{z} 10-\mathrm{r}-\mathrm{R}-\mathrm{v}(\mathrm{k}) * \mathrm{Ts}(\mathrm{k}) \mathrm{)} /(\mathrm{C}-\mathrm{v}(\mathrm{k}) \mathrm{)}\);
time2 \(=(\mathrm{x}(\) index \()-\mathrm{z} 10+\mathrm{r}+\mathrm{R}-\mathrm{v}(\mathrm{k}) * \mathrm{Ts}(\mathrm{k}) \mathrm{)} /(\mathrm{C}-\mathrm{v}(\mathrm{k})\) );
if time2>time1
        if time \(1<\mathrm{Ts}(\mathrm{k})\)
            \(\operatorname{tmin}=\mathrm{Ts}(\mathrm{k})\);
        else
            tmin = time1;
        end
        if time \(2>\mathrm{T}\)
            tmax \(=\mathrm{T}\);
        else
            tmax = time2;
        end
    else
        if time \(2<\mathrm{Ts}(\mathrm{k})\)
            tmin = Ts(k);
        else
            tmin = time2;
        end
        if time1 > T
            \(\operatorname{tmax}=\mathrm{T}\);
        else
            tmax = time1;
        end
    end
```


## APPENDIX B: ROBOTS' CODES FOR OOPIC-R

```
Main Robot's code
'Variables and Memories Allocation
'Value stored to be transfer to the Stem as setpoint speed
'for both left and right wheels
\begin{tabular}{lll} 
Dim VR1 & As & New \\
oByte \\
Dim VR2 & As New & oByte \\
Dim VR3 & As New & oByte \\
Dim VR4 & As New & oByte \\
Dim VL1 & As New & oByte \\
Dim VL2 & As New & oByte \\
Dim VL3 & As New & oByte \\
Dim VL4 & As New & oByte
\end{tabular}
'Temporary values transfer from the pc to the oopic-r 'these value will be store in V1 up to V8. T9 is not used.
\begin{tabular}{lll} 
Dim T1 & As New & oByte \\
Dim T2 & As New & oByte \\
Dim T3 & As New & oByte \\
Dim T4 & As New & oByte \\
Dim T5 & As New & oByte \\
Dim T6 & As New & oByte \\
Dim T7 & As New oByte \\
Dim T8 & As New & oByte \\
Dim T9 & As New & oByte
\end{tabular}
'condition varible used to communicate with the stem
Dim ReadAllow As New oByte
'number of 8-byte set expected to receive from the pc
Dim Count As New oByte
'Neccessary variables needed for communication between the oopic-r and fwcm.
Dim FWCM As New oi2c
Dim LocNode As New oByte 'Local node address
Dim RemNode As New oByte 'Remote node address to write to
Dim ReadAdr As New oByte 'Node address of remote node value came from
Dim Error As New oBit
Dim OError As New oBit
Dim ReadOK As New oBit
Dim Done As New oBit
Dim TOut As New oNibble
'LED is used for human to see that data transfer has complete.
Dim LED As New oDio1
Dim MoveAllow As New oByte
```

Sub Main()
led.ioline $=6$
led.direction = cvOutput

```
led.value = 0
MoveAllow = 0
```

oopic.delay $=200 \quad$ 'Wait 2 seconds for FWCM to initialise
OOPic.Node $=4$

| LocNode $=2$ | 'Define robot node |
| :--- | :--- |
| RemNode $=7$ | 'Define pc node |
| Const WriteTOut $=8$ | 'Define write timeout in seconds (0-15) |
| Const FWCMAdr = \&h61 | 'FWCM AO \& A1 jumpers ON (Range \&h60-\&h63) |
| Call SetUpFWCM | 'Setup FWCM for communication |

Count $=1$
ReadAllow = 0
Do
'1st 8 bytes
call data 'after call data, T1 to T8 are data received from the pc.
VR1 = T1-1
VR2 $=$ T2-1
VR3 $=$ T3-1
VR4 = T4-1
VL1 = T5-1
VL2 = T6-1
VL3 $=$ T7-1
VL4 = T8-1
ReadAllow = 1
oopic.delay $=10$
Do
Loop Until (ReadAllow = 0)
Count $=$ Count +1
Loop Until (Count = 11)
Do
call data
Loop Until ( (T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128) )
MoveAllow = 1
led.value $=1$
End Sub
Sub SetUpFWCM()
'Set the DS-FWCM I2C address shifted right by 1 bit

## FWCM.Node = FWCMAdr

'Setup I2C addressing to FWCM
FWCM.Width = cv8bit
FWCM.Mode $=$ cv10bit
FWCM.NoInc = cvFalse
FWCM.Location = 0
FWCM.Value $=$ LocNode
'Setup I2C address for FWCM
'Control Info is 1-byte
'I2C mode is 10-Bit Addressing
'Increment on every read/write
'Specifiy local node address location
'and write local node address

```
End Sub
'
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
Sub WriteFWCM()
```

| FWCM.Location = $7 \quad$ 'Set | 'Set the FWCM to write to extended registers |
| :---: | :---: |
| 'FWCM.Value = WriteVal2 '2 | '2nd byte of data to remote node |
| 'FWCM.Value = WriteVal3 |  |
| 'FWCM.Value = WriteVal4 |  |
| 'FWCM.Value = WriteVal5 |  |
| 'FWCM.Value = WriteVal6 |  |
| 'FWCM.Value = WriteVal7 |  |
| 'FWCM.Value = WriteVal8 |  |
| $\begin{gathered} \text { 'FWCM.Value }=\text { WriteVal9 } \\ \text { oopic.delay }=10 \end{gathered}$ | '9th byte of data to remote node |
| FWCM.Location $=0$ | '1 'Start at remote node address |
| FWCM. Value = LocNode |  |
| FWCM.Value $=$ RemNode | de 'Set remote node address to write to |
| FWCM.Value $=$ WriteTOut | Out 'Set write timeout value 1-15 seconds |
| 'FWCM.Value = WriteVal1 | al1 'Send 1st byte of data to remote node |
| call WaitFWCM | 'Wait for confirmation or error |

End Sub
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
Sub ReadFWCM()
FWCM.Location $=2 \quad$ 'Start at read status flag (R2)
If FWCM.Value $=255$ then 'Has data been received (R2) ?
If FWCM.Value $=0$ then 'If so has overflow error occured (R3)?
ReadAdr = FWCM.Value 'If not then store FWCM address data came from
T1 = FWCM.Value 'and store data
FWCM.Location $=20 \quad$ 'Set the FWCM to read back from register 20
T2 $=$ FWCM.Value $\quad$ 'Read reg 20 and put in byte
T3 = FWCM.Value $\quad$ 'Read reg 21 and put in byte
T4 $=$ FWCM.Value $\quad$ 'Read reg 22 and put in byte
T5 $=$ FWCM.Value $\quad$ 'Read reg 23 and put in byte

```
    T6 = FWCM.Value
    T7 = FWCM.Value
    T8 = FWCM.Value
    T9 = FWCM.Value
    OError = cvFalse
    ReadOK = cvTrue 'Indicate data has been read and stored
else
    OError = cvTrue
    ReadOK = cvTrue
    ReadAdr = FWCM.Value 'Store FWCM address data came from
    VR1 = FWCM.Value 'and store data
end if
else
    OError = cvFalse 'If no data read then no error
    ReadOK = cvFalse 'and no data
end if
End Sub
' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured
```


## Sub WaitFWCM()

```
Done \(=\) cvFalse
do
FWCM.Location \(=0 \quad\) 'Start at write completion status flag (R0)
If FWCM.Value \(=255\) then 'Has write been completed (R0) ?
If FWCM.Value \(=0\) then 'Has write resulted in error (R1) ? Error \(=\) cvFalse \(\quad\) 'Indicate no error has resulted Done = cvTrue 'and request exit from sub-routine
    else
        Error = cvTrue 'If so then indicate error
        Done = cvTrue 'and request exit from sub-routine
    end if
else
If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
    Error = cvTrue 'If so then indicate error
    Done = cvTrue 'and request exit from sub-routine
end if
end if
loop until Done = cvTrue
End Sub
```

```
Sub data()
```

Sub data()
'read 9 bytes send by a pc
'read 9 bytes send by a pc
do
do
call ReadFWCM
call ReadFWCM
loop until ReadOK = cvTrue
loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
'After performing ReadFWCM, T1...T8 are stored
End Sub
End Sub
Obstacle 1's code
Dim T1 As New oByte
Dim T2 As New oByte
Dim T3 As New oByte

```


\section*{Sub Main()}
oopic. delay = 200 'Wait 2 seconds for FWCM to initialise

\section*{SetLED}

SetWheel
```

LocNode = 1 'Define robot node
RemNode = 7 'Define pc node
Const WriteTOut = 8 'Define write timeout in seconds (0-15)
Const FWCMAdr = \&h61 'FWCM A0 \& A1 jumpers ON (Range \&h60-\&h63)
Call SetUpFWCM 'Setup FWCM for communication
Do
call data
Loop Until ( (T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128) )

```
```

LED1.value = 1
LED2.value = 1
LED3.value = 1
'Button.IOLine = 6
'Button.Direction = cvInput
'Button = 0
'Do
'Loop Until (Button = 1)
call speed2_4
oopic.delay = 900
turnright '56 delay
call speed3_23
oopic.delay= 900
turnleft '19 delay
stop
oopic.delay = 29
call speed2_83
oopic.delay = 500
oopic.delay = 500
oopic.delay = 500
call stop

```

End Sub
```

Sub SetUpFWCM()
'Set the DS-FWCM I2C address shifted right by 1 bit

```

FWCM. Node = FWCMAdr
'Setup I2C addressing to FWCM
FWCM.Width = cv8bit 'Control Info is 1-byte
FWCM.Mode \(=\) cv10bit \(\quad\) I2C mode is 10 -Bit Addressing
FWCM.NoInc = cvFalse \(\quad\) 'Increment on every read/write
FWCM.Location = 0
FWCM.Value \(=\) LocNode
End Sub
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
Sub WriteFWCM()
FWCM.Location = 7
'FWCM.Value = WriteVal2
'FWCM.Value = WriteVal3
'FWCM.Value = WriteVal4
'Set the FWCM to write to extended registers
'2nd byte of data to remote node
```

    FWCM.Value = WriteVal5
    'FWCM.Value = WriteVal6
    'FWCM.Value = WriteVal7
    FWCM.Value = WriteVal8
    'FWCM.Value = WriteVal9
    oopic.delay = 10
    FWCM.Location = 0 '1 'Start at remote node address
    FWCM.Value = LocNode
    FWCM.Value = RemNode
    FWCM.Value = WriteTOut
    'FWCM.Value = WriteVal1
    call WaitFWCM
    End Sub
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
Sub ReadFWCM()
FWCM.Location = 2 'Start at read status flag (R2)
If FWCM.Value = 255 then 'Has data been received (R2) ?
If FWCM.Value = 0 then 'If so has overflow error occured (R3)?
ReadAdr = FWCM.Value 'If not then store FWCM address data came from
T1 = FWCM.Value 'and store data
FWCM.Location = 20 'Set the FWCM to read back from register 20
T2 = FWCM.Value 'Read reg 20 and put in byte
T3 = FWCM.Value 'Read reg 21 and put in byte
T4 = FWCM.Value 'Read reg 22 and put in byte
T5 = FWCM.Value 'Read reg 23 and put in byte
T6 = FWCM.Value 'Read reg 24 and put in byte
T7 = FWCM.Value 'Read reg 25 and put in byte
T8 = FWCM.Value 'Read reg 26 and put in byte
T9 = FWCM.Value 'Read reg 27 and put in byte
OError = cvFalse 'Indicate no overflow error
ReadOK = cvTrue 'Indicate data has been read and stored
else
OError = cvTrue 'Indicate overflow error has occured
ReadOK = cvTrue 'Indicate data has been read
ReadAdr = FWCM.Value 'Store FWCM address data came from
T9 = FWCM.Value 'and store data
end if
else
OError = cvFalse 'If no data read then no error
ReadOK = cvFalse 'and no data
end if
End Sub
' Subroutine to wait for confirmation that data has been successfully sent to ' the remote node or that a timeout error has occured

```
```

Sub WaitFWCM()

```
Sub WaitFWCM()
Done = cvFalse
do
FWCM.Location = 0 'Start at write completion status flag (R0)
If FWCM.Value = 255 then 'Has write been completed (R0)?
    If FWCM.Value = 0 then 'Has write resulted in error (R1)?
        Error = cvFalse 'Indicate no error has resulted
```

```
    Done = cvTrue 'and request exit from sub-routine
else
    Error = cvTrue 'If so then indicate error
    Done = cvTrue 'and request exit from sub-routine
end if
else
If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
    Error = cvTrue 'If so then indicate error
    Done = cvTrue 'and request exit from sub-routine
end if
end if
loop until Done = cvTrue
End Sub
Sub data()
'read 9 bytes send by a pc
do
call ReadFWCM
loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub
sub speed2_4()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 71
RWheel = 67
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
sub speed3_23()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 73
RWheel = 71
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
sub speed2_83()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 70
RWheel = 68
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
```

sub turnleft()
LWheel. Direction = 1
RWheel.Direction = 1
LWheel = 0
RWheel = 100
RWheel. Operate $=1$

LWheel.Operate $=1$
oopic.delay = 19 '272 delay turn left 360
'turn left 25.68 degrees
end sub
sub turnright()
RWheel.Direction = 1
LWheel. Direction = 1
LWheel = 100
RWheel $=0$
RWheel. Operate $=1$
LWheel. Operate = 1 oopic. delay = 56 '286 delay turn right 360
'turn right 70 degrees
end sub

```
Sub SetWheel()
    RWheel.IOLineP = 18
    RWheel.IOLine1 \(=26\)
    RWheel. IOLine2 \(=27\)
    LWheel.IOLineP = 17
    LWheel.IOLine1 \(=24\)
    LWheel.IOLine2 = 25
    RWheel.Unsigned = 1
    RWheel.PreScale = 1
    RWheel.Period = 100
    RWheel. Direction = 1
    RWheel.Brake = cvOff
    LWheel.Unsigned = 1
    LWheel.PreScale = 1
    LWheel.Period = 100
    LWheel.Direction = 1
    LWheel.Brake = cvOff
End Sub
```

Sub SetLED()
LED1.IOLine = 5
LED1. direction $=$ cvOutput
LED1.value = 0
LED2.IOLine $=6$
LED2. direction = cvOutput
LED2.value = 0
LED3.IOLine $=7$
LED3. direction = cvOutput
LED3.value $=0$
End Sub
Sub stop()
RWheel.Operate $=0$
LWheel. Operate $=0$
End Sub

Obstacle 2's code

Dim T1 As New oByte


Do

```
call data
Loop Until ( (T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128) )
LED1.value = 1
LED2.value = 1
LED3.value = 1
'Button.Direction = cvInput
'Do
'Loop Until (Button = 1)
'oopic.delay = 200
speed4_1
oopic.delay = 600
speed3_0
oopic.delay = 300
turnleft 'delay = 7
stop
oopic.delay = 49
speed3_1
oopic.delay = 300
speed3_65
oopic.delay = 600
stop
oopic.delay = 48
speed3_65
oopic.delay = 400
oopic.delay = 500
oopic.delay = 500
oopic.delay = 400
'oopic.delay = 200
stop
    End Sub
Sub SetUpFWCM()
    'Set the DS-FWCM I2C address shifted right by 1 bit
    FWCM.Node = FWCMAdr
                                    'Setup I2C address for FWCM
    'Setup I2C addressing to FWCM
    FWCM.Width = cv8bit 'Control Info is 1-byte
    FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
    FWCM.NoInc = cvFalse 'Increment on every read/write
        'Specifiy local node address location
    'and write local node address
End Sub
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
```

| Sub WriteFWCM() |  |
| :---: | :---: |
| FWCM.Location = $7 \quad$ 'Se | 'Set the FWCM to write to extended registers |
| 'FWCM.Value = WriteVal2 | '2nd byte of data to remote node |
| 'FWCM.Value = WriteVal3 |  |
| 'FWCM.Value = WriteVal4 |  |
| 'FWCM. Value = WriteVal5 |  |
| 'FWCM.Value = WriteVal6 |  |
| 'FWCM.Value = WriteVal7 |  |
| 'FWCM.Value = WriteVal8 |  |
| 'FWCM.Value = WriteVal9 oopic.delay $=10$ | '9th byte of data to remote node |
| FWCM.Location $=0$ | '1 'Start at remote node address |
| FWCM. Value = LocNode |  |
| FWCM.Value $=$ WriteTOut | de 'Set remote node address to write to |
|  | Out 'Set write timeout value 1-15 seconds |
| 'FWCM.Value = WriteVal1 | al1 'Send 1st byte of data to remote node |
| call WaitFWCM | 'Wait for confirmation or error |
| End Sub |  |
| ' Subroutine to check for data from remote FWCM(s) and upon |  |
| ' confirmation that data has arrived store data in 'ReadVal' and <br> ' remote FWCM address in 'ReadAdr'. |  |
|  |  |
| ' On exit 'ReadOK' = True if data was read and 'OError' = True |  |
| ' if internal data register has overflowed i.e. one or more data |  |
| ' bytes may have been lost |  |
| Sub ReadFWCM() |  |
| FWCM.Location $=2 \quad$ 'Start at read status flag (R2) |  |
| If FWCM.Value $=255$ then 'Has data been received (R2) ? |  |
| If FWCM. Value $=0$ then | 'If so has overflow error occured (R3) ? |
| ReadAdr = FWCM.Value | 'If not then store FWCM address data came from |
| T1 = FWCM.Value 'and stor | store data |
| FWCM.Location $=20 \quad$ 'Set the F | he FWCM to read back from register 20 |
| T2 = FWCM.Value 'Read reg | d reg 20 and put in byte |
| T3 = FWCM.Value 'Read reg | d reg 21 and put in byte |
| T4 = FWCM.Value $\quad$ 'Read reg | d reg 22 and put in byte |
| T5 = FWCM.Value $\quad$ 'Read reg | d reg 23 and put in byte |
| T6 = FWCM.Value $\quad$ 'Read reg | d reg 24 and put in byte |
| T7 = FWCM.Value $\quad$ 'Read reg | d reg 25 and put in byte |
| T8 = FWCM.Value $\quad$ 'Read reg | reg 26 and put in byte |
| T9 = FWCM.Value $\quad$ 'Read reg | d reg 27 and put in byte |
| OError = cvFalse 'Indicate | ate no overflow error |
| ReadOK = cvTrue | 'Indicate data has been read and stored |
| else |  |
| OError = cvTrue | 'Indicate overflow error has occured |
| ReadOK = cvTrue | 'Indicate data has been read |
| ReadAdr = FWCM.Value | 'Store FWCM address data came from |
| T9 = FWCM.Value 'and store data |  |
| end if |  |
| else |  |
| OError = cvFalse | 'If no data read then no error |
| ReadOK $=$ cvFalse | 'and no data |
|  |  |
| End Sub |  |

' the remote node or that a timeout error has occured

```
Sub WaitFWCM()
Done = cvFalse
do
FWCM.Location = 0 'Start at write completion status flag (R0)
If FWCM.Value = 255 then 'Has write been completed (R0) ?
    If FWCM.Value = 0 then 'Has write resulted in error (R1)?
        Error = cvFalse 'Indicate no error has resulted
        Done = cvTrue 'and request exit from sub-routine
    else
        Error = cvTrue 'If so then indicate error
        Done = cvTrue 'and request exit from sub-routine
    end if
else
If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
    Error = cvTrue 'If so then indicate error
    Done = cvTrue 'and request exit from sub-routine
end if
end if
loop until Done = cvTrue
End Sub
Sub data()
'read 9 bytes send by a pc
do
call ReadFWCM
loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub
Sub Turnleft()
LWheel.Direction = 0
RWheel.Direction = 1
LWheel = 0
RWheel = 100
RWheel.Operate = 1
LWheel.Operate = 1
    oopic.delay = 7
                                    '258 is 360 degrees turn
End Sub
Sub Stop()
    RWheel.Operate = 0 'stop the wheel and check distance traveled
    LWheel.Operate =0
End Sub
Sub SetWheel()
        RWheel.IOLineP = 18
        RWheel.IOLine1 = 26
        RWheel.IOLine2 = 27
        LWheel.IOLineP = 17
        LWheel.IOLine1 = 24
        LWheel.IOLine2 = 25
        RWheel.Unsigned = 1
```

```
RWheel.PreScale = 1
RWheel.Period = 100
RWheel.Direction = 1
RWheel.Brake = cvOff
LWheel.Unsigned = 1
LWheel.PreScale = 1
LWheel.Period = 100
LWheel.Direction = 1
LWheel.Brake = cvOff
End Sub
Sub SetLED()
LED1.IOLine = 5
LED1.direction = cvOutput
LED1.value = 0
LED2.IOLine = 6
LED2.direction = cvOutput
LED2.value = 0
LED3.IOLine = 7
LED3.direction = cvOutput
LED3.value = 0
End Sub
Sub speed4_1()
LWheel.Direction = 0
RWheel.Direction = 0
LWheel = 73
RWheel = 68
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
Sub speed3_1()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 67
RWheel = 61
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
Sub speed3_65()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 70
RWheel = 65
RWheel.Operate = 1
LWheel.Operate = 1
End Sub
Sub speed3_0()
LWheel.Direction = 0
RWheel.Direction = 0
LWheel = 67
RWheel = 62
RWheel.Operate = 1
```

```
LWheel.Operate = 1
End Sub
```


## Obstacle 3’s Code

| Dim T1 | As New | oByte |
| :--- | :--- | :--- |
| Dim T2 | As New | oByte |
| Dim T3 | As New | oByte |
| Dim T4 | As New | oByte |
| Dim T5 | As New | oByte |
| Dim T6 | As New | oByte |
| Dim T7 | As New | oByte |
| Dim T8 | As New | oByte |
| Dim T9 | As New | oByte |



Dim Button As New oDio1

## Sub Main()

```
SetLED
SetWheel
' Button.IOLine = 6
```

' Button.Direction = cvInput

```
oopic.delay = 200 'Wait 2 seconds for FWCM to initialise
LocNode = 3 'Define robot node
RemNode = 7 'Define pc node
Const WriteTOut = 8 'Define write timeout in seconds (0-15)
Const FWCMAdr = &h61 'FWCM A0 & A1 jumpers ON (Range &h60-&h63)
Call SetUpFWCM 'Setup FWCM for communication
Do
call data
Loop Until ( (T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128) )
LED1.value = 1
LED2.value = 1
LED3.value = 1
'Button = 0
'Do
'Loop Until (Button = 1)
'oopic.delay = 200
```

speed1_19
oopic. delay $=900$
stop
oopic.delay $=56$
speed1_19
oopic. delay $=900$
turnright '90 degrees
speed1_19
oopic. delay $=500$
oopic. delay $=500$
oopic.delay $=500$
oopic. delay $=300$
stop
End Sub
Sub SetUpFWCM()
'Set the DS-FWCM I2C address shifted right by 1 bit
FWCM.Node $=$ FWCMAdr $\quad$ 'Setup I2C address for FWCM

| FWCM.Width $=$ cv8bit | 'Control Info is 1-byte |
| :--- | :--- |
| FWCM.Mode $=$ cv10bit | 'I2C mode is 10-Bit Addressing |
| FWCM.Nolnc $=$ cvFalse | 'Increment on every read/write |
| FWCM.Location $=0$ | 'Specifiy local node address location |
| FWCM.Value $=$ LocNode | 'and write local node address |

[^0]| FWCM.Location = $7 \quad$ 'Set | 'Set the FWCM to write to extended registers |
| :---: | :---: |
| 'FWCM.Value = WriteVal2 '2 | '2nd byte of data to remote node |
| 'FWCM.Value = WriteVal3 |  |
| 'FWCM.Value = WriteVal4 |  |
| 'FWCM.Value = WriteVal5 |  |
| 'FWCM.Value = WriteVal6 |  |
| 'FWCM.Value = WriteVal7 |  |
| 'FWCM.Value $=$ WriteVal8 |  |
| $\begin{gathered} \text { 'FWCM.Value }=\text { WriteVal9 } \\ \text { oopic.delay }=10 \end{gathered}$ | '9th byte of data to remote node |
| FWCM.Location $=0$ | '1 'Start at remote node address |
| FWCM.Value = LocNode |  |
| FWCM.Value $=$ RemNode | de 'Set remote node address to write to |
| FWCM. Value $=$ WriteTOut | Out 'Set write timeout value 1-15 seconds |
| 'FWCM.Value = WriteVal1 | al1 'Send 1st byte of data to remote node |
| call WaitFWCM | 'Wait for confirmation or error |

End Sub
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
Sub ReadFWCM()

| FWCM.Location = 2 |  |
| :---: | :---: |
| If FWCM.Value = 255 then 'Has data been received (R2) ? |  |
| If FWCM. Value $=0$ then | 'If so has overflow error occured (R3) ? |
| ReadAdr = FWCM.Value | 'If not then store FWCM address data came from |
| T1 = FWCM.Value | 'and store data |
| FWCM.Location $=20$ | 'Set the FWCM to read back from register 20 |
| T2 = FWCM.Value | 'Read reg 20 and put in byte |
| T3 = FWCM.Value | 'Read reg 21 and put in byte |
| T4 = FWCM. Value | 'Read reg 22 and put in byte |
| T5 = FWCM.Value | 'Read reg 23 and put in byte |
| T6 = FWCM.Value | 'Read reg 24 and put in byte |
| T7 = FWCM.Value | 'Read reg 25 and put in byte |

```
    T8 = FWCM.Value 'Read reg 26 and put in byte
    T9 = FWCM.Value
    OError = cvFalse
    ReadOK = cvTrue
else
    OError = cvTrue
    ReadOK = cvTrue
    ReadAdr = FWCM.Value 'Store FWCM address data came from
    T9 = FWCM.Value 'and store data
end if
else
    OError = cvFalse 'If no data read then no error
    ReadOK = cvFalse 'and no data
end if
End Sub
' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured
Sub WaitFWCM()
Done = cvFalse
do
    FWCM.Location = 0 'Start at write completion status flag (R0)
    If FWCM.Value = 255 then 'Has write been completed (R0) ?
    If FWCM.Value = 0 then 'Has write resulted in error (R1)?
        Error = cvFalse 'Indicate no error has resulted
        Done = cvTrue 'and request exit from sub-routine
    else
        Error = cvTrue 'If so then indicate error
        Done = cVTrue 'and request exit from sub-routine
    end if
    else
    If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
        Error = cvTrue 'If so then indicate error
        Done = cvTrue 'and request exit from sub-routine
    end if
end if
loop until Done = cvTrue
End Sub
Sub data()
'read 9 bytes send by a pc
    do
    call ReadFWCM
loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub
Sub SetLED()
LED1.IOLine = 5
LED1.direction = cvOutput
LED1.value = 0
LED2.IOLine = 6
LED2.direction = cvOutput
```

```
LED2.value = 0
LED3.IOLine = 7
LED3.direction = cvOutput
LED3.value = 0
End Sub
```

Sub Stop()
RWheel.Operate $=0$ 'stop the wheel and check distance traveled
LWheel. Operate $=0$
End sub
Sub TurnLeft()
LWheel.Direction $=0$
RWheel. Direction = 1
LWheel = 80 '60
RWheel = 80 '68
RWheel. Operate $=1$
LWheel. Operate = 1
oopic.delay = 146 '180 make a robot turn 360 left
End Sub
Sub Turnright()
LWheel.Direction = 1
RWheel. Direction $=1$
LWheel = 100 '60
RWheel = 0 '68
RWheel. Operate $=1$
LWheel. Operate = 1
oopic. delay $=48$ '193 make a robot turns 360 right
End Sub
Sub speed1_19()
LWheel.Direction = 1
RWheel.Direction = 1
RWheel = 60 ' 68
LWheel = 60 ' 60
RWheel. Operate = 1
LWheel. Operate = 1
oopic.delay = 1
LWheel = 29
RWheel $=57$
End Sub

```
Sub SetWheel()
    RWheel.IOLineP = 18
    RWheel.IOLine1 = 26
    RWheel.IOLine2 = 27
    LWheel.IOLineP = 17
    LWheel.IOLine1 = 24
    LWheel.IOLine2 = 25
    RWheel.Unsigned = 1
    RWheel.PreScale = 1
    RWheel.Period = 100
    RWheel.Direction = 1
```

RWheel.Brake = cvOff
LWheel.Unsigned =1
LWheel.PreScale = 1
LWheel.Period = 100
LWheel.Direction = 1
LWheel.Brake = cvOff End Sub

## APPENDIX C: ROBOT'S CODE FOR BRAINSTEM

```
/* Test.tea */
/* tests 1-byte transfers between BrainStem and OOPic */
#include <aCore.tea>
#include <aPrint.tea>
#include <aMotion.tea>
#defineADDR_OOPIC 8
void aOOPic_WriteChar(char oopic, char addr, char mask, char data)
{
    asm
    {
        pushsb 6 /* OOPic address */
        pushlb 3 /* command data size */
        pushsb 7 /* data address */
        pushsb 7 /* bit mask */
        pushsb 7 /* data */
        pushlb 5 /* total command size */
        popcmd /* send command */
    }
}
char aOOPic_ReadChar(char oopic, char addr)
{
    char c=0;
    asm
    {
        pushsb 5 /* OOPic address */
        pushlb 1 /* command data size */
        pushsb 6 /* data address */
        pushlb 3 /* total command size */
        popcmd /* send command */
        pushsb 5 /* OOPic address */
        pushlb 1 /* set low bit for read */
        orb
        pushlb 1 /* number of bytes to read */
        popsm aPortIICRead /* do the read */
        popbs 1 /* set return value */
}
    return c;
}
void main()
```

```
{
```

char l1, l2, 13, 14, 15, 16, 17, 18, 19, l10, 111, l12, l13, l14, l15, l16, l17, 118, l19, 120;
char $121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140 ;$
char r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20;
char r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40;
char stop, ReadAllow, MoveAllow;

```
    stop = 0;
    ReadAllow = 0;
    MoveAllow = 0;
```

    aCore_Sleep(10000);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
    \{
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
\}
r1=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
r2=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
r3=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
r4=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
11=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
12=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
13=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
14=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

```
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r5=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r6=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r7=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r8=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    15=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    16=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    17=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    18=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
```

```
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
```

    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
    while (ReadAllow != 1)
    {
{
aCore_Sleep(100);
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
}
r9=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
r9=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
r10=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
r10=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
r11=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
r11=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
r12=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
r12=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
19=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
19=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
110=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
110=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
l11=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
l11=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
l12=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
l12=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
aCore_Sleep(100);
aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

```
aCore_Sleep(100);
```

```
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r13=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r14=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r15=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r16=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    l13=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    114=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    l15=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    116=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r17=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r18=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r19=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r20=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    117=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    118=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    l19=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
```

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

```
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r21=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r22=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r23=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r24=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    121=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    122=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    l23=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    l24=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
```

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
while (ReadAllow != 1)
\{
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
\}

```
r25=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
r26=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
r27=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
r28=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
l25=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
l26=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
127=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
128=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
```

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

```
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r29=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r30=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r31=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r32=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    129=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    l30=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    131=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    l32=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
```

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
while (ReadAllow != 1)

```
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r33=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r34=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r35=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r36=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    133=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    134=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    l35=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    136=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
    while (ReadAllow != 1)
{
    aCore_Sleep(100);
    ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
    r37=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
    r38=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
    r39=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
    r40=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
    137=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
    138=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
    139=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
    140=aOOPic_ReadChar(ADDR_OOPIC,(char)241);
```

```
//aCore_Sleep(10000);
    while (MoveAllow != 1)
{
        aCore_Sleep(100);
        MoveAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);
}
//aMotion_SetVelocity(Channel 0, Channel 1);
//Channel }1\mathrm{ is Right Wheel, Channel 0 is Left Wheel
//1-5
aMotion_SetVelocity(l1,r1);
aCore_Sleep(10000);
aMotion_SetVelocity(l2,r2);
aCore_Sleep(10000);
aMotion_SetVelocity(l3,r3);
aCore_Sleep(10000);
aMotion_SetVelocity(l4,r4);
aCore_Sleep(10000);
aMotion_SetVelocity(15,r5);
aCore_Sleep(10000);
//6-10
aMotion_SetVelocity(l6,r6);
aCore_Sleep(10000);
aMotion_SetVelocity(l7,r7);
aCore_Sleep(10000);
aMotion_SetVelocity(l8,r8);
aCore_Sleep(10000);
```

```
aMotion_SetVelocity(19,r9);
```

aCore_Sleep(10000);
//pause for . 56 of a second at the 9th second of running
aMotion_SetVelocity(0,0);
aCore_Sleep(5600);
aMotion_SetVelocity(l10,r10);
aCore_Sleep(10000);
//11-15
aMotion_SetVelocity(l11,r11);
aCore_Sleep(10000);
aMotion_SetVelocity(l12,r12);
aCore_Sleep(10000);
aMotion_SetVelocity(l13,r13);
aCore_Sleep(10000);
aMotion_SetVelocity(l14,r14);
aCore_Sleep(10000);
aMotion_SetVelocity(l15,r15);
aCore_Sleep(10000);
//16-20
aMotion_SetVelocity(l16,r16);
aCore_Sleep(10000);
aMotion_SetVelocity(l17,r17);
aCore_Sleep(10000);
aMotion_SetVelocity(l18,r18);
aCore_Sleep(10000);
//pause for .48 of 1 second
aMotion_SetVelocity( 0,0 );
aCore_Sleep(4800);
aMotion_SetVelocity(l19,r19);
aCore_Sleep(10000);
aMotion_SetVelocity(l20,r20); aCore_Sleep(10000);
//21-25
aMotion_SetVelocity(l21,r21); aCore_Sleep(10000);
aMotion_SetVelocity(122,r22); aCore_Sleep(10000);
aMotion_SetVelocity(l23,r23); aCore_Sleep(10000);
aMotion_SetVelocity(124,r24); aCore_Sleep(10000);
aMotion_SetVelocity(l25,r25); aCore_Sleep(10000);
//26-30
aMotion_SetVelocity(126,r26); aCore_Sleep(10000);
aMotion_SetVelocity(l27,r27);
aCore_Sleep(10000);
aMotion_SetVelocity(128,r28);
aCore_Sleep(10000);
aMotion_SetVelocity(l29,r29);
aCore_Sleep(10000);
aMotion_SetVelocity(l30,r30);
aCore_Sleep(10000);
//31-35
aMotion_SetVelocity(131,r31);
aCore_Sleep(10000);
aMotion_SetVelocity(l32,r32);
aCore_Sleep(10000);
aMotion_SetVelocity(l33,r33);
aCore_Sleep(10000);
aMotion_SetVelocity(l34,r34);
aCore_Sleep(10000);
aMotion_SetVelocity(135,r35);
aCore_Sleep(10000);
//36-40
aMotion_SetVelocity(136,r36);
aCore_Sleep(10000);
aMotion_SetVelocity(137,r37);
aCore_Sleep(10000);
aMotion_SetVelocity(l38,r38);
aCore_Sleep(10000);
aMotion_SetVelocity(139,r39);
aCore_Sleep(10000);
aMotion_SetVelocity(140,r40);
aCore_Sleep(10000);
aMotion_SetVelocity(stop, stop);
\}

## LIST OF REFERENCES

[1] Z. Qu, J. Wang, and C. E. Plaisted, "A New Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles," IEEE Transactions on Robotics and Automation, Vol. 20, pp. 978-993, December 2004.
[2] S. Monaco and D. Normand-Cyrot, "An Introduction to Motion Planning Under Multirate Digital Control," in Proceedings of the $31^{\text {st }}$ Conference on Decision and Control, Tucson, Arizona, December 1992, pp. 1780-1785.
[3] R. M. Murray and S. S. Sastry, "Nonholonomic Motion Planning: Steering Using Sinusoids," IEEE Transaction on Automatic Control, Vol. 38, pp. 700-716, 1993.
[4] G. Oriolo, A. D. Luca, M. Vendittelli, "WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation," IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, November 2002.
[5] B. Kim and P. Tsiotras, "Controllers for Unicycle-Type Wheeled Robots: Theoretical Results and Experimental Validation," IEEE Transactions on Robots and Automation, Vol. 18, No. 3, June 2002.
[6] J. Hollingworth, D. Butterfield, and B. Swart, J. Allsop, C++Builder 5, SAMS, 2000, Indianapolis, Indiana.
[7] D. Clark, Programming and Customizing the OOPic Microcontroller, McGrawHill, 2003, New York, New York.
[8] J. S. Bay, Fundamentals of Linear State Space Systems, McGrawHill, 1999, Singapore.
[9] J. Borenstein and L. Feng, "Measurement and Correction of Systematic Odometry Errors in Mobile Robots," IEEE Journal of Robotics and Automation, May 1995.
[10] D. Tilbury, R. M. Murray, S. S. Sastry, "Trajectory generation for the N-trailer problem using Goursat normal form," Automatic Control, Vol. 40, pp. 802-819, May 1995.


[^0]:    End Sub
    ' Subroutine to write data to remote FWCM (RemNode) address and upon
    ' confirmation that data has been written store remote node
    ' ADC values in RemADC0 - RemADC3
    ' On exit 'Error' = False if write completed OK
    ,
    Sub WriteFWCM()

