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ABSTRACT 

In large scale entity-level military force-on-force simulations it is essential to 

know when one entity can visibly see another entity.  This visibility determination plays 

an important role in the simulation and can affect the outcome of the simulation.  When 

virtual Computer Generated Forces (CGF) are introduced into the simulation these 

intervisibilities must now be calculated by the virtual entities on the battlefield.  But as 

the simulation size increases so does the complexity of calculating visibility between 

entities.  This thesis presents an algorithm for performing these visibility calculations 

using Graphical Processing Units (GPU) instead of the Central Processing Units (CPU) 

that have been traditionally used in CGF simulations.  This algorithm can be distributed 

across multiple GPUs in a cluster and its scalability exceeds that of CGF-based 

algorithms.  The poor correlations of the two visibility algorithms are demonstrated 

showing that the GPU algorithm provides a necessary condition for a “Fair Fight” when 

paired with visual simulations. 
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CHAPTER ONE: INTRODUCTION 

In Distributed Interactive Simulation (DIS) there has been a need over the years to 

execute simulations with an ever increasing amount of entities.  In large scale DIS 

simulations there can be hundreds of simulators operating together over a network with 

the number of entities in the tens of thousands.  These individual simulators vary and can 

consist of man-in-the-loop vehicle simulators, dismounted infantry stations and Semi-

Automated Forces (SAF) simulations among others.  For the most part, each simulator is 

solely responsible for simulating itself and presenting the information about other entities 

to the user(s) of the simulator.  But due to the high cost of simulator platforms and their 

limited number for certain types platforms such as helicopter and tanks, a virtual entity or 

a virtual force must be used to represent the missing simulations.  It is the SAF’s job to 

represent these virtual forces and in large scale simulations the SAFs are responsible for 

representing a majority of the entities. 

Since the SAFs represent a virtual force on the battlefield there are a multitude of 

computations that must be performed which would otherwise be handled by a human 

operator.  Some of these tasks normally performed by humans include entity movement; 

path planning; weapons firing; and intervisibility calculations.  However, when the 

simulation size increases, or more importantly, when the number of entities increase 

some of theses calculations become bottlenecks to the performance of the simulation. 

1 

 
  
 



One such calculation that exhibits this behavior is the intervisibility calculation.  

Intervisibility is the process of determining if one entity can see another entity and, if so, 

how much of that entity is visible.  The calculation involves searching the synthetic 

environment.  A synthetic environment is typically comprised of a terrain database and 

any manmade or natural feature on that database such as buildings or trees.  The 

calculation also involves searching other entities that are operating in the simulation to 

see if any one entity occludes the visibility of another.  The algorithm is also dependent 

on the type of sensor that is being simulated.  Due to sensor variances between types of 

entities as well as position-related environmental issues for entities within the terrain 

database the intervisibility algorithm is not commutative, so it cannot be assumed that if 

one entity sees another that the reciprocal is true.  Because the intervisibility algorithm is 

not commutative the worst case complexity of the algorithm dependent on the number of 

entities is O(n2).  The algorithm is also dependent on the resolution of the synthetic 

environment used in the simulation.  As the terrain resolution increases there is the 

corresponding increase in the amount of geometry represented in the terrain, especially in 

urban, mountainous, or wooded environments.  With the increase in geometry 

represented in the terrain there is a subsequent increase in the search space used to find 

occluders that directly corresponds to increased search times. 

Another issue related to intervisibility in DIS simulations is the correlation of 

intervisibility between what is calculated in SAF-based simulations and what could be 

perceived in visual simulations, such as man-in-the-loop simulators.  One of the most 

important determinations when dealing with mixed DIS simulations is whether the 
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simulation results in a fair fight.  Intervisibility plays a primary role in this determination.  

Therefore trade-offs must occur in the SAF to determine how accurate the calculation 

needs to be versus how much computation is needed to calculate intervisibility.  If too 

much time is used to calculate intervisibility in the SAF then the man-in-the-loop 

simulator may have an advantage in being able to react more quickly to another entity.  

Conversely, if the algorithm makes trade offs for speed instead of accuracy then the SAF 

might have an unfair advantage and incorrectly determine the visibility of another entity. 

In this thesis a new technique for calculating intervisibility is presented using 

Graphical Processing Units (GPU).  Recent advancements in GPU technology make it 

possible to implement the intervisibility algorithm using traditional rendering techniques.  

The intervisibility process also fits very well into the paradigm of the GPU.  For the most 

part intervisibility is a search for intersections with the polygonal data of the terrain, 

features and entities of a simulation in three-dimensional (3D) space.  On the other hand, 

GPUs are built for the sole purpose of efficiently rendering 3D polygonal data into a 2D 

plane.  In the past, to determine visibility, techniques such as searching framebuffers 

were employed.  Unfortunately the time it takes to perform a framebuffer search in this 

manner does not allow the algorithm to perform efficiently.  What is needed is a method 

for determining visibility using a 2D projection of a 3D world.  With the latest GPUs this 

calculation can be performed in hardware using Occlusion Querying extensions. 

The other interesting effect of using a visual system to calculate the intervisibility 

concerns the correlation issue between SAFs and visual simulations.  SAF-based 

simulations and visual based simulations have separate needs for representing the 
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synthetic environment in each simulation.  For SAF-based simulations there is a need for 

constructive synthetic environments.  The terrain database is more than a collection of 

polygons that need to be displayed.  Information about the terrain such as road segments, 

contour lines, and soil type also need to be stored as the simulation queries this 

information in the database.  Conversely, visual simulations often only store information 

about how to display data at hand so that typically there is no need to store information 

such as road segments or soil types.  This information is already encoded into the 

database by the use of polygons and textures.  Due to these differing data requirements 

between constructive and visual databases, it is often found that the different formats 

generally do not correlate well. 

New standards have emerged such as SEDRIS [21] and EDCS [19] as well as 

tools such as See-It [23] and Side-by-Side [24] viewer that are helping to address the 

correlation issues.  However, one area that has not been sufficiently addressed is that of 

intervisibility correlation between visual and constructive representations of the synthetic 

environment.  Some notable observations and examples addressing this particular 

problem were made by Ashby, et al. [18] and by Wannacott [20].  By using a visual 

technique for calculating intervisibility it stands to reason that the visibility calculated 

should represent a good metric to what is perceived. 
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CHAPTER TWO: LITERATURE REVIEW 

Visibility Algorithms 

 

In the 3D visualization world there is extensive research into visibility 

determination.  In the past there have been two typical roles of visibility determination in 

visual simulations.  The first and probably most researched role is occlusion culling.  

Occlusion culling is the process of determining what geometry in a scene is occluded by 

other geometry and then culling away the unneeded geometry due to its lack of relevance 

to the scene.  Occlusion culling is often used to increase the frame-rate or decrease the 

latency of applications therefore rendering large scenes by eliminating large amounts of 

geometry that would otherwise not be visible.  Another use of visibility determination in 

visual simulation is for the selection of Level-of-Detail (LOD).  In this form the visibility 

information is used to determine how relevant the geometry in question is to the scene.  If 

only a small portion of the geometry is visible then it may suffice to render it at a lower 

LOD and reduce the geometry that is required to be rendered. 
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Hierarchical Z-Buffer 

In 1993 Green and Kass[4], [5] proposed a hierarchical way of representing the Z-

buffer to help accelerate visibility determination.  In this method the Z-buffer is 

represented as a pyramid of buffers that increase in resolution.  At the finest level of 

detail, the buffer represents the same information as a traditional Z-buffer.  Each level of 

the pyramid is created by decreasing the resolution of the previous level.  Each depth 

value in the new buffer represents the furthest value in the previous 2x2 window that 

maps to the current value. 

 

 

Figure 1: Hierarchical Z-Buffer (from Durand 99) 

 

The scene is also stored in a hierarchical data structure.  By using an octree for the 

scene geometry, elements of the scene can quickly be checked for visibility.  To 

determine visibility the nodes from the octree are rendered in a front to back order.  Each 

node in the octree is then subsequently checked for visibility in the hierarchical Z-buffer.  
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The nodes are checked against each level of the Z-buffer starting with the coarsest level.  

If a node is found to be occluded at that level, all geometry in that node and children are 

discarded.  If not, the next level of the hierarchy is checked until either the node is 

discarded or rendered.  Due to the front to back ordering of these checks, this procedure 

allows for efficient occlusion culling since typically only the coarsest levels of the Z-

buffer need to be checked. 

Unfortunately, this method is not directly applicable to what is needed to calculate 

intervisibility.  The goal of this algorithm is fast elimination of geometry by focusing on 

whether the object in question is not visible.  So if an object is found to be visible, the 

traditional rendering techniques will be applied.  However, the algorithm could be used in 

conjunction with other algorithms to calculate intervisibility.  Aside from a form of this 

algorithm in ATI’s HyperZ, this algorithm is currently not implemented in most graphics 

hardware and doing this in software would not be feasible. 

Stencil Buffer Occlusion Querying 

In 98 and 99 Bartz et al. [1], [2] described a technique for performing visibility 

queries using a virtual occlusion buffer.  The scene was partitioned using sloppy n-ary 

space-partitioning-trees (snSP-trees) to provide a hierarchy that is easily checked for 

occlusion.  The algorithm involved first performing view-frustum culling using the 

OpenGL selection mode to determine which nodes exist in the frustum.  The remaining 
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nodes’ bounding volumes are then rendered into the virtual occlusion buffer which is 

then mapped to the stencil buffer.  Any occluded nodes will subsequently be rejected 

during the depth test and no record of them will exist in the stencil buffer.  Once the 

bounding volume is rendered the stencil buffer is read and checked to determine 

visibility.  Instead of reading the entire buffer at one time, Bartz et al. addressed the lack 

of speed by sampling the stencil buffer while reading back to the stencil buffer from the 

hardware.  This process helps alleviate some of the issues with reading buffers but 

introduces the possibility to misidentify visibility. 

Hardware Occlusion Querying 

In 93 Green et al. [6] discussed a hardware implementation using the Kubota 

Pacific Titan 3000 workstation with a Denali GB graphics subsystem.  It involved using a 

graphics library to determine whether any pixels in a set of polygons were visible using 

the current z-buffer.  They concluded that the cost of the operation was too high to be 

effectively used. 

In 98 Bartz et al. [3] described a method for extending the OpenGL pipeline to 

allow for hardware-based occlusion querying.  They describe creating a new mode of 

operation similar to the OpenGL selection mode where tests are performed without 

affecting the contents of the framebuffer.  Their methods provide a wealth of information 

that can be useful in occlusion culling, but has not been implemented in hardware. 
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There are currently two forms of hardware-based occlusion queries that have been 

implemented.  The first is the HP_occlusion_query [11] extension.  It provides a way to 

query the visibility of a set of geometry that is rendered.  It returns a true or false answer 

to whether any fragment has passed the depth-test.  The HP query does not allow multiple 

queries to be performed at the same time and causes the rendering pipeline to be stalled 

while the results are being returned.  The other extension currently implemented on some 

hardware is the NV_occlusion_query [12].  It solved the two major failures of the HP 

extension in that it returns the total number of pixels that pass the depth test and allows 

multiple occlusion queries to be pending at the same time. 

In 2002 Micikevicius [9] described a technique for determining the Level-of-

Detail (LOD) at which to render trees in a forest walk-through simulation.  The 

simulation uses the NV_occlusion_query extension to calculate the visibility of a tree.    

The LOD used to render a tree is then selected based on the percent visibility and the 

projected size of the tree in pixels.  In 2003 Martens [8] presented a method of occlusion 

culling using the NV_occlusion_query to determine visibility of bounding volumes of the 

scene hierarchy.  And also in 2003 Govindaraju et al. [10] presented a similar method of 

using the same extension for occlusion culling.  Their algorithm includes a stage in which 

known occluders are initially rendered to perform occluder fusion in image-space.  This 

fusion of occluders is then used to perform the visibility determination using the 

hardware extension. 
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CHAPTER THREE: METHODOLOGY 

GPU Intervisibility 

The GPU Intervisibility algorithm presented here relies on the recent advances in 

3D video hardware.  Current hardware released by NVidia and ATI have a new OpenGL 

extension called the NV_Occlusion_Query.  This extension was originally created to 

determine if a grouping of geometry is occluded.  This algorithm takes advantage of the 

results and calculates a visibility metric.  In this algorithm intervisibility is defined as a 

normalized ratio of the number of pixels actually rendered versus the number of pixels 

possibly rendered in the range between zero (not visible) and one (completely visible). 

There are specific requirements that must be maintained for this algorithm to 

operate properly.  First, the synthetic environment is rendered since there is no interest in 

calculating the visibility on objects in the terrain.  And the cost for sorting the entire 

terrain to render it from front to back would be prohibitive. 

Second, all entities must be rendered in a front to back order.  This order is 

required so that occlusion of distant entities from closer entities occurs.  All entities must 

also be rendered with back face culling enabled.  Without back face culling, the pixel 

counts generated by the occlusion query may be significantly different from what is 
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actually rendered do to an indeterminate order of rendering causing possibly occluded 

fragments to be counted. 

The OpenGL alpha function is used to handle transparency in the scene.  This 

function controls how OpenGL renders transparent fragments.  In this algorithm the alpha 

function is used to not render transparent fragments above a certain alpha value.  This 

causes the scene to be rendered differently from traditional visual simulations where the 

alpha values are blended while still providing a compromise allowing the algorithm to 

work with transparency. 

Given all of the requirements defined above here is an overview of operation of 

the algorithm.  All entities are sorted based on distances calculated between each pair of 

entities.  Any geometry not in the view frustum or outside of a sensor’s Area of Interest 

(AOI) is culled away.  The synthetic environment is rendered with an alpha function set 

to not render transparent fragments.  Each entity is rendered twice in a front to back order 

with back-faced culling enabled.  The first time the entity is rendered depth testing, depth 

writing, and color mask are disabled.  The rendering is wrapped with occlusion querying 

start/stop functions.  This rendering will give a baseline of how many pixels would be 

rendered if no geometry occludes the entity.  The second rendering is performed with the 

depth testing, depth writing, and color mask enabled and is also wrapped with occlusion 

querying start/stop functions.  This rendering provides the actual amount of pixels 

rendered with occlusion.  Given these two calculations a ratio of visibility can be 

calculated. 
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To implement the intervisibility algorithm a visualization framework is used.  The 

framework chosen is Open Scene Graph (OSG) [13].  OSG is an open source, high 

performance, 3D graphics toolkit written in C++ and OpenGL that is used to create 

applications in fields such as visual simulation, virtual reality, scientific visualization, and 

modeling.  This framework provides a scene graph that is highly modular, infinitely 

customizable and extremely fast. 

OSG was chosen as the framework for the intervisibilty algorithm for three 

primary reasons: a complete feature set, extensibility, and speed.  OSG’s toolkit provides 

a strong feature set for rendering geometry and has many modules available to perform 

tasks that are not part of the core system.  It is fairly simple to create an application, input 

geometry and have that geometry rendered in only a few minutes.  Another feature that 

OSG provides is an extensive set of database file loaders and images such as OpenFlight 

and TerraPage. 

Of primary importance with respect to this project is OSG’s extensibility.  Due to 

the nature of the algorithm there is a need to control many rendering system factors as 

well as to be able to manipulate OpenGL’s underlying graphics system.  OSG provides 

an extensive callback system which allows manipulation of how the scene graph is 

traversed; how the cameras are updated; and the order in which the scene is rendered.  

Due to the object-oriented design of the system elements, they can be reused or extended 

and also be transparently injected back into the framework of OSG.  The final reason 

OSG was chosen is the raw speed of its rendering process. 
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The intervisibility algorithm uses the OSG framework.  This framework rendering 

is performed using three discrete stages.  The first stage is the Update Stage.  In this stage 

the scene graph is free to be updated.  Any modification that must be made such as 

updating the position of an object or changing a color must be completed.  The second 

stage in the rendering process is the Cull Stage.  In this stage the scene graph is traversed 

and all geometry is culled against the view frustum as well as any occluders or clipping 

planes that might exist in the scene graph.  During the Cull Stage all geometry is placed 

into bins and the geometry is stored based on common states to ensure proper rendering.  

The final stage in the rendering pipeline is the Draw Stage.  The Draw Stage takes the 

geometry from the bins and renders the bins in order providing an effective way to render 

transparent geometry. 

With this algorithm the issue of transparent or translucent objects needs to be 

addressed.  Transparency or translucency exists in a scene when a polygon or a texture 

has an alpha component.  The alpha component represents a degree of translucency that 

is used to blend color values of other geometry.  It is also used with textures to build 

complex objects by using simple polygonal models along with textures that have 

transparent sections so that when the polygonal model is rendered it looks like complex 

geometry.  This is often used in visual simulation to model objects such as shrubbery and 

trees since using geometry for rendering each leaf may prove too costly.  The problem 

with transparency or more appropriately, alpha values, is that when alpha values are 

rendered the depth buffer is still updated even though there might not be any visible 

pixels.  To address this issue the OpenGL Alpha Test [22] operations are used.  The 
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Alpha Test lets the user specify an alpha function that controls how fragments are 

rendered based on the alpha value.  The alpha function lets the user specify a function to 

apply and a reference value to check to determine if a fragment will be rendered.  Using 

this function a threshold can be set that will cause alpha values above this threshold not to 

be rendered.  This in effect creates holes in the scene where alpha values are in excess of 

the threshold and allows geometry that would otherwise be occluded to be rendered. 

Update Stage 

During the Update Stage the intervisibility algorithm performs two main tasks.  

The first task of the update stage is to calculate distances between entities.  For every 

entity in the simulation a distance to every other entity in the simulation is also stored for 

later use in the cull stage.  This information is necessary to ensure proper visibility 

determination as the entities are rendered in a front to back order.  The second task of the 

update stage is to update the locations of the cameras that represent the sensors of the 

entities.  The sensors of the entities are tied to geometry in the model that represents the 

sensors.  If there are updates to the position or orientation of either the entity or the sensor 

those updates are reflected in the absolute position or orientation of the geometry 

representing the sensor. 
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UpdateStage () 

 Foreach entity in entity_list: 

  UpdatePositionOrientation (entity) 

  Foreach target_entity in entity_list: 

   entity->distances = CalculateDistance (entity, target_entity) 

   // Sort map of entities to render_bin_indexes based on distance. 

   entity->renderbin_index_map == BuildEntityToRenderBinIndexMap (entity, distances) 

 Foreach sensor in entity: 

  UpdateOrientation (sensor) 

  CalculateOpenGLViewSettings (sensor) 

Figure 2: Pseudo Code for the Update Stage 

 

Cull Stage 

The primary operation of the cull stage is the determination of which geometry 

will be sent to the graphics card and what geometry will be thrown away.  The scene 

graph is traversed and each node is tested against the view frustum to determine if 

rendering is required.  If the geometry is determined to be visible, it is placed in a render 

bin appropriate for its type of geometry.  For this algorithm the cull stage is extended in 

order to accommodate the algorithm’s requirements. 
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The distance information collected in the update phase is converted into render 

bin indexes that are mapped to the entities as they are rendered in a front to back order.  

When the render bins are built during the cull traversal they will be placed in front to 

back order based on the entities contained in the bins.  While the map of render bin 

indexes is being generated, the distance to the entity is being checked against the Area of 

Interest (AOI) of the sensor to see if it is outside of the AOI.  If the distance found is 

outside the AOI, there is no need to render the map and therefore no mapping will be 

generated. 

Every node in the hierarchy is checked to determine potential visibility during the 

cull traversal of the scene graph.  The default setting is used for the terrain and all static 

features on the terrain, but a slightly modified version is used for the traversal of the 

entities in the scene graph.  During the traversal of the entities, the cull stage detects an 

occlusion query node and performs extra operations.  The view frustum checks are first 

performed to quickly determine if the entity should be rendered.  Then the system 

attempts to find a render bin index mapped to the entity.  If a render bin index is found a 

new render bin is created with that index and is designated the current render bin.  The 

cull stage then traverses all children and subsequently places all geometry belonging to 

the mapped entity in this new render bin.  Finally a callback is placed on the render bin so 

that during the draw stage the rendering can be modified. 
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CullStage () 

 Foreach sensor in scenegraph: 

  Foreach node in scenegraph: 

   If node is frustum culled: 

    Next //Node is culled 

   If node is type entity: 

    If entity_distance > area_of_interest: 

     Next //Out of range and does not need to be rendered 

    render_bin = CreateRenderBin (entity, entity_renderbin_index_map) 

    AddElement (render_bin, render_bin_list) 

 

Figure 3: Psuedo Code for the Cull Stage 

 

Draw Stage 

The draw stage is responsible for drawing all geometry not culled out during the 

cull stage.  All render bins generated during the cull stage are now rendered in order.  The 

cull stage places all geometry for the terrain in lower-indexed rendering bins so that the 

terrain will be rendered first.  Then sequentially, each entity is rendered in a front to back 

order as the render bins were built.  When the draw stage attempts to perform the actual 

rendering of the geometry the callback placed on the render bin is executed.  Inside this 
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callback the entity is rendered twice.  The first time the entity is rendered the depth and 

color buffer are disabled and the rendering is wrapped between occlusion query start/stop 

calls.  This rendering is used to generate a baseline value of the number of pixels the 

entity would have rendered if there was nothing occluding its view. 

Then the entity is rendered again with the depth and color buffers enabled and 

also wrapped between occlusion query start/stop calls.  This rendering is used to 

determine the actual number of pixels rendered with terrain and other occluding entities.  

At the end of the draw phase all pixel counts are collected and ratios of visibility are 

calculated. 
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DrawStage () 

 Foreach sensor in scenegraph: 

  Foreach render_bin in render_bin_list: 

   If render_bin contains entity: 

    occlusion_query = GetOcclusionQuery (occlusion_query_list) 

    DisableDepthBufferWritesAndTests () 

    DisableColorBufferWrites () 

    StartOcclusionQuery (occlusion_query->non_occluded) 

    DrawRenderBin (render_bin) 

    StopOcclusionQuery (occlusion_query->non_occluded) 

    EnableDepthBufferWritesAndTests () 

    EnableColorBufferWrites () 

    StartOcclusionQuery (occlusion_query->occluded) 

    DrawRenderBin (render_bin) 

    StopOccusionQuery (occlusion_query->occluded) 

   Else: 

    DrawRenderBin () 

  Foreach occlusion_query in occlusion_query_list: 

   pixels_non_occluded = GetQueryResults (occlusion_query->non_occluded) 

   pixels_occluded = GetQueryResults (occlusion_query->occluded) 

   visibility = pixels_occluded / pixels_not_occluded 

Figure 4: Pseudo Code for the Draw Stage 
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Screen Partitioning 

When rendering in OpenGL, geometry is sent to the GPU and is processed in 

parallel with processing on a CPU.  Certain operations in OpenGL cause the CPU to wait 

for the processing on the GPU to finish in order to proceed with processing on the CPU.  

One such operation is the swap_buffers [22] function which forces the geometry to be 

rendered and displayed on the screen. This operation happens every time a frame is 

rendered in OpenGL and creates a contention point in the application.  Because of this 

issue it might be advantageous to render multiple sensors per frame. 

The approach taken in this thesis is to partition the screen using an equal split kd-

tree with a maximum depth setting.  When there are more sensors then are allowed by the 

maximum depth of the kd-tree another screen is created.  The screens are then filled in a 

breadth first order to maximize the sizes of the rendering areas in each screen.  By 

rendering multiple sensors per screen the issue mentioned above can be minimized. 

Distributed Algorithm 

The distributed algorithm is an extension of the GPU Intervisibility algorithm to 

execute across multiple computers on a network.  Because the algorithm is 

embarrassingly parallel no modifications had to be made to the underlying algorithm.  

The only things added were a way to distribute the load, a way to control the simulation, 

and a way to collect the results.  CORBA [14] was used to implement the networking.  
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Instead of having to focus on the underlying networking code, CORBA was chosen 

because it provides an easy framework to generate network interfaces at a high level that 

are simple to work with. 

The entity distribution is a simple iterative approach designed to evenly distribute 

the number of sensors across all nodes in the simulation.  All nodes in the simulation 

must first register with the control node.  Once all nodes are registered the control node 

then continuously iterates over each node and assigns it one entities’ sensor until all 

sensors have been assigned to the nodes.  Once all sensors have been assigned and the 

control node sets the database that is being used the simulation can begin. 

The control node then signals all nodes that the simulation should begin.  Each 

node performs the GPU Intervisibility algorithm on each sensor that has been assigned to 

it and the visibilities are collected.  A list of visible entities is generated and transmitted 

back to the control nodes.  It is important to note that only visible entities are reported to 

the control node.  If an entity is not in the list,  it is assumed to not be visible.  Once the 

control node receives information back from each node a signal is sent out to start 

another iteration. 

Correlation between GPU Intervisibility and Constructive Intervisibility 

For correlation between the GPU Intervisibility algorithm and the algorithms used 

in SAFs, the LibCTDB algorithm was chosen.  LibCTDB is a library that provides 

intervisibility calculations among other things to common SAFs such as OneSAF and 
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ModSAF.  The intervisibility algorithm provided by LibCTDB is quite complex and is 

described in [16].  The algorithm has many modes of operation but the more commonly 

used case of the point-to-point test or more appropriately point-to-cone test is going to be 

used. 

In the point-to-cone test the following data points are required for operations: 1) 

The X, Y, Z in absolute coordinates of the sensor, 2) The X, Y location in absolute 

coordinates of the entity being looked at, 3) The upper and lower Z values of the entity 

Zh, Zl, and 4) The width of the 2D projection of the entity from the sensor.  With these 

values two constructs are setup for calculating intervisibility.  First a triangle is generated 

using the position of the sensor and the two points generated by bisecting the width of the 

entity at Zh and Zl.  This is called the Intersection Triangle as seen in Figure 5.  Second a 

visibility rectangle is generated using the width of the entity and the Zh and Zl values that 

is perpendicular to the intersection triangle.  Using these two constructs the algorithm can 

calculate a visibility for the query.  The algorithm calculates two values used to calculate 

visibility: visible area and linear transmittance.  Visible area represents the aggregate 

fraction of the visibility rectangle that can be seen from the sensor ranging from 0.0 to 

1.0.   Linear transmittance represents the aggregate fraction of light that is seen from the 

visibility rectangle and ranges from 0.0 to 1.0. 
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Figure 5: Intersection Triangle 

 

The first step in calculating visibility in LibCTDB is performing intersection 

testing of the terrain with the intersection triangle.  The terrain is iterated and each 

polygon is tested for intersection with the triangle.  If an intersection with the triangle 

occurs the lower point of the triangle is adjusted to the intersection point and intersection 

testing continues.  Once all geometry in the terrain is tested the percentage of the height 

of the new triangle to the original triangle is calculated and this is considered the visible 

area. 

The second step in calculating visibility is determining the linear transmittance.  

This operation can be performed using either statistical measures or rasterization 

techniques but since rasterization is hardly ever used only the statistical method will be 

discussed.  In the statistical method features of the database are tested for overlap with 

the visibility rectangle.  If overlap occurs the linear transmittance is modified by 

multiplying itself with the percentage of overlap. 

Once these two operations are performed for an entity the visibility is calculated 

using the following equation: 

  
 



 

Visibility = VisibleArea · LinearTransmittance 

 

Given the algorithm described above there some issues regarding how it 

calculates intervisibility and how the GPU algorithm works.  First, the LibCTDB 

algorithm only considers polygons of the terrain that intersect with the intersection 

triangle.  It is possible for polygons to occlude the sides of the entities without 

significantly intersecting the triangle.  While this situation will probably not occur very 

often it does exists and will properly be accounted for in the GPU algorithm. 

The second issue deals with the statistical calculating of the linear transmittance.  

Features such as trees and buildings are checked to see what percentage of visibility 

rectangle they occluded and are statistically factored into the linear transmittance.  The 

algorithm takes no account of if some other features were already occluding the same 

area and therefore can affect the linear transmittance even though it does not provide any 

further occlusion. 

 Finally there will be significant differences between visibilities through tree lines 

using the two different algorithms.  In LibCTDB this visibility is calculated through 

statistical methods using some distribution of tress.  But tree lines are represented 

differently in visual simulations and hence in the GPU algorithm.  In visual simulations 

tree lines are often represented by large polygonal areas that use textures to represent the 

trees.  These textures are images of trees lined up next to each other with alpha 

transparency used around the edge at the top to simulate the tree line.  However there is 
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often no way to see entities on the other side of a tree line because of the way tree lines 

are represented in visual simulation. 
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CHAPTER FOUR: FINDINGS 

GPU Intervisibility 

To test the GPU intervisibility algorithm a scenario with 300 entities was 

generated using correlated versions of the Ft. Polk Shugart-Gordon Database.  The urban 

features were removed, since the early version Multiple Elevation Surface (MES) urban 

structures is not compatible with the OTB Version 1 that was used for comparative 

testing.  The sensor view frustum parameters were set at 0.619406 radians horizontal and 

0.508736 radians vertical, with no far clipping plane applied.  The results for the visual 

algorithm were generated using a maximum 1600 x 1200 screen resolution and the 

algorithm described.  The scenario was generated manually so that a significant number 

of entities are expected to be within view of each other.  Seven different configurations of 

the scenario were executed using entity counts of: 25, 50, 100, 150, 200, 227 and 300.  

Each scenario was run 5 times with 100 iterations per run resulting in 500 sample points 

and the results shown are the averages of the samples. 

In this scenario view, the sensors are blue, and it is evident the area is densely 

populated with individual trees and has significant variations in the terrain elevation. 
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Intervisibility between all entities was compared, using an AOI in the form of 

1km radius. 

 

 

Figure 6: Scenario used for initial experiment. 

 

Three screen partitioning layouts were also tested to see how they would effect 

rendering times.  The first screen partitioning layout used was the simple case of a single 

sensor rendered per screen.  The second screen partitioning uses a kd-tree with a 

maximum depth of two which allows a maximum of four sensors to be rendered per 

screen.  Finally the third screen partitioning uses a kd-tree with a maximum depth of four 

which allows a maximum of sixteen sensors to be rendered per screen. 
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The results generated were obtained using the hardware described in Table 1.  In 

the cases where multiple GPUs were used, identical hardware was provided for each 

GPU. 

Table 1: Compute Node specification 

Processor: Dual AMD Athlon MP 1500+ 1.33Ghz 
Memory: 512MB DDR 2700 
GPU: NVIDIA GeForce FX 5900 256MB 
Network: Fast Ethernet 100Tx 

 

Intervisibility between all entities was compared using an AOI in the form of a 

1km radius.  Figures [8, 9, 10] show the number of entities rendered per second versus 

the number of sensors in the system using the three screen partitioning algorithms above.  

The figures show a fairly linear increase in the entities rendered per second versus the 

number of sensors and shows no asymptotic trend. 
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Figure 7: GPU Intervisibility results with a single sensor per screen. 
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Figure 8: GPU Intervisibility results with a maximum of four sensors per screen. 
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Figure 9: GPU Intervisibility results with a maximum of 16 sensors per screen. 

 

Figure 10 shows the average speedup of the GPU intervisibility algorithm as the 

number of nodes increases for the three different screen partitioning algorithms.   

As one can see the speed up is linear as the number of nodes increases.  One can also see 

that the differing screen partitioning algorithms are not providing any real benefit in 

rendering performance. 
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Figure 10: Average Speedup of intervisibility versus increase in node count 

 

 

Figure 11 shows the number of intervisibility calls in OneSAF versus the number 

of sensors being processed.  One should note that OneSAF operates on an internal 

scheduler that runs at a specific “tick” rate.  All operations, such as intervisibility, run at 

this tick rate.  But as the simulation running in OneSAF becomes overloaded the tick rate 

is changed to accommodate the increased load.  One can see from the figure that as the 

number of entities increases the number of intervisibility calls per tick increases too.  But 

if intervisibility calls are measured in real-time the number of calls reaches an asymptote 

and levels off.  
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Figure 11: LibCTDB Intervisibility results 

 

Correlation 

For the correlation results the same databases were used as in the GPU 

Intervisibility results.  In this test a scenario with 68 entities was generated.  In GPU 

intervisibility algorithm the view frustum was set to have a horizontal field of view of 

0.619406 radians and a vertical field of view of 0.508736 radians.  The resolution used to 

render the sensors was 1600 x 1200 pixels. 

Intervisibility between all entities was compared.  Although in practice an AOI 

would be used to limit the number of entities being looked at and to reduce the 

computational load during rendering, one was not used in this case.  This resulted in a 
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total of 4556 intervisibility calculations for each algorithm, neglecting the trivial case of 

self visibility.  Using a threshold of zero for visibility determination the results of the test 

are shown in Table 2: 

Table 2: Visibility results with 68 entities 

Not visible in both algorithms 4453 

Visible in both algorithms 40 

Visible in LibCTDB algorithm Only 64 

Visible in GPU algorithm Only 3 

 

The Correlation Coefficient was calculated using Equation 1 where µ is the mean 

and σ is the standard deviation.  Using this equation a correlation coefficient of 0.518 

was calculated.  The samples used to calculate this correlation were taken from the results 

generated above.  Only visibility of entities that were within the sensors’ view frustum 

and AOI were used.  This resulted in a dataset of 738 visibility queries that were used to 

calculate the correlation. 
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CHAPTER FIVE: CONCLUSION 

Although the performance of the GPU intervisibility algorithm did not outperform 

the OTB intervisibility algorithms in our tests, the scaling of the algorithm, and since the 

communication overhead scales better than the computational problem as the number of 

entities increases, it appears highly likely that by using a larger number of GPUs the 

performance of the method developed in this thesis has the potential to greatly 

outperform the OTB approach..  The GPU algorithm scales linearly through four nodes 

and demonstrates perfect scalability.  There are also some important observations to note 

about the algorithm.  First there have been no attempts to optimize the algorithm.  The 

goal was first to get it working properly and then to get it working efficiently.  LibCTDB 

on the other hand has been around for over a decade and has had plenty of optimization 

work over the years. 

In this thesis it has been shown that correlation between the two different 

algorithms is rather poor.  This can mainly be attested to the statistical versus visual 

algorithms and the way features are represented in the two different simulations.  Given 

that the GPU algorithm is closely tied to how visual simulations operate, such as in man-

in-the-loop simulators, it can be interpreted that the combination of SAFs and man-in-

the-loop simulators in the same DIS simulation might not offer a fair fight.  However, 

since a GPU accelerated intervisibility server would be operating on a common data 
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source, this approach would effectively solve the intervisibility correlation problem 

between OTB and visual simulations. 

Suggestions for Further Study 

Larger Scale Clustering 

For this thesis only four GPUs have the NV_Occlusion_Query extension in 

hardware available for use.  Four GPUs only begins to show the trend of scalability but 

does not offer any insight into performance on larger sized clusters.  Ideally a cluster of at 

least 16 GPUs should be used to show good scalability. 

Algorithmic Optimizations 

As stated earlier there were no attempts in optimizing the GPU algorithm but 

several areas have been identified and should be addressed.  First, some form of load 

balancing technique should be applied when distributing the entities to nodes and to 

rebalance the load while the simulation is running.  There are two metrics that might be 

useful in implementing this load balancing.  The first metric to look at is the amount of 

data that must be rendered on each node.  If the amount of data is reduced then it might 

be possible to store it all directly in the GPU’s memory so that no transfers need to occur 
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during run-time.  In order to achieve this reduction of data the distribution of the entities 

must take advantage of the clustering or locality of entities.  The second metric to look at 

is the geometric complexity of the terrain.  If the complexity of a region of terrain is high 

and there are multiple entities operating in this area it is possible for these entities to 

overwhelm the processing power of the GPU.  In this type of case it might be better to 

have multiple nodes covering the same terrain region to divide the load of possible 

problem areas.  

Perception of Visibility 

The visibility that is calculated using this new method only calculates the 

percentage of visible pixels based on boolean tests of if a fragment passed the depth and 

stencil tests.  It does not however take into account what the environment is immediately 

around the pixel.  There could be aspects such as camouflage that effect the visibility of 

an entity in the real world that would be perceived by a human.  This perceived visibility 

could be significantly different then what is calculated and is an important area the needs 

to be addressed. 
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