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ABSTRACT

In this dissertation, we investigate the conformations, transverse fluctuations and dy-

namics of two-dimensional (2D) semi-flexible polymers both in the bulk and under channel

confinement. We present unified scaling relations in regard to various quantities of interest

for a broad range of combinations of chain length and chain stiffness using Langevin dynam-

ics simulation. We also present a three-dimensional (3D) heterogeneous semi-flexible chain

model for a double stranded DNA (dsDNA). Our model not only confirms the established

findings for homogeneous dsDNA, but also predicts new physical phenomenon for hetero-

geneous dsDNA. The problems studied in this dissertation are relevant to analysis of the

conformations and dynamics of biopolymers (such as DNA) in living organisms, and also

offer insights for developing devices which operate on the single-molecule level.

In particular, we present a unified description for the dynamics of building-blocks

(monomers) of a semi-flexible chain. We consider the full range of flexibility from the case

where the chain is fully flexible (no stiffness at all) to the case where the chain behaves like

a rod (infinite stiffness). Our theory predicts qualitatively different sub-diffusive regimes for

the monomer dynamics originating from the chain stiffness by studying the mean square

displacement (MSD) of the monomers before the chain dynamics become purely diffusive.
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For the conformations in the bulk, we present results confirmed and agreed by two

completely different models of semi-flexible polymers, with one of which is the bead-spring

model (studied by Langevin dynamics) in the continuum space, the other (studied by Monte

Carlo) is a self-avoiding walk chain on the square lattice, where only discrete bond angles

are possible. We point out the universal features of chain conformations and fluctuations

which are independent of the models.

For the conformations under channel confinement, we discover qualitatively differ-

ent conformations and dynamics of the chain as a function of the channel width and chain

stiffness, and show how globule like shapes (de Gennes blobs) for more flexible chains contin-

uously go over to shapes in the form of deflections from the wall (Odijk limit) for more stiff

chains. We provide theoretical arguments how these regimes occur and interpolate among

each other as one varies different parameters of the model. We also demonstrate the effect

of physical dimensions (either 2D or 3D) on these regimes and argue that since in 2D the

excluded volume (EV) effect is more severe compared to 3D, certain regimes do not exist in

2D.

Finally, we study a model of a dsDNA , where both base-pairing and base-stacking

interactions are accounted for albeit at a low computational cost compared to the other

existing models. Our model correctly recovers the stiffness for dsDNA and ssDNA at different

temperatures. Under most conditions of interest, a dsDNA can locally denature and form

bubbles due to thermal fluctuations. At a critical temperature, a dsDNA undergoes a phase

transition, in which the two strands of dsDNA completely melt to two single strands (two
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ssDNA). By considering EV interactions and calculating the bubble size distribution, recent

studies have shown that this denaturation process is a first order transition. We show that

for a homogeneous dsDNA made of only AT or GC pairs, our simulation results agree with

the previous conclusion of first order transition, however, for sequences of periodic AT and

GC regions, when the periodic size is relatively large compared to the sequence length, we

show that the bubble size distribution exhibits peaks expressing the sequence pattern, and

more importantly, the denaturation is no longer a first order transition.

All these studies reported in the dissertation are relevant to the physics of living

systems.
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CHAPTER 1
INTRODUCTION

Conformations and dynamics of semi-flexible polymers in bulk as well as under var-

ious applied fields, e.g., confining and stretching potentials are of broad general interest in

different disciplines of science [1, 2]. Important biopolymers, e.g., dsDNA, F-Actin, micro-

tubules, all have finite bending rigidity κ, often with large persistence lengths and hence

the well established and matured theories for fully flexible chains often are not adequate

to describe these biopolymers as flexural rigidity plays an important role in their mechan-

ical responses [2]. Interests in these biopolymers continue to remain unabated for multiple

reasons. (i) A deeper understanding of biopolymers, e.g., Actin, Titin, Fibrin which offer

intriguing patterns with unusual viscoelastic responses will allow to design bio-mimetic ma-

terials with improved characteristics, not seen in synthetic polymers; (ii) there is a genuine

need to develop efficient separation methods of biomolecules, e.g., DNA sequencing and sep-

aration of proteins for various applications pertaining to health and diseases. Finally, due

to advent of sophisticated single molecule probes, e.g., fluorescence correlation spectroscopy,

atomic force microscope spectroscopy, scanning electron spectroscopy with which one can

directly observe the dynamics of the entire chain as well as fluorescence labeled segments of

these biomolecules [3]-[4] which offer new findings to be further explored. Of course, also

synthetic semi-flexible polymers are of interest in many circumstances; e.g., adsorbed comb
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polymers [5] with densely packed side chains (so-called “bottle brush” polymers [6]) can be

studied with atomic force microscopy [5, 6] and are of interest for various applications. In

these systems the persistence length can be tuned by varying the side chain length.

1.1 The Gaussian chain

Before introducing semi-flexibility, in this section we first briefly review the simplest

chain model formed by a random walk on a square lattice without self-avoidance, also known

as the Gaussian chain, whose meaning is evinced later.

Figure 1.1: A Gussian chain formed by a random walk on a square lattice without self-avoidance.

The end-to-end distance is denoted by RN .

Consider a polymer chain made of N bonds with an identical bond length of bl, and

only 0◦ and ±90◦ are allowed for angles between neighboring bonds (see Fig. 1.1). Denote
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the ith bond vector by ~bi, then the end-to-end vector ~RN is written as

~RN =
N∑
i=1

~bi (1.1)

It can be easily seen that for a large number of configurations of the chain, the average of

the vector 〈~RN〉 is zero, since the bond vectors in all four directions will eventually cancel

out during the ensemble average. So we turn our attention to 〈R2
N〉, and

R2
N = ~RN · ~RN =

N∑
i=1

~bi ·
N∑
j=1

~bj

=
N∑
i=1

b2
i +

N∑
i,j=1

~bi ·~bj,

(1.2)

under average the second term in the above equation giving zero leads to

〈R2
N〉 = Nb2

l (1.3)

From Eqn. 1.3 we see that the mean square end-to-end distance for a random walk is linear

to the chain size N . It should be noted that the derivation of Eqn. 1.3 is independent of

the dimensionality, thus it applies for all dimensions of interest. In the simplest case, in one

dimension, we can write the probability of the chain of size N having an end-to-end distance

RN = x as

P (N,RN = x) =
1

2N
N !

NL!NR!
(1.4)

where NL and NR are the number of bond vectors going left and right respectively, and

RN = x = NR −NL, N = NR +NL. It can be shown [1] that for large value of N

P (N,RN = x) '
√

2

πN
exp

(
− x2

2N

)
. (1.5)
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For two dimensions, by recognizing 〈R2
Nx〉 = 〈R2

Ny〉 = 1
2
〈R2

N〉, the probability for an end-to-

end vector ~RN of a 2D ideal chain is

P (N, ~RN) =
3

2πNb2
l

exp

(
−3R2

N

2N

)
, (1.6)

which is basically a Gaussian distribution hence the name of Gaussian chain is used in most

relevant contexts.

1.2 Kratky-Porod worm-like-chain (WLC) model

Historically the worm-like chain (WLC) model [7, 8] has been the paradigm for theo-

retical studies of semi-flexible chains. The Hamiltonian corresponding to the bending energy

for the WLC model is given by

H =
κ

2

∫ L

0

(
∂2r

∂s2

)2

ds, (1.7)

where r(s) is the position vector of a mass point, L is the inextensible contour length, κ

is the bending rigidity, and the integration is carried out along the contour s [1, 9]. Using

symmetry arguments for the free energy it can be shown [10] that the chain persistence

length `p for a WLC in 2D and 3D are given by

`p =
2κ

kBT
(2D) (1.8a)

`p =
κ

kBT
(3D) (1.8b)

The model has been studied quite extensively applying path integral and other techniques [11,

12, 13, 14] and exact expressions of various moments of the distribution of monomer distances
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along the chain have been worked out. The end-to-end distance in the WLC model is given

by [1]

〈R2
N〉
L2

=
2`p
L

(
1− `p

L
[1− exp(−L/`p)]

)
. (1.9)

In the limit `p � L one gets 〈R2
N〉 = 2`pL and the chain behaves like a Gaussian coil; for

`P � L, 〈R2
N〉 = L2 and the chain behaves like a rod. Evidently the model neglects the

excluded volume (EV) (Eqn. 1.13 of the bead-spring model in Sec.-1.3) interaction and hence

interpolates between rod and Gaussian limits only.

The WLC model can be viewed as a limiting case of a freely rotating chain [1], where

the correlation between bond vectors ~bi and ~bi+s is assumed to follow

〈
b̂i · b̂i+s

〉
= b2 exp(−s/`p), (1.10)

where |~bi| = |~bi+s| = b and the characteristic length is defined as the persistence length `p,

which can also be calculated from the bond angle

`p = − 1

ln (cos θ)
. (1.11)

Likewise, dynamics of the WLC model have been explored using Langevin type of

equation [15, 16, 17, 14, 18]. One can expect that the dynamics of a stiff chain will be

dominated by transverse fluctuations (bending modes) [12] and that the short time dynamics

will be governed by the chain persistence length. Indeed a relaxation dynamics using the

WLC Hamiltonian (Eqn. 1.7) approach yields an expression for fluctuation

〈(∆h)2〉 ∼ `−0.25
p t0.75. (1.12)
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which crosses over to simple diffusion at late time [15, 16]. As we will see later from our

results that even for a Gaussian chain a more “complete theory” should have captured

an intermediate regime characterized by a growth law t0.5 for a fully flexible chain for an

intermediate time when the fluctuation becomes of the order of radius of gyration of the

chain. However, the Langevin theories for the WLC chain did not describe this regime.

1.3 The simulation model

We have used a bead spring model of a polymer chain with excluded volume, spring

and bending potentials as follows [19]. The excluded volume interaction between any two

monomers is given by a short range Lennard-Jones (LJ) potential with cut off and shifted

in its minimum.

ULJ(r) = 4ε[(
σ

r
)
12

− (
σ

r
)
6

] + ε for r ≤ 21/6σ

= 0 for r > 21/6σ . (1.13)

Here, σ is the effective diameter of a monomer, and ε is the strength of the potential. The

connectivity between neighboring monomers is modeled as a Finitely Extensible Nonlinear

Elastic (FENE) spring with

UFENE(r) = −1

2
kR2

0 ln(1− r2/R2
0) , (1.14)

where r is the distance between consecutive monomers, k is the spring constant and R0 is

the maximum allowed separation between connected monomers [19]. The chain stiffness is
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introduced by adding an angle dependent interaction between successive bonds as (Fig. 1.2)

Ubend(θi) = κ(1− cos θi). (1.15)

Here θi is the complementary angle between the bond vectors~bi−1 = ~ri−~ri−1 and~bi = ~ri+1−~ri,

respectively, as shown in Fig. 1.2. The strength of the interaction is characterized by the

bending rigidity κ. Introducing unit tangent vector ti = ∂ri
∂s

(|ti| = 1) we note that the

discretized version of Eqn. 1.7 can be written as

H ≈ κ

2
bl
∑
i

(
ti+1 − ti

bl

)2

=
κ

2bl

∑
i

(
t2
i+1 + t2

i − 2 cos θi
)

=
κ

bl

∑
i

(1− cos θi) , (1.16)

where bl = |~bi| is the bond length in our simulation. Therefore, for fixed bond length

Eqn. 1.15 represents the discrete version of the WLC model of Eqn. 1.7. Thus the EV effect

introduced through Eqn. 1.13 are completely absent in the WLC model.

i+1

i+2

i+3

θi

i−1

i−2

i

Figure 1.2: Bead-spring model of a polymer chain with bending angle θi subtended by the vectors

~bi−1 = ~ri − ~ri−1 and ~bi = ~ri+1 − ~ri.

We use the Langevin dynamics [20, 19] with the following equation of motion for the

ith monomer

m~̈ri = −∇(ULJ + UFENE + Ubend)− γ~vi + ~Ri. (1.17)
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Here γ is the monomer friction coefficient and ~Ri(t), is a Gaussian white noise with zero

mean at a temperature T, and satisfies the fluctuation-dissipation relation:

< ~Ri(t) · ~Rj(t
′) >= 4kBTγ δij δ(t− t′) .

The reduced units of length, time and temperature are chosen to be σ, σ
√

m
ε

, and ε/kB

respectively. For the spring potential we have chosen k = 30 and R0 = 1.5σ, the friction

coefficient γ = 0.7, the temperature is kept at 1.2/kB. The choice of the FENE potential

along with the LJ interaction parameters ensures that the average bond-length in the bulk

〈bl〉 = 0.971. With the choice of these parameters the probability of chain crossing is very

low. We also find that the average bond-length 〈bl〉 is almost independent of the range of

chain stiffness parameter (κ = 0−320) used in our simulation. Strictly speaking, the contour

length L is L = (N − 1) 〈bl〉.

1.4 Integration algorithm of the Langevin equation

The equation of motion 1.17 is integrated with the reduced time step ∆t = 0.01

following the algorithm proposed by van Gunsteren and Berendsen [20]. This algorithm is

precise to the third order, and has the advantage that it is not limited by the constraint

∆t� γ−1 in contrast to other integration methods. Here below we outline this algorithm.

1. Given the initial configuration ~r(t0), ~v(t0) and ~F (t0), where ~F (t0) is the total force for

the considered monomer at t = t0, the position ~r(t1) at next time step t1 = t0 + ∆t is
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obtained as

~r(t1) =~r(t0) + ~v(t0)∆t(γ∆t)−1 [1− exp (−γ∆t)]

+
1

m
~F (t0)(∆t)2(γ∆t)−2 [γ∆t− (1− exp (−γ∆t))]

+
kBT

mγ2
C(γ∆t)z1,

(1.18)

where z1 is a random number following the unit normal distribution N (0, 1), and

C(γ∆t) = 2γ∆t− 3 + 4 exp (−γ∆t)− exp (−2γ∆t) (1.19)

2. At current time step tn = t0 + n∆t with n = 1, 2, ..., calculate ~F (tn) from the force

field.

3. Compute the derivative of the force as following

~̇F (tn) =
~F (tn)− ~F (tn−1)

∆t
(1.20)

4. Sample z2 from the unit normal distribution N (0, 1), and compute

Xn(−∆t) = Xn−1(∆t)G(∆t)/C(∆t) +
kBT

mγ2
(E(γ∆t)/C(γ∆t)) z2, (1.21)

where

G(γ∆t) = exp (γ∆t)− 2γ∆t− exp (−γ∆t) (1.22a)

E(γ∆t) =16 [exp (γ∆t) + exp (−γ∆t)]− 4 [exp (2γ∆t) + exp (−2γ∆t)]

− 24− 4γ∆t [exp (γ∆t)− exp (−γ∆t)]

+ 2γ∆t [exp (2γ∆t)− exp (−2γ∆t)]

(1.22b)
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and resample z1 from N (0, 1) and calculate

Xn(γ∆t) =
kBT

mγ2
C(γ∆t)z1 (1.23)

From Eqn. 1.21 it is easy to see that Xn(−∆t) is correlated with Xn−1(∆t) , and by

verifying the following relation

G2(γ∆t) + E(γ∆t) = −C(−γ∆t)C(γ∆t) (1.24)

it is easy to see that Xn(−∆t) has a variance of −kBTC(−γ∆t)/(mγ2).

5. Advance the position to time step tn+1 according to

~r(tn + ∆t) = ~r(tn) [1 + exp (−γ∆t)]− ~r(tn −∆t) exp (−γ∆t)

+m−1F (tn)(∆t)2(γ∆t)−1 [1− exp (−γ∆t)]

+m−1Ḟ (tn)(∆t)3(γ∆t)−2

{
1

2
γ∆t [1 + exp (−γ∆t)]− [1− exp (−γ∆t)]

}
+Xn(∆t) + exp(−γ∆t)Xn(−∆t) +O(∆t4)

(1.25)

6. Compute the velocity ~v(tn) as

~v(tn) = H(γ∆t) {[~r(tn −∆t)− ~r(tn −∆t)]

+m−1 ~F (tn)(∆t)2(γ∆t)−2G(γ∆t)

−m−1 ~̇F (tn)(∆t)3(γ∆t)−3G(γ∆t)

+ [Xn(−∆t)−Xn(∆t)]}

(1.26)

where

H(γ∆t) = γ∆t/ [exp (γ∆t)− exp (−γ∆t)] . (1.27)
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7. Repeat steps from 2 to 6.

1.5 Overview of the thesis

The goal of this thesis is to explore the conformations, transverse fluctuations and

monomer dynamics of semi-flexible polymers in the bulk and in the confined environment.

In particular, by carrying out extensive computer simulations we show the limitations of

existing scaling theories in two dimensions, clarify the boundaries across different scaling

regimes, and propose and verify new scaling descriptions. Firstly, we elucidate the role of

the intrinsic mechanical property of a polymer - the bending rigidity characterized by its

persistence length - in determining the chain conformations and monomer dynamics in the

bulk and under channel confinement; secondly, by comparing the simulation results from

Langevin dynamics simulations based on the bead-spring model in the continuum space to

those from Monte Carlo (MC) simulations on a discrete model, we show interesting agreement

and discrepancies; thirdly, we turn to a concrete example, in which we present a coarse

grained model for DNA which is one of most important biopolymers. In our model, we

incorporate the thermodynamical properties of dsDNA and study their interplay with the

bending rigidity. More specifically, the organization of the thesis is as follows.

In Chapter 2, with regard to the conformations we compare the main results of the

WLC model to our simulation results. Specifically, we focus on the scaling dependence

of end-to-end distance on the persistence length, bond vector correlations, and argue that
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how the persistence length has been miscalculated in the literature and how it should be

calculated correctly. We also show distributions of end-to-end distances and compare with

those obtained analytically under certain approximation. For the monomer dynamics, a

scaling theory is derived where we show that monomer dynamics of a semiflexible polymer

exhibits a double crossover across the early time to the diffusion time scale, we validate the

predictions of the scaling theory using Langevin dynamics simulation for chains of different

length and stiffness. For the transverse fluctuations, we show novel master scaling plot for

chains in broad ranges of chain size and chain stiffness and draw significance and implications

of our finding to experiments. In the appendix of this chapter, we also show our scaling theory

and results for one-dimensional chains.

In chapter 3 we pay our attention to semi-flexible polymers confined in a quasi-one-

dimensional environment. In this chapter we study the extension of a confined polymer as

a function of the chain length, the persistence length `p and the width of the channel D.

Different scaling regimes in different limits of `p/D are summarized as a function of the

number of dimensions, d. By carrying out Langevin dynamics simulations, we show that

some scaling regimes those exist in three dimensions are missing in two dimensions, and

conclude that a 2D strip is a cleaner system to study a stretched chain as the conformations

interpolate between de Gennes and Odjik regimes only.

Chapter 4 discusses how the scaling theory and simulation results depend on differ-

ent models of polymers. One model is the bead-spring model in the continuum space we

have used in the previous two chapters, the other one is a self-avoiding model on square
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lattice studied by MC simulations. These two models reflect different mechanisms by which

the stiffness for different real polymers is realized, for instance, the first model is a crude

description of DNA-like biopolymers, while the second model (roughly) describes synthetic

polymers like alkane chains. In this chapter, we demonstrate that in the bulk the crossover

from rods to self-avoiding walks for both models is very similar, when one studies average

chain linear dimensions, transverse fluctuations, etc., despite their differences in local con-

formations. We continue to show that significant differences between both models arise in

quasi-one-dimensional confinement, we compare these differences and analyze the causes.

Moreover, we report a method of directly estimating for the Odijk deflection length [21, 22]

and its distribution and show the results obtained accordingly.

Chapter 5 presents a heterogeneous semiflexible chain model of dsDNA. In this model,

we consider both the mechanical and the thermodynamic characteristics for a dsDNA, and

show that the persistence lengths for dsDNA (∼ 50 nm) and ssDNA (∼ 4 nm) and reasonable

melting profiles for different sequences can be both obtained from our Langevin dynamics

simulations. We further investigate that when the dsDNA undergoes denaturation at critical

temperatures, how the bubble size distribution depends on the heterogeneity of the sequence

which further determines the transition order of the DNA melting process.

In chapter 6 we draw conclusions for the thesis and provide outlooks for future work.

In the end of this section, we present a list of publications and unpublished manuscripts

which have been generated from this PhD dissertation.
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CHAPTER 2
CONFORMATIONS, TRANSVERSE FLUCTUATIONS AND

CROSSOVER DYNAMICS OF A SEMI-FLEXIBLE CHAIN IN
TWO DIMENSIONS

Macromolecules adsorbed on substrate surfaces occur in many different contexts, from

materials science to biophysics, e.g., biomolecules interacting with cell membranes. Hence

the understanding of conformations and dynamics of macromolecules in such a (quasi-) two-

dimensional geometry has been of long-standing interest [23, 24, 25, 26]. Note also that many

methods to characterize polymer conformations experimentally, e.g., electron microscopy [27,

28, 29, 30, 31, 32, 33], atomic force microscopy (AFM) [34, 35, 36, 37, 4, 38, 39], fluorescence

microscopy of suitably labelled biopolymers [40, 41], require that these macromolecules are

attached to a substrate. In this context, considerations of macromolecules confined to a

strictly two-dimensional geometry are of interest, at least as a limiting case. The same

statement holds when one considers macromolecules confined to nanoslits with non-adsorbing

walls, a topic that also has found much recent interest.

While the statistical mechanics of completely flexible polymers in d = 2 dimen-

sions has been studied extensively since a long time and is well understood [42, 43], under

many circumstances it should be taken into account that macromolecules are stiff and not

flexible on small scales [44, 45, 1]. This is true both for simple synthetic polymers e.g.,

polystyrene, alkane chains, etc., and for various biopolymers, e.g., double-stranded (ds) and

15



single stranded (ss) DNA, polysaccharides, proteins, etc. [46]. Apart from very stiff polymers

(e.g., Actin, Titin, microtubules, etc.) the “persistence length `p ” [44, 45, 1, 46, 47] char-

acterizing the stiffness typically is much less than the contour length L of a macromolecule,

and the crossover from rod-like behavior to the behavior of flexible polymers needs to be

considered. As is well-known, the scales of interest range from the sub-nanometer scale to

the micrometer scale [48, 49], and hence in the theoretical modeling coarse-grained models

must be used [48, 49, 50].

In the present work, we wish to address the problem of polymer conformation and

dynamics for semi-flexible polymers in two dimensions, using Molecular Dynamics simula-

tions of a bead-spring type model with a bond angle potential by which we can control the

stiffness of the chains over a wide range. We note that the standard analytical coarse-grained

description in terms of the Kratky-Porod [51, 52] model for wormlike chains in d = 2 dimen-

sions is not very useful, since it neglects excluded volume effects completely, although they

are known to be very important in d = 2 [53]. A study of semiflexible polymers in terms of

a lattice model [53, 54, 55, 56] is expected to yield valid results for universal properties of

semiflexible polymer, i.e., on length scales much larger than the persistence length; but on

smaller scales it can describe only stiffness of the type similar to that of alkane chains, where

`p is of the order of the typical length of “all trans” sequences, in between monomers taking a

gauche (g±) minimum in the torsional potential. For such cases e.g., dsDNA we expect that

the (small) flexibility of the macromolecules is due to fluctuations in bond lengths and bond

angles, rather than disorder in the population of states in the torsional potential, and then
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the present off-lattice model is more realistic. In addition, the lattice work [53, 54, 55, 56]

applying the pruned enriched Rosenbluth method (PERM) [57, 58] could not address the

dynamics of the chains at all. Previous work on the dynamics of single semiflexible chains

in dilute solution [59, 60, 17, 61, 62, 63, 64, 65, 66] has focused on the case d = 3 almost

exclusively, and most of the work [59, 60, 17, 61, 62, 63, 64, 65] has studied the effect of

hydrodynamic (HD) interactions mediated by the solvent. Assuming that the substrate sur-

face provides a stick boundary condition with respect to solvent fluid flow, one can show [67]

that HD interactions are essentially screened, and hence are ignored here (as well as in our

preliminary communication where a small part of our results were presented [68]) from the

outset.

While the Kratky-Porod Worm-like-chain (WLC) Model has been found to be grossly

inadequate to describe a semiflexible chain in 2D, vast amounts of analytical and numerical

work have been accumulated using the WLC model as the starting point [11, 60, 12]. Recent

experimental results of confined biopolymers on a 2D substrate are also analyzed using the

well known results of WLC model [37]. The organization of the chapter is as follows. In

the next section a scaling theory is derived where we show that monomer dynamics of a

semiflexible polymer exhibits a double crossover as a function of time. The results of BD

simulation are presented in Sec. 2.2, which is divided into two sub-sections: The equilibrium

properties are presented in Sec. 2.2.1; in Sec. 2.2.2 among other results we validate the

predictions of the scaling theory using (BD) simulation for chains of different length and

stiffness.
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2.1 Scaling description

We first develop the scaling description for the dynamics of a two dimensional semi-

flexible chain in the free draining limit. The free draining limit is of particular interest in

2D because it often satisfies the experimental conditions, such as DNA confined in a 2D

substrate where the effect of hydrodynamics is negligible. For a WLC several theories based

on Langevin dynamics have been developed most of which indicate a t0.75 dependence of

the transverse fluctuation of the MSD g1(t) (see Eqn. 2.16a) with time t for the stiff chain.

Therefore, we start with the Eqn. 2.1 below derived by Granek [15] and Farge and Maggs [16]

using a Langevin dynamics framework for the WLC Hamiltonian

g1(t) = b2 (b/`p)
1/4 (Wt)3/4 , (2.1)

where W is the monomer reorientation rate. Prefactors of order unity are omitted through-

out [69]. For early time the monomer dynamics will be independent of the chain length N

until the fluctuations in monomer position become of the order of `p. Therefore, denoting

the time when the first crossover occurs as τ1 and substituting g1 = `2
p and t = τ1 in Eqn. 2.1

we immediately get

Wτ1 = (`p/b)
3 . (2.2)
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For 0 < t ≤ W−1(`p/b)
3 the monomer dynamics is described by g1(t) ∼ t0.75 according to

Eqn. 2.1 until g1(t) = `2
p at time W−1(`p/b)

3. The width of this region is independent of N

and solely a function of `p (see Fig. 2.1).

For τ1 < t < τ2 the dynamics is governed by the Rouse relaxation of monomers of a

fully flexible EV chain in 2D characterized by g1(t) ∝ t2ν/(1+2ν) = t0.6. τ2 characterizes the

onset of the purely diffusive regime when g1(τ2) = 〈R2
N〉 [19]. Recall that the exponent ν

that describes the scaling of the end-to-end distance ~RN according to 〈R2
N〉 ∝ N2ν is ν = 3

4

in 2D. Note that when we increase the stiffness of the chain at fixed chain length, the times

τ1 and τ2 can be made to coincide; this happens for L = Nb = `p, as expected: when the

contour length and the persistence length are of the same order, the regime described by

Eqn. 2.4 is no longer present. We will verify the time dependence of g1 at various regimes

from BD simulations.

We then obtain τ2 as follows:

g1(t) = `2
p (t/τ1)3/5 for t > τ1. (2.3)

Substituting τ1 from Eqn. 2.2 in above

g1(t) = b2 (`p/b)
1/5 (Wt)3/5 , for τ1 < t < τ2. (2.4)

At t = τ2

g1(t = τ2) = 〈R2
N〉 = `1/2

p L3/2. (2.5)

Substituting Eqn. 2.4 for t = τ2 we get

Wτ2 = (`p/b)
1
2 N5/2. (2.6)
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Figure 2.1: Theoretical scaling for (N,κ) ≡ (512, 2), (512, 32)(a) and (N,κ) ≡ (128, 32),

(1024, 32)(b). Blue (red) symbols, solid and dashed lines correspond to g1(t) ∼ t0.75(g1 ∼ t0.60),

black dashed, solid lines correspond to g3(t) ∼ t. Here the power laws Eqn. 2.1, 2.4 and 2.7 are

plotted, using units of b = 1, lp = 2κ/kBT , W = 1. The width of each region shows how these

regimes depend on `p and N . Note that in reality we expect a very gradual change of slope on the

log-log plot at both crossover times, rather than sharp kinks.
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We also note that the dynamics of the center of mass is given by

g3(t) = b2W
t

N
. (2.7)

The “phase diagram” for the crossover dynamics in terms of N , and `p are shown in Fig. 2.1.

Notice that for a stiffer chain the region for τ1 < t < τ2 for which we predict g1(t) ∼ t0.6

requires to study very long chains and therefore, is hard to see in simulation for a stiffer

chain.

2.2 Results from Brownian dynamics simulation

We have carried out Brownian dynamics (BD) simulation for a wide range of chain

length (N=16 - 2048) and bending constant (κ = 0 - 320). Because of the argument given

in Sec. 2.1 very long chains were needed to clearly identify the crossover regimes. First we

present the equilibrium properties of the chains in section 2.2.1 followed by the dynamical

quantities presented in Sec. 2.2.2.

2.2.1 Equilibrium properties

2.2.1.1 Persistence length

From the BD simulation we have monitored the average 〈cos θ〉 and replacing cos θ →

〈cos θ〉 in Eqn. 1.11 calculated the chain persistence length for various values of κ. One

21



expects that Eqns. 1.8a and 1.11 must give results that agree with each other when the

persistence length is much larger than the range of the excluded volume interaction, but that

the agreement is quite perfect for kappa = 2 already is a nontrivial result (The comparison

of calculated `p by different methods is shown in Table 2.1). The two equations produce

practically the same value of `p. We also observe that the `p calculated using Eqn. 1.11

practically has no dependence on chain length N . We have used Eqn. 1.11 for further

analysis of our data in the subsequent sections. Note that this behavior differs from the

result found by Hsu et al. for a lattice model [53], where a renormalization of `p by excluded

volume was shown to occur. Thus on length scales of order `p there is no strict universality

between different models.

Table 2.1: Comparison of three ways of calculating `p

κ Eqn. 1.8a Eqn. 1.11 `p from fitted slope (Fig. 2.5)

64 106.7 105.8 112.4

32 53.3 52.6 53.7

16 26.7 25.9 27.4

8 13.3 12.6 13.7

4 6.7 6.05 6.7

2 3.3 3.31 4.2

We emphasize, however, that the persistence length, when it is supposed to measure

the local intrinsic stiffness of the chain (as supposed in the Kratky-Porod model), cannot be

estimated from the asymptotic decay of the bond vector correlation function 〈~bi ·~bi+s〉 with
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the “chemical distance” s along the chain, that is the conventional definition given in all the

polymer physics textbooks: as will be shown below (Sec. 2.2.1.5), we verify the predicted

[70] power law behavior for very long chains and large s, previously seen already for a lattice

model of semi-flexible chains by Hsu et al. [53]. Although lattice and continuum models

have different statistical properties when one considers lengths of the scale `p, for much

larger scales the behavior should be universal, and hence this power law decay is expected.

We also note that a definition of the persistence length dating back to Flory, where one

considers the correlation of the first bond vector ~b1 with the end-to-end vector ~RN ,

`Flory
p = 〈~b1 · ~RN〉/〈b〉 , (2.8)

which has been advocated by Cifra [71] as an “exact expression”, must similarly be refuted:

in 2D, Redner and Privman [72] have shown that `Flory
p for largeN is logarithmically divergent

with N already for a simple self-avoiding walk (SAW). For completeness, we mention that

an analogous definition for inner bond vectors

`′p = 〈~bi · ~RN〉/〈b〉 , 1� i� N (2.9)

even shows a power-law divergence, `′p ∝ N (2ν−1), both in 2D and 3D (see Hsu et al. [47]

and [73]). Thus we urge that the results and discussion presented in this section need to be

taken seriously in writing future review articles and newer edition of the existing textbooks.
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2.2.1.2 Scaling of semi-flexible chain: comparison with theory

The extension of Flory theory for a semi-flexible chain has been done by Schaefer,

Joanny, and Pincus [59] and Nakanishi [74] which states that the RMS of the end-to-end

distance 〈R2
N〉 in d spatial dimensions exhibits the following scaling relation

√
〈R2

N〉 ∼ N
3

d+2 `
1

d+2
p b

d−2
d+2 , (2.10)

where b is the bond length (〈bl〉 in our simulation). For d = 2 this reduces to
√
〈R2

N〉 ∼

N0.75`0.25
p . In other words if the end-to-end distance is scaled by the appropriate power of

the persistence length `p, then this renormalized end-to-end distances 〈R̃N〉 =
√
〈R2

N〉/`0.25
p

for different values of the chain stiffness parameter κ will fall onto the same master plot.

For a large combination of chain length N and stiffness parameter κ we observe excellent fit

to our equilibrium data for 〈R̃N〉 to Eqn. 2.10 as shown in Fig. 2.2. It is worth noting that

the persistence length calculated from Eqn. 1.11 using the formula from WLC model uses

the local correlation, namely the angle between the subsequent bond vectors and hence is

expected to provide a decent value of the persistence length when EV is also included. The

excellent collapse of the data for R̃N ∼ N0.75 for various values of the stiffness parameter

(κ = 1− 192) on the same master curve indicates that Eqn. 1.11 can be used as the standard

definition of persistence length even in presence of the EV effect.
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Figure 2.2: Plot of
√
〈R2

N 〉/`0.25
p versus N0.75 for various values of the chain stiffness parameter.

All the data for different stiffness parameter collapse on the same master plot. The solid line is a

fit to a straight line. Only data points for which the contour length exceeds the persistence length

were included in this plot.

2.2.1.3 Comparison with WLC in 2D

Having established the definition of persistence length which validated Eqn. 2.10,

we now use Eqn. 1.9 presented in section 1.2 to analyze the BD simulation results for the

end-to-end distance. Please note that limiting cases of Eqn. 1.9 are either a Gaussian coil

(〈R2
N〉 = 2`pL for L � `p) or a rod (〈R2

N〉 = L2 for L � `p). We have used simulation

results to plot
〈R2

N 〉
2`pL
∼ L/`p for a large number of values(∼ 100) of L/`p (0.05 ≤ L/`p ≤ 170).

We have also taken additional care that a given value of L/`p is generated for different

combinations of L and `p. These results are shown in Fig. 2.3. For L/`p � 1 we observe

that
〈R2

N 〉
2`pL

∼ (L/`p)
0.95 while for L/`p � 1 the data very nicely fit with

〈R2
N 〉

2`pL
∼ (L/`p)

0.50.
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Figure 2.3: 〈〈R2
N 〉/(2L`p) as a function of L/`p obtained from different combinations of chain

length N and stiffness parameter κ (log-log scale). The solid (maroon) line is a fit to the for-

mula 〈R2
N 〉/2L`p ∼ (L/`p)

0.5 for 4 < L/`p < 170. The inset shows the same for small values of

0 < L/`p < 1 which clearly indicates that limiting slope of unity (〈R2
N 〉 = L2) for L/`p → 0.

This is consistent with prior MC results using a lattice model by Hsu et al. [53]. However,

since our studies are done in continuum we are able to get data that is for much shorter

length scales. The fact that in the rod-like regime (L < `p) the “best fit” exponent is 0.95

rather than the asymptotic value 1.0 is due to the fact that for κ=32 and 64 the “rods” still

exhibit nonnegligible transverse fluctuation unlike truly stiff rods. The Gaussian behavior

that Eqn. 1.9 implies 〈R2
N〉/2L`p = 1 for large L would mean a horizontal straight line in

Fig. 2.3, but no indication of such a behavior is seen. The simulation data then implies the

strict absence of a Gaussian limit for 2D swollen semi-flexible chains due to severe dominance

of the EV interaction. This result should be contrasted with the simulation results in 3D,
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where one sees a gradual crossover from rod limit to the EV limit (in 3D) passing through

a Gaussian regime [75, 76].

2.2.1.4 Transverse fluctuations

It is reasonable to define an average axis for a polymer chain in the rod limit (`p � L).

In this limit using WLC chain Hamiltonian the transverse fluctuation with respect to this

average axis has been shown [77, 78, 79] to obey the following equation

〈l2⊥〉 ∼ L3/`p, . (2.11)

The above equation implies that the roughness exponent [80] ζ = 3/2 (
√
〈l2⊥〉 ∼ Lζ) for a

weakly bending rod. Starting from an extremely stiff chain where the transverse fluctuations

are expected to be governed by the roughening exponent ζ = 3/2, if we approach the limit of

fully flexible chain, then the fluctuations become isotropic and in this limit one can expect

that 〈l2⊥〉 ∼ Lν , so that in 2D 〈l2⊥〉 ∼ L0.75. In order to calculate the transverse fluctuation,

in our simulation, for each configuration of the polymer chain, we choose x̂ = ~RN/RN as the

longitudinal axis and calculate transverse fluctuations as follows:

〈l2⊥〉 =
1

N

N∑
i=1

y2
i , (2.12)

where yi is the perpendicular distance of the ith monomer with respect to the instantaneous

direction ~RN . We have repeated this calculation for several chain lengths from extremely

stiff chains to fully flexible chains. This is shown in Fig. 2.4(a).
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Figure 2.4: (a) Plot of 〈l2⊥〉 ∼ L3/`p for chains of chain length N = 16(circle), 32(square),

48(diamond), 64(up triangle), 96(left triangle), 128(down triangle), 256(right triangle),

512(×) with various bending stiffness κ = 2(yellow), 4(orange), 8(magenta), 16(brown),

32(black), 48(green), 64(blue), 96(indigo), 128(cyan), 192(red), 320(dark green). The or-

ange, magenta, brown, black solid lines are fitted to chains with κ = 4, 8, 16, 32, respectively.

The maroon solid line is fitted for chains with `p > L/2. (b) Log-log plot of
√
〈l2⊥〉/L as a

function of L/`p showing that from the rod limit to the fully flexible limit, the transverse

fluctuation first increases then decreases.
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If one does not analyze the data carefully, one might be misled to conclude that the expo-

nent ζ increases gradually with the chain stiffness κ. However, as we will see that the proper

interpretation requires a scaling description in terms of L/`p as scaling variable. The inter-

esting aspect of this rescaled dimensionless transverse fluctuation is shown in Fig. 2.4(b) as a

function of rescaled length L/`p where the rescaled fluctuations collapse on the same master

curve. This plot exhibits a maximum and then decreases gradually for large value of L/`p. It

is worth noting that analytical results do not exist for chains with intermediate stiffness. The

physical origin of this maximum can be interpreted as follows. Starting from the stiff chain

limit when L/`p � 1 it increases for a more flexible chain when the chain undergoes shape

changes from rod to ellipsoid-like blob, and finally to isotropic spherical blobs. Naturally,

when chain flexibility is defined in units of the persistence length for some value of L/`p

(L/`p ∼ 3 from Fig. 2.4(b)) the fluctuation becomes maximum before it becomes isotropic.

To the best of our knowledge this result is new and in principle can be used to measure the

persistence length of a semiflexible polymer by measuring the transverse fluctuations using

fluorescence probes. This would require to numerically analyze a large number of images of

semiflexible chains (of a given kind of polymer) with varying contour length. For each image

of a chain one can extract L as well as the end-to-end vector ~RN and then use Eqn. 2.12

to extract 〈l2⊥〉. Plotting then
√
〈l2⊥〉/L versus L one would find lp from the position of the

maximum of this plot.
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2.2.1.5 Bond vector correlation

The orientational correlation between successive bonds decays exponentially in a

WLC model according to Eqn. 1.10. However, recent Monte Carlo (MC) studies by Hsu,

Paul, and Binder have verified that a swollen semiflexible chain in 2D exhibits a power law

decay as a function of the separation s between the beads [53] given by

〈
b̂i · b̂i+s

〉
∝ s−β, β = 2− 2ν for s� N. (2.13)

For a fully flexible chain ν = 0.75 in 2D so that β = 0.5. It is then expected that a

semiflexible chain will exhibit the same behavior when L/`p � 1. While for very stiff chain

one needs to have extremely long chain to see this asymptotic regime for large L/`p � 1, yet

satisfying the condition s � N , from our simulation we clearly see this trend for moderate

values of κ.

We calculated the bond correlation function from its definition and tested both

Eqn. 1.10 and 2.13. First in Fig. 2.5 we show the semi-log plot of Eqn. 1.10. The straight

lines are fitted only with the first several data points in order to get values of `p which are

close to those calculated from `p = −1/ln〈cos(θ)〉. The deviation from the initial slope (only

after few points) clearly shows that Eqn. 1.10 predicted by the WLC model does not hold

good for a 2D swollen chain as expected from the result of Fig. 2.3.

Fig. 2.6 shows the log-log plot of Eqn. 2.13 where we have also included the graph for

a fully flexible chain for reference. Please note that even for a fully flexible chain it requires

a rather long chain length (N = 1024) to clearly see the regime with slope with β = 0.5 over
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an appreciably broad range of abscissa values.

Figure 2.5: Semi-log plot. `p is calculated from the slope of the fitted line, which is very close

to the values (correspondingly 105.8, 52.6, 25.9, 12.6, 6.05, 3.31) from `p = −1/ln〈cos(θ)〉 (see

Table 2.1).

For comparison we put the graph for a shorter fully flexible chain of N = 512. Here the curve

starts to decrease faster before it reaches the slope corresponding to β = 0.5. Naturally for

stiffer chains (which could be thought of a flexible chain of length L/`p for this purpose)

for the maximum chain length N = 2048 considered in this chapter we only see the regime

characterized by β = 0.5 only for κ = 2.0 and 4.0.

It is expected that the bond vector correlation also exhibits a scaling behavior when

studied as a function of s/`p, as even for moderate values of `p ∼ 5 (see Fig. 2.5), this length

rescaling L→ L/`p overrides the exponential decay for small s/`p. With a choice of distance

between monomers in units of `p all chains are expected to behave as fully flexible chains.

Therefore, if we use the renormalized distance s/`p to replot Fig 2.6(a) then one expects that
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the power law correlation for chains with different stiffness will collapse on the same master

plot. This is shown in Fig. 2.6(b).

Figure 2.6: (a) Log-log plot of 〈cos θ(s)〉 as a function of s for various combinations of N

and κ. While for large κ the asymptotic slope of s−0.5 is preempted by finite size effect, for

(N,κ) ≡ (1024, 2) and (N,κ) ≡ (2024, 4) the slope of −0.5 is clearly visible; (b) Same as in (a)

but using rescaled variable s/`p which shows excellent data collapse for s/`p ≤ 1. The inset shows

the same but only for the cases to emphasize that in the limit L/`p � 1.0 there is a perfect data

collapse for the power law scaling.

We observe excellent data collapse for s/`p ≤ 1. Deviations from this collapse occur at a

progressively larger value of s/`p as the ratio L/`p increases either by increasing the contour

length L for a fixed `p or for the same contour length L and lowering the value of `p. This

is expected, since Eqn. 2.13 can hold only for s � N . Of course, a numerical study of the

regime `p/〈b〉 � s� N for large `p is prohibitively difficult. However, the inset shows both

the data collapse and the β = 0.5 regimes for two chain lengths (N = 1024 and 2048) and

32



for two values of κ (κ = 2 and κ = 4) which proves beyond doubt that for 1� s/`p � L/`p

the bond autocorrelation exhibits a power law decay of a fully flexible chain.

2.2.1.6 Radial distribution function for end-to-end distance

Figure 2.7: Comparison of the radial distribution for Eqn. 2.15 and the simulation for N=128

and 256 with various values of κ.

The Hamiltonian for the WLC chain model has been studied by many analytic tech-

nics assuming that for moderate chain lengths and stiff enough chains the EV effect will not

dominate. Since we already established the severe dominance of the EV effect, Gaussian
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regime is absent for a 2D swollen chain. Here we compare the radial distribution functions

for chains with different stiffness. In particular we compare the results from our simulation

with analytic results of Wilhelm and Frey [14]. For the WLC model Wilhelm and Frey [14]

have derived the radial distribution function in terms of an infinite series (Eqn. 2.14) as given

below,

G(r) =const× t
∞∑
l=0

(2l − 1) !!

2ll !

[
1

2t(1− r)

]5/4

× exp

[
−(l + 1/4)2

2t(1− r)

]
D3/2

[
2l + 1/2√
2t(1− r)

]
,

(2.14)

where t = `p/L, r = RN/L and D3/2(x) is a parabolic cylinder function. For the whole range

of values of κ in our simulation, when we plot the analytic result of Eqn. 2.14 we find that

this series is fully dominated by the first term and we didn’t see visual differences from the

plot that includes the first four terms. Therefore, in Fig. 2.7 we plot only the first term of

this series (l = 0) term given by

Gl=0(r) = const× t×
[

1

2t(1− r)

]5/4

× exp

[
− (1/4)2

2t(1− r)

]
D3/2

[
1/2√

2t(1− r)

]
(2.15)

Please note that for the radial distribution function Wilhelm and Frey does not take into

account excluded volume effects. In Fig. 2.7 we have also included the distribution for a

completely flexible chain (κ = 0) for comparison purposes. For κ = 4 and 8 (i.e., L/`p ≈ 16)

the simulated distribution still is intermediate between the behavior of fully flexible chains

(which we expect to result for N →∞ for all κ!) and the distribution of the Kratky-Porod

model. For κ = 8 − 64 the radial distribution functions G(r) of Wilhelm and Frey [14] are

closer to the data.
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2.2.2 Dynamics

We now look at the dynamics of a swollen semi-flexible chain. We are using a Brow-

nian dynamics (BD) scheme and therefore, HD effects are not included in our studies. How-

ever, for polymers adsorbed on a flat surface simulation studies have shown that the HD

effects are negligible for no-slip boundary conditions [67]. Thus we expect the results are

relevant for a fair comparison of experimental studies. Also we would like to point out that

unlike equilibrium properties, computational time increases dramatically to study time de-

pendent properties for the same chain length. Thus the diffusion and relaxation studies for

the longest chain length reported in this chapter took significant time for well converged

runs. We have also verified that the diffusion constant D being independent of the persis-

tence length `p only depends on chain length N and scales as D ∼ kBT/N with very good

accuracy, as expected in a BD formalism.

2.2.2.1 Diffusion of the center of mass

We first start with the very basic question if the diffusion of the center of mass of

chains of same contour length depends on the persistence length. If the motions of the

monomers are uncorrelated with the center of mass motion then one would expect that the

diffusion constant in the BD formalism will depend on the chain length N only, and should

not depend on the persistence length `p.
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Figure 2.8: Plot of MSD of the center of mass of the chain of length N = 64, 128, 256, 512, respec-

tively for chain stiffness parameter κ = 0.0 (black circles), κ = 8.0 (red squares), κ = 16.0 (green

triangles up), κ = 32.0 (blue triangles down), κ = 64.0 (magenta cross), and κ = 192.0 (orange

diamonds) respectively. The diffusion constant is independent of the chain stiffness parameter and

scales as 1/N .

In other words, a fully flexible chain and a rod of same length will diffuse with the same

translational diffusion constant D ∼ kBT/N in the BD scheme. This turns out to be true

for the all the semiflexible chains studied here. The results are shown in Fig. 2.8 where we

show the MSD of the center of mass of the chain for four different chain lengths as well as for

several values of κ. The slope of these lines correspond to the diffusion constant. From this

figure we observe that the D(N) ∼ 1/N and D(N) does not depend on the chain persistence

length. Thus if hydrodynamics are unimportant for chains constrained on a 2D surface it

will be worthwhile to study the diffusion constant of same length but of different stiffness to

check if this prediction is true.
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2.2.2.2 Monomer Dynamics

Next we consider monomer relaxation dynamics of the chain. Following previous

work for the relaxation of a fully flexible chain [19, 81, 82, 83] we have monitored various

quantities pertaining to a single monomer relaxation. These quantities have been studied in

the past using BD algorithm [19], and dynamical Monte Carlo algorithms (DMC) [81, 82],

including the bond-fluctuation model (BFM) [83]. The dynamics of the individual monomers

and the collective dynamics for the whole chain have been characterized by the functions

g1(t), g2(t), g3(t), g4(t), and g5(t). They are defined as follows:

g1(t) = 〈
[
rN/2(t)− rN/2(0)

]2〉, (2.16a)

g2(t) = 〈
[(

rN/2(t)− rCM(t)
)
−
(
rN/2(0)− rCM(0)

)]2〉, (2.16b)

g3(t) = 〈[rCM(t)− rCM(0)]2〉, (2.16c)

g4(t) = 〈[rend(t)− rend(0)]2〉, (2.16d)

g5(t) = 〈[(rend(t)− rCM(t))− (rend(0)− rCM(0))]2〉. (2.16e)

The quantities g1(t), g3(t), and g4(t) reflect the time dependence of the position of the middle

monomer, the center of mass, and the end monomer of the chain respectively. At late times

for distances greater than the gyration radius the functions g1(t), g3(t) and g4(t) will describe

the motion of the entire chain. Consequently,

g1(τ(N, `p)) ∼ g3(τ(N, `p) ∼ g4(τ(N, `p) ∼ t, (2.17)
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for t ≥ τ2(N, `p) where τ2 is given by Eqn. 2.6. The quantities g2(t) and g5(t) on the contrary

measure the relative displacement of the middle and the end monomer with respect to the

center of mass of the chain. The functions g2(t) and g5(t) saturate at finite static values

2〈
(
~rN/2 − ~rCM

)2〉 and 2〈(~rend − ~rCM)2〉 respectively, since for t→∞ the orientations of the

vectors ~rN/2(t)− ~rCM(t), ~rend(t)− ~rCM(t) are uncorrelated with their counterparts at t = 0.

Figure 2.9: (a) gi(t) ∼ t (i = 1 − 5) for a fully flexible chain (κ = 0.0) of length N = 512. (b)

gi(t) ∼ t (i = 1− 3) for a fully flexible chain of length N = 1024.

To study monomer dynamics, we have carried out BD simulation for various chain

lengths N = 64 − 1024 and for chain stiffness κ = 0 − 64. We only show a limited set

of data. As a reference and for comparison with the data for chains with κ 6= 0, we first

show data for a fully flexible chain where we expect to see a single crossover dynamics from

38



g1(t) ∼ t0.6 at an early time for 0 < t < τ2 to a purely diffusive dynamics for the entire chain

(g1(t) ∼ t). This is shown in Fig. 2.9 for chain length N = 512 and 1024 respectively. We

have checked that the graphs for other chain length are similar and have the t0.6 dependence

for the fully flexible chain. At late times the functions g2 and g5 saturates and the functions

g1, g3 and g4 grow linearly as a function of time, becoming practically indistinguishable

from each other. Similar studies have been reported earlier by Grest and Kremer [19] and

by Gerroff, Milchev, Paul, and Binder [81, 82, 83]. However, our studies are much more

exhaustive and quantitatively captures the crossover from t0.6 to the purely diffusive regime

which were only qualitative in previous studies and for shorter chains.

We now show data for the double crossover to support our scaling analysis for κ 6= 0.

In particular we show data for chain length N = 512 with κ =2.0 and N = 1024 with

κ =2.0, 4.0 respectively. Unlike Fig. 2.9 for κ = 0, plots for g1(t), g2(t) shown in Fig. 2.10 are

characterized by a t0.75 slope which then crosses over to the regime characterized by g1(t) ∼

g2(t) ∼ t0.6 and that g1(t) eventually merges with g3(t). When we compare Fig. 2.10(a) and

Fig. 2.10(b) consistent with the prediction of scaling theory we observe that the extent of the

t0.75 region in both the graphs are the same as they have the same value of κ = 2, although

the chain lengths are different. Likewise, comparing Fig. 2.10(b) and Fig. 2.10(c) we note

that since both plots have the same chain length the beginning of the second crossover occur

almost at the same time (τ2 ∝ N2.5) but since the latter chain is twice as stiff it has a

wider t0.75 regime resulting in a narrower span of t0.6 regime. Thus Fig. 2.10 unambiguously

confirms predictions from the scaling theory. We observe that at early time g1(t) = g2(t);
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however the width of the region g2(t) ∼ t0.6 is narrower than that of g1(t) ∼ t0.6 and it

exhibits a slightly lower value of slope before saturation. Considering that the crossovers

are broad, we believe that this is due to finite size effect as it is evident if we compare

Fig. 2.10(a) and Fig. 2.10(b). In the latter case, which is for a larger chain length, the

difference between g1(t) and g2(t) are much smaller and we notice that the difference begins

at a later time. Ideally for very large system the point when g1(t) would change its slope

towards g1(t) ∼ t, g2(t) also tend to saturate. The sharpness of this feature would require a

much larger system. We also note the same feature in Fig. 2.9. But the plots for g1(t) quite

clearly show three distinct scaling regimes of g1(t) ∼ t0.75 crossing over to g1(t) ∼ t0.6 and

then merging with g3(t) ∼ t at late times. We have further confirmed the existence of this

double crossover by plotting g1(t)/t0.75 ∼ t as shown in Fig. 2.11. The existence of an initial

plateau (t < τ1), followed by a decay ( ∝ t−0.15), and of a minimum (near τ2) before the

diffusion (∝ t0.25) starts further demonstrates quite conclusively that the exponent changes

from t0.75 → t0.6 → t. We would like to mention that because of the width of the t0.6

regime becomes narrower for stiffer chains we were unable to see this regime unambiguously

in simulation of shorter chains and/or larger κ (e.g., for N = 512 and κ ≥ 4 ). While for

N = 512 the double crossover is clear for κ = 2.0, but becomes ambiguous for κ ≥ 4.0 which

required an increased chain length of N = 1024. As expected, the crossovers are rather

gradual, spread out over a decade in time t each, and hence for chains that are not long

enough the existence of these regimes is missed in previous work.
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Figure 2.10: (a) Plot for g1(t) (black), g2(t) (red) and g3(t) (green) as a function of time on a

log-log scale for chain length N = 512 and κ = 2.0. The blue and magenta dashed lines correspond

to straight lines g1(t) = At0.75, and g1(t) = Bt0.60, respectively, where A and B are constants. (b)

same but for N = 1024 and κ = 2.0. (c) same but for N = 1024 and κ = 4.0. Note that for a fully

flexible chain the slope of the curve log(gi) versus log(t) would monotonously increase with time,

unlike the present case.
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Figure 2.11: Log-log plot of g1(t)/t0.75 as a function of t corresponding to the plots of

Fig. 2.10(a) (red), (b) (blue) and (c) (green) respectively. In each graph the minimum

occurs in the intermediate regime characterized by t0.6.

The interplay of Rouse modes and the bending modes with respect to the monomer

dynamics of semiflexible chains was considered in early work by Harnau et al. [11], in the

framework of a Rouse model generalized by higher order terms to account for chain stiffness.

They ignored excluded volume, and considered a single chain length, attempting to model

C100 alkanes in a melt. They found that their results were neither consistent with the Rouse

behavior (g1(t) ∼ t1/2) nor with the power law due to bending modes (g1(t) ∼ t3/4 ). In

our view, the chain length studied in this work was too small to observe both power laws

separately, rather all their data fall in a regime of smooth crossover. Having established the

double-crossover we now further investigate the consequence of scaling prediction that the

first crossover occurs at time τ1 ∝ `3
p when g1(τ1) ∝ `2

p. Fig. 2.12 shows a plot of g1(t)/`2
p as

a function of rescaled time t/`3
p which shows data collapse for g1(t)/`2

p ≤ 1.0 and t/`3
p ≤ 1.0

for various combinations of chain length N and κ confirming the length and the time scales
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for these crossovers.

Figure 2.12: Plot for g1(t)/`2p and g2(t)/`2p as a function of t/`3p on a log-log scale for chain lengths

N = 512, 1024 with κ = 2.0, 4.0 respectively. The dot-dashed and dashed lines correspond to

slopes 0.75 (maroon) and 0.6 (magenta) respectively.

Note that the scaling theory of section 2.1 implies

gi(t)/`
2
p = g̃(t/τ1, t/τ2), (2.18)

where τ1, τ2 are the times defined in Eqn. 2.2 and 2.6. If the first argument of the scaling

function g̃, t/τ1 is small in comparison to unity, we can approximate Eqn. 2.18 as g1(t)/`2
p ≈

g̃(t/τ1, 0) ∝ (t/τ1)3/4, which reduces to Eqn. 2.1. For t/τ1 > 1 we can rewrite the scaling

function as

gi(t)/`
2
p = ˜̃g(t/τ1, τ2/τ1) = ˜̃g(t/τ1, (Nb/`p)

5/2). (2.19)
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Note that τ2/τ1 remains constant when we increase N and `p by the same factor: this

observation explains that the scaling of the data in Fig. 2.12 encompasses the full range of

times.

2.3 Summary and discussion

In conclusion, we have studied conformations, fluctuations, and crossover dynamics of

a swollen semiflexible chain in 2D. We first developed a scaling theory which generalizes early

time monomer dynamics of a fully flexible chain for a semiflexible chain characterized by its

contour length and the persistence length. We predict a double crossover which arises due to

the presence of an additional length scale introduced through the chain persistence length.

Monomer dynamics up to a length scale `p is independent of chain length and is characterized

by the t0.75 power law. At a later time t > τ1 when the size of the fluctuations becomes bigger

than `p the dynamics begin to look like that of a fully flexible chain and characterized by the

well known t2ν/1+2ν growth. Both of these exponents have been discussed in the literature

separately but have not been emphasized that before the entire chain reaches purely diffusive

regime, there ought to be two and not one crossover, the first crossover differentiates chains

of different stiffness. Previously the dynamics of monomer MSD of semiflexible polymers

has also been studied by Harnau et al. [11], using a Rouse-type model generalized to include

chain stiffness. They saw a gradual crossover, in between bending modes and Rouse modes,
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but did not consider the scaling description of the crossover. Note that excluded volume

effects were absent in their model, and hence it is not appllcable in d=2 dimensions.

Motivated by recent lattice MC results for a swollen chain in 2D predicting the absence

of a Gaussian regime we undertook similar studies in 2D continuum using BD simulation.

While checking our data for the RMS end-to-end distance for chain of different contour

length and persistence length we discovered that we regain the well known results for the

end-to-end distance due to Schaefer, Joanny, and Pincus [59] and Nakanishi [74] provided we

use the definition of the persistence length given by either the lattice or continuum version of

the Kratky-Porod WLC model. We explain this by noting that the persistence length being

a local property of a chain does not depend on the EV interaction. This is further reassured

when we note that the persistence length calculated this way does not depend on the chain

length unlike well used textbook definition of persistence length where the projection of the

end-to-end vector on the first bond is used as the definition and does depend on the chain

length. Therefore, we emphasize that the latter definition needs to be discarded.

We also confirm the absence of the Gaussian regime in the continuum bead-spring

model where the swollen chain for L/`p � 1 behaves like a rod and thereafter always behaves

like a swollen chain. Considering that there are increased number of activities to explore

the properties of biomolecules on a surface, our result (Fig. 2.3) will be extremely valuable

to analyze the experimental data correctly for stiff molecules on flat surfaces. It has not

escaped our attention that many such reported analyses are still done using the WLC model

and/or calculating the chain persistence length from projected end-to-end to the first bond.
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Transverse fluctuations in a stiff chain has been addressed analytically in the literature

only in the extremely stiff chain limit where one finds that it is described by the roughening

exponent. Analytic calculations for moderately stiff chains are hard to carry out, and to

date there are no results for transverse fluctuations spanning the entire regime from a stiff

to a fully flexible chain. We have numerically obtained this result and pointed out that the

appropriate length variable to analyze the data is to use the persistence length as the unit

of length. When we use L/`p as the length scale to plot transverse fluctuation we discover

the non-monotonic behavior of this fluctuation reaching a maximum for some L ' `p. We

point out that this universal scaling of the transverse fluctuation can be used to measure

the persistence length of the chain. Another accompanying consequence of the absence of

Gaussian regime for a swollen chain in 2D is the decay of the bond correlation function

which exhibits a power law decay. Again, by choosing the normalized contour segment s/`p

as the appropriate variable we regain the exponent β = 0.5 which describes the decay of

bond autocorrelation for a fully flexible chain. We must point out that many of these results

and analyses on chain conformations and equilibrium fluctuations point to a common theme.

In the limit L/`p � 1 we recover the expected behavior of a fully flexible chain and chains

with different stiffness exhibit universal scaling behavior when persistence length is chosen

as the unit of length.

This general idea extends to our study of monomer dynamics as well. We have

provided a new scaling theory of monomer dynamics for semiflexible polymers in 2D. Our

theory predicts novel crossover dynamics at an intermediate time when the fluctuations of
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the monomers g1(τ1) ∼ `2
p. Around this time the monomer dynamics become the same as

that of a fully flexible swollen chain characterized by g1(t) ∼ t2ν/(1+2ν) = t0.6 in 2D . The

theory expands the existing scaling theory for monomer dynamics for a WLC and that of a

fully flexible chain to include the effect of the chain persistence length. Fully flexible swollen

chains are self-similar objects, while a polymer segment up to its own persistence length is

not. Therefore, it is expected that for length scales up to `p the dynamics will have different

characteristics due to bending modes arising out of the chain stiffness. The EV effect is

almost negligible for the t0.75 regime and therefore, our result is the same as that of previous

studies using WLC Hamiltonian [15, 16]. For the t0.6 regime originating from the EV effect,

where the monomer dynamics are governed by Rouse relaxation of a fully flexible chain, our

theory elucidates the exact role of chain persistence length neither contained in WLC model

nor studied before. We also validate our new scaling theory by extensive BD simulation

results.

A subtle issue concerns the limit κ towards infinity while keeping the contour length

L fixed. Then transverse motions of the monomers relative to each other, in a coordinate

system where the x-axis is fixed along the rod-like polymer, are completely suppressed.

In the “laboratory coordinate system”, however, the rod still can make random transverse

motions, namely rigid body rotations and translations. However, in addition to those motions

still motions of the monomers reative to each other along the axis of the rod are possible.

These motions may give rise to a transient t1/2 behavior, as a model calculation for a one-

dimensional harmonic chain shows 2.4. However, our data for gi(t) for large κ due to the
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smoothness of crossovers did not allow to clearly separate this mode of motions from the

displacements due to transverse fluctuations.

In the present manuscript we have ignored HD interactions as they are not signif-

icant for 2D swollen chains on a substrate. However we now present simple estimates of

generalization of our results in 3D and/or in presence of HD interactions which will be rel-

evant for a 3D swollen chain. In the free draining limit, the results t0.75 will remain the

same in 3D [15, 16], but the intermediate Rouse relaxation regime will be characterized by

t2ν/(1+2ν) = t0.54 (ν = 0.59 in 3D), for the case where the EV is relevant (i.e., MSDs exceeding

R∗2 = `2
p/b

2). For MSD in between `2
p and R∗2 Gaussian behavior prevails, ν = 1/2, and

hence g1(t) ∝ t1/2 in that regime. The crossover between flexible and stiff chain dynamics in

3D in the free draining limit was studied by Steinhauser et al. [66], but no scaling analysis

is done.

Replacing Rouse relaxation by Zimm relaxation one immediately sees that in presence

of HD interaction the intermediate regime is characterized by t2ν/3ν = t2/3 [64, 63, 65]. Notice

that in this case ν cancels out and this relaxation should be the same in 2D and 3D. However,

as shown by Hinczewski and Netz [63, 65], very complicated crossovers occur in this case.

We now make some comments about some recent experiments to study monomer

dynamics. This is typically done using FCS where a tagged monomer can be directly watched

in real time. However, as has been mentioned by Petrov et al. [62] that since the t0.75

regime or the intermediate regimes (either t0.5 or t2/3) occur at much shorter time scales

compared to the longest relaxation time, unless extreme caution is taken for the measurement
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of MSD of a labeled particle, the interpretation can be misleading, especially for shorter

DNA fragments [61]. For dsDNA of length 102 − 2× 104 base pairs (which is equivalent to

L/`p ∼ 0.7− 140) FCS studies of Petrov et al. observed the Zimm regime characterized by

a t2/3 power law. However, a clear demonstration of the double crossover is lacking in recent

experiments with biopolymers [3, 84, 79, 61, 62]. This is partly due to lack of resolution of

the experiments and partly due to the fact that lacking any theoretical predictions for this

phenomenon, researchers did not specifically investigate the precise behavior of MSD before

the onset of overall chain diffusion very carefully. We will provide some physical arguments

why the experimental detection can be hard: a simple calculation for Fig. 2.1 shows that in

order for the width of the t0.75 and t0.60 to be equal (in logarithmic scale) one needs N = `2.2
p

in 2D. In other words for a stiffer chain one needs a very long chain to see the t0.60 regime.

Indeed in our simulation we found (not shown here) that for κ = 16, 32, and 64, the results

with chain length up to N = 512 are largely dominated by the t0.75 regime and we did not

clearly see the t0.60 regime. It is only after we lowered the value of κ and used longer chain

(N = 1024), we identified these two regimes quite conclusively (Fig. 2.10). We suspect that

the same might happen in experiments [3]. For extremely stiff chains the t0.6 (or t0.54 in

3D) region can be extremely narrow and could either be missed or the rather smooth double

crossover might be mistakenly interpreted as a single crossover (with t2/3 in 2D). Therefore,

we believe that these results will not only promote new experiments but will be extremely

valuable in identifying and interpreting different scaling regimes for the monomer dynamics

of semiflexible polymers.
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2.4 Appendix

In this section following density relaxation in reptation theory [1], we provide physi-

cally motivating argument about the double crossover. For pedagogical reason we consider

a simpler system consisting of a bead-spring model of length N in one dimension as shown

in Fig. 2.13 which we call a compressible rod (Fig. 2.13). This can be thought of as the

Figure 2.13: Bead-spring model for a compressible rod in one dimension.

κ → ∞ of the 2D bead-spring model without rotational degrees of freedom so that all N

monomers perform one dimensional random walk along a line. In this case the mean square

displacement of the center of mass of the rod is given by

〈[XCM(t)−XCM(0)]2〉 = 2dN t, (2.20)

〈[YCM(t)− YCM(0)]2〉 = 0,

and the mean square end-to-end distance is

〈R2〉 = (N − 1)2l2b ≈ N2l2b , (2.21)
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where lb is the average distance between the neighboring monomers along the rod. The time

needed for the center of mass to diffuse over the distance
√
〈R2〉 is

2dNτ = N2l2b , τ =
N2l2b
2dN

=
2N3l2b
(δ2W )

. (2.22)

In above W is the rate of random displacement per unit time and δ is the average step length

for such random motion. If we assume, that monomer MSD in the compressible rod limit

satisfies a power law

〈[xi(t)− xi(0)]2〉 = δ2(Wt)x (2.23)

and assume that for t = τ the same MSD as for the center of mass, 〈R2〉, is reached

〈[xi(t)− xi(0)]2〉 = δ2(Wτ)x = 〈R2〉 = N2l2b , (2.24)

we obtain

δ2

(
2N3l2b
δ2

)x
= N2l2b , x = 2/3 (2.25)

This would mean one simple crossover for the compressible rod. This is shown in Fig. 2.14(a).

However, it is not obvious that this simple scaling description must be correct. Recall

that a law τ ∝ N3 is reminiscent of reptation! The reptation idea can be recognized in

Fig. 2.13, if we reinterpret the x-coordinate as a coordinate along the TUBE axis of reptation

theory. Then the picture due to de Gennes is that density excess diffuses along chain contour,

until all the density excesses are equilibrated ( in view of Fig. 2.13, this picture is really

plausible when we introduce an intermediate length scale lcg on which we estimate a coarse

grained density by counting the number of bonds on this length scale, ncg, we will see that the

coarse grained density ρcg = ncg/lcg for every instantaneous configuration is inhomogeneous,
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but these inhomogeneities decay by diffusion of excess density). In this case we conclude

that the diffusion time is just the standard Rouse time

τR ∝ L2/(δ2W ) (L = Nlb). (2.26)

and we have for the monomer MSD

〈[xi(t)− xi(0)]2〉 = δ2(Wt)1/2, for t < τR (2.7)

〈[xi(t)− xi(0)]2〉 = Wδ2t/N, for t > τR (2.8)

Figure 2.14: (a) Scaling description of compressible rods. Different regimes of monomer relaxation

and crossover. (b) True scaling description of compressible rod dynamics.

One obtains the “ordinary” reptation picture of deGennes by transferring from the

coordinate of the tube axis (which is what Figs. 2.13 and 2.14(b) describe) to the coordinates

in real space, assuming that the tube is a random walk. This transformation has the effect
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that

〈[∆xi(t)]2〉 ∝ t1/2 → 〈[∆~ri(t)]2〉 ∝ t1/4 for t < τR

〈[∆xi(t)]2〉 ∝ t → 〈[∆~ri(t)]2〉 ∝ t1/2 for t < τ (2.9)

and only then at t = τ a crossover shows up.

Thus our conclusion is that Fig. 2.14(a) is wrong and Fig. 2.14(b) represents the right

scenario. In order to verify this theory we have carried out Brownian dynamics simulation

of a compressible rod using the same algorithm as outlined in Sec. 1.3. In order to observe

the density relaxation of the monomers we had to choose the FENE spring constant to a

smaller value. The results are shown in Fig. 2.15 where we clearly see the double cross over

with g1(t) ∼ t0.25 (early time) and g1(t) ∼ t0.50 respectively. Moreover since the first cross

over occurs for g(τ1) ∝ N at τ1 ∝ N2 the rescaled plots for three different chain lengths fall

on the same master curve. Unlike, the 2D system of semiflexible chain while we only see

some evidence of this cross over for chain length up to N=256, in this idealized system this

double crossover with two distinct powers is seen very clearly for much smaller chain length.

Now the crucial effect is in 2D semiflexible (rather than infinitely stiff!) polymers is due to

bond bending collective modes. Therefore, the natural second length scale that comes in to

the early time dynamics of this system is the chain persistence length. The corresponding

scaling theory is developed in Sec. 2.1.
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Figure 2.15: g1(t) and g3(t) for a one dimensional compressible chain as a function of time t for

chain lengths (a) N = 32, (b) N = 64, and (c) N = 128 respectively which show the crossover

dynamics from t0.5 to t1.0; (d) rescaled ḡ1(t) = g1(t)/N and ḡ3(t)(t) = g3(t)/N as a function of

rescaled time t/N2 where both the regimes collapse on the same master curve.
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CHAPTER 3
DNA CONFINED IN A TWO-DIMENSIONAL STRIP

GEOMETRY

Conformations and dynamics of DNA inside a nanochannel have attracted consider-

able attention among various disciplines of science and engineering [85]. Important biomolecules,

such as, chromosomal DNAs, or proteins whose functionalities are crucially dependent on

the exact sequence of the nucleotides or amino acids usually exist in highly compact con-

formations. By straightening these molecules on a two dimensional sheet [86, 87, 88] or

inside a nanochannel [89, 90, 91, 92, 93, 94] it is possible to obtain the structural details

of these molecules. It is believed that a complete characterization of the DNA sequence

for each individual and a proper understanding the role of genetic variations will lead to

personalized medicine for diseases, such as, cancer [95]. DNA confined and stretched inside

a nanochannel offers significant promise towards this goal. Unlike, traditional sequencing

using Sangers method [96, 97] which requires fragmentation and replication, analysis of a

single DNA will be free from statistical errors and sequence gaps while reconstruction [95].

Naturally quests for efficient but low cost techniques have attracted considerable attention.

Along with optical maps [86, 91], recently DNA melting characteristics inside a nanochannel

have been studied showing further promises [93]. These recent experiments have generated

renewed interests in theoretical and computational studies of confined polymers [98]-[99].

55



Confined DNAs inside nanochannels often studied in high salt concentrations [85]

where the charges of the individual nucleotides are heavily screened [100, 90]. Besides,

the resolution of optical studies set by the diffraction limit is typically of the order of 100

base pairs. Under these conditions a double-stranded DNA is often described as a worm-

like chain (WLC) [1] whose end-to-end distance 〈R2
bulk〉 = 2`pL

(
1− `P

L
[1− exp (−L/`P )]

)
interpolates from a rod (〈R2

bulk〉 ∼ L2 for L � `p) to a Gaussian coil (〈R2
bulk〉 ∼ 2L`p

for L � `p). However, for a very long chain eventually the excluded volume (EV) effect

becomes important [76, 75], and for L� `p the end-to-end distance in d dimensions should

be characterized by the bulk conformation of a swollen semi-flexible chain [59, 74]

√
〈R2

bulk〉 = a

(
L

a

) 3
d+2
(
`p
a

) 1
d+2

, (3.1)

where a is the effective width of the chain. It is noteworthy that while in 3D there is a

broad Gaussian regime for L ' `p [76, 75] before EV effects become important, in two

dimensions (2D) the intermediate Gaussian regime is absent due to severe dominance of the

EV effect [53, 101].

Recently confined polymers in rectangular, cylindrical and triangular channels have

been studied by several groups [98]-[99]. One first sees the effect of the confinement (described

by the length of the cross section of the channel D) for D < Rg, where Rg is the radius of

gyration of the chain. This limit has been identified as the Flory-de Gennes regime where

chain conformations can be described as a series of spherical blobs of size D [102, 42]. Further

decrease of the ratio D/Rg first leads to an extended de Gennes regime with anisotropic

blobs followed by a Gaussian regime analogous to the 3D bulk case, which has been referred
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as the Gauss-de Gennes regime [103]; for extreme confinement when `p � D, the blob

picture breaks down and the chain enters into the Odjik regime [21, 22] where the chain

conformations are described as a series of straight segments deflected from the confining

wall [104]. While both de Gennes and Odjik regimes are well established, characteristics

of the transition regions (the extended de Gennes and the Gaussian) have been the main

goal of several recent studies [104, 100, 103, 105]. However, the extension of the confined

DNA in the extended de Gennes regime has been determined to be the same as in the de

Gennes regime by minimizing the free energy [85, 100, 105], so making a difference of these

two regimes has been either difficult or not evident [100, 103].

3.1 Scaling regimes

Confined chains inside 3D nano-channels exhibit analogous regimes as found in their

respective bulk counterparts [103]. In this letter we study confined DNA in a 2D strip

geometry. As mentioned before, that unlike in 3D, the bulk Gaussian regime does not

exist for semi-flexible chains in 2D [53, 101]. Therefore, one wonders, if regimes of confined

DNA in 2D will follow their corresponding bulk counterpart. The second motivation comes

from the observation that the Flory exponent in 2D (0.75) is significantly larger than the

corresponding exponent in 3D (0.588) which implies that a chain is more elongated in a 2D

strip rather than in a tube of the same width D. Therefore, the elongation would be more

profitable by further reducing the physical dimension of the region. Finally, in the Odjik
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limit, prior theoretical and numerical results [98] have indicated that the prefactor A in the

expression for the chain elongation (see Eqn. 3.9) is nearly independent of the shape of the

nanochannel. By studying elongation along a 2D strip, we further observe that this constant

is almost the same as the values in 3D indicating that this constant is independent of the

spatial dimension. While in 3D the extended de Gennes limit is somewhat controversial, we

provide scaling arguments for a 2D strip and validate by carrying out BD simulation that

the extended de Gennes regime is vanishingly small. This result along with the absence of a

Gaussian regime in a 2D strip geometry implies that a 2D strip is a cleaner system to study

a stretched chain as the conformations interpolate between de Gennes and Odjik regimes

only, and therefore, is another reason to think about designing DNA elongation experiments

inside a 2D strip.

3.1.1 de Gennes regime

The starting point of our theoretical analysis is the ansatz for the normalized free

energy F/kBT of confinement along a tube axis first proposed by Jun, Thirumalai, and

Ha [106], later used for a square channel [100] and a slit [105], and is given by

F/kBT =
X2

(L/Lblob)D2
+ D

(L/Lblob)2

X
, (3.2)

and the expression for the end-to-end distance of a swollen semi-flexible chain as given by

Eqn. 3.1. Here X is the extension along the tube/strip axis, and Lblob the contour length

of the chain in a blob [102, 42], kB is the Boltzmann constant, and T is the temperature.
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lp << D

de Gennes
regime

Gauss-de Gennes
regime

Odijk
regime

lp ~ D lp >> D

λθ

Figure 3.1: Three established regimes for a semi-flexible polymer under a three-dimensional channel

confinement. In the de Gennes regime(`p � D), the chain configuration can be viewed as a series

of blobs of size D, in Gauss-de Gennes regime(`p ∼ D), the chain behaves like an ideal chain, and

in Odijk regime(`p � D), the chain deflects back and off the wall. Note that the controversial

extended de Gennes regime is not present here, and one of the main results in this chapter is that

the Gauss-de Gennes regime is also absent under a quasi-one-dimensional confinement.

The dimension dependence comes from the chain statistics for Lblob (Eqn. 3.1). In order to

contrast the results for polymers confined in a 2D strip with those for cylindrical, square, and

rectangular channels, in the following we derive expressions in terms of d spatial dimensions

(d = 2 for a strip and d = 3 for a tube). By differentiating Eqn. 3.2 with respect to X,

one can easily check (i) X = Dnblob, where nblob = L/Lblob is the number of blobs, (ii)

F/kBT ∼ nblob, and (iii) F/kBT ∼ L. For the de Gennes regime monomers inside the blob

are described by the conformation of a swollen chain either in d = 2 (strip) or d =3 (tube),

so that D = Lblob
3/d+2`p

1/d+2ad−2/d+2 (Eqn. 3.1). It is then easy to check that the elongation

is given by

〈X〉de Gennes = Dnblob = L

(
D

a

) 1−d
3
(
`p
a

) 1
3

. (3.3)
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Likewise, the second derivative of Eqn. 3.2 gives the effective stiffness constant keff for the

DNA polymer [85, 89] under confinement, so that the longitudinal fluctuation of the extension

〈σ2〉 can be obtained as

〈σ2〉 =
kBT

keff

= La

(
`p
a

) 1
3
(
D

a

) 4−d
3

. (3.4)

3.1.2 Extended de Gennes regime

It was argued [85, 104, 100] that the scaling relation Eqn. 3.1 for each spherical blob

in de Gennes regime only holds true when the channel size D and chain length L both

are above certain critical values D∗∗ and L∗∗ respectively to be determined in the following

manner. When D < D∗∗ the EV repulsion becomes less significant resulting in a local ideal

chain behavior in each blob, while strong enough to sustain the global picture of linearly

ordered blobs, each turning into an ellipsoid characterized by its major axis H (and of

volume ∼ Dd−1H) along the long axis of the nanochannel [107]. The critical length L∗∗ and

the critical channel width D∗∗ can be obtained by equating the size of an ideal chain and a

Flory coil in the bulk: D∗∗ ' (L∗∗`p)
1/2 ' `p

1
d+2 L∗∗

3
d+2 , from which we get

L∗∗ ' a

(
`p
a

) d
4−d

andD∗∗ ' a

(
`p
a

) 2
4−d

. (3.5)

Notice that L∗∗ ' l3pa
−2, D∗∗ ' l2pa

−1 in 3D while L∗∗ ' D∗∗ ' lp in 2D. Both ideal and EV

effects coexist in this regime [104]. This balance of ideal and EV behavior is obtained by
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setting ad−2L2
blob/HD

d−1 = 1 from which the length H can be obtained as follows:

H =
√
Lblob`p = ad−2L

2
blob

Dd−1
(3.6)

Denoting Lblob as Lellip, from Eqn. 3.6 we get

Lellip = `p
1
3

(
Dd−1

ad−2

) 2
3

andH = `
2
3
p

(
Dd−1

ad−2

) 1
3

. (3.7)

Replacing D → H, Lblob → Lellip in Eqn. 3.2 and minimizing with respect to X, we get

X = H(L/Lellip), and substituting Lellip and H by Eqn. 3.7 we obtain Eqn. 3.3. This

completes the proof that the de Gennes regime and the extended de Gennes regime can not

be differentiated from the elongation of the chain.

However, by repeating the same procedure we note, unlike Eqn. 3.4 in the extended

de Gennes regime the fluctuation is different and is given by 〈σ2〉 = L`p. Therefore, the de

Gennes regime and the extended de Gennes regime can be differentiated by measuring the

characteristic fluctuations in their respective chain extensions [100]. The lower bound D∗ of

the extended de Gennes regime where it merges with the Gauss-de Gennes regime, following

Odijk’s scaling analysis [104] (which is also valid in 2D) is given by D∗ ' c`p, where the

prefactor c ' 1 (in [100] it was found to be ≈ 2). Using Eqn. 3.5 we note that while the

range for the extended de Gennes regime being [D∗, D∗∗] = [c`p, `
2
p] is broad in 3D, it would

be either very narrow or vanishingly small to be observed in [c`p, D∗∗ ' `p] in 2D.
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3.1.3 Gauss-de Gennes regime

Upon further decrease of the confining region, for D < D∗ the EV effect plays no

role, and the DNA behaves as a Gaussian chain [104, 103], so that D = (Lblob`p)
1/2 [103].

Then according to Eqn. 3.2, we have the extension

〈X〉Gauss−deGennes = L
`p
D
, (3.8)

which holds both in 2D and 3D. It is easy to check that in this regime the fluctuation

〈σ2〉 = L`p, the same as in the extended de Gennes regime.

While Eqn. 3.8 has been recently tested to be true for 3D [103] channels, similar

studies have not been done for confined polymers in 2D strips. Considering the absence

of Gaussian regime for a bulk 2D swollen chain [53, 101] one wonders if this new Gauss-

de Gennes phase will be observed in a 2D strip. The universal fluctuations from our BD

simulation studies (Fig. 3.5) will provide conclusive evidence for the absence of a Gaussian

regime inside a 2D strip.

3.1.4 Odjik regime

For `p � D Odijk [21, 22] argued that the chain deflects back and forth off the wall

with a deflection length of λ ' (`pD
2)1/3, and the extension of the confined polymer can be

written as [108]

〈X〉Odijk = L

[
1− A

(
`p
D

)− 2
3

]
, (3.9)
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where A is a “universal”[109] prefactor [98, 110]. In this limit it is easy to check that the

the free energy and fluctuations in chain length both in 2D and 3D are given by

F/kBT = B
L

(`pD2)1/3
and〈σ2〉 =

LD2

`p
. (3.10)

3.2 Brownian dynamics simulation results

To provide further support to our scaling analyses we have performed Brownian dy-

namics (BD) simulation with a bead-spring model for a swollen chain having pairwise re-

pulsive Lennard-Jones (LJ) interaction between any two monomers (excluded volume), a

finitely extensible nonlinear elastic (FENE) potential between the successive beads (elastic

bond energy), and a three-body potential Ubend = κ(1 − cosθi), where θi (Fig. 3.2) is the

angle between two consecutive bonds, and the parameter κ = 1
2
kBT`p is a measure of the

chain stiffness proportional to the chain persistence length `p. The DNA-wall interaction is

also modeled as LJ. We observed that during simulation the average bond length stays at

0.97 with a fluctuation less than 0.2%, and the bending potential hardly affects the bond

length. By monitoring 〈cosθ〉 we also find that `p = −1/ln (〈cosθ〉) ≡ 2κ/kBT to be the

same as in a WLC [101]. Numerical integration of the equation of motion with respect to

time in the canonical ensemble was done according to the algorithm developed by Gunsteren

and Berendsen [20]. In our simulation we have used reduced units of length, time, and tem-

perature to be a, a
√

m
ε

, ε/kB, respectively. We have chosen a large number of combinations

of 256 ≤ N ≤ 1024, the chain persistence length 2 ≤ `p ≤ 270 (by varying κ from 1 to
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160 ), and the strip width D = 18, 36, and 80 such that the ratio lp/D is in the window

0.025 ≤ lp/D ≤ 15 and 1 ≤ L/`p ≤ 400.

i−1

i

i+1

i+2

i+3

θi

Figure 3.2: Bead-spring model of a 2D polymer confined in a 2D channel.

With these choices we cover experimental study scales (the commonly used λ DNA in ex-

periments has a contour length L = 16.5µm with a persistence length `p ' 50 nm, and

the channel diameter ranges between 10 nm -200 nm [85]) and fully interpolate from the de

Gennes limit to the Odijk limit. The confined chains were equilibrated for several Rouse

relaxation time before data were collected over a span of 10 - 25 Rouse relaxation time to

ensure convergence.

Fig. 3.3 shows the normalized chain extension. All the data for many combinations

of L, `p, and D collapse onto one master curve and shows a smooth transition from de

Gennes regime to Odijk regime, which also indicates the absence of Gauss-de Gennes regime

predicted by Eqn. 3.8. For `p ≤ D excellent linear fit of 〈X〉/L ∼ (`p/D)1/3 validates

theoretical prediction of de Gennes regime (Eqn. 3.3). For `p > D we used Eqn. 3.9 to fit the

data and the prefactor is determined to be Astrip = 0.171. With prior reported values for this

prefactor Asquare = 0.183 and Acylin = 0.170 [98, 110]) it indicates that the constant A has

little dependence on the physical spatial dimension and nearly universal, being consistent
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with the fact that one can show the validity of Eqn. 3.9 in both 3D and 2D.

Figure 3.3: Dimensionless chain extension 〈X〉/L as a function of (`p/D)1/3 for various combination

of chain length N , persistence length `p, and width D of the confining strip. The inset is the log-log

plot 〈X〉/L as a function of `p/D showing excellent data collapse with initial slope of 1/3 for `p ≤ D

verifying Eqn. 3.3.

In the log-log plot shown in the inset of Fig. 3.3, the 1/3 power law dependence in the de

Gennes regime expands to lp/D ' 1 and the scaling relation Eqn. 3.8 in Gauss-de Gennes

regime is not seen at all. Furthermore, around `p/D ' 1 we find that both Eqn. 3.3 as well

as Eqn. 3.9 give almost the same value for the extension, which shows that a description by

Eqn. 3.8 is not necessary indicating that there is no Gauss-de Gennes regime between them.

We also observe another interesting feature by plotting chain extensions 〈X〉 nor-

malized by the corresponding bulk end-to-end distance Rbulk as a function of `p/D which

exhibits a peak for each curve as shown in Fig. 3.4. This peak can be reconciled by noting
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that the normalized extensions in the de Gennes and Odijk limits can be expressed as

〈X〉de Gennes

Rbulk

=

(
L

`p

)1/4(
`p
D

)1/3

= L̃ ˜̀
p

1/12
, (3.11a)

〈X〉Odijk

Rbulk

=
(

1− A ˜̀
p
−2/3

)
L̃1/4l̃p

−1/4
, (3.11b)

where we have used D as the unit of length (data points in each curve in Fig. 3.4 have the

same D) so that L̃ = L/D and ˜̀
p = `p/D respectively.

Figure 3.4: Plot of the normalized extension by the end-to-end distance Rbulk in the bulk. The

inset shows plot of Eqn. 3.11a.

Eqns. 3.11a and 3.11b readily follow from Eqns. 3.1, 3.3, and 3.9 respectively. One notices as

`p/D increases, i.e. ˜̀
p increases, and the extreme left and right side of the peak correspond

to de Gennes and Odijk limits respectively. But from Eqn. 3.11a and 3.11b we note that for

small values of ˜̀
p the normalized extension increases as ∼ l̃p

1/12
(de Gennes limit) whereas,

for large values of ˜̀
p the normalized extension decreases as ∼ l̃p

−1/4
(Odijk limit), which

implies that for finite extension of a chain, the normalized extension will exhibit a maximum

as a function of `p/D. It is also noteworthy that this maximum occurs for `p/D ∼ 1 at the
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confluence of de Gennes and Odijk limit. This description is also consistent with the critical

channel width D∗ ' 2`p which marks the onset of Odijk regime. We also plotted Eqn. 3.11a

which is only valid in de Gennes regime (i.e., for `p < D) at the inset of Fig. 3.4 showing

data collapse similar to Fig. 3.3.

Figure 3.5: Normalized fluctuation 〈σ2〉/LD as a function of (`p/D)1/3 for the same combinations

of N , `p, and D as in Fig. 3.3. The inset shows (`p/D)−1 dependence in the Odijk limit.

We now show simulation results for the fluctuation in the chain extensions and com-

pare these results with the theoretical predictions. According to Eqn. 3.4 and Eqn. 3.10 the

normalized fluctuation 〈σ2〉/LD scales as (`p/D)1/3 and (`p/D)−1 in the de Gennes and Odjik

limits respectively. Indeed we find in Fig. 3.5 that the fluctuation grows as (`p/D)1/3 in the de

Gennes regime until `p ' 0.5D when it enters the Odijk limit and decays as (`p/D)−1 (inset).

It is reassuring to note that since both the extended de Gennes and the Gauss-de Gennes

regimes do not occur inside a 2D strip, in Fig. 3.5 we do not see any intermediate regime

where 〈σ2〉/LD ∼ `p/D, the characteristic fluctuations of both the extended de Gennes as
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well as the Gauss-de Gennes regimes. The excellent data collapse for same combinations of

N , `p, and D as in Fig. 3.3 and the sharp peak signifies the onset of a transition from the

de Gennes regime to the Odijk regime.

To summarize, in this letter we have provided a generalized scaling theory of confined

DNA in d-dimensions and compared/contrasted the behavior in 2D with those in 3D reported

recently in the literature. We validate the scaling analyses by BD simulation where we

identify each regime from excellent data collapse for the characteristic universal dimensionless

extensions and fluctuations in terms of the dimensionless parameter `p/D. From the scaling

analysis and results from BD simulation reported in this letter, and prior work for 3D

cylindrical and square channels, we concur that the different regimes of confined polymers

follow their corresponding regimes in the bulk. We find that for a 2D strip, the Gaussian

regime is absent and the extended de Gennes regime is vanishingly small, so that the chain

conformations inside the channel are described either by the de Gennes or by the Odjik

regime. Thus the chain conformations for a straightened DNA inside a 2D strip are cleaner

than for those of the 3D cylindrical and square geometries. Therefore, we believe that this

work will motivate further experimental and theoretical work to study confined DNA inside

nano-strips.
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CHAPTER 4
SEMI-FLEXIBLE MACROMOLECULES IN

QUASI-ONE-DIMENSIONAL CONFINEMENT: DISCRETE
VERSUS CONTINUOUS BOND ANGLES

Semiflexible polymers confined in narrow channels have found abiding interests re-

cently, both in experiments [85, 91, 89, 111, 112, 88, 113, 114, 115, 93, 90, 94, 116, 117],

analytical theory [78, 118, 119, 120, 121, 122, 106, 104, 123, 124, 125], and in computer

simulations [126, 127, 128, 100, 129, 103, 130, 131, 56, 132, 133, 134, 135, 136].From the

application side, this problem is of great interest for the detection of single DNA molecules,

separating them by size, and to develop tools for their sequence analysis. On the theoretical

front, confined semiflexible polymers pose a variety of challenging questions: what aspects

of the behavior are specific to a particular polymer, and what aspects of the behavior are

generic? For fully flexible polymers confined into cylinders with non-attractive walls under

good solvent conditions, one expects a fairly universal picture as soon as the cylinder diameter

D is much bigger than the size ` of an effective segment. Then scaling theory predicts [102, 42]

that a chain takes a cigar-like conformation of length L‖ ≈ Dnb where nb is the number of

blobs of diameter D forming a one-dimensional string. Inside each blob self-avoiding walk

(SAW) statistics prevails, and hence the number of monomers n per blob satisfies the relation

D ≈ `nν , where ν is the Flory exponent [42], and prefactors of order unity in such scaling ar-

guments are omitted, as usual. Noting that the total number of monomers per chain is N =
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nbn, one readily concludes L‖ ≈ `(D/`)1−1/νN . This result has been verified by simulations

of various coarse-grained models (e.g., Refs. [137, 138, 139, 98, 140, 141, 142, 143, 144, 145]

and [146]).

However, when we deal with semiflexible chains, the persistence length lp introduces

already additional length scales for chains in bulk solution. Indeed, for contour lengths

L = (N − 1)`, the chain conformation in a coarse-grained view may resemble a flexible rod

of diameter ` for L < `p, while for L ≥ `p in d = 3 dimensions, the polymers resemble

Gaussian coils, with a mean-square end-to-end distance R2 = 2pL, as long as excluded

volume effects can be neglected. If one models a semiflexible polymer as a freely jointed

chain of rods that have length `p and diameter w (Fig. 4.1(a)), one concludes (that in d =

3 dimensions) excluded volume effects become relevant [59, 74, 75] if L exceeds L∗ ≈ `3
p/w

2

and hence the associated chain radius R∗ ≈ `2
p/w. For `p < L < L∗, the conformation of a

semiflexible polymer in d = 3 dimensions under good solvent conditions resembles a Gaussian

coil, and only for L > L∗ does one find swollen coils, 〈R2〉 = `
2/5
p w2/5L6/5 (if one uses the

Flory estimate [42, 45] ν = 3/5 instead of the more accurate estimate [147] ν ≈ 0.5877).

In d = 2, however, this intermediate Gaussian regime is absent [74, 53], and for L ≈ `p,

one immediately crosses over to two-dimensional self-avoiding walk like conformations, with

〈R2〉 ≈ `
1/2
p L3/2 (remember ν = 3/4 in d = 2) [42, 45]. We now draw attention to the length

scales of confined semiflexible polymers. For semiflexible chains confined in a cylinder or in

a planar slit of diameter (or width) D, the Odijk deflection length [78] (Fig. 4.2(a))

λ ≈ D2/3`1/3
p , (4.1)
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which describes the typical length scale over which a chain maintains its orientation in a very

narrow channel (D � `p), gives rise to additional length scales due to hairpin formation [104,

148],such as the typical distance g between neighboring hairpins (Fig. 4.2(a)), when D is of

the same order as `p. While one expects that semiflexible chains in wide channels (D � `p)

also are compatible with the Daoud-De Gennes [102] picture of a string of blobs, the crossover

from the Odijk regime (D � `p) where L‖ differs from L only by a small correction (of

order [78, 98] (D/`p)
2/3) to this regime is still a matter of debate [85, 127, 128, 100, 129,

103, 133]. However, we note that Eqn. 4.1 is based on the use of the Kratky-Porod model

of wormlike chains [8, 7] which describes the polymer in terms of a contour ~r(s) in space, s

being a coordinate along this contour, and the Hamiltonian involves a single parameter, the

bending rigidity κKP ,

H =
κKP

2

∫ L

0

ds

(
d2~r

ds2

)2

. (4.2)

The persistence length `p is related to κKP via `p = κKP/kBT (in d = 3) or `p = 2κKP/kBT

(in d = 2, respectively).

Of course, linear macromolecules are chain molecules where discrete monomers are

linked together with covalent chemical bonds along the backbone of a chain; a continuum

model such as Eqn. 4.2 can make sense only if the number nm of such monomers on the length

scale `p is very large. This is the case for double-stranded (ds) DNA, where in typical cases,

`p ≈ 50nm [149] and ` ≈ 0.260.5 nm [46]; however, when we consider a situation where D

is significantly smaller than `p and two hairpins have to fit into the scale D (Fig. 4.2(a)),

the accuracy of such continuum descriptions seems to us somewhat doubtful.
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Moreover, it also is of interest to consider also polymers with smaller persistence

length, even almost flexible polymers like polyethylene (PE), Fig. 4.1(b), and polystyrene

(PS) exhibit already some local stiffness that needs to be accounted for, and many other

rather stiff synthetic polymers exist. Thus, while for PE at T = 400 K, `p ≈ 0.75 nm (and

the length ` of the CC bond is 0.15 nm) [150] and for PS corresponding literature estimates

[151, 152] are ` = 0.25 nm, `p ≈ 1.01.15 nm, a comparative study of various synthetic

polymers [153] has yielded estimates for ellp in the range from 1 nm to 42 nm, giving also

evidence for the double crossover (from rods to Gaussian coils and then to swollen coils) with

increasing contour length, in bulk solution under good solvent conditions. For biopolymers

one can find examples where `p ≈ 25 nm (acetan) or `p = 120 nm (xanthan) [154], and thus,

we prefer not to constrain `p in our study to a particular value, but rather find it useful to

vary it from the fully flexible limit to very stiff chains.

We focus on the fact that for semiflexible polymers, different coarse-grained models

are useful (see Fig. 4.1), depending on the underlying chemistry of the macromolecules that

are studied which may differ in their mechanism of flexibility [155]. For dsDNA (under many

conditions of interest), there is no conformational disorder on length scales much less than

`p, and flexibility only arises due to the gradual accumulation of the effect of small deviations

of valence angles, bond lengths, etc., from their energetically preferred average values. Such

deviations inevitably are present due to thermal vibrations [155].In polymers such as PE and

PS, however, the dominating mechanism of flexibility is of the type of the rotational isomeric

states (RIS) model [44], where the chain can be viewed as a succession of all-trans sequences
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(n CC bonds where the torsion angle ϕ), separated by gauche (g±) states where the torsional

angle is ±120◦(Fig. 4.1(b)). The typical length of all-trans sequences is controlled by the

depth of the trans-minimum in the torsional potential relative to the gauche minima, and

thus strongly temperature-dependent.

In the context of computer simulations, a much simpler model of this type is defined

on the square (Fig. 4.1(c)) or simple cubic lattice, where one models macromolecules simply

as self-avoiding walks on these lattices, modeling local chain stiffness via introduction of

an energy penalty εb whenever the walk makes a ±90◦ turn. While this model clearly is

only a crude caricature of any real polymer, it shares the property of the alkane-type chains

that the local chain contour does not resemble the smooth wormlike chain picture implied

by Eqn. 4.2. We feel that different coarse-grained models of semiflexible polymers may

be needed for different circumstances: models of the type of Figs. 4.1(b) and 1(c) may be

appropriate for the description of an alkane chain in a carbon nanotube, while the wormlike

chain model may be more appropriate for DNA in channels that are 150 nm wide [85].

Of course, it is well-known particularly for biomolecules that one has to deal there

with a multitude of energy scales and length scales, and the optimum choice of a coarse-

grained model does depend on the phenomena under study [49, 156]. As a disclaimer, we

emphasize that the models shown in Figs. 4.1 and 4.2 are not meant as an exhaustive list:

there are many other interesting models in the literature that we do not discuss here (e.g.,

Refs. [157] and [158]). In our paper we shall also not discuss further the model of Fig. 4.1(a),

although it was used in related studies [131, 135]. Here, we shall only focus on a comparison
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of the two models of Figs. 4.2(b) and 2(c), both in the bulk and under confinement, to

clarify to what extent their properties are universal and to find out what the consequences

of different assumptions (such as discrete versus continuous bond angle distributions) are.

Also the question to what extent the wormlike chain model (Fig. 4.2(a)), which ignores

the fact that there are individual monomers along a chain rather than a continuous mass

distribution, describes the properties of these models accurately will be addressed. Thus, it is

the aim of this study to elucidate some general questions on the concept of coarse-graining of

macromolecules and study the question which properties of (confined) semiflexible polymers

are universal and which are model-dependent.

In Sec. II, the models studied and the simulation methodologies will be briefly sum-

marized. In Sec. III, a comparison of the properties of single chains in bulk (two-dimensional)

solution for both models will be given. Sec. IV describes our findings for confined chains,

focusing on the case of confinement by repulsive boundaries only. We shall address also the

problem of the extent of depletion of monomers near these repulsive walls, since the density

profiles of flexible and semiflexible polymers near hard walls are predicted to have character-

istic differences [159].Throughout this work, we pay attention to the fact that the persistence

length is a meaningful concept for the local chain stiffness only [47, 76], it must not be as-

sociated with the decay of long range orientation correlations along the chain contour. Sec.

V finally summarizes our conclusion.
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Figure 4.1: Some coarse-grained models for semiflexible polymers (schematic). Case (a) shows

a model where rigid cylinders of length `p and diameter w are freely jointed at their links. The

excluded volume for a link of another chain (displayed in lighter gray) is a disk of height w and

diameter `p, as indicated by broken lines. This type of model is used as an input for the Flory-theory

treatment. Case (b) shows a model for alkane chains with rigid bond lengths and perfect tetrahedral

bond angles, so that the chain fits on an ideal diamond lattice (the sites of the lattice are shown

by open circles, connected by thin bonds). The monomers (CH2-groups) are shown as black dots,

connected by C-C bonds (thick lines). An all-trans sequence of n1 bonds (torsion angles = 0 in

the all-trans sequence) terminates by a gauche ± state (torsional angle ϕ = ±120◦, highlighted

by an arrow) where a differently oriented all-trans sequence of n2 bonds follows. Case (c) shows

a two-dimensional generalized self-avoiding walk model on the square lattice. Due to an energy

penalty for ±90◦ kinks along the chain, the numbers of straight sequences of bonds along the x-axis

(nx) and along the y-axis (ny) typically are much larger than unity. A possible definition of the

persistence length then is `p = 〈nx〉a = 〈ny〉a, where a is the lattice spacing.
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Figure 4.2: Some models for confined semiflexible chains: Case (a) shows the Kratky-Porod worm-

like chain in a strip of width D, illustrating the definition of the deflection length λ and the typical

distance g between neighboring hairpins. Also the component of the end-to-end distance parallel

to the boundaries R‖ is indicated. Case (b) shows a bead-spring model, where flexibility is con-

trolled by a potential Ub(θi) for the bond angles θi. Walls are indicated by particles touching each

other. Case (c) shows the model of case (Fig. 4.1(c)) assuming confinement in a strip of width D,

displaying also a lattice analog of a double hairpin configuration.
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4.1 Models and simulation methodology

In this paper, we consider models in d = 2 space dimensions only. Although this

restriction precludes a direct comparison of our results with most experimental work, there

is the major simplifying feature, that unconfined semiflexible polymers exhibit a single

crossover, from rods to self-avoiding walk like chains [74, 75, 54, 160, 68].The intermedi-

ate region of Gaussian random walk-like chains does not occur, and there is evidence to

believe that this intermediate regime complicates the crossover behavior of confined semi-

flexible polymers considerably (see, e.g., Refs. [100]and [129]). Also the complication that

knots may form (which is relevant for dsDNA in various circumstances [161, 162]) cannot

occur in d = 2. Our preliminary work [56, 133] on confinement effects on chains in d = 2

already has indicated a rather complex behavior, and hence in the present work, we shall

address this problem in more detail, with an emphasis on the question to what extent the

phenomena are universal and which aspects are model-dependent. Hence, we shall contrast

results for the lattice model of Figs. 4.1(c) and 4.2(c) with results for the bead-spring model

of Fig. 4.2(b) and shall explore to what extent the predictions of the Kratky-Porod wormlike

chain model in the continuum (Fig. 4.2(a)) can be verified.

In our lattice model, each effective monomer occupies a lattice site of the square

lattice, and the bond length ` between nearest neighbors along the chain is just the lattice

spacing, taken as a unit of length for this lattice, so the contour length L, related to the

number of beads N as L = (N − 1)` also is an integer. Both for this model and the
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continuum bead-spring model we assume that the standard bond bending potential (θ is the

angle between subsequent bonds along the chain)

Ub(θ) = εb(1− cos θ) (4.3)

On the lattice, however, only angles θ = 0◦ and ±90◦ are permitted (θ = 180◦, i.e., immediate

reversals are forbidden by excluded volume, of course) and so Ub(θ) = 0 if the SAW continues

straight on, while Ub(θ) = εb if it makes a kink. The partition sum of the semiflexible SAW

hence can be written as a polynomial in the Boltzmann factor qb = exp(−εb/kBT ),

ZN(qb, D) =
∑

config.

CN,Nbend
(D)qNbend

b (4.4)

Here, the sum over configurations includes all SAWs with y coordinates of the monomers in

the range 1 ≤ y ≤ D, to realize the confinement by repulsive (one-dimensional walls) placed

at y = 0 and y = D + 1 (so the geometric distance between the walls is D + 1). Of course,

the limit D → ∞ means we consider an unconfined polymer. This problem can be studied

very efficiently with Monte Carlo (MC) simulations applying the pruned-enriched Rosenbluth

method (PERM) [54, 57, 58].This chain growth algorithm with population control and depth-

first implementation has been thoroughly reviewed in Ref. [58], where the reader can find

more details. We could study chain lengths up to N ∼ 105, for a wide variety of chain

stiffness, varying qb = 1.0(fully flexible chains) to qb = 0.005 (rather stiff chains, with

a persistence length [56, 54] `p ≈ 118`). Note that both for the lattice model and the

continuum model the persistence length is extracted from 〈cos θ〉 via

`/`p ≡ − ln(cos θ) (4.5)
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We recall that the persistence length has a physical meaning (for real polymer chains) only

as a characteristic for the local angular correlation between neighboring bonds but cannot be

interpreted in terms of orientational correlations for large chemical distances along the chain

[54, 47, 76]:the textbook formula [45] 〈cos θ〉 ∝ exp(−`s/`p) for the angular correlation

of bonds a chemical distance `s apart along the contour holds only for Gaussian phantom

chains, while in reality 〈cos θ〉 decays with a power law in s. We emphasize this simple point

again, because the misleading textbook formula still is widely used in the literature, without

being aware of its limitations (it makes sense only for `s < `p, of course). The persistence

length as defined in Eqn. 4.5, however, can be related to the stiffness parameter κKP of the

Kratky-Porod model, since for stiff chains 〈cos θ〉is close to unity and hence `/`p ≈ 〈θ2〉/2.

If excluded volume could be neglected on the local scale, we would have 〈cos θ〉 =

1/(1 + 2qb)in d = 2 and hence `p/` ≈ 1/(2qb) for small qb. The data (Table 4.1 [54]) rather

imply `p/` ≈ 0.61/qb = 0.61 exp εb/kBT . This exponential dependence between `p and εb is a

characteristic of the lattice model (since thermal activation is required to make a bend), but

a similar variation can also be expected for the alkane-type chains (Fig. 4.1(b)), where the

energy difference between the gauche ± and trans-minima of the torsional potential would

correspond to εb.

The bead-spring model used by us describes excluded volume interactions between the

monomers by the standard short range Lennard-Jones (LJ) potential ULJ(r) as Eqn. 1.13.

The connectivity between neighboring monomers along the chain is ensured by using the

Finitely Extensible Nonlinear Elastic (FENE) potential [19] as Eqn. 1.14.
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Table 4.1: Estimates of the persistence length `p/` (Eqn. 4.5) of polymer chains in the bulk

for the lattice model and the continuum model.

Lattice Continuum

qb εb `p/` κ `p/` κ `p/`

1.0 0 1.06 1.5 2.74 48.0 79.04

0.4 0.92 2.00 2.0 3.30 64.0 105.60

0.2 1.61 3.50 3.0 4.58 96.0 159.10

0.1 2.30 6.46 4.0 6.05 128.0 212.40

0.05 3.00 12.35 6.0 9.25 192.0 319.10

0.03 3.51 20.21 8.0 12.56 320.0 532.50

0.02 3.91 30.02 12.0 19.27

0.01 4.61 59.22 16.0 25.91

0.005 5.30 118.22 32.0 52.62
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We choose σ as the unit of length for this off-lattice model and ε/kB as the unit

of temperature T . Choosing T = 1.2 throughout and k = 30, the average bond length

` = 0.971 and we find that this length does not depend on the choice of the parameter εb in

Eqn. 4.3, which we use here as a bond bending potential as well. However, unlike the case

of the lattice model, a continuous range of bond angles θ from θ = 0 to (almost) θ = 180◦

is possible, and the parameter εb now can be related to the rigidity parameter kKP of the

Kratky-Porod wormlike chain model, as is well-known (see, e.g., Ref. [160, 68] where it is

shown that kKP/` = εb). In order to easily distinguish in the present paper the data of

the continuum model from those of the lattice model, we shall define κ ≡ εb for the data

of the continuum model, to remind the reader that this parameter (apart from the factor

l which is very close to unity anyway) essentially measures the chain rigidity in the usual

way. Likewise, the chain length N for long chains in our units is numerically very close

to the contour length L(strictly speaking, L = (N − 1)`, of course). The potential for the

monomer-wall interaction is chosen in full analogy to Eqn. 1.13, namely, when we orient the

walls along the x-axis, we have

Uwall(y
′) = 4ε

[(
σ

y′

)1

2−
(
σ

y′

)6
]

+ ε, for y′ ≤ 21/6σ,

Uwall(y
′) = 0, for y′ > 21/6σ,

(4.6)

and y′ = y at the lower wall while y′ = Dy at the upper wall. When we compare the

continuum model to the lattice model, the correspondence of what a particular strip thickness

means is somewhat subtle. On the lattice, the geometric distance between the two walls is

D+1 lattice spacings, but only a region of extent D (lattice rows n = 1, 2, ..., D) is accessible
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for occupation by the monomers of the chain. In the continuum, the full range 0 < y < D

is in principle accessible for the monomers, but due to the repulsive potential, the regions

0< y < σ/2 and D− σ/2 < y < D are practically almost excluded for the monomers. Thus,

one could argue that the parameter D of the continuum model should be compared to the

parameter D + 1 of the lattice model. Such ambiguities in the comparison will not matter

if D is very large, of course. To be better able to compare data of both models directly, we

shall introduce the notation of an effective strip thickness Deff , with Deff = D + 1 in the

lattice case and Deff = D for the continuum model.

For the off-lattice model, chain configurations are equilibrated by using standard

Molecular Dynamics (MD) methods applying the Langevin thermostat as usual [19] (See

Eqn. 1.17). The reduced unit of time then is (mσ2/ε)1/2, and this set of equations of motion

then is integrated with the reduced time step ∆t = 0.01, applying the algorithm of van

Gunsteren and Berendsen [20] Typically the length of the runs was 109 time steps.

We note that slightly more complicated models of this type can serve as coarse-

grained models for chemically specific macromolecules exhibiting some angular rigidity, e.g.,

polyvinyl alcohol [163],but this is not our focus here.
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4.2 Single chains in bulk dilute solution: a comparison between

the lattice and the continuum model

In this section, we demonstrate that the scaled mean square end-to-end distance

and the scaled mean square transverse fluctuation of two-dimensional semiflexible chains of

contour length L exhibit an almost universal behavior, when one studies these quantities as

a function of the dimensionless parameter L/`p, i.e., measuring the contour length in units

of the persistence length.

Of course, such a type of scaling is already suggested by the Kratky-Porod model [8, 7],

which would yield for the mean-square end-to-end distance 〈R2
N〉 for a wormlike chain,

〈R2
N〉/(2`pL) = 1− `p

L
[1− exp (−L/`p)] (4.7)

Evidently for L � `p the chain behaves like a rigid rod, 〈R2
N〉 = L2, while the limiting

behavior for L � `p is that of a Gaussian coil, 〈R2
N〉 = 2`pL. Thus, it is natural to

provide a plot of our simulation results in the normalization suggested by Eqn. 4.7, studying

〈R2
N〉/(2`pL) as a function of L/`p (Fig. 4.3(a)). It is seen that on the log-log plot there

are essentially two regimes of straight lines, with slopes of unity and one half, respectively.

The regime with slope unity is the rod-like regime expected from Eqn. 4.7, and there the

lattice and continuum results precisely superimpose, which is no surprise at all, of course. As

expected, the rod regime stops near L/`p ≈ 1. While Eqn. 4.7 would predict for L/`p � 1

a horizontal plateau, i.e., slope = zero on the log-log plot, this regime of Gaussian behavior

is completely absent.

83



Figure 4.3: (a) Log-log plot of 〈R2
N/(2L`p)〉 as a function of L/`p, combining the result of both

MC and MD simulations, for the models of Sec. II. MC data include many chain lengths up to

N = 25600, for three choices of the stiffness: `p/` = 6.46(qb = 0.1), 20.21(qb = 0.03), and 118.22

(qb = 0.005), respectively. MD data [160, 68] (indicated as squares) are for 16 ≤ N ≤ 2048, with

0 ≤ κ ≤ 320 (`p/` ≈ 1.66κ). The dashed and dotted-dashed lines indicate the rod regime and the

excluded volume power law, respectively. No adjustable parameters whatsoever have been used in

this plot. The inset shows the same data in the range from 1 < L/`p < 140, and separate straight

lines were fitted to the data from MD and MC for L/`p > 10, respectively. (b) Log-log plot of

the dimensionless ratio 〈R2
N 〉/(2L3/2`

1/2
p ) versus L/`p, using the same (non-universal!) amplitude

factors A/2 = 0.31 for the lattice model and A/2 = 0.37 for the continuum model, respectively.

Note that statistical errors of the MC data are smaller than the size of the symbols throughout. In

(b), statistical errors of the MD data are almost twice the size of the squares, for L > `p, but not

shown for the sake of clarity.
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This breakdown of the Kratky-Porod model in d = 2 dimensions due to excluded volume

forces has been studied in earlier work [74, 75, 54, 53, 160, 68], but the new feature of

Fig. 4.3(a) is that the behavior is almost universal. Only on magnified scales (inset of

Fig. 4.3(a)) can one distinguish that the continuum model data and the lattice model data

settle down on two distinct parallel straight lines for L/`p > 10. In fact, for L � `p we

expect a behavior typical for SAWs in d = 2, namely,

〈R2
N〉 = A`1/2

p L3/2, L� `p (4.8)

where the dimensionless amplitude factor A is a nonuniversal constant. Fig. 4.3(b) hence

presents a plot of 〈R2
N〉/

(
2L`p(L/`p)

1/2
)

which shows in more detail how the limiting be-

havior of Eqn. 4.8 is approached. One can see that in the crossover region between rods and

SAWs, namely, for 1 ≤ L/`p ≤ 10, there occurs some overshoot, and this overshoot is more

pronounced for the lattice model than for the continuum model. Of course, this behavior

in the crossover region is quite nontrivial, and there is no simple interpretation by scaling

arguments known.

Next we consider transverse fluctuations of the semiflexible chains. For this purpose

we introduce an instantaneous coordinate system (ξ, η) for each configuration of the chain

such that the ξ-axis is oriented along the end-to-end vector of the chain, so ξ̂ = ~RN/|~RN | is

a unit vector along the ξ direction. We then define the transverse fluctuations as

`2
⊥ =

1

N

N∑
i=1

η2
i (4.9)

with (ξi, ηi) being the coordinates of the ith monomer in this (ξ, η) coordinate system.

Fig. 4.4 then presents a plot of 〈`2
⊥〉1/2/L versus L/`p.

85



Figure 4.4: Logarithm of the scaled transverse fluctuation 〈`2⊥〉1/2/L as a function of ln(L/`p) with

data of both MC and MD for various choices of the persistence length listed in Table 4.1, as indi-

cated. The asymptotic power laws 〈`2⊥〉1/2/L ∝ (L/`p)
1/2 for L < `p and 〈`2⊥〉1/2/L ∝ (L/`p)

−1/4

for L > `p are indicated by solid straight lines.

In the rod regime, it is well-known [78, 77, 79] that

〈`2
⊥〉 ∝ L3/`p, L� `p (4.10)

while for L� `p the configuration of the chain simply is a swollen coil, and the direction of

ξ̂ does no longer play a special role: so we expect 〈`2
⊥〉 = A′`

1/2
p L3/2, compare with Eqn. 4.8,

where A′ is another amplitude factor. Hence, 〈`2
⊥〉1/2/L = (A′)1/2(`p/L)1/4 in this limit, and

this is what we see in Fig. 4.4. The result that Eqn. 4.10 also applies to the lattice chains

is rather unexpected, of course, since on the lattice for L � `p typical configurations have

either no kink at all on the length L or exhibit a single kink (the walk goes straight along a

lattice direction for L′ steps and then L′′ steps in the direction perpendicular to the direction
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of the first L′ steps with L = L′ + L′′, while walks with two or more kinks make negligible

contributions). Figs. 4.3 and 4.4 hence reveal that the average geometrical properties of

semiflexible polymers depend only very little on the model used to describe them, lattice

and continuum models exhibit almost no difference, although the actual conformations are

very different.

We also suggest that a plot of experimental data of 〈`2
⊥〉1/2/L versus ln(L/`p) would

be a good way to obtain an estimate for the persistence length `p, since the maximum of

this curve (Fig. 4.4) seems to occur for ln(L/`p) = 1, i.e., ln(L/`) = 1 + ln(`p/`). This

analysis, applied to atomic force microscope (AFM) images of DNA chains (as are available

in the literature [37, 39]), may be an interesting alternative to the traditional fitting of the

Kratky-Porod results, Eqn. 4.7, to the chain linear dimensions of such semiflexible polymers

adsorbed to substrates. Since Eqn. 4.7 breaks down in d = 2, for L � `p use of Eqn. 4.7

may lead to significant systematic errors.

4.3 Semi-flexible polymers confined in a slit with repulsive

boundaries

We now study semiflexible polymers in quasi-one-dimensional confinement, extending

the discussions that were already given in our preliminary work [56, 133]. The considered

lattice model is defined in Fig. 4.2(c), and the continuum model (sketched in Fig. 4.2(b)) is

defined precisely by Eqns. 1.13 and 4.6.
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Figure 4.5: (a) Selected snapshots from the MD simulation for N = 1024, D = 80, `p = 35.2`

(i.e., the choice κ = 21.6) at various times (the time of the snapshots is the number in the left

upper corner of the snapshot, given in units of 5000 MD time units, times t = 527, 886, 1456,

and 1700 being shown). Note that the resolution of the snapshot is not high enough to display

the individual effective monomers of the simulated model (at high resolution, the snapshots would

resemble Fig. 4.2(b)). Note that the x and y axes are plotted with equal length scale, avoiding

any distortion between the length in x and y directions. The solid straight lines represent the two

boundaries of the strip. (b) Snapshots for chains with N = 1024 for D = 80 and three choices

of persistence length, `p = 3.30`, 35.2`, and 212.4`, as indicated. (c) Snapshots for chains with

N = 256 for D = 18 and three choices of persistence length, `p = 3.30`, 17.43`, and 105.60`, as

indicated. Movies shown online are made with visual molecular dynamics (VMD). [164]
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In computer simulations of very long polymer chains in confinement, a crucial question

is whether the statistical effort invested is large enough so that the configuration space of

the model is sampled sufficiently well. This problem is a serious concern both for the PERM

Monte Carlo algorithm (when the coarse-grained free energy function of the model splits

into distinct valleys separated by entropic barriers, one must make sure that all valleys are

properly sampled [144]) and for MD. In MD, we expect very long relaxation time to form

hairpins [Fig. 4.2(a)] and to equilibrate them; it might occur that hairpins form primarily at

the free chain ends and then diffuse along the contour of the chain towards its center.

To clarify such problems, we have recorded time sequences of snapshot pictures of

the chain configurations for representative choices of parameters. Fig. 4.5(a) (Multimedia

view) gives a few typical examples. One can see that at the first time (t = 527), there is no

hairpin, at the second time (t = 886), there is a hairpin at the rightmost part of the chain

and another one in the central part of the chain, and at the third picture (t = 1456), all these

structures are gone, and a double hairpin configuration (similar to the qualitative sketch in

Fig. 4.2(a)) near the left end of the chain has formed. At a still later time (t = 1700), a state

with no hairpin is found again. Thus, one can see that (for the chosen parameters) hairpins

are quickly formed and relax again, the lifetime of hairpins being small in comparison to the

length of the MD run. For the chosen parameters the polymer neither resembles a string of

blobs nor a flexible rod, but takes intermediate types of states. For D � ellp (Figs. 4.5(b)

and 4.5(c) (Multimedia view)), one finds in practice never any configurations with hairpins,

the latter occur typically when `p ≤ D ≤ 3`p, while for still wider strips, the string of blobs
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picture starts to apply. However, for the choice D = 80, `p = 3.30` shown in Fig. 4.5(b)

(Multimedia view), the chain of length N = 1024 is merely long enough to form 2-3 blobs

only. From the snapshots, it also is evident that monomers occur near the walls occasionally,

but much more frequently they are near the center of the strip.

Fig. 4.5 (Multimedia view) does display some qualitative similarity to the description

proposed by Odijk [78] who introduced for the case D < `p the concept of the deflection

length, Eqn. 4.1, see also Fig. 4.2(a), using the Kratky-Porod model, Eqn. 4.2. It is an

interesting issue to examine to what extent our simulations confirm this description quanti-

tatively.

A naive analysis of the configurations can be based on a study of the local angle φi of

the bond between monomers i and i+ 1 and the x-axis, and search for the locations of local

maxima of cosφi along the chain contour: in the (x, y)-plane these local maxima correspond

to extrema of the curve that is generated by connecting the discrete points (xi, yi) making the

monomer positions along the chain (Fig. 4.6(a)). The distance between subsequent extrema

could be taken as a first estimate of the deflection length λ.

However, little thoughts reveal that such a procedure would be quite misleading: the

bond angles θi between subsequent bonds due to thermal fluctuations have random values

of order ±
√
kBT/κ (equipartition theorem). Adding up such random increments gives rise

to wiggles in the chain configurations on many length scales. Of course, the discreteness of

the chain provides a small scale cutoff, and we need to average of the order of 10 subsequent

monomers to obtain this random walk-like behavior of the angular increments, but such

90



small scale wiggles create a displacement ∆y in y-direction which is of order unity only, not

of order D. The deflection length, however, is intended to rather measure the length scale

of wiggles in the chain configurations, with displacement of order D.

In order to measure this large scale, we have to construct a coarse-grained configura-

tion. A practically useful prescription is to apply a coordinate smoothing procedure

x̄i = (2m+ 1)−1

i+m∑
j=i−m

xj, ȳi = (2m+ 1)−1

i+m∑
j=i−m

yj (4.11)

We have found that for persistence lengths of the order of 100, a value of m = 31 yielded

satisfactory results, smoothing out the small scale wiggles but leaving the large scale configu-

ration of the chain intact (Figs. 4.6(b) and 4.6(c)). Of course, there is still the problem that

near an extremum of the coarse-grained curve, φi changes its sign many times, leading to

several close by extrema of cosi. For automatic detection of local maxima for cosi, only sites

i that satisfy cos θi > c were considered (with a threshold value c = 0.998 if the persistence

length is of order 100, i.e., |φi| ≈ 4◦), and among the deflection sites thus found only those are

kept, which are more distant from each other than a distance d = λ/3 where λ is the Odijk

result, Eqn. 4.1. These remaining extrema are indeed the desired deflection points of the

coarse-grained configuration where the distance y in y-direction from one deflection point to

the next one is much larger than unity (Figs. 4.6(b) and 4.6(c)). From this coarse-graining

procedure, we obtain estimates for both the average deflection length λ̄ and the width ∆λ

of the distribution function P (λ), see Table 4.2. It is seen that the results are of the same

order as Eqn. 4.1; of course, in Eqn. 4.1, a prefactor of order unity is suppressed, as always

in scaling arguments, and hence perfect agreement cannot be expected.
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Figure 4.6: (a) Plot of a small part of a typical configuration of a chain with N = 1024 monomers

for the case D = 36, κ = 128. Each solid dot indicates the (x, y) coordinates of a monomer: note

that the lengths in x and y directions are plotted with equal scale. The arrows show selected

values of cosφi: for the shown wiggle from the maximum with cosφi = 0.997 to the next minimum

of the contour with cosφi = 0.999, only 10 monomers occur, but ∆y ≈ 2 (see text). (b) and

(c) Comparison of two configurations after smoothing (full curves) to their corresponding original

unsmoothed configurations (broken curves) for the case N = 512, D = 36, and κ = 96. Note that

here the scale for the x-axis is compressed in comparison to the scale for the y-axis by a factor of

6. The dots show the deflection points that are kept for the measurement of P (λ), λ being the

distance between neighboring deflection points.
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The fact that ∆λ and λ̄ are of the same order reflects the irregularity of the chain configu-

rations, expected from entropic reasons.

Table 4.2: Selected estimates for the deflection length.

N D κ λ(Eqn. 4.1) λ̄ ∆λ

512 36 96 59.3 76.2 28.5

1024 36 128 65.2 85.0 30.9

1024 80 128 111.0 102.4 43.9

The first question to ask is whether or not confinement leads to a change of the local

persistence length (which we always define from Eqn. 4.5). Fig. 4.7 shows the unexpected

result that the persistence length `p(D) does depend strongly on the strip width D for the

lattice model when D is less than the persistence length of the unconfined chain in the bulk

(`bulk
p = `p(D → ∞)), while for the off-lattice model, `p remains completely unaffected by

the confinement. When we henceforth use `p without any further specification, always the

bulk value will be meant. This finding implies for the continuum model that the average

orientational correlation between subsequent bonds (as measured by 〈cos θ〉) is the same

for the confined chains as it is in the bulk, although for small D (and in the absence of

hairpins), all bond vectors of the confined chains are oriented almost parallel to the x-axis,

while for semiflexible polymers in the bulk, this dominance of one orientation does not occur.

For off-lattice semiflexible chains, we have 〈θ2〉 ≈ `/`p and if D � `p we can expect that

after nλ = λ/` steps along the chain, the angle θ(nλ) has added up in a random walk-like

fashion [78], i.e., 〈[θ(nλ)]2〉 = nλ`/`p = λ/`p.
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Figure 4.7: Comparison of the persistence length `p/` under confinement in a strip and in the bulk

for the continuum model (a) and for the lattice model, using strip widths from D = 8 to D = 320

(b). Note that the estimates of persistence length under confinement in (a) were obtained by taking

the average of `p(D) for several choices of D at fixed κ. Note that error bars in this plot are smaller

than the size of the symbols throughout.

However, this growth of 〈[θ(nλ)]2〉 must stop when 〈[θ(nλ)]2〉 = (D/λ)2, and equating both

expressions readily yields the deflection length [78], Eqn. 4.1. The different behavior of

the lattice model can be interpreted by the fact that the typical configuration of the chain

(Fig. 4.1(c)) consists of a sequence of kinks, where at each kink point a sequence of nx

bonds in x-direction is followed by ny bonds in y-direction. The numbers of nx, ny follow an

exponential distribution [54]

P (nx, ny) =

(
`

`p

)2

exp (−nx`/`p) exp (−ny`/`p) (4.12)
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In a bulk square lattice, both nx and ny can vary from 1 to infinity. For large `p/`, the

average length of a sequence can be computed simply as

〈nx〉 =

∫ ∞
0

dnx

∫ ∞
0

dnyP (nx, ny) = `p/`, unconfined case, (4.13)

and the same result would be obtained for 〈ny〉, since in the bulk both lattice directions

are equivalent. However, for the confined system, ny must be in the range 1, ..., ny, ..., D

(Fig. 4.2(c)). While Eqn. 4.12 implies that a kink with some choice of (nx, ny) occurs with

probability unity, for the confined system Eqn. 4.12 allows for the occurrence of a kink only

with the reduced probability Pkink = 1−exp (−D/`p). This reduction in the number of kinks

must show up in the distance between subsequent kinks along the x-direction, and hence,

we tentatively suggest

〈nx〉 = (`p/`)Pkink = (`p/`)/ [1− exp (−D/`p)] . (4.14)

The data of Fig. 4.7(b) are indeed compatible with this simple argument, implying that for

D < `p, the effective persistence length [56] `p(D) ≡ 〈nx〉` ≈ `2
p/D.Hence for D < `p in the

case of the lattice model, it will matter whether we study the behavior of the chain linear

dimensions as a function of `p/D or `p(D)/D, respectively. For simplicity, in this discussion

we have ignored the possible effect of hairpins completely (note that when hairpins occur

and the end-to-end vector is oriented from left to right, numbers nx of sequences parallel

and antiparallel to the x-component of the end-to-end vector are not equivalent).

We first demonstrate that the possible renormalization of the persistence length does

not matter when we study the regime where the Daoud-De Gennes [102] prediction applies
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(Fig. 4.8),

〈R2
‖〉1/2 ∝ (`p/D)1/3 L. (4.15)

Figure 4.8: (a) MC data for 〈R2
‖〉

1/2/L plotted vs. chain length N , for D = 320, and two choices of

the persistence length, `p/` = 59.22(qb = 0.01) and `p/` = 30.02(qb = 0.02), respectively. The solid

horizontal lines indicate the extrapolation towards N → ∞. (b) Log-log plot of the dimensionless

chain extension 〈R2
‖〉

1/2/L versus the ratio (`p/D)1/3 for data from both MD and MC. The dashed

straight line indicates the De Gennes regime for D > `p, 〈R2
‖〉

1/2 ∝ L(`p/D)1/3. The solid line

shows a fit of the MD data to the Odijk prediction. Note that the MC data were all extrapolated

towards N →∞, as shown in part (a), while the MD data refer to specific values of N in the range

256 ≤ N ≤ 1024 for D = 18, 36, and 80, as indicated. Statistical errors are at most of the size of

the symbols.

From the MC calculation, data for a very wide range of N are available, and hence for each

choice of D and `p, one can perform an extrapolation to N → ∞. Since the variation of
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〈R2
‖〉1/2/L with N is non-monotonic (Fig. 4.8(a)), such a procedure would be completely

misleading if only data for rather short chains (on the left side of minimum) were available.

Thus, no such extrapolation was attempted for the MD data, but nevertheless a reason-

able scaling could be obtained (Fig. 4.8(b)). We note that the nonmonotonic variation of

Fig. 4.8(a) is not specific for the lattice model; a similar behavior was also found for a chain

of tangent hard spheres [134]. The location of this minimum of the ratio 〈R2
‖〉1/2/L depends

on both D and `p, as demonstrated in our earlier work [56]. It is seen that the lattice and

off-lattice models yield a qualitatively similar behavior, the constant of proportionality in

Eqn. 4.15 is somewhat smaller for the lattice model, and also the approach to saturation in

the limit of strong confinement (`p/D � 1) is much slower. In view of the fact that for the

lattice model in the regime `p > D, the persistence length gets renormalized to much larger

values, it may seem paradoxical that nevertheless the scaled chain extension 〈R2
‖〉1/2/L is

smaller than in the continuum case. However, the explanation of this behavior is that those

parts of the chain that are oriented along the y-axis (Fig. 4.2(c)) do not contribute to the

extension in x-direction at all, while in the continuum case the angles φi due to the weak

deflections all are rather small and hence all bonds contribute predominantly to the chain

extension along the x-axis. In fact, as we shall see later, in the lattice model monomers are

less repelled by the confining boundaries than in the continuum case (compare the density

profiles across the slit in Figs. 4.12(a) and 4.13(a)).

In the lattice model, both the mean square radius 〈R2
‖〉 and the mean square gyration

radius 〈R2
g‖〉 in x-direction have been obtained for a wide range of choices of both D and
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the persistence length `p, and display the expected scaling as a function of `p/D very well

(Fig. 4.9), in the limit of very long chains.

Figure 4.9: Log-log plot of 〈R2
g‖〉

1/2/L (a) and 〈R2
‖〉

1/2/L(b) versus `p/D. Various values of qb

are shown, as indicated. Note that all these data were obtained by first extrapolating the data for

finite L (see Fig. 4.8(a)) at fixed qb and fixed D towards L→∞.

We stress that for the MC data in Figs. 4.8(b) and 4.9, the unrenormalized values of `p

(i.e., the persistence length of the unconfined chains in the bulk) were used in the variables

(`p/D)1/3 or `p/D, respectively. However, if we use `p(D)/D rather than `p/D for such plots,

they look very similar: this happens because `p(D)/D differs from `p/D only for `p/D > 1

and in this region the scaling functions in Figs. 4.8(b) and 4.9 are almost flat.

Next we discuss the variation of the linear dimension with chain length, normalizing

〈R2
‖〉 by the Kratky-Porod prediction 2`pL, and measure the contour length L in units of

2`pL(Fig. 4.10). There are three regimes: for L/(2`pL) < 1, the chains behave like rods,

〈R2
‖〉 = L2 and hence 〈R2

‖〉/(2`pL) = (L/`p)/2, the first linear regime in the log-log plot.
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Figure 4.10: Log-log plot of 〈R2
‖〉/(2`pL) (a) or 〈R2

‖〉/(2`p(D)L) (b), versus L/(2`p) or L/(2`p(D)),

respectively. For the MD data, both L, D, and `p were varied, as indicated in the key to the figure.

For the MC data, the choice qb = 0.02 (i.e., `p = 30.02`) was fixed and L was varied, showing five

different choices of D, as indicated.

For wide strips (D � `p), there is an intermediate regime, where the chain behaves like a

weakly constrained free chain [Eqn. 4.8], and hence 〈R2
‖〉/(2`pL) varies like (L/`p)

1/2. For

narrow strips (such as the case D = 16, `p = 30.02` in Fig. 4.10(b)), this regime is absent,

of course. For the MD data in Fig. 4.10(a), this regime is realized by choosing not so large

values of `p, since extremely large values of N are not accessible. The MC data show a

third regime where 〈R2
‖〉/(2`p(D)L) again varies linearly with L/(2`p(D)), which simply is

the Daoud-De Gennes regime again (where the chain is a string of blobs). For the rather

wide strip used for the MD data, this regime cannot be recognized yet in Fig. 4.10(a). When

we study the regime D < `p for the lattice model and consider the crossovers with increasing

L, it is the renormalized persistence length `p(D) which matters for the crossover to the final

regime 〈R2
‖〉 ∝ L2 for large L. Therefore, we used `p(D) in Fig. 4.10(b).
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Figure 4.11: Log-log plot of 〈R2
‖〉/(`

1/2
p L3/2) versus L/Lcross = L`

1/3
p /D4/3 including both the MD

and MC data. Note that Lcross denotes the contour length where the crossover from the unconfined

SAW to the string of Daoud-De Gennes blobs occurs (so L/Lcross is essentially the number of blobs).

The straight line illustrates Eqn. 4.16.

At the first glance, Fig. 4.10 seems at variance with Fig. 4.10, since from the MD

data plotted there no evidence for the string of blobs-picture of Daoud and De Gennes [102]

was seen. However, this is not the case: when we plot 〈R2
‖〉/(`

1/2
p L3/2) versus the effective

number L/Lcross of blobs in the string (Fig. 4.11), we find that a significant part of the MD

data falls in the range 4 < L/Lcross < 30 and roughly is consistent with Eqn. 4.15, which in

this representation can be rewritten as

〈R2
‖〉/(`1/2

p L3/2) ∝ (L/`p)
1/2 (`p/D)2/3 =

(
L`1/3

p /D4/3
)1/2

(4.16)
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Of course, the MC data include a much wider range of L/Lcross, including the chains that

are almost unperturbed by the confinement (L/Lcross < 1, then 〈R2
‖〉/(`

1/2
p L3/2) is essentially

constant), as well as very long chains (where L/Lcross > 100).

A very interesting aspect is the monomer density profile near the wall. For flexible

chains, it was shown [140] that for the lattice model this profile can be very accurately

described by

Deffρ(y) = C [ξ(1− ξ)]4/3 , ξ = y/Deff (4.17)

where Deff = D + 1. This form is compatible with the density profile expected for a semi-

infinite solution (with density ρb in the bulk) of flexible chains near a hard wall [165, 25],

ρ(y) = ρbρ̄(y/R), R ≈ `(L/`)ν (4.18)

with ν = 3/4 in d = 2 dimensions, and ρ̄(ξ) ∝ ξ1/ν for ξ � 1. However, Semenov [159]

predicted on the basis of the Kratky-Porod model that

ρ(y)/ρb ∝ y2/3for`� y � `p (4.19)

irrespective of dimensionality. However, the data for the lattice model do not yield any

evidence in favor of this prediction (Fig. 4.12).

For the off-lattice case the conclusion is different; however, the monomer density near

the walls does not extrapolate to a nonzero value when ξ = y/Deff → 0 or→ 1, Fig. 4.13(a),

and when `p is large, Eqn. 4.17 then no longer provides a good fit of the data. Thus, it is

tempting to try a log-log plot of ρ(y) versus y. Of course, data for y > D/4 are affected by

the saturation of the profile in the center of the film and have to be excluded (one should
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only use data far outside the range of the repulsive wall potential).

Figure 4.12: Rescaled monomer density profile Deffρ(y) versus ξ = y/Deff for the case D = 80 (a)

and D = 320 (b), according to the MC model. Several choices of `p/` are included, as indicated.

Full curves show the theoretical prediction, Eqn. 4.17, with the constant C fitted as C = 10.38.

Here, Deff = D + 1.

One sees that in the intermediate regime, the MD data indeed are consistent with a crossover

of the effective exponent, defined in terms of the apparent slope where a straight line can be

fitted to the data of the log-log plot near y ≈ 10 from 4/3 (for flexible chains) to 2/3 (for

very stiff chains). This finding hence is compatible with Semenovs prediction, Eqn. 4.19.

Here, the possibility of small bond angles implicit in the Kratky-Porod model is a crucial

feature, and hence, it is not so surprising that for the lattice model Eqn. 4.19 does not hold.

Of course, very close to the wall the actual wall potential matters, and hence, the power laws

are expected to hold only for y � `, see Eqn. 4.19.
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Figure 4.13: (a) Plot of the scaled monomer density Deffρ(y) as a function of ξ = y/Deff for the

continuum model of semiflexible chains with N = 1024, as obtained from MD simulations, for a

strip of width Deff = D = 80, and several choices of the persistence length `p/`, as indicated.

The solid curve shows the fit to Eqn. 4.17 for the fully flexible case, with the constant C being

C = 10.41. (b) Log-log plot of the monomer density ρ(y) versus y for N = 1024, D = 80 and

160, and various stiffnesses as indicated by the choices for `p/`. The solid straight lines indicate

the theoretical power laws ρ(y) ∝ y4/3 for the flexible and ρ(y) ∝ y2/3 for Kratky-Porod chains,

respectively.

Very interesting is also the behavior of the end monomer distribution ρe(y). For

flexible chains, the scaling prediction is [140]

ρe(y) =
1

Deff

Ce [ξ(1− ξ)]25/48 , (4.20)

and indeed this (empirical) function provides a very good fit of the MD data for flexible

chains (κ = 0), with the constant Ce ≈ 2.71 being of the same order as for the SAW model

on the square lattice [140] (Ce = 2.85).
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Figure 4.14: Scaled end monomer density profiles ρe(ξ)Deff Deff as a function of ξ = y/Deff for the

continuum model of semiflexible chains with N = 1024, as obtained from MD simulations (a), and

for the lattice model of chains with 50000 < N < 200000 (b). Note that Deff = D was chosen for

the off-lattice model but Deff = D + 1 for the lattice model, and several choices of the persistence

length are shown as indicated. The full curve shows a fit of Eqn. 4.20 for the fully flexible case,

with the constant Ce being Ce = 2.71 for the continuum, and Ce = 2.85 for the lattice.

Again one sees that with increasing stiffness, the end monomer density near the walls gets

enhanced, and for very stiff chains a limiting behavior ρe(y) ≈ const seems to be reached

(apart from a small region ξ < 0.1 or 1 − ξ < 0.1, where ρe is slightly depressed, but this

could be a residual effect from the nonzero range of the repulsive wall potentials). Thus,

we speculate that for semiflexible chains (in the limit N →∞ and then `p →∞ in a semi-

infinite dilute solution), there is no analogue of the power law for the monomer density,

Eqn. 4.19, when one considers the density of end monomers instead. In the lattice model,

also an essentially constant distribution of ρe(y) across the strip was found (Fig. 4.14(b)).
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While in the regime Deff < `p the behavior of ρ(y) and ρe(y) for the lattice model is very

similar, this is not true for the bead-spring model of semiflexible chains in the continuum.

4.4 Conclusions

We now proceed by summarizing the central findings of the present work. We have

simulated two rather different coarse-grained models of semiflexible polymers in two space

dimensions, over a wide range of chain lengths and persistence lengths, under good sol-

vent conditions, both in the bulk and under confinement in a strip of width D with re-

pulsive boundaries. One model is a self-avoiding walk on the square lattice, where stiff-

ness is controlled by the energy cost εb if the walk makes a kink of ±90◦. The density

of the kinks for large ε/kBT decreases exponentially with this energy cost, proportional to

exp (−ε/kBT ), and the persistence length `p then is essentially the inverse of the kink density,

`p ∝ exp (ε/kBT ), and can also be interpreted as the average length of straight sequences

of bonds between two neighboring kinks along the chain contour. The other model is the

standard Grest-Kremer [19] bead-spring model, amended by the standard cosine potential

Ub(θ) = εb(1−cos θ) [Eqn. 4.3)] between neighboring bonds. For large εb/kBT , this potential

essentially becomes Ub(θ) = (εb/2)θ2, and hence, the model (apart from excluded volume)

can be considered as a discretization of the well-known Kratky-Porod model of wormlike

chains, Eqn. 4.2, so b simply corresponds to the bending rigidity κKP of that model. Then

the persistence length simply is proportional to εb/kBT , and this is confirmed by the simula-
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tions (see, e.g., Fig. 4.7(a)). Note that in the presence of excluded volume, a valid definition

of the persistence length always is derived from 〈cos θ〉, the average cosine of the angle be-

tween neighboring bonds; this is a meaningful measure of local chain stiffness, unlike the

asymptotic decay of bond vector correlations for bonds that are far separated along the

chain contour (this asymptotic decay is controlled by excluded volume effects, ignored in

Eqn. 4.2).

We have obtained the mean square end-to-end distance of both models in the bulk, ap-

plying Monte Carlo methods for the lattice model and molecular dynamics (with a Langevin

thermostat) for the off-lattice model. We find that the crossover from the rod-like regime

(for contour lengths L < `p) to the self-avoiding walk-like regime (described by Eqn. 4.8) is

qualitatively similar in both models, when one studies these linear dimensions as functions

of the scaling variable L/`p (Fig. 4.3). The amplitude prefactors of the power laws in the

asymptotic scaling regime for both models differ slightly, as expected, since only exponents

are universal, but not amplitude prefactors. Since in the rod regime the data trivially are

model-independent (〈R2
N〉 = L2 for L � `p), it follows that crossover scaling functions of

both models cannot be identical (Fig. 4.3(b)). In fact, if the asymptotic power law is scaled

out, one finds in the crossover scaling functions in the regime 1 < L/`p < 10 a nontrivial

maximum, and there is no universality of these crossover scaling functions. However, when

one considers the reduced transverse fluctuation (Fig. 4.4), one finds in the crossover scaling

plot a maximum, whose position is universal, at least within the accuracy of the present

estimations, namely, it occurs at ln(L/`p) ≈ 1. Providing such a plot from the analysis of
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experimental AFM pictures of semiflexible polymers adsorbed at planar substrates could be

an alternative to the experimental estimation of `P from the Kratky-Porod formula for the

mean square end-to-end distance, which is questionable due to its neglect of excluded volume

effects (it describes a crossover to Gaussian coil behavior, which in reality cannot occur).

Thus, our comparison of the two studied models is not just an academic exercise but could

be a useful guide in practice.

While the disparity of local chain conformations between both models hence has only

minor consequences, as far as the bulk properties are concerned, this is no longer true when

one considers confinement in strips with D < `p. One interesting feature is that in the lattice

model, the effective persistence length `p(D) gets renormalized, while for the continuum

model, it remains unchanged (Fig. 4.7). This discrepancy can be understood from the fact

that on the lattice straight sequences of bonds along the y axis get more and more suppressed

(Fig. 4.2(c)), while in the continuum bending of the chain (on scales less than the deflection

length λ, cf. Figs. 4.2(a) and 4.5) is not affected. A second very interesting discrepancy

between both models is that in the continuum model entropic depletion of monomers near

the repulsive walls always occurs (Fig. 4.13), while there is no such depletion for rather stiff

lattice chains (Fig. 4.12). For flexible chains, both on the lattice and in the continuum,

near a repulsive boundary depletion does occur, ρ(y) ∝ y4/3 for ` � y � D, and the

monomer density profile across the strip exhibits a scaling, which is almost universal (again,

a simple model-dependent amplitude factor occurs, cf. Eqn. 4.17)). However, for rather stiff

chains in the continuum a different power law has been predicted on the basis of the Kratky-
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Porod model by Semenov [159], and our data (Fig. 4.13(b)) seem to be compatible with this

prediction. However, while for flexible chains, the chain ends also show an entropic depletion

effect, but described by different exponents (Eqn. 4.20), and this prediction has been verified

by both the lattice and the continuum model, no such depletion effect can be detected for

semiflexible chains. For D � `p, the end monomer profile is almost constant across the

strip, both for the lattice and the continuum model (Fig. 4.14). A third discrepancy is the

fact that for the semiflexible bead-spring model, the concept of Odijk [78] of a deflection

length (Fig. 4.2(a)) obviously is applicable for strongly confined chains in the continuum

(Fig. 4.5) but meaningless for the lattice model. We also have discussed the possibility

to extract the distribution function P (λ) of deflection lengths directly from a statistical

analysis of configurations of confined chains in the continuum model. We have shown that

after a suitable further coarse-graining of the chain contours, necessary to remove small scale

structure, both the average deflection length λ̄ and the fluctuation ∆λ ≡
(
λ̄2 − λ̄2

)
could be

obtained. Both λ̄ and ∆λ are of the same order as predicted (Eqn. 4.1).

However, for less extreme confinement (D > `p) again a remarkable similarity between

both models is found: there is a crossover from rods (for L < `p) to self-avoiding walks (for

chains that are short enough that a single blob fits into the strip) and further to the Daoud-De

Gennes string of blobs. For the Monte Carlo results, where a very wide range of L for every

choice of `p is spanned, these three regimes can be easily seen (Fig. 4.10(b)), but for the MD

results, they can also be inferred for appropriate choices of `p and D. The scaling predictions

resulting from the string of blob picture are nicely verified for both models (Fig. 4.11).

108



We also note that the snapshot pictures in the regime `p < D < 3`p, where well-

developed blobs do not yet fit into the strip, clearly reveal hairpin formation, as proposed

by Odijk [104] who also has estimated that hairpin formation involves the crossing of a free

energy barrier that is proportional to `p for D � `P . However, in the regime D � `P where

the theory applied, hardly any hairpins could be observed, and hence, our simulations are

not suited to test this theory. For the three-dimensional case, a pioneering study of the

effects of hairpins on confinement of semiflexible polymers can be found in Ref. [166].

Of course, for addressing experiments, an extension of our study to three dimensions

(quasi-one-dimensional confinement in tubes with square, rectangular, or circular cross sec-

tion) would be very desirable but must be left to future work. We note that in this case

several additional complications arise, such as the intermediate Gaussian regime of chain

conformational statistics, and knot formation for very long chains.

However, the goal of this study was not to contribute directly to the analysis of

experiments but rather to understand how different general assumptions implicit in the

choice of particular coarse-grained models do affect the physical properties of the studied

macromolecular systems. In particular, we have found in the bulk that the difference in local

chain conformations between lattice and continuum models does no longer matter much,

when one compares data for the same choice of persistence length (although the dependence

of `p on the energy parameters is very different). Under confinement, the absence of monomer

depletion for rather stiff lattice chains shows that discrete bond angles lead to a different

physics in comparison to continuous bond angles as possible for the off-lattice model. We
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have argued, however, that both chains may be physically relevant since different types of

mechanisms for chain rigidity occur for cases such as alkane-type polymers or dsDNA.
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CHAPTER 5
A HETEROGENEOUS SEMI-FLEXIBLE CHAIN MODEL OF

dsDNA

As one of the the most important biopolymers, DNA has been drawing longstanding

interests for decades both in theoretical modeling and simulation studies. DNA is a complex

molecule which is essentially built on two intertwined single strands. Under physiological

conditions these two strands are bound together by hydrogen bonding between complemen-

tary base pairs (bps), namely, adenine thymine (AT) pair and guanine cytosine (GC) pair.

With this main structure itself DNA already offers both rich mechanical and thermody-

namic properties. First of all, when compared to a single stranded DNA (ssDNA) whose

persistence length is ∼ 3 nm under most experimental conditions, a double stranded DNA

(dsDNA) with its persistence length one order of magnitude greater (∼ 50 nm ) is much

stiffer, where the rigidity is mainly due to the base pairing interaction and the stacking

interaction among adjacent base pairs, although the precise manner also depends on the

dsDNA architecture and solvent details. Further, it is the sequence specificity that encodes

the genetic information which in turn controls its biological function in the cell, one of the

main aspects about this heterogeneity is that there are two hydrogen bonds (HBs) between

AT pair while GC pair has three. On average the binding strength per base pair is in the

order of kBT [167], where kB is the Boltzmann constant and T is the temperature, although
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GC pair is more stable than AT pair due to an additional hydrogen bond. Therefore at high

enough temperatures the hydrogen bonding can be broken by the thermal energy that the

two strands in dsDNA completely dissociate from each other, undergoing a denaturation pro-

cess. However, even at physiological temperatures the thermal fluctuations may disrupt the

local structure of dsDNA (e.g. the AT rich region) introducing bubbles along the sequence.

Recently, the advances in nanofluidics experiments have demonstrated that by putting ds-

DNA into nanochannels and combining fluorescence microscopy technique, optical barcodes

can be obtained and mapped to the local denaturation of dsDNA along its extension under

confinement [85, 93]. While the newly developed experimental techniques have offered possi-

bilities towards performing analysis on a single molecule level, in the mean time considerably

challenging questions have also arisen. For example, when a dsDNA is partially melted into

two single strands the local stiffness is also altered, therefore the unmelted regions and the

bubbles from the melted region will make the dsDNA exhibit another form of heterogeneity

regarding the bending rigidity. It is expected that thermodynamic and mechanical properties

will both play significant roles and feedback to each other in determining the global DNA

conformations and dynamics. Attempts to address these challenges and provide answers are

not only meaningful in giving insights to experiments from theoretical side, but also ensure

more reliable and reproducible single molecule analysis. Thus models which incorporates

both the thermodynamic and mechanical aspects about DNA yet still has the capability of

reaching the experiment length scale would be very helpful.
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Historically, models studying the melting statistics of dsDNA have been developed

and still widely used in the literature. The most notable one is due to Poland and Scheraga

(PS) [168, 169, 170], where the dsDNA is described as a one-dimensional sequence of bound

complementary base pairs separated by loops (unbound base pairs) formed by complementary

single strands of the same length. For a given sequence, temperature and solvent conditions,

the melting probabilities for each base pair of a dsDNA can be calculated from the the

partition function which is essentially accounted by the energy of the bounded pairs and the

entropy of the loops. It has been shown that the transition nature of the DNA denaturation

depends on the loop size distribution, which in turn depends on the space dimensions and the

importance of the excluded volume (EV) interactions. The theoretical analysis by Kafri et al.

revealed that in three dimensions DNA denaturation is a first order transition, which has been

later confirmed by lattice Monte Carlo simulation studies. The most important advantage

of PS model is that the computation of the melting profiles can be done algorithmically and

indeed efficient computer routines have been developed [171, 172], and very long sequences

even the entire human genome can be analyzed in this framework, nevertheless, the major

drawback of PS model is that it is Ising-like in nature and chain configurations and dynamics

can’t be inferred. Another more recent model which accounts for the bubble dynamics and

bubble lifetime has been proposed by Peyrard, Dauxious and Bishop (PBD) [173, 174].

Unlike the two-state PS model, a partially melted dsDNA was described by a continuous

variable — the separation distance of the base pair — which is also the only coordinate

variable entering the model’s Hamiltonian. In addition to a base pairing interaction, the key
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feature of the PBD Hamiltonian is that the stacking interaction among neighboring bases

are represented by a nonlinear term which introduces cooperativity in bubble formation and

propagation. Langevin dynamics and Monte Carlo simulations have been carried out using

PBD model to study a variety of topics including the connections between bubble dynamics

and specific sequences, protein-DNA binding sites of transcription factors, however, this

model is still intrinsically one dimensional thus configurations of dsDNA can not be visualized

limiting its use in studying the interplay of the bubble dynamics and chain conformations.

Different from previous models, mesoscopic models of dsDNA have also been devel-

oped by several groups recently. In this category, by using a top-down approach different

groups of atoms in the DNA molecule are identified and coarse grained into beads as the

basic building elements to reconstruct the duplex structure, also with effective interactions

introduced among the beads. Notably, the 3SPN (three sites per nucleotide) model devel-

oped by de Pablo et al. has made a number of successes [175, 176, 177, 178, 179, 180, 181].

As the name suggested, a nucleotide is represented by three beads corresponding to the

phosphate group, sugar group and the base of the DNA molecule. Under several later im-

provements by the same group [176, 177, 178, 179], with thoughtfully designed interactions

among the beads the 3SPN model has been able to recover detailed structural aspects of

dsDNA such as stable major grooves, minor grooves and correct bending rigidities both for

dsDNA and ssDNA. The 3SPN model has been mainly used to study processes such as DNA

oligomer hybridization, DNA-histone interactions, which both are intrinsically sensitive to

the local structure details of the participating molecules and the surrounding solution condi-
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tions [178, 179, 180, 181]. DNA melting has also been studied by 3SPN in terms of calculating

the melting temperatures of short oligomers, but bubble statistics for long sequences have

not been shown. However, as already pointed out in [178], the ssDNA in the 3SPN model is

constructed on the reference of the B-DNA, which may limit sampling the natural random

coil like configurations of ssDNA, thus studying bubble statistics of long sequences within

3SPN should be proceeded with cautions.

However, on the other hand much simpler models of dsDNA are still being used in

the literature [136, 133, 56, 103, 182], specifically, they are Kremer-Grest type bead-spring

model, lattice self-avoiding walk model, discrete wormlike chain (WLC) model, etc. Strictly

speaking, these models are not particularly designed for DNA but can be generally used for

other types of polymers also. Nevertheless, these highly coarse grained models have been

successful in explaining the linear dimensions of DNA confined in nanochannels with regard

to both analytical and experimental results [136, 133, 56, 103, 182].

Apparently, the models just mentioned only include the mechanical aspects of DNA

and are not sufficient to interpret any that results from dsDNA melting behaviors. On the

other hand, the 3SPN model at first glance may seem to be a good candidate for modeling the

interplay of the mechanical and thermodynamic properties of DNA, however, the interactions

included in 3SPN like the electrostatic may have the potential to unnecessarily complicate

the basic physics picture, moreover, the consequences of the current treatment of ssDNA in

3SPN are still not clear. Therefore the gap between polymer type like bead-spring models

and coarse grained type like 3SPN models needs to be bridged. Efforts towards this direction

115



have been made. Notably, Sung et al. have developed a semiflexible chain model of dsDNA,

where the double strands are described by two paired semiflexible chains, each of which

is a homogeneous bead-spring polymer [183, 184, 185]. In the present paper, we address

the shortcomings of all above mentioned models by extending Sung’s model to incorporate

both base pair heterogeneity and EV interaction. The sequence heterogeneity is a critical

feature for DNA which fundamentally conveys to its biological functions. The EV effect is

also important in determining the bubble size distribution and the transition order of DNA

denaturation.

5.1 The model

The two strands of a dsDNA are modeled as two paired semiflexible chains, with each

chain is a bead-spring polymer, where the beads are of uniform size and each represents one

nucleotide. The Hamiltonian of the model is given as

H = UEV + UFENE + UBend + UBP, (5.1)

where the EV interaction between any two nucleotides of the dsDNA are modeled by a short

range purely repulsive Morse potential UEV which has a cutoff rcut at its minimum

UEV =
2N∑
i>j

D0

[(
e−a0(rij−rcut) − 1

)2 − 1
]
, rij > rcut (5.2)

with N being the number of nucleotides in each strand, D0 is the potential strength, a0

controls the width of the potential and rij is the distance between any two nucleotides.
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The connectivity between consecutive beads along each strand is described by the Finitely

Extensible Nonlinear Elastic (FENE) potential

UFENE =
2∑
s=1

N−1∑
i=1

−1

2
kR2

0 ln(1− b2
s,i/R

2
0), (5.3)

where k is the spring constant, bs,i is the length of the ith bond in strand s, R0 is the allowed

maximum distance between neighboring nucleotides. The two strands in a dsDNA are bound

by the corresponding base pairs in each strand, here the base pairing potential UBP takes

the full form of Morse potential

UBP =
N∑
i=1

D
[(
e−a(di−d0) − 1

)2 − 1
]

(5.4)

where di = |r1i − r2i| is the distance between the position vector of the ith complementary

base in each strand, d0 is the equilibrium distance for base pairs and D describes the strength

of the hydrogen bonding and is different between AT pair (two HBs) and GC pair (three

HBs), here for simplicity we have used DGC = 1.5DAT although we are aware of studies

showing that the binding energy for each individual HB is not uniformly the same [186].

The stiffness for each strand is described by an angle dependent interaction between

successive bonds as

UBend =
2∑
s=1

N−2∑
i=1

κ (di) (1− cos θs,i), (5.5)

where θs,i is the angle made by the bond vectors bs,i−1 and bs,i on strand s, Eqn. 5.5 is the

discrete form of the well known WLC model, whose bending energy is written as Eqn. 1.7.

It can be shown that in three dimensions the persistence length for each strand `p = κ/kBT ,

where kB is the Boltzmann constant and T is the temperature. By rewriting Eqn. 1.7
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Figure 5.1: A heterogeneous semiflexible chain model of dsDNA.

in terms of the position for the center of mass (COM) of the complementary base pairs,

rCOM,i = (r1,i + r2,i) /2, it is easy to show that the persistence length for the two strands

(i.e., calculated from the coordinates rCOM,i) Lp = 2`p. Unlike the common treatment of

taking the bending rigidity κ of each strand as a constant in WLC, for a real dsDNA under

most experimental conditions of interest, due to thermal fluctuations the two strands are

subject to local denaturation thus the persistence length is no longer uniform along the

contour and interpolates between those for ssDNA and dsDNA, thus in Eqn. 5.5, we have

made the bending parameter κ(di) dependent upon the separation of the complementary

base pairs, as have been done by Sung et al. [184]. The exact expression of κ(di) is given as

κ(di) =
1

2
κds − (

1

2
κds − κss)Θ(di − r1/2), (5.6)

where κds and κss are the bending rigidities for dsDNA and ssDNA under the physiological

condition, respectively. And Θ(r) = (1 + erf(r/c)) /2 is a step function taking values between

0 and 1 for −∞ < r < ∞, with c being the width and r1/2 the middle point of the step

function. With the aid of Eqn. 5.6, it is easy to see that depending on the separation of

the complementary base pairs the stiffness κ(di) ranges between κss and κds, and if the two
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strands are fully bound together the persistence length of those Lp = κds/kBT , while for one

single completely unbound strand, the persistence length of that is `p = κss/kBT .

We have performed Langevin dynamics simulations based on the model developed

above. During the simulation we have taken all nucleotides to be of uniform size with

σ = 3.4 Å and uniform mass with m = 300 amu. We have chosen σ,m as the units of

length and mass, respectively, for numeric stability the unit of energy ε is taken as 0.025

ev. The friction coefficient γ = 0.05ps−1 according to reference [173, 174]. For the EV

interaction, we have chosen D0 = 1.0ε, a0 = 5.4σ−1, rcut = 1.22σ, for the spring interaction,

k = 30.0ε, R0 = 7.5σ. This choice of parameters for the EV potential along with the FENE

potential ensures the average bond length 〈b〉 = 0.99 regardless of the separation of the base

pairs. The parameters for the base pairing potential are calibrated to have the resulted

melting temperatures to fall in the same range of those determined in experiments for short

sequences of dsDNA, in the simulation we have used for UBP, DAT = 1.32ε, DGC = 1.5DAT,

aAT = 10.0σ and aGC = 14.0σ.

Fig. 5.2(a) shows the fraction of the melted base pairs as a function of temperature for

sequences A, G, AG, all of the same length, as expected, our model captures the basic trend

that the melting temperature depends on base pair composition and is higher for sequences

with higher GC content. For the bending potential, we have used κds = 156ε, κss = 12ε to

have the persistence lengths at the physiological condition agree with the mostly reported

values in the literature, i.e., for dsDNA Lp = 50nm, and for ssDNA `p ' 4 nm. Fig. 5.2(b)

shows the persistence length calculated from coordinates rCOM,i for various sequences at
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Figure 5.2: Melting profile

different temperatures. It can be seen that at low temperatures, the persistence length is

relatively the same for all sequences, and as the temperature increases the persistence length

starts to decrease due to local denaturation, it is also shown that the persistence length for

sequences with equal GC/AT content (random or periodic pattern) follow almost the same

decreasing path, which of course falls in the middle of two extremes –AT and GC.
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5.2 Results and discussions

As discussed previously, due to thermal fluctuations, the base pairs of dsDNA are

subject to dissociation which results in bubbles along the strands, and it has been found

that the size distribution of the bubbles is related to the phase transition order of dsDNA

denaturation. Starting from the partition function of PS model, Poland and Scheraga [169,

170] has shown that the distribution of bubbles of length l follow

P (l) ∼ sl

lc
, (5.7)

where s is a non-universal geometric factor, and c is the loop exponent. The transition order

is only determined by the the loop exponent c: for c < 1, there is no phase transition, for

1 < c < 2 a continuous transition occurs, while for c > 2 a first order transition will take

place. Early studies [169, 170] for ideal random loops showed c = d/2, where d is the

dimension of the space, by considering the excluded volume effect, later Fisher [187] showed

that c should be modified to c = dν, where ν is the Flory exponent, since c is still smaller

than 2 both in 2 and 3 dimensions, the transition is still continuous but becomes shaper.

However, the previous derivations of c value [169, 170, 187] didn’t consider the interaction

between the loop and the rest of the DNA chain, by including this interaction, Kafri et

al. [188] showed that Eqn. 5.7 still holds and the transition order is still determined by c, but

in d = 2, 3 dimensions c is greater than 2.0, which in fact proves that the DNA denaturation

is a first order transition. However, it is important to note that the previous conclusions

about the value of c only apply to homogeneous DNA, where the binding strength is the same
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for all the base pairs without make a difference between AT pair and GC pair. Fig. 5.3(a)

shows that for a dsDNA made of all GC pairs, at the critical temperature (determined

from the melting profile Fig. 5.2(a)) our simulation indeed agrees with that the bubble size

distribution follows a power law decay with an exponent c = 2.1. More interestingly, for

dsDNAs with both AT and GC pairs present along the sequence we have found that, as

shown in Fig. 5.3(b), for random sequences and alternative AT and GC regions of relatively

small size the loop exponent still takes the value 2.1, however, as the periodic size for the

AT and GC regions increases, the loop exponent starts to decrease for bubbles of length at

the order of 10, and at greater length scales (of order 100) the bubble size distribution is

no longer a power law decay and has showed peaks expressing the sequence pattern, which

provides evidences that for real dsDNAs with heterogeneous base pairs, the loop exponent

more depends on the specific sequence and in some cases it can be smaller than 2.1 indicating

that the denaturation is not a first order transition any more.

It is rather interesting to note that during the denaturation process, the strand ends

of dsDNA tend to get separated more easily than the strands in the middle. This can be

explained by that the fork length distribution follows p(l) ∼ 1/lc
′
as can be derived using the

scaling theory for polymer networks of arbitrary topology, and c′ = 0.09 indicating a very

weak dependence on the sizes of forks, This is also demonstrated by our simulation results

in Fig. 5.4, where it is shown that near the melting temperature the probabilities of forming

forks of different lengths are almost equal.

122



1 10 100
bubble size

0.0001

0.01

p
ro

b
ab

il
it

y

G600_1.292

G600_1.28

G600_1.25

G600_1.21

G600_1.16

G600_1.11

G600_1.06

slope = -2.12

in
cr

ea
sin

g T

1 10 100
bubble size

0.0001

0.01

p
ro

b
ab

il
it

y

random_1

random_2

A
10

G
10

A
30

G
30

A
50

G
50

A
150

G
150

slope = -2.12

Figure 5.3: Bubble size distribution for a dsDNA G600 at various temperatures. (b) Bubble

size distribution for random and periodic sequences at the melting temperature.
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5.3 Summary and conclusions

To summarize, we have developed a coarse grained model capturing the interplay

of the thermodynamic and the mechanic characteristics for dsDNA. In this model, the two

strands are modeled as two semiflexible bead-spring polymer chains, in which the hetero-

geneity are introduced by the same pairing potential of different strengths for AT and GC

base pairs. The stiffness of each strand has been implemented with the bending constant as

a sigmoid function of the separation of the base pairs. We have performed Langevin dynam-

ics simulations and calibrated the model to recover the melting temperatures to agree with

the experimental ranges for various sequences, and as the temperature increased from the

physiological condition to the melting temperature, the persistence length varies from that

of dsDNA to that of ssDNA. Compared to the recently developed CG models for DNA, our

model does not provide a helix structure but has an advantage of studying long sequences

yet still preserving many intrinsic properties about DNA.

We further studied the bubble size distribution based our model. We have shown

that for a homogeneous dsDNA made of only AT or GC pairs, our simulation results agree

with the previous conclusion of first order transition, however, for sequences of periodic AT

and GC regions, when the periodic size is relatively large compared to the sequence length,

we show that the bubble size distribution exhibits peaks expressing the sequence pattern,

and more importantly, the denaturation is no longer a first order transition.
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CHAPTER 6
CONCLUSIONS AND OUTLOOK

In this dissertation, we have carried out an extensive study on the equilibrium prop-

erties and dynamical characteristics for two-dimensional swollen semi-flexible polymers in

the bulk and under channel confinement. We also developed a three-dimensional model of

dsDNA in which both mechanical and thermodynamic aspects of dsDNA have been incor-

porated.

We first developed a new scaling theory of monomer dynamics for semi-flexible poly-

mers in 2D, which is also confirmed by our molecular dynamics simulation results. Our

theory predicts novel crossover dynamics at an intermediate time when the fluctuations of

the monomers become greater than `p. Around this time the monomer dynamics becomes

the same as that of a fully flexible chain characterized by t2ν/(2ν+1) = t0.6 in 2D. The theory

expands the existing scaling theory for monomer dynamics for a WLC and that of a fully

flexible chain to include the effect of the chain persistence length. Fully flexible chains are self

similar objects, while a polymer segment up to its own persistence length is not. Therefore,

it is expected that for a length scale up to `p the dynamics will have different characteristics

due to bending modes arising out of the chain stiffness. Our theory elucidates the exact role

of chain persistence length neither contained in the WLC model nor seen before.
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Our study on the end-to-end distance of semi-flexible polymers disapproved the valid-

ity of the well-known WLC theory due to severe excluded volume effect in two dimensions,

our results show that when not in the rod limit, the RMS end-to-end distance for chains

of different contour length and persistence length follows the scaling relation derived by

Schaefer, Joanny, and Pincus [59] and Nakanishi [74]. We generalized the understanding

of transverse fluctuations for which analytical results only existed for only extremely stiff

chains, our numerical results show that the normalized transverse fluctuations for chains in

the whole range of stiffness collapse onto one master plot and show non-monotonic behavior

with the maximum occurring at L ' `p.

Chapter 3 studies the elongation of a semi-flexible polymer confined in a two-dimensional

strip. Depending on the interplay of the chain length, the persistence length and the width

of the strip, different scaling regimes for the elongation exist. Starting from a scaling ansatz

proposed by Jun, Thirumalai, and Ha [106], we have summarized and presented scaling re-

lations of the extension for general dimensions. Our simulation results have showed that

the controversial extended de Gennes regime is vanishingly small in two dimensions, and

analogous to the counterpart in the bulk, the newly discovered Gauss-de Gennes regime

by Dorfman [103] due to ideal chain behavior in three dimensions is also absent in a two-

dimensional confinement.

In chapter 4 we have compared our results in preceding chapters to results obtained by

Monte Carlo simulations on a lattice polymer model. The bead-spring model in continuum

space describes natural biopolymers for which the stiffness arises from continuous variations
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of the bond angles, and the lattice model depicts more suitably for synthetic polymers where

only a limited number of discrete angles are allowed. We have showed that, despite the

disparity of local chain conformations between both models, the results for bulk properties

are in a good agreement. For confinement in strips with `p < D, we have demonstrated

that two significant differences exist: (i) The persistence length in the lattice model has a

dependence on D thus resulting in a renormalization compared to that in the bulk; (ii) the

monomer density profiles near repulsive walls for semi-flexible polymers follow a power law

proposed by Semenov [159] in the continuum model, while for the lattice case the same profile

tends to a nonzero constant across the strip. And also importantly, for the continuum model

we reported direct estimates for the well-know Odjik deflection length and its distributions.

Chapter 6 presents a semi-flexible chain model of dsDNA which is a generalization

of the model by Sung et al. by including excluded volume effect and heterogeneity. We

have demonstrated that depending on the temperature, the persistence length in our model

ranges from that of dsDNA to that of ssDNA. In addition, the simulation results from our

model confirmed the existing theory for the bubble size probability distribution function for

homogeneous sequences and discovered new patterns for heterogeneous sequences.

Up to now, most of this dissertation and majority of the research in the literature have

devoted to studying semi-flexible polymers under the equilibrium state, however, from the

perspective of gaining insights on processes in an active biological environment such as inside

the cell and developing related technological applications, understanding how semi-flexible

polymers behave in non-equilibrium states is essential. Indeed, initial efforts have been made
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recently towards this direction. Notably, Reisner’s group has performed experiments where

a single DNA molecule confined and equilibrated inside a nanochannel is compressed from

one end of the molecule by a dynamically sliding gasket [189]. The gasket is realized by

an optically trapped bead which behaves like a nano-dozer. Interestingly, the monomer

concentration profiles at different stages of compression have been studied, and differential

equations have been set up in the case that the persistence length `p of the DNA is much

smaller than the channel width D, it is found that depending on the sliding speed of the bead

relative to the DNA molecule, different scaling regimes exist for the monomer concentration

profile. In a more recent work by the same group [190], the monomer concentration profiles

and evolutions of the extension of the molecule are also studied when the sliding bead is being

retracted. Despite the initial exploration by Reisner, many areas of interest still remain to be

investigated, e.g., it is expected that the differential equation will fail in the case of `p < D,

thus leading to questions that how the DNA molecule behave when compressed in a narrow

channel and how the behavior should be quantified and understood. Another interesting

question is how the hydrodynamic effect plays its role when different sliding speeds are

applied. Some of these aspects are being studied by us, which will be reported in separate

publications.
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