
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

A Holistic Usability Framework For Distributed Simulation A Holistic Usability Framework For Distributed Simulation

Systems Systems

Jeffrey Dawson
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Dawson, Jeffrey, "A Holistic Usability Framework For Distributed Simulation Systems" (2006). Electronic
Theses and Dissertations, 2004-2019. 948.
https://stars.library.ucf.edu/etd/948

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/948?utm_source=stars.library.ucf.edu%2Fetd%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A HOLISTIC USABILITY FRAMEWORK FOR DISTRIBUTED SIMULATON SYSTEMS

by

JEFFREY WATSON DAWSON
B.S.I.E., University of Tennessee, 1982

M.B.A., University of Central Florida, 1994
M.S.I.E., University of Central Florida, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Major Professor: Luis C. Rabelo

ii

© 2006 Jeffrey Watson Dawson

iii

ABSTRACT

This dissertation develops a holistic usability framework for distributed simulation

systems (DSSs). The framework is developed considering relevant research in human-computer

interaction, computer science, technical writing, engineering, management, and psychology. The

methodology used consists of three steps: (1) framework development, (2) surveys of users to

validate and refine the framework, and to determine attribute weights, and (3) application of the

framework to two real-world systems. The concept of a holistic usability framework for DSSs

arose during a project to improve the usability of the Virtual Test Bed, a prototypical DSS, and

the framework is partly a result of that project. In addition, DSSs at Ames Research Center were

studied for additional insights. The framework has six dimensions: end user needs, end user

interface(s), programming, installation, training, and documentation. The categories of

participants in this study include managers, researchers, programmers, end users, trainers, and

trainees. The first survey was used to obtain qualitative and quantitative data to validate and

refine the framework. Attributes that failed the validation test were dropped from the framework.

A second survey was used to obtain attribute weights. The refined framework was used to

evaluate two existing DSSs, measuring their holistic usabilities.

Ensuring that the needs of the variety of types of users who interact with the system

during design, development, and use are met is important to launch a successful system.

Adequate consideration of system usability along the several dimensions in the framework will

not only ensure system success but also increase productivity, lower life cycle costs, and result in

a more pleasurable working experience for people who work with the system.

iv

ACKNOWLEDGMENTS

I thank my committee members: Dr. Malone, for honing my statistical skills; Dr. Rabelo, for

insisting on high quality; Dr. Remington, for his helpful insights; Dr. Resnick, for providing

valuable guidance on usability; Dr. Sepulveda, for teaching me advanced simulation; and Dr.

Wang, for his advice. This work could not have been accomplished without the help of a large

number of people. I thank my colleagues who worked with me on the VTB project: Ping Chen,

Fred Gruber, Yanshen Gui, Ethling Hernandez, Mario Marin, and Serge Sala-Diakanda, all of

whom I hold in high regard. I am grateful to all the experts around the world who took my

surveys and provided useful commentary, to the many kind people at NASA Ames Research

Center, who provided a warm welcome and insightful forum for my research, to the many people

at Embry-Riddle University who overwhelmed me with their willingness to help and allowed me

to do whatever was necessary to accomplish my work, to the industry practitioners and vendors

who took time out of their busy schedules to provide feedback, and to many people unnamed. I

am grateful for the kind help of the staff in the Industrial Engineering and Management Systems

department. I thank my parents for teaching me to think independently. I especially thank Dawn,

for her support and encouragement.

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES.. x

LIST OF ACRONYMS AND ABBREVIATIONS .. xi

CHAPTER ONE: INTRODUCTION... 1

Research Problem ... 1

Usability.. 2

Distributed Simulation .. 3

The Usability of Distributed Simulation Systems .. 5

Chapter Organization .. 10

CHAPTER TWO: LITERATURE REVIEW... 11

Simulation ... 11

Distributed Simulation Systems.. 14

Usability.. 19

Evaluative Usability.. 20

Formative Usability .. 29

Holistic Usability .. 31

Human-computer Interaction Viewpoint .. 33

Summary and Objective.. 36

CHAPTER THREE: METHODOLOGY ... 38

Holistic Usability Framework Development .. 39

End User Needs and Goals ... 41

vi

End User Interface(s) .. 41

Programming... 41

Training... 42

Installation... 43

Documentation.. 43

Framework Attributes ... 45

Measurement of Attributes of Framework Dimensions.. 50

CHAPTER FOUR: VALIDATION AND FRAMEWORK REFINEMENT............................... 54

Validation Survey ... 54

Validation of the Other Attributes .. 64

CHAPTER FIVE: APPLICATION OF FRAMEWORK TO TWO DISTRIBUTED

SIMULATION SYSTEMS... 65

Approach... 65

Who Does What in an Assessment ... 68

Virtual Test Bed Assessment .. 71

VTB System Description .. 71

VTB Assessment Details and Observations ... 73

VTB Summary of Results... 75

VTB Strengths, Weaknesses, and Recommendations .. 81

Aviation Research Training Tool Radar Assessment ... 83

Aviation Research Training Tool Radar System Description... 83

ARTT Assessment Details and Observations ... 88

ARTT Summary of Results .. 95

vii

ARTT Strengths, Weaknesses, and Recommendations.. 96

Lessons Learned and Framework Strengths and Weaknesses.. 97

Strengths ... 98

Weaknesses ... 98

Lessons learned... 99

Weights and Sensitivities.. 100

CHAPTER SIX: DEVELOPMENT AND APPLICATION OF ATTRIBUTE WEIGHTS...... 103

CHAPTER SEVEN: VENDOR AND PRACTITIONER FEEDBACK.................................... 110

Feedback 1 .. 110

Feedback 2 .. 114

Feedback 3 .. 117

Summary Comments... 118

CHAPTER EIGHT: CONCLUSION AND FURTHER RESEARCH....................................... 120

Final Framework... 120

Attributes... 120

Measurements ... 122

Formative Usability .. 122

Evaluative Usability.. 123

Contributions to the Body of Knowledge and Value Added to the DSS Industry 124

Future Research .. 126

Conclusion .. 130

APPENDIX A: USER SURVEY FOR VALIDATION... 131

APPENDIX B: VALIDATION SURVEY STATISTICAL ANALYSIS SPREADSHEET 140

viii

APPENDIX C: INSTITUTIONAL REVIEW BOARD APPROVAL....................................... 148

LIST OF REFERENCES.. 150

ix

LIST OF FIGURES

Figure 1. Top-level Use Case Diagram for a Distributed Simulation System................................ 8

Figure 2. Conceptual Model and a Simulation Model (from Garrido, 2001, p. 7) 12

Figure 3. System Usability Scale (source: Digital Equipment Corporation)................................ 22

Figure 4. Holistic Usability Model (source: Innovation North Faculty of Information and

Technology of Leeds Metropolitan University) ... 32

Figure 5. Flowchart of Methodology.. 38

Figure 6. Holistic Usability Dimensions for a Distributed Simulation System............................ 40

Figure 7. Virtual Test Bed GUI Design Approach ... 73

Figure 8. Schematic of the Layout of the ATTR Radar.. 84

Figure 9. Two ATC Radar Room Workstations ... 86

Figure 10. ATC Radar Display During Simulation of Airspace... 86

Figure 11. ARTS-III Keyboard for ATC and Mouse at a Radar Room Workstation................... 87

Figure 12. Pseudo Pilot Workstations... 87

Figure 13. Formative Usability ... 123

Figure 14. Evaluative Usability .. 124

Figure 15. Usability Measures and Attributes Linked to a System .. 125

x

LIST OF TABLES

Table 1. Holistic Usability Framework Measurements .. 50

Table 2. Types of Users Surveyed .. 55

Table 3. Types of Distributed Simulation Systems Participants Have Experience With 56

Table 4. Validation Survey Results .. 59

Table 5. Assessment Metrics for the Virtual Test Bed ... 75

Table 6. Assessment Summary for the Virtual Test Bed.. 81

Table 7. ARTT Radar Satisfaction Metrics .. 91

Table 8. Assessment Metrics for the Aviation Research Training Tool Radar 92

Table 9. Assessment Summary for the ATTR Radar ... 96

Table 10. Survey Results for Determination of Attribute Weights .. 105

Table 11. Weighted Assessment Summary for the Virtual Test Bed ... 109

Table 12. Weighted Assessment Summary for the ATTR Radar... 109

Table 13. Final Framework... 120

xi

LIST OF ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute

API application programming interface

ATC Air Traffic Control

ARTT Aviation Research Training Tool

CIF Common Industry Format

Dod Department of Defense

DSS Distributed Simulation System

DVA data visualization and analysis

GUI Graphical User Interface

HCI human-computer interaction

HE heuristic evaluation

HIP human information processing

HLA High Level Architecture

I infrastructure

IDE integrated development environment

IRB institutional review board

ISO International Standards Organization

JRD3C Joint Rapid Distributed Database Development Capability

K-LM keystroke-level model

M&S modeling and simulation

MOT metaphors of thinking

xii

MUS Master Usability Scaling

MUSiC Metrics for Usability Standards in Computing

N/A not applicable

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

OMG Object Management Group

PCI programming, configuration, and installation

PDS parallel and distributed simulation

QUIS Questionnaire for User Interaction Satisfaction

RTI Run Time Infrastructure

RUP Rational Unified Process

SUMI Software Usability Measurement Inventory

SUS System Usability Scale

T training

UCID User-Centered Information Design

UCF University of Central Florida

UID user interface design

UME Usability Magnitude Estimation

UML Unified Modeling Language

UN user needs

VAST Virtual Airspace Simulation Technology

VLAB Virtual Laboratory

VMS Virtual Motion Laboratory

xiii

VTB Virtual Test Bed

VV&A validation, verification, and accreditation

XMSF Extensible Modeling and Simulation Framework

1

CHAPTER ONE: INTRODUCTION

Research Problem

Designing and building a distributed simulation system (DSS) is a major undertaking

requiring much work from experts in a variety of disciplines. The ultimate quality of the system

depends on how well the system meets the needs of the users and how easy the system is to use.

Ease of system use is often forgotten in the design and implementation phases. A framework for

the usability of DSSs is needed in order to help ensure good usability. While this framework will

have the obvious benefit of making the system easier and more pleasurable to use, consideration

of usability in the system design will also have a significant impact in reducing system lifecycle

cost. The application of a framework for the usability of DSSs has the benefits of (1) improved

user experience and productivity, (2) a higher probability of system success, and (3) lowered

system lifecycle costs for design, development, operation, and maintenance.

The viewpoint taken for this framework is from a high level looking at all the aspects of

the system that affect numerous types of users who work with the system. From this holistic

viewpoint many issues are observed that, if gone into detail, would result in separate research

studies for each item.

Ensuring that the needs of the various types of users who interact with the system during

design, development, and use are met is important to launch a successful system. The

framework’s research contributions include the development of the holistic usability framework

for DSSs, which is a new approach to usability; the development of a methodology to measure

2

holistic usability given the framework; and the synthesis of the knowledge of various fields

needed in creating the framework.

Usability

Usability is the art and science of making systems and products that are easy to use and

that people like to use. While much of the effort and literature devoted to usability has been

focused on human-computer interfaces, a considerable effort has also been devoted to products

in general. Indeed, every product or system that a person uses has aspects that are usability

related, from the instruction manual to the ergonomics to the cognitive load put on the person’s

mind to use the system. Success or failure of a product, in the marketplace or on the battlefield

under stress, depends on its usability.

For systems that are already designed, a standardized format for usability evaluation has

been developed which defines usability as a system’s effectiveness, efficiency, and level of user

satisfaction. Effectiveness is defined as whether or not the user of a system can successfully

accomplish desired tasks. Efficiency can be defined as a system’s learnability and memorability.

The time to accomplish a specified goal is often used as a measure of efficiency. Learnability is

how easy it is to learn how to use a system. Memorability is how easy it is to remember how to

use a system. User satisfaction is a measure of how much a system’s features and interface

please users. While these basic measures provide quantifiable yardsticks, there is much more to

usability than these three items.

Usability analysis is sometimes performed as an afterthought after a system is designed,

but it is best performed in a concurrent engineering or product development environment, as an

3

integral part of the design cycle. The money spent on usability engineering usually pays returns

many times more than the investment required for the analysis.

Usability needs to be considered in the design of any system. As the cost and complexity

of a system increases, so does the risk of failures in the deployment of the system and in its user

interface. Aside from the possibility of total project failure, there are costs associated with poor

usability; these costs occur during system design, deployment, and over the life cycle of the

system. For example, Mayhew and Mantei (1994) give a detailed example of where a project to

improve the usability of a workplace application costs $132,185, but results in a savings due to

usability improvement of $209,490; in addition, the benefits of improved usability accrue yearly.

A holistic usability framework that can be used both as an aid to DSS designers and as a means

to evaluate existing systems is an important contribution to the toolbox we have to design and

use DSSs. The development, refinement, and application of this framework is the subject of this

dissertation.

Distributed Simulation

 Distributed simulation is simulation that takes place using more than one program

running simultaneously and to a certain extent independently, usually on more than one

computer. The computers can be in the same room or geographically dispersed. While the

rationale for using more than one computer will at times be to take advantage of the power (and

potential cost reduction) distributed computing offers, the ability to interoperate and reuse a

variety of simulation systems—new and legacy—is also important. A large number of

configurations and purposes of DSSs exist, ranging from human factors research, virtual

4

environments, entertainment, military research, marketing studies, business studies, and financial

analysis. DSSs may involve discrete, real-time, human-in-the-loop, continuous, and/or hybrid

simulation. They are usually complex and require high levels of expertise to use; however, if

simplicity of user interfaces were a design goal for DSSs, ease of use could be improved.

 As an example of a DSS, consider the Vertical Motion Simulator (VMS) at the NASA

Ames Research Center. This system can be configured to provide a virtual simulation of any

aircraft cockpit, complete with real hardware, head-up displays, instruments with simulated data,

video and audio streams, and motion. Its most important use is in training astronauts whose job is

to fly the space shuttle. While the astronauts in the cockpit experience a realistic training

experience, people watch them in the Virtual Lab (VLAB).

 The VLAB has a room full of equipment, computer monitors and interfaces, and chart

recorders. Different aspects of the simulation are displayed on separate monitors. In this room,

researchers interface with the pilots flying the simulator and monitor, record, and study data. A

three-dimensional, nonimmersive, virtual view of this room is transmitted to other NASA

centers. Researchers at other NASA centers have the capability to zoom around the virtual

VLAB using a two- or three-dimensional cursor via joystick or keyboard commands, view the

cockpit mockup and the simulated view the pilot is seeing, select a number of displays to enlarge

into windows on the screen, and travel in the Virtual Lab going to places such as a white board,

where messages are shared between centers. This example shows distributed simulation used to

monitor subjects in a simulator, while also providing a virtual view to remote researchers.

 The simulations in DSSs can be synchronized to the same real time clock, although even

when each is simulating a system in the same time period they can lead or lag each other; these

deviations from absolute synchronicity are handled by the software infrastructure used to link

5

them together. Data flows between the independent simulations via the exchange of messages

that may be synchronous or asynchronous.

 A typical use of DSSs is in decision making. By studying how different processes

interact, and looking at alternative scenarios, one can obtain information to help make difficult

decisions. One can also study how humans interact with systems to determine how best to design

the systems for use with people (e.g., air traffic control [ATC] systems). In such a case actual

people may be in the loop, performing their roles as system users; as an alternative, hardware can

be used to simulate the actions people would make if they were in the loop.

The Usability of Distributed Simulation Systems

 When looking at the usability of DSSs, one becomes aware that a large team effort is

underway. Each member of the team can be considered a user in some way. Indeed, from a

managerial perspective, the usability may depend on the resources required to maintain the team

who uses the system and how well the team can work with the system to accomplish stated goals.

From a researcher’s perspective, usability may be how easy it is to obtain the desired data and

how good the data are. From a maintainer’s perspective, usability may reflect how easy the

system is to maintain.

 The usability of a DSS is not simply the usability of its user interfaces. Given a system,

these attributes are important:

• Design of its components’ user interfaces (graphical and/or command line)

• Methodology of starting each component and the overall simulation

6

• Usability for each user; researchers, who use the simulation to obtain data; programmers

who may be needed to integrate various simulations with different interfaces; operators,

who are required to start, stop, and offer real time troubleshooting for the simulation runs;

human participants, who may be required to play a support role during the simulation

(e.g., acting as pilots during an ATC simulation), in addition to users who may be

experimental subjects during a simulation or trainees in a simulated environment

• Usability, from a programming and project management viewpoint, of the software

construction, methods, platforms and programming language(s) used to create the

simulation system/models

• Usability for maintenance and administration of the system

• Ease of upgrading the hardware

• Ease of interconnectivity of the network infrastructure(s) required to run the simulation

• Ease of integrating legacy systems

• Troubleshooting support for when things go wrong

• Ease of maintenance timing, data synchronicity, or pseudosynchronicity

• Training requirements for those who use and support the system

This list goes beyond an analysis of traditional graphical user interface (GUI) usability as

usability of a product. However, if one considers the accepted usability measures: efficiency,

effectiveness, and user satisfaction, all of the above list affects the usability of the DSS. A DSS

has multiple users at several levels of system interaction. Figure 1 below shows the human users

of a DSS and their unified modeling language (UML) use cases (users on the left are termed

“initiating actors”; users on the right are termed “receiving actors”). This use case diagram is not

7

exhaustive; there are many types and purposes of DSSs, each of which has a variety of

configurational options. In any given system, who performs each role may be clear, although in

an ideal system interface flexibility would allow for dynamic roles.

8

Figure 1. Top-level Use Case Diagram for a Distributed Simulation System

9

In a concurrent engineering environment, the application of usability principles

throughout iterative design cycles will enhance the usefulness of the system and reduce its cost

of operation. Developers of DSSs sometimes “get it right” due to decades of cumulative

experience, iterative design, and high levels of expertise. There is no one, best way to design

DSSs, which are often constructed for ad hoc purposes. A set of usability guidelines, however,

will offer a reference and starting point for system developers and a means of assessing the

overall usability of a DSS.

 This research contributes to the existing body of knowledge in several ways. Taking a

holistic viewpoint of the usability of a large, complex system, considering not just the end users

but the designers, builders, and maintainers, is a new approach. Although a DSS is the subject, it

could also be a paperless engineering design system, a global e-commerce infrastructure, or a

stock exchange’s information technology system. The framework can be used as a design tool

that will help ensure that key holistic usability areas are considered; designers often suffer from

“tunnel vision” as they focus on their subtask, pressured by schedules, narrow requirements, and

a lack of knowledge of key user needs. Another area where the framework can be used is in

performing comparative design studies, assessing various system configurations. The ability to

measure holistic usability along several dimensions to make an overall assessment provides a

quantitative measure of a DSS’s holistic usability. This research contribution will allow for the

measurement of not only an already-designed system’s holistic usability but can also be applied

to a system as it is being designed, so that improvements can be made. The use of the framework

as a design tool will lead to lower life cycle costs, higher productivity, and increased user

satisfaction for all people who interface with the system in its design, development, maintenance,

and usage.

10

Chapter Organization

This dissertation is arranged as follows. The general topic is introduced in this

introduction, as are general concepts of usability, simulation, and distributed simulation. Chapter

2 provides a literature review of relevant aspects of usability and simulation. Chapter 3 discusses

the methodology used and introduces the holistic usability framework for distributed simulation.

Chapter 4 discusses a survey of distributed simulation experts that is used to obtain feedback to

validate and refine the framework. Chapter 5 shows the application of the framework to two

existing systems and a technique to measure the usability of DSSs. Chapter 6 discusses the

results from a second survey, independent of the first, that determines attribute weights. These

weights are applied to the systems analyzed in chapter 5. Chapter 7 gives the results of feedback

from HLA-RTI vendors and DSS practitioners. Chapter 8 gives the final framework,

contributions to the body of knowledge, suggestions for future research, and conclusion.

11

CHAPTER TWO: LITERATURE REVIEW

Simulation

Simulation is the art and science of making models of entities and systems in the real

world in order to study them. These models are mathematical creations that use computers to

emulate the most salient features relevant to a problem about a system or situation. Given a

problem statement, one studies a phenomenon and collects data that are used to model the

phenomenon, often using probability distributions or generating modeling behavior from actual

historical probability distributions. By creating a software model of a system, random behavior

can be studied over many runs. Also, alternative design scenarios can be studied without actually

needing to build a system.

 When creating a simulation model, first the real-world system is studied, then a

conceptual design is made of the situation. A common tool used in the conceptual stage is a set

of UML diagrams of the relevant system aspects if the simulation is object oriented. In

performing a simulation study, one first designs and creates the simulation model, then performs

an analysis of the simulation results. One looks at a real-world system, creates a conceptual

model at the abstract level, then creates a simulation model at the software level (Garrido, 2001).

Figure 2 below shows a diagram of the levels involved in a simulation study.

12

Figure 2. Conceptual Model and a Simulation Model (from Garrido, 2001, p. 7)

There are numerous simulation software packages available that people who do not know

a programming language can use to create simulation. An example of this is Arena, a product of

Rockwell Software. These packages typically include at least some provision to integrate more

advanced capability through an Application Programming Interface (API) or a means of

interfacing with a language such as Microsoft's Visual Basic. Most advanced simulation work,

however, will involve software implementation that requires writing code. The ease with which

the programming can be done is dependent on the language(s) used and the infrastructure for the

simulation.

 Software programming languages have progressed from procedural (e.g., FORTRAN), to

structured (e.g., C), to object-oriented (e.g., C++ and Java). For some basic simulation problems,

a structured language may be adequate, although most software development performed today

Real world

Abstract level

Software level

Real system

Conceptual
model

Simulation
model

13

uses an object-oriented programming approach. In fact, the first object-oriented language,

SIMULA, was created for the purpose of constructing simulation models. The strength and

power of object-oriented software often make it the tool of choice for large-scale simulations,

including distributed simulations. In the coming decades, Model Driven Architecture (MDA)

may replace object-oriented design as the basic paradigm. The Object Management Group

(OMG), a prime developer of the theory of object-oriented software, "decided to raise the level

of abstraction and focus on describing how the system should be integrated" with MDA

(Harmon, 2005).

 It is not the intention of this dissertation to provide a detailed study of the software

aspects of various simulation approaches. However, an understanding of software approaches

and the programming challenges involved is necessary to evaluate the software components in

the holistic usability framework developed herein. For the designers and programmers (and the

manager who must oversee the budgets and manpower schedules), the software approach taken

and in particular the challenges encountered and the ease of use of the software development

tools used, has a profound effect on the difficulty level of their jobs and their productivity, and

hence the relevant aspects of the usability framework.

 Simulation is appropriate when a closed form mathematical solution to a study is not

possible and the cost of the simulation effort is justified. Advantageous uses include the study of

new procedures and designs, the testing of hypotheses, when time compression or expansion is

needed, studying interaction and the importance of variables, effective bottleneck analysis,

understanding how a system actually operates rather than the intuitive understanding of the

system, and for alternative design studies (Pegden et al., 1995; Banks et al., 1996). Banks et al.

discuss the disadvantages of simulation, then give offsetting factors that help mitigate the

14

disadvantages. The first three of these disadvantages relate directly to issues in the holistic

usability framework developed herein: (1) Modeling requires training and skill. A novice cannot

simply create good simulation models without training. This is offset somewhat with software

packages that offer templates for basic simulations. (2) Results of simulations can be challenging

to interpret. This can be offset by improving the usability of data analysis and visualization

capabilities in the system. (3) Creating and analyzing simulation models are often expensive and

time intensive. This is offset somewhat by improved simulation software and templates for basic

models (Banks et al., 1996, pp. 5-6).

 In sum, simulation is a tool that helps us analyze and study situations and solve problems.

Taking the concept of simulation to the next level, distributed simulation is discussed in the

following section.

Distributed Simulation Systems

Distributed simulation systems are used for increasingly sophisticated purposes, such as

the creation of full scale virtual or mixed-reality environments, training, entertainment, real-time

data analysis and optimization of complex systems, and business situations (e.g., world-wide

financial market "what ifs"). One of the current methods for distributed simulation is the High-

Level Architecture Run Time Infrastructure (HLA-RTI). The US Department of Defense (DoD)

approved the HLA as the standard for all DoD simulations in 1996. The OMG adopted the HLA

as the Facility for Distributed Simulation Systems in 1998. In 2000 the Institute of Electrical and

Electronic Engineers approved the HLA as an open standard (Defense Modeling and Simulation

15

Office, 2004). The HLA is an architecture; the RTI is the software that provides the needed

infrastructure for the interlinkage of simulations.

In a distributed simulation environment, system performance is an important factor in

usability. Belleman and Shulakov (2002) note that usability increases as the update time for the

simulation decreases. The minimization of delays is important for interactive simulation.

Permulla (2002) found that the Extensible Modeling and Simulation Framework (XMSF) can

increase usability in a dynamic, distributed simulation environment as compared to HLA-RTI,

but at a higher cost. He noted that HLA RTI research has focused mainly on static configurations

of federates.

In looking at continuous distributed simulation systems for the military, Ceranowicz et al.

(2003) noted that “Even if we overcome the limitations of scope and scalability, ease of use will

remain a roadblock to making M&S ubiquitous in the concept of development process.” The

authors mention that it would be preferred if a user could call up scenarios and run the simulation

from his or her interface, but that currently the user must coordinate with several other people at

various distributed computers in order to run the simulation. The goal is for a single user to be

capable of controlling all the computers used in a distributed simulation, without needing

assistance at the remote sites. Combining the control and monitoring capabilities for several

systems into a single interface also allows for a user to better understand the overall system.

 A set of taxonomies for computer-based simulations was provided by Sulistio, Yeo, and

Buyya (2004). Their paper lists taxonomies for simulation tools, parallel and distributed

simulations (PDSs), usage, simulation, and design (with design taxonomies for the simulation

engine, modeling framework, programming framework, design environment, user interface, and

system support). They focused on research-based simulation tools rather than simulation tools

16

made by private companies, because the former’s design characteristics are available, while the

latter’s are generally not disclosed. Although their simulation interest is geared towards

computer infrastructure and network details, their taxonomies are imminently applicable to the

evaluation of any simulation system. They classify distributed simulation systems into five

groups: “Internet, intranet, mobile systems, embedded systems or telephony systems.”

Interestingly, their simulation taxonomy not only includes discrete and continuous, and

deterministic and probabilistic systems, but also, relative to time, static and dynamic systems.

Their user interface taxonomy includes nonvisual and visual systems. (Although they note that a

visual system is preferred, in certain situations an expert may prefer a command-line interface

for speed and directness.) The visual user interface part of the taxonomy is broken down into

design (drag and drop versus form), execution (animation versus graph), and integrated

environment. The integrated environment they discuss is analogous to an integrated development

environment (IDE) for program development (such as a Java IDE), although it is for

programming simulations. They note that “Most tools have plans to incorporate a visual

integrated environment in the future to enable better usability, but implementing a good user

interface is not trivial and requires lots of time and effort. This is why most simulation tools are

not able to provide a visual interface.”

 DSSs are also important for business. Chorafas and Steinman (1995) present numerous

examples where real-time simulation can be used to analyze and visualize data, noting that the

use of a “hypermedia solution space” (p. 139) is a solution to a data processing bottleneck. In

other words, having enough information to be able to solve a problem is not enough; the

information needs to be analyzed in real time in a way that allows one to see a solution. One of

the examples Chorafas and Steinman present is the failure of Metallgesellschaft (a subsidiary of

17

the Jürgen Schneider Company) due to its speculation in financial derivatives without the

requisite real-time visualization tools to understand their strategies. Another is the failure of a

company in financing a real estate developer with loans as great as DM 1.15 billion. The

company lacked needed “high-fidelity real-time simulation tools” (p. 141) that would have

helped the company understand the real estate developer’s records. Mention is made of a

software package by the Swiss financial company Securum, which allows a virtual view of a

building’s plans, several layers of changes in drawings, real estate accounting with budgets, an

expert system, and a job specification. In complex business where large amounts of information

need to be processed and understood in order to make correct decisions, a DSS can be the key to

survival. These systems can involve accessing databases and simulations in several locations

simultaneously. For distributed simulation systems, much of the literature only mentions the

need for a central control and monitoring GUI. Also mentioned is the fact that the usability of

DSSs needs improvement. The difficulties of coordination and collaboration in running models

together from separate computers in separate locations is often mentioned. From an empirical

viewpoint, aside from an evaluation of existing research literature, examination of existing

systems, interviews with the researchers who use them, and ethnographic observation of systems

being built and in use are informative about the nature of the problem.

As an example of recent research in this area, below is a quote from Fishwick (2004)

from an article entitled “Toward an Integrative Multimodeling Interface: A Human-Computer

Interface Approach to Interrelating Model Structures” (p. 422-23):

Despite the wealth of work already done in creating a substantial visual user

interface environment on top of a simulation program, the integration of model

18

structures and their execution results has only begun. The community needs to

focus on more effective ways of interfacing with the human, whose cognitive

system is comfortable with metaphors and engaging iconic models and less

comfortable with purely symbolic language interfaces…the grand challenge…is

to enable a human-computer interface in which models of different types can be

integrated with one another through effective interaction means.

Although Fishwick also examines issues associated with data visualization, he does speak of the

challenge of designing usable interfaces for frameworks with multiple models. In addition to

usability, he raises issues of emotion/aesthetics, immersion (related to what is termed

“presence”), and customization (which is a needed feature for DSS interfaces). When speaking

of a distributed simulation architecture different than the HLA, Frank Sogandares at the Center

for Advanced Simulation System Development discussed this requirement in a paper reflecting a

decade of research in distributed simulation work in an aviation context. His observations are

worth quoting (Sogandares, 2002, p. 126):

Simulations and simulation clients must be “easy” to execute, configure, pause,

and resume. Simulations must startup and shutdown cleanly.

This is an extremely important requirement. A simple to use environment allows

developers, analysts and experimenters to execute simulations without the

assistance of programmers.

19

Usability

 A usability analysis can be evaluative or formative. Evaluative usability is when a

system’s usability is evaluated either by heuristic analysis (an expert analyzing a system by

applying heuristics), by empirical testing using human participants, or by other methods.

Formative usability is when usability analysis is part of the design process; it is designed into the

system. Formative usability falls into the provinces of interaction design and other user-centered

design approaches.

 Although there is a large body of research in human-computer interaction (HCI), there is

a relative lack of theoretical literature concerning usability. There is, however, a large body of

practitioner literature, which is fragmented, spanning across many disciplines, with the approach

varying depending on the viewpoint taken.

 A collection of papers in a book edited by Trenner and Bawa, eds., (1998) entitled The

Politics of Usability discusses topics about how to justify usability, how to navigate company

politics while performing studies and design work, and how to effectively deal with international

and multicultural issues. Beyond politics, some of the papers in the book offer advice on cost

justifying usability and the standardization of usability practice. Usability Evaluation in Industry

(Jordan, Thomas, Weerdmeester and McClelland, eds., 1996) is another collection of papers that

offer mainly a European perspective on usability practice. Numerous chapters are provided on

evaluation methods, as well as chapters on field studies, informal methods, and task analysis.

Relatively new evaluation methods discussed include feature checklists, co-discovery

exploration, and repertory grid theory.

20

Because of its ubiquity, social, and economic importance, much research has been done

on the usability of World Wide Web sites. An example of a book discussing this is Shaping Web

Usability, Interaction Design in Context (Badre, 2002). The book begins with a discussion of the

human-computer interaction (HCI) information processing approach to usability, then discusses

a variety of topics germane to Web design, such as demographics, genres, and aesthetics. While

much Web design can be for entertainment or business purposes, since most distributed

computing applications are Web enabled—able to run over an intranet or an Internet via a Web

browser—some Web design guidelines can also be applicable to distributed simulation systems.

Evaluative Usability

 Currently, industry practice in usability evaluation is often reported in a standardized

format. In the US, the format started as a project at the National Institute of Standards and

Technology (NIST); hence, sometimes one hears reference to the "NIST" format (NIST, 1999).

After a successful industry collaborative effort with NIST, the maintenance of the format was

transferred to the American National Standards Institute (ANSI). At the time of writing, work is

underway to modify the format to include formative testing. The ANSI format and the NIST

format for usability reports are very similar. The ANSI format, ANSI NCITS 354-2001, is called

"Common Industry Format for Usability Test Reports" (ANSI, 2001). Many companies prefer

this format for reporting. Three measures are stated for measuring usability in the ANSI format:

effectiveness, efficiency, and satisfaction; metrics for these items are required. Of particular note,

in the definitions section, one finds "context of use," the "user group," "goal," and "task"; the

definition of these terms is self-explanatory. For effectiveness, measures can include completion

21

rate—the percentage of tasks successfully completed, errors, and assists—when the participant

asked for help. Efficiency is usually taken to be mean time on task, with standard deviation and

range also noted. Satisfaction is often measured using semantic differential or Likert scales. A

variety of standard, validated surveys are used to measure satisfaction, or the analysis team can

construct its own. (The same measures are also given in ISO 9241-11, Guidance on Usability—a

European standard [International Organization for Standardization, 2003].) Annex A of the

ANSI document is a checklist for making sure nothing is missed in the Common Industry Format

(CIF). A report template is included. The ANSI CIF provides a standardized format that

knowledgeable professionals are familiar with; interested readers will turn to the sections that

interest them. It is for testing products that already exist, not for development, although it can be

used after prototypes are developed. The format can also be taken as a starting point for

developing a unique format specialized for a given usability evaluation. A wide variety of

usability measures and techniques exist, however, that are not included—and would not

necessarily be appropriate to include—in the ANSI format for test reports, which is a good tool

to use where appropriate.

Preferably, a validated survey is used when measuring user satisfaction. Shneiderman

(1992) created a survey that is often used to measure satisfaction with computer interfaces. It is

called the Questionnaire for User Interaction Satisfaction (QUIS) and is currently at version 7.0,

available for a fee from the University of Maryland. This validated survey can be used to

evaluate the level of satisfaction with a computer interface; it can also be modified as needed for

a specific situation. A problem with using long surveys is that respondents, particularly if not

sufficiently motivated, may tend to skip questions or not tend to them seriously at the end of the

survey. When Digital Equipment Corporation wanted a quick and reliable measure of user

22

evaluations of their software, they developed the System Usability Scale (SUS), a short ten-

question survey using Likert scale questions (Brooke, 1996). The SUS survey is shown below in

Figure 3. The scoring of the SUS results in a number ranging from 0 to 100 that is a measure of

overall satisfaction. The SUS is an example of how user satisfaction can be measured. One can

also count negative and positive comments made aloud by users while they are using the

interface during a test, as well as post-test comments, to get other measures of user satisfaction.

The QUIS is considerably longer and more detailed.

Figure 3. System Usability Scale (source: Digital Equipment Corporation)

23

An overview of usability measurement methodology was given by Bevan and Macleod

(1994); an in-depth discussion of their work, which covers a lot of ground, is warranted. They

noted that improved usability reduces cost and increases productivity and user satisfaction. In

Europe, the Display Screen Equipment Directive requires the application of software ergonomics

and usability principles in creating new software. Objectives for usability measurement include

the attainment of a minimum level of product usability, feedback on whether design objectives

are being met, and the identification of problems. Numerous European standards are related to

usability. For instance: ISO 9241-11, Guidance on specifying and measuring usability; ISO

9241-10, Dialog principles, which includes, the authors note, "suitability for the task, suitability

for learning, suitability for individualization, conformity with user expectations, self

descriptiveness, controllability, and error tolerance"; and ISO 9241-14, Menu dialog guidelines.

Usability is not as easy to specify as some other software attributes because it depends on the

context of use. Bevan and Macleod note that guidelines and checklists are useful, but guidelines

are sometimes appropriate only for a given type of user and system, can be interpreted

differently, are seldom if ever exhaustive, are not always compatible with other guidelines, are

applied depending on the skill of the evaluator, are context-dependent, do not ensure a given

level of usability is met, can be overgeneralized, can be interpreted differently by different

experts, and cannot be turned into measures. Formal measurement methods, however, can make

usability predictions early in the design process. A keystroke-level model (K-LM) looks at

keystroke and mouse movements. It can predict the amount of time an expert user takes to do a

task, but does not consider contextual issues. The K-LM, which is a low-level analysis, can be

extremely useful in design evaluation. As Bevan and Macleod state, "…some applications are

24

being developed which force users to perform cumbersome sequences of mouse actions, to carry

out simple operations. A K-LM analysis of such operations can identify the potential advantage

in actions and time saved of providing single keystroke alternatives for frequently performed

operations." (Programmers often do not think much about usability, in the same way that

hardware designers do not think much about reliability and safety—an independent review is

needed to help the designer or programmer think about issues other than simply meeting

specifications.) Cognitive models to understand the thought processes of the user are a more

sophisticated technique to evaluate designs; they require a high level of expertise to develop,

however. (“Thinking out loud" is a simpler technique that can determine some of the same

information as a cognitive model—what the user is thinking.) A SANE model is a technique that

compares and simulates different design models, simulates procedures, and derives usability

measures.

Bevan and Macleod note that it is necessary to specify the context of use before the

usability of an interface can be evaluated. Stating that “usability is the quality of use in a

context,” they quote ISO 9241-11’s definition: “The effectiveness, efficiency and satisfaction

with which specified users achieve specified goals in particular environments.” The context of

use is specified by four factors: users, task, equipment, and environment. The authors note

different views of usability: a product-centered view, a context of use view, and a quality of use

view. They note that efficiency can be human efficiency, which ultimately can be translated into

economic efficiency. Usability for software maintenance is also mentioned as an important

measure; this points out the need for considering not just the end user, but the programmers

maintaining the software as well.

25

The MUSiC (Metrics for Usability Standards in Computing) measures were developed in

order to develop usability tools and measurements. Bevan and Macleod provide a summary of

MUSiC, which includes detailed tools to measure and specify many aspects of usability. For

instance, there is a 50-item questionnaire, the Software Usability Measurement Inventory

(SUMI), that is internationally standardized and available in five languages, which provides three

measures: “an Overall Assessment, a Usability Profile, and Item Consensual Analysis which

gives more detailed information.”

An oft-referenced book is Usability Engineering by Jakob Nielsen (1993). It was written

specifically to address computer interfaces, although it is generalizable to other types of systems.

Nielsen defines five main usability attributes: learnability, efficiency, memorability, errors, and

satisfaction. Learnability and memorability can be considered to be part of effectiveness

(mentioned above in the CIF format). Nielsen defines ten usability principles (heuristics) that can

be used to evaluate an existing design (p. 20):

• Simple and natural language

• Speak the user's language.

• Minimize the user’s memory load.

• Consistency

• Feedback

• Clearly marked exits

• Shortcuts

• Good error messages

• Prevent errors.

26

• Help and documentation

Use of these heuristics, of course, requires clear definition of what each means. (This list of

heuristics has some similarities to Shneiderman’s [1992] “eight golden rules of dialog design”:

“Strive for consistency; enable frequent users to use shortcuts; offer informative feedback;

design dialogs to yield closure; offer simple error handling; permit easy reversal of actions;

support internal locus of control; reduce short-term memory load” [pp. 72-73].) Much longer

lists of heuristics exist, but when applying heuristics it is sometimes useful to use a short list to

keep the job manageable. Since no usability analyst finds all the problems, the most cost efficient

way to evaluate a system using heuristics is to use three to five expert evaluators; more results in

diminishing returns. Nielsen notes three dimensions that differentiate users: level of knowledge

of the domain, amount of computer experience, and whether a novice or expert with the system.

Designing a system for a type of user, or more than one type (e.g., novice and expert), is

important; different features are needed to support different types of users. A detailed discussion

of the usability engineering lifecycle is given in Nielsen's book, noting many important issues.

For instance, two dimensions of prototyping, horizontal and vertical, are given. A vertical

prototype gives complete functionality of a few features, while horizontal prototyping gives

many features but little depth of functionality. Design of user interfaces is almost always

iterative, if for no other reason than the fact that without user testing, one does not know what

users will do with the system.

Master Usability Scaling (MUS) was proposed by McGee (2004) as a usability measure.

It is based on an a priori scale-independent rating method used by individual evaluators called

Usability Magnitude Estimation (UME). The rationale for the development of MUS is a critique

27

of current usability metrics. While the measurement methods proposed and tested by McGee are

intriguing from both theoretical and practical viewpoints, he notes that the methods are

“sophisticated enough to pose a significant barrier to widespread MUS adoption” (p. 342). In

spite of the complexity of MUS and UME, they offer the ability to take measurements that may

offer more statistical validity in certain experiments.

Heuristic evaluation (HE) is a technique whereby expert evaluators inspect an interface or

device to find usability problems, using a set of heuristics as a guideline. Although this widely-

used technique has many strong points, one of its weaknesses is that evaluators have a tendency

to find cosmetic problems that are of minor importance in addition to serious usability problems.

Hornbeck and Frokjaer (2004) propose a new usability inspection technique, metaphors of

thinking (MOT). There are five key metaphors in this technique: (1) “habit formation is like a

landscape eroded by water,” (2) “thinking as a stream of thought,” (3) “awareness as a jumping

octopus in a pile of rags,” (4) “utterances as splashes over water,” (5) “knowing as a building site

is in progress” (pp. 359-361). After learning the concepts of the five metaphors, an evaluator

then becomes familiar with the application, considers three typical user tasks, then follows an

iterative procedure involving evaluating tasks in light of each of the metaphors. The authors

performed an experiment comparing HE to MOT in evaluating a system. They found that MOT

tends to find less cosmetic problems than HE, but finds deeper, more serious usability problems.

Further research is needed, but MOT is a promising technique to supplement HE and other

inspection methods.

Scandinavian countries are known to be in the vanguard of the implementation of human-

centered design and work techniques. A recent survey of the usability profession in Sweden was

reported by Gulliksen et al. (2004). Several software development models were in use by the

28

respondents. One of the most widely-used software development models mentioned in the survey

is the Rational Unified Process (RUP). The RUP was noted by most who commented on it as

being woefully inadequate from a usability perspective; some companies have modified it to

include usability by using a usability plug-in. Of usability methods in use in the software

development process, “plug-ins, general frameworks, generic HCI methods, process-oriented

methods, heuristic methods, and no model” were listed (p. 211). An interesting chart generated

from survey data shows 25 “methods and techniques” (p. 212) rated using a five-degree scale;

the chart shows the percentage of responses of each rating for each technique. Following are

examples of the many readings one could take off of this chart: More than 50% of the

respondents rated check lists, personas, and benchmarking as neither good nor bad, fairly bad, or

very bad. Approximately 80% or more rated thinking aloud with users, prototyping, low-fidelity

prototyping, evaluations, scenarios, interviews, and field studies as very good or fairly good.

Some other techniques received high, but not as high, ratings. Even though Sweden is known to

be at the forefront of human-centered development, the authors noted that serious usability

problems still exist in most software, and that the country has a long way to go in implementing

good usability practices in industry.

An extensive look at usability measurements in a large number of research papers was

undertaken by Hornbaek (2006). He noted that usability is defined by how it is measured, but it

can only be measured indirectly. In reviewing research studies, it was found that the methods by

which effectiveness, efficiency, and user satisfaction are measured vary greatly, are inconsistent,

and are difficult to compare. Subjective measures for usability include users’ perceptions and

attitudes, while objective measures are taken from observation and analysis independent of

29

users’ opinions. Hornbaek notes that it is important not to confuse subjective and objective

measures.

The Handbook of Usability Testing (Rubin, 1992) discusses key issues related to usability

testing. Testing is a key component of usability evaluation if the budget permits, particularly for

the usability of interfaces. Every human being will respond to a system in a unique way. A wide

variety of responses is almost always found in a test. People are unpredictable, and unexpected

responses will occur during a usability test. While expert evaluators can check to see that good

usability heuristics are followed in design, only real users can provide needed empirical

feedback.

 Software development techniques will increasingly be using modular components.

Brinkman et al. (2001) investigated how to measure the usability of user interface components

and also brought up the subject of how the usability of one module may affect the usability of

others. They considered the user interaction to be an exchange of messages between a

component and the user. Taking this as a measure of interaction, they tested the hypothesis that,

looking at different components performing the same function, the component that received the

fewest messages was the most efficient one. Their preliminary results substantiated this

hypothesis.

Formative Usability

The usability engineering lifecycle is discussed at length in Mayhew's (1999) book of that

title. Like Nielsen's book, the emphasis is on computer systems. The approach used is to first

perform a requirements analysis that determines a user profile, perform a task analysis, look at

30

the hardware and general design principles, then use all of these to determine usability goals,

ultimately creating a style guide for the user interface. Following this procedure (as shown on a

detailed flowchart for the usability engineering lifecycle), there are three levels of design, testing,

and development—all with detailed tasks and an iterative loop for each, then finally system

installation with provisions for user feedback and enhancements. There is a section on

organizational issues in the book, including sections on project planning and cost justification

(among others).

The design of software can be considered from many angles; the multidisciplinary arena

offers a growing number of viewpoints, as specialists from various fields offer their inputs.

Henry (1998) has approached usability from the viewpoint of communications and as a technical

writer. In a process he terms User-Centered Information Design (UCID), he considers usability

to be largely a problem of communicating with users via UCID. He sees software usability as

being determined by labels (text or icons), messages, online support elements (e.g., help

screens), and printed support elements (manuals or help cards). Often the communication issue is

given limited treatment in software designs. Henry noted that, while there are pluses and minuses

to having paper or Web-based documentation, on-line help screens should be written separately

from the system manuals, while drawing from the same information pool. Furthermore, he notes

that the writing used to communicate with the users should be professionally written, rather than

left solely to the programming team. The writing—both for the online communication and any

paper or Web-based manuals—should be considered part of the framework for usability of DSSs

(it is considered in the documentation dimension). Indeed, for teaching installers, users, and

operators to work with the system, documentation is an important factor in usability.

31

Another practitioner’s perspective on usability is offered by Snyder (2003) in her book

Paper Prototyping. Typical of the field, emphasis is placed on quick prototyping using user

feedback to make changes to iterative designs. Empirical testing and iterative design are required

in order to incorporate information from user evaluations. Not only will users inform designers

of things they never considered in the design, the great variety in human behavior—even among

people with the same background—will ensure considerable variation in how the users approach

a system. The approach offered by Snyder involves using a task analysis of many low-level,

detailed tasks that a user needs to perform with the system to design a GUI. By focusing on

specific low-level tasks, then evaluating rapid prototypes to see if users can successfully

complete the tasks and if they will use the interface as expected, a viable interface can be

designed before the start of software coding.

From an interaction design viewpoint, formative and evaluative approaches blend into an

integrated analysis (often, however, budget constraints preclude the ideal approach). The

formative approach results in much value added from usability analysis. As noted by Card,

Moran and Newell (1983), “Design is where the action is in the human-computer interface” (p.

11).

Holistic Usability

 The concept of holistic usability has been raised by a few practitioners. For example, the

Innovation North Faculty of Information and Technology of Leeds Metropolitan University

made this statement:

32

The International Standards Organisation (ISO) defines usability as “the

effectiveness, efficiency and satisfaction" with which a specified set of users can

achieve a specified set of tasks in a particular environment”. In our usability

studies, we expand on this definition to consider a broad range of factors within a

holistic model.

The holistic model of which they speak is shown in the figure below, taken from their Web site

(Leeds University, 2005).

Figure 4. Holistic Usability Model (source: Innovation North Faculty of Information and

Technology of Leeds Metropolitan University)

33

The main groupings for this holistic usability model are designing for different users,

usefulness, ease of use, satisfaction, system context, and user experience. This framework is

meant to be used to analyze a general system and shows one approach to a holistic usability

model (or framework).

Another holistic approach to usability was used by researchers at Microsoft while

considering design issues for Internet Web pages (Agarwal and Venkatesh, 2005). In these

holistic usability guidelines for Web pages, the key groupings are content, ease of use,

promotion, made-for-the-medium, and emotion. It is possible to quibble about whether or not

every item in the above framework can be considered usability, but as the definition of usability

is expanded some blurring of territories or definitional ambiguities will occur. This example

helps to show the validity of a holistic approach to usability.

 These two examples of holistic usability models/frameworks are similar to the concept

developed in this dissertation. The first example given above presents a framework that is

generic and applicable to any system. The second presents a framework for Web pages only. The

framework proposed herein takes a system-wide view of distributed simulation; it is similar to

these examples in that the lens that views usability is broadened to look at items other than just

the user interface.

Human-computer Interaction Viewpoint

 In the field of human-computer interaction (HCI), of which usability is a subarea,

cognitive psychology is of paramount importance. Human information processing, theories of

how human memory works, and the user’s conceptualization of mental models are important

34

topics. Working with computers, however, has much in common with working with any tool.

Green (1990) noted that “the real aim…is to explain the General Theory of the Artifact” (p. 22).

He also noted that when theorizing about HCI, there was a need to set boundaries on the HCI

theories, lest HCI theories attempt to encompass the whole of cognitive psychology. When

working in usability, principles of cognitive psychology must be kept in mind when developing

guidelines for usability.

In usability, human information processing (HIP) plays a role in the development of the

user’s mental model of the system. The development of the user’s mental model, and its

maintenance and changes as learning takes place, are a key part of effective usability. The

development of mental models is discussed in Wickens 2002, Ackemann and Tauber (eds.,

1990), Badre (2002), Eberts (1994), Gentner and Stevens (eds., 1983), Johnson-Laird (1983),

Preece, Rogers and Sharp (2002), Oakhill and Garnham (eds., 1996), and Norman (1986). The

intended way a system is designed to be used is called the designer’s conceptual model. (The

actual workings of a complex system are not necessarily part of this model, but will be addressed

with other, lower-level models, which the end user does not need to know.) In order for a system

to be used as intended, the designer’s conceptual model must be conveyed to the user in the form

of a mental model that the user learns. An interface must be designed to aid and guide the user in

the formation of the desired mental model. Eberts’ 1994 book User Interface Design diagrams

this process (p. 140). A long list of human factors tools and concepts aids in effective interface

design. These tools and concepts are supported by cognitive psychological theories and empirical

evidence.

A variety of types of mental models were discussed by Young (1983). The types of

models he discussed are: “strong analogy, surrogate, mapping, coherence, vocabulary, problem

35

space, psychological grammar, commonality” (p. 38). A description of all of these types will not

be given here, but the variety of possible types of mental models—and combinations of them and

introductions of new categorizations or types—leads one to keep in mind that for any given

artifact different users may use different types of mental models, and that it is possible for a user

to hold more than one type of mental model in mind simultaneously when thinking about the

same system. For example, a user might think of a form in a word processor as being like a paper

form (a “strong analogy” model), while when typing data into the form use a “mapping” or

“task/action mapping” model to know what his or her actions do when using the computer.

A large number of HIP models have been constructed over the past sixty years (e.g.,

McCormick, 1976, p. 35; Welford, 1965, p. 6; Card, Moran and Newell, 1983, p. 26; Badre,

2002, p. 46). Numerous models of human memory have also been constructed, concomitant with

the HIP models or separately (e.g., Norman, 1969, p. 152, Wickens, 1992, Chapter 6). Research

into perception and attentional processes is also relevant to studying memory and HIP. HIP,

human memory, and attentional processes are all active fields of study and theoretical

development in cognitive psychology; a number of competing theories exist. One can begin with

William James’ 1890 work the Principles of Psychology and follow the development of these

theories to their present state.

Industrial engineers have, along with psychologists, looked at applying human

engineering knowledge to problems in an applied setting. Research using human participants to

help determine how best to design systems has long been a field of study in engineering (a good

overview is given in Research Techniques in Human Engineering, Chapanis, 1959). The HCI

field has been an impetus for much research in cognitive psychology and practical design advice.

HCI is a subset of human factors engineering (one can speak of human-systems interaction,

36

interaction design, or many nearly synonymous terms). When constructing a framework for the

usability of DSSs, HCI research must be considered, along with general usability information

and knowledge about simulation.

 Reviewing existing literature and research in usability, simulation, and HCI reveals that

there has been no work done on the usability of DSSs, although their ubiquity is increasing. This

dissertation research will help fill this void, as a starting point for not just the practical

application of usability in DSSs, but also for the theoretical development of usability in

simulation environments. A framework is needed to aid designers of distributed simulation

systems. While general interface guidelines are available, there are none for DSSs.

 The breadth of the subject matter needed to understand the usability of distributed

simulation includes fields related to distributed computing, simulation in all its guises, and

usability. These fields include psychology, business analysis, programming, engineering,

computer science, statistics, design, cognitive engineering, technical writing, graphical design,

interface design, human-systems interaction, and human factors. In order to develop the

framework herein, all these fields have been studied to the extent necessary to understand their

needed place in the framework’s dimensions.

Summary and Objective

 Simulation, as discussed, involves making a model of a real world system. Distributed

simulation involves multiple computers interlinking multiple simulations, so that knowledge and

insight are gained from the combined simulations. While this allows for solutions to previously-

37

intractable problems, making it work is often a difficult challenge, as can be interpreting the

results.

 The field of usability engineering is focused on making systems easier to use. We have

considered evaluative usability—measuring the usability of an existing system, formative

usability—the task of designing in ease of use, and holistic usability—a new concept that looks

beyond just the user interface to all aspects of the system, from the installer to the end user.

 The objective of this dissertation is to develop a framework for the usability of distributed

simulation systems that can be used as an aid for designers in the formative usability stage and as

a tool for assessing the holistic usability of a system, providing metrics. The holistic approach

taken expands the common definition of usability to include all people associated with the

system. Taking a holistic viewpoint is especially helpful with a large, complex system, in that the

benefits of improved usability can be multiplied by looking not only at the user interface, but

also at various aspects of system design, installation, maintenance, and use.

38

CHAPTER THREE: METHODOLOGY

The methodology for this dissertation consists of a three-step approach: (1) the

development of a holistic usability framework for DSSs, (2) surveys of users to validate and

refine the framework, and to determine attribute weights, and (3) the application of this

framework to two existing systems, including the development of a technique to measure holistic

usability. The flowchart below shows the steps taken.

Figure 5. Flowchart of Methodology

39

Holistic Usability Framework Development

The Virtual Test Bed (VTB) was developed to test and develop distributed simulation

concepts for NASA. While working to improve the usability of the VTB, it became apparent that

a systematic approach was needed when designing DSSs, in order to ensure not only that an

efficient and effective system interface was developed, but that the various types of users and

workers who interfaced with developing and using the system over its lifecycle did not lose time

bogged down in problems that could be avoided by good usability practice during system design

and development. The first part of this methodology—the development of a holistic usability

framework for DSSs—grew in part out of this research.

 DSSs at NASA Ames Research Center were also studied. While the systems at NASA

Ames are larger and more complex than the VTB, similar usability issues arose. For instance,

while using the HLA-RTI in the Virtual Airspace Simulation Technology (VAST) system, it was

necessary for people starting different simulation models to coordinate starting and stopping the

simulations by voice communication over speakerphones. The need for a central control and

monitoring GUI was evident.

A study was made of the fields related to usability vis-à-vis simulation in order to

understand the domain knowledge required for a holistic approach to improving the usability of

DSSs. For a given user base, the tasks, needs, goals, and characteristics of the users must be

considered. In order to design a DSS, the required resources (money, time, technology, talent,

and knowledge) are brought together in a multidisciplinary teamwork environment to create a

system to meet user needs. Keeping this domain knowledge, the user base, and typical resources

available in mind, a framework for the design of DSSs was developed.

40

This framework looks at the various dimensions of the interaction of different types of

users of the system. Each dimension represents a particular aspect of the system design relative

to usability. The total holistic usability of a system is the ease of all human interaction with the

system along multiple dimensions. The figure below shows the usability dimensions of the

framework.

Figure 6. Holistic Usability Dimensions for a Distributed Simulation System

The dimensions of the holistic usability framework are:

• End user needs and goals

• End user interface(s) (including data visualization and analysis)

• Programming (including software infrastructure)

• Training

• Installation

• Documentation

 Each of the dimensions is discussed below.

DSS End user interface(s) (including
data visualization and analysis)

End user needs and goals

Documentation
 Installation

Training

Programming (including
 software infrastructure)

41

End User Needs and Goals

The End User Needs and Goals dimension considers how well the end users’ purposes for

the system are served. Goals may vary from end user to end user. A list should be made of the

needs of the end users (from a high-level, global perspective). The list should be checked against

the system’s actual design. The range of goal fulfillment is “not at all” to “completely.”

End user needs also include the tracking of lessons learned for future improvement,

system reliability, and, if a vendor-provided system, vendor support.

End User Interface(s)

The End User Interface for a DSS ideally allows for system-wide control of all

simulations in the system. A number of the attributes for this dimension relate to that need. If no

central control GUI exists, then the system interfaces will need to be assessed, with examination

of coordination and communication capabilities between the GUIs.

The assessment of the end user interface dimension does not attempt to go into a standard

usability assessment of a GUI. The purpose of the end user interface assessment is to assess

mainly those aspects of the interface that are germane to distributed simulation. The general

quality of the interface from a high-level usability perspective, however, is assessed. If multiple

end user interfaces are used in the system, they should all be assessed and their metrics averaged.

Programming

The Programming dimension concerns the ease of use for programmers working with the

system. Programmers must create the software that translates the design vision of the system into

42

reality. A number of factors affect how easy it is for programmers to work with the system. From

a usability perspective, ideally distributed simulations could be created using a graphical

programming interface, so that linking up individual simulations would be a relatively simple

task. Although that may be possible in the future, at present programming a typical DSS is a

nontrivial task.

Proprietary simulation packages usually do not offer a direct interface to the simulation

infrastructure, such as the HLA-RTI. Typically, a software “wrapper” must be used—a program

layer that goes between the proprietary simulation package and the DSS infrastructure. A

wrapper will offer a limited function set that allows synchronization and data exchange between

the program and the infrastructure. The loss in efficiency due to this is that the programmer must

not only know the infrastructure, but learn the wrapper as well, and some details of the propriety

simulation package. In addition, remotely controlling start and stop of a proprietary simulation

can sometimes be accomplished by using a vendor-provided API—such as the Visual Basic for

Applications interface for the Arena software package. A DSS can consist of any number of

simulations linked together. Simulations with open code—such as those in Java—are easier to

work with than simulations requiring a wrapper to connect to proprietary code; thus simulations

in open code increase the usability for programmers.

Training

 Adequate training is important to all people who use the system. End users need training

on how to use the system interface and in how the system works conceptually. Installers need

training to learn how to efficiently install the system. Training programmers to understand the

43

system software design and also the DSS infrastructure is important to make the most effective

use of the programmers' time. Training materials, both on-line and written hard copy, help to

ensure adequate training.

Installation

The Installation dimension measures how easy the DSS is to install. The installation

scenario will depend on the level of expertise of the installers, how complex the system is, and

how well the installation process has been documented and managed. Troubleshooting capability

is also important to the installation process. Due to system complexities, if good troubleshooting

capability is not available, the installer will need to spend a lot of time researching the problem

and typically require the help of programmers to determine the problem.

Documentation

The assessment of documentation for each of the dimensions could have been included in

the assessments of those dimensions. Documentation has been broken out as a separate

dimension due to its importance and to provide the ability to assess the usability of the system

documentation as an integrated whole. For any system of the complexity of a typical DSS,

documentation is crucial to the ability of each user to do his or her job. While the usability of the

documentation itself is an important issue, good documentation for each dimension improves the

usability for that dimension.

For the Programming dimension, good documentation is important for the overall system

design, whether it is UML or some other high-level modeling methodology. As one programmer

44

noted, “Programmers need something to refer to when the muse is running.” For code-level

documentation, enough detail in some form is needed so that new programmers can take over

where other programmers left off or perform maintenance. Also, communication among project

team members is facilitated by good code documentation. The assessment of programming

documentation will be based on whatever information can be obtained—interviews with

programmers, code inspection, or other means.

Documentation for the End User Needs and Goals dimension should state the overall

system concept, the users’ needs, and how those needs are met by the system. While this

documentation should be concise, its length will depend in part on the complexity and size of the

DSS under consideration.

The ability to access on-line detailed help and system information is a requirement of

good software design. The end user interface should have both a help system and on-line system

documentation. In addition, written materials should be provided as needed. Ideally, help system

content and off-line documentation for end users should be written by professional writers who

are conversant with the technology and system.

Documentation for the Installation dimension should include sufficient instructions for

installers to install and hook up all hardware and software, including troubleshooting

instructions. Writing must be targeted to the people with the requisite level of expertise for

system installation. If, during installation, days (or weeks) of troubleshooting are needed, with

phone calls to programmers, this would be considered a failure. A log should be kept of

everything done to the system during and after installation. A well-documented log file will

make troubleshooting and maintenance easier.

45

Documentation for Training is important primarily for end users, installers, and

programmers. End users need training documentation to teach them how to use the system

(which may be supplemented with a trainer). Although in certain situations the interface design

with its built-in help may be adequate, professional trainers may be needed. Installers may need

training, although the installation documentation may obviate the need for their training.

Programmers may need training when they are new to a system.

Framework Attributes

The following list specifies the attributes in the first version of the holistic usability

framework for a DSS. Each of these attributes can be linked directly to one or more of the three

key usability measures: effectiveness (ability to successfully do the job), efficiency (speed,

which includes learnability and memorability), and user satisfaction. A validation methodology,

used to refine the framework, is discussed in Chapter 4. Attributes in the list below that passed a

validation test were kept in the framework; attributes that failed the validation test were removed

from the framework.

End User Needs and Goals

1. The end users’ needs and goals with the system should be fully supported.

2. The end users should be satisfied with the system.

3. Lessons learned should be tracked for future improvements.

4. The system hardware and software should be reliable.

46

5. If a vendor-provided system, vendor support should be adequate. (Note: This attribute

is included for future reference. It would only be assessed during private consulting, due to the

sensitive nature of this measure.)

End User Interface(s)

1. The end users should be satisfied with the interface(s).

2. The overall quality of the interface(s) should be good.

 control features

3. There should be a central control and monitoring point.

 4. One should be able to change parameters in individual simulations from a central

interface.

5. One should be able to start and stop individual simulations from a central control

interface.

6. One should be able to see others who are logged into the system and communicate

with them.

7. Exception handling should be adequate. This means that when something goes wrong

(e.g., the system freezes), the operator or user should have system support to locate, recover

from, and identify the problem.

 data visualization and analysis

8. The display should be able to show the relevant variables in all simulations running

simultaneously.

47

9. It should be possible to review data from several simulation scenarios simultaneously.

10. One should be able to save, analyze, and export statistics.

11. Data visualization capability should be good.

12. Information from various simulations should be able to be combined in a way that

allows good understanding of interrelationships and results.

Programming

1. The programming environment’s complexity for the system should be as low as

possible. Care should be taken to make software choices that minimize complexity.

2. The number of simulations written with proprietary simulation packages should be

minimized. The inability to see source code and have direct interfaces to proprietary simulations

reduces the ease of constructing the system and limits options.

3. The number of software "wrappers" required around individual simulations should be

minimized.

4. The DSS infrastructure should be as easy to use as possible. For example, later

versions of the HLA-RTI have a higher usability than earlier versions, due partly to better

naming conventions and fewer bugs.

5. For a given number of simulations, the amount of coding required should be

minimized.

6. The lower the level of expertise needed for coding, the more productive the

programming team will be.

7. Programmers should be satisfied with the programming environment.

48

8. The shorter the time to get programmers on board and up to speed in productive work,

the more efficient their time will be. The amount of time it takes a new programmer to become

productive should be minimized.

9. The system should be designed to be as easy to program as practicable.

10. The software infrastructure that allows the greatest ease of connecting simulations to

it should be chosen.

11. The data formats between simulations should be compatible.

12. Configuration control between simulations should be adequate.

 Installation

1. A detailed log should be kept of all installation details, including troubleshooting,

problems encountered, and their solutions.

2. Personnel of average ability, but taught the job, should be able to install the system

components.

3. The skills needed for the installation team should be specified.

4. The installation process should be as easy as practicable.

5. The skill level required to install the system should not be too high.

6. The number of people required to install the system should be minimized.

7. Effective troubleshooting capability should be provided for the system installers.

8. The time required to install the system should be minimized.

9. Installers should be satisfied with the installation scenario.

49

Training

1. The training should be effective, i.e., it should prepare the trainee for what he or she

needs to do.

2. The training should be efficient, i.e., it should accomplish its goals in an optimal

amount of time.

3. Written materials should be available to support the training.

4. On-line materials should be available to support the training.

5. The training should be geared to the knowledge/skill level of the audience.

6. Trainers should be satisfied with the training scenario.

7. Trainees should be satisfied with the training.

8. The overall quality of the installation training should be good.

9. The overall quality of the end user interface training should be good.

10. The overall quality of the programmer training should be good.

Documentation

 programming

1. The quality of programming code-level documentation should be sufficient.

2. Software design characteristics should be clearly specified in a conceptual design (e.g.,

using the Unified Modeling Language), independent of any programming language.

 end user needs and goals

3. The end user needs and goals should be clearly documented.

50

 training

4. The quality of training documentation should be sufficient.

 installation

5. The quality of installation documentation should be sufficient.

 end user interface

6. The quality of written end user interface documentation should be sufficient.

7. The quality of on-line help and support for end users should be sufficient.

Measurement of Attributes of Framework Dimensions

Below is a table that shows measurement details for attributes of each of the dimensions.

The measurements taken will be used in summation equations to obtain summary measurements

for each of the dimensions' usabilities.

Table 1. Holistic Usability Framework Measurements

DIMENSIONS MEASURES
End User Needs and Goals
The end users should be satisfied with the system. 1 to 7
The end users’ needs and goals with the system should be fully supported. 1 to 5
Lessons learned should be tracked for future improvements. Y/N (5/0)
The system hardware and software should be reliable. 1 to 5
If a vendor-provided system, vendor support should be adequate. 1 to 5
End User Interface(s)
The end users should be satisfied with the interface(s). 1 to 7
The overall quality of the interface(s) should be good. 1 to 5
 control features
There should be a central control and monitoring point. Y/N (5/0)

51

DIMENSIONS MEASURES
One should be able to change parameters in individual simulations from a
central interface. Y/N (5/0)
One should be able to start and stop individual simulations from a central
control interface.
 Y/N (5/0)
One should be able to see others who are logged into system and communicate
with them. Y/N (5/0)
Exception handling should be adequate. 1 to 5
 data visualization and analysis
The display should be able to show the relevant variables in all simulations
running simultaneously. Y/N (5/0)
It should be possible to review data from several simulation scenarios
simultaneously. Y/N (5/0)
One should be able to save, analyze, and export statistics. Y/N (5/0)
Data visualization capability should be good. 1 to 5
Information from various simulations should be able to be combined in a way
that allows good understanding of interrelationships and results. 1 to 5
Programming
The programming environment’s complexity for the system should be as low as
possible. 1 to 5
The number of simulations written with proprietary simulation packages should
be minimized. (Proprietary simulations are those with closed code that cannot be
seen or modified.) Integer
The number of software "wrappers" required around individual simulations
should be minimized. Integer
The DSS infrastructure should be as easy to use as possible. 1 to 5
For a given number of simulations, the amount of coding required should be
minimized. lines of code
The lower the level of expertise needed for coding, the more productive the
programming team will be. 1 to 5
Programmers should be satisfied with the programming environment. 1 to 7
The amount of time it takes a new programmer to become productive should be
minimized. Weeks
The system should be designed to be as easy to program as practicable. 1 to 5
The software infrastructure that allows the greatest ease of connecting
simulations to it should be chosen. 1 to 5
The data formats between simulations should be compatible. 1 to 5
Configuration control between simulations should be adequate. 1 to 5
Installation
A detailed log should be kept of all installation details, including
troubleshooting, problems encountered, and their solutions. Y/N (5/0)
Personnel of average ability, but taught the job, should be able to install the
system components. Y/N (5/0)
The skills needed for the installation team should be specified. Y/N (5/0)
The number of people required to install the system should be minimized. Integer
Effective troubleshooting capability should be provided for the system installers. 1 to 5

The time required to install the system should be minimized.
weeks or

days
The installation process should be as easy as practicable. 1 to 5
The skill level required to install the system should not be too high. 1 to 5
Installers should be satisfied with the installation scenario. 1 to 7
Training

52

DIMENSIONS MEASURES
The training should be effective, i.e., it should prepare the trainee for what he or
she needs to do. 1 to 5
The training should be efficient, i.e., it should accomplish its goals in an optimal
amount of time. 1 to 5
The trainees should be satisfied with the training. 1 to 7
The trainers should be satisfied with the training scenario. 1 to 7
Written materials should be available to support the training. Y/N (5/0)
On-line materials should be available to support the training. Y/N (5/0)
The training should be geared to the knowledge/skill level of the audience. Y/N (5/0)
The overall quality of the installation training should be good. 1 to 5
The overall quality of the end user interface training should be good. 1 to 5
The overall quality of the programmer training should be good. 1 to 5
Documentation
The quality of programming code-level documentation should be sufficient. 1 to 5
Software design characteristics should be clearly specified in a conceptual
design. 1 to 5
The end user needs and goals should be clearly documented. 1 to 5
The quality of training documentation should be sufficient. 1 to 5
The quality of installation documentation should be sufficient. 1 to 5
The quality of written end user interface documentation should be sufficient. 1 to 5
The quality of on-line help and support for end users should be sufficient. 1 to 5

Improvement in the measurements used to assess the individual dimensions indicates an

improvement of the usability for that dimension. The improvement of usability for a dimension

means that the effectiveness, efficiency, and/or user satisfaction for the user types associated

with that dimension will improve. For example, a difficult-to-use software infrastructure for

distributed simulation will result in less efficient programming work and dissatisfied

programmers. (Distributed simulation infrastructures are inherently complex, partly because they

must control the timing of different simulation models simultaneously.) An improvement in the

ease of use of the software infrastructure will result in an improvement in programmer efficiency

and satisfaction. While this is an obvious relationship, stated in formal terms: it is assumed that

increasing the usability of the measures used for each dimension will increase the effectiveness,

efficiency, and/or satisfaction for users of that dimension. In the development of the framework,

53

problems were observed in systems due to less-than-optimal characteristics of the framework

dimensions.

As discussed previously, traditionally usability is measured by three metrics: efficiency,

effectiveness, and satisfaction. As stated by ANSI (2001), "The choice of measures depends on

the goals of a particular study, characteristics of the users, the specific tasks, and context-

dependent features…" (p. 9). In this holistic usability framework, satisfaction is being measured

directly by asking the users. In this initial framework and in the two system assessments, it is

measured on a scale of 1 to 7; in the final framework this is changed to 1 to 5 based on input

from a reviewer (discussed in lessons learned). However, because satisfaction is a separate

construct its weight in an overall usability metric can vary depending on its relative importance

(Nielsen, 2001). For instance for a game, satisfaction might be deemed more important than for a

military battle simulation. Out of 55 metrics in the final framework, six are satisfaction

measures. I initially chose a scale of 1 to 7 to give the satisfaction metric slightly more weight

than the other attribute metrics.

The next step in this methodology, discussed in the next chapter, was to survey

professionals in order to obtain their feedback in order to validate and improve the framework.

54

CHAPTER FOUR: VALIDATION AND FRAMEWORK REFINEMENT

Validation Survey

Often in human factors work, empirical results from experiments with humans in the

laboratory are validated to ensure those results are generalizable to the reference situation in the

field. Validation is often straightforward for studies of details of human-system interaction, such

as the particulars of using a mouse. For a system-wide validation for aspects of a large system,

validation may require a combination of common sense, expert evaluation, and field observation

of factors.

Several DSSs were studied while developing the framework, and the dimensions of the

framework and their effects on usability were observed. In addition, discussions were held with

vendors of distributed simulation infrastructures, during which the importance of some of the

attributes were mentioned. Insofar as the framework is based on actual system study and

observation, the results are inherently valid for those systems. Further validation was obtained by

using a survey to gain feedback about the framework from users of DSSs. Although a few open-

ended questions in the survey were asked to gather information that may be used to improve the

framework, the main objective of the survey was to validate the framework. This survey is

shown in Appendix A.

The survey was presented on-line via a Web site. This allowed for fast data collection and

easy survey availability to participants. Questions consider how the attributes of the framework's

dimensions affect standard usability measures of efficiency, effectiveness, and user satisfaction.

The opinions and perceptions of people who work with distributed simulation—experts in the

55

field—were obtained via the survey. Thus, expert opinion was gathered about the measures used

in the framework.

 A pilot survey was administered to a small group of participants in order to discover any

problems with the survey design before it was administered to a larger sample of participants.

Based on the pilot survey, some changes were made to improve the questions.

 The survey included Likert scale, multiple choice, and open-ended questions as needed to

ascertain the desired data from the respondents. Care was taken to make the survey as short as

possible while attempting to gather the needed data.

Tables 2 and 3 below show the number of different types of users among the participants

and the number of types of DSSs these participants have experience with. Because multiple

responses were allowed, the totals are greater than the number of participants.

Table 2. Types of Users Surveyed

Type of User Percent Number of Participants
manager 29.8 18
researcher 71.9 46
end user 24.6 14
programmer 36.8 23
designer 49.1 30
trainer 8.8 6
installer 1.8 1
other 1.8 2

56

Table 3. Types of Distributed Simulation Systems Participants Have Experience With

Type of DSS Percent Number of Participants
military 40.4 25
entertainment 7.0 5
aerospace 47.4 28
business 19.3 13
engineering 36.8 25
medical 3.5 2
pharmaceutical 3.5 2
other 7.0 7

The average number of years of distributed simulation experience the participants had

was 9.6 years, with a median of 9.0, and a standard deviation of 6.35. The range was one to thirty

years. There were 63 participants.

 The variety of organizations from whom anonymous participants responded, as reported in

the survey, includes Vrije Universiteit Amsterdam, SPARTA, ACM, British Ergonomics

Society, SIE (Società Italiana di Ergonomia), Fraunhofer Institute, a "semiconductor company,"

Brazier Motti, NASA, "academic research," University of Texas Southwestern Medical Center,

San Diego State University, General Dynamics UK, ORNL, USN NAVAIR, Ericsson, DoN, US

Army, Bucknell University, SICS, DLR, University of Delaware, "reinsurance brokerage firm,"

Navy, "independent," Georgia Tech, UTA, ONERA, Empirix, MDA, DMSO, United Space

Alliance, SJSUF, AFAMS, NAVAIR ORLANDO TSD, UCF, Walt Disney World, FAA, DoD,

Convergys, and SAIC.

The survey participants were first given an introduction to the concept of the holistic

usability framework for DSSs. Then a series of questions was asked that address attributes of

each dimension in the framework.

57

 The concept of the survey was to validate framework attributes by asking experts if they

agree with a statement. Each statement is linked to a usability attribute for a dimension; if a

participant agreed with a statement, they validated the attribute associated with the statement.

There are were two negative answers (“strongly disagree,” “disagree”), one neutral answer

(“neutral”), and two positive answers (“agree,” “strongly agree”). Answer responses were

transformed into dichotomous variables: the two negative and neutral answers were combined to

"no"; the agree and strongly agree answers were combined to "yes."

The validation technique used is as follows. If more than 50 percent of the participants

answered "yes" to the question linked to an attribute, this validated that attribute. The rationale

for using 50 percent as the decision point is that if greater than 50 percent of the participants

answer "yes" this means that the majority of the experts agree with the statement. The

dichotomous answers were analyzed using an hypothesis test for proportions. In addition to the

hypothesis test, a 95 percent confidence interval was calculated for each tested attribute.

 The hypothesis for testing the validation of each attribute, using the associated survey

question, is:

 H0: p = 0.5

 H1: p > 0.5

The analysis for testing proportions is performed using binomial probabilities. A normal

approximation to the binomial can be used when p "is not extremely close to 0 or 1" (Walpole

and Myers, 1978, p. 262). It is necessary for the assumptions np > 4 and nq > 4 to be true for the

normal approximation to the binomial to hold; this is usually the case for large-sample

dichotomous survey questions, but was tested for each question. (For any question for which

these assumptions do not hold, an exact binomial calculation can be used for the hypothesis test.)

58

 The equation to calculate the normal z value is z = p − 0.5
(p)(q) /n

 .

The probability that Z ≤ z is read from a two-tail normal probability distribution table.

Subtracting this value from one yields the significance of the test. The significance level (or

critical area) chosen for determining whether or not an attribute was validated is 0.05. If the

significance level is 0.05 or smaller, we reject the null hypothesis and conclude that greater than

50 percent of the survey population agrees with the statement.

 Using this procedure, 34 attributes were validated, and nine attributes were shown to be

invalid (as shown in Table 4 below). Attributes that were not validated were dropped from the

framework. The spreadsheet used for the calculations for the hypothesis tests is shown in

Appendix B.

A 95 percent confidence interval for the proportion of respondents answering "yes" in the

survey was also calculated. Referring again to Walpole and Myers (1978), when the sample size

n ≥ 30, "a (1 - α)100 percent confidence interval for the binomial parameter p is approximately

ˆ p − zα / 2

ˆ p ̂ q
n

< p < ˆ p + zα / 2

ˆ p ̂ q
n

where ˆ p is the proportion of successes in a random sample of size n, ˆ q = 1 - ˆ p , and zα / 2 is the

value of the standard normal curve leaving an area of α/2 to the right " (p. 210). In the present

case, the 95 percent confidence interval is give by

ˆ p ± 1.96

ˆ p ̂ q
n .

As seen from the results in Table 4, the significance for the attributes that were validated is

usually much greater than 0.05.

59

Refer to table 4 below. Column one shows the attributes by dimension. Column two

shows the measures. Columns three through five indicate which usability factor(s) the validation

survey questions test. If the attribute is one of the eleven not tested in the survey, columns three

through five indicate the usability factors affected by that attribute. Columns six through ten

show the numbers of the corresponding validation survey question, the p values of the validation

hypothesis tests, upper and lower 95 percent confidence interval values, and whether or not an

attribute was validated.

Table 4. Validation Survey Results

Dimensions and
Attributes M

ea
su

re
s

Ef
fe

ct
iv

en
es

s

Ef
fic

ie
nc

y

Sa
tis

fa
ct

io
n

Su
rv

ey

Q
ue

st
io

n

p

va
lu

e

C
.I.

 lo
w

er

lim
it

C
.I.

 u
pp

er

lim
it

V
al

id
at

ed
?

End User Needs and
Goals
The end users should be
satisfied with the
system. 1 to 7 X N/A N/A N/A N/A N/A
The end users’ needs
and goals with the
system should be fully
supported. 1 to 5 X N/A N/A N/A N/A N/A
Lessons learned should
be tracked for future
improvements. Y/N X X X N/A N/A N/A N/A N/A
The system hardware
and software should be
reliable. 1 to 5 X X N/A N/A N/A N/A N/A
If a vendor-provided
system, vendor support
should be adequate. 1 to 5 X X X N/A N/A N/A N/A N/A
End User Interface(s)
The end users should be
satisfied with the
interface(s). 1 to 7 X N/A N/A N/A N/A N/A
The overall quality of
the interface(s) should
be good. 1 to 5 X X X N/A N/A N/A N/A N/A
 control features
There should be a
central control and
monitoring point. Y/N X 6 0.000 0.854 0.987 Yes

60

Dimensions and
Attributes M

ea
su

re
s

Ef
fe

ct
iv

en
es

s

Ef
fic

ie
nc

y

Sa
tis

fa
ct

io
n

Su
rv

ey

Q
ue

st
io

n

p

va
lu

e

C
.I.

 lo
w

er

lim
it

C
.I.

 u
pp

er

lim
it

V
al

id
at

ed
?

One should be able to
change parameters in
individual simulations
from a central interface. Y/N X 7 0.000 0.767 0.943 Yes
One should be able to
start and stop individual
simulations from a
central control interface. Y/N X 8 0.000 0.732 0.919 Yes
One should be able to
see others who are
logged into system and
communicate with them. Y/N X 9 0.000 0.621 0.840 Yes
Exception handling
should be adequate. 1 to 5 X 10 0.000 0.811 0.966 Yes
 data visualization and
analysis
The display should be
able to show the relevant
variables in all
simulations running
simultaneously. Y/N X 11 0.184 0.433 0.682 No
It should be possible to
review data from several
simulation scenarios
simultaneously. Y/N X 12 0.000 0.675 0.880 Yes
One should be able to
save, analyze, and export
statistics. Y/N X 13 0.000 0.727 0.918 Yes
Data visualization
capability should be
good. 1 to 5 X 14 0.000 0.854 0.987 Yes
Information from
various simulations
should be able to be
combined in a way that
allows good
understanding of
interrelationships and
results. 1 to 5 X 15 0.000 0.675 0.880 Yes
Programming
The programming
environment’s
complexity for the
system should be as low
as possible. 1 to 5 X 16 0.940 0.281 0.525 No

61

Dimensions and
Attributes M

ea
su

re
s

Ef
fe

ct
iv

en
es

s

Ef
fic

ie
nc

y

Sa
tis

fa
ct

io
n

Su
rv

ey

Q
ue

st
io

n

p

va
lu

e

C
.I.

 lo
w

er

lim
it

C
.I.

 u
pp

er

lim
it

V
al

id
at

ed
?

The number of
simulations written with
proprietary simulation
packages should be
minimized. (Proprietary
simulations are those
with closed code that
cannot be seen or
modified.) integer X 17 0.001 0.572 0.805 Yes
The number of software
"wrappers" required
around individual
simulations should be
minimized. integer X 18 0.008 0.526 0.764 Yes
The DSS infrastructure
should be as easy to use
as possible. 1 to 5 X 19 0.000 0.767 0.943 Yes
For a given number of
simulations, the amount
of coding required
should be minimized.

lines
of
code X 22 0.302 0.407 0.660 no

The lower the level of
expertise needed for
coding, the more
productive the
programming team will
be. 1 to 5 X 23 0.874 0.306 0.551 no
Programmers should be
satisfied with the
programming
environment. 1 to 7 X N/A N/A N/A N/A N/A
The amount of time it
takes a new programmer
to become productive
should be minimized. Weeks X 20 0.000 0.675 0.880 yes
The system should be
designed to be as easy to
program as practicable. 1 to 5 X 21 0.695 0.344 0.592 no
The software
infrastructure that allows
the greatest ease of
connecting simulations
to it should be chosen. 1 to 5 X 24 0.000 0.876 0.997 yes
The data formats
between simulations
should be compatible. 1 to 5 X 25 0.000 0.854 0.987 yes
Configuration control
between simulations
should be adequate. 1 to 5 X 53 0.000 0.761 0.976 yes

62

Dimensions and
Attributes M

ea
su

re
s

Ef
fe

ct
iv

en
es

s

Ef
fic

ie
nc

y

Sa
tis

fa
ct

io
n

Su
rv

ey

Q
ue

st
io

n

p

va
lu

e

C
.I.

 lo
w

er

lim
it

C
.I.

 u
pp

er

lim
it

V
al

id
at

ed
?

Installation
A detailed log should be
kept of all installation
details, including
troubleshooting,
problems encountered,
and their solutions. Y/N X 26 0.000 0.832 0.977 yes
Personnel of average
ability, but taught the
job, should be able to
install the system
components. Y/N X 27 0.034 0.492 0.734 yes
The skills needed for the
installation team should
be specified. Y/N X 28 0.000 0.585 0.812 yes
The number of people
required to install the
system should be
minimized. integer X 29 0.000 0.597 0.823 yes
Effective
troubleshooting
capability should be
provided for the system
installers. 1 to 5 X 30 0.000 0.791 0.955 yes
The time required to
install the system should
be minimized.

weeks
or
days X 31 0.996 0.221 0.457 no

The installation process
should be as easy as
practicable. 1 to 5 X 32 0.901 0.297 0.542 no
The skill level required
to install the system
should not be too high. 1 to 5 X 33 1.000 0.152 0.373 no
Installers should be
satisfied with the
installation scenario. 1 to 7 X N/A N/A N/A N/A N/A
Training
The training should be
effective, i.e., it should
prepare the trainee for
what he or she needs to
do. 1 to 5 X 34 0.000 0.805 0.965 yes
The training should be
efficient, i.e., it should
accomplish its goals in
an optimal amount of
time. 1 to 5 X 35 0.153 0.441 0.688 no
Are the trainees satisfied
with the training? 1 to 7 X N/A N/A N/A N/A N/A

63

Dimensions and
Attributes M

ea
su

re
s

Ef
fe

ct
iv

en
es

s

Ef
fic

ie
nc

y

Sa
tis

fa
ct

io
n

Su
rv

ey

Q
ue

st
io

n

p

va
lu

e

C
.I.

 lo
w

er

lim
it

C
.I.

 u
pp

er

lim
it

V
al

id
at

ed
?

Are the trainers satisfied
with the training
scenario? 1 to 7 X N/A N/A N/A N/A N/A
Written materials should
be available to support
the training. Y/N X 36 0.008 0.526 0.764 yes
On-line materials should
be available to support
the training. Y/N X 37 0.034 0.492 0.734 yes
The training should be
geared to the
knowledge/skill level of
the audience. Y/N X 38 0.000 0.849 0.987 yes
The overall quality of
the installation training
should be good. 1 to 5 X 39 0.000 0.763 0.941 yes
The overall quality of
the end user interface
training should be good. 1 to 5 X 40 0.000 0.824 0.976 yes
The overall quality of
the programmer training
should be good. 1 to 5 X 41 0.000 0.824 0.976 yes
Documentation
The quality of
programming code-level
documentation should be
sufficient. 1 to 5 X 42 0.000 0.773 0.951 yes
Software design
characteristics should be
clearly specified in a
conceptual design. 1 to 5 X 43 0.000 0.847 0.987 yes
The end user needs and
goals should be clearly
documented. 1 to 5 X 44 0.000 0.844 0.986 yes
The quality of training
documentation should be
sufficient. 1 to 5 X 45 0.000 0.824 0.976 yes
The quality of
installation
documentation should be
sufficient. 1 to 5 X 46 0.000 0.714 0.913 yes
The quality of written
end user interface
documentation should be
sufficient. 1 to 5 X X

47,
48

0.000,
0.000

0.714,
0.735

0.913,
0.926 yes

The quality of on-line
help and support for end
users should be
sufficient. 1 to 5 X 49 0.000 0.603 0.831 yes

64

Validation of the Other Attributes

Eleven attributes were not put through the survey validation process. Six of these are user

satisfaction, a generally accepted usability measure (and a requirement per both ISO and ANSI

usability standards as previously discussed). One is overall quality of the interface, which

represents a basic usability evaluation of an interface. One is a measure of how well the user's

goals are achieved with the system. This is similar to utility and is validated by the fact that

without this goal being at least partially met, the system is useless to the user. Also, this is a key

goal of any simulation (or product). This is a unique approach taken in the holistic framework,

which expands the concept of usability. Utility is not usually included in a usability assessment.

The attribute that tracks lessons learned for future improvements was suggested by a committee

member. This attribute is validated by the fact that there is a need for continuous improvement.

System reliability is validated by observation. With any DSS, it seems to come up during on-site

inspections. Vendor support is also validated by observation and goes with reliability. Due to

commercial and ethical concerns, it would only be reported in private consulting.

 The next chapter discusses the application of the framework to real-world systems.

65

CHAPTER FIVE: APPLICATION OF FRAMEWORK TO TWO DISTRIBUTED
SIMULATION SYSTEMS

Approach

 Real-world application is desirable in order to demonstrate the utility of the framework

and to obtain feedback and knowledge for future improvements. The evaluation of a system

requires studying the dimensions of the system's holistic usability, while keeping in mind:

• the need for qualitative improvements noticed by observation

• system strengths and weaknesses as evaluated by measurement

 The amount of time required to assess the holistic usability of a DSS will vary with the

complexity of the system and the level of depth desired in the assessment. It is recommended

that the person performing the assessment be a person competent in the field of usability and

knowledgeable about simulation technology. As a rule of thumb—which will very depending on

the situation—it is suggested that eight days be planned for the assessment. One day will be

needed to meet personnel involved, obtain appropriate management approvals, and become

familiar with the system. Six days can be used to assess the dimensions, at an average rate of one

dimension per day. The eighth day will be used to finish writing the report and present the

findings.

When the attributes are measured singly, with one measurement, this is a one-level

measurement. When attributes are measured with multiple measurements, this is a multi-level

measurement. Multi-level measurements will be combined into single measurements using

summation equations. Thus if there were one user interface in the system rated as a 4, that would

66

be the value of the end user interface quality attribute. If there were three different end user

interfaces, rated 3, 4, and 5, the value of the end user interface attribute would be

x
i=1

n

∑
n

=
3+ 4 + 5

3
= 4 .

In this manner, attribute measurements can have as many levels as necessary to provide the

amount of detail required for their measurement.

 Each dimension was measured using a summation of metrics of the dimension’s

attributes. The weights of each attribute of each dimension were chosen based on an evaluation

of the attribute’s importance. A variable was assigned to each dimension:

UN ≡ user needs and goals

EUI ≡ end user interface

I ≡ installation

P ≡ programming

T ≡ training

D ≡ documentation

The ideal score for each dimension is 100 percent of the possible points from a perfect score

summing the dimension’s attributes.

 The assessment will be reported as six individual scores. Determining a composite score

of the overall holistic usability was considered, but it was decided that the most value in the

assessment is to look at each dimensional assessment separately, comparing the dimensions and

seeing which dimensions need the most improvement. This facilitates the effective allocation of

resources to target the components most in need of usability enhancement.

67

 In order to combine metrics of the different attributes of the dimensions into dimensional

scores, some assumptions and careful judgment of the importance of each attribute is needed.

Obtaining maximum values for all attributes would result in a perfect score for that dimension.

Some attributes will be rated on a scale of one to five. User satisfaction metrics will be measured

on a scale of one to seven. Dichotomous variables, such as the yes/no evaluations, shall be

assumed to take on two possible values, typically 0 and a positive or negative integer, depending

on whether the variable’s presence or absence in the dimension results in a positive, neutral, or

negative effect on the system.

 Two systems were evaluated. The evaluations include quantitative measurement of all of

the attributes in the holistic usability framework for distributed simulation and a discussion of

findings that includes qualitative aspects that were noted during the system inspection. The first

system analyzed was the prototypical Virtual Test Bed that was developed at UCF for NASA.

The second system was the Aviation Research Training Tool (ARTT) Radar at Embry-Riddle

Aeronautical University.

The procedure for assessing the holistic usability of a DSS is as follows. The evaluator

will become familiar with the salient aspects of the system. A sample of key user types will be

given a survey concerning user satisfaction. These attributes require user feedback to measure.

System documentation, interface(s), design, and programming/infrastructure aspects will be

evaluated from study, observation, and discussion with personnel. A concise report will be

generated using inputs from the above process that

• summarizes the metrics of dimensional attributes

• lists the strengths and weaknesses

• makes recommendations for improvements

68

Each of the system assessments is discussed in four sections: (1) system description, (2)

assessment details and observations, (3) summary of results, and (4) strengths, weaknesses, and

recommendations.

Who Does What in an Assessment

 The holistic usability assessment of a system may be performed by one person or with a

team approach. The person leading the assessment should be a usability expert, preferably also

having expertise in the type of DSS or the domain the system is in. If evaluating a large system

and the resources are available, a team of two to five usability experts could be used to lead the

assessment. Users and managers will be recruited, surveyed, observed working with the system,

and/or interviewed as required.

 The six satisfaction metrics in the framework will be measured by asking the users their

level of satisfaction with the system, either verbally or with a survey instrument.

End User Needs and Goals

 Users will be asked if their goals with the system are fully supported and to rate this

attribute. As an alternative, a list can be made of all end user goals and a check made to

determine if they are met. Management should be asked if lessons learned are tracked. Reliability

can be assessed by talking to users and managers. The reliability attribute is intended to be a

rough estimate of how reliable the system is relative to the user's needs. If desired by the client, a

formal reliability assessment can be used. Vendor support would be rated by the owners/users of

the system.

69

End User Interfaces(s)

For determining a quick look at the overall quality of the end user interface, an expert in

usability is required. In order to evaluate the usability of an interface by any of several evaluation

techniques—whether "quick and dirty," user testing, field studies, or predictive, someone is

needed with the requisite background in usability (Preece, Rogers, & Sharp, 2002, p. 343-344.)

Usability evaluation requires training and developed expertise; it could not be left to the users,

most of whom will not know basic usability principles (Mayhew, 1999; Nielsen, 1993; Jordan,

1998). Their input should be sought by all practicable means, however, since their interface in

working with the system is the subject at hand. Expert evaluations are more effective when the

usability specialist is also an expert in the technology in use (Rubin, 1999). Although usability

expertise is needed to evaluate an interface, it is possible that with training in heuristic analysis,

nonexperts can find usability problems (Nielsen, 1994). However, the attribute measuring overall

quality of the end user interface is a quick look at the interface, not an in-depth usability analysis

of it. For the purposes of the assessment, it is best to have an expert make a quick examination of

the interfaces. If possible, observing users use the interface in an informal field study also gives

useful information; if problems are observed, they should be noted.

Most of the attributes under the control features section can be assessed by quick

inspection, except for exception handling. For this attribute, discussion with users should reveal

if exception handling is adequate.

Some attributes under the data visualization and analysis section can be determined by

inspection or documentation (e.g., the ability to save statistics). Depending on the situation, the

adequacy of data visualization and the ability to understand interrelationships and results may

require user input.

70

Programming

 Even if the person in charge of the assessment knows the programming languages used in

the simulations and is knowledgeable about software conceptual design processes, assessing the

programming dimension will require talking to the system programmers and reviewing relevant

documentation. While the programming dimension represents the area where the most resources

are usually spent in simulation and also the area of highest complexity, programmers are usually

easily able to clearly articulate where their problems are and what is needed to alleviate them,

and more than willing to share this information.

Installation

 The installation dimension consists of six attributes, one of which is a satisfaction

measure. The other five can be assessed by either talking to the installers or giving them a

survey. Other than the satisfaction metric, which must be measured by asking the users, a

usability specialist is not needed to obtain these measurements.

Training

 Two of the six training dimension attributes are satisfaction measures, one for the

trainers, the other for the trainees. Assessment of the training dimension can be performed by the

usability specialist doing the overall assessment or any other knowledgeable person. Observation

of training in progress is recommended, as is talking to both trainers and trainees.

Documentation

 Assessment of the documentation dimension requires inspecting the documentation.

While every word does not need to be read, a thorough look at on-line, help, and written

documentation is required. Asking various users for their opinions of the documentation will

71

help to reveal any problems. Programmers will need to be asked the quality of the code-level

documentation and the quality of the conceptual software design documentation.

Virtual Test Bed Assessment

VTB System Description

 The VTB consists of five HLA-RTI federates configured to simulate a virtual spaceport:

the Virtual Range, Launch Pad, Control Room, Monte Carlo, and Weather Expert System

(WES). Four of the federates are programmed in Arena and interface with the RTI through an

adapter that was developed by the National Institute of Standards and Technology (NIST). The

NIST-developed distributed manufacturing adapter, written in C++, was developed to allow

commercial software packages to interface with the HLA-RTI (McLean and Riddick, 2000).

WES is a simulation-supporting live participant rather than a simulation in itself; its adapter is

written in Java.

 The five federates operate as follows. The Launch Pad model simulates the flow of the

space shuttle as it arrives at Kennedy Space Center, is processed through the Orbital Processing

Facility and the Vehicle Assembly Building, and travels to the launch pad. Upon arrival at the

pad, a message is sent to the Control Room informing it that the shuttle is ready for launch. If

conditions are good for a launch, authorization is given, after which the Launch Pad shows the

shuttle circling the earth and eventually landing, if the flight is successful. The Control Room

checks for failures in four systems and queries the Weather Expert System. If conditions are

good, it sends the go ahead to the Launch Pad. The Weather Expert System collects weather

72

information from several Web sites and uses it to determine if conditions are good for a launch.

When a launch occurs, the Monte Carlo model determines if a failure occurs that would cause a

disaster. If a failure occurs, the Virtual Range model determines the location of the accident in

space and the amount of contaminants released into the atmosphere. A CALPUFF air quality

model uses the Weather Expert System-provided weather information to determine contaminant

concentrations around the accident site. Then ArcView is used to create a map showing where

contaminant concentrations exceed safe limits. SpatialAnalyst shows the population exposed on

the ArcView-generated map, obtaining the population data from LandScan. The Virtual Range

displays the number of people exposed on a map of the affected area.

 Initially, the VTB required a person to operate each computer a model was running on

separately. A prototypical GUI was designed in a NASA-funded project to improve the VTB's

usability. In this GUI design, the five federates connect to both the HLA-RTI and WebLogic

Server. The GUI communicates with the federation models through WebLogic Server and also

contains a control federate that communicates with the federation via the RTI. This allows for

control of the individual simulations through WebLogic Server, while the HLA-RTI Control

Federate allows starting and stopping the distributed simulation. A help module, written in Java,

was incorporated into the GUI to provide the capability to offer on-line help and explanatory

information. The figure below shows the configuration of the VTB and its control GUI.

73

Figure 7. Virtual Test Bed GUI Design Approach

VTB Assessment Details and Observations

 The end user goals of the VTB, from a NASA customer viewpoint, were to create a test

bed for virtual spaceport simulations, integrating several simulations in a prototype that

demonstrates the feasibility of developing a virtual space port, and to develop capabilities in

distributed simulation. In addition, a usability improvement project for the VTB developed the

prototypical GUI. NASA was completely pleased with this effort, showing that these end user

goals were accomplished. The lessons learned are being tracked for future improvements.

System reliability has been weak, partly due to unknown configuration changes on some

workstation computers. Since the VTB is a prototypical system that has not undergone extensive

development, low scores would be expected for some of the attributes and dimensions.

 The prototypical GUI provides a central control and monitoring point. Future efforts with

the VTB should include work to expand the capabilities of the GUI for control, configuration,

and data visualization. The ability to change parameters in individual simulations from the GUI

Launch
Pad

Virtual
Range

Control
 Room

Weather
Expert

Monte
Carlo

HLA-RTI WebLogic Server

Control and Monitoring GUI Help Module
Control Federate

74

is needed. The ability to review data from different simulation runs as well as to save and export

statistics is needed. On individual computers, the data visualization is good for the individual

simulations. The ability to see this information on remote computers—especially one running the

control GUI—would be helpful to the end user.

 While the team worked to developed the control GUI, a number of issues concerning the

programming dimension arose. The lack of good code-level documentation meant that

programmers new to the project had to spend time learning how the system was programmed,

rather than reading a clear explanation. While some documentation exists, it is not adequate for a

programmer to develop a full understanding of how components work and interact. In addition to

learning how to access HLA-RTI functions in the wrappers for the individual simulations, new

programmers needed to learn how to use the HLA-RTI version 1.3. Learning how to program the

HLA-RTI and access individual simulation wrappers took the programmers about twelve weeks.

This time could have been shortened if they had received a training course in how to use the

HLA-RTI. Better documentation would have also made them more productive faster.

 Installation of the system, although done in a systematic fashion, has historically required

extensive troubleshooting and phone calls to experts no longer associated with the project. A

graduate student (who is an expert programmer) complained that the lack of a troubleshooting

guide for the Distributed Manufacturing Adapter was a major problem, although there were

detailed installation instructions for the adapter. One installation problem, associated with a

dynamic link library issue in Microsoft Windows XP (the operating system on which the adapter

and its associated simulation package was being installed), had cost a total of several days of

work (counting all personnel involved), and still was not resolved. A similar installation

problem, which occurred a year earlier, had taken weeks to resolve. While such problems can be

75

expected in a development environment, this presents an excellent opportunity for improving the

usability for the installers and programmers.

VTB Summary of Results

 The calculations for the values of each dimension are the summations of the individual

attributes for each dimension. The dimensional scores are the total number of points divided by

the maximum possible number of points. For this system, the results of the calculations are

shown in the table below.

Table 5. Assessment Metrics for the Virtual Test Bed

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

End User Need
and Goals

 22 0.91

Are the end users
satisfied with the
system?

1 to 7 7 7 NASA is pleased
with the research
effort.

Are the users'
goals with the
system fully
supported?

1 to 5 5 5

Are lessons
learned tracked
for future
improvements?

Y/N (5/0) 5 5 Lessons learned
thus far in the VTB
will be used for
future system
improvements.

Reliability 1 to 5 3 5 In its current
prototypical state,
reliability needs
improvement.
Problems with
Dynamic Link
Library changes are
one issue.

End User
Interface(s)

 57 0.46

76

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

Are the end users
satisfied with the
interfaces?

1 to 7 5 7 Average of two
people who have
used the interface
while working with
the VTB.

What is the
overall quality of
interface(s)?

1 to 5 3 5 While capabilities
are innovative and
have potential,
more refinement is
needed to make the
interface(s) easy to
use for the average
user.

 control features

Is there a central
control and
monitoring
point?

Y/N (5/0) 5 5

Can one change
parameters in
individual
simulations from
a central
interface?

Y/N (5/0) 0 5 Changes require
working from the
local computer.

Can one start and
stop simulations
from a central
control interface?

Y/N (5/0) 5 5 Yes. This is the
result of an
innovative research
effort.

Can users see
others who are
logged into
system and
communicate
with them?

Y/N (5/0) 0 5 Currently this is a
one-user system,
although designing
for multiple users is
possible with the
current GUI design.

Is there good
exception
handling?

1 to 5 0 5 There is no
exception handling
in the prototype.

 data
visualization and
analysis

Is it possible to
review data from
several
simulation
scenarios
simultaneously?

Y/N (5/0) 0 5

77

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

Can statistics be
saved and
analyzed or
exported?

Y/N (5/0) 0 5

How good is the
data visualization
capability?

1 to 5 3 5 Development is
needed in
displaying data in
the central GUI.

Can information
from various
simulations be
combined in a
way that allows
good
understanding of
interrelationships
and results?

1 to 5 5 5 The overall concept
of the simulation
combines and
displays the data in
an easy-to-
understand fashion.
The information
should be integrated
into one display.

Programming 37 0.54
number of
proprietary
simulations

Integer
4 out of 5
simulations are
based on
proprietary
code

1 5 This metric is
calculated as the
percentage of open-
coded simulations
times the total
number of possible
points.

number of
software
wrappers
needed?

Integer, 4 out
of 5
simulations
require
wrappers

1 5 A wrapper is
needed for each
proprietary
simulation.

infrastructure
ease of use

1 to 5 3 5 RTI 1.3, integrated
with the adapters, is
difficult to work
with compared to
the IEEE 1516 RTI.

Are programmers
satisfied with the
programming
environment?

1 to 7 5 7

time to get
programmers on
board, up to
speed

Weeks N/A This attribute was
not used. A basis of
comparison is
needed. The current
estimate is 12
weeks.

78

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

ease of
connecting
individual
simulation to the
infrastructure

1 to 5 2 5 Integrating a new
simulation is a
major task.

data format
compatibility
between
simulations

1 to 5 5 5 Data formats are
compatible.

configuration
control between
simulations

1 to 5 3 5 A formal
configuration
control is
suggested.

Installation 27 0.33
Is a detailed log
kept of all
installation
details, including
troubleshooting,
problems
encountered and
their solutions?

Y/N (5/0) 5 5 A log is kept in a
three-ring binder.

Can personnel of
average ability,
but taught the
job, install the
system
components?

Y/N (5/0) 0 5 Experience has
shown that issues
will arise during
each installation,
such as problems
with Dynamic Link
Libraries.

Are the different
skills needed for
the installation
team specified?

Y/N (5/0) 0 5 This has not been
documented.

number of people
required

Integer N/A This attribute is not
currently used.

troubleshooting
capability

1 to 5 1 5 Installers have
spent much time
troubleshooting and
complained about
the difficulty of it.

Are installers
satisfied with the
installation
scenario?

1 to 7 3 7

Training 44 0.59

79

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

Is the training
effective? That
is, does it prepare
the trainee for
what he or she
needs to do?

1 to 5 3 5

Are the trainees
satisfied with the
training?

1 to 7 4.5 7

Are the trainers
satisfied with the
training scenario?

1 to 7 4.5 7

Are written
materials
available to
support the
training?

Y/N (5/0) 5 5

Are on-line
materials
available to
support the
training?

Y/N (5/0) 0 5

Is the training
geared to the
knowledge/skill
level of the
audience?

Y/N (5/0) 5 5

Overall quality of
installation
training.

1 to 5 2 5

Overall quality of
end user interface
training.

1 to 5 N/A There is no
end user interface
training at the
current time.

Overall quality of
programmer
training.

1 to 5 2 5

Documentation 35 0.54
Programming: Is
the code level
documentation
good?

1 to 5 2 5

80

Dimensions/Attri-
butes

Measurement
details

Measurements Max possible
score

Dimensional
scores

Notes

Programming: Is
the software
design clearly
defined in a
modeling
language to aid
programmers in
their work?

1 to 5 3 5

Are the end user
needs and goals
well
documented?

1 to 5 5 5

Quality of
training
documentation.

1 to 5 3 5

Quality of
installation
documentation.

1 to 5 3 5

Quality of written
end user interface
documentation.

1 to 5 1 5 Little effort has
been spent
documenting the
end user interfaces.

Quality of on-line
help and support
for end users.

1 to 5 2 5 The on-line help
module needs
content added.

81

The dimensional holistic usability scores are summarized in the table below.

Table 6. Assessment Summary for the Virtual Test Bed

Dimension Metric

End User Needs and Goals 0.91

End User Interface 0.53

Programming 0.54

Installation 0.33

Training 0.59

Documentation 0.54

VTB Strengths, Weaknesses, and Recommendations

 The VTB is an innovative project that has demonstrated the ability to integrate diverse

simulations to create a virtual spaceport. More development is needed in this project to build on

what has already been accomplished and to create a more production-oriented product.

 The VTB's holistic usability strengths are:

• successful integration of existing simulations with live federate participation to create a

virtual spaceport, whose data integration presents a coherent, easy-to-understand

simulation of space shuttle operations

• Choosing the HLA-RTI as the infrastructure allows for unlimited growth potential in the

size of the VTB and represents the best choice in architecture from a programmer's

usability perspective.

82

• good use of data from various simulations to create a situational visualization and

analysis, namely launching and processing the space shuttle

 The VTB's weaknesses are:

• Training for people new to the project, especially programmers and installers, is

inadequate.

• incomplete documentation of programming and installation details

• the need for a more developed user interface for a typical end user

 The recommendations regarding the VTB's holistic usability are:

• Take steps, by improving documentation and training, to reduce the amount of time it

takes programmers new to the project to become productive.

• Thoroughly document the installation process, in particular troubleshooting issues with

the Distributed Manufacturing Adapter.

• Continue the project, with emphasis on three things:

o the integration of a variety of selectable, distributed software modules/simulations

that enhance the utility of the system to NASA end users

o Focus on making the system oriented more to day-to-day use, rather than a

prototype.

o continual improvement of the GUI, with the focus on capabilities for simulation

module selection, integration and visualization of data from various simulations,

and ease of use for potential end users of the system

83

Aviation Research Training Tool Radar Assessment

Aviation Research Training Tool Radar System Description

The second system evaluated is the Aviation Research Training Tool (ARTT) Radar,

which is used at Embry-Riddle Aeronautical University to train students in radar use for ATC. Its

intended use is to train students in air traffic control for the approach-departure/terminal

operations at an airport and also for training students in en-route air traffic control. At the time of

writing it is used for three courses, teaching Daytona approach and departure, the Orlando

airspace, and the Jacksonville-Ocala sector.

The ARTT is distributed across thirty workstations and one server in two rooms. The

ATC radar room contains the main server and fifteen radar workstations, configured so that

students may work in pairs at them, with one student being the radar operator and remotely

talking to pilots and the other keeping track of pilot strips (strips are paper records kept of

aircraft positions). The pseudo pilot room contains fifteen workstations for pseudo pilots; each

pseudo pilot workstation controls one or more aircraft. The simulation scenarios are created in

advance by the course professor. Each pseudo pilot workstation is associated with an ATC radar

room workstation during a scenario. (The system can be configured so that any number of

pseudo pilot workstations can interface with any number of ATC radar room workstations, but

this capability is not needed for the courses.) While the scenarios are underway, the pseudo pilots

communicate with the ATC radar room personnel using the Voice Communication Simulator

(VCS), which is shown on displays in the radar and pseudo pilot rooms. The VCS interface

consists of a headset and a touch screen control panel. The VCS simulates actual radio usage,

84

with selectable frequencies. The Gate Keeper application allows different groups of participants

to communicate via the VCS using multicast data distribution for voice communication. This

application allows for remote startup and shutdown of VCS endpoints. The system includes

voice recognition capability, although it is not used for the courses taught using the system. The

software package also includes a graphics editor. Below is a sketch of the ATTR layout.

3 4

5

6

7

8

910111213

14

15

21

server

Radar Controller Room

100BaseT Ethernet

Pseudo Pilot Room

11

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Pseudo Pilot Workstation

Radar Workstation

Figure 8. Schematic of the Layout of the ATTR Radar

85

A scenario must be created to use the system. The Whiteboard is the application used to

create simulation scenarios. The professor creates the scenarios to simulate real-world situations

chosen to meet the training needs of the students. Scenarios can be recorded and played back. At

the start of a simulation, scenarios are loaded off of the main server in the ATC radar room into

the workstation groups as needed. Students working as technicians open the scenarios for

students before the class starts. During the simulations, pseudo pilots communicate with the ATC

radar operators. The pseudo pilots control the planes, while the ATC radar operators give them

flight instructions. Although all students in a class period will start off with the same scenario,

each simulation will be different over time due to variations in pseudo pilot maneuvers and in the

ATC instructions given to their associated pseudo pilots.

When students are using the ATC radar workstations, their data input is via either an

ARTS-III keyboard or a mouse. The ARTS-III keyboard is a special keyboard that is used for

ATC work. The use of this keyboard and its special command key sequences is mandated by the

Federal Aviation Administration (FAA). The intent of the system is to simulate an FAA ATC

radar room with high fidelity to the real world. The use of FAA-required ARTS-III keyboard

commands is part of the requirements. Students are given ten hours of instruction in learning

these keyboard commands at the start of the semester. Alternatively, students can use the mouse

to enter commands.

The ARTT workstations and server are connected to each other via a dedicated,

hardwired 100BaseT Ethernet. Following are photographs of the system.

86

Figure 9. Two ATC Radar Room Workstations

Figure 10. ATC Radar Display During Simulation of Airspace

87

Figure 11. ARTS-III Keyboard for ATC and Mouse at a Radar Room Workstation

Figure 12. Pseudo Pilot Workstations

(Note: Keystroke reminders are permanently displayed on the projector screen.)

88

ARTT Assessment Details and Observations

 The ARTT assessment summary is given in the table in the next section. Some salient

aspects of the assessment are noted in this section. I spent five days studying and assessing the

system during students' practice labs, when classes were in session (with simulations running),

and when classes were not in session (when I could inspect the system interfaces). In addition, I

interviewed professors, network administrators, and technicians, and inspected system

documentation. Only four of the six dimensions of the framework could be assessed: End user

Needs and Goals, End user Interface(s), Training, and Documentation. The Programming and

Installation dimensions are proprietary information of the software vendor, Adacel. Although

contacted, the vendor declined to share proprietary information.

 A brief, anonymous user satisfaction survey (using a seven-point Likert scale) given to

the students and technicians indicated that most were very satisfied with the system and the

interfaces. All were very satisfied with the training in using the system they had received, both

written and oral. During simulations during the classes, the students appeared to be enjoying

using the system and learning. Technicians training the students were also satisfied with the

training they gave.

 Inspection of the documentation and system interfaces revealed that they were both of

good quality. Although a detailed, in-depth usability evaluation of the interfaces was not

performed—the intention is mainly to assess the overall quality and DSS aspects, I did

thoroughly inspect them and found them to be well developed. One observed weakness was that

some menus, once chosen, could only be closed with a mouse command; alternative keyboard

commands to close a menu, such as pressing the ESC key or using CNTL-W, would indicate a

89

more highly-developed interface, but given that the course required using the ARTS-III key

commands, this was not an issue. Also, as noted, the students rated the interfaces highly in terms

of user satisfaction.

 The overall system assessment of the dimensions that could be assessed (End user Needs

and Goals, End user Interface, Training, and Documentation) would appear to be very high if one

only assessed the viewpoint of the students, who are one type of system end user: trainees. The

needs of the network administrators and professors, however, who must keep the system running

and see that it meets the intent of the training, must also be considered.

 The intention of the assessment was to assess the system as is. Thus, past reliability

problems may indicate poor system reliability, but they may have been resolved by recent

updates. Historically, reliability has been a problem with the system; in particular, the VCS has

been troublesome; the reliability of the VCS has improved recently due to a server upgrade and

software changes. On the last day of the assessment, four VCS stations and two radar

workstations were down. It was not known whether this was due to vendor software problems,

hardware problems, or operating system instability issues. Based on observation, the reliability

of the system is rated as 3 out of 5 and is in need of improvement.

 The end user training need of teaching students in a realistic experiential environment

was not fully met. Of the two noted training goals—approach-departure/terminal operations and

en-route air traffic control—the first was best met. Discussions with two professors who use the

system revealed the following.

 The ATC terminal operations class professor was satisfied with the system and had no

notable concerns. He noted, however, that it was inadequate for en-route training.

90

 Several concerns relative to the end user needs and goals were noted by the en-route ATC

class professor. The keystroke emulations using the ARTS-III keyboard are not all accurate to

the real world, thus there was a concern about inaccurate emulation as well as teaching students

bad habits. Another concern is that when programming scenarios, it is not possible to obtain a

simple print out of the flight plans for each aircraft—other than a screen shot—making the

programming of complex scenarios difficult; the ability to print an ASCII printout of flight plans

is needed. The en-route emulation used in the system merely increases the range of terminal

operations; this is not a valid representation of the en-route tracking used at the FAA's twenty-

two en-route tracking centers. Concerns were also noted in the pseudo pilot interface, in that one

cannot enter multiple commands, but must enter them one at a time. The above issues are

reflected in the End User Needs and Goals score.

 The user satisfaction metrics for the professors who teach classes, students, and

technicians are noted in the table below.

91

Table 7. ARTT Radar Satisfaction Metrics

Question Professor
1

Professor 2 Professor
average

Student and
technician
average

Number of
students
and
technicians

From an end user
viewpoint, how
satisfied are you with
the system? (1 to 7)

5 3 4.00 6.08 13

From an end user
viewpoint, how
satisfied are you with
the interfaces(s)? (1 to
7)

5 1 3.00 6.00 12

How satisfied are you
with the training
scenario? (1 to 7)

6 1 (en-route)
4 (terminal
usage)
2.50 average

4.25

Are your goals with
the system fully
supported? (1 to 5)

5 2.5 3.75

How satisfied are you
with the training? (1
to 7)

 6.50 12

 Below is the summary of results table for the holistic usability assessment of the ARTT

Radar. The dimensional scores are calculated by taking the sum of the measurements of the

attributes and dividing it by the maximum possible score for the dimension, so that 1.00 is a

perfect rating.

92

Table 8. Assessment Metrics for the Aviation Research Training Tool Radar

Dimensions Measurement
details

Measurements Max
possible
score

Dimensional
scores

Notes

End User Needs
and Goals

 22 0.75

Are the end
users satisfied
with the system?

1 to 7 4.70 7 Because this is an instructional
system, professor end user
satisfaction is weighted more
heavily (0.67) for this rating than
student satisfaction scores (0.33).

Are the users'
goals with the
system fully
supported?

1 to 5 3.75 5 The goal of training students for
air traffic control radar in the
terminal area is well supported.
Improvement is needed for en-
route simulation.

Are lessons
learned tracked
for future
improvements?

Y/N (5/0) 5 5 Lessons learned have been
tracked and will be considered in
any future systems.

Reliability
(hardware and
software)

1 to 5 3 5

Vendor support Not assessed for reasons of client
confidentiality.

End User
Interface(s)

 52 0.89

Are the end
users satisfied
with the
interface?

1 to 7 3.99 7

What is the
overall quality of
interface(s)?

1 to 5 4 5 Three interfaces were inspected:
the Pseudo Pilot, the ATC Radar,
and the Voice Communication
System

 control
features

Is there a central
control and
monitoring
point?

Y/N (5/0) 5 5 Each user group has control of a
simulation.

Can one change
parameters in
individual
simulations from
a central
interface?

Y/N (5/0) 5 5 Yes.

93

Dimensions Measurement
details

Measurements Max
possible
score

Dimensional
scores

Notes

Can one start
and stop
simulations from
a central control
interface?

Y/N (5/0) 5 5 Yes.

Can users see
others who are
logged into
system and
communicate
with them?

Y/N (5/0) 5 5 ATC radar users are often in
constant communication with
pseudo pilot interface users in
another room.

Is there good
exception
handling?

1 to 5 4 5 The only exceptions noted by
users are freezes, which are
fixed by stopping/restarting the
process.

 data
visualization and
analysis

Is it possible to
review data from
several
simulation
scenarios
simultaneously?

Y/N (5/0) 5 5 Simulations can be recorded and
replayed. For the purposes of this
system, this meets the intent of
this attribute: the ability to
review simulations.

Can statistics be
saved and
analyzed or
exported?

Y/N (5/0) N/A. This is not a simulation to
generate results, but to train
students.

How good is the
data
visualization
capability?

1 to 5 5 5 Data visualization is excellent, in
that this simulation has a high
fidelity relative to the real world.

Can information
from various
simulations be
combined in a
way that allows
good
understanding of
interrelationships
and results?

1 to 5 5 5 The combination of the pseudo
pilot data and the ATC
simulation is effective.

Programming Programming details are
proprietary. Unable to assess.

Installation Installation is a proprietary
process. Unable to assess.

Training 34 0.89

94

Dimensions Measurement
details

Measurements Max
possible
score

Dimensional
scores

Notes

Is the training
effective? That
is, does it
prepare the
trainee for what
he or she needs
to do?

1 to 5 4.50 5

Are the trainees
satisfied with the
training?

1 to 7 6.50 7

Are the trainers
satisfied with the
training
scenario?

1 to 7 4.25 7

Are written
materials
available to
support the
training?

Y/N 5 5

Are on-line
materials
available to
support the
training?

Y/N N/A Course requirements
discourage the use of on-line
training materials.

Is the training
geared to the
knowledge/skill
level of the
audience?

Y/N 5 5

Overall quality
of installation
training.

1 to 5 N/A Proprietary

Overall quality
of end user
interface
training.

1 to 5 5 5

Overall quality
of programmer
training.

1 to 5 N/A Proprietary

Documentation 15 1.00
Programming: Is
the code level
documentation
good?

1 to 5 Proprietary

95

Dimensions Measurement
details

Measurements Max
possible
score

Dimensional
scores

Notes

Programming: Is
the software
design clearly
defined in a
modeling
language to aid
programmers in
their work?

1 to 5 Proprietary

Are the end user
needs and goals
well
documented?

1 to 5 5 5

Quality of
training
documentation.

1 to 5 5 5

Quality of
installation
documentation.

1 to 5 Proprietary

Quality of
written end user
interface
documentation.

1 to 5 5 5 Thorough system documention is
provided, with instructions for
using all the features.

Quality of on-
line help and
support for end
users.

1 to 5 N/A. Although on-line help is a
feature of the system, students
are instructed to use only
documentation supplied as
course materials.

ARTT Summary of Results

 The assessment metrics for the four dimensions of the ARTT that could be assessed are

shown in the table below. As noted, the system rates very well in the End User Interface,

Documentation, and Training dimensions. Improvement is needed in the End User Needs and

Goals dimension.

96

Table 9. Assessment Summary for the ATTR Radar

Dimension Metric

End User Needs and Goals 0.75

End User Interface 0.89

Programming proprietary

Installation proprietary

Documentation 1.00

Training 0.89

ARTT Strengths, Weaknesses, and Recommendations

 Observing a large number of students using the system during class time, no significant

trainee problems with the system were observed, and the trainees enjoyed using the system. In

addition, the trainees have noted high levels of satisfaction with both the training they have

received on how to use the system and when using the system. The system meets most of the

needs for terminal radar training. Reliability is a concern. In summary, strengths are:

• interfaces that most trainers and students find easy to use

• innovative voice communication system emulating real-time radio usage

• fairly accurate emulation of ATC operations

• high average levels of user satisfaction

Weaknesses are:

• poor en-route simulation capabilities

97

• on-going reliability issues

• incomplete realism in the keystroke emulation of the ARTS-III keyboard

• limited scenario programming capability; unable to add to plane database

 The ARTT's holistic usability, based on the four dimensions that could be assessed

without gaining access to proprietary information, rates very well in the End User Interface(s),

Training, and Documentation dimensions.

 The recommendations regarding the ARTT's holistic usability are:

• Either update the system for more realistic en-route simulation or use a different

system to teach that course.

• Work to improve reliability of the system. Keep a log over time of all system

problems and resolutions, so that trends and troubleshooting details will be available

to decision makers.

• Suggest that the vendor make the keystroke emulation accurate and improve the

scenario programming capability.

 The holistic usability of the ARTT is high enough to warrant its continued usage for

terminal simulation training scenarios. As noted, the trainees are generally very pleased with the

system. Its use for en-route training is questionable.

Lessons Learned and Framework Strengths and Weaknesses

 This framework represents preliminary research, and a number of iterations are needed to

refine it. Based partly on what has been seen during these two system assessments, a list of

framework strengths and weaknesses follows.

98

Strengths

A holistic look at the usability of DSSs has the ability to:

• improve the efficiency, effectiveness, and satisfaction for all people who work with the

system

• show weak areas that are not readily apparent to decision makers and show opportunities

for improvement

• show where resources should be spent

• show what is most important to all types of users (Attribute weights in particular are

helpful here.)

• indicate areas where research may be needed

• provide formative holistic usability advice during development

• assess the overall state of the system vis-à-vis all people who work with it.

• integrate many aspects of design and use in a multidisciplinary viewpoint that spans

several fields.

Weaknesses

A number of weaknesses exist that indicate the need for further research.

• The attribute weights need study.

• More depth is needed in dimensional assessments, with more attributes and especially the

expansion of attributes into levels of subattributes.

99

• The framework does not take the place of a traditional usability assessment. The attribute

that assesses the overall quality of the end user interface(s) would ideally be a full-blown,

traditional usability assessment in itself.

• There is a need for more refinement of the measurement methodology.

• Proprietary issues mean that some dimensions may not be able to be assessed from a

client's viewpoint.

• Different end users with different objectives will tend to distort the End User Needs and

Goals dimension measurements.

• As a new concept, it may be hard to sell to management. (Usability was a hard sell for a

long time.)

Lessons learned

Several lessons were learned in the application of the framework that are worth noting.

• When assessing a system provided by a vendor, the inability to assess the Programming

and Installation dimensions due to proprietary issues is a weakness of the framework.

However, the proprietary dimensions could be assessed if the assessment were performed

in-house from the viewpoint of the vendor.

• The value of qualitative observations will at times be more valuable than the

measurements; adequate attention should be given to both.

• There will be sensitivity issues related to how measurements are mixed together both

within an attribute's metrics and in the dimensional metrics.

100

• Generally, workers who work with a DSS will be very receptive to the idea of a holistic

usability assessment and be willing to share much information. This represents an

opportunity for management to get to the root of and become cognizant of important

issues related to productivity and effectiveness they may not have been aware of. An

example of this is the failure of the ARTT Radar system to meet all key user needs and

goals. In this case, this knowledge has value not just to the client but to the vendor as

well, which suggests both client and vendor viewpoints would result in a better, well-

rounded assessment.

• In the two assessments performed, the satisfaction metric was measured on a different

scale than the other attribute metrics. This was changed to the same scale as the other

metrics. The reasons are that if a user were rating both satisfaction and another attribute

they might have trouble switching scales; adjusting weights is more easily performed

when attributes are all measured on the same scale; and if there were a desire to compare

averages or standard deviations of attributes they would need to be on the same scale.

• There is a need to be able to adjust attribute weights, because the importance of attributes

will vary significantly from system to system.

Weights and Sensitivities

 A survey to determine attribute weights based on DSS expert input is discussed in the

next chapter, and revised assessment numbers for dimensional metrics of the assessments are

also given. There are several issues related to attribute weights and measurements that require

further research.

101

 From the standpoint of measuring human-computer interaction, the influence of certain

attributes on efficiency and effectiveness would be expected to be generally invariant. For

example, the quality of configuration control between simulations will significantly affect the

ease of programming regardless of the system type. However, not only are there many types of

DSSs, but each DSS of the same type has its own unique characteristics.

 A good starting point for the weights is the importance survey data. The system designer

or owner may have constructive ideas about which weights would be best. The workers in each

dimension would be an excellent source of information about weights. Historical work records

and problems encountered and how better attribute characteristics could have helped to avoid

problems or inefficiencies would be helpful in a detailed weight analysis.

 The weight of satisfaction metrics relative to the weight of other attributes is an open

question. People with entertainment systems and games may decide to weight satisfaction more

heavily than other attributes. As an alternative, satisfaction metrics could be reported separately.

 Sensitivities also need to be considered in future research. The relative weights of trainee

and trainer satisfaction metrics within attributes in the ARTT Radar assessment are a case in

point. Some of the End User Needs and Goals dimension's attributes were weighted based on the

assumption that the professors' needs as trainers were more important than students' perceived

needs. Also, the equal weight between the professor-provided metrics resulted in a relatively low

end user needs attribute score; a sensitivity study would result in the End User Needs and Goals

dimension's score being higher for terminal/arrival-departure training usage, and even lower for

the en-route training course. The attribute weights in the End User Needs and Goals dimension

warrant particular attention in adjustment considerations. The reliability metric, for instance, is

102

very important in a production system, but might be deemed less important in a prototypical

system.

103

CHAPTER SIX: DEVELOPMENT AND APPLICATION OF ATTRIBUTE
WEIGHTS

 In Chapter 4, a survey to validate the attributes of the holistic usability framework was

described. In this preliminary research, the attributes were chosen based on what was considered

to be the best generalized attribute set that would be applicable to various types of DSSs. As

noted, the validation approach was based on a link between one of the three standard usability

measures and the attribute's effect on the ease of use or working for one of the types of users. In

the two examples given of applying the framework, the attributes were given equal weight in the

dimensional attribute summations. A second survey, given to a different group of DSS experts

(to avoid statistical dependence between two different types of questions asking about the same

attribute), asked about the level of importance of each attribute, with the determination of

attribute weights in mind.

 One approach to this survey would have been to simply ask respondents to distinguish

those attributes that are "most important." The approach taken was to list all the attributes in a

dimension, asking the respondents to rate them as "very unimportant," "unimportant,"

"important," "very important," or "extremely important." These choices were presented as a

matrix for each dimension in an on-line survey.

 Because both surveys were launched simultaneously, the second survey contains

attributes that were not validated (i.e., those that were later removed from the framework due to

analysis of the first survey). In addition, three attributes were added to the framework as the

survey was in progress, based on information gathered from meetings with three HLA-RTI

vendors and their technical personnel and field research. As required to maintain statistical

integrity, these questions were added at the end of the survey to preserve the order of the

104

questions. In addition, two open-ended questions were added to the second survey. Based on the

high response rate in the first survey to open-ended questions, these open-ended questions are a

good vehicle to gather data for future research as well as information to consider for this

dissertation. (Often these responses provide information about DSS issues more in-depth than the

task at hand, but also frequently reinforce the current framework's attributes.)

The average number of years of distributed simulation experience the participants had

was 6.4 years, with a median of 5.0, and a standard deviation of 4.54. The range was one to

twenty years. There were 32 participants.

The variety of organizations from whom anonymous participants responded, as reported

in the survey, includes NASA, Georgia Tech, Arizona State University, NCSU, NIST, a NASA

Contractor, ARC Seibersdorf Research GmbH, Naval Postgraduate School, a defense contractor,

Alion Science and Technology MAAD operation, Decisioneering, Singapore Institute of

Manufacturing Technology (SIMTech), Intel, LSIS laboratory, Delft University of Technology,

UIUC, Systems Navigator, The University of Jordan, and the FAA.

 Given this survey data that represents the preferences of a world-wide, generalized set of

DSS experts, the question then is: How do we use the data to determine weights?

 There are many ways to assign weights, but the most important criterion is that the result

be rationale. I used the following approach. Assign -2 to "very unimportant," -1 to

"unimportant," +1 to "important," +2 to "very important," and +3 to "extremely important," then

multiply the percentages of each attribute ranking times the corresponding number and sum the

results to determine the weight.

 This does not mean that we know exact weights with a high level of precision. This

practical approach, however, uses the data to derive objective weights empirically. Furthermore,

105

it works with this generalized attribute set, would work just as well with a specialized DSS

attribute set (say, only for engineering design systems), and can be readily updated with

incoming empirical data.

Table 9 below shows a summary of the attribute importance ratings from the importance

survey. The rows of attributes that were not validated are shown in gray (for information only).

The calculated weights are shown in the rightmost column.

Table 10. Survey Results for Determination of Attribute Weights

End User Needs and Goals
attributes Ranking:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

tracking lessons learned for
future improvement 0 5 13 8 6 32 1.31
system reliability (hardware
and software) 0 1 8 8 10 27 1.96
if a vendor-provided system
vendor support 0 4 8 12 3 27 1.37

End User Interface attributes Ranking:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

a central control and
monitoring interface 0 3 10 14 5 31 1.61

the ability to change
simulation parameters from a
central control interface 0 5 5 15 5 30 1.50

the ability to stop and start
individual simulations from a
central control interface 0 5 9 11 7 32 1.47

the ability to communicate
with users who are logged
into the system 1 10 13 4 2 30 0.50
good software exception
handling 0 0 8 17 5 30 1.90
showing relevant variables in
all simulations running
simultaneously 0 6 14 6 5 31 1.13

106

the ability to review the data
from several simulation
scenarios simultaneously 0 3 14 8 6 31 1.45
the ability to save and analyze
or export statistics 0 0 5 12 15 32 2.31
good data visualization
capability 0 2 13 6 11 32 1.75
the ability to combine
information from different
simulations in a way that
shows their interrelationships 0 3 12 11 6 32 1.53

Programming attributes Ranking:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

low complexity in the
programming environment 0 8 11 8 3 30 0.93
the avoidance of simulation
packages with proprietary
code 0 7 11 10 3 31 1.06
the avoidance of needing
software "wrappers" for
individual simulations 0 8 13 7 1 29 0.76
ease of programming the
infrastructure 0 3 18 10 0 31 1.13
minimizing the amount of
code that needs to be written 1 6 14 7 3 31 0.94
needing a low level of
programming expertise 1 7 12 7 3 30 0.87
training programmers to
understand the system 0 6 11 9 4 30 1.17
ease of programming 0 7 10 11 3 31 1.10
an infrastructure designed to
make connecting simulations
to it easy 0 2 8 15 6 31 1.74
compatible data formats
between individual
simulations 0 1 7 14 10 31 2.06
good configuration control
between distributed
simulations 0 0 10 14 4 28 1.79

Installation attributes Rankings:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

keeping a detailed log of
installation details 1 7 13 7 3 31 0.87

107

people of average ability
being able to install the
system 2 6 13 8 2 31 0.81
specifying different skills
needed for installation 2 7 16 4 1 30 0.53
minimizing the number of
people needed for installation 2 8 9 10 2 31 0.74
good installation
troubleshooting capability 0 4 8 14 4 30 1.47
a quick installation process 1 9 11 6 4 31 0.77
an easy installation process 1 3 17 6 4 31 1.16
a low skill level required for
installing the system 0 16 8 4 2 30 0.20

Training attributes Rankings:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

effective end user training 1 1 13 9 7 31 1.58
a quick training process 1 8 14 7 2 31 0.77
written training materials 1 2 8 14 6 31 1.61
on-line training materials 0 2 10 12 7 31 1.71
gearing the training materials
to the knowledge level of the
audience 0 3 9 10 8 30 1.67
training installers 1 5 16 5 3 30 0.93
good end user interface
training 1 3 8 12 7 31 1.55
programmer training to help
them learn the software
design 1 6 14 5 4 30 0.93

Documentation attributes Rankings:

very
unimportant unimportant important

very
important

extremely
important

Response
Total Weight

good code-level
documentation 0 2 11 15 3 31 1.55
a clearly specified software
design 0 2 12 12 5 31 1.58
documenting end user needs
and goals 0 5 8 12 7 32 1.50
good training documentation 0 1 13 11 7 32 1.72
good installation
documentation 0 2 13 8 8 31 1.65
good end user documentation 0 3 9 9 11 32 1.78
good on-line help 0 2 7 13 9 31 1.87

108

 Given that we have assessed the holistic usability of two DSSs without using weighted

attributes, how different would the result be if we used weights? The two spreadsheets

containing the results of the two DSS assessments were recalculated incorporating the weights.

The manner in which the validated attributes were weighted was by multiplying their previous

maximum value by the weights, giving a new maximum value for that attribute; likewise, the

assessed value for the attribute was also multiplied by the weight to adjust accordingly. The

maximum possible score of 1.00 for each dimension was maintained by the calculational

structure. The satisfaction ratings were not weighted, but are assumed to have the same weight.

Also, the weights for the attributes measuring how well the users' goals are supported and the

overall quality of the interface(s) were left at 1.00. These weights can be adjusted as desired. (As

noted, vendor support is not assessed in either of the two assessments included herein.)

 The tables below show the assessment summaries both with and without attribute

weights. As can be seen, the effect of the weights does not greatly affect the overall assessment

in these cases, but might in others.

109

Table 11. Weighted Assessment Summary for the Virtual Test Bed

Dimension Metric Weighted
Metric

End User Needs and Goals 0.91 0.86

End User Interface 0.46 0.44

Programming 0.54 0.59

Installation 0.33 0.35

Training 0.59 0.60

Documentation 0.54 0.53

Table 12. Weighted Assessment Summary for the ATTR Radar

Dimension Metric Weighted
Metric

End User Needs and Goals 0.75 0.74

End User Interface 0.90 0.92

Programming Proprietary --

Installation Proprietary --

Training 0.89 0.83

Documentation 1.00 1.00

110

CHAPTER SEVEN: VENDOR AND PRACTITIONER FEEDBACK

Industry feedback on the value of the framework was sought from three vendors or

practitioners. All participants in this feedback discussion were sent a document that describes the

framework, lists all the attributes, explains its application in both formative and evaluative

usability, and shows an example assessment spreadsheet. The vendors/practitioners were offered

four options for providing feedback: (1) in person meeting, (2) telephone meeting, (3) answering

questions in a document, or (4) filling out an on-line survey. The reasons for offering a variety of

ways to give feedback were to accommodate the schedules of busy professionals and to increase

the chance of obtaining feedback.

Feedback 1

Aegis Technologies is company that is a simulation practitioner who is the sole U.S.

representative of Pitch Technologies AB, a Swedish HLA-RTI vendor. Aegis also provides

simulation and other consulting services and offers its own products. I contacted a manger at

Aegis, who thought the best person to provide feedback was a senior computer scientist who was

actually in another city. We arranged a telephone conference. Prior to the telephone conference,

the senior computer scientist thoroughly reviewed the description of the framework I had sent,

and had a number of items listed he wanted to discuss.

In his initial comments, he said that he thought the formative usability process using the

framework was "great," and that he had never seen usability looking at the whole system in an

integrated fashion before, only usability looking at end user interfaces.

111

Concerning attribute 3 in End User Needs and Goals, "Lessons learned should be tracked

for future improvements and new systems," he commented that this is similar to what is called a

"problem report." He noted that often when a problem occurs it might be noted in a log, but often

the solution will stay in the mind of the person who solved the problem, so that he becomes the

"expert," and thus is indispensable. He felt this attribute was important.

He said that attribute 4 in End User Needs and Goals, "Vendor support should be

adequate," had two components, response time and cost. Response time is absolutely critical in

his work. He said that one could have 5,000 to 10,000 soldiers—several brigades—on a range

California, and have the command and control run from a workstation simulation in Virginia. If

the controlling simulation goes down, that is a serious problem. He said a 24-hour response time

from a vendor in that situation would be unacceptable.

About attribute 4 in End User Interface(s), "One should be able to change parameters in

individual simulations from a central interface," he said this would be "phenomenal" if they

could do it in their simulation work environment. He said that currently the Joint Rapid

Distributed Database Development Capability (JRD3C) effort is working to make this possible in

large military simulations. He said that currently, large military simulations require people at

different control GUIs in several places, and that this requires several experts.

We discussed attribute 1 in Programming, "The number of simulations written with

proprietary simulation packages should be minimized." He agree that simulations with closed

code make work more difficult for programmers. He said that simulations written with certain

proprietary packages for distributed simulation are easier to write (than if one were writing in

open code), but more difficult to deploy. A related issue mentioned was that some vendor tools

112

for distributed simulation require that one use a vendor's license server in the federation. If the

license server goes down, none of the vendor's applications can be used.

At one point when discussing the programming dimension, he talked about weighting

attributes, so I asked if the ability to weight attributes was important. He replied that it was, that

it was good to have a set of expert-determined weights as a starting point, but that what was

critically important in one simulation might not be critical in another, so the ability to adjust

attribute weights was important.

Concerning attribute 8 in Training, "The overall quality of end user interface training

should be good," he said that there are different kinds of end users in his work, trainees being the

most critical—because if they don't learn from the training the simulation is worthless—and

"pucksters." There are two types of pucksters, the people controlling the simulation and the

subject matter experts. The subject matter experts often suggest changes to the simulation

controllers to make the simulation more realistic.

Referring to the attribute concerning code-level documentation, he gave examples of

unmaintainable code he had encountered and noted that often the maintainer of the code has to

be familiar with it. One example he explained showed how often in distributed simulation code

will have dependencies on other models in it, which without good documentation require line-

by-line searching through the code to find; even when found, the nature of the dependency is not

always clear. He noted that "code documentation is crucial."

Referring to the flow chart for formative usability in the framework description document

I provided (which is also shown in the Final Framework section of chapter 8), he said that the

holistic formative usability process "hit right on the head" and if this were done early on, one

would "get the product you expect."

113

 After the comments he had prepared to discuss were covered, I moved on to the list of

questions I had sent with the framework description document. Those questions and his answers

are shown below.

Is this framework realistic?

 He said that is was realistic, and that he has never seen anybody address these issues

before and that it was more comprehensive than usability work he's seen before because it goes

beyond the user interface. He said that the validation, verification, and accreditation (VV&A)

process can help, but VV&A didn't cover what the framework covered.

Does your company have its own proprietary ideas or performance measures for any of the

attributes in the framework?

No. The company has no assessment tools. He said Aegis has a product called

BattleStorm that is a simulation framework that helps integrate simulations, but is not for

usability assessments.

Is this framework useful to you or your customers?

 He said that yes, he would actually like to use it.

Are there any cases or occasions when this framework, if available, would have helped (to avoid

mistakes, reduce costs, increase customer satisfaction, increases efficiency or effectiveness for

users/workers)?

114

 He said that the framework would "help in anything " and that "I can't think of a situation

where it would not help; there are always unexpected problems and issues."

Would you be willing to hire an outside consultant to assess the holistic usability of a system or

help ensure good holistic usability during a system design?

 He said that he does not make those decisions, but "it makes perfect sense." He said there

are two reasons why it would make sense from a management point of view: they have no in-

house usability expertise and there is a need to be unbiased. He said that Aegis Technologies is

an independent Verification and Validation agent for customers who need an unbiased evaluation

of distributed simulations.

 Finally, this reviewer said that he would like to take the framework and try applying it

himself to a project he was currently working on.

Feedback 2

Mäk Technologies is company that is an HLA-RTI vendor who sells simulation tools and

consulting services to practitioners. I contacted a manger at Mäk, who forwarded my request to

Mäk's engineering group. The engineer who responded chose the alternative of answering a set

of questions I sent. Below are his unedited responses.

Is this framework realistic?

A: It is not completely clear what this framework would be applied to. A particular

software product, and its value to distributed simulation? An HLA federation as a whole? I’m

115

also not sure what “realistic” means in this context. Most of the questions it asks, and the

metrics it uses seem reasonable to me, but many of them are quite obvious: For example, “The

quality of the installation documentation should be good.” OK, sure, but I’m not sure I need a

“framework” to tell me that that’s a good idea. ☺

Does your company have its own proprietary ideas or performance measures for any of the

attributes in the framework?

A: As a vendor of commercial tools, we are always looking for feedback from customers

on our products along a variety of axes. We tend to do this through informal conversations,

meetings, emails, etc., rather than through a formal spreadsheet of questions like this. The

reason is that it allows us to tailor the questions and conversation to the relevant problems. We

might not be providing a “Training System”, so the questions about validity of training do not

apply. On the other hand, we might ask many more specific questions about ease of use, User

Interface, etc.

Is this framework useful to you or your customers?

A: I would say that while many of the issues you identify are quite relevant, I personally

find it more beneficial to get feedback/evaluation in a more customer-tailored way. Also, many

of your metrics apply more to complete systems, rather than to specific tools that may fit into

those systems.

116

Are there any cases or occasions when this framework, if available, would have helped (to avoid

mistakes, reduce costs, increase customer satisfaction, increases efficiency or effectiveness for

users/workers)?

A: Again, I think there are specific metrics or elements of the framework that I think are

useful.

Would you be willing to hire an outside consultant to assess the holistic usability of a system or

help ensure good holistic usability during a system design?

A: Unlikely. We maintain close relationships with many of our customers, and find that

we get the most accurate and useful feedback when we talk with them directly.

Are there any other comments that you would like to share?

Yes. I had questions on two of your metrics:

1. The number of simulations written with proprietary simulation packages should be

minimized.

2. The number of software wrappers required around individual simulations, if any,

should be minimized.

 I guess my opinion of these metrics depends on what is meant by proprietary simulation

packages. If you meant “stovepiped” systems that do not conform to industry standards like

HLA, then I agree. I think it can be detrimental to a system to use tools that do not interoperate

with other elements of the system without spending lots of money and time on wrappers and

adapters. On the other hand, if proprietary means “closed source”, then I disagree. There are

many software products where source code is unavailable, where the products are still quite

117

“open.” Our products, for example, all conform to interoperability standards like HLA, DIS the

SISO RPR FOM, etc. In addition, they all have very extensive Toolkit APIs that insure that

users can write code to extend or modify the products, even though they do not have source. To

avoid ambiguity, I would change “proprietary” to “stovepiped” or “non-interoperable”, or

“packages that support only proprietary communication architectures”.

Feedback 3

The third person to provide feedback on the framework is a manager of simulation

projects at a Department of Defense (DoD) facility. Because this person cannot speak on behalf

of the DoD, the facility will not be named. This respondent chose to respond via an on-line

survey. Unedited responses are given below.

What company or institution do you represent?

I work for the Department of Defense, but cannot speak for DoD in an official capacity.

Does your company have its own proprietary ideas or performance measures for any of the

attributes in the framework?

No.

Is this framework useful to you or your customers?

Yes, it shows potential.

118

Are there any cases or occasions when this framework, if available, would have helped (to avoid

mistakes, reduce costs, increase customer satisfaction, or increase efficiency or effectiveness for

users/workers)?

Yes.

 Would you be willing to hire an outside consultant to assess the holistic usability of a

system or help ensure good holistic usability during a system design?

Not at this time.

Are there any other comments that you would like to share?

I believe there are systems under development that could benefit from the approach

proposed.

Summary Comments

 Two of the feedback respondents indicated that they saw value in the framework. One, a

representative of a vendor that sells DSS infrastructure, tools to integrate distributed simulations,

and consulting services, was less positive, but saw some value in the framework. A person who

works for another vendor told me that his company sells a tool to integrate simulations, but said

that it goes against the framework's attribute concerning troubleshooting, because customers

want to be able to solve their own problems (a statement that was also made by two survey

respondents in response to an open-ended question) and use their own tools. In certain situations,

such as large military simulations with many players, a spirit of cooperation is needed for holistic

119

usability to be fostered; how best to ensure this cooperation with proprietary interests at stake is a

challenge. The comments made by the second respondent concerning the need for a deeper look

at types of proprietary simulation packages and the terminology used to describe them are

constructive and should be addressed in the next version of the framework.

120

CHAPTER EIGHT: CONCLUSION AND FURTHER RESEARCH

Final Framework

Attributes

The final framework is defined by the attributes below.

Table 13. Final Framework

DIMENSIONS MEASURES WEIGHTS
End User Needs and Goals
The end users should be satisfied with the system. 1 to 5 1.00
The users' goals with the system should be achieved. 1 to 5 1.00
Lessons learned should be tracking for future improvements and new
systems. Y/N (5/0) 1.31
The system hardware and software should be reliable. 1 to 5 1.96
Vendor Support (if a vendor-provided system) should be adequate. 1 to 5 1.37
End User Interface(s)
The end users should be satisfied with the interface(s). 1 to 5 1.00
The overall quality of the interface(s) should be adequate (this is a brief,
traditional usability evaluation). 1 to 5

1.00

 control features
There should be a central control and monitoring point. Y/N (5/0) 1.61
One should be able to change parameters in individual simulations from a
central interface. Y/N (5/0) 1.50
One should be able to start and stop simulations from a central control
interface. Y/N (5/0) 1.47
One should be able to locate others logged into the system and communicate
with them. Y/N (5/0) 0.50
Exception handling should be adequate. 1 to 5 1.90
 data visualization and analysis
It should be possible to review data from several simulation scenarios
simultaneously and/or to record simulation scenarios. Y/N (5/0) 1.45
One should be able to save, analyze, and export statistics. Y/N (5/0) 2.31
Data visualization capability should be good. 1 to 5 1.75
Information from various simulations be combined in a way that facilitates
the understanding of interrelationships and results. 1 to 5 1.53
Programming

121

DIMENSIONS MEASURES WEIGHTS
The number of simulations written with proprietary simulation packages
should be minimized. 1 to 5 1.06
The number of software wrappers required around individual simulations, if
any, should be minimized. 1 to 5 0.76
If a distributed simulation infrastructure is used, it should be chosen based
on ease of use for the programmers. 1 to 5 1.13
Programmers should be satisfied with the programming environment. 1 to 5 1.00
The time to train programmers to be able to work with the system should be
minimized.

not currently
measured

1.17

Choices should be made that facilitate the ease of connecting the individual
simulations to the infrastructure. 1 to 5 1.74
The data formats between simulations should be compatible. 1 to 5 2.06
Good configuration control should be maintained between simulations. 1 to 5 1.79
Installation
A detailed log should be kept of all installation details, including
troubleshooting actions and results. Y/N (5/0) 0.87
Personnel of average ability, but taught the job, should be able to install the
system. Y/N (5/0) 0.81
The different skills needed to install the system should be specified. Y/N (5/0) 0.53

The number of people required to install the system should be minimized.
not currently
measured 0.74

Effective troubleshooting capability should be part of the system. 1 to 5 1.47
Installers should be satisfied with the installation scenario. 1 to 5 1.00
Training
The training should be effective, preparing the trainee to perform the tasks
that need to be performed with the system. 1 to 5

1.58

The trainees should be satisfied with the training. 1 to 5 1.00
The trainers should be satisfied with the training scenario. 1 to 5 1.00
Written materials should be available to support the training. Y/N (5/0) 1.61
On-line materials should be available to support the training. Y/N (5/0) 1.71
The training should be geared to the knowledge/skill level of the audience. Y/N (5/0) 1.67
The overall quality of installation training should be good. 1 to 5 0.93
The overall quality of end user interface training should be good. 1 to 5 1.55
The overall quality of programmer training should be good. 1 to 5 0.93
Documentation
The programming code level documentation should be sufficient. 1 to 5 1.55
The software design should be clearly specified and diagrammed to aid
programmers in their work. 1 to 5 1.58
The end user needs and goals should be clearly documented. 1 to 5 1.50
The quality of training documentation should be sufficient. 1 to 5 1.72
The quality of installation documentation should be sufficient. 1 to 5 1.65
The quality of written end user interface documentation should be sufficient. 1 to 5 1.78
The quality of on-line help and support for end users should be sufficient. 1 to 5 1.87

122

Using the attributes above, the framework can be applied for either formative or

evaluative usability of a DSS. After discussing measurements, application of the framework will

be described.

Measurements

Measurements of the attributes are either on a scale of 1 to 5 or binary as 5 or 0

depending on whether or not they exist in the system. Attributes measured from 1 to 5 are on a

scale where 1 is worst and 5 is best. For the attributes concerning minimizing the number of

proprietary simulation packages and software wrappers, the measurement is calculated by taking

the percentage of simulations written in open code or the percentage of simulations not requiring

software wrappers and multiplying it times 5. Dimensional metrics are calculated by dividing the

sum of the measures by the total possible score, resulting in a number ranging from 0 to 1.00.

The instructions for both formative and evaluative usability applications follow.

Formative Usability

The design team will work to establish targets for each of the framework dimensions.

Although ideally, high scores in all dimensions would be the goal, resource constraints may

result in tradeoffs. In addition, the framework is a guide to help designers and managers to

consider each of the framework attributes when developing a system. The target scores for each

attribute and dimension can be specified, then the resulting system's holistic usability measured

to ensure those targets are met. This process is shown in the diagram below.

123

Figure 13. Formative Usability

Evaluative Usability

The procedure for assessing the holistic usability of a DSS is as follows. The evaluator

will become familiar with the salient aspects of the system. (A small team, rather than a single

evaluator, can also perform the assessment.) A sample of key user types will be given a survey

concerning user satisfaction. User satisfaction requires user feedback to measure. System

documentation, interface(s), design, and programming/infrastructure aspects will be evaluated

from study, observation, and input from and discussion with personnel. If the situation warrants,

personnel can be recruited to help with the assessment. A concise report will be generated using

inputs from the above process that

• summarizes the metrics of dimensional attributes

• lists the strengths and weaknesses

Design team
goals

Framework
attributes, ideas
from the usability
engineer on how to
ensure attributes
are considered in
the design

Targets for metrics for
each of the six
dimensions,
considering tradeoffs

Checking as the
design evolves to
make sure targets are
met

Final Distributed
Simulation System
design that meets
holistic usability targets

124

• makes recommendations for improvements

Each of the system assessments will be reported in four sections: (1) system description, (2)

assessment details and observations, (3) summary of results (metrics), and (4) strengths,

weaknesses, and recommendations. A flowchart of the holistic usability assessment process is

shown below.

Figure 14. Evaluative Usability

Contributions to the Body of Knowledge and Value Added to the DSS Industry

This dissertation developed a new concept of measuring usability not by measuring

efficiency and effectiveness directly from the system as is traditionally done, but by measuring a

set of attributes that affect those measures. The measures obtained in the system assessments

performed, however, were relative to the attributes, with the assumption that efficiency and

Framework
Attributes

user surveys,
interviews, system
inspections, study
of documentation
and system
components, etc.

Assessment
Measurement
Spreadsheet

Qualitative
Findings

Summary of
Assessment
Metrics

Summary of
Qualitative
Findings

Holistic Usability
Assessment Report

system strengths,
weaknesses, and
recommendations

Note: If comparing two systems or two system designs,
identical attribute sets with identical weights should be
used.

125

effectiveness would be affected by the quality of and presence or lack of presence of certain

attributes. The links between usability measures and attributes were determined by observation

of people working with DSSs and study of literature. The attributes were validated by surveying

experts in distributed simulation. User satisfaction was measured directly in the standard way,

asking users, because that variable cannot be determined without direct user feedback. This

concept is shown in the figure below. Weights were also obtained for these attributes using

expert survey data. The concept of weighted system attribute sets that affect usability measures

was introduced. (It is important not to confuse the system attributes with usability attributes,

which are in this discussion termed "measures.")

Figure 15. Usability Measures and Attributes Linked to a System

 The concept of holistic usability was developed, looking at all people who work with the

system as users, not just the end users. This multidimensional view of considering usability sheds

light on the need for ease in design, development, and installation, as well as end use. In

addition, the needs for good documentation and training were brought into focus. A systematic

System

Standard usability
measures: efficiency
and effectiveness

Traditional usability

Attributes that
affect usability

User Satisfaction

126

way of measuring holistic usability was developed, as was a format for reporting both qualitative

and quantitative system assessment results.

 The study of what makes working with the system easy for all types of DSS users was the

first study of usability for distributed simulation. The attribute set developed for the framework

dimensions provides a guideline of items for designers to consider when developing a system

and a baseline from which to measure an existing system's holistic usability. The adequate

consideration of framework attributes will

• help to increase the productivity of developers and end users

• improve the chances of system success

• increase the utility of a DSS

• help ensure end user needs are met

• lower life cycle costs

• and improve satisfaction levels for all people who work with the system.

Future Research

 Research is needed to further clarify the relationships between the attributes in each

dimension and efficiency and effectiveness for each user. Efforts are needed to determine how

best to adjust weights for different types of systems. The metrics used to measure holistic

usability need study and refinement.

127

 For the distributed simulation framework, long-term research to determine attribute sets

customized to different types of simulations would be helpful. For instance, one might classify

analytical research simulations into four types: engineering, business, medical, and

pharmaceutical. A subset of the engineering analytical category could include design and

operational modeling, e.g., a tank simulation or aircraft design and operation. Entertainment

simulations could be categorized as games or experiential. Military simulations might be

categorized as training or battlefield. Training simulations might be categorized as desktop,

augmented reality, or virtual reality—all these being single user or multi-user interactive.

Customized holistic usability attribute sets could be developed and used in both the formative

and evaluative usability stages as tools.

 Following is a list of more ideas for research.

• The framework and the concept of holistic usability can be generalized to other types of

systems.

• the development of measuring methods to measure efficiency and effectiveness for each

type of user relative to attributes

• in DSSs, a study of system mistakes and successes relative to the dimensions and

attributes in the holistic usability framework

• refinement of attribute weights, sensitivity studies, a mathematical look at the construct

of holistic usability

• specialized attribute sets for different types of systems

• cost studies to measure the benefit of applying holistic usability

• more validation studies on the attributes

• comparison studies between different systems of the same type relative to the attributes

128

• a study applying the framework to a new design project

• studies of DSS interfaces relative to users' needs and mental models

• use of metaphors and icons in DSS interfaces to reduce cognitive load on the users

• the study of customizable DSS interfaces: beginner, intermediate, and expert users;

different types of users; multiple modes of visualization

• studies optimizing documentation aspects for different types of users

• a study relative to the dimensional attributes, of system failures and successes to see what

attribute set characteristics led to success and which led to failure

• measurement studies to get a better understanding of the attributes effect on usability

measures

• expansion of the framework into subattributes and subdimensions

• instilling good holistic usability for DSSs for engineering design

• facilitating ease of use for real-time, distributed real-estate market simulation

A number of possible subattributes and attributes need to be studied in the Programming

dimension. Programmers mentioned that these items could make their work easier in DSSs:

• libraries of code for specialized processes

• programming tools specifically for distributed simulation

• clear conceptual and contextual modeling

• being able to hide detailed subunits of parts of the simulation from an overview so they

don’t overwhelm the programmer (or end user)

129

• configuration control (already an attribute): compatibility between the simulation

modules for exchanging data and control, good integration, uniformity in shared variable

names between simulations

• clarity, simplicity, and good documentation for the APIs (mentioned several times by the

programmers); example code and test cases for the APIs

• A clear separation of the model, its supporting simulation software, and the integration of

that simulation software with the distributed simulation infrastructure needs to be strictly

maintained. When these features are closely intertwined, long-term maintenance becomes

very difficult. (The need to maintain separation between these three items was mentioned

by two survey participants independently.)

• debug/remote debug capability

Survey participants mentioned the following items as things that could improve usability

for interfaces in DSSs. They also suggest future research areas:

• different modes of visualization

• ease of adjusting parameters or even the basic model as conditions change

• adaptable user interfaces

• ensuring that the simplifications essential to implementing a simulation are congruent

with the mental models of the users

• clear definition and easy collection of metrics the end users are interested in

• architecture with an easily-understandable model or metaphor for individual simulation

modules

130

Conclusion

At the outset of this research, it seemed to me that distributed simulation was rare. When

I started searching for survey participants and the results began to come in, it became apparent

that it is actually quite common. It appears in many forms, from financial market real-time

analysis to military war games to multi-user games played over the Internet in real time. An

underlying theme for all the different user types in the framework is simplicity: the more clearly

defined and organized their task is, the easier it will be for them. One programmer, when asked

what would make working with a DSS easier for programmers, said: "Understanding the end

goal, the objective. As silly as it sounds, it's not always clear." It is hoped that this holistic

usability framework will help designers to focus on the essentials that make working with

distributed simulation easy for users.

131

APPENDIX A: USER SURVEY FOR VALIDATION

132

Note: this survey reflects the text that was presented online for the validation survey.

1. Do you want to take this survey?

accept decline

A framework is being developed for the usability of distributed simulation systems (DSSs). In
this framework, the goal is to make the job of each person who works with the system—whether
an end user, designer, programmer, or installer—easier. The framework has six dimensions: end
user needs and goals, end user interface(s), programming, training, installation, and
documentation. Answers to the following questions will give important information that will be
used in the validation and refinement of this holistic usability framework.

2. What category below describes your work area or interest in Distributed Simulation? Select as
many categories as apply.

manager researcher end user programmer designer trainer

installer other

3. Which type(s) of DSS(s) do you have experience working with?

military entertainment aerospace business engineering medical

pharmaceutical other

4. How many years of experience do you have working with distributed simulation? ____

5. Which organization are you associated with (e.g., NASA) ?_________

Please indicate how strongly you agree or disagree with the following statements.

6. A central control and monitoring interface improves the efficiency of use of a distributed
simulation system.

strongly disagree neutral agree strongly
disagree agree

7. The ability to change simulation parameters from a central control interface makes distributed
simulation easier to use.

strongly disagree neutral agree strongly
disagree agree

133

8. The ability to start and stop individual simulations from a central control interface makes use
distributed simulation easier.

strongly disagree neutral agree strongly
disagree agree

9. The ability to communicate with other users who are logged into the system facilitates work
coordination in distributed simulation systems.

strongly disagree neutral agree strongly
disagree agree

10. Good exception handling makes working with distributed simulation systems less time
consuming (when problems occur).

strongly disagree neutral agree strongly
disagree agree

11. Showing relevant variables in all simulations running simultaneously helps the user learn
about relationships between the simulations.

strongly disagree neutral agree strongly
disagree agree

12. The ability to review the data from several simulation scenarios simultaneously results in a
more efficient analysis process.

strongly disagree neutral agree strongly
disagree agree

13. The ability to save and analyze statistics in the system makes a system easier to work with.

strongly disagree neutral agree strongly
disagree agree

14. Good data visualization capability helps users understand simulation results faster.

strongly disagree neutral agree strongly
disagree agree

134

15. The ability to combine information from different simulations in a way that helps the user
understand their interrelationships results in a more satisfactory interface.

strongly disagree neutral agree strongly
disagree agree

16. As the complexity of the programming in a DSS increases, the efficiency of the time spent
programming decreases.

strongly disagree neutral agree strongly
disagree agree

17. As the number of simulation written with proprietary simulation packages in a distributed
simulation system increases, the difficulty of programming the system increases.

strongly disagree neutral agree strongly
disagree agree

18. As the number of software “wrappers” to access individual simulations increases, the
difficulty of programming the system increases.

strongly disagree neutral agree strongly
disagree agree

19. The ease of programming the distributed simulation infrastructure affects the productivity of
the programmers.

strongly disagree neutral agree strongly
disagree agree

20. The faster programmers can be trained to understand the system, the more quickly their work
can be accomplished.

strongly disagree neutral agree strongly
disagree agree

21. The ease of programming the distributed simulation affects the job satisfaction of the
programmers.

strongly disagree neutral agree strongly
disagree agree

135

22. The less coding required to create a distributed simulation system, the easier the
programming job.

strongly disagree neutral agree strongly
disagree agree

23. The lower the level of expertise required for programming the distributed simulation system,
the faster the programming task will proceed.

strongly disagree neutral agree strongly
disagree agree

24. The design of the software infrastructure for a distributed simulation system affects how easy
it is to connect individual simulations to it.

strongly disagree neutral agree strongly
disagree agree

25. Compatible data formats between individual simulations make exchanging data between
them easier.

strongly disagree neutral agree strongly
disagree agree

26. Keeping a detailed log of the installation details, including problems encountered and
solutions, saves time when questions arise or future problems occur.

strongly disagree neutral agree strongly
disagree agree

27. The installation process will be faster if people of average ability can install the system.

strongly disagree neutral agree strongly
disagree agree

28. Specifying the different skills needed to install the system helps to efficiently manage the
process.

strongly disagree neutral agree strongly
disagree agree

136

29. The fewer the number of people required for installation, the more efficient the installation
process.

strongly disagree neutral agree strongly
disagree agree

30. Good troubleshooting capability helps to ensure successful installation.

strongly disagree neutral agree strongly
disagree agree

31. The time required to install a system is a good measure of how efficient the installation
process is.

strongly disagree neutral agree strongly
disagree agree

32. The easier the installation process is, the faster it will proceed.

strongly disagree neutral agree strongly
disagree agree

33. The lower the skill level required, the faster the installation process will proceed.

strongly disagree neutral agree strongly
disagree agree

34. Effective training is important to ensure that users can efficiently use the system.

strongly disagree neutral agree strongly
disagree agree

35. A quick training process will help users become productive faster.

strongly disagree neutral agree strongly
disagree agree

36. Written materials increase the efficiency of the training.

strongly disagree neutral agree strongly
disagree agree

137

37. Having on-line training materials available increases the satisfaction level of trainees with the
training.

strongly disagree neutral agree strongly
disagree agree

38. Gearing the training presentation level to the knowledge level of the audience facilitates the
learning process.

strongly disagree neutral agree strongly
disagree agree

39. Training installers improves their ability to install a distributed simulation system
successfully.

strongly disagree neutral agree strongly
disagree agree

40. The quality of end user interface training affects the speed with which people learn to use the
system.

strongly disagree neutral agree strongly
disagree agree

41. Programmer training--familiarization with the system and its software design characteristics
--helps programmers become productive quickly.

strongly disagree neutral agree strongly
disagree agree

42. Good code-level programming documentation helps programmers work faster when
developing a distributed simulation system.

strongly disagree neutral agree strongly
disagree agree

43. A clearly specified and diagrammed software design makes programming distributed
simulation easier.

strongly disagree neutral agree strongly
disagree agree

138

44. Documenting end user needs and goals helps to ensure they are met.

strongly disagree neutral agree strongly
disagree agree

45. Good training documentation helps trainees successfully learn the material.

strongly disagree neutral agree strongly
disagree agree

46. Good installation documentation facilitates fast system installation.

strongly disagree neutral agree strongly
disagree agree

47. Good user documentation helps users learn an interface faster.

strongly disagree neutral agree strongly
disagree agree

48. The quality of user documentation affects the user’s level of satisfaction with the system.

strongly disagree neutral agree strongly
disagree agree

49. The quality of online help affects the level of satisfaction a user has with an interface.

strongly disagree neutral agree strongly
disagree agree

50. Can you think of any other important factors that would make a distributed simulation system
easy to use or work with?

__

51. What are the most important factors affecting the ease of programming a distributed
simulation system? In other words, what factors most affect usability for programmers?

__

52. Do you have any comments to add that would be helpful for this study?

__

139

53. Good configuration control between distributed simulations is essential for efficiently
programming a distributed simulation system.

strongly disagree neutral agree strongly
disagree agree

140

APPENDIX B: VALIDATION SURVEY STATISTICAL ANALYSIS

SPREADSHEET

141

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

6. A central control and
monitoring interface improves the
ease of using a distributed
simulation system.

0 2 3 38 20 63 0.0794 0.9206 12.3514 0.0000 5 58

7. The ability to change
simulation parameters from a
central control interface makes
distributed simulation easier to
use.

0 1 8 33 20 62 0.1452 0.8548 7.9316 0.0000 9 53

8. The ability to start and stop
individual simulations from a
central control interface makes
use of distributed simulation
easier.

1 2 8 35 17 63 0.1746 0.8254 6.8034 0.0000 11 52

9. The ability to communicate
with other users who are logged
into the system facilitates work
coordination in distributed
simulation systems.

1 2 14 24 22 63 0.2698 0.7302 4.1156 0.0000 17 46

10. Good exception handling
makes working with a distributed
simulation system less time
consuming (when problems
occur).

0 2 5 35 21 63 0.1111 0.8889 9.8219 0.0000 7 56

11. Showing relevant variables in
all simulations running
simultaneously helps the user
learn about relationships between
the simulations.

2 6 19 25 9 61 0.4426 0.5574 0.9022 0.1835 27 34

142

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

12. The ability to review the data
from several simulation scenarios
simultaneously results in a more
efficient analysis process.

0 3 11 35 14 63 0.2222 0.7778 5.3033 0.0000 14 49

13. The ability to save and
analyze statistics in the system
makes a system easier to work
with.

1 0 10 39 12 62 0.1774 0.8226 6.6488 0.0000 11 51

14. Good data visualization
capability helps users understand
simulation results faster.

0 2 3 21 37 63 0.0794 0.9206 12.3514 0.0000 5 58

15. The ability to combine
information from different
simulations in a way that helps the
user understand their
interrelationships results in a more
satisfactory interface.

1 3 10 31 18 63 0.2222 0.7778 5.3033 0.0000 14 49

16. As the complexity of the
programming in a distributed
simulation system increases the
efficiency of the time spent
programming decreases.

1 7 29 18 7 62 0.5968 0.4032 -1.5534 0.9398 37 25

17. As the number of simulations
written with proprietary
simulation packages in a
distributed simulation system
increases the difficulty of
programming the system
increases.

1 5 13 23 19 61 0.3115 0.6885 3.1795 0.0007 19 42

143

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

18. As the number of software
"wrappers" to access individual
simulations increases the
difficulty of programming the
system increases.

0 3 19 33 7 62 0.3548 0.6452 2.3889 0.0084 22 40

19. The ease of programming the
distributed simulation
infrastructure affects the
productivity of the programmers.

1 2 6 38 15 62 0.1452 0.8548 7.9316 0.0000 9 53

22. The less coding required to
create a distributed simulation
system the easier the
programming job.

0 5 23 23 9 60 0.4667 0.5333 0.5175 0.3024 28 32

23. The lower the level of
expertise required for
programming the distributed
simulation system the faster the
programming task will proceed.

1 15 20 21 6 63 0.5714 0.4286 -1.1456 0.8740 36 27

20. The faster programmers can
be trained to understand the
system the more quickly their
work can be accomplished.

0 3 11 37 12 63 0.2222 0.7778 5.3033 0.0000 14 49

21. The ease of programming the
distributed simulation system
affects the job satisfaction of the
programmers.

0 5 28 23 6 62 0.5323 0.4677 -0.5091 0.6946 33 29

24. The design of the software
infrastructure for a distributed
simulation system affects how
easy it is to connect individual
simulations to it.

0 0 4 46 13 63 0.0635 0.9365 14.2085 0.0000 4 59

144

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

25. Compatible data formats
between individual simulations
make exchanging data between
them easier.

1 1 3 30 28 63 0.0794 0.9206 12.3514 0.0000 5 58

26. Keeping a detailed log of the
installation details including
problems encountered and
solutions saves times when
questions arise or future problems
occur.

1 0 5 41 16 63 0.0952 0.9048 10.9445 0.0000 6 57

27. The installation process will
be faster if people of average
ability can install the system.

0 6 18 29 9 62 0.3871 0.6129 1.8251 0.0340 24 38

28. Specifying the different skills
needed to install the system helps
to efficiently manage the process.

1 1 17 35 9 63 0.3016 0.6984 3.4314 0.0003 19 44

29. The fewer the number of
people required for installation the
more efficient the installation
process.

0 5 13 35 9 62 0.2903 0.7098 3.6373 0.0001 18 44

30. Good troubleshooting
capability helps to ensure
successful installation.

0 2 6 39 16 63 0.1270 0.8730 8.8923 0.0000 8 55

31. The time required to install a
system is a good measure of how
efficient the installation process
is.

6 16 19 18 3 62 0.6613 0.3387 -2.6835 0.9964 41 21

32. The easier the installation
process is the faster it will
proceed.

3 10 23 19 7 62 0.5806 0.4194 -1.2868 0.9009 36 26

145

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

33. The lower the skill level
required the faster the installation
process will proceed.

1 17 27 15 1 61 0.7377 0.2623 -4.2205 1.0000 45 16

34. Effective training is important
to ensure that users can efficiently
use the system.

0 4 3 35 19 61 0.1148 0.8852 9.4403 0.0000 7 54

35. A quick training process will
help users become productive
faster.

1 9 17 32 3 62 0.4355 0.5645 1.0246 0.1528 27 35

36. Written materials increase the
efficiency of the training.

0 4 18 33 7 62 0.3548 0.6452 2.3889 0.0084 22 40

37. Having on-line training
materials available increases the
satisfaction level of trainees with
the training.

0 3 21 32 6 62 0.3871 0.6129 1.8251 0.0340 24 38

38. Gearing the training
presentation level to the
knowledge level of the audience
faciliates the learning process.

0 1 4 37 19 61 0.0820 0.9180 11.9022 0.0000 5 56

39. Training installers improves
their ability to install a distributed
simulation system successfully.

1 0 8 38 14 61 0.1475 0.8525 7.7621 0.0000 9 52

40. The quality of end user
interface training affects the speed
with which people learn to use the
system.

0 2 4 37 17 60 0.1000 0.9000 10.3280 0.0000 6 54

146

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

41. Programmer training--
familiarization with the system
and its software design
characteristics--helps
programmers become productive
quickly.

0 0 6 45 9 60 0.1000 0.9000 10.3280 0.0000 6 54

42. Good code-level programming
documentation helps
programmers work faster when
developing a distributed
simulation system.

0 0 8 31 19 58 0.1379 0.8621 7.9966 0.0000 8 50

43. A clearly specified and
diagrammed software design
makes programming distributed
simulation easier.

0 0 5 41 14 60 0.0833 0.9167 11.6775 0.0000 5 55

44. Documenting end user needs
and goals helps to ensure they are
met.

0 2 3 30 24 59 0.0847 0.9153 11.4528 0.0000 5 54

45. Good training documentation
helps trainees successfully learn
the material.

0 0 6 43 11 60 0.1000 0.9000 10.3280 0.0000 6 54

46. Good installation
documentation facilitates fast
system installation.

0 1 10 39 9 59 0.1864 0.8136 6.1842 0.0000 11 48

47. Good user documentation
helps users learn an interface
faster.

0 2 9 35 13 59 0.1864 0.8136 6.1842 0.0000 11 48

48. The quality of user
documentation affects the user's
level of satisfaction with the
system.

1 2 7 40 9 59 0.1695 0.8305 6.7665 0.0000 10 49

147

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

n q p z 1 -
prob(Z<=z)

n*q n*p

49. The quality of on-line help
affects the level of satisfaction a
user has with an interface.

1 3 13 33 10 60 0.2833 0.7167 3.7244 0.0001 17 43

53. Good configuration control
between distributed simulations is
essential for efficiently
programming a distributed
simulation system.

0 1 4 19 14 38 0.1316 0.8684 6.7186 0.0000 5 33

148

APPENDIX C: INSTITUTIONAL REVIEW BOARD APPROVAL

149

150

LIST OF REFERENCES

Ackermann, D., & Tauber, M. J. (Eds.). (1990). Mental models and human-computer interaction
1. Amsterdam: North-Holland Elsevier Science Publishers.

Agarwal, R., & Venkatesh, V. (2002). Assessing a firm's web presence: a heuristic evaluation

procedure for the measurement of usability. Information Systems Research, 12(2), 168-
186.

American National Standards Institute. (2001). ANSI NICITS 354-2001, for information

technology-common industry format for usability test reports: American National
Standards Institute.

Badre, A. N. (2002). Shaping web usability, interaction design in context (first ed.). Boston, MA:

Addison-Wesley.

Banks, J., John S. Carson, I., & Nelson, B. L. (1996). Discrete-event system simulation. Upper

Saddle River, New Jersey: Prentice Hall.

Belleman, R. G., & Shulakov, R. (2002). High performance distributed simulation for interactive
simulated vascular reconstruction. Paper presented at the ICCS 2002.

Bevan, N., & Macleod, M. (1994). Usability measurement in context. Behavior and Information

Technology, 13, 132-145.

Brinkman, W.-P., Haakma, R., & Bouwhuis, D. G. (2001). Usability evaluation of component-

based user interfaces. Paper presented at the Interact 2001, Tokyo, Japan.

Brooke, J. (1996). Chapter 21. Sus: A 'quick and dirty' usability scale. In P. W. Jordan, B.

Thomas, B. A. Weerdmeester & I. L. McClelland (Eds.), Usability evaluation in industry
(pp. 189-194). London: Taylor & Francis.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction

(first ed.). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Ceranowicz, A., Dehncke, R., & Cerri, T. (2003). Moving toward a distributed continuous

experimentation environment. Paper presented at the Interservice/Industry Training,
Simulation, and Education Conference.

Chapanis, A. (1959). Research techniques in human engineering. Baltimore: The John Hopkins

Press.

Chorafas, D. N., & Steinmann, H. (1995). Virtual reality, practical applications in business and

industry (First ed.). Upper Saddle River, New Jersey: Prentice Hall PTR.

151

Defense Modeling and Simulation Office. (2004). High level architecture. from

https://www.dmso.mil/public/transition/hla/

Eberts, R. E. (1994). User interface design (first ed.). Englewood Cliffs, New Jersey: Prentice-

Hall.

Fishwick, P. A. (2004). Toward an integrative multimodeling interface: A human-computer

interface approach to interrelating model structures. Simulation, 80(9), 421-432.

Garrido, J. M. (2001). Object-oriented discrete-event simulation with java. New York: Kluwer

Academic/Plenum Publishers.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Green, T. R. G. (1990). Limited theories as a framework for human-computer interaction. In D.

Ackermann & M. J. Tauber (Eds.), Mental models and human-computer interaction 1
(pp. 3-39). Amsterdam: Elsevier Science.

Gulliksen, J., Boivie, I., Persson, J., Hektor, A., & Herulf, L. (2004, October 23-27, 2004).

Making a difference--a survey of the usability profession in sweden. Paper presented at
the NordiCHI '04, Tampere, Finland.

Harmon, P. (2005). The OMG's model driven architecture. Retrieved 18 October 2005, from

http://www.cutter.com/research/2002/edge020611.html

Henry, P. (1998). User-centered information design for improved software usability. Norwood,

Massachusetts: Artech House.

Hornbaek, K., & Frokjaer, E. (2004). Usability inspection by metaphors of human thinking

compared to heuristic evaluation. International Journal of Human-Computer Interaction,
17(3), 357-374.

Hornbaek, K. (2006). Current practice in measuring usability: Challenges to usability studies and

research. International Journal of Human-Computer Studies, 64, 79-102.

International Organization for Standardization. (1996). ISO 9241, ergonomic requirements for

office work with visual display terminals -- part 10: Dialogue principles.

International Organization for Standardization. (1997). Iso 9241-14, ergonomic requirements for

office work with visual display terminals -- part 14: Menu dialogues.

International Organization for Standardization. (1998). Iso 9241-11, ergonomic requirements for

office work with visual display terminals-- part 11: Guidance on usability.

https://www.dmso.mil/public/transition/hla/
http://www.cutter.com/research/2002/edge020611.html

152

James, W. (1890). The principles of psychology. New York: Henry Holt and Company.

Johnson-Laird, P. N. (1983). Mental models, towards a cognitive science of language, inference,

and consciousness. Cambridge, MA: Harvard University Press.

Jordan, P. W., Thomas, B., Weerdmeester, B. A., & McClelland, I. L. (1996). Usability

evaluation in industry (first ed.). Bristol, PA: Taylor & Francis.

Leeds University. (2005). What do we mean by usability? Retrieved 17 October 2005, from

http://www.leedsmet.ac.uk/inn/usabilityservices/whatusability.htm#userexp

Mayhew, D. J. (1999). The usability engineering lifecycle, a practitioner's guide for user

interface design (first ed.). San Diego, CA: Academic Press.

McCormick, E. J. (1976). Human factors in engineering and design (fourth ed.). New York:

McGraw-Hill.

McGee, M. (2004, April 24-29, 2004). Master usability scaling: Magnitude estimation and

master scaling applied to usability measurement. Paper presented at the CHI 2004,
Vienna, Austria.

National Institute of Standard and Technology. (1999). Common industry format for usability

test reports, version 1.1: National Institute of Standard and Technology.

Nielsen, J. (1993). Usability engineering (first ed.). San Diego, CA: Academic Press.

Nielsen, J. (1994). Discount usability engineering. In R. G. Bias & D. J. Mayhew (Eds.), Cost-

justifying usability (pp. 245-272). San Francisco: Morgan Kaufmannn.

Norman, D. A. (1969). Memory and attention, an introduction to human information processing.

New York: John Wiley & Sons.

Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User-

centered system design (pp. 31-61). Hillsdale, NJ: Erlbaum.

Oakhill, J., & Garnham, A. (Eds.). (1996). Mental models in cognitive science, essays in honour

of phil johnson-laird. East Sussex, UK: Psychology Press.

Pegden, C. D., Shannon, R. E., & Sadowski, R. P. (1995). Introduction to simulation using siman

(2nd ed.). New York: McGraw-Hill.

Perumalla, K. S. (2002). Position paper. Paper presented at the XMSF Workshop, Monterey,

CA.

http://www.leedsmet.ac.uk/inn/usabilityservices/whatusability.htm#userexp

153

Preece, J., Rogers, Y., & Sharp, H. (2002). Interaction design (first ed.). New York, NY: John
Wiley & Sons.

Rubin, J. (1994). Handbook of usability testing. New York: John Wiley & Sons.

Shneiderman, B. (1992). Designing the user interface: Strategies for effective human-computer

interaction (second ed.). Reading, MA: Addison-Wesley.

Snyder, C. (2003). Paper prototyping. San Francisco, California: Morgan Kaufmann Publishers.

Sogandares, F. M. (2002). Stone axes and warhammers: A decade of distributed simulation in

aviation research. 125-132.

SPSS, I. (2003). How to get more value from your survey data: SPSS, Inc.

SPSS, I. (2005). The how's and why's of survey research: SPSS, Inc.

Sulistio, A., Yeo, C. S., & Buyya, R. (2004). A taxonomy of computer-based simulations and its

mapping to parallel and distributed systems simulation tools. Software: Practice and
Experience, 34(7), 653-673.

Trenner, L., & Bawa, J. (1998). The politics of usability, a practical guide to designing usable

systems in industry (first ed.). Berlin: Springer.

Walpole, R. E., & Myers, R. H. (1978). Probability and statistics for engineers and scientists.

New York: Macmillan Publishing Company.

Welford, A. T., & Birren, J. E. (1965). Behavior, aging and the nervous system. Springfield,

Illinois: Charles C. Thomas.

Wickens, C. D. (1992). Engineering psychology and human performance (second ed.). New

York, NY: HarperCollins.

Young, R. M. (1983). Chapter 3. Surrogates and mappings: Two kinds of conceptual models for

interactive devices. In D. Genter & A. L. Stevens (Eds.), Mental models (pp. 35-52).
Hillsdale, New Jersey: Lawrence Erlbaum Associates.

	A Holistic Usability Framework For Distributed Simulation Systems
	STARS Citation

	 ABSTRACT
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ACRONYMS AND ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	Research Problem
	Usability
	Distributed Simulation
	The Usability of Distributed Simulation Systems
	Chapter Organization

	 CHAPTER TWO: LITERATURE REVIEW
	Simulation
	Distributed Simulation Systems
	Usability
	Evaluative Usability
	Formative Usability
	Holistic Usability

	Human-computer Interaction Viewpoint
	Summary and Objective

	 CHAPTER THREE: METHODOLOGY
	Holistic Usability Framework Development
	End User Needs and Goals
	End User Interface(s)
	Programming
	Training
	Installation
	Documentation

	Framework Attributes
	Measurement of Attributes of Framework Dimensions

	 CHAPTER FOUR: VALIDATION AND FRAMEWORK REFINEMENT
	Validation Survey
	Validation of the Other Attributes

	 CHAPTER FIVE: APPLICATION OF FRAMEWORK TO TWO DISTRIBUTED SIMULATION SYSTEMS
	Approach
	Who Does What in an Assessment
	Virtual Test Bed Assessment
	VTB System Description
	VTB Assessment Details and Observations
	VTB Summary of Results
	VTB Strengths, Weaknesses, and Recommendations

	Aviation Research Training Tool Radar Assessment
	Aviation Research Training Tool Radar System Description
	ARTT Assessment Details and Observations
	ARTT Summary of Results
	ARTT Strengths, Weaknesses, and Recommendations

	Lessons Learned and Framework Strengths and Weaknesses
	Strengths
	Weaknesses
	Lessons learned

	Weights and Sensitivities

	 CHAPTER SIX: DEVELOPMENT AND APPLICATION OF ATTRIBUTE WEIGHTS
	 CHAPTER SEVEN: VENDOR AND PRACTITIONER FEEDBACK
	Feedback 1
	Feedback 2
	Feedback 3
	Summary Comments

	 CHAPTER EIGHT: CONCLUSION AND FURTHER RESEARCH
	Final Framework
	Attributes
	Measurements
	Formative Usability
	Evaluative Usability

	Contributions to the Body of Knowledge and Value Added to the DSS Industry
	Future Research
	Conclusion

	 APPENDIX A: USER SURVEY FOR VALIDATION
	 APPENDIX B: VALIDATION SURVEY STATISTICAL ANALYSIS SPREADSHEET
	APPENDIX C: INSTITUTIONAL REVIEW BOARD APPROVAL
	 LIST OF REFERENCES

