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ABSTRACT 

Pinnipeds exhibit a wide range of lactation strategies that vary from just a few days to 

nearly three years in duration. Phocids have a relatively short, intense nursing period culminating 

in weaning after just a few days or weeks, while dependent otariids generally take several 

months of consuming a combined milk and solid food diet before being completely from the 

dam. The transition to nutritional independence can be particularly challenging for newly 

weaned pups, which must adjust to behavioral, physiological and nutritional changes as a milk 

diet is replaced with solid food. An interruption in energy resources during this formative stage 

could result in a prioritization away from growth, maintenance, or activity resulting in 

suboptimal development. 

Three groups of ex situ California sea lion (Zalophus californianus) pups were examined 

during the initial period of independence after they were weaned at approximately five (Group 

1), seven (Group 2), and nine months of age (Group 3). Absolute growth rates of pups were 

calculated and changes in body composition were estimated using blubber depth measurements 

and deuterium oxide dilution to determine if weaning age had an effect on subsequent pup 

development and growth. Blood urea nitrogen and blood glucose levels were observed for their 

response to changes in body condition, while thyroid hormone levels in the blood were examined 

as a possible nutritional stress indicator during the pup’s transition to solid food. 

For contextual perspective, the initial measurements of the five month old and nine 

month old ex situ pups in this project were compared to same age in situ pups measured on San 

Nicolas Island, CA and Año Nuevo Island, CA. The five month old ex situ pups (Group 1) in the 

present study were significantly larger with greater body mass (39.6 ± 1.6 kg, p< 0.01), axillary 
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girth (85.3 ± 2.9 cm, p< 0.01), and axillary blubber depth (2.3 ± 0.1 cm, p< 0.01) compared to 5 

month old in situ pups (26.6 ± 5.2 kg / 70.6 ± 5.34 cm / 1.5 ± 0.2 cm). Although nine month old 

ex situ pups (Group 3) in the present study did not differ significantly from the same age in situ 

pups in body mass, ex situ pups had significantly greater axillary blubber depth (3.7 ± 0.9 cm, p< 

0.01) and total body lipid percentage (24.9 ± 4.7%, p= 0.01) than in situ pups (1.5 ± 0.2 cm / 

17.1 ± 4.9%).  

Examining differences between age groups in the present study, Group 1 pups initially 

had significantly smaller overall average blubber depth (2.6 ± 0.9 cm) compared to Group 2 pups 

(4.4 ± 0.6 cm, p= 0.02) and Group 3 pups (4.4 ± 0.8 cm, p= 0.03). As Group 1 pups progressed 

through the transition period to solid food consumption, they experienced a significantly greater 

amount of mean mass loss (-8.5 ± 1.6 kg) compared to Group 3 pups (-6.1 ± 1.1 kg, p= 0.04), 

and greater percentage of mass loss (-21.5 ± 3.3%) compared to the Group 3 pups (-15.6 ± 3.6%, 

p= 0.04). The loss of mass was evident as the Group 1 pups lost more girth in the umbilical (-

11.2 ± 1.8 cm) and hip (-14.2 ± 3.3 cm) locations than both Group 2 umbilical (-7.5 ± 0.5 cm, p= 

0.01) and hip (-7.2 ± 1.5 cm, p= 0.01) locations as well as Group 3 umbilical (-4.2 ± 2.6 cm, p< 

0.01) and hip (-2.3 ± 3.1 cm, p< 0.01) locations. Group 1 pups also took significantly longer 

(31.7 ± 1.2 d) to reverse mass loss and begin the recovery phase of growth and development 

compared to Group 2 (24.3 ± 4.5 d, p= 0.03) and Group 3 pups (20.7 ± 4.0, p< 0.01). However, 

despite losing the greatest amount of mass, pups in Group 1 experienced a significantly greater 

change in overall blubber depth (+1.6 ± 0.9 cm) compared to Group 2 (-0.3 ±0.9 cm, p= 0.03) 

and Group 3 pups (-0.4 ± 0.2 cm, p<. 0.01). 
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Group 3 began the transition to solid food with a significantly higher percentage of total 

body lipid (24.9 ± 4.7%) compared to the younger Group 1 (12.5 ± 4.3%, p=0.01) and Group 2 

pups (14.1 ± 2.0%, p=0.01), and began voluntary consumption of the novel solid fish diet in a 

significantly shorter amount of time (16.3 ± 0.6 d) than the younger Group 1 (21.7 ± 1.5 d, p< 

0.01) and Group 2 pups (21.0 ± 1.7 d, p< 0.01). During the recovery period Group 3 pups also 

had the greatest absolute mass increase (n= 2, +12.4 ± 4.3 kg) and rate of mass increase (+0.4 ± 

0.1 kg d
-1

), significantly greater than Group 2 pups (+5.0 ± 1.2 kg, p= 0.03  / +0.2 ± 0.0 kg d
-1

, 

p= 0.02 ). Blood glucose and urea nitrogen levels largely fell within previously observed normal 

ranges and did not correlate with shifts in body mass (r= 0.19, r= -0.55), total body protein (r= 

0.06 , r=  -0.38), or total body lipid percentages (r= 0.24, r= -0.32). Thyroid hormone analysis 

revealed a weak correlation between total T4 levels and body mass fluctuation (r= 0.52). 

Although all pups in the present study survived the transition to solid food, there were 

apparent differences in how the different age groups responded physiologically. The youngest 

Group 1 pups began the switch to solid food with the lowest overall blubber depth and 

experienced the greatest change in body mass and composition, while older Group 3 pups 

entered the transition with more energy reserves and were able to utilize those reserves more 

efficiently to minimize loss and promote faster growth. From the present study there is a 

suggestion that California sea lion pups benefit physiologically from the extended nursing period 

and older weaning age that is natural for otariids. Several factors such as staffing, logistics, and 

safety may affect the timing of pup weaning within ex situ population management of sea lion 

pups. However, if the driving factor is the ease at which the transition can be made and the 

overall health of the animal, the results of the present study revealed a potential benefit to 

weaning at approximately nine months of age. Likewise, these results could prove beneficial 
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during the observation of in situ sea lion pups and their response to external pressures that affect 

weaning age.   
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INTRODUCTION 

Weaning is a uniquely mammalian event that involves the transition of young from their 

natal diet to the diet they will consume as adults. Though natural, this transition to nutritional 

independence can be particularly challenging for newly weaned mammals, which must adjust to 

behavioral, physiological and nutritional changes as the milk diet is replaced with solid food (e.g. 

Reiter, et al. 1978; Galef, Jr., 1981; Martin, 1984). The nutrient-rich easily-assimilated milk that 

has thus far been vital to their proper development and overall health gives way to a food source 

that requires considerably more effort to acquire and digest - at a time when rapid growth is 

occurring and any interruption in nutrition could be detrimental. For the young, food intake is 

important as any reduction in energy requires a prioritization between growth, maintenance and 

activity (e.g. Hill et al., 2004; Hoopes 2007). For the mother, milk production represents her 

largest energetic investment to her offspring as she quickly shifts her energy reserves to feed her 

young and improve its chances of survival (e.g. Arnould and Hindell, 2002). As each day passes, 

her offspring’s growing demand for milk further depletes her energy resources. The faster the 

female can finish lactation and successfully wean her offspring, the less of an energy deficit she 

will incur, and the sooner she will be prepared for her next offspring. For this reason, various 

lactation strategies have evolved among mammals, as the energy requirements of the mother are 

balanced with the energy requirements of her offspring. 

Pinnipeds, a monophyletic group in the Order Carnivora that includes the Families 

Phocidae (true seals), Otariidae (sea lions and fur seals), and Odobenidae (walrus), are semi-

aquatic fin-footed animals that give birth on land or ice but forage at sea. They exhibit a wide 
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range of lactation strategies with weaning occurring after as few as 4 days in the hooded seal 

(Phocidae: Cystophora cristata) to as long as 3 years in the Galapagos fur seal (Otariidae: 

Arctocephalus galapagoensis) (e.g. Oftedal et al., 1987a; Shulz and Bowen, 2005). Despite this 

range of lactation strategies, which include a variety of nursing intervals and weaning ages, 

members of each of the three pinniped families share certain characteristics. Phocids, or true 

seals, are generally found in the colder waters of the sub-polar to temperate regions with many 

species giving birth on the ever-changing landscape of landfast or pack ice. Female phocids, 

considered classic examples of capital breeders, tend to spend months building up energy 

reserves on feeding grounds that may be thousands of kilometers away from birthing areas (e.g. 

Oftedal et al., 1987; Boness and Bowen, 1996). The thick energy-rich blubber layer accumulated 

from this feeding strategy becomes an investment to future offspring. The ability to mobilize 

these lipid stores to produce milk that is comprised of as much as 40-60% fat (e.g. Iverson et al., 

1993) enables pup growth of as much as 7 kg per day (e.g. Iverson et al., 1993). This extremely 

lipid-rich milk composition allows a pup to store large amounts of nutrients quickly, facilitating 

an exceptionally short lactation period (4–45 d) where the pup is weaned and independent just 

days to weeks after birth (e.g. Worthy and Lavigne, 1983; Mellish et al., 1999). Because of her 

extensive blubber layer and this ability to rapidly transfer that energy to her pup, the mother is 

able to fast for the entire duration of nursing. Likewise, the newly independent pup will fast and 

depend on these stored energy reserves from milk consumption for several months as it learns to 

forage effectively. As a result, this phocid lactation strategy has been referred to as a fasting 

strategy (e.g. Shulz and Bowen, 2005). 



3 

 

 In contrast, the walrus, the only extant species in the Odobenidae family, exhibits a much 

longer lactation period with its aquatic nursing strategy (e.g. Shulz and Bowen, 2005). Like the 

many phocids that live in colder sub-polar zones, walrus mothers accumulate large amounts of 

blubber before giving birth on ice (e.g. Boness and Bowen, 1996); however they fast for only a 

few days while nursing before heading out to sea to forage. Unlike phocids, walrus calves are 

precocial and able to remain with their mothers on foraging trips at a very young age. As a unit 

they are more mobile throughout the lactation period than other pinnipeds and are one of the few 

species that will nurse while swimming. Walrus milk is relatively low in fat content (~30%) 

compared with other sub-polar pinnipeds (e.g. Boness and Bowen, 1996). After several months 

the calves learn from their mothers to supplement their diet with mollusks and other 

invertebrates, and will consume this mixed diet of milk and solid food from about 6 months of 

age until weaning which generally occurs after 1.5 to 3 years (e.g. Riedman, 1990). This 

transition to nutritional independence is not as abrupt in walrus as in phocids. 

Otariids combine aspects of the lactation strategies exhibited by phocids and walrus into 

a foraging-cycle strategy (e.g. Shulz and Bowen, 2005), where the mother alternates nursing 

periods with foraging trips to sea without her pup. With few exceptions, otariids inhabit more 

temperate and tropical locales than walrus or phocids, and give birth on beaches or rocky 

shorelines. Fur seal and sea lion mothers lack the energy reserves found in the thick blubber 

layer of the true seals and walrus, and are thus considered income breeders which have to 

regularly replenish their reserves during the lactation period through an alternating cycle of 

nursing and foraging. After birth, mothers will generally spend the first week nursing their pups 
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before leaving to forage; with trips lasting from 1-2 d in California sea lions to as long as 12 d in 

Juan Fernandez fur seals (e.g. Francis et al., 1998). Since, unlike phocids, otariids do not 

accumulate significant energy reserves prior to birth; a reduced food supply in an area can result 

in longer duration trips to sea (e.g. Georges and Guinet, 2000). Under such conditions pups will 

endure extended periods without milk, and since pups are fasting for the duration of their 

mother’s trip to sea, this can have significant implications for survival. Otariid milk is relatively 

lower in fat content (~20-35%) relative to phocids and weaning generally occurs between four 

months and three years (e.g. Gentry and Kooyman, 1986). Prior to weaning, pups begin to play 

with fish and eventually become proficient at hunting by the time of weaning (e.g. Peterson and 

Bartholomew, 1967; Odell, 1972). Unlike phocids, there is no fasting associated with the post 

weaning period in otariid species.   

The California sea lion (Zalophus californianus) is an otariid species that inhabits the 

Pacific coastline of North America from the southern tip of Baja California, Mexico into British 

Columbia, Canada with a total population estimated at 300,000 individuals (e.g. NMFS, 2011). 

They are one of the most prolific pinnipeds in aquariums and zoological facilities worldwide 

(e.g. Martin, 1984; Orr and Helm, 1989; Oftedal, 2000; IMATA, 2011). The species is highly 

sexually dimorphic with adult males being much larger (200-455 kg) than females (50-110 kg) 

and having a prominent thick neck and characteristic domed or crested head. The species is 

polygynous, with males defending territories at breeding rookeries from May through August. 

Sea lion males establish these waterside territories along the beaches of coastal islands and 

mainland shorelines of the Pacific coast. Entering into the breeding season, a male’s neck 
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becomes more prominent as a thick layer of subcutaneous fat provides additional energy stores 

as well as protection during breeding competition. Males will refrain from foraging for several 

days to weeks (up to 45 d) to optimize their chances of breeding, and after the season provide 

very limited paternal support to the pups. Females give birth on the beach and will spend the 

initial 5-8 days with the pup nursing before leaving to forage for 2-3 day periods (e.g. Heath et 

al., 1991). Adult sea lions feed primarily on various species of fish and squid close to shore but 

have been known  to travel as much as 450 km off-shore when resources are scarce (e.g. Weise 

et al., 2006). Each time the female returns to her pup to nurse she will stay for 1-2 days and fast 

during that period. California sea lion milk contains an average of 20-30% fat (e.g. Gentry and 

Kooyman, 1986; Oftedal et al., 1987a) which is leaner than most other otariids. California sea 

lion pup weaning occurs after approximately nine to ten months, though pups may begin playing 

with and ingesting fish as early as six months of age (e.g. Odell, 1972). Like other otariids, 

weaning generally occurs when mothers leave their offspring on a foraging trip and do not 

return. When there are declines in prey availability, juvenile pinnipeds often suffer the 

consequences as mothers must prioritize their own survival before that of their offspring. 

 Several factors have been hypothesized to drive the variable nursing intervals and 

weaning times in pinnipeds including maternal body size, breeding substrate, prey availability, 

maternal energy stores, milk content, milk production rate, latitudinal variations, 

thermoregulation requirements, environmental perturbations, and neonate mass (e.g. Gentry and 

Kooyman, 1986; Gittleman and Oftedal, 1987; Partridge and Harvey, 1988; Lea and Hindell, 

1997; Costa, 1993; Boness and Bowen, 1996; Francis et al., 1998; Boyd, 1999; Lydersen and 
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Kovacs, 1999; Georges and Guinet 2000; Arnould and Hindell, 2002; Rutishauser et al. 2004; 

Shulz and Bowen, 2005). Regardless of the driver, nursing intervals and the subsequent weaning 

times have a tremendous effect on the resulting blubber layer of the mothers. Though their 

blubber stores serve as an investment to the survival of their future offspring and can be used as 

energy stores and metabolized, they are often needed as insulation against the elements. 

Pinnipeds are susceptible to the higher heat transfer rate of water which can make 

thermoregulation paramount in the marine environment; with pups particularly susceptible due to 

their smaller size and reduced lipid reserves (e.g. Hoopes, 2007). Any environmental variability 

that affects nursing intervals and weaning times can affect the survival and natality of the species 

(e.g. Soto et al., 2004). 

Ten species of pinnipeds are currently listed as “at risk” by the International Union for 

Conservation of Nature (IUCN) with many facing challenges such as human-induced climate 

change, fisheries interactions and over-exploitation(e.g. Kovacs, 2011). Though the California 

sea lion population is currently considered stable and not one of the ten listed IUCN at-risk 

pinniped species, they are affected by these same challenges and their response to them can help 

us better understand the impacts of such environmental dynamics on pinniped populations. 

During years of reduced prey availability, California sea lion males have ventured to northern 

waters to find better resources, while females have tended to remain with their pups at the 

breeding sites despite resources being limited (e.g. Weise et al., 2006). The pups are often the 

most affected under such conditions as mothers are forced to forage farther and longer out at sea, 

leading many to choose to abandon their pups as they place priority on their own survival. 
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Shifting prey availability is one possible explanation (e.g. Westberg, pers. comm.) currently 

being examined as a cause for the 2013 unusual mortality event (UME) involving California sea 

lion pups along the Pacific coast of the United States that has resulted in a three-fold increase in 

pup strandings (e.g. HSWRI, 2014). Abandoned or stranded pups are often forced to adapt 

quickly to survive. They must recognize a completely new food source and learn to capture and 

consume it before their energy reserves become severely depleted. If too young to realize where 

sustenance may be found, sea lion pups can become malnourished and die on beaches. This 

instability in situ often necessitates the need for ex situ assistance. Wildlife rescue facilities have 

been successful at rehabilitating young stranded pups which generally involves the weaning of 

the pups onto their adult fish-based diet (e.g. Westberg, pers. comm.). A necessary responsibility 

for rescue and rehabilitation facilities is not only the stabilization of the health of the pup, but 

also the determination whether that pup is likely fit to survive on its own when returned to the 

wild (e.g. Lander and Gulland, 2003).  

Many of these wildlife rescue facilities are also zoological facilities and experience this 

same weaning transition within their own populations of ex situ pinnipeds. The goal of most 

zoological facilities is to provide the best possible care for their animals, and one way of doing 

that is to recreate a natural environment for the animals. Zoological settings however, are limited 

in terms of size and capabilities. With marine mammal exhibits, this often means the exclusion 

of other marine life such as fish, squid and crustaceans, the natural prey of these animals. This is 

a potential drawback during the weaning process for young pinniped as they are unable to 

experiment with live prey as they would in the wild. In many zoological facilities, pinniped pups 
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are often separated from their mothers to facilitate weaning, and fed a diet of whole fish. For 

seals, this sudden transition from a milk diet to fish diet is similar to what happens naturally 

when their mothers leave; however, free-ranging sea lions are naturally weaned after fish is 

already a major part of their diet (e.g. Odell, 1972; Trites et al., 2006).  

For a variety of reasons, the timing of this weaning process has varied between 

institutions with potential safety concerns for both zoological personnel and the individual 

animal being factors under consideration. On rare occasions, circumstances have required a very  

early transition to solid food as in a case where a California sea lion pup was successfully 

transitioned at six weeks old (e.g. Kastelein et al., 2000) after its mother unexpectedly passed 

away. This latter situation is similar to what occurs in many rescue facilities when young pups 

are rescued.  Though sea lion pups have been successfully weaned through this process for many 

years, potential physiological impacts on the pups are unknown and it is critical to better 

understand the impacts that early weaning may have on overall growth and development.  

The digestive systems of many species commonly undergo programmed development 

changes between birth and adulthood (e.g. Hill et. al., 2004). For instance, the ability to 

efficiently process lactose, the primary carbohydrate in milk, is biologically programmed 

through the body’s natural production of the enzyme lactase which only occurs during the 

neonatal period in mammals (e.g. Hill et al., 2004). Similarly, the ability for young sea lions to 

produce the necessary enzymes needed for efficient protein and lipid assimilation may also be 

biologically programmed to occur at a later age than seals who wean at an earlier age. Costa 
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(1991) suggested that phocid pups reach a chemical and developmental maturity faster than 

otariid pups.  

In order to maintain growth, an animal needs to provide its body with many essential 

nutrients including carbohydrates, proteins, lipids, and water (e.g. Hill et al., 2004). For 

pinnipeds the primary source of all of these vital nutrients is through the milk or solid food that 

they consume. Generally, carbohydrates are the easiest and first compounds used for energy 

production. Within a short period of time though, carbohydrate storage is reduced and lipids 

become the preferred energy form for energy consumption. If food or nutrient deprivation 

continues, protein reserves within the lean body mass are tapped to maintain proper blood 

glucose levels. Castellini and Rea (1992) describe three stages of fasting found in most 

mammals. The first stage of fasting begins with the onset of food deprivation and is marked by a 

reduction in metabolic rate as well as an increase in lipid oxidation. As circulating blood glucose 

levels decrease, the body moves into the second stage with another increase in lipid oxidation to 

not only supply energy for the main body but to support central nervous function through the 

production of ketone bodies. Again, priority is placed on protein-sparing; however as glucose 

levels continue to decline protein catabolism becomes necessary for glucose production and 

proper central nervous system function. Starvation occurs when protein catabolism becomes 

overwhelming, poisoning the body and often causing death from kidney failure or cardiac 

wasting (e.g. Castellini and Rea, 1992). If protein catabolism occurs at a greater rate than lipid 

oxidation, it is possible for an animal with even a significant lipid layer to starve. In healthy adult 

pinnipeds, long duration fasting is accomplished through extended stage two fasting that rarely 



10 

 

leads them to the terminal starvation that results in stage three. However, if a young sea lion has 

not had the opportunity to develop a healthy lipid layer, healthy growth and maintenance will be 

sacrificed as both lipids and lean body mass are mobilized for energy production. This would be 

especially true if the pup was unable to properly assimilate the food it consumed and ultimately 

developed an energy deficit. Rosen et al. (2007) describes digestive capacity as the amount of 

food an individual can process and how this can be limited by a possible lack of developmental 

maturity in pups. If body condition degrades enough that the energy requirements necessary for 

proper health are greater than what the body can produce through digestion, then catabolism of 

internal energy stores becomes a requirement to make up that difference.  

Determining whether an animal’s body is struggling to meet its energy requirements and 

what resources are being used to meet those needs is very important in determining potential 

methods of treatment. Changes in body composition can reveal whether lipid or protein reserves 

are being utilized to meet those energy needs. One of the most reliable methods of indirectly 

estimating body composition is through the determination of an animal’s total body water 

(TBW) through hydrogen isotope dilution analysis. This method has been successfully 

demonstrated in several pinniped species using deuterium oxide (D2O) (e.g. Bowen and Iverson, 

1988; Arnould et al., 1996, Speakman et al. 2001; Muelbert et al., 2003), a naturally occurring 

isotope of water as a bio-marker in the body. Through measurement of baseline levels naturally 

occurring in the blood and the subsequent distribution of a measured amount of deuterium oxide 

into the pup’s system, it is possible to measure a pup’s total body water content. Arnould et al. 

(1996) determined that it is possible to accurately calculate the total body protein, lipid and ash 
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composition of an animal. Through the continued measurement and observation of these values it 

is possible to determine changes in body composition more accurately than through standard 

body morphometrics. 

To further confirm estimated body composition changes it is also possible to monitor 

changes in blood parameters that are known to vary with body composition. The blood urea 

nitrogen level in the blood is one such parameter. Proteins, comprised of nitrogen-containing 

amino acids, begin their digestion in the stomach as special enzymes called pepsins break the 

proteins into their component amino acid parts. The absorption, or assimilation, of amino acids 

occurs within the gastrointestinal tract. The amino acids are used for protein synthesis within the 

body during growth, including the production of lean body mass in the muscular, structural, 

connective, and organ tissues (e.g. Reynolds and Rommel, 1999). Most mammals however, are 

unable to store excess amounts of amino acids and therefore will strip the nitrogen-containing 

chains from the unused carbon-containing amino acid chains. A byproduct of this stripping in the 

protein breakdown process is the nitrogen compound ammonia which the liver converts into the 

less toxic form of urea. Therefore, increased levels of blood urea nitrogen levels can result from 

increased levels of protein digestion, whether from external food consumption or from internal 

lean mass catabolism. 

Unlike proteins, lipids and fatty acids begin their digestion in the mid-gut region of the 

small intestines with the help of pancreatic enzymes called lipases and bile salts produced by the 

liver. After being assimilated into the body, fatty acids are important to the construction of 



12 

 

cellular membranes during tissue production, assist with brain and nervous system function, and 

help regulate thyroid and adrenal activity (e.g. Reynolds and Rommel, 1999). A natural anti-

inflammatory, fatty acids aid with blood thinning, regulating blood pressure and the breakdown 

of cholesterol. Excess amounts of fatty acids can be restructured as lipids inside the body and 

used as energy-dense storage compounds that in marine mammals are in the form of blubber. 

The synthesis of additional lipids can come from the carbon-containing amino acid chains 

produced during excess protein amino acid processing and restructured as blubber. In marine 

mammals in particular, blubber is utilized for energy storage, insulation, body streamlining, 

buoyancy, and protection. Much like when carbohydrates are catabolized, lipid oxidization 

results in increased levels of glucose in the blood and are easily monitored through blood glucose 

testing common in standard laboratory testing procedures.  

The thyroid hormones thyroxine and triiodothyronine are two other blood parameters that 

may indicate that physiological changes are occurring within the body. These hormones play 

many roles including regulating skeletal growth, synthesizing proteins, and stimulating 

metabolism. When the body is energy depleted, the brain releases thyroid-stimulating hormone 

(TSH) into the blood to encourage metabolism of carbohydrates, fats, and proteins. The thyroid 

gland, which is receptive to this TSH produced by the brain, begins to produce its own hormones 

thyroxine (T4) and triiodothyronine (T3). T4 represents the larger portion of thyroid hormone 

production, has a longer half-life, and is found in the greatest concentrations in blood tests. It 

helps to regulate the body’s metabolism and influence physical development. The production of 

T4 also helps to stimulate further production of the more potent T3 hormone which aids to 
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increase an animal’s basal metabolic rate (BMR). As these hormones enter the blood-stream they 

are often picked up by transporting proteins and become inactive. Measurements done in a 

typical thyroid blood profile not only examine the levels of these hormones in the blood (total 

T4/T3), but also the amount of these hormone that are available and biologically active (free 

T4/T3). An increased level of these hormones can be an indication that the body has entered an 

energy deficit and is in need of immediately energy production.  

Any delay in energy production could lead to a change in body condition, and the 

compromising of essential bodily functions. Though consequences may not ultimately be fatal, 

their effects can be detrimental to optimal growth and development. An objective of the present 

study is to examine whether age has an effect on how pups are able to transition to a solid fish 

diet and effectively assimilate the energy needed for proper growth and development. In 

addition, to determine if the measurement of various blood parameters including thyroxine and 

triiodothyronine can be effective indicators of a pup’s nutritional health. To understand the 

relative efficiencies of post-weaning development, the growth rates, blubber depth, overall body 

composition, blood urea nitrogen, glucose and thyroid hormone levels were monitored in 3 

groups of ex situ California sea lion pups that were artificially weaned at approximately five, 

seven and nine months of age.   
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MATERIALS AND METHODS 

Location and Subjects 

Research was conducted with a group of California sea lion (Zalophus californianus) 

pups born and raised in the Pacific Point Preserve exhibit at SeaWorld
®
 in Orlando, Florida, 

USA. This exhibit maintained a pinniped population of over 80 California sea lions and harbor 

seals (Phoca vitulina). As with their free-ranging counterparts, California sea lion births at 

SeaWorld occur within an eight week period that lasts from late May through early July. A few 

weeks after birth, pups are gathered and individually tagged with Rototags
™

 on their fore flippers 

for identification purposes. Ten pups were born within the exhibit during the summer of 2006; 

however the unexpected death of a sea lion mother reduced the potential study group to nine 

after her orphaned pup required bottle feeding at just two months of age. The remaining pups 

(seven males and two females) participated in the study between December 2006 and March 

2007. All experimental protocols were approved by the UCF Institutional Animal Care and Use 

Committee (protocol approval #06-44W) and SeaWorld Animal Husbandry Committee.  

Conducting this study in an ex situ zoological environment allows for the control of a 

number of variables and provides a unique opportunity to examine sea lion pups and changes of 

assimilation efficiency when weaned at different ages. For instance, all sea lion pups were 

housed in the same outdoor holding pool during their weaning process, which included a 3.1m x 

3.1m x 1.8m filtered artificial sea water pool surrounded on all sides by a 1.2m wide dry haul out 

space. Water temperature was able to be kept constant at 17°C for the duration of the study. 
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Animals were exposed to natural sunlight and ambient atmospheric conditions with daily 

temperature readings recorded along with general weather conditions. Ex situ adult female sea 

lion mothers had daily access to the proper nutritional diet, eliminating the need to forage and 

increasing the amount of nursing time available to her offspring. This should maximize the 

offspring’s ability to grow and develop, as these factors are both dependent on the adequate 

delivery of nourishment by the mother (e.g. Arnould et al., 2001). These ex situ pups, however, 

have little interaction with whole or live fish during the nursing period. This is due to a lack of 

live fish in their environment, the intense competition by adults for the limited food fed from 

park guests at the exhibit, as well as the careful deliberate feeding of adult sea lions by the 

zookeepers. Therefore, the results of the present study should not be biased by a pup’s strong 

familiarity with solid food. In addition, due to the controlled breeding practices necessary in 

zoological facilities, one dominant intact mature male was allowed to breed that season. 

Therefore, any genetic link to the physiological effects of weaning should be reduced due to 

paternal homogenizing. Finally, whereas free-ranging pups would have several months to allow 

their bodies to adjust to a changing diet while still nursing, the artificial weaning process inherent 

in a zoological environment subjects pups to an immediate shift from a liquid milk diet one day 

to being fed a solid fish diet the next. This sudden shift in food source may amplify any 

difficulties that their bodies have in assimilating the food. 

Experimental Design 

Three groups of sea lions were utilized to examine the effects of age on their transition to 

nutritional independence. The nine pups were grouped by their age at the time of controlled 
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weaning at five (Group 1), seven (Group 2) and nine months (Group 3). Experimental trials 

began in early December 2006 when three five-month-old pups (nos. #71, #00 and #60) (mean 

age of 158 ± 7.5 d) were separated from their mothers and moved into the holding enclosure 

away from the rest of the general pinniped population.  

After a 24 h separation from their mothers to allow for complete digestion of any 

remaining milk consumed (e.g. Costa, 1987; Oftedal et al., 1987b; Bowen and Iverson, 1998) 

and to allow blood parameters to reach a baseline level, individual sea lions underwent an initial 

evaluation from the veterinary staff and no health abnormalities were noted. Body mass, girth, 

and blubber depth were measured and blood samples were collected from the caudal gluteal vein 

using a 2 inch 21-gauge needle and BD Vacutainer
®
 collection tubes. An initial 5 ml blood 

sample was collected in lithium heparin collection tubes for determination of naturally occurring 

baseline blood concentrations of deuterium oxide (D2O). An additional 7 ml sample was 

collected in thrombin-containing collection tubes for serum analysis of blood urea nitrogen, 

blood glucose, thyroxine and triiodothyronine. Pups were then administered a dose of D2O (0.5 g 

kg
-1

 body mass) (e.g. Oftedal, et al., 1987b; Worthy et al. 1992; Muelbert, et al., 2003) given 

orally through orogastric intubation. To allow the deuterium dosage to distribute evenly 

throughout the pup’s body water, an equilibration period of 2.5 h (e.g. Worthy et al. 1992; 

Muelbert, et al., 2003) was given. Another 5 ml blood sample (lithium heparin collection tube) 

was then collected for analysis of post treatment D2O levels to determine total body water and 

initial body composition. When possible, identical backup samples were collected for each 

sample taken. In addition, ultrasound blubber depth measurements were taken to confirm body 
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composition changes and determine growth rate. Measurements were taken in triplicate using a 

Scanoprobe II (Scanco Inc., NY, USA) at six locations on the body: dorsal axillary, lateral 

axillary, dorsal umbilical, lateral umbilical, dorsal hips and lateral hips (Figure 1). To ensure site 

consistency and ideal skin contact, a 3.8 cm
2
 patch of fur was shaved at all six locations. Blubber 

depths were determined by measuring the distance from the skin-blubber interface to the 

blubber-muscle layer interface. Utilizing these same locations, girth measurements were also 

taken at the axillary, umbilical, and hip locations on the sea lion. 

 

Figure 1: Ultrasound measurements were taken in triplicate at six locations on the body: dorsal 

axillary, lateral axillary, dorsal umbilical, lateral umbilical, dorsal hips and lateral hips.  Photo 

credit: Brandon Davis 
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Pups were weighed daily by walking them onto a platform scale (± 0.1 kg, Pacific 

Industrial Scale Company Ltd.) to determine body mass. Additional 7 ml blood samples in 

thrombin-containing collection tubes were taken on the morning of every third day for blood 

urea nitrogen, blood glucose, and thyroid hormone testing as well as a 5 ml sample in lithium 

heparin-containing collection tubes for additional body composition calculations. Every sixth 

day, an additional 5 ml blood sample assessment of background levels of D2O was taken, then 

another dose of D2O was administered orally through orogastric intubation (0.5 g kg
-1

 current 

body mass), followed 2.5 h later by another 5 ml equilibration blood sample. With every 

administration of deuterium, girth measurements and ultrasound blubber depth measurements 

were taken. Collection did not exceed 35 ml of blood on measurement days throughout the 

process. The assessment period lasted until individuals were eating whole fish voluntarily. Daily 

food intake and body mass data were collected for several weeks after the study prior to the pups 

release onto exhibit. In addition, just prior to their return back into the general exhibit population, 

a 5 ml pre-dose blood sample was collected in lithium heparin-containing collection tubes, a 

final administration of deuterium oxide (0.5 g kg
-1 

current body mass) was given orally through 

orogastric intubation again, and a 5 ml equilibration blood sample was collected after a 2.5 hour 

period. This entire process was then replicated with three approximately seven-month-old pups 

(Group 2) in January 2007 (nos. #11, #19, and #38) (mean age of 210 ± 9.2 d) and again with the 

three remaining approximately nine-month-old pups (Group 3) in March 2007 (nos. #27, #65, 

and #20) (mean age 252 ± 3.6 d).  
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At SeaWorld
® 

Orlando, the standard procedure to facilitate the transition to solid food is 

to initially utilize small herring (Clupea harengus) as the first species of fish offered to young 

weaning sea lion pups. These fish are large enough for zookeepers to hold as they feed the pups 

while also being small enough for a pup to swallow easily. In addition, the herring size and high 

caloric value reduce the number of feedings needed to provide the pup with adequate nutrition. 

Eventually, as the pups get accustomed to eating fish on their own, the smaller and less energy-

dense capelin (Mallotus villosus) species is added to the diet for additional variety and nutrition. 

The weaning process begins with only one or two fish being offered a day initially and 

progresses to multiple fish offered during several sessions throughout a given day. Once the pups 

are eating voluntarily they are offered as much food as they care to consume. All intake totals for 

each type of food ingested were recorded for the period starting when the pups were taken off 

exhibit until the time they returned to the exhibit several weeks after the conclusion of this food 

transition period. Fish consumed by the pups were obtained individually quick frozen through a 

zoo and aquarium seafood distributor (McRoberts Sales Co., Inc., Ruskin, FL, USA) and 

samples from each shipment were laboratory tested for fat, water, protein and caloric content 

(ABC Research Laboratories, Gainesville, FL, USA). Protein content was calculated by ABC 

Research Laboratories from the value of NH3 gas evolved from a sample that had been digested 

with sulfuric acid, diluted, made alkaline, and then steam distilled. Fat content was determined 

through acid hydrolysis whereby samples were weighed and digested with HCl acid using steam 

heat. This solution was then cooled, transferred into a Mojonnier tube, and extracted using a 

mixture of ethers. The ethers were then collected in a tared beaker and evaporated. The 

percentage of fat content was determined by dividing the mass of the fat extracted by the original 
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sample mass. Lastly, to determine moisture content, samples were dehydrated in convection 

oven and weighed. The difference between pre and post drying weights was then converted to 

moisture content.   

 During examinations there were several temporal considerations that were recorded to 

determine their potential effect on outcomes. Time was recorded when the first pup of the group 

was separated out, when a particular pup was immobilized, when attempts were made to collect a 

blood sample, when a successful sample was achieved, and when the pup returned to the holding 

pool. Pup order was also recorded. In addition, it was noted when blood samples were processed 

at the SeaWorld veterinary laboratory and placed into the -62° C freezer.   

Sample Analysis 

Whole blood samples were drawn via pipette from the lithium heparin Vacutainer™ 

tubes into 1 ml Cryovial
®
 containers. Preparation of the serum samples from thrombin-

containing Vacutainer™ tubes included the additional step of serum separation established 

through the use of a centrifuge set at 3200 rpm for ten min. After processing and preparation, all 

samples were transferred into a -62⁰ C freezer for storage. 

A 5ml whole blood sample was used for deuterium dilution analysis. Concentrations 

were determined by the Boston University Stable Isotope Laboratory (Boston, MA, USA) using 

a headspace equilibration technique (e.g. Hayes, 2004) with an IsoPrime isotope ratio mass 

spectrometer. 
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Serum analyses of blood urea nitrogen and glucose were conducted to compare to 

changes in body composition. Samples were analyzed by the SeaWorld (Orlando, FL, USA) 

veterinary laboratory staff. Assays were performed on an Olympus Beckman-Coulter AU400e 

analyzer utilizing an enzymatic modification of the Talke and Schubert method (1965) for 

analysis of blood urea nitrogen and the Hexokinase G-6-PDH method (e.g. Bondar and Mead, 

1974) for blood glucose analysis. For both methods, standardized colorimetric endpoint 

measurements were used for analyte quantification.   

Serum samples were also analyzed for thyroid hormone levels at the Michigan State 

University Diagnostic Center for Population and Animal Health (DCPAH) (Lansing, MI, USA) 

using total T4, free T4, and free T3 thyroid assay kits from DiaSorin Inc. (Stillwater, MN, USA) 

and established procedures for in-house charcoal separation radioimmunoassay for total T3 

values (e.g. Panciera et al., 1989).  

Body Composition 

Using the change in blood deuterium concentrations over time, each pup’s body 

composition was estimated using predictive equations developed for the related otariid species, 

the Antarctic fur seal (Arctocephalus gazella) (Arnould et al., 1996), which were determined 

through whole-carcass desiccation. Total body water (TBW) was calculated:  

    (   )   
(  )

     
   (            ) ( 1 ) 
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Where W is the deuterium concentration of the dose administered, A is the amount of the dosage, 

and δpost / δpre are the atomic concentrations of deuterium in the post- / pre-dosage blood 

samples. To convert from moles to kilograms utilizing the molecular weight of distilled water 

(18.02): 

    (  )   
    (   )      

    
 ( 2 ) 

This calculated value for TBW has been found to have an overestimation of 4% (e.g. Bowen and 

Iverson, 1998), and thus a correction is necessary: 

    (  )  
    (  )

    
 ( 3 ) 

Lean body mass (LBM) was calculated assuming a constant proportion of water throughout lean 

tissue. The chemical composition analysis of Antarctic fur seals revealed LBM to be about 4% 

higher in pups than adults, and therefore 74.7% of TBW (Arnould et al. 1996). 

    (  )  
    (  )

     
 ( 4 ) 

Total body protein (TBP) was calculated from LBM with an assumption that protein is constant 

throughout lean body tissue. This was also done using the Arnould et al. (1996) estimation that 

TBP comprises 21.4% of the lean body mass and thus the equation: 
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    (  )      (  )         ( 5 ) 

Conversely, total body lipid (TBL) calculations were made by subtracting LBM (kg) from the 

total body mass (TBM) (kg) of the individual pup.  

    (  )      (  )      (  ) ( 6 ) 

Statistical Analyses 

Statistical computation was conducted with JMP
®
 and R statistical programming 

software. Graphs were produced using SigmaPlot (Ver. 10.0, Systat Software Inc.). Normality 

was checked using the Shapiro-Wilk test for goodness of fit. The small sample size t-test was 

utilized to determine statistical significance between groups in all cases unless otherwise noted. 

A significance interval of 0.05 was used to determine 95% confidence in t-test results. The 

Pearson’s Coefficient of Correlation was utilized to determine strength of correlation between 

variables with significance set at r ≥ ± 0.8.  
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RESULTS 

 Data were classified into three categories: baseline measurements taken within the first 

24 hours post separation from the mothers, the transition period from the first day after weaning 

to the date of their lowest total body mass (TBM), and the recovery period from the date of their 

lowest TBM to 30 days later. In a few instances pups remained at their lowest TBM for a few 

additional days before starting recovery. In these few instances, the first date they reached their 

lowest TBM became the end date of the transition period calculation, while the last date of their 

lowest TBM was considered the start of the recovery phase calculation. If a parameter value was 

unavailable for that particular date, the next nearest value to that date was utilized. 

Initial Parameters 

 The nine California sea lion pups that were part of the present study were born within a 4 

week span from May 23 through June 18, 2006. Initial veterinary evaluations performed on each 

pup prior to study revealed no abnormal health parameters. Pups consisted of seven males and 

two females randomly assigned to three study groups with approximate ages at separation of 5 

months (158 ± 7.5 d) (Group 1), 7 months (210 ± 9.2 d) (Group 2), and 9 months (252 ± 3.6 d) 

(Group 3) old. Initial body masses of pups in the three groups were not significantly different 

(39.7 ± 3.5 kg,) though this was largely driven by the presence of a smaller female in each of the 

two older age groups. Group 1 pups had the largest initial girth measurements  
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Table 1: Initial, transition, and final recovery girth measurements (cm) at the axillary, umbilical 

and hip locations along the sea lion trunk. 

Animal I.D. Sex Location Initial Transition Recovery 

Group 1      

#71 M Axillary 87.0 75.0 - 

  Umbilical 85.0 72.0 - 

  Hips 65.0 50.0 - 

#00 M Axillary 82.0 75.0 - 

  Umbilical 78.0 68.5 - 

  Hips 66.5 56.0 - 

#60 M Axillary 87.0 83.0 - 

  Umbilical 83.0 72.0 - 

  Hips 70.0 53.0 - 

Group2      

#11 F Axillary 82.5 77.0 82.0 

  Umbilical 75.0 68.0 72.0 

  Hips 62.5 55.0 59.0 

#19 M Axillary 88.0 84.0 - 

  Umbilical 81.5 74.0 - 

  Hips 64.5 59.0 - 

#38 M Axillary 85.0 75.5 78.5 

  Umbilical 79.0 71.0 72.0 

  Hips 68.0 59.5 59.0 

Group3      

#27 M Axillary 84.5 79.5 - 

  Umbilical 78.0 71.0 - 

  Hips 63.0 60.0 - 

#65 F Axillary 80.0 77.0 - 

  Umbilical 77.0 73.5 - 

  Hips 62.0 57.0 - 

#20 M Axillary 83.0 83.0 81.0 

  Umbilical 74.5 72.5 76.0 

  Hips 60.0 61.0 61.0 

 

  



26 

 

across all three locations (axillary / umbilical / hips) (85.3 ± 2.9 cm / 82.0  ± 3.6  cm / 67.2 ± 2.6 

cm), followed by Group 2 (85.2 ± 2.8 cm / 78.5 ± 3.3 cm / 65.0 ± 2.8 cm), and finally Group 3 

(82.5 ± 2.3 cm / 76.5 ± 1.8 cm / 61.7 ± 1.5 cm) (Table 1).  

Group 1 pups had an average initial overall blubber depth of 2.6 ± 0.9 cm across all six 

locations (dorsal axillary, lateral axillary, dorsal umbilical, lateral umbilical, dorsal hips, and 

lateral hips) (Figure 2). As shown in Figure 2, two pups (#71 (Group 1) and #65 (Group 3)) had 

missing blubber depth values at locations due to logistical issues during measurement. These two 

pups were omitted from the calculations of average blubber depth for those locations. Compared 

to the Group 1 pups, Group 2 pups had significantly greater initial blubber depths with an overall 

bodily average of 4.4 ± 0.6 cm (t test, p= 0.03) while Group 3 pups also had significantly greater 

initial depths with an average of 4.4 ± 0.8 cm (t-test, p< 0.05). Upon closer examination of the 

Group 2 and Group 3 pups, the dorsal umbilical and dorsal hip locations had noticeably 

increased blubber depth compared to the surrounding measured locations. Group 2 pups had a 

blubber depth of 5.6 ± 1.2 cm at these two locations, which was significantly different compared 

to the mean depth of 3.8 ± 0.3 cm at the remaining four locations (p< 0.05). Likewise, Group 3 

had similar results with a dorsal umbilical and dorsal hip blubber depth average of 5.3 ± 0.9 cm, 

and a 4.0 ± 0.7 cm for the remaining locations, though this was not significant (p= 0.06) (Table 

2). 

  



27 

 

Table 2: Initial, post-transition, and final recovery blubber depth measurements (cm) at the 

axillary (dorsal and lateral), umbilical (dorsal and lateral) and hip (dorsal and lateral) locations 

along the sea lion trunk. 

Animal I.D. Location Initial Transition Recovery 

Group 1     

#71 Axillary-dorsal - 5.3 - 

 Axillary-lateral 2.3 5.0 - 

 Umbilical-dorsal 4.0 7.7 - 

 Umbilical-lateral 2.0 3.0 - 

 Hips-dorsal 5.0 3.3 - 

 Hips-lateral 4.7 4.0 - 

#00 Axillary-dorsal 2.3 4.3 - 

 Axillary-lateral 2.0 4.7 - 

 Umbilical-dorsal 1.3 4.7 - 

 Umbilical-lateral 2.0 4.0 - 

 Hips-dorsal 2.0 4.7 - 

 Hips-lateral 1.7 4.3 - 

#60 Axillary-dorsal 2.0 4.0 - 

 Axillary-lateral 2.7 3.7 - 

 Umbilical-dorsal 2.3 3.3 - 

 Umbilical-lateral 2.0 3.7 - 

 Hips-dorsal 2.0 2.7 - 

 Hips-lateral 2.0 2.3 - 

Group 2     

#11 Axillary-dorsal 5.0 3.3 3.7 

 Axillary-lateral 4.7 4.3 3.3 

 Umbilical-dorsal 6.3 5.0 3.7 

 Umbilical-lateral 3.7 3.7 2.3 

 Hips-dorsal 4.7 6.0 4.0 

 Hips-lateral 3.3 4.3 4.0 

#19 Axillary-dorsal 3.3 3.7 - 

 Axillary-lateral 3.3 3.7 - 

 Umbilical-dorsal 4.0 5.0 - 

 Umbilical-lateral 3.0 3.3 - 

 Hips-dorsal 4.7 6.0 - 

 Hips-lateral 4.3 4.7 - 

#38 Axillary-dorsal 2.3 5.3 3.7 

 Axillary-lateral 3.5 2.7 3.3 

 Umbilical-dorsal 6.0 5.7 3.7 

 Umbilical-lateral 4.7 3.0 4.0 

 Hips-dorsal 7.7 2.7 4.0 
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 Hips-lateral 4.7 2.3 3.3 

Group 3     

#27 Axillary-dorsal 3.3 2.3 - 

 Axillary-lateral 3.0 3.3 - 

 Umbilical-dorsal 4.8 2.7 - 

 Umbilical-lateral 3.0 3.7 - 

 Hips-dorsal 4.3 4.3 - 

 Hips-lateral 4.0 2.7 - 

#65 Axillary-dorsal 4.3 3.7 - 

 Axillary-lateral 2.3 3.3 - 

 Umbilical-dorsal 5.3 5.0 - 

 Umbilical-lateral 4.7 - - 

 Hips-dorsal 5.0 4.3 - 

 Hips-lateral 4.0 - - 

#20 Axillary-dorsal 5.7 4.0 4.0 

 Axillary-lateral 3.7 4.7 3.3 

 Umbilical-dorsal 6.3 5.0 3.7 

 Umbilical-lateral 6.0 6.5 3.9 

 Hips-dorsal 6.3 5.3 5.0 

 Hips-lateral 3.7 4.7 4.0 
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 Initial blood parameters of the pups (24 hours after weaning from their mothers) were 

important in determining their baseline blood levels after several months of nursing. Blood 

glucose values were normally distributed but not significantly different from each other (mean: 

157.2 ± 8.3 mg dL
-1

, range: 139-166). Group 1 pups began the transition to solid food with a 

blood glucose value of 156.7 ± 6.5 mg dL
-1

, while Group 2 and 3 pups had glucose values of 

163.0 ± 3.6 mg dL
-1

 and 152.0 ± 11.3 mg dL
-1

 respectively. Blood urea nitrogen levels were also 

normally distributed but not significant from each other (mean: 16.1 ± 3.1, range: 12.0-21.0). 

Group 1 pups had initial blood urea nitrogen levels of 15.7 ± 4.0 mg dL
-1

,while the Group 2 pups 

had a 16.0 ± 2.6 mg dL
-1

 average and Group 3 pups a 16.7 ± 3.8 mg dL
-1

 average. Initial thyroid 

thyroxine (T3) and triiodothyronine (T4) hormone levels (tT4 / fT4 / tT3 / fT3) were measured 

for all three groups of pups and none were significant except for the free T4 values (Table 3). 

The average measurements for free T4 in Group 1 pups (14.7 ± 2.1 pmol L
-1

) was significantly 

different from the free T4 in Group 3 pups (17.3 ± 0.6 ρmol L
-1

, p= 0.02), but not significant 

compared to Group 2 pups (18.3 ± 2.5 ρmol L
-1

, p= 0.06) (Table 3).  

 Starting body composition estimates showed differences particularly in the lipid stores of 

the older Group 3 pups. After a couple more months of nursing these pups had a significantly 

increased level of 24.9 ± 4.7% total body lipid (TBL) compared to Group 2 pups (14.1 ± 2.0%, 

p= 0.01) and Group 1 pups (12.5 ± 4.3%, p= 0.01). With the largest estimated value of TBL%, 

the Group 3 pups were also the lowest in TBP% (15.8% ± 0.6) and TBW% (53.9% ± 2.1). The 

Group 1 pups were significantly larger than Group 3 pups in TBP% (18.9 ± 0.6%, p< 0.01), and 

TBW% (63.9 ± 3.1%, p< 0.01). In addition, the Group 2 pups which were closer in age were also 
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significantly larger than the Group 3 pups with an 18.4 ± 0.4% TBP average (p< 0.01) and 62.7 ± 

1.5% TBW average (p< 0.01).  

Table 3: Initial and post-transition thyroid hormone measurements for total thyroxine (tT4; nmol 

L
-1

), total triiodothyronine (tT3; nmol L
-1

), free thyroxine (fT4; ρmol L
-1

), and free 

triiodothyronine (fT3; ρmol L
-1

). 

Animal I.D.  tT4 tT3 fT4 fT3 

Group 1      

#71 Initial 56.0 1.2 17.0 1.6 

 Post 10.0 0.3 8.0 0.7 

#00 Initial 30.0 0.9 14.0 1.0 

 Post - - - - 

#60 Initial 35.0 0.7 13.0 0.8 

 Post 7.0 0.3 8.0 0.5 

Group 2      

#11 Initial 42.0 1.1 16.0 1.6 

 Post 14.0 0.6 8.0 0.7 

#19 Initial 48.0 1.2 21.0 1.0 

 Post 10.0 0.6 14.0 0.6 

#38 Initial 40.0 1.2 18.0 1.1 

 Post 17.0 0.6 13.0 0.7 

Group 3      

#27 Initial 36.0 0.9 17.0 1.0 

 Post 16.0 0.5 14.0 0.5 

#65 Initial 35.0 0.8 17.0 1.1 

 Post 10.0 0.5 11.0 0.4 

#20 Initial 41.0 1.4 18.0 1.7 

 Post 16.0 0.8 10.0 0.7 
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Transition Period 

After being separated from their mothers, pups experienced an initial period of mass loss 

as the full availability of their mother’s milk was replaced with a reduced diet of only a few fish. 

Food amounts consumed were gradually increased at the discretion of the zoological animal care 

staff with every effort being made to increase daily intake totals uniformly between groups. 

Nutrient value assessment was conducted by ABC laboratories on the fish used by SeaWorld in 

this study and energy calculations were estimated assuming 1 calorie is equivalent to 4.184 

kilojoules. The herring used during the transition to a solid food diet for Group 1 pups and Group 

2 pups was 16.5% protein, 14.0% fat, and 67.0% water with a caloric density of 1661 kJ kg
-1

. 

Herring used for the Group 3 pups differed in composition having 18.6% protein, 7.1% fat, and 

72.0% water with a caloric density of 1192 kJ kg
-1

. As capelin was eventually introduced to the 

pup’s diet, all three groups consumed capelin composed of 13.5% protein, 3.1% fat and 80.9% 

water with a caloric density of 713 kJ kg
-1

.  

This initial transition period for the individual sea lion pups as they adapted to a solid fish 

diet encompassed two different turning points in their development. The day that they began to 

voluntarily consume fish was a behavioral turning point that differed between groups. Group 3 

pups began eating voluntarily significantly earlier (16.3 ± 0.6 d) than Group 1 pups (21.7 ±1.5 d, 

p< 0.05) and Group 2 (21.0 ± 1.7 d, p< 0.05), while the latter two groups were not significantly 

different from each other. More importantly, the day in which the pups stopped losing body mass 

and began a recovery period of growth and development was a physiological turning point that 

was also different between groups. Group 1 pups took significantly longer to begin gaining mass 
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(31.7 ± 1.2 d) than their older counterparts. Group 3 pups were the quickest group to reverse 

trend and recover lost body mass (20.7 ± 4.0 d, p< 0.01) while Group 2 pups were similar to 

Group 3 pups (24.3 ± 4.5 d, p< 0.01). All groups began recovery after they had commenced 

voluntary consumption of fish. The difference between the date voluntary consumption 

commenced and the date the body began recovery was significantly greater in the Group 1 pups 

(10.0  ± 1.7d) than both Group 2 pups (3.3 ± 3.1 d, p= 0.02) and Group 3 pups (4.33 ± 3.8 d, p= 

0.04).  

There were no significant differences between the amounts of food given to the pups 

during the transition period. All pups were given just one fish on the first day after separation 

and their intake increased throughout the transition period. Herring was offered exclusively up 

until just days before voluntary fish consumption commenced. Once pups began eating food 

voluntarily, they were offered as much fish as they wanted. Total food intake average (mean: 

1.83 ± 0.22 kg d
-1

, range: 1.47 – 2.20) and average rate of intake increase (+0.12 ± 0.04 kg d
-1

) 

for the pups was consistent between groups. Group 1 pups had an overall average of 1.72 ± 0.08 

kg d
-1 

consumed during the transition period with an average daily increase of 0.10 ± 0.01 kg d
-1

. 

Group 2 pups averaged 1.97 ± 0.20 kg d
-1

of fish intake with a daily increase of 0.12 ± 0.04 kg d
-

1
, while Group 3 pups averaged 1.78 ± 0.30 kg d

-1
 of fish intake with a daily increase of 0.15 ± 

0.04 kg d
-1

. By the last day of their respective transition periods, the pups were consuming an 

average of 3.18 ± 0.20 kg d
-1

, 2.78 ± 0.69 kg d
-1

, and 3.04 ± 0.22 kg d
-1 

respectively. However 

when taking into consideration the energy density of the herring and eventual capelin consumed, 

there were significant differences between the groups. Group 2 pups had an overall average of 

15,455 ± 1251 kJ d
-1

 consumed that was significantly greater than the Group 1 pups (11,326 ± 
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138 kJ d
-1

, p< 0.01) and Group 3 pups (10,309 ± 1,736 kJ d
-1

, p< 0.01). For average daily energy 

increase it was the Group 3 pups that had an average of 878 ± 230 kJ d
-1 

that was significantly 

greater than the Group 1 pups average increase of 556 ± 27 kJ d
-1

 (p= 0.04), but insignificant 

from the Group 2 pups average of 866 ± 294 kJ d
-1

. Despite these differences, all three groups 

averaged around 15,062 kJ of intake at the time they reached their lowest body mass and began 

recovery. This was computed by averaging each pup’s daily intake for the six days surrounding 

its date of lowest total body mass (date of lowest TBM ± 3 d) and using this total to determine 

the group average. Group 1 pups were consuming an average of 15,133 ± 1,079 kJ when they 

began the recovery phase, Group 2 pups consumed 15,183 ± 2,568 kJ, and the Group 3 pups 

consumed 14,945 ± 4,786 kJ.  

Group 1 pups lost an average of -8.5 ± 1.6 kg during the initial transition equal to -21.5 ± 

3.3% of TBM with an average loss of -0.27 ± 0.04 kg d
-1

. Group 2 pups averaged -6.8 ± 1.4 kg 

of TBM or -17.1 ± 3.2 % of initial mass, losing an average of -0.29 ± 0.10 kg d
-1

. Lastly, Group 

3 pups lost -5.9 ± 0.91 kg or -15.3 ± 3.4% of their initial TBM with an average loss of -0.30 ± 

0.03 kg d
-1

. With these values, there was no significant difference in rate of mass loss between 

groups, however there was a significant difference in mean mass loss between Group 3 pups and 

Group 1 pups (p= 0.04), and the differences in percentage of mass loss were significant between 

Group 1 pups and Group 3 pups (p< 0.05), but not significant between Group 1 pups and Group 

2 pups (p= 0.09). 

Loss in body mass was also evident in girth and blubber depth changes. Changes in 

axillary girth measurements had the smallest variability between groups and were not 
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significantly different from each other, but all of the umbilical and hip average girth 

measurements were statistically different. Younger pups lost more girth than older pups (Table 

1). The Group 1 pups umbilical (-11.2 ± 1.8 cm) and hip locations (-14.2 ± 3.3 cm) showed a 

greater reduction in girth loss compared to both Group 2 pups (-7.50 ± 0.50 cm (p= 0.01) / -7.17 

± 1.53 cm (p= 0.02)) and Group 3 pups (-4.17± 2.57 cm (p< 0.01) / -2.33 ± 3.06 cm (p< 0.01)). 

Though less than Group 1 pups, the losses in girth at the umbilical and hip locations in Group 2 

pups were significantly greater than that in the Group 3 pups (p< 0.05 / p= 0.04). During the 

transition period, overall average blubber depth across all locations increased by 1.6 ± 0.9 cm in 

Group 1 pups, while decreasing in the Group 2 pups (-0.3 ± 0.9 cm, p= 0.03) and Group 3 pups 

(-0.4 ± 0.2 cm, p< 0.01). Though Group 1 began the transition period with significantly less 

overall blubber depth, the overall group blubber depth averages were not significantly different 

by the end of the transition period (4.0 ± 0.8 cm, p>0.05). All pups showed  significant change in 

lateral axillary blubber depth with Group 1 pups gaining the most blubber (+2.11 ± 0.96 cm) in 

this region compared to smaller gains in Group 3 pups (+0.78 ± 0.38 cm) and losses in Group 2 

pups (-0.28 ± 0.59 cm). Blubber losses of Group 2 pups were also significantly different from 

gains showed by by Group 3 pups (p = 0.045). Younger Group 1 pups also differed significantly 

at the dorsal axillary location (+2.00 cm ± 0.00) compared to Group 3 pups  (-1.11 cm ± 0.51, p< 

0.01), the dorsal umbilical location (+2.67 cm ± 1.45) compared to Group 2 (-0.22 cm ± 1.17, p= 

0.03) and Group 3 pups (-1.28 cm ± 0.92), and the lateral umbilical location (+1.56 cm ± 0.51) 

compared to both the Group 2 pups (-0.44 cm ± 1.07, p= 0.02) and Group 3 pups (+0.50 cm ± 

0.24, p= 0.04).  
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Blood glucose changes varied greatly especially within Group 1 pups (-26.67 ± 11.50 mg 

dL
-1

) but also between Group 2 pups (-44.33 ± 5.86 mg dL
-1

) and Group 3 pups (-36.67 ± 7.77 

mg dL
-1

) (Figure 2). Group 2 pups had significantly greater changes in blood glucose levels 

compared to Group 1 pups (p= 0.03). Blood glucose levels did not show strong significant 

correlation with body mass (Pearson’s Coefficient, r= 0.19), total body lipid mass (kg) (r= 0.24), 

or total body protein mass (kg) (r= 0.06).  

Blood urea nitrogen levels all increased on average, with the Group 3 pups experiencing 

the smallest change from their initial measurement (+9.33 ± 3.21 mg dL
-1

) (Figure 3). This was 

significantly less than both Group 2 pups (+15.00 mg ± 2.00 mg dL
-1

, p= 0.03) and Group 1 pups 

(+19.00 ± 4.58 mg dL
-1

, p= 0.02). Blood urea nitrogen levels did not show strong correlation 

with body mass (r= -0.55), total body lipid (r= -0.32), or total body protein (r= 0.06).  

All thyroid hormone levels for all pup groups decreased during the transition period 

though they were not significantly different from each other (Figures 4-7). The overall average 

for changes in tT4 during the transition period was +29.1 ± 8.6 nmol L
-1

 (range: 20-46), for tT3 

was +0.5 ± 0.2 nmol L
-1

 (range: 0.3-0.9), for fT4 was +6.4 ± 2.0 nmol L
-1

 (range: 3.0-9.0), and 

fT3 was 0.6 ± 0.3 nmol L
-1

 (range: 0.3-1.0). Group 1 pups had tT4 levels decrease -37.0 ± 12.7 

nmol L
-1

, tT3 decrease -0.7 ± 0.1 nmol L
-1

, fT4 decrease -7.0 ± 2.8 ρmol L
-1

, and fT3 decrease -

0.6 ± 0.4 ρmol L
-1

. The Group 2 pups had similar averages with tT4 (-29.7 ± 7.6 nmol L
-1

), tT3 (-

0.6 ± 0.1 nmol L
-1

), fT4 (-6.7 ± 1.5 ρmol L
-1

) and fT3 (-0.6 ± 0.3 ρmol L
-1

) all decreasing. 

Similarly, decreasing tT4 (-23.3 ± 2.9 nmol L
-1

), tT3 (-0.4 ± 0.2 nmol L
-1

), fT4 (-5.7 ± 2.5 ρmol  
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Figure 2: Changes in individual blood glucose values over time. Pups #71, #00, #60 weaned at 5 

mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups #27, #65, #20 weaned 

at 9 mo. (Group 3). 
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Figure 3: Changes in individual blood urea nitrogen values over time. Pups #71, #00, #60 

weaned at 5 mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups #27, #65, 

#20 weaned at 9 mo. (Group 3). 
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Figure 4: Changes in individual total thyroxine (tT4) hormone levels over time. Pups #71, #00, 

#60 weaned at 5 mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups #27, 

#65, #20 weaned at 9 mo. (Group 3).  
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Figure 5: Changes in individual total triiodothyronine (tT3) hormone levels over time. Pups #71, 

#00, #60 weaned at 5 mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups 

#27, #65, #20 weaned at 9 mo. (Group 3). 
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Figure 6: Changes in individual free thyroxine (fT4) hormone levels over time. Pups #71, #00, 

#60 weaned at 5 mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups #27, 

#65, #20 weaned at 9 mo. (Group 3). 
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Figure 7: Changes in individual free triiodothyronine (fT3) hormone levels over time. Pups #71, 

#00, #60 weaned at 5 mo. (Group 1), pups  #11, #19, #38 weaned at 7 mo. (Group 2), and pups 

#27, #65, #20 weaned at 9 mo. (Group 3). 
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L
-1

), and fT3 (-0.7 ± 0.3 ρmol L
-1

) values were evident in Group 3 pups as well. Thyroid 

hormone levels were weakly correlated with body mass. Values for tT4, fT4, and tT3 had weak 

positive correlations (r= 0.52, r=0.36, and r= 0.47 respectively) with total body mass while fT3 

was weakly negatively correlated (r= -0.01).  

Analysis of changes in deuterium dilution values revealed that there were no significant 

differences in TBL%, TBP% and TBW% body composition changes between groups. Overall 

TBP (kg) and TBW (kg) did correlate in the pups with changes in TBM (r= 0.82 and r= 0.82 

respectively). Body composition percentage changes in the pups revealed an average change of 

+1.3 ± 0.9% in TBP% (range: -0.7–2.31), loss of -6.4 ± 3.6% in TBL% (range: -10.8-0.4), and 

gain of +4.7 ± 3.1% in TBW% (range: -2.3-7.9). Group 1 pups lost TBL% (-8.2 ± 2.2%) while 

gaining TBP% (+1.6 ± 0.7%) and TBW%.(+6.0 ± 1.6%). Group 2 pups also experienced a 

decrease of TBL% (-4.5 ± 5.0%), while having a slight increase in TBP% (+0.7 ± 1.2%), and an 

increase in TBW% (+2.4 ± 4.2%). Likewise, Group 3 pups had a loss in TBL% (-6.5 ± 3.3%), 

with a gain in TBP% (+1.8 ± 0.2%) and TBW% (+6.0 ± 0.7%).  

Recovery Period 

 Total body mass gained was not significantly different between groups during the 

recovery period (+30 days) (mean: 6.9 ± 3.9 kg, range: 2.3-15.5). Group 1 gained +6.82 ± 1.98 

kg, Group 2 pups gained +5.00 ± 1.21 kg, and Group 3 pups gained +9.02 ± 6.59 kg. Likewise, 

the rate of mass gain during the recovery phase was insignificant (mean: +0.2 ± 0.1 kg d
-1

, range 

0.1-0.5) Individual group comparisons reveal an increase of +0.23 ± 0.07 kg d
-1

 for Group 1 

pups, +0.17 ± 0.04 kg d
-1

 for Group 2 pups, and +0.30 ± 0.22 kg d
-1

 for Group 3 pups. 
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Percentage changes in body mass were also not significantly different (mean: 20.8 ± 11.1%, 

range: 8.4-45.4). All groups increased with the Group 1 pups  increasing +21.4 ± 6.3%, Group 2 

pups increasing +15.2 ± 4.8%, and Group 3 increasing +25.9 ± 18.6%. However, one member of 

the Group 3 pups (#65) experienced an uncharacteristic loss of appetite and reduction in mass 

gained during this 30 day recovery period. Pup #65 later received a diagnosis of acute anemia 

which may have contributed to her appetite and loss of body mass. If her body mass data from 

the recovery period was excluded from statistical consideration due to this abnormal health 

condition, the remaining members of Group 3 had an average body mass increase of +12.39 ± 

4.35 kg, an average rate of mass gain of +0.41 ± 0.14 kg d
-1

, and a percentage of body mass 

change of 34.7 ± 15.0%. This would be a significantly greater amount of body mass increase 

than the Group 2 pups (p= 0.03) but not significantly more than the Group 1 pups (p= 0.07) pups. 

Similarly, without pup #65 the average rate of mass gain for this group was significantly greater 

than Group 2 pups (p= 0.02) and not significantly greater than Group 1 pups (p= 0.06).  The 

percentage of body mass change for this group however was not significantly greater than the 

Group 2 pups (p= 0.06) and was not statistically different from Group 1 pups either.  

 Determining the timing of a pup’s physiological shift toward recovering lost mass and 

maintaining healthy growth was difficult to predict and consequently occurred at the end of our 

sampling period in most of the sea lions. Therefore, most of the parameters except TBM were 

not measured during this period. Three sea lion pups (#11 and #38 from Group 2, and #20 from 

Group 3) had measurements taken for girth and blubber depth after transitioning into the 

recovery period (Tables 1 and 2). For each pup the last set of measurements came fifteen days 
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after the date of lowest body mass and at the halfway point of the established thirty day recovery 

period for statistical purposes. For the following set of girth and blubber depth results, a 

comparison was made from the date of lowest TBM to the last measurement fifteen days later. 

Pup #11 from Group 2 gained girth at all three locations (axillary / umbilical / hips) (+5.0 cm / 

+4.0 cm / +4.0 cm) and lost blubber depth at all but the dorsal axillary location (dorsal axillary / 

lateral axillary / dorsal umbilical / lateral umbilical / dorsal hips / lateral hips) (+0.3 cm / -1.0 cm 

/ - 1.3 cm / -1.3 cm / -2.0 cm / -0.3 cm). Another pup from Group 2, pup #38, gained girth in the 

axillary (+3.0 cm) and umbilical locations (+1.0 cm) while losing in the hip location (-0.5 cm). 

Blubber depth values for pup #38 were mixed with some locations gaining and some losing 

(dorsal axillary / lateral axillary / dorsal umbilical / lateral umbilical / dorsal hips / lateral hips) (-

1.7 cm / +0.7 cm / -2.0 cm / +1.0 cm / +1.3 cm / +1.0 cm). Pup #20 was the only pup in Group 3 

to have measurements beyond the physiological turning point of lowest body mass. This pup lost 

axillary girth (-2 cm) while gaining umbilical girth (+3.5 cm) and maintaining the same hip girth. 

Blubber depth for pup #20 decreased in all areas except for the dorsal axillary location where it 

maintained the same depth (dorsal axillary / lateral axillary / dorsal umbilical / lateral umbilical / 

dorsal hips / lateral hips) (0.0 cm / -1.3 cm / -1.3 cm / -2.4 cm / -0.3 cm / -0.67 cm).  

 The blood parameters of glucose, urea nitrogen, and thyroid levels were also available for 

these three pups. Pup #11 had a blood glucose level that fell (-20.0 mg dL
-1

), a BUN value that 

increased (+12.0 mg dL
-1

), and thyroid levels that remained unchanged or increased (tT4 / tT3 / 

fT4 / fT3) (+4.0 nmol L
-1

 / 0.0 nmol L
-1

 / +8.0 ρmol L
-1 

/ -0.2 ρmol L
-1

). Pup #38 had an increase 

in glucose level (+15.0 mg dL
-1

), no change in BUN, and increasing or unchanged thyroid levels 



45 

 

(tT4 / tT3 / fT4 / fT3) (+3.0 nmol L
-1

 / +0.1 nmol L
-1

 / +3.0 ρmol L
-1

 / 0.0 ρmol L
-1

). Lastly, pup 

#20 from Group 3 had both increasing blood glucose (+11.0 mg dL
-1

) and BUN (+14.0 mg dL
-1

) 

values, and decreasing or unchanged thyroid levels (tT4 / tT3 / fT4 / fT3) (-4.0 nmol L
-1

 / -0.1 

nmol L
-1

 / 0.0 ρmol L
-1

 / 0.0 ρmol L
-1

).  

Other Variables 

 Although extreme changes in weather could affect the amount of energy needed to 

maintain homeostasis and thus increase metabolism and potential growth, average daily weather 

temperature was not significantly different between groups and did not correlate with changes in 

body mass (Pearson’s Coefficient, r= 0.032).  

All time intervals measured showed insignificant results. Time elapsed from blood 

collection to the time a prepared sample was placed into the freezer was the longest time interval 

recorded and potentially the most variable. However, there were no significant differences 

between groups with the average time being 90 ± 3 min between blood collection and the 

processed sample being placed within the freezer. Mannisto et al. (2007) determined that there 

was no significant effect on thyroid hormones levels when samples were kept at room 

temperature (22º C) for up to 4 days (Mannisto et al., 2007). 

As the study group consisted of two female pups and seven male pups, any sex specific 

differences were examined as the pups progressed through the study. Male pups started the 

transition to solid food with a significantly greater total body mass (41.0 ± 2.2 kg) than the 
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females (34.8 ± 2.3 kg, p<0.01), which was due to a greater total body protein (TBP) mass (7.5 ± 

0.3 kg) than the females (5.9 ± 1.2 kg, p< 0.01) and a greater total body water (TBW) mass (25.3 

± 1.0 kg) than the females (20.3 ± 4.1 kg, p< 0.01). After the transition phase and at their lowest 

total body mass, the male pups had maintained their significant differences in these areas of body 

composition with greater total TBP (kg) (6.7 ± 0.4 kg), TBP% (19.8 ± 1.3%), TBW (kg) (23.0 ± 

1.4 kg), and TBW% (67.5 ± 4.4%) than the females TBP (kg) (5.4 ± 0.8 kg, p< 0.01), TBP% 

(17.6 ± 0.5%, p= 0.03), TBW (kg) (18.3 ± 2.8 kg, p< 0.01), and TBW% (60.1 ± 1.7%, p= 0.03). 

All other parameters including growth rates, between males and females, did not differ 

significantly throughout the present study.  
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DISCUSSION 

 Weaning age of ex situ California sea lion pups was a factor in initial total body lipid 

percentages, change in body mass, blubber depth, girth, blood urea nitrogen, and blood glucose 

as they progressed through the process of transitioning to eating solid food in this study. The 

amount of research on pinnipeds has grown considerably over recent decades covering a broad 

range of topics. Numerous studies have examined health in adult pinnipeds with studies focusing 

on body condition parameters such as changes in lipid and protein content determined through 

hydrogen isotope dilution (Rutishauser et al., 2004; Kumagai, 2006), morphometric parameters 

such as blubber depth and girth (Worthy et al., 1992; Mellish et al., 2007), as well as blood 

parameters such as thyroid hormones (Ortiz et al., 2001; Ortiz et al., 2003; Debier et al., 2005), 

blood urea nitrogen and blood glucose (Roletto, 1993). Additionally, research has been 

conducted on pinnipeds during natural seasonal fluctuations in body condition (Kastelein et al., 

2000), changing environmental conditions like El Niño (Trillmich et al., 1985; Heath et al., 

1991; Trillmich et al., 1991), and health crises such as unusual mortality events affecting a 

population (Yochem et al., 2009). Research has also been conducted on the anthropogenic effects 

that cause prey-shift in pinnipeds due to resource competition (Rosen and Trites, 2002; Trites 

and Donnelly, 2003) though the focus has been on the more robust adult populations. Many 

recent studies conducted on pinniped pups have focused on the nursing period or post-weaning 

fast in phocid species (Iverson et al., 1993, Mellish et al., 1999, Muelbert et al., 2003; Shulz and 

Bowen, 2005). Previous research on otariid pups has focused on maternal investment and pup 

development during the nursing period before weaning (Oftedal et al., 1987b, Trites et al., 2006. 

Few studies have compared California sea lion pup health pre- and post-weaning (Kastelein et 
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al., 2000). The present study was designed to build on the methods and findings of these 

previous research projects while examining an important period in the life history of ex situ 

California sea lions. It is the first to physiologically explore the “prey-shift” that occurs when 

these otariid pups in a zoological setting make the abrupt transition to an unfamiliar solid food 

diet. The results of the present study could further improve zoological population management, 

as well as provide results that could be useful for effective rehabilitation of sick and injured free-

ranging sea lion pups and improve their chances of survival upon return to their natural 

environment. In addition, it provides insight into the physiological reaction sea lion pups can 

have to a sudden accelerated implementation of the natural process of weaning - which may 

prove beneficial when studying in situ populations that must adjust to similar circumstances.   

  Statistical analysis revealed several variables with significant results, a few correlations 

between variables, and some interesting trends in the overall data. From a broad perspective, 

initial body mass was expected to be larger in these ex situ pups versus their free-ranging 

counterparts as they had greater opportunity to nurse as the mothers did not need to leave their 

pups in order to forage. Ex situ pup groups in the present study were either significantly greater 

or equal in size and TBL% to their same-age in situ counterparts (Table 1). In situ California sea 

lions on San Nicolas Island (SNI) (119º 30’ W, 33º 15”N) and Aňo Nuevo Island (ANI) (122º 

20’W, 37º6’N) were examined over the course of several months from 1988 to 1991 using 

tritium dilution to estimate total body lipid values (Worthy and Costa, unpubl. data). Overall 

axillary blubber depth measurements of the in situ pups by Worthy and Costa (unpubl.) were 

calculated as the average of both the dorsal and lateral axillary ultrasound measurements. A 



49 

 

direct comparisons was made with the average overall axillary blubber depth values computed in 

the same manner from the ex situ pups in this study. The five month old ex situ pups in this study 

had significantly greater body mass (p< 0.01), axillary girth (p< 0.01), and axillary blubber depth 

(p< 0.01) compared to the 5 month old in situ pups. Total body lipid percentage was the only 

value that was not significantly different between the ex situ and in situ pups. The comparison 

between Group 3 pups was similar with significantly greater axillary blubber depth (p< 0.01) and 

TBL% (p= 0.01) in the ex situ pups, but showed no evidence that they were different in body 

mass or axillary girth.  

 Within the present study, initial blubber depths in Group 2 and Group 3 pups were 

significantly thicker in the dorsal umbilical and dorsal hip region, which could indicate that the 

dorsal umbilical and dorsal hip areas of the pup may be located within an area receiving greater 

initial growth in blubber deposition between the ages of 5 and 7.  Blubber density is generally 

not uniform across the body (Hoopes, 2007). Oftedal et al. (1987b) found that younger 1-2 

month old nursing California sea lion pups utilized their energy consumption primarily for 

growth and development as opposed to blubber deposition, however Thompson et al. (1987) 

found that blubber deposition became a higher priority for pups closer to weaning. This may be 

due to their primarily terrestrial nature as very young non-precocial pups remain on the beach 

waiting for their mothers to return from foraging trips. However, as they get older they begin to 

venture into the water’s edge to explore; exposing them to the much colder marine environment. 

Thompson et al. (1987) states that increased heat loss due to submersion underwater causes the   
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Table 4: The initial measurements of body mass (kg), axillary girth (cm), axillary blubber depth 

(cm), and total body lipid percentage for this project’s ex situ sea lion pups (5mo and 9mo) 

compared to same-aged in situ pup data from San Nicolas Island (SNI) and Aňo Nuevo Island 

(ANI) (1988–1991) (Worthy and Costa, unpubl. data). 

Age Bracket Body Mass 

(kg) 

Axillary Girth 

(cm) 

Axillary Blubber 

Depth (cm) 

Total Body 

Lipid (%) 

5mo ex situ (n=3) 39.7 ± 1.2 85.3 ± 2.9 2.3 ± 0.1 12.5 ± 4.3 

     

5mo in situ (n=19) 26.6 ± 5.2 70.6 ± 5.3 1.5 ± 0.2 15.1 ± 2.4 

     

9mo ex situ (n=3) 39.3 ± 5.7 82.5 ± 2.3 3.7 ± 0.9 24.9 ± 4.7 

     

9mo in situ (n=16) 38.7 ± 8.0 79.0 ± 7.8 1.5 ± 0.2 17.1 ± 4.9 
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Figure 8: Body mass data of estimated 5, 9, 10, and 13 month old in situ California sea lion 

(Zalophus californianus) pups from San Nicolas Island and Aňo Nuevo Island (1988-1991) 

(Worthy and Costa, unpublished data).  



52 

 

poorly insulated pups to divert energy away from growth and toward blubber production. The 

time frame between the Group 1 and Group 2 age brackets in this study coincide with the natural 

six month old time frame that free-ranging sea lion pups begin to experiment catching prey on 

their own (Peterson and Bartholomew, 1967; Odell, 1972). This is particularly poignant when 

you examine the change in body mass, percentage of mass loss, girth, and blubber depth that 

occurred in the Group 1 pups as they progressed through the transition period. Starting with 

similar body mass to the other two age brackets and the highest TBP% and TBW% (thus lowest 

TBL%), Group 1 pups proceeded to lose significantly more body mass, resulting in a 

significantly higher percentage of mass loss and significantly greater loss of girth in the 

umbilical and hip locations – all while gaining blubber depth across all locations. Group 1 pups 

managed to gain blubber depth despite losing a greater amount of total body mass. This suggests 

that either protein or visceral lipid deposits were being utilized up to this point by Group 1 pups 

to maintain physiological homeostasis. Though small amounts of protein catabolism are required 

for gluconeogenesis, the degradation of too much protein could eventually prove fatal as internal 

organs are compromised (e.g. Castellini and Rea, 1992).  

All initial values of blood glucose, blood urea nitrogen, total triiodothyronine, and free 

triiodothyronine measured in the study groups were normal but not significantly different from 

each other. In addition, both total and free thyroxine values were normal but not significantly 

different in Group 1 pups, while only free thyroxine levels in Group 2 pups were normal and not 

significant. This could be an indication that despite the age difference all groups began this 

transition to solid food in relatively the same metabolic state. All pups experienced a gradual 
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decrease in blood glucose in the first week after separation from their mothers with the majority 

having their final glucose measurement lower than their initial starting value. Blood glucose 

values found within the overall study group (mean: 143.3 mg dL
-1

, range: 111-218) largely fell 

well within the normal range seen in free-ranging California sea lions (43-205 mg dL
-1

) (e.g. 

Roletto et al. 1993) and within normal ranges observed in ex situ sea lions at SeaWorld (70-200 

mg dL
-1

). Pup #19 (Group 2) was an exception with one value measuring outside the range at 

218 mg dL
-1

, though this was within the normal glucose ranges seen in the phocid harp seals (88-

218 mg dL
-1

) and hooded seals (135-283 mg dL
-1

) (e.g. Boily et al., 2006). The blood sample that 

measured a blood glucose of 218 mg dL
-1

 was hemolyzed, which could have caused the 

abnormal increase in glucose measured as the contents of red blood cells are inadvertently 

released into the serum. Two other pups (#60 and #65) had spikes in blood glucose during the 

transition period (Figure 2) with samples that were not hemolyzed. Another factor that can 

increase blood glucose is bleeding or ulceration in the gastrointestinal tract. This is a possibility 

in the present study as the deuterium was administered through gastric intubation. Blood glucose 

levels also fluctuate throughout a given day by elevating rapidly for a few hours after meals, 

however they usually are at their lowest after a fast. Given that the pups in the present study were 

subjected to an overnight fast before blood samples were taken, the results would likely be an 

overall indication that the lipid body stores were being utilized to meet energy demands. With 

lipid stores already at a minimum in developing sea lion pups, a continuation of this process 

could cause a problem described by Rosen et al. (2007) as a spiral effect where catabolism of the 

lipid layer reduces insulation, causing an increase in heat loss, which in turn causes an increasing 

need for more lipid catabolism.   
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The blood urea nitrogen levels measured in the present study (mean: 25.2 mg dL
-1

, range: 

10-43) fell within the lowest part of the wide 15-159 mg dL
-1

 range seen with  in situ sea lions by 

Rolleto et al (1993) and largely within the normal range seen in the zoological populations at 

SeaWorld (14-38 m dL
-1

).
 
With the exception of pups # 38 and # 65 (Group 2 and 3 respectively) 

all pups started or dipped below this normal range. BUN increased gradually over the course of 

the study with the final measurements being at or near the highest values recorded. Elevated 

BUN levels have been utilized in past studies as an indicator of starvation in pups as internal lean 

body mass was being compromised (e.g. Rea et al., 1998; Trumble and Castellini, 2002), though 

this has been inconsistent as Worthy (1982) observed no difference in BUN levels in harp seal 

pups as they transitioned from fasting to feeding. In the present study however, most of the 

values were within normal range. Although there was a steady upward trend in BUN seen 

throughout the study period, this may be an effect of the higher-protein fish diet being steadily 

introduced to the pups, and revealing a shift from a lower normal nursing BUN level to a slightly 

higher normal adult-diet BUN level.  

Total thyroxine levels (tT4) in the pups (mean: 21.1 nmol L
-1

,
 
range: 5.0-50.0) were 

comparable to the normal range of tT4 levels in other pinnipeds such as in the post weaning free-

ranging elephant seal pups in Ortiz et al. (2003) (17-55 nmol L
-1

) as well as the free-ranging 

juvenile California sea lion pups in Debier et al. (2005) (9.0-44.5 nmol L
-1

). All pups saw a 

decrease in total thyroxine levels throughout the study. Likewise, total triiodothyronine (tT3) 

values in the pups (range: 0.3-1.4, mean 0.7 nmol L
-1

) were within the normal ranges of tT4 

found by Ortiz et al. (2001) (0.4-1.2 nmol L
-1

) in free-ranging elephant seal pups and found by 
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Debier et al. (2005) (0.28-0.84 nmol L
-1

) in juvenile free-ranging California sea lion pups. The 

thyroxine levels in this study were not significant and did not strongly correlate with body mass 

as observed by Ortiz et al. (2003) in free-ranging elephant seals, and by Kumagai (2004) in free-

ranging Steller sea lions. Thyroid hormone levels generally increase in the blood during periods 

of increased metabolism which is why neonates have been found to have increased serum 

concentration levels to facilitate increased growth and development (e.g. Ronald and Dougan, 

1982). Conversely, a decrease in thyroid hormones can also be an indication of a fasting body 

state in order to conserve energy (e.g. Ortiz et al. 2003). In all, thyroid hormone levels appeared 

to decline throughout the study period with the tT4 and tT3 levels falling more uniformly, 

possibly due to mass loss and the need to conserve body condition. 

 Despite the efforts of zoological personnel to maintain similar food intake levels (1.83 ± 

0.22 kg d
-1

) between the groups and uniformly increase intake totals (+0.12 ± 0.04 kg d
-1

), results 

show that the age groups physiologically responded differently. A difference in caloric intake 

resulted in the Group 2 pups receiving significantly more calories than the other two groups. 

However, this caloric difference did not result in significantly different growth and body 

composition for the Group 2 pups compared to the other two groups. Group 2 pups shared 

similar values to that of Group 1 pups such as a significantly greater initial TBP% and TBW%, 

as well as greater loss in girth at the umbilical and hip locations than Group 3 pups. In addition, 

the Group 2 pups began eating food voluntarily at about the same time as the Group 1 pups. 

However, Group 2 pups shared characteristic with Group 3 pups as well. Blubber depths for the 
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Group 2 pups decreased across all six locations as in the Group 3 pups, and Group 2 started 

recovery in similar time to the Group 3 pups.  

 Total body mass was the only measurement regularly taken with all pups after the 

sampling period and before their return to the general population. The Group 3 pups in particular 

had significant results during this period. At the start of the study Group 3 pups began with 

significantly more total body lipid content (kg and %), began voluntarily eating solid food 

significantly sooner, and maintained more lipid mass throughout the transition period. During the 

recovery phase, the mass gain and rate of mass increase was highest in the Group 3 pups though 

it was not significant due to the much lower values for pup #65. Pup #65 had undergone 

treatment for acute anemia by the SeaWorld veterinary team during the recovery portion of this 

study after the pup had already begun consuming fish voluntarily. Pup #65 exhibited the clinical 

signs of a reduced appetite and stagnant growth in body mass and condition. This may be 

attributed to the reduction in stomach acid secretion that limits nutrient absorption during anemia 

(e.g. Smith, 2010). Although Kumagai (2004) mentions that glucose levels often spike during 

anemic conditions, this was not observed during this period with pup #65. Excluding her non-

normal values from consideration, Group 3 pups had a significantly greater mass gain and rate of 

mass increase during the recovery phase that lasted 30 days beyond the date of lowest total body 

mass.  
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CONCLUSION 

The present study is the first to physiologically explore the “prey-shift” that occurs when 

otariid pups in a zoological setting make the abrupt transition to an unfamiliar solid food diet. 

The results of the present study could further improve zoological population management, as 

well as provide results that could be useful for effective rehabilitation of sick and injured free-

ranging sea lion pups to improve their chances of survival upon return to their natural 

environment. In addition, it provides insight into the physiological reaction sea lion pups can 

have to a sudden accelerated implementation of the natural process of weaning - which may 

prove beneficial when studying in situ populations that must adjust to similar circumstances.  

From the standpoint of individual pup groups, results showed that the younger ex situ 

pups in the present study were of a greater body condition than a population of same age free-

ranging pups. Group 3 pups in the present study began the transition to solid food with a 

significantly higher percentage of total body lipid, began voluntary consumption of the novel 

solid fish diet in a significantly shorter amount of time, maintained significantly more total body 

lipid, and excluding the results of anemic pup #65, this group had the largest significant increase 

and rate of increase of total body mass during the recovery phase. Group 2 pups exhibited similar 

trends to both Group 1 and Group 3 pups despite having a greater caloric intake throughout the 

study. At the other end of the spectrum, Group 1 pups began the study with a significantly 

greater overall average amount of blubber depth. This latter group had a significantly greater 

amount of mass loss and percentage of mass loss compared to the other two groups, and took 

significantly longer to begin the recovery phase into healthy growth and development. However, 
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despite losing the greatest amount of mass, the pups in this group gained the most blubber depth 

significantly in the axillary and umbilical regions as opposed to Group 2 and Group 3 pups. This 

means that the pups lost more mass than was gained through increasing blubber deposition, 

which would indicate that the pups were utilizing either visceral lipid deposits or lean body mass 

for maintenance while depositing blubber. Blood parameters including blood urea nitrogen, 

glucose, and the thyroxine and triiodothyronine thyroid hormones did not reveal significant 

results and exhibited weak correlation with changes in body mass and body condition.  
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