
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Cryptarray A Scalable And Reconfigurable Architecture For Cryptarray A Scalable And Reconfigurable Architecture For

Cryptographic Applications Cryptographic Applications

Michael John Lomonaco
University of Central Florida

 Part of the Electrical and Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Lomonaco, Michael John, "Cryptarray A Scalable And Reconfigurable Architecture For Cryptographic
Applications" (2004). Electronic Theses and Dissertations, 2004-2019. 141.
https://stars.library.ucf.edu/etd/141

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/266?utm_source=stars.library.ucf.edu%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/141?utm_source=stars.library.ucf.edu%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

CRYPTARRAY
A SCALABLE AND RECONFIGURABLE ARCHITECTURE

FOR
CRYPTOGRAPHIC APPLICATIONS

by

MICHAEL LOMONACO
B.S. University of Central Florida, 1999

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2004

© 2004 Michael Lomonaco

ii

ABSTRACT

Cryptography is increasingly viewed as a critical technology to fulfill the requirements of

security and authentication for information exchange between Internet applications. However,

software implementations of cryptographic applications are unable to support the quality of

service from a bandwidth perspective required by most Internet applications. As a result, various

hardware implementations, from Application-Specific Integrated Circuits (ASICs), Field-

Programmable Gate Arrays (FPGAs), to programmable processors, were proposed to improve

this inadequate quality of service. Although these implementations provide performances that are

considered better than those produced by software implementations, they still fall short of

addressing the bandwidth requirements of most cryptographic applications in the context of the

Internet for two major reasons:

(i) The majority of these architectures sacrifice flexibility for performance in order to

reach the performance level needed for cryptographic applications. This lack of

flexibility can be detrimental considering that cryptographic standards and algorithms

are still evolving.

(ii) These architectures do not consider the consequences of technology scaling in

general, and particularly interconnect related problems.

As a result, this thesis proposes an architecture that attempts to address the requirements of

cryptographic applications by overcoming the obstacles described in (i) and (ii).

iii

To this end, we propose a new reconfigurable, two-dimensional, scalable architecture, called

CRYPTARRAY, in which bus-based communication is replaced by distributed shared memory

communication. At the physical level, the length of the wires will be kept to a minimum.

CRYPTARRAY is organized as a chessboard in which the dark and light squares represent

Processing Elements (PE) and memory blocks respectively. The granularity and resource

composition of the PEs is specifically designed to support the computing operations encountered

in cryptographic algorithms in general, and symmetric algorithms in particular. Communication

can occur only between neighboring PEs through locally shared memory blocks. Because of the

chessboard layout, the architecture can be reconfigured to allow computation to proceed as a

pipelined wave in any direction. This organization offers a high computational density in terms

of datapath resources and a large number of distributed storage resources that easily support a

high degree of parallelism and pipelining. Experimental prototyping a small array on FPGA

chips shows that this architecture can run at 80.9 MHz producing 26,968,716 outputs every

second in static reconfiguration mode and 20,226,537 outputs every second in dynamic

reconfiguration mode.

iv

ACKNOWLEDGMENTS

Thanks to Dr. Ejnioui for all of your help and patience with this project and with my busy

schedule. It has been an honor and a pleasure getting to know you.

Thanks to the committee members Dr. Taskin Kocak and Dr. Ronald DeMara.

Thanks to my wife Amanda for supporting me emotionally and sometimes financially, as well as

providing laughter and encouragement throughout the graduate school process.

Thanks to God for guiding me to and through graduate school, an undertaking that I would not

have pursued or completed if not for His guidance and blessings.

v

TABLE OF CONTENTS

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... viii

LIST OF TABLES ...x

CHAPTER ONE: INTRODUCTION..1

1.1 Cryptographic Applications .. 1

1.1.1 Symmetric Algorithms... 2

1.1.2 Asymmetric Algorithms .. 3

1.2 Cryptographic Hardware Systems .. 5

1.3 CMOS Technology Scaling .. 8

1.3.1 Gate Delay Scaling ... 8

1.3.2 Wire Delay Scaling... 9

1.4 Architectural Implications .. 11

1.5 Thesis Contribution... 12

1.6 Thesis Outline ... 13

CHAPTER TWO: RELATED WORK ...14

2.1 Cryptographic Systolic and VLSI Architectures .. 14

2.2 Cryptographic Programmable Processors... 15

2.3 Cryptographic FPGA Designs .. 17

2.4 Summary ... 18

CHAPTER THREE: CRYPTARRAY ..19

3.1 Layout of CRYPTARRAY... 19

3.2 Shared Memory Blocks... 20

vi

3.3 PE Organization .. 25

3.4 PE Instructions .. 27

3.5 PE Reconfiguration... 31

CHAPTER FOUR: PE ARCHITECTURE ..35

4.1 Architectural Components of the PE .. 35

4.2 Architecture of Block 1... 37

4.3 Architecture of Block 2... 39

4.4 Architecture of Block 3... 41

4.5 Architecture of Block 4... 42

4.6 Architecture of Block 5... 43

4.7 PE State Control.. 44

CHAPTER FIVE: MODELING AND IMPLEMENTATION OF

CRYPTARRAY..47

5.1 Modeling of CRYPTARRAY... 47

5.2 Verification of the VHDL Entities.. 49

5.3 Synthesis of the PE Model.. 56

5.4 Synthesis of the SMB Model .. 64

5.5 Performance of CRYPTARRAY.. 65

5.5.1 Clock Frequency .. 65

5.5.2 Area Cost .. 66

5.5.3 Possible Bandwidth .. 67

5.5.4 Summary of CRYPTARRAY’s Performance ... 67

CHAPTER SIX: CONCLUSION...69

REFERENCES...72

vii

LIST OF FIGURES

Figure 1: Encryption and decryption [2]... 2

Figure 2: Symmetric cryptography [4]. .. 3

Figure 3: Asymmetric cryptography [4]. .. 4

Figure 4: SSL characterizations by session length. .. 6

Figure 5: FO4 delay scaling.. 9

Figure 6: An FO4 delay. ... 9

Figure 7: Short and global wires... 10

Figure 8: Wire delay in FO4 for scaled-length wires spanning 50K gates. 10

Figure 9: Wire delay in FO4 for fixed-length wires 1 cm long. ... 11

Figure 10: Checkerboard layout of CRYPTARRAY. .. 20

Figure 11: Connectivity of the SMB to its four surrounding PEs... 22

Figure 12: Structural Organization of the PE. .. 26

Figure 13: Formats of the block instructions in a PE.. 27

Figure 14: Instruction dispatch and capture by a PE. ... 32

Figure 15: Hierarchical encoding of the instructions.. 33

Figure 16: Architectural components of a single PE. ... 37

Figure 17: Architecture of block 1.. 38

Figure 18: Architecture of block 2.. 40

Figure 19: Architecture of block 3.. 41

viii

Figure 20: Architecture of block 4.. 42

Figure 21: Architecture of block 5.. 43

Figure 22: State diagram of the PE controller. ... 45

Figure 23: State cycling in the blocks of a PE. ... 46

Figure 24: Instruction path through the PE simulation... 50

Figure 25: Simulation of the block 1 module. .. 51

Figure 26: Simulation of the block 3 module. .. 52

Figure 27: Simulation of the block 4 module. .. 53

Figure 28: Simulation of the block 5 module. .. 54

Figure 29: Simulation of the state machine. ... 55

Figure 30: PE implementation of a timing-driven low-effort mapping.. 58

Figure 31: PE implementation of a timing-driven fast-effort mapping. 59

Figure 32: PE implementation of a timing-driven high-effort mapping....................................... 59

Figure 33: PE implementation of an area-driven low-effort mapping.. 60

Figure 34: PE implementation of an area-driven fast-effort mapping.. 61

Figure 35: PE implementation of an area-driven high-effort mapping... 61

Figure 36: Summary of PE implementations.. 62

Figure 37: Partial view of the floorplan of a synthesized PE onto a Virtex-II Pro XC2VP125. .. 63

Figure 38: Partial view of the floorplan of a synthesized SMB onto a Virtex-II Pro XC2VP125.

... 64

ix

LIST OF TABLES

Table 1: Summary of secret and public key attributes [4]. ... 5

Table 2: Possible configurations of read/write ports between an SMB and its four surrounding

PEs. ... 23

Table 3: Comparison of the five SMB-PE interface configurations... 24

Table 4: Block-level and PE-level encoding of operations. ... 29

Table 5: Breakdown of VHDL lines of code based on the modeled entities................................ 47

Table 6: Area and Speed optimization of the PE under three mapping effort levels.................... 56

Table 7: Synthesis results of a 512 x 4-bit SMB. ... 65

Table 8: Summary of the performance characteristics of CRYPTARRAY’s components. 68

x

CHAPTER ONE: INTRODUCTION

The fast pace of advancement in semiconductor integration and fabrication spurred the

development of computing applications that began to shift from client-server based computing

confined inside private networks to the world-wide open connectivity of the Internet. This shift

to an Internet-based computing mandated that the Internet becomes a secure vehicle for

communication and electronic commerce. As a result, cryptography and its various applications

became an essential component of modern information systems. Semantically, cryptography is

the art of writing secrets [1]. In practice, cryptography encodes information using an encryption

process, into a form that is incomprehensible to anyone except to the intended recipient, who can

then decode the original information using a secret key, a process called decryption [2].

1.1 Cryptographic Applications

The science of cryptography refers to the study of methods for sending messages in secret,

namely in enciphered or disguised form, so that only the intended recipient can remove the

disguise and read the message or decipher it. The original message is called the plaintext while

the disguised message is called the ciphertext. The final sent message is called a cryptogram.

The process of transforming plaintext into ciphertext is called encryption or enciphering. The

reverse process of turning the ciphertext into plaintext is called decryption or deciphering [3]. In

general, cryptosystems can be broadly classified into symmetric and asymmetric algorithms.

1

Figure 1: Encryption and decryption [2].

1.1.1 Symmetric Algorithms

The symmetric or secret-key algorithms, such as DES, IDEA, and SAFER require that the sender

and receiver share the same secret key that is used to encrypt and decrypt the messages

exchanged between both.

Definition 1: A cryptosystem is called symmetric-key if for each key pair (e, d), the key is

“computationally easy” to determine knowing only e and to similarly determine e knowing only

d [3].

It is meant by a computationally easy problem a problem that can be solved in expected

polynomial time and can be attacked using available resources. Symmetric algorithms can be

subdivided into stream ciphers or block ciphers. Stream ciphers are algorithms that operate on

the plaintext a single bit at a time, and block ciphers are algorithms that operate on the plaintext

in groups of bits or blocks. In general, secret key cryptography implements confidentiality,

authentication, and integrity for both holders of the secret key.

2

Figure 2: Symmetric cryptography [4].

1.1.2 Asymmetric Algorithms

On the other hand, asymmetric or public-key algorithms, such as RSA, rely on a public key that

is stored in the open and can be used by anyone to encrypt a message. A private key is generated

from the public key and then used by the recipient to decrypt the message.

Definition 2: A cryptosystem consisting of a set of enciphering transformations {Ce} and a set of

deciphering transformations {Dd} is called an asymmetric or public-key if, for each key pair (e,

d), the enciphering key e, called the public key, is made publicly available, while the deciphering

3

key d, called the private key, is kept secret. The cryptosystem must satisfy the property that it is

computationally infeasible to compute d from e [3].

It is meant by a computationally infeasible problem a problem that, given the enormous amount

of computer time that would be required to solve the problem, this problem cannot be solved in

realistic computational time. Thus, computationally infeasible means that, although there

theoretically exist a unique solution to the problem, this solution cannot be found even if all the

available time and resources are devoted to its discovery. In contrast to symmetric algorithms,

asymmetric algorithms allow confidentiality, authentication, integrity, and nonrepudiation to be

asymmetrically shared among key holders. Table 1 shows a summary of the attributes of

symmetric and asymmetric algorithms.

Figure 3: Asymmetric cryptography [4].

4

Table 1: Summary of secret and public key attributes [4].

Attribute Symmetric Cryptosystem Asymmetric Cryptosystem
Years in use Thousands Less than 50
Current main use Bulk data encryption Key exchange, digital signatures
Current standard DES, Triple DES, and

Rinjdael
RSA, Diffie-Hellman, DSA
(Elliptic curve)

Encryption/decryption speed Fast Slow
Keys Shared secret between at

least two persons
Private: Key concealed by one
person

Public: Key widely distributed

Key exchange Difficult and risky to transfer
a secret key

Easy and less risky to deliver a
public key

Private key never shared

Key length 56-bit obsolete

128-bit considered safe

1024 suggested (RSA)

Some users demand 2048 bits

Confidentiality, authentication,
message integrity

Yes Yes

Nonrepudiation No

Need trusted third party to
act as witness

Yes

Digital signatures: No need for a
trusted third party

Attacks Yes Yes

1.2 Cryptographic Hardware Systems

Early efforts of integrating cryptography into current information systems were software

implementations. Although some implementations can deliver satisfactory performance, most

cannot address the bandwidth requirements of many applications that rely on cryptography to

secure data integrity. In some instances, security-related processing can consume as much as

95% of a server’s processing capacity [5]. Today, most secure information systems establish

communication sessions during which information is exchanged. These sessions are usually

initialized by exchanging keys which are used for encrypting and decrypting exchanged

5

information. For instance, the Secure Socket Layer (SSL) protocol extends TCP/IP protocol by

supporting secure encrypted connections with authentication of senders and receivers. Web

servers and browsers use this protocol to establish secure HTTP connections. At the start of a

session, a public key is exchanged to authenticate the identity of the sender and receiver. In the

remainder of the session, only private key encryption/decryption will be used to exchange

content. Figure 4 shows the relative costs of symmetric and asymmetric cryptography in a web

server [6]. The numbers shown in the figure were obtained for a heavily loaded web server

running on an Itanium iA32 platform.

Figure 4: SSL characterizations by session length.

6

It is clear that for short sessions, fast asymmetric cipher processing is needed to insure high

throughput while symmetric cipher processing is important for longer sessions. As secure

communication requires increasingly larger bandwidths, the performance of cryptographic

applications becomes critical to overall system performance. Recently, several efforts went into

overcoming the shortcomings of software implementations by mapping cryptographic algorithms

directly into hardware. These efforts evolved in three different directions:

(i) Extension of the instruction sets of general purpose processors to support specific

operations that are frequent in cryptographic algorithms, but execute inefficiently in these

processors [7, 8].

(ii) Implementation of specific algorithms or complex arithmetic functions as hardware cores

that can be incorporated into an ASIC or mapped onto an FPGA [9-11].

(iii) Design of programmable processors optimized for cryptography [12-14].

Although the approach in (i) can enhance the performance of general-purpose processors, it is

doubtful that it can accommodate the bandwidth requirements of new communication systems.

The approach in (ii) can deliver superior performance, but it does not offer any flexibility if

future modifications to the initial cryptographic algorithm need to be added. This is quite

restrictive given the fact that most cryptographic algorithms are still evolving at a faster rate in

order to withstand the rigors of cryptanalysis [14]. The approach in (iii) is attractive since it

offers a great degree of flexibility and performance. Although their performance can be quite

significant, programmable processors fall short of the great potential that can be achieved should

7

their design take into consideration the physical realities imposed by the scaling of CMOS

technology [15].

1.3 CMOS Technology Scaling

The continuous scaling of CMOS technology shifted the focus of computer architecture from

gate performance to wire performance. In general, wires delay kept increasing as transistors kept

shrinking.

1.3.1 Gate Delay Scaling

Historical records of the characterizations of various CMOS processes show that gate delay has

scaled linearly with technology. Figure 5 shows the gate delay in different process technologies

running under the worst environmental conditions (125°C, 90%Vdd). In the figure, the gate delay

is expressed in FO4, a “fanout-of-four inverter delay” [15].

An FO4 delay is the delay through an inverter that is driving four copies of itself as shown in

Figure 6 [15]. Designers use this simple metric to overcome the complexity of characterizing

delay in transistor devices. For example, an FO4 is about 90 picoseconds in a 0.18 µm process

under worst environmental conditions characterized by a high temperature and low Vdd.

8

Figure 5: FO4 delay scaling.

Figure 6: An FO4 delay.

1.3.2 Wire Delay Scaling

Most technology studies show that chip architectures tend to use two types of wires as shown in

Figure 7, where the first type connects gates locally inside the blocks while the second type

connects blocks together [15]. The first type consists of short wires while the second type

consists of global wires.

9

Figure 7: Short and global wires.

These studies show that short wires exhibit a constant wire resistance and a falling wire

capacitance with regard to length scaling factors as shown in Figure 8. The figure shows the

delay of a wire that spans at most a block of 50,000 gates [15]. However, the same studies show

that the delay of global wires displays a large disparity with the delay in gates. Figure 9 shows

the delay of 1-cm long wire relative to gate delay on a log scale [15].

Figure 8: Wire delay in FO4 for scaled-length wires spanning 50K gates.

10

Figure 9: Wire delay in FO4 for fixed-length wires 1 cm long.

1.4 Architectural Implications

Technology scaling studies show that global wires ought to be avoided as much as possible in

most architectures since new processes offer new possibilities for designers to pack a large

number of gates in a given area of silicon. This exponential increase in the number of gates

makes it very difficult for many signals to reach their destination gates in one clock cycle.

As a result, the distance that signals can travel on the wires per clock cycle has been decreasing

exponentially for some years. While in the past global communication on global wires was

sufficiently cheap, it encouraged architects to focus highly on functionality and less on

communication. What ensued is a plethora of function-centric architectures in which the overall

architecture is conceived as a monolithic entity without any regard to the costs of global

11

communication and where the primary objective is to fit the design on the chip. As the

complexity of on-chip architectures continues to increase, there seems to be an urgent need to

give priority to communication over functionality in architectural considerations. Architects are

increasingly interested in breaking architectures into modular sub-architectures in which

communication in the basic blocks tend to grow sub-linearly as technology is scaled down.

These highly scalable architectures consist usually of identical processing nodes connected by

short wires and tailored specifically to a class of applications. One approach advocates the

duplication of functional units to consume the growing number of available transistors, thus

increasing the explicit degree of parallelism and hence throughput [16]. This approach can be

realized by architectures that rely on local communication between low-complexity nodes [17].

Such architectures tend to scale effectively to the problems imposed by the interconnect [16, 18].

Because of the severity of the wiring effects and bandwidth requirements for security

applications, these modular architectures are good candidates for addressing the computational

requirements of cryptographic applications.

1.5 Thesis Contribution

In this thesis, we propose a new reconfigurable, scalable, two-dimensional architecture, called

CRYPTARRAY, in which bus-based communication is replaced by distributed shared memory

communication. At the physical level, the length of the wires will be kept to a minimum.

CRYPTARRAY is organized as a chessboard in which the dark and light squares represent

Processing Elements (PE) and memory blocks respectively. The granularity and resource

12

composition of the PEs is specifically designed to support the computing operations encountered

in cryptographic algorithms in general, and symmetric algorithms in particular. Communication

can occur only between neighboring PEs through locally shared memory blocks (SMBs).

Because of the chessboard layout, the architecture can be reconfigured to allow computation to

proceed as a pipelined wave in any direction. This organization offers a high computational

density in terms of datapath resources and a large number of distributed storage resources that

easily support a high degree of parallelism and pipelining.

1.6 Thesis Outline

Chapter 2 reviews previous work related to hardware implementation of cryptographic

algorithms and computations while chapter 3 describes the overall architecture of

CRYPTARRAY. Chapter 4 describes the architecture and state control of the PE while chapter 5

presents the modeling and implementation of the PEs and SMBs. Chapter 6 presents the

conclusion of this thesis.

13

CHAPTER TWO: RELATED WORK

In this chapter, a brief overview of the various architectures for cryptographic applications is

presented. The chapter presents previously proposed systolic and VLSI architectures that support

compute-intensive arithmetic operations encountered in cryptographic algorithms. Later, the

chapter describes new programmable architectures optimized towards cryptographic operations.

These architectures are motivated by the need for a greater flexibility to address the various

requirements of cryptographic applications as security standards keep changing. Finally, the

chapter concludes by presenting recent attempts at implementing cryptographic algorithms on

Field-Programmable Gate Arrays (FPGAs). FPGA technology has matured to the point where

high throughputs are easily obtainable in many applications, including cryptography.

2.1 Cryptographic Systolic and VLSI Architectures

Early hardware implementations of cryptography focused on complex arithmetic operations

encountered in public cryptography such as modular multiplication involving operands of more

than 1024 bits. This multiplication is based on the Montgomery method [19]. In general two

distinct approaches were used to support performance with wide-operand multiplication:

redundant representation [20-22] and systolic arrays [23-25]. Both approaches are used in

conjunction with Montgomery reduction. The implementations based on the first approach suffer

from excessive storage area or inadequate performance to complete the multiplication while

those based on the second approach deliver good performance although they tend to consume

14

large logic resources. However due to their high flexibility, systolic approaches based on clever

algorithm and architecture design can overcome these difficulties as was previously done in

various other applications [26-28]. Other efforts to remedy these limitations were undertaken by

either using improved redundant representations or digit-serial architectural approaches [29, 30].

Recently, secret-key algorithms became the subject of various VLSI implementations as well

[31-33].

2.2 Cryptographic Programmable Processors

Beside systolic and VLSI implementations, some authors suggested extending the instruction

sets of existing processors with special instructions to handle specific operations encountered in

cryptography. One of the earliest attempts in this direction proposed a special instruction to

support efficient software implementations of general bit permutations [8]. Later in [6], the

authors recommended adding instructions to rotate bits left and right, S-box operations, X-box

operations, and modular multiplication since they are heavily used in secret-key algorithms. As

cryptographic standards and algorithms kept evolving through cryptanalytic studies, other

authors emphasized the need for agile architectures in order to offer high flexibility and

acceptable performance. Until now, only a handful of attempts pursued this direction. In [14], the

authors describe the architecture of a programmable processor that can handle cryptographic

algorithms in general. The architecture supports exponentiation by embedding an optimized

multiplier with the exponentiation unit. Through careful loop unrolling of the Montgomery

algorithm, the processor is able to deliver relatively high encryption rates even though the

15

architecture was synthesized in 2-µm CMOS technology considered somewhat outdated. In [12],

the authors propose an energy-efficient reconfigurable processor for public-key cryptography.

The processor architecture is designed to support only the subset functions required for

asymmetric cryptography [34]. As a result, the processor’s instruction set contains operations

related to conventional arithmetic, modular integer arithmetic, GF(2n) arithmetic, and elliptic

curve field arithmetic over GF(2n). The processor is relatively energy efficient when compared to

software and FPGA implementations of typical operations. Another proposal for a programmable

processor has been described in [13]. The processor architecture targets the primary bottlenecks

in private cryptography by matching the instruction set and functional resources to support the

compute intensive operations in secret-key algorithms. The processor is a four-issue VLIW

processor consisting of four pipeline stages: Instruction Decode (ID), Instruction

Decode/Register Fetch (ID/RF), Execute/Memory Access (EX/MEM), and Write-Back (WB).

The EX/MEM stage contains four functional units where each unit consists of two logical units,

a 32-bit pipelined multiplier, a 1KB cache for S-box operations, a 32-bit adder, and a 32-bit

rotator. Although the architecture was automatically synthesized, it delivers a performance that is

32% to 290% better than that of a 600 MHz Alpha processor for the Blowfish, 3DES, MARS,

and Rinjdael kernels. While the programmable processor approach is highly agile, it still falls

short of the potential performance gains that can be achieved if the architecture adopts a low-

latency communication scheme between medium granularity functional units, instead of the

costly global communication approach used in monolithic processors.

16

2.3 Cryptographic FPGA Designs

Using FPGA technology, several implementations have been proposed whereby multi gigabits

per second performances were obtained [35-37]. The flexibility provided by FPGA

implementations can be quite attractive since most cryptographic algorithms are still evolving. In

addition, the capacity of many FPGA chips has reached a level that is suitable to support the

mapping of the numerous rounds present in most cryptographic algorithms. In [35], 11 rounds of

the AES selected Rinjdael algorithm are unrolled and pipelined onto a high-capacity Virtex

FPGA in such a way that a new 128-bit data-key pair can be input at every clock cycle. The

result of this pipelined approach is a design that can run at 139.1 MHz with a throughput of 17.8

Gbps. While most FPGA chips are general-purpose reprogrammable devices, they are mostly

used for specific application domains. The analysis of cryptographic applications reveals that

these applications are usually dominated by varying width arithmetic operations and bit

computations. Arithmetic operations can benefit from the use of coarse-grain reconfigurable

components instead of the Look-Up Tables (LUT) used in FPGAs. If reconfiguration bit quantity

is used to measure LUT complexity, it becomes clear that when LUTs are used for arithmetic

operations, this complexity increases with operand width [38]. As for bit computations such S-

box operations, they can be supported efficiently through tables or memories. Although most

recent FPGAs contain memory blocks that can be used for bit operations, they can be located

quite apart from where arithmetic operations are occurring in the chip depending on the mapping

and placement. Transferring data between these memory blocks and arithmetic operations can be

detrimental to performance, considering the penalty associated with FPGA interconnects.

17

2.4 Summary

Given the urgency needed to address the interconnect problem, modular scalable reconfigurable

architectures are good candidates to address the computational requirements of cryptographic

applications. As opposed to the three hardware approaches described above, reconfigurable

architectures can provide the following significant advantages: (i) the bit-width of the operations

can be tailored to a given computation, (ii) multiple PEs can operate in parallel to take advantage

of data dependencies inherent to the application, (iii) PEs can be pipelined through

reconfiguration to increase the application throughput, (iv) PEs can be reconfigured in groups to

support complex operations if need be, (v) input and output values are recycled several times

within a computation, thus avoiding slow and repetitive accesses to monolithic RAMs associated

with general purpose processors [39]. All these advantages can be readily realized in

CRYPTARRAY.

18

CHAPTER THREE: CRYPTARRAY

In this chapter, section 3.1 presents the overall organization of CRYPTARRAY while section 3.2

explains the organization of the shared memory blocks. In addition, section 3.3 presents an

overview of the functionality of the processing element in CRYPTARRAY while section 3.4

describes the format and hierarchical encodings of the instructions used to program the array.

Finally, section 3.5 presents the instruction-dispatching based reconfiguration mechanism and its

two modes for CRYPTARRAY.

3.1 Layout of CRYPTARRAY

CRYPTARRAY is a two-dimensional array of tiles organized in a checkerboard-type pattern.

Each tile can be either : (i) a datapath tile containing a single processing element (PE), or (ii) a

storage tile containing a shared memory block (SMB). Tiles are connected on their perimeter by

direct short wires, and can subsequently communicate only with their immediate neighbors.

Figure 10 shows the layout of an array architecture using 24 PEs and 25 SMBs. The tiles in the

array can be reconfigured by dispatching wide instructions to the PEs. This mechanism of

programming the array can lead to a high degree of parallelism and pipelining.

19

Figure 10: Checkerboard layout of CRYPTARRAY.

3.2 Shared Memory Blocks

A storage tile consists of a 512 x 4-bit multi-port memory block. This memory stores the

operands and results of arithmetic operations and can be used for substitution operations. These

substitutions use table lookups to support any key-parameterized function such as S-BOX

operations, which are common in cryptographic algorithms. S-BOX operations consist mainly of

searching entries in 512 x 32-bit tables.

20

An SMB is shared between its four surrounding PEs as it can be accessed for reading and writing

by any adjacent PE. It is connected to each single PE using three four-bit data lines where the

two first data lines are used for reading the operands while the remaining data line is used for

writing the resulting data. In addition, the SMB has three address lines where each address line

serves a single data line. Since there are four PEs connected to each SMB, a total of eight read

and four write ports are available for each SMB. To avoid write conflicts, each of the four

surrounding PEs can write to only a fourth of the 512 available memory addresses, or 128

possible locations of an SMB. This introduces some asymmetry in the addressing busses by

making them nine and seven-bit wide for reading and writing respectively. Figure 11 shows the

connectivity of an SMB to its four surrounding PEs. As shown in the figure, the PE located to the

bottom of the SMB can write to the first set of 128 addresses (0-127) while the PE located to the

left of the SMB can write to the second set of 128 addresses (128-255). In addition, the PE

located to the right of the SMB can write to the third set of 128 addresses (236-364) while the PE

located on the top of the SMB can write to the final set of 128 addresses (365-512). For reading,

all four PEs can access the entire 512MB of memory space in the SMB. For performance

purposes, it was decided that this configuration is more efficient since it provides a realistic

number of read/write memory ports and hence is low in area cost. The consequence of this

configuration, when compared with the next best alternative, is that two additional clock cycles

are needed to complete the input and output of data for all five of the operation blocks within the

PE.

21

Figure 11: Connectivity of the SMB to its four surrounding PEs.

22

For each of the PEs, there are 11 data inputs and 5 data outputs required. Table 2 displays the

possible configurations that were considered for selecting a final read/write SMB-PE interface

configuration, where the leftmost column is simply an alphabetic label assigned to the particular

setup allowing for identification of that configuration in further discussion.

Table 2: Possible configurations of read/write ports between an SMB and its four
surrounding PEs.

 Memory Ports Cycle Access

Configuration

Reads

(per PE)

Writes

(per PE)

Total

Time

(cycles)

Blocks

(per PE)

PEs

A 11 5 44 reads + 20 writes = 64 1 All All

B 6 3 24 reads + 12 writes = 36 2 3 reads, 3 writes All

C 4 2 16 reads + 8 writes = 24 3 2 reads, 2 writes All

D 11 5 11 reads + 5 writes = 16 4 All 1

E 2 1 8 reads + 4 writes = 12 6 1 read, 1 write All

The next three columns in the table refer to the read ports, write ports, and total number of ports

respectively. The fifth column represents the number of clock cycles that are required for all of

the inputs and outputs of the four neighboring PEs to access an SMB. The sixth column shows

the number of operation blocks in each PE that can access an SMB per clock cycle while the last

column indicates how many of the neighboring PEs can access the SMB in each clock cycle.

Table 3 shows the advantages and disadvantages of each SMB-to-PE interface configuration.

23

Table 3: Comparison of the five SMB-PE interface configurations.

Configuration Comments, Advantages, and disadvantages
 Comment All the I/O ports of each PE are able to access the SMB in each cycle.

A Advantage With one required cycle for all five PE blocks and all surrounding PEs,
it is obvious that this is the fastest configuration.

 Disadvantage Too many read/write ports to efficiently implement in an SMB.

 Comment Half of the read and write ports of all surrounding PEs access the SMB
simultaneously.

B Advantage With two cycles for all five PE blocks and all surrounding PEs, this is
the second fastest configuration.

 Disadvantage The required 24 read and 12 write ports will produce an inefficient
implementation.

 Comment A third of the read and write ports of all surrounding PEs can access
the SMB simultaneously.

C Advantage With three cycles for all five PE blocks in the four surrounding PEs, it
is the third fastest configuration.

 Disadvantage The implementation can be costly since this configuration requires 16
read and 8 write ports.

 Comment All I/O ports of a single PE amongst the surrounding PEs can access

the SMB.

D Advantage This configuration has a significantly reduced number of read/write
ports in contrast to the previous configurations.

 Disadvantage This configuration requires a complex control to determine which PE
is ready to write to the SMB for any given cycle.

 Comment One PE block writes while another reads in each of the four

surrounding PEs.
E Advantage An eight-read four-write port memory is not a costly implementation.
 Disadvantage This is the slowest configuration since it requires six cycles to

complete.

Although configuration E has the slowest access as shown in Tables 2 and 3, it was chosen for

this design since its implementation of the SMB requires a reasonable number of read and write

ports. For configuration D, which is the next best option, significant control complexity could

arise with regard to determining which of the four PEs that surround a particular SMB would be

24

allowed to access it next. This is further complicated by the necessity for each PE to be able to

fully access any of its four surrounding SMBs.

3.3 PE Organization

Depending on its configuration, a PE can read from and write to any one of its four neighboring

SMBs. The choice of datapath resources in the PE is heavily based on the primary operations

required in cryptographic applications. These include modular addition, modular multiplication,

substitutions such as SBOX operations, and general permutations [6]. As a result, the following

arithmetic and logic operations are supported by the PE: (i) addition, (ii) subtraction, (iii)

multiplication, (iv) rotation, (v) comparison, and (vi) logical operations. These operations are

stored in the configuration of the PE and are sent as static instructions. As shown in Figure 12,

the structure of a PE consists of five blocks for arithmetic/logic operations supported by

additional logic for controlling the read/write memory access.

The operation blocks are organized as follows: (i) the first block supports four-bit logic

operations, (ii) the second block supports four-bit comparisons, (iii) the third block supports

four-bit shift rotations, (ii) the fourth block supports four-bit addition and subtraction, and (iii)

the fifth block supports four-bit multiplication. The control logic consists of two blocks, (i) an

instruction decoder, and (ii) a state machine that enables and disables the operating blocks. Each

block can independently access a neighboring SMB to retrieve its operands and write its result.

25

Figure 12: Structural Organization of the PE.

Consequently, while all four neighboring PEs can access an SMB simultaneously, only one of

the five blocks within each PE can access the SMB per cycle. These five blocks cyclically rotate

in turn for memory access. If block one is the first to receive input data, block two will be next,

followed by block three, and so forth. The logic operations of the first block are AND, OR,

NAND, NOR, XOR, XNOR and NOT. The comparator of the second block can perform

comparisons of two numbers, which can be used to support branching and looping control

operations. The barrel shifter in the third block can rotate by one, two, or three positions to the

left or to the right depending on its configuration. The adder in the fourth block can be

configured to perform addition or subtraction. Each of the five blocks in the PE are enabled and

26

configured by the bit contents of an instruction fragment register. Each fragment register can

contain between one and four bits to control the functional unit in that particular block, 11 bits to

address the first source operand, 11 bits to address the second source operand, and nine bits to

address the destination operand. The number of bits needed to configure a single PE block ranges

from 24 to 48 thus providing 173 bits as the total number of bits in the five fragment registers

within each individual PE.

3.4 PE Instructions

Each PE block is configured by the contents of its fragment register, shown in Figure 12. These

contents make up a specific instruction tailored to that block. In all, there are three distinct

formats of block instructions as shown in Figure 13.

49 44 43 33 32 22 21 11 10 0

11 address bits

Operands for Comparison

11 address bits 11 address bits

Alternate Operands
6 bits for
operation

11 address bits

(a) Instruction format for block 2.

49 44 43 42 41 20 19 9 8 0

22 unused bits
2 bits for
data as
address

6 bits for
operation

9 address bits

Output data

11 address bits

Input Operand

(b) Instruction format for block 3.

49 44 43 42 41 40 39 31 30 20 19 9 8 0

9 unused bits6 bits for
operation

location of
carry-in (2

bits)

11 address bits

Input Operands

9 address bits

Output data

11 address bits2 bits for
data as
address

(c) Instruction format for block 1, 4, and 5.

Figure 13: Formats of the block instructions in a PE.

27

Figure 13(a) shows the instruction used in a comparison operation of block 2 where bits 0

through 10 and 11 through 21 represent the memory addresses of both operands that will be used

in another operation block if a comparison is found to be true. For example in the following

comparison:

if A > B then

C + D;

endif

If A is greater than B, an add operation is performed on operands C and D. Bits 0 through 21 in

block 2 instruction format represent the addresses of operands C and D while the addresses of

operands A and B are located in bits 22 through 43.

Figure 13(b) shows the instruction format used in block 3 for shifting operations. In this format,

bit 0 through 8 represent the memory addresses used to store the resulting output data from the

barrel shifter block while bits 9 through 19 represent the address of the input operand to be

shifted. However, bits 20 through 41 are unused for this operation. The two bits 43 and 42 are

used in some cases where the output data is to be used as an input address. A ‘00’ in bits 43 and

42 indicates that these two bits are ignored while a ‘01’, ‘10’, and ‘11’ indicate that the output

data of blocks 1, 3, and 4 respectively, are used as the lowest four bits of the input operand’s

address. For example, if these two bits are ‘10’ and the output of block 3 is ‘0110’, the seven

most significant bits (bit 10 through 4) of the 11-bit address of the input operand would remain

unchanged while the four least significant bits (bits 3 through 0) will be set to ‘0110’.

28

Figure 13(c) shows the instruction format used in the logic operations of block 1, the addition

and subtraction of block 4, and the multiplication of block 5. In this format, bits 0 through 8

represent the memory address of the output operand while bits 9 through 30 represent the

addresses of the two input operands. Since corresponding blocks in neighboring PEs can be

linked together through carry chains to handle wide operand operations, bits 40 and 41 are used

to determine which of the neighboring PEs feed the carry bit to block 4 for addition operations

on wide operands. Bits 42 and 43 are used for data-to-address functions as described in the

preceding paragraph.

In each of the instructions shown in Figure 13, the six most-significant bits (44 through 49) are

used to indicate the specific operation that needs to be executed. The encoding of theses

operations is shown in Table 4 in which the leftmost column represents the block within a PE

while the operation labeled column represents the operations performed in the corresponding

block.

Table 4: Block-level and PE-level encoding of operations.

 Block Operation Block-Level Encoding PE-Level Encoding
1 Disabled 0XXX 000001
 Disabled 1000 ---------
 AND 1001 100001
 NAND 1010 100010
 OR 1011 100011
 NOR 1100 100100
 XOR 1101 100101
 XNOR 1110 100110
 NOT 1111 100111

29

2 Disabled 00XX 000010
 If A > B then send C and D to block 1 0100 101000
 then send C and D to block 3 0101 101001
 then send C and D to block 4 0110 101010
 then send C and D to block 5 0111 101011
 If A < B then send C and D to block 1 1000 101100
 then send C and D to block 3 1001 101101
 then send C and D to block 4 1010 101110
 then send C and D to block 5 1011 101111
 If A = B then send C and D to block 1 1100 110000
 then send C and D to block 3 1101 110001
 then send C and D to block 4 1110 110010
 then send C and D to block 5 1111 110011

3 Disabled 0XXX 000011
 Disabled 1000 ---------
 1-bit Right Rotate 1001 110100
 2-bit Right Rotate 1010 110101
 3-bit right Rotate 1011 110110
 Pass through 1100 110111
 1-bit Left Rotate 1101 111000
 2-bit Left Rotate 1110 111001
 3-bit Left Rotate 1111 111010

4 Disabled 0XX 000100
 4-bit Add 100 111011
 Extended Width Add 101 111100
 4-bit Subtract 110 111101
 Extended Width Subtract 111 111110

5 Disabled 0 000101
 Multiply 1 111111

PE Disabled 0 000000
 Enabled 1 1XXXXX

For block 1, the logic operations of AND, NAND, OR, NOR, XOR, XNOR, and NOT can be

performed using the encoding shown in the table. In the case of block 2, the operation column

indicates which comparison is to be performed, and which operation is performed on the

alternate operands if the comparison is true. Alternate operands are used in the instruction format

30

of block 2 as shown in Figure 13(a). In row 2, 3, 4, and 5 of block 2, if operand A is greater than

B, both operands C and D can be sent to block 1, 3, 4, or 5 depending on the instruction

following the If statement. After the C and D operands are sent to a given block, they are used as

input operands for the operation of that block. The rows of block 3 show the encoding of the 1, 2,

and 3-left or right shift instructions, while the rows of block 4 show the encoding of the addition

or subtraction using either 4-bits or wider through the carry-bits. Finally, the rows of block 5

show the encoding used for multiplication. The column labeled Block-level encoding shows the

bit encoding of each operation as it is sent to the fragment register of its block while the PE-level

encoding labeled column shows the bit encoding of the operation as it is seen in the array before

passing through the Instruction Decoder module. This hierarchical encoding of the instruction is

explained in section 3.5.

3.5 PE Reconfiguration

The reconfigurability of the array is based on dispatching instructions which are stored in the

fragment registers of a PE. To dispatch an instruction to a specific PE, a mechanism is needed to

address that particular PE. Several architectures are possible to support instruction dispatching

the simplest of which is to hardwire the address of each PE. In that case, dispatching consists of

sending instructions on a clock-like bus distribution scheme as shown in Figure 14 that reaches

each PE in the array. All of the PEs will see each instruction, but only if the address indicates

that it is intended for that particular PE will it capture the instruction, then store it in one of the

PE’s fragment registers. To accomplish this, an additional N bits are added to the most-

31

significant end of the instruction. Figure 15 shows (50+N) address bits are used to encode an

instruction at array level. These address bits will be used for allowing the runtime environment

through the instruction buffer to intentionally target the instruction to a specific PE in the array.

Figure 14: Instruction dispatch and capture by a PE.

32

After capture by the PE, the instruction is stripped of its N bits leaving 50 bits for decoding.

Figure 15 shows the 50 bits making up an instruction after being captured by a PE. This 50-bit

instruction is decoded based on the six operation bits in the Instruction Decoder module, and

distributed to the appropriate fragment register of one of the five operation blocks by stripping

two more bits from it leaving only 48 bits in the instruction. Figure 15 shows the 48-bits that

make up an instruction after reaching a specific block in the target PE.

Figure 15: Hierarchical encoding of the instructions.

33

This bus-based dispatching scheme allows the dispatch of a single instruction per cycle.

Although this scheme is quite simplistic, it allows the array to operate in two distinct

reconfiguration modes:

(i) Static reconfiguration: In this mode, the instructions of all the blocks in all the PEs

are loaded ahead of time to reconfigure the entire array before it starts running. No

other instruction can be sent to the array during run time. In this mode, each block

reads operands from an SMB, executes an operation, and writes the result to an SMB

in three clock cycles.

(ii) Dynamic reconfiguration: In this mode, a single instruction is dispatched at the start

of a clock cycle. Blocks can be reprogrammed as the array is running. In this mode, a

block receives an instruction that gets stored in its fragment register, reads operands

from an SMB, executes an operation, and writes the result to an SMB in four clock

cycles. This mode support also fine-grain partial reconfiguration.

34

CHAPTER FOUR: PE ARCHITECTURE

Since the PE is the primary computation component in CRYPTARRAY, its architecture and its

implementation are described in detail in this chapter. Section 4.1 presents the architecture of the

PE at the highest level of abstraction while Section 4.2 through 4.6 presents the architecture of

each block within the PE. Section 4.7 describes the states and their control within a PE.

4.1 Architectural Components of the PE

Figure 16 shows the primary components within a single PE at the highest level of organizational

hierarchy. A PE consists of:

• Instruction Decoder: This module decodes the incoming instruction, reformats it, and

routes it to the proper block of the PE for execution. In addition, it can set the output data as

input addresses for some blocks.

• State Controller: This controller is a state machine that determines which of the five

operation blocks will be sending and receiving data in any given cycle by controlling all the

multiplexers and demultiplexers, with the exception of the multiplexer used for carry-in

selection. The demultiplexer labeled Input Data determines which of the five operation

blocks will receive the incoming data from the memory. Accordingly, the two multiplexers

labeled Address of Input Operands specify to the memory which address location to retrieve

the input data from. The multiplexers labeled Output Data and Output Address are used to

select which operation block will send its output to memory. The actual implementation

35

requires four of each of the multiplexers and demultiplexers in order to allow data transfer to

each of the four neighboring SMBs. Each operation block controls individually from/to

which of the four SMBs accept or send data based on the addresses in their corresponding

fragment registers.

• Operation Blocks: There are five of these blocks in each PE where each block consists of

three hierarchical modules:

• Memory Interface: Each individual block communicates through an interface of read

 and write ports to its four surrounding SMBs. Each address in the instruction specifies

 to/from which SMB (top, right, bottom, left) to send and receive data. Because it must

interface with the memories which are exterior to the PE, this is the outmost layer of the

operation block.

• Fragment Register: This register stores the incoming instruction, which controls the

operation of the block and is sent from the Instruction Decoder module.

• Core: The core of a block represents the datapath used to execute the operations of the

block. For example, the core of block 1 contains the gates to support the logic

operations (AND, NAND, OR, NOR, etc…) while the core of block 2 contains the

comparator used to determine the outcome of branching and loop operations. This

module is the innermost layer of each operation block.

36

Figure 16: Architectural components of a single PE.

4.2 Architecture of Block 1

Figure 17 shows the architecture of block 1 where each 4-to-1 multiplexer and 1-to-4

demultiplexer is used to determine which of the four neighboring SMBs will be accessed for

reading or writing respectively. Three of the demultiplexers are used for addressing an SMB

while the fourth is used for writing the output data. The two multiplexers on the left side of the

37

figure are used to read in the 4-bit operand data from the neighboring SMBs. In addition, the

smaller 2-to-1 multiplexers on the left side of the figure are controlled by block 2 where they are

used to read in alternate data if (i) the comparison in block 2 is found to be true, and (ii) a logic

operation is to be performed on the alternate data. These multiplexers are also shown at the

bottom of Figure 18.

Figure 17: Architecture of block 1.

38

4.3 Architecture of Block 2

Figure 18 shows the architecture of block 2. This block has four data inputs and no data outputs

to the SMBs. Two of these inputs are used to compare two operands while the other two are used

to send alternate inputs should the comparison be true. The four 4-to-1 multiplexers shown on

the left side of the figure are used to read in operands while the four 1-to-4 demultiplexers shown

on the right side of the figure are used to address the SMBs. Immediately after the core, the

multiplexer closer to the comparator’s core determines which comparison operation to perform

(less than, greater than, or equal to). If the control lines are ‘00’, which are the two most

significant bits of the operation field in the instruction, the output of this multiplexer is always 0

thus disabling the block altogether. The demultiplexer located on the right side of the output side

of the comparator determines which of the other four operation blocks (block 1, 3, 4, and 5) will

read in the alternate data if the performed comparison by the comparator is found to be true. For

example, consider the following comparison:

if A > B then

C + D;

endif

The control line for the left multiplexer located immediately after the comparator’s output will be

‘10’ while the control line for the demultiplexer to its right will be ‘00’. If the result of the

comparison is true, a ‘1’ will be output from the multiplexer, routed by the demultiplexer to the

control signal of the 2-to-1 multiplexer which controls block 1. This multiplexer, shown at the

bottom of the figure in front of block 1 (See also Figure 17) requires that the alternate input

39

operands C and D be fed to block 1 instead of the original input operands specified in the

fragment register of block 1.

Figure 18: Architecture of block 2.

40

4.4 Architecture of Block 3

Figure 19 shows the architecture of block 3. Since block 3 reads only a single operand as shown

in the figure, only one 4-to-1 multiplexer shown on the left side of the figure is used to read in

data from the SMBs. On the right side of the figure, two of the three 4-to-1 demultiplexers are

used to output data and address while the third demultiplexer is used to read in data. This

demultiplexer is controlled by block 2 and is used to read alternate data if (i) the comparison in

block 2 is true, and (ii) a barrel shift operation is to be performed on the alternate data.

Figure 19: Architecture of block 3.

41

4.5 Architecture of Block 4

Figure 20 shows the architecture of block 4. This architecture resembles to some extent the

architecture of block 1 shown in Figure 17 in the sense that it has the same multiplexers and

demultiplexers for reading in and writing out data. However, block 4 is equipped with a carry-in

and a carry-out chain that allows it to add or subtract operands wider than 4 bits.

Figure 20: Architecture of block 4.

42

4.6 Architecture of Block 5

Figure 21 shows the architecture of block 5. Since the product of a multiplication can be as wide

as the sum of the bit width of the multiplicand and the multiplier, block 5 has two sets of output

data and addresses to the neighboring SMBs as shown on the right side of the figure.

Figure 21: Architecture of block 5.

43

To accommodate the wider output bit expansion, the 8-bit output is stored in two sequential

SMB locations. A ‘1’ is therefore added to the destination address for specifying the storage

location of the four most significant bits of the output data while the four least significant bits are

stored in the address location specified in the fragment register. Beside this feature, the

remaining architectural features are similar to the ones found in blocks 1 and 4.

4.7 PE State Control

A single PE can be reconfigured by loading the decoded instructions into the fragment registers

of the five operation blocks. However, the operation of the blocks inside a PE follows a pre-

defined sequence that is controlled by a seven-state machine as shown in Figures 22 and 23.

Each state is annotated with what each of the blocks will be doing at that state.

Although there are only five operation blocks, the two data inputs for Block 2 and two data

outputs of Block 5 necessitate all six non-reset states. In association with this requirement, two

compute states exist for each of the blocks for a complete cycle. This can be advantageous in that

while the maximum clock frequency for the PE will be determined by the longest computation

path through the operation blocks, two cycles are available to complete this computation.

Therefore the PE can be clocked at twice the frequency that the longest path would otherwise

require. It should also be noted that Block 2 does not require a separate compute state. This is

because its outputs are used only within the PE, so as soon as it receives its input operands and

the data propagates through the comparison logic, the result is then immediately utilized.

44

Figure 22: State diagram of the PE controller.

45

Figure 23: State cycling in the blocks of a PE.

46

CHAPTER FIVE: MODELING AND IMPLEMENTATION OF
CRYPTARRAY

This chapter describes the implementation of CRYPTARRAY. Section 5.1 presents an overview

of the modeling of the array while section 5.2 describes the simulation of the VHDL entities used

in modeling the components of the array. Section 5.3 explains how the PE model was

synthesized while section 5.4 presents the synthesis of an SMB. Finally, section 5.5 extends the

obtained synthesis results to characterize the timing and area performance of CRYPTARRAY.

5.1 Modeling of CRYPTARRAY

To model CRYPTARRAY, an array of 12 PEs and 21 SMBs has been coded in VHDL using a

mixed level modeling. The SMBs have been modeled using a dataflow approach while the PEs

and their inner components have been modeled mostly structurally. Table 5 shows the modules,

their entities, and the lines of VHDL written to model each entity.

Table 5: Breakdown of VHDL lines of code based on the modeled entities.

Module Entity VHDL Lines of Code
Array’s Testbench CRYPTARRAY_TB 172
12-PE 21-SMB Array PE12_MEM21 1,075

 Subtotal 1,247

Shared Memory Block MEM_512X4BIT 140

PE’s Testbench PE_TOP_TB 1,388
PE’s Top Level PE_TOP_FULL 444
 INSTRUCTION_DECODER 128
 STATE_CONTROLLER 128

47

 Subtotal 2,088

Block 1 MEM_INTRFCE1 111
 STG1_FRAG_REG 89
 STG1_CORE 40

 Subtotal 240

Block 2 MEM_INTRFCE2 126
 STG2_FRAG_REG 100
 STG2_CORE 44

 Subtotal 270

Block 3 MEM_INTRFCE3 101
 STG3_FRAG_REG 80
 STG3_CORE 58

 Subtotal 239

Block 4 MEM_INTRFCE4 114
 STG4_FRAG_REG 105
 STG4_CORE 57
 FULL_ADDR_4B 32

 Subtotal 308

Block 5 MEM_INTRFCE5 139
 FULL_ADDR_7BIT 41
 STG5_FRAG_REG 74
 STG5_CORE 72
 FULL_ADDR_1B 21

 Subtotal 347

Multiplexers MUX_1BIT_2TO1 26
 MUX_1BIT_4TO1 27
 MUX_1BIT_8TO1 33
 MUX_4BIT_2TO1 29
 MUX_4BIT_4TO1 33
 MUX_4BIT_8TO1 35
 MUX_7BIT_8TO1 41
 MUX_8BIT_2TO1 33
 MUX_9BIT_4TO1 43
 MUX_9BIT_8TO1 45

48

 Subtotal 345

Demultiplexers DEMUX_1BIT_1TO4 42
 DEMUX_1BIT_1TO8 95
 DEMUX_4BIT_1TO4 33
 DEMUX_4BIT_1TO8 39
 DEMUX_7BIT_1TO4 40
 DEMUX_8BIT_1TO4 42
 DEMUX_9BIT_1TO4 44

 Subtotal 335

D Flip-Flops DFF_1BIT 30
 DFF_4BIT 31
 DFF_7BIT 34
 DFF_9BIT 36
 DFF_11BIT 38

 Subtotal 169

Total 5,728

5.2 Verification of the VHDL Entities

The VHDL model of each entity has been verified through extensive simulation using ModelSim

XE II simulator version 5.6e. Separate simulations were performed on each individual entity. In

addition, functional simulation of a prototype array consisting of 12 PEs and 21 SMBs has been

performed. For the PE blocks and the top level entity of the PE, input stimuli were generated

using three embedded for loops whereby an outermost loop feeds all possible operation

combinations while two inner loops cycle through all possible combinations of instructions for

those operations. Figure 24 shows a simulation snapshot of the top level module of a PE

receiving an instruction into a fragment register and processing it.

49

operation specified by testbench

addresses,
operation
combined

to form
instruction

instruction input
to block3

addresses
generated

by
testbench

instruction
is input to
top-level

of PE
instruction altered and routed to block3

instruction input
to the fragment

register, where it
is separated and

routed

Figure 24: Instruction path through the PE simulation.

50

Figure 25 shows a simulation snapshot of block 1 of the PE performing a logical NAND

operation followed by a logical OR operation.

Figure 25: Simulation of the block 1 module.

51

Figure 26 shows a simulation snapshot of a shift to the right by one and two positions as seen

from the top level of the PE, performed by the barrel shifter core of block 3.

Figure 26: Simulation of the block 3 module.

52

Figure 27 shows a simulation snapshot of an addition with carry and a subtraction as seen from

the top level of the PE performed by the adder/subtractor core of block 4 of the PE.

Figure 27: Simulation of the block 4 module.

53

Figure 28 shows a simulation snapshot of two operands being multiplied by the multiplication

core of block 5 as seen from the top level of the PE.

Figure 28: Simulation of the block 5 module.

54

Figure 29 shows a simulation snapshot of the state machine used to control the I/O for the PE.

Figure 29: Simulation of the state machine.

55

5.3 Synthesis of the PE Model

Since the PE is the primary computation component in CRYPTARRAY, its synthesis can reveal

significant insights on the performance of CRYPTARRAY. The model of a PE has been

synthesized to a LUT netlist using FPGA Compiler II, version 3.5.1, from Synopsys and mapped

onto a Virtex-II Pro FPGA chip using Xilinx ISE place-and-route tool, version 4.1i. Synthesis

has been performed to optimize both area and speed. For each synthesis objective, three mapping

effort levels were tried as shown in Table 6:

(i) Low mapping effort takes the least time to compile. It is recommended if compilation

time is a premium and at the same time the design timing has slack to spare.

(ii) Fast mapping effort reduces the number of iterations the optimization process goes

through. This effort level attempts to balance between quality of results and

compilation time.

(iii) High mapping effort takes longer to compile but should produce better designs. With

this effort, the optimization process proceeds until it has tried all strategies.

Table 6: Area and Speed optimization of the PE under three mapping effort levels.

Obtained

Critical
Path

 Resources
Used

Objective

Effort
Level

Frequency
(MHz)

Delay
(ns)

Module

LUTs

Flip-Flops

Latches

Speed Low 81.30 12.30 PE 2011 223 50
 Instruction Decoder 311 0 0
 State Controller 17 6 0
 Block 1 189 43 0
 Block 2 195 64 0
 Block 3 117 28 0
 Block 4 160 42 0
 Block 5 234 40 0

56

 Fast 87.40 11.44 PE 2038 223 50
 Instruction Decoder 334 0 0
 State Controller 17 6 0
 Block 1 189 43 0
 Block 2 193 64 0
 Block 3 117 28 0
 Block 4 166 42 0
 Block 5 234 40 0

 High 81.30 12.30 PE 2007 223 50
 Instruction Decoder 299 0 0
 State Controller 17 6 0
 Block 1 189 43 0
 Block 2 203 64 0
 Block 3 117 28 0
 Block 4 160 42 0
 Block 5 234 40 0

Area Low 75.99 13.15 PE 1881 223 50
 Instruction Decoder 302 0 0
 State Controller 17 6 0
 Block 1 185 43 0
 Block 2 191 64 0
 Block 3 113 28 0
 Block 4 160 42 0
 Block 5 233 40 0

 Fast 78.55 12.73 PE 1897 223 50
 Instruction Decoder 318 0 0
 State Controller 17 6 0
 Block 1 185 43 0
 Block 2 191 64 0
 Block 3 113 28 0
 Block 4 160 42 0
 Block 5 233 40 0

 High 78.55 12.73 PE 1869 223 50
 Instruction Decoder 290 0 0
 State Controller 17 6 0
 Block 1 185 43 0
 Block 2 191 64 0
 Block 3 113 28 0
 Block 4 160 42 0
 Block 5 233 40 0

57

The results shown in Table 6 are plotted in Figures 30 through 35. In these tables, the x-axis

represents the various primary modules that were synthesized, while the y-axis represents the

number of resources required by the FPGA, categorized by look-up-tables, flip-flops, and

latches.

81.30 MHz Low-Effort Speed Mapping

0
500

1000
1500
2000
2500

P
E

_T
O

P
_F

U
L

L

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5
Modules

N
um

be
r o

f R
es

ou
rc

es

LUTs Flip-Flops Latches

Figure 30: PE implementation of a timing-driven low-effort mapping.

58

87.4 MHz Fast-Effort Speed Mapping

0
500

1000
1500
2000
2500

P
E

_T
O

P
_F

U
L

L

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es

LUTs Flip-Flops Latches

Figure 31: PE implementation of a timing-driven fast-effort mapping.

81.3 MHz High-Effort Speed Mapping

0

500

1000

1500

2000

2500

P
E

_T
O

P
_F

U
LL

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es

LUTs Flip-Flops Latches

Figure 32: PE implementation of a timing-driven high-effort mapping.

59

It is clear from Figures 30 through 32 that the best clock frequency is synthesized by the fast

effort level mapping. This mapping produces 87.40 81.30 100 7.5%
81.30
−

× = improvement in clock

frequency over the worst clock frequency obtained by any mapping with only

2038 2007 100 1.54%
2007
−

× = area penalty in the implementation of the top level module of a PE.

75.99 MHz Low-Effort Area Mapping

0
200
400
600
800

10001200
1400
1600
1800
2000

P
E

_T
O

P
_F

U
LL

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es

LUTs Flip-Flops Latches

Figure 33: PE implementation of an area-driven low-effort mapping.

60

78.55 MHz Fast-Effort Area Mapping

0
500

1000
1500
2000

P
E

_T
O

P
_F

U
LL

IN
S

TR
U

C
TI

O
N

 D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es
LUTs Flip-Flops Latches

Figure 34: PE implementation of an area-driven fast-effort mapping.

78.55 MHz High-Effort Area Mapping

0
500

1000
1500
2000

P
E

_T
O

P
_F

U
L

L

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es LUTs Flip-Flops Latches

Figure 35: PE implementation of an area-driven high-effort mapping.

61

It is clear from Figures 33 through 35 that the best area implementation is obtained with the high

level effort mapping. This mapping produces only 1897 1869 100 1.49%
1869
−

× = marginal

improvement in area cost over the worst area implementation of the top level of a PE. This

improvement comes with a slight improvement of 78.55 75.99 100 3.36%
75.99
−

× = in clock

frequency. Figure 36 contrasts the area cost in terms of LUTs for the top level module of a PE

across the various timing and area-driven mapping effort levels where the leftmost three bars in

the figure represent timing-driven mappings while the rightmost three bars represent area-driven

mappings.

LUT Implementations

1750
1800
1850
1900
1950
2000
2050
2100

81.3
MHz
Low-
Effort

Speed

87.41
MHz
Fast-
Effort

Speed

81.3
MHz
High-
Effort

Speed

75.99
MHz
Low-
Effort
Area

78.55
MHz
Fast-
Effort
Area

78.55
MHz
High-
Effort
Area

Synthesized PEs

N
um

be
r o

f L
U

Ts

LUTs

Figure 36: Summary of PE implementations.

62

As the figure shows, the best timing-driven implementation (the second bar from the left in the

figure) is obtained with a timing-driven fast effort level mapping while the worst timing-driven

implementation (the fourth bar from the left of the figure) is obtained with an area-driven low

effort level mapping. The best implementation produces 87.40 75.99 100 15.01%
75.99
−

× =

improvement in clock frequency with 2038 1881 100 8.34%
1881
−

× = area penalty in terms of LUTs

used in the implementation of the top level module of a PE. Figure 37 shows a partial view of the

floorplan of synthesized PE onto a Xilinx Virtex-II Pro XC2VP125.

Figure 37: Partial view of the floorplan of a synthesized PE onto a Virtex-II Pro
XC2VP125.

63

5.4 Synthesis of the SMB Model

The SMB model has been synthesized to a LUT netlist using FPGA Compiler II, version 3.5.1,

from Synopsys and mapped onto a Virtex-II Pro FPGA chip using Xilinx ISE place-and-route

tool, version 4.1i. Synthesis has been performed to optimize speed. Figure 38 shows a partial

view of the layout of an SMB onto a Xilinx Virtex-II Pro XC2VP125, while Table 7 shows the

synthesis results of a 512 x 4-bit timing-optimized SMB.

Figure 38: Partial view of the floorplan of a synthesized SMB onto a Virtex-II Pro
XC2VP125.

64

Table 7: Synthesis results of a 512 x 4-bit SMB.

Parameter Value
Frequency (MHz) 80.9
Critical Path Delay (ns) 12.36
LUTs 14899

As the table shows, a read or write from the SMB can be completed in 12.36 ns. In addition, an

SMB consumes a relatively large number of LUTs compared to a PE. In effect, an SMB occupies

14899 7.31
2038

= more area than the largest PE implementation in terms of LUTs.

5.5 Performance of CRYPTARRAY

In this section, a brief analysis of the performance of a prototype array will be presented in terms

of clock frequency, area cost, and bandwidth.

5.5.1 Clock Frequency

By integrating SMBs with PEs to form an array of a given size, the array’s clock frequency will

be limited by the slowest among SMBs and PEs. Since the clock frequency of the SMBs is lower

than the best frequency of the PEs, the array’s frequency will subsequently be determined by that

of the SMBs. As a result, a prototype array running at the frequency of the SMBs, which is 80.9

MHz, can be obtained by assembling a number of SMBs and PEs. In this case, if the array is

running in static reconfiguration mode, a PE block of the array can read the operands from an

SMB, perform its operation, and write the result to an SMB in 3T where T is the clock cycle of

65

the array. Since 31 10 12.36 ns
80.9 MHz

T = × = , a PE block can complete an instruction in 3T =

3 x 12.36 ns = 37.08 ns. With this PE block performance, the array can have a throughput

1 sec= 26,968,716.28 outputs/sec
37.08 nsstaticρ = . However, if the array is running in dynamic

reconfiguration mode, a PE block has to load its fragment register before proceeding with the

steps of reading the operands from an SMB, computing, and writing the result to an SMB. For a

lack of an accurate estimate for the time to dispatch and load an instruction into a fragment

register, one can assume for simplicity that this time can be equal to T. In this case, a PE block

can perform the four steps in 4T = 4 x 12.36 ns = 49.44 ns. With such a block performance, the

array can have a throughput 1 sec= 20,226,537.28 outputs/sec
49.44 nsdynamicρ = .

5.5.2 Area Cost

Based on the results shown in Table 6, a PE can consume 2038 LUTs while an SMB can occupy

14899 LUTs as shown in Table 7. A tile consisting of an SMB and a PE can occupy 3288 +

14899 = 18187 LUTs. It is clear that to prototype CRYPTARRAY on FPGAs, large capacity

FPGA chips are needed. For example, the Virtex-II Pro XC2VP125 which contains 125136

LUTs can pack an array consisting of only 12 PEs and 12 SMBs. To implement an array of

reasonable size, it is necessary to use a multi-chip configuration.

66

5.5.3 Possible Bandwidth

If a single chip configuration is considered, an array consisting of 12 PE and 12 SMBs can be

packed within a Virtex-II Pro XC2VP125. Assume that the chessboard layout of the array is

preserved in its placement and layout onto the chip. It is reasonable to view the layout as a set of

three rows where a row can either have one or two SMBs connected to the IO pins of the chip.

Since each SMB is a 512 x 4-bit memory block, an SMB can output 4 bits each 37.08 ns if the

array is running in static reconfiguration mode. This means that an SMB can output

9

1 sec 4 bits 102.87 Mbps
37.08 ns 10− × =

×
. If a multi-chip configuration is used, it would take only

10 SMBs be connected to the IO pins of the chips to produce up to 1.02 Gbps. Note that an SMB

consumes only 4 IO pins on a chip when an FPGA chip such as the Virtex-II Pro XC2VP125 has

1200 IO pins. It is clear that such a bandwidth can easily support the processing requirements of

many cryptographic algorithms running on Internet severs.

5.5.4 Summary of CRYPTARRAY’s Performance

Table 8 summarizes the performance characteristics of the components of CRYPTARRAY

where the leftmost column shows the array’s components while the second column shows the

components area in LUTs. The third column shows the ratio of the component area to the area of

the Virtex II Pro XC2VP125 chip. The fourth column shows the best clock frequency of the

component obtained through synthesis while the last column shows the bandwidth produced by

the component based on the obtained clock frequency.

67

Table 8: Summary of the performance characteristics of CRYPTARRAY’s components.

 Area Ratio

Clock

Component Area
(LUTs)

Component Area

Chip Area

Frequency
(MHz)

Bandwidth
(Mbps)

PE 2038
2038

0.0162
125136

= 87.4

SMB 14899
14899 0.119
125136

= 80.9 102.87

2 2

 Array

SMBs PEs
2 2

N N

N N

×

= +

2 214899 2038

2 2

N N
+
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

27449.5N=

2

2

7449.5
125136
0.0595

N

N=

80.9 102.87M

N = number of array tiles (a tile can be a PE or a SMB); M = number of array SMBs connected to the chip
output pins; Chip Area = area of a Virtex-II Pro XC2VP125 chip = 125136 LUTs;

An N x N array contains N tiles in each plane dimension where a tile can be either an SMB or a

PE. For simplification, it is assumed that an N x N array will have all its SMBs placed on the

periphery of the array and subsequently directly connected to the IO pins of the chip. In such a

placement, there are SMBs PEs
2 2
N N

+ in each row if N is an even natural number. In this case,

an array of N rows consists of
2 2

SMBs PEs
2 2

N N
+ . Since only a subset of the SMBs in the array

of size M is connected to the output pins of the chip, the bandwidth of the array depends

primarily on the cardinality of this subset. Note that since the PEs are not connected directly to

the chip IO pins, they cannot support any bandwidth at all.

68

CHAPTER SIX: CONCLUSION

This thesis proposes CRYPTARRAY, a two-dimensional, scalable architecture in which bus-

based communication is replaced by distributed shared memory communication. At the physical

level, the length of the wires is kept to a minimum. The array is organized as a chessboard in

which the dark and light squares represent PEs and SMBs respectively. The granularity and

resource composition of the PEs is specifically designed to support the computing operations

encountered in cryptographic algorithms in general, and symmetric algorithms in particular.

Communication can occur only between neighboring PEs through local SMBs. Because of the

chessboard layout, the architecture can be reconfigured to allow computation to proceed as a

pipelined wave in any direction. This organization offers a high computational density in terms

of datapath resources and a large number of distributed storage resources that easily support a

high degree of parallelism and pipelining. In addition, this architecture provides a high degree of

flexibility supported by its reconfigurability. Based on the obtained experimental results, this

architecture can deliver a performance that can easily address the bandwidth requirements of

many cryptographic applications if sufficient resources are available.

While this thesis shows how CRYPTARRAY can address the performance requirements of most

cryptographic applications, future work can improve further the proposed architecture if the

following issues are considered:

69

(i) What would be the optimal size of the SMBs considering the variety of cryptographic

algorithms? The answer to this question can minimize SMB waste when mapping

cryptographic applications. This answer can be obtained by mapping representative

cryptographic algorithms on CYRPTARRAY and evaluate memory usage for each

algorithm in order to derive an optimal size of the SMBs.

(ii) How many ports can an SMB have in order to simplify the access of the PE to the

SMB? By increasing the number of ports of an SMB, more than one PE can access the

SMB at the same time. This capability can increase the degree of parallelism in the

array by simplifying the state controller used to control the access of the PE blocks to

an SMB. However, implementing multi-ports SMBs onto FPGA chips is not area

efficient. Such SMBs can be built in an area-economic fashion if implemented as

custom circuits on ASICs. Examples of such implementations can be found in the

multi-port memories offered by IDT in which each memory cell consists of four

CMOS transistors and each port addressing the cell consists of two transistors [40].

(iii) How can the bit width of the array be improved to handle asymmetric algorithms?

Since asymmetric algorithms use keys that are thousands of bits wide, it is not clear if

a 4-bit architecture is suitable for executing these algorithms. Mapping and profiling

these algorithms on CRYPTARRAY can reveal valuable insights on how the bit

width can be changed to handle efficiently secret-key cryptography.

70

(iv) How can CRYPTARRAY’s throughput be measured accurately? It seems that an

accurate measure of the array’s bandwidth can be obtained by mapping representative

applications and tallying the number of encrypted packets per seconds.

The answers to these questions can increase the flexibility of the array and improve its

performance further in supporting cryptographic processing on Internet-based applications.

71

REFERENCES

[1] C. Kaufman, R. Perlman, and S. M., Network security: Private communication in a
public world: Prentice Hall, 1995.

[2] B. Schneier, Applied Cryptography, Second Edition ed: John Wiley & Sons, 1994.

[3] R. A. Mollin, An introduction to cryptography. Boca Raton, FL: Chapman & Hall/CRC,

2001.

[4] H. X. Mel and D. Baker, Cryptography decrypted. Upper Saddle River, NJ, 2001.

[5] M. S. Merkow and J. Breithaupt, The complete guide to Internet security: AMACOM,

2000.

[6] J. Burke, J. McDonald, and T. Austin, "Architectural support for fast symmetric-key

cryptography," Architectural Support for Programming Languages and Operating
Systems, 2000, pp. 178-189.

[7] S. Moore, "Enhancing security performance through IA-64 architecture," Intel

Coporation, 1999.

[8] Z. Shi and R. B. Lee, "Bit permutation instructions for accelerating software

cryptography," International Conference on Application-Specific Systems, 2000, pp. 138-
148.

[9] X. Lai, On the design and security of block ciphers: Hartung-Gorre Veerlag, 1992.

[10] B. Schneier, J. Kelsey, D. Whiting, C. Wagner, and N. Ferguston, "Twofish: A 128-bit

block cipher," Counterpane Labs 1998.

[11] Counterpane Labs, "The blowfish encryption algorithm," Counterpane Labs, 2002.

[12] J. Goodman and A. P. Chandrakasan, "An energy-efficient reconfigurable public-key

cryptography processor," IEEE Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1808-
1820, Nov. 2001.

[13] L. Wu, C. Weaver, and T. Austin, "CryptoManiac: A fast flexible architecture for secure

communication," Interantional Symposium on Computer Architecture, 2001, pp. 110-
119.

72

[14] S. S. Raghuran and C. Chakrabarti, "A programmable processor for cryptography," IEEE
International Symposium on Circuits and Systems, 2000, pp. V/685-V/688.

[15] R. Ho, K. W. Mai, and M. A. Horowitz, "The future of wires," Proceedings of the IEEE,

vol. 89, no. 4, pp. 490-504, Apr. 2001.

[16] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, "Smart memories:

A modular reconfigurable architecture," Annual International Symposium on Computer
Architecture, 2000, pp. 161-71.

[17] W. J. Dally and S. Lacy, "VLSI architectures: Past, present, and future," Conference on

Advanced Research in VLSI, 1999, pp. 232-241.

[18] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P.

Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, "The raw microprocessor: A computational
fabric for software circuits and general-purpose programs," IEEE Micro, vol. 22, no. 2,
pp. 25-35, Mar./Apr. 2002.

[19] P. L. Montgomery, "Modular multiplication without trial division," Mathematics of

Computation, vol. 44, no. 170, pp. 519-521, 1985.

[20] N. Takagi, "A radix-4 modular multiplication hardware algorithm for modular

exponentiation," IEEE Transactions on Computers, vol. 41, no. 8, pp. 949-956, Aug.
1992.

[21] M. Shand and J. Vuillemin, "Fast implementations of RSA cryptography," IEEE

Symposium on Computer Arithmetic, 1993, pp. 252-259.

[22] S. E. Eldridge and C. D. Walter, "Hardware implementation of Montgomery's modular

multiplication algorithm," IEEE Transactions on Computers, vol. 42, no. 6, pp. 693-699,
June 1993.

[23] C. D. Walter, "Systolic modular multiplication," IEEE Transactions on Computers, vol.

42, no. 3, pp. 376-378, Mar. 1993.

[24] J.-H. Guo, C.-L. Wang, and H.-C. Hu, "Design and implementation of an RSA public-

key cryptosystem," IEEE International Symposium on Circuits and Systems, 1999, pp.
504-507.

[25] A. A. Tiountchik, "Systolic modular exponentiation via Montgomery algorithm,"

Electronic Letters, vol. 34, no. 9, pp. 874-875, 1998.

73

[26] A. Ejnioui and N. Ranganathan, "Systolic algorithms for tree pattern matching,"
International Conference on Computer Design, 1995, pp. 650-655.

[27] V. Krishna, N. Ranganathan, and A. Ejnioui, "A tree matching chip," IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp. 277-280, June 1999.

[28] S. Krishna, N. Ranganathan, and A. Ejnioui, "A VLSI architecture for object recognition

using tree matching," International Conference on Application-Specific Systems,
Architectures and Processors, 2002, pp. 325-334.

[29] S. Ishii, K. Ohyama, and K. Yamanaka, "A single-chip RSA processor implemented in a

0.5-mm rule gate array," IEEE International ASIC Conference and Exhibit, 1994, pp.
433-436.

[30] J.-Y. Leu and C.-L. Wu, "A scalable low-complexity digit-serial VLSI architecture for

RSA cryptosystems," IEEE Workshop on Signal Processing Systems, 1999, pp. 586-595.

[31] A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaeslin, and W. Fichtner,

"VINCI: VLSI implementation of the new secret-key block cipher IDEA," IEEE Custom
Integrated Circuits Conference, 1993, pp. 15.5.1-15.5.4.

[32] S. Wolter, H. Matz, A. Schubert, and R. Laur, "On the VLSI implementation of the

International Data Encryption Algorithm IDEA," IEEE International Symposium on
Circuits and Systems, 1995, pp. 397-400.

[33] Y.-K. Lai and Y.-C. Shu, "VLSI architecture design and implementation for BLOWFISH

block cipher with secure modes of operation," IEEE International Symposium on Circuits
and Systems, 2001, pp. 57-60.

[34] IEEE Standards Board, "IEEE standard specifications for public-key cryptography,"

2000.

[35] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, "A fully pipelined memoryless 17.8

Gbps AES-128 encryptor," ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, 2003, pp. 207-215.

[36] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An FPGA-based performance evaluation

of the AES block cipher candidate algorithm finalists," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 9, no. 4, pp. 545-557, Aug. 2001.

[37] P. Chodowiec, P. Khuon, and K. Gaj, "Fast implementations of secret-key block ciphers

using mixed inner- and outer-round pipelining," ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, 2001, pp. 94-102.

74

[38] K. Leitjen-Nowak and J. L. Van Meerbergen, "An FPGA architecture with enhanced

datapath functionality," ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, 2003, pp. 195-204.

[39] R. R. Taylor and S. C. Goldstein, "A high-performance flexible architecture for

cryptography," Workshop on Cryptographic Hardware and Embedded Systems, 1999

[40] J. R. Mick, “Introduction to IDT’s four-port SRAMs”, Application Note AN-45, IDT

Corporation, Aug. 1999, available at
http://www1.idt.com/pcms/tempDocs/7052_AN_52995.pdf.

75

	Cryptarray A Scalable And Reconfigurable Architecture For Cryptographic Applications
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	1.1 Cryptographic Applications
	1.1.1 Symmetric Algorithms
	1.1.2 Asymmetric Algorithms

	1.2 Cryptographic Hardware Systems
	1.3 CMOS Technology Scaling
	1.3.1 Gate Delay Scaling
	1.3.2 Wire Delay Scaling

	1.4 Architectural Implications
	1.5 Thesis Contribution
	1.6 Thesis Outline

	CHAPTER TWO: RELATED WORK
	2.1 Cryptographic Systolic and VLSI Architectures
	2.2 Cryptographic Programmable Processors
	2.3 Cryptographic FPGA Designs
	2.4 Summary

	CHAPTER THREE: CRYPTARRAY
	3.1 Layout of CRYPTARRAY
	3.2 Shared Memory Blocks
	3.3 PE Organization
	3.4 PE Instructions
	3.5 PE Reconfiguration

	CHAPTER FOUR: PE ARCHITECTURE
	4.1 Architectural Components of the PE
	4.2 Architecture of Block 1
	4.3 Architecture of Block 2
	4.4 Architecture of Block 3
	4.5 Architecture of Block 4
	4.6 Architecture of Block 5
	4.7 PE State Control

	CHAPTER FIVE: MODELING AND IMPLEMENTATION OF CRYPTARRAY
	5.1 Modeling of CRYPTARRAY
	5.2 Verification of the VHDL Entities
	5.3 Synthesis of the PE Model
	5.4 Synthesis of the SMB Model
	5.5 Performance of CRYPTARRAY
	5.5.1 Clock Frequency
	5.5.2 Area Cost
	5.5.3 Possible Bandwidth
	5.5.4 Summary of CRYPTARRAY’s Performance

	CHAPTER SIX: CONCLUSION
	REFERENCES

