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ABSTRACT 

 

Cryptography is increasingly viewed as a critical technology to fulfill the requirements of 

security and authentication for information exchange between Internet applications. However, 

software implementations of cryptographic applications are unable to support the quality of 

service from a bandwidth perspective required by most Internet applications. As a result, various 

hardware implementations, from Application-Specific Integrated Circuits (ASICs), Field-

Programmable Gate Arrays (FPGAs), to programmable processors, were proposed to improve 

this inadequate quality of service. Although these implementations provide performances that are 

considered better than those produced by software implementations, they still fall short of 

addressing the bandwidth requirements of most cryptographic applications in the context of the 

Internet for two major reasons: 

(i) The majority of these architectures sacrifice flexibility for performance in order to 

reach the performance level needed for cryptographic applications. This lack of 

flexibility can be detrimental considering that cryptographic standards and algorithms 

are still evolving. 

(ii) These architectures do not consider the consequences of technology scaling in 

general, and particularly interconnect related problems.   

As a result, this thesis proposes an architecture that attempts to address the requirements of 

cryptographic applications by overcoming the obstacles described in (i) and (ii).    
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To this end, we propose a new reconfigurable, two-dimensional, scalable architecture, called 

CRYPTARRAY, in which bus-based communication is replaced by distributed shared memory 

communication. At the physical level, the length of the wires will be kept to a minimum. 

CRYPTARRAY is organized as a chessboard in which the dark and light squares represent 

Processing Elements (PE) and memory blocks respectively. The granularity and resource 

composition of the PEs is specifically designed to support the computing operations encountered 

in cryptographic algorithms in general, and symmetric algorithms in particular. Communication 

can occur only between neighboring PEs through locally shared memory blocks. Because of the 

chessboard layout, the architecture can be reconfigured to allow computation to proceed as a 

pipelined wave in any direction. This organization offers a high computational density in terms 

of datapath resources and a large number of distributed storage resources that easily support a 

high degree of parallelism and pipelining. Experimental prototyping a small array on FPGA 

chips shows that this architecture can run at 80.9 MHz producing 26,968,716 outputs every 

second in static reconfiguration mode and 20,226,537 outputs every second in dynamic 

reconfiguration mode.  
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CHAPTER ONE: INTRODUCTION 

  

The fast pace of advancement in semiconductor integration and fabrication spurred the 

development of computing applications that began to shift from client-server based computing 

confined inside private networks to the world-wide open connectivity of the Internet. This shift 

to an Internet-based computing mandated that the Internet becomes a secure vehicle for 

communication and electronic commerce. As a result, cryptography and its various applications 

became an essential component of modern information systems. Semantically, cryptography is 

the art of writing secrets [1]. In practice, cryptography encodes information using an encryption 

process, into a form that is incomprehensible to anyone except to the intended recipient, who can 

then decode the original information using a secret key, a process called decryption [2].  

  

1.1 Cryptographic Applications 

The science of cryptography refers to the study of methods for sending messages in secret, 

namely in enciphered or disguised form, so that only the intended recipient can remove the 

disguise and read the message or decipher it. The original message is called the plaintext while 

the disguised message is called the ciphertext. The final sent message is called a cryptogram. 

The process of transforming plaintext into ciphertext is called encryption or enciphering. The 

reverse process of turning the ciphertext into plaintext is called decryption or deciphering [3]. In 

general, cryptosystems can be broadly classified into symmetric and asymmetric algorithms. 
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Figure 1: Encryption and decryption [2]. 

 

1.1.1 Symmetric Algorithms 

The symmetric or secret-key algorithms, such as DES, IDEA, and SAFER require that the sender 

and receiver share the same secret key that is used to encrypt and decrypt the messages 

exchanged between both.  

 

Definition 1: A cryptosystem is called symmetric-key if for each key pair (e, d), the key is 

“computationally easy” to determine knowing only e and to similarly determine e knowing only 

d [3].    

  

It is meant by a computationally easy problem a problem that can be solved in expected 

polynomial time and can be attacked using available resources. Symmetric algorithms can be 

subdivided into stream ciphers or block ciphers. Stream ciphers are algorithms that operate on 

the plaintext a single bit at a time, and block ciphers are algorithms that operate on the plaintext 

in groups of bits or blocks. In general, secret key cryptography implements confidentiality, 

authentication, and integrity for both holders of the secret key. 
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Figure 2: Symmetric cryptography [4]. 

 

1.1.2 Asymmetric Algorithms 

On the other hand, asymmetric or public-key algorithms, such as RSA, rely on a public key that 

is stored in the open and can be used by anyone to encrypt a message. A private key is generated 

from the public key and then used by the recipient to decrypt the message. 

  

Definition 2: A cryptosystem consisting of a set of enciphering transformations {Ce} and a set of 

deciphering transformations {Dd} is called an asymmetric or public-key if, for each key pair (e, 

d), the enciphering key e, called the public key, is made publicly available, while the deciphering 
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key d, called the private key, is kept secret. The cryptosystem must satisfy the property that it is 

computationally infeasible to compute d from e [3]. 

 

It is meant by a computationally infeasible problem a problem that, given the enormous amount 

of computer time that would be required to solve the problem, this problem cannot be solved in 

realistic computational time. Thus, computationally infeasible means that, although there 

theoretically exist a unique solution to the problem, this solution cannot be found even if all the 

available time and resources are devoted to its discovery. In contrast to symmetric algorithms, 

asymmetric algorithms allow confidentiality, authentication, integrity, and nonrepudiation to be 

asymmetrically shared among key holders. Table 1 shows a summary of the attributes of 

symmetric and asymmetric algorithms. 

 

 

Figure 3: Asymmetric cryptography [4]. 
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Table 1: Summary of secret and public key attributes [4]. 

Attribute Symmetric Cryptosystem Asymmetric Cryptosystem 
Years in use Thousands Less than 50 
Current main use Bulk data encryption Key exchange, digital signatures 
Current standard DES, Triple DES, and 

Rinjdael 
RSA, Diffie-Hellman, DSA 
(Elliptic curve) 

Encryption/decryption speed Fast Slow 
Keys Shared secret between at 

least two persons 
Private: Key concealed by one 
person 
 
Public: Key widely distributed 

Key exchange Difficult and risky to transfer 
a secret key 

Easy and less risky to deliver a 
public key 
 
Private key never shared 

Key length 56-bit obsolete 
 
128-bit considered safe 

1024 suggested (RSA) 
 
Some users demand 2048 bits 

Confidentiality, authentication, 
message integrity 

Yes Yes 

Nonrepudiation No 
 
Need trusted third party to 
act as witness 

Yes 
 
Digital signatures: No need for a 
trusted third party 

Attacks Yes Yes 
 

1.2 Cryptographic Hardware Systems 

Early efforts of integrating cryptography into current information systems were software 

implementations. Although some implementations can deliver satisfactory performance, most 

cannot address the bandwidth requirements of many applications that rely on cryptography to 

secure data integrity. In some instances, security-related processing can consume as much as 

95% of a server’s processing capacity [5]. Today, most secure information systems establish 

communication sessions during which information is exchanged. These sessions are usually 

initialized by exchanging keys which are used for encrypting and decrypting exchanged 
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information. For instance, the Secure Socket Layer (SSL) protocol extends TCP/IP protocol by 

supporting secure encrypted connections with authentication of senders and receivers. Web 

servers and browsers use this protocol to establish secure HTTP connections. At the start of a 

session, a public key is exchanged to authenticate the identity of the sender and receiver. In the 

remainder of the session, only private key encryption/decryption will be used to exchange 

content. Figure 4 shows the relative costs of symmetric and asymmetric cryptography in a web 

server [6]. The numbers shown in the figure were obtained for a heavily loaded web server 

running on an Itanium iA32 platform.    

 

 

Figure 4: SSL characterizations by session length. 
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It is clear that for short sessions, fast asymmetric cipher processing is needed to insure high 

throughput while symmetric cipher processing is important for longer sessions. As secure 

communication requires increasingly larger bandwidths, the performance of cryptographic 

applications becomes critical to overall system performance. Recently, several efforts went into 

overcoming the shortcomings of software implementations by mapping cryptographic algorithms 

directly into hardware. These efforts evolved in three different directions: 

(i) Extension of the instruction sets of general purpose processors to support specific 

operations that are frequent in cryptographic algorithms, but execute inefficiently in these 

processors [7, 8]. 

(ii) Implementation of specific algorithms or complex arithmetic functions as hardware cores 

that can be incorporated into an ASIC or mapped onto an FPGA [9-11]. 

(iii) Design of programmable processors optimized for cryptography [12-14]. 

 

Although the approach in (i) can enhance the performance of general-purpose processors, it is 

doubtful that it can accommodate the bandwidth requirements of new communication systems. 

The approach in (ii) can deliver superior performance, but it does not offer any flexibility if 

future modifications to the initial cryptographic algorithm need to be added. This is quite 

restrictive given the fact that most cryptographic algorithms are still evolving at a faster rate in 

order to withstand the rigors of cryptanalysis [14]. The approach in (iii) is attractive since it 

offers a great degree of flexibility and performance. Although their performance can be quite 

significant, programmable processors fall short of the great potential that can be achieved should 
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their design take into consideration the physical realities imposed by the scaling of CMOS 

technology [15].  

 

1.3 CMOS Technology Scaling 

The continuous scaling of CMOS technology shifted the focus of computer architecture from 

gate performance to wire performance. In general, wires delay kept increasing as transistors kept 

shrinking. 

 

1.3.1 Gate Delay Scaling 

Historical records of the characterizations of various CMOS processes show that gate delay has 

scaled linearly with technology. Figure 5 shows the gate delay in different process technologies 

running under the worst environmental conditions (125°C, 90%Vdd). In the figure, the gate delay 

is expressed in FO4, a “fanout-of-four inverter delay” [15].  

 

An FO4 delay is the delay through an inverter that is driving four copies of itself as shown in 

Figure 6 [15]. Designers use this simple metric to overcome the complexity of characterizing 

delay in transistor devices. For example, an FO4 is about 90 picoseconds in a 0.18 µm process 

under worst environmental conditions characterized by a high temperature and low Vdd. 
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Figure 5: FO4 delay scaling. 

 

 

Figure 6: An FO4 delay. 

  

1.3.2 Wire Delay Scaling 

Most technology studies show that chip architectures tend to use two types of wires as shown in 

Figure 7, where the first type connects gates locally inside the blocks while the second type 

connects blocks together [15]. The first type consists of short wires while the second type 

consists of global wires.  
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Figure 7: Short and global wires. 

 

These studies show that short wires exhibit a constant wire resistance and a falling wire 

capacitance with regard to length scaling factors as shown in Figure 8. The figure shows the 

delay of a wire that spans at most a block of 50,000 gates [15]. However, the same studies show 

that the delay of global wires displays a large disparity with the delay in gates. Figure 9 shows 

the delay of 1-cm long wire relative to gate delay on a log scale [15]. 

 

 

Figure 8: Wire delay in FO4 for scaled-length wires spanning 50K gates. 
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Figure 9: Wire delay in FO4 for fixed-length wires 1 cm long. 

 

1.4 Architectural Implications 

Technology scaling studies show that global wires ought to be avoided as much as possible in 

most architectures since new processes offer new possibilities for designers to pack a large 

number of gates in a given area of silicon. This exponential increase in the number of gates 

makes it very difficult for many signals to reach their destination gates in one clock cycle. 

 

As a result, the distance that signals can travel on the wires per clock cycle has been decreasing 

exponentially for some years. While in the past global communication on global wires was 

sufficiently cheap, it encouraged architects to focus highly on functionality and less on 

communication. What ensued is a plethora of function-centric architectures in which the overall 

architecture is conceived as a monolithic entity without any regard to the costs of global 
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communication and where the primary objective is to fit the design on the chip. As the 

complexity of on-chip architectures continues to increase, there seems to be an urgent need to 

give priority to communication over functionality in architectural considerations. Architects are 

increasingly interested in breaking architectures into modular sub-architectures in which 

communication in the basic blocks tend to grow sub-linearly as technology is scaled down. 

These highly scalable architectures consist usually of identical processing nodes connected by 

short wires and tailored specifically to a class of applications. One approach advocates the 

duplication of functional units to consume the growing number of available transistors, thus 

increasing the explicit degree of parallelism and hence throughput [16]. This approach can be 

realized by architectures that rely on local communication between low-complexity nodes [17]. 

Such architectures tend to scale effectively to the problems imposed by the interconnect [16, 18]. 

Because of the severity of the wiring effects and bandwidth requirements for security 

applications, these modular architectures are good candidates for addressing the computational 

requirements of cryptographic applications. 

 

1.5 Thesis Contribution 

In this thesis, we propose a new reconfigurable, scalable, two-dimensional architecture, called 

CRYPTARRAY, in which bus-based communication is replaced by distributed shared memory 

communication. At the physical level, the length of the wires will be kept to a minimum. 

CRYPTARRAY is organized as a chessboard in which the dark and light squares represent 

Processing Elements (PE) and memory blocks respectively. The granularity and resource 
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composition of the PEs is specifically designed to support the computing operations encountered 

in cryptographic algorithms in general, and symmetric algorithms in particular. Communication 

can occur only between neighboring PEs through locally shared memory blocks (SMBs). 

Because of the chessboard layout, the architecture can be reconfigured to allow computation to 

proceed as a pipelined wave in any direction. This organization offers a high computational 

density in terms of datapath resources and a large number of distributed storage resources that 

easily support a high degree of parallelism and pipelining.  

 

1.6 Thesis Outline 

Chapter 2 reviews previous work related to hardware implementation of cryptographic 

algorithms and computations while chapter 3 describes the overall architecture of 

CRYPTARRAY. Chapter 4 describes the architecture and state control of the PE while chapter 5 

presents the modeling and implementation of the PEs and SMBs. Chapter 6 presents the 

conclusion of this thesis. 
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CHAPTER TWO: RELATED WORK 

 

In this chapter, a brief overview of the various architectures for cryptographic applications is 

presented. The chapter presents previously proposed systolic and VLSI architectures that support 

compute-intensive arithmetic operations encountered in cryptographic algorithms. Later, the 

chapter describes new programmable architectures optimized towards cryptographic operations. 

These architectures are motivated by the need for a greater flexibility to address the various 

requirements of cryptographic applications as security standards keep changing. Finally, the 

chapter concludes by presenting recent attempts at implementing cryptographic algorithms on 

Field-Programmable Gate Arrays (FPGAs). FPGA technology has matured to the point where 

high throughputs are easily obtainable in many applications, including cryptography. 

 

2.1 Cryptographic Systolic and VLSI Architectures

Early hardware implementations of cryptography focused on complex arithmetic operations 

encountered in public cryptography such as modular multiplication involving operands of more 

than 1024 bits. This multiplication is based on the Montgomery method [19]. In general two 

distinct approaches were used to support performance with wide-operand multiplication: 

redundant representation [20-22] and systolic arrays [23-25]. Both approaches are used in 

conjunction with Montgomery reduction. The implementations based on the first approach suffer 

from excessive storage area or inadequate performance to complete the multiplication while 

those based on the second approach deliver good performance although they tend to consume 
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large logic resources. However due to their high flexibility, systolic approaches based on clever 

algorithm and architecture design can overcome these difficulties as was previously done in 

various other applications [26-28]. Other efforts to remedy these limitations were undertaken by 

either using improved redundant representations or digit-serial architectural approaches [29, 30]. 

Recently, secret-key algorithms became the subject of various VLSI implementations as well 

[31-33].  

 

2.2 Cryptographic Programmable Processors

Beside systolic and VLSI implementations, some authors suggested extending the instruction 

sets of existing processors with special instructions to handle specific operations encountered in 

cryptography. One of the earliest attempts in this direction proposed a special instruction to 

support efficient software implementations of general bit permutations [8]. Later in [6], the 

authors recommended adding instructions to rotate bits left and right, S-box operations, X-box 

operations, and modular multiplication since they are heavily used in secret-key algorithms. As 

cryptographic standards and algorithms kept evolving through cryptanalytic studies, other 

authors emphasized the need for agile architectures in order to offer high flexibility and 

acceptable performance. Until now, only a handful of attempts pursued this direction. In [14], the 

authors describe the architecture of a programmable processor that can handle cryptographic 

algorithms in general. The architecture supports exponentiation by embedding an optimized 

multiplier with the exponentiation unit. Through careful loop unrolling of the Montgomery 

algorithm, the processor is able to deliver relatively high encryption rates even though the 
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architecture was synthesized in 2-µm CMOS technology considered somewhat outdated. In [12], 

the authors propose an energy-efficient reconfigurable processor for public-key cryptography. 

The processor architecture is designed to support only the subset functions required for 

asymmetric cryptography [34]. As a result, the processor’s instruction set contains operations 

related to conventional arithmetic, modular integer arithmetic, GF(2n) arithmetic, and elliptic 

curve field arithmetic over GF(2n). The processor is relatively energy efficient when compared to 

software and FPGA implementations of typical operations. Another proposal for a programmable 

processor has been described in [13]. The processor architecture targets the primary bottlenecks 

in private cryptography by matching the instruction set and functional resources to support the 

compute intensive operations in secret-key algorithms. The processor is a four-issue VLIW 

processor consisting of four pipeline stages: Instruction Decode (ID), Instruction 

Decode/Register Fetch (ID/RF), Execute/Memory Access (EX/MEM), and Write-Back (WB). 

The EX/MEM stage contains four functional units where each unit consists of two logical units, 

a 32-bit pipelined multiplier, a 1KB cache for S-box operations, a 32-bit adder, and a 32-bit 

rotator. Although the architecture was automatically synthesized, it delivers a performance that is 

32% to 290% better than that of a 600 MHz Alpha processor for the Blowfish, 3DES, MARS, 

and Rinjdael kernels. While the programmable processor approach is highly agile, it still falls 

short of the potential performance gains that can be achieved if the architecture adopts a low-

latency communication scheme between medium granularity functional units, instead of the 

costly global communication approach used in monolithic processors. 
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2.3 Cryptographic FPGA Designs

Using FPGA technology, several implementations have been proposed whereby multi gigabits 

per second performances were obtained [35-37]. The flexibility provided by FPGA 

implementations can be quite attractive since most cryptographic algorithms are still evolving. In 

addition, the capacity of many FPGA chips has reached a level that is suitable to support the 

mapping of the numerous rounds present in most cryptographic algorithms. In [35], 11 rounds of 

the AES selected Rinjdael algorithm are unrolled and pipelined onto a high-capacity Virtex 

FPGA in such a way that a new 128-bit data-key pair can be input at every clock cycle. The 

result of this pipelined approach is a design that can run at 139.1 MHz with a throughput of 17.8 

Gbps. While most FPGA chips are general-purpose reprogrammable devices, they are mostly 

used for specific application domains. The analysis of cryptographic applications reveals that 

these applications are usually dominated by varying width arithmetic operations and bit 

computations. Arithmetic operations can benefit from the use of coarse-grain reconfigurable 

components instead of the Look-Up Tables (LUT) used in FPGAs. If reconfiguration bit quantity 

is used to measure LUT complexity, it becomes clear that when LUTs are used for arithmetic 

operations, this complexity increases with operand width [38]. As for bit computations such S-

box operations, they can be supported efficiently through tables or memories. Although most 

recent FPGAs contain memory blocks that can be used for bit operations, they can be located 

quite apart from where arithmetic operations are occurring in the chip depending on the mapping 

and placement. Transferring data between these memory blocks and arithmetic operations can be 

detrimental to performance, considering the penalty associated with FPGA interconnects.  
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2.4 Summary

Given the urgency needed to address the interconnect problem, modular scalable reconfigurable 

architectures are good candidates to address the computational requirements of cryptographic 

applications. As opposed to the three hardware approaches described above, reconfigurable 

architectures can provide the following significant advantages: (i) the bit-width of the operations 

can be tailored to a given computation, (ii) multiple PEs can operate in parallel to take advantage 

of data dependencies inherent to the application, (iii) PEs can be pipelined through 

reconfiguration to increase the application throughput, (iv) PEs can be reconfigured in groups to 

support complex operations if need be, (v) input and output values are recycled several times 

within a computation, thus avoiding slow and repetitive accesses to monolithic RAMs associated 

with general purpose processors [39]. All these advantages can be readily realized in 

CRYPTARRAY. 
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CHAPTER THREE: CRYPTARRAY 

 

In this chapter, section 3.1 presents the overall organization of CRYPTARRAY while section 3.2 

explains the organization of the shared memory blocks. In addition, section 3.3 presents an 

overview of the functionality of the processing element in CRYPTARRAY while section 3.4 

describes the format and hierarchical encodings of the instructions used to program the array.  

Finally, section 3.5 presents the instruction-dispatching based reconfiguration mechanism and its 

two modes for CRYPTARRAY. 

 

3.1 Layout of CRYPTARRAY

CRYPTARRAY is a two-dimensional array of tiles organized in a checkerboard-type pattern. 

Each tile can be either : (i) a datapath tile containing a single processing element (PE), or (ii) a 

storage tile containing a shared memory block (SMB). Tiles are connected on their perimeter by 

direct short wires, and can subsequently communicate only with their immediate neighbors. 

Figure 10 shows the layout of an array architecture using 24 PEs and 25 SMBs. The tiles in the 

array can be reconfigured by dispatching wide instructions to the PEs. This mechanism of 

programming the array can lead to a high degree of parallelism and pipelining. 
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Figure 10: Checkerboard layout of CRYPTARRAY. 

 

3.2 Shared Memory Blocks

A storage tile consists of a 512 x 4-bit multi-port memory block. This memory stores the 

operands and results of arithmetic operations and can be used for substitution operations. These 

substitutions use table lookups to support any key-parameterized function such as S-BOX 

operations, which are common in cryptographic algorithms. S-BOX operations consist mainly of 

searching entries in 512 x 32-bit tables. 
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An SMB is shared between its four surrounding PEs as it can be accessed for reading and writing 

by any adjacent PE. It is connected to each single PE using three four-bit data lines where the 

two first data lines are used for reading the operands while the remaining data line is used for 

writing the resulting data. In addition, the SMB has three address lines where each address line 

serves a single data line. Since there are four PEs connected to each SMB, a total of eight read 

and four write ports are available for each SMB. To avoid write conflicts, each of the four 

surrounding PEs can write to only a fourth of the 512 available memory addresses, or 128 

possible locations of an SMB. This introduces some asymmetry in the addressing busses by 

making them nine and seven-bit wide for reading and writing respectively. Figure 11 shows the 

connectivity of an SMB to its four surrounding PEs. As shown in the figure, the PE located to the 

bottom of the SMB can write to the first set of 128 addresses (0-127) while the PE located to the 

left of the SMB can write to the second set of 128 addresses (128-255). In addition, the PE 

located to the right of the SMB can write to the third set of 128 addresses (236-364) while the PE 

located on the top of the SMB can write to the final set of 128 addresses (365-512). For reading, 

all four PEs can access the entire 512MB of memory space in the SMB. For performance 

purposes, it was decided that this configuration is more efficient since it provides a realistic 

number of read/write memory ports and hence is low in area cost. The consequence of this 

configuration, when compared with the next best alternative, is that two additional clock cycles 

are needed to complete the input and output of data for all five of the operation blocks within the 

PE. 
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Figure 11: Connectivity of the SMB to its four surrounding PEs. 
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For each of the PEs, there are 11 data inputs and 5 data outputs required. Table 2 displays the 

possible configurations that were considered for selecting a final read/write SMB-PE interface 

configuration, where the leftmost column is simply an alphabetic label assigned to the particular 

setup allowing for identification of that configuration in further discussion. 

  

Table 2: Possible configurations of read/write ports between an SMB and its four 
surrounding PEs. 

 
  Memory Ports  Cycle Access  

 

Configuration 

Reads 

(per PE) 

Writes 

(per PE)

 

Total 

Time 

(cycles)

Blocks 

(per PE) 

PEs

A 11 5 44 reads + 20 writes = 64 1 All All 

B 6 3 24 reads + 12 writes = 36 2 3 reads, 3 writes All 

C 4 2 16 reads + 8 writes = 24 3 2 reads, 2 writes All 

D 11 5 11 reads + 5 writes = 16 4 All 1 

E 2 1 8 reads + 4 writes = 12 6 1 read, 1 write All 

 

The next three columns in the table refer to the read ports, write ports, and total number of ports 

respectively.  The fifth column represents the number of clock cycles that are required for all of 

the inputs and outputs of the four neighboring PEs to access an SMB. The sixth column shows 

the number of operation blocks in each PE that can access an SMB per clock cycle while the last 

column indicates how many of the neighboring PEs can access the SMB in each clock cycle.  

Table 3 shows the advantages and disadvantages of each SMB-to-PE interface configuration. 
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Table 3: Comparison of the five SMB-PE interface configurations. 

Configuration Comments,  Advantages, and disadvantages 
 Comment All the I/O ports of each PE are able to access the SMB in each cycle. 

A Advantage With one required cycle for all five PE blocks and all surrounding PEs, 
it is obvious that this is the fastest configuration. 

 Disadvantage Too many read/write ports to efficiently implement in an SMB. 
   

 Comment Half of the read and write ports of all surrounding PEs access the SMB 
simultaneously. 

B Advantage With two cycles for all five PE blocks and all surrounding PEs, this is 
the second fastest configuration. 

 Disadvantage The required 24 read and 12 write ports will produce an inefficient 
implementation. 

   

 Comment A third of the read and write ports of all surrounding PEs can access 
the SMB simultaneously. 

C Advantage With three cycles for all five PE blocks in the four surrounding PEs, it 
is the third fastest configuration.  

 Disadvantage The implementation can be costly since this configuration requires 16 
read and 8 write ports. 

   
 Comment All I/O ports of a single PE amongst the surrounding PEs can access 

the SMB. 

D Advantage This configuration has a significantly reduced number of read/write 
ports in contrast to the previous configurations. 

 Disadvantage This configuration requires a complex control to determine which PE 
is ready to write to the SMB for any given cycle. 

   
 Comment One PE block writes while another reads in each of the four 

surrounding PEs. 
E Advantage An eight-read four-write port memory is not a costly implementation. 
 Disadvantage This is the slowest configuration since it requires six cycles to 

complete.  
 

Although configuration E has the slowest access as shown in Tables 2 and 3, it was chosen for 

this design since its implementation of the SMB requires a reasonable number of read and write 

ports.  For configuration D, which is the next best option, significant control complexity could 

arise with regard to determining which of the four PEs that surround a particular SMB would be 
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allowed to access it next. This is further complicated by the necessity for each PE to be able to 

fully access any of its four surrounding SMBs. 

 

3.3 PE Organization

Depending on its configuration, a PE can read from and write to any one of its four neighboring 

SMBs. The choice of datapath resources in the PE is heavily based on the primary operations 

required in cryptographic applications. These include modular addition, modular multiplication, 

substitutions such as SBOX operations, and general permutations [6]. As a result, the following 

arithmetic and logic operations are supported by the PE: (i) addition, (ii) subtraction, (iii) 

multiplication, (iv) rotation, (v) comparison, and (vi) logical operations. These operations are 

stored in the configuration of the PE and are sent as static instructions. As shown in Figure 12, 

the structure of a PE consists of five blocks for arithmetic/logic operations supported by 

additional logic for controlling the read/write memory access.  

 

The operation blocks are organized as follows: (i) the first block supports four-bit logic 

operations, (ii) the second block supports four-bit comparisons, (iii) the third block supports 

four-bit shift rotations, (ii) the fourth block supports four-bit addition and subtraction, and (iii) 

the fifth block supports four-bit multiplication. The control logic consists of two blocks, (i) an 

instruction decoder, and (ii) a state machine that enables and disables the operating blocks. Each 

block can independently access a neighboring SMB to retrieve its operands and write its result. 
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Figure 12: Structural Organization of the PE. 

 

Consequently, while all four neighboring PEs can access an SMB simultaneously, only one of 

the five blocks within each PE can access the SMB per cycle. These five blocks cyclically rotate 

in turn for memory access.  If block one is the first to receive input data, block two will be next, 

followed by block three, and so forth. The logic operations of the first block are AND, OR, 

NAND, NOR, XOR, XNOR and NOT. The comparator of the second block can perform 

comparisons of two numbers, which can be used to support branching and looping control 

operations. The barrel shifter in the third block can rotate by one, two, or three positions to the 

left or to the right depending on its configuration. The adder in the fourth block can be 

configured to perform addition or subtraction. Each of the five blocks in the PE are enabled and 
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configured by the bit contents of an instruction fragment register. Each fragment register can 

contain between one and four bits to control the functional unit in that particular block, 11 bits to 

address the first source operand, 11 bits to address the second source operand, and nine bits to 

address the destination operand. The number of bits needed to configure a single PE block ranges 

from 24 to 48 thus providing 173 bits as the total number of bits in the five fragment registers 

within each individual PE. 

 

3.4 PE Instructions

Each PE block is configured by the contents of its fragment register, shown in Figure 12. These 

contents make up a specific instruction tailored to that block. In all, there are three distinct 

formats of block instructions as shown in Figure 13.  

 
49       44 43 33 32 22 21 11 10 0

11 address bits

Operands for Comparison

11 address bits 11 address bits

Alternate Operands
6 bits for 
operation

11 address bits

  
 

(a) Instruction format for block 2. 
 

49      44 43    42 41 20 19 9 8 0

22 unused bits
2 bits for 
data as 
address

6 bits for 
operation

9 address bits

Output data

11 address bits

Input Operand   
 

(b) Instruction format for block 3. 
 

49      44 43    42 41    40 39 31 30 20 19 9 8 0

9 unused bits6 bits for 
operation

location of 
carry-in (2 

bits)

11 address bits

Input Operands

9 address bits

Output data

11 address bits2 bits for 
data as 
address   

 
(c) Instruction format for block 1, 4, and 5. 

 

Figure 13: Formats of the block instructions in a PE. 
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Figure 13(a) shows the instruction used in a comparison operation of block 2 where bits 0 

through 10 and 11 through 21 represent the memory addresses of both operands that will be used 

in another operation block if a comparison is found to be true.  For example in the following 

comparison: 

if A > B then  

C + D; 

endif 

 

If A is greater than B, an add operation is performed on operands C and D.  Bits 0 through 21 in 

block 2 instruction format represent the addresses of operands C and D while the addresses of 

operands A and B are located in bits 22 through 43. 

 

Figure 13(b) shows the instruction format used in block 3 for shifting operations. In this format, 

bit 0 through 8 represent the memory addresses used to store the resulting output data from the 

barrel shifter block while bits 9 through 19 represent the address of the input operand to be 

shifted. However, bits 20 through 41 are unused for this operation. The two bits 43 and 42 are 

used in some cases where the output data is to be used as an input address. A ‘00’ in bits 43 and 

42 indicates that these two bits are ignored while a ‘01’, ‘10’, and ‘11’ indicate that the output 

data of blocks 1, 3, and 4 respectively, are used as the lowest four bits of the input operand’s 

address. For example, if these two bits are ‘10’ and the output of block 3 is ‘0110’, the seven 

most significant bits (bit 10 through 4) of the 11-bit address of the input operand would remain 

unchanged while the four least significant bits (bits 3 through 0) will be set to ‘0110’. 

28 

 
  
 



Figure 13(c) shows the instruction format used in the logic operations of block 1, the addition 

and subtraction of block 4, and the multiplication of block 5. In this format, bits 0 through 8 

represent the memory address of the output operand while bits 9 through 30 represent the 

addresses of the two input operands. Since corresponding blocks in neighboring PEs can be 

linked together through carry chains to handle wide operand operations, bits 40 and 41 are used 

to determine which of the neighboring PEs feed the carry bit to block 4 for addition operations 

on wide operands. Bits 42 and 43 are used for data-to-address functions as described in the 

preceding paragraph. 

 

In each of the instructions shown in Figure 13, the six most-significant bits (44 through 49) are 

used to indicate the specific operation that needs to be executed. The encoding of theses 

operations is shown in Table 4 in which the leftmost column represents the block within a PE 

while the operation labeled column represents the operations performed in the corresponding 

block. 

 

Table 4: Block-level and PE-level encoding of operations. 

  Block Operation Block-Level Encoding PE-Level Encoding
1 Disabled 0XXX 000001
 Disabled 1000 ---------
 AND 1001 100001
 NAND 1010 100010
 OR 1011 100011
 NOR 1100 100100
 XOR 1101 100101
 XNOR 1110 100110
 NOT 1111 100111
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2 Disabled 00XX 000010
 If A > B   then send C and D to block 1 0100 101000
                  then send C and D to block 3 0101 101001
                  then send C and D to block 4 0110 101010
                  then send C and D to block 5 0111 101011
 If A < B   then send C and D to block 1 1000 101100
                  then send C and D to block 3 1001 101101
                  then send C and D to block 4 1010 101110
                  then send C and D to block 5 1011 101111
 If A = B   then send C and D to block 1 1100 110000
                  then send C and D to block 3 1101 110001
                  then send C and D to block 4 1110 110010
                  then send C and D to block 5 1111 110011
  

3 Disabled 0XXX 000011
 Disabled 1000 ---------
 1-bit Right Rotate 1001 110100
 2-bit Right Rotate  1010 110101
 3-bit right Rotate  1011 110110
 Pass through 1100 110111
 1-bit Left Rotate  1101 111000
 2-bit Left Rotate 1110 111001
 3-bit Left Rotate 1111 111010
  

4 Disabled 0XX 000100
 4-bit Add 100 111011
 Extended Width Add 101 111100
 4-bit Subtract 110 111101
 Extended Width Subtract 111     111110
  

5 Disabled 0 000101
 Multiply 1 111111
  

PE Disabled 0 000000
 Enabled 1 1XXXXX

 

For block 1, the logic operations of AND, NAND, OR, NOR, XOR, XNOR, and NOT can be 

performed using the encoding shown in the table. In the case of block 2, the operation column 

indicates which comparison is to be performed, and which operation is performed on the 

alternate operands if the comparison is true. Alternate operands are used in the instruction format 
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of block 2 as shown in Figure 13(a). In row 2, 3, 4, and 5 of block 2, if operand A is greater than 

B, both operands C and D can be sent to block 1, 3, 4, or 5 depending on the instruction 

following the If statement. After the C and D operands are sent to a given block, they are used as 

input operands for the operation of that block. The rows of block 3 show the encoding of the 1, 2, 

and 3-left or right shift instructions, while the rows of block 4 show the encoding of the addition 

or subtraction using either 4-bits or wider through the carry-bits. Finally, the rows of block 5 

show the encoding used for multiplication. The column labeled Block-level encoding shows the 

bit encoding of each operation as it is sent to the fragment register of its block while the PE-level 

encoding labeled column shows the bit encoding of the operation as it is seen in the array before 

passing through the Instruction Decoder module. This hierarchical encoding of the instruction is 

explained in section 3.5. 

 

3.5 PE Reconfiguration 

The reconfigurability of the array is based on dispatching instructions which are stored in the 

fragment registers of a PE. To dispatch an instruction to a specific PE, a mechanism is needed to 

address that particular PE. Several architectures are possible to support instruction dispatching 

the simplest of which is to hardwire the address of each PE. In that case, dispatching consists of 

sending instructions on a clock-like bus distribution scheme as shown in Figure 14 that reaches 

each PE in the array. All of the PEs will see each instruction, but only if the address indicates 

that it is intended for that particular PE will it capture the instruction, then store it in one of the 

PE’s fragment registers. To accomplish this, an additional N bits are added to the most-
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significant end of the instruction. Figure 15 shows (50+N) address bits are used to encode an 

instruction at array level. These address bits will be used for allowing the runtime environment 

through the instruction buffer to intentionally target the instruction to a specific PE in the array.  

 

 

Figure 14: Instruction dispatch and capture by a PE. 
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After capture by the PE, the instruction is stripped of its N bits leaving 50 bits for decoding. 

Figure 15 shows the 50 bits making up an instruction after being captured by a PE. This 50-bit 

instruction is decoded based on the six operation bits in the Instruction Decoder module, and 

distributed to the appropriate fragment register of one of the five operation blocks by stripping 

two more bits from it leaving only 48 bits in the instruction. Figure 15 shows the 48-bits that 

make up an instruction after reaching a specific block in the target PE. 

 

 

Figure 15: Hierarchical encoding of the instructions. 
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This bus-based dispatching scheme allows the dispatch of a single instruction per cycle. 

Although this scheme is quite simplistic, it allows the array to operate in two distinct 

reconfiguration modes: 

(i) Static reconfiguration: In this mode, the instructions of all the blocks in all the PEs 

are loaded ahead of time to reconfigure the entire array before it starts running. No 

other instruction can be sent to the array during run time. In this mode, each block 

reads operands from an SMB, executes an operation, and writes the result to an SMB 

in three clock cycles.  

(ii) Dynamic reconfiguration: In this mode, a single instruction is dispatched at the start 

of a clock cycle. Blocks can be reprogrammed as the array is running. In this mode, a 

block receives an instruction that gets stored in its fragment register, reads operands 

from an SMB, executes an operation, and writes the result to an SMB in four clock 

cycles. This mode support also fine-grain partial reconfiguration.   
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CHAPTER FOUR: PE ARCHITECTURE 

 

Since the PE is the primary computation component in CRYPTARRAY, its architecture and its 

implementation are described in detail in this chapter. Section 4.1 presents the architecture of the 

PE at the highest level of abstraction while Section 4.2 through 4.6 presents the architecture of 

each block within the PE. Section 4.7 describes the states and their control within a PE. 

 

4.1 Architectural Components of the PE

Figure 16 shows the primary components within a single PE at the highest level of organizational 

hierarchy. A PE consists of: 

• Instruction Decoder: This module decodes the incoming instruction, reformats it, and 

routes it to the proper block of the PE for execution. In addition, it can set the output data as 

input addresses for some blocks. 

• State Controller: This controller is a state machine that determines which of the five 

operation blocks will be sending and receiving data in any given cycle by controlling all the 

multiplexers and demultiplexers, with the exception of the multiplexer used for carry-in 

selection. The demultiplexer labeled Input Data determines which of the five operation 

blocks will receive the incoming data from the memory. Accordingly, the two multiplexers 

labeled Address of Input Operands specify to the memory which address location to retrieve 

the input data from. The multiplexers labeled Output Data and Output Address are used to 

select which operation block will send its output to memory. The actual implementation 
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requires four of each of the multiplexers and demultiplexers in order to allow data transfer to 

each of the four neighboring SMBs. Each operation block controls individually from/to 

which of the four SMBs accept or send data based on the addresses in their corresponding 

fragment registers. 

• Operation Blocks: There are five of these blocks in each PE where each block consists of 

three hierarchical modules: 

• Memory Interface: Each individual block communicates through an interface of read  

   and write ports to its four surrounding SMBs. Each address in the instruction specifies  

   to/from which SMB (top, right, bottom, left) to send and receive data. Because it must 

interface with the memories which are exterior to the PE, this is the outmost layer of the 

operation block. 

• Fragment Register: This register stores the incoming instruction, which controls the 

operation of the block and is sent from the Instruction Decoder module.   

• Core: The core of a block represents the datapath used to execute the operations of the 

block. For example, the core of block 1 contains the gates to support the logic 

operations (AND, NAND, OR, NOR, etc…) while the core of block 2 contains the 

comparator used to determine the outcome of branching and loop operations. This 

module is the innermost layer of each operation block. 
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Figure 16: Architectural components of a single PE. 

 

4.2 Architecture of Block 1

Figure 17 shows the architecture of block 1 where each 4-to-1 multiplexer and 1-to-4 

demultiplexer is used to determine which of the four neighboring SMBs will be accessed for 

reading or writing respectively. Three of the demultiplexers are used for addressing an SMB 

while the fourth is used for writing the output data. The two multiplexers on the left side of the 
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figure are used to read in the 4-bit operand data from the neighboring SMBs. In addition, the 

smaller 2-to-1 multiplexers on the left side of the figure are controlled by block 2 where they are 

used to read in alternate data if (i) the comparison in block 2 is found to be true, and (ii) a logic 

operation is to be performed on the alternate data. These multiplexers are also shown at the 

bottom of Figure 18. 

 

 

Figure 17: Architecture of block 1. 
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4.3 Architecture of Block 2

Figure 18 shows the architecture of block 2. This block has four data inputs and no data outputs 

to the SMBs. Two of these inputs are used to compare two operands while the other two are used 

to send alternate inputs should the comparison be true. The four 4-to-1 multiplexers shown on 

the left side of the figure are used to read in operands while the four 1-to-4 demultiplexers shown 

on the right side of the figure are used to address the SMBs. Immediately after the core, the 

multiplexer closer to the comparator’s core determines which comparison operation to perform 

(less than, greater than, or equal to). If the control lines are ‘00’, which are the two most 

significant bits of the operation field in the instruction, the output of this multiplexer is always 0 

thus disabling the block altogether. The demultiplexer located on the right side of the output side 

of the comparator determines which of the other four operation blocks (block 1, 3, 4, and 5) will 

read in the alternate data if the performed comparison by the comparator is found to be true. For 

example, consider the following comparison: 

if A > B then  

C + D; 

endif 

 

The control line for the left multiplexer located immediately after the comparator’s output will be 

‘10’ while the control line for the demultiplexer to its right will be ‘00’. If the result of the 

comparison is true, a ‘1’ will be output from the multiplexer, routed by the demultiplexer to the 

control signal of the 2-to-1 multiplexer which controls block 1. This multiplexer, shown at the 

bottom of the figure in front of block 1 (See also Figure 17) requires that the alternate input 
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operands C and D be fed to block 1 instead of the original input operands specified in the 

fragment register of block 1. 

 

 

Figure 18: Architecture of block 2. 
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4.4 Architecture of Block 3

Figure 19 shows the architecture of block 3. Since block 3 reads only a single operand as shown 

in the figure, only one 4-to-1 multiplexer shown on the left side of the figure is used to read in 

data from the SMBs. On the right side of the figure, two of the three 4-to-1 demultiplexers are 

used to output data and address while the third demultiplexer is used to read in data. This 

demultiplexer is controlled by block 2 and is used to read alternate data if (i) the comparison in 

block 2 is true, and (ii) a barrel shift operation is to be performed on the alternate data.  

 

 

Figure 19: Architecture of block 3. 

41 

 
  
 



4.5 Architecture of Block 4

Figure 20 shows the architecture of block 4. This architecture resembles to some extent the 

architecture of block 1 shown in Figure 17 in the sense that it has the same multiplexers and 

demultiplexers for reading in and writing out data. However, block 4 is equipped with a carry-in 

and a carry-out chain that allows it to add or subtract operands wider than 4 bits.  

 

 

Figure 20: Architecture of block 4. 
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4.6 Architecture of Block 5

Figure 21 shows the architecture of block 5. Since the product of a multiplication can be as wide 

as the sum of the bit width of the multiplicand and the multiplier, block 5 has two sets of output 

data and addresses to the neighboring SMBs as shown on the right side of the figure. 

  

 

Figure 21: Architecture of block 5. 
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To accommodate the wider output bit expansion, the 8-bit output is stored in two sequential 

SMB locations. A ‘1’ is therefore added to the destination address for specifying the storage 

location of the four most significant bits of the output data while the four least significant bits are 

stored in the address location specified in the fragment register. Beside this feature, the 

remaining architectural features are similar to the ones found in blocks 1 and 4. 

 

4.7 PE State Control

A single PE can be reconfigured by loading the decoded instructions into the fragment registers 

of the five operation blocks. However, the operation of the blocks inside a PE follows a pre-

defined sequence that is controlled by a seven-state machine as shown in Figures 22 and 23. 

Each state is annotated with what each of the blocks will be doing at that state. 

 

Although there are only five operation blocks, the two data inputs for Block 2 and two data 

outputs of Block 5 necessitate all six non-reset states. In association with this requirement, two 

compute states exist for each of the blocks for a complete cycle. This can be advantageous in that 

while the maximum clock frequency for the PE will be determined by the longest computation 

path through the operation blocks, two cycles are available to complete this computation. 

Therefore the PE can be clocked at twice the frequency that the longest path would otherwise 

require. It should also be noted that Block 2 does not require a separate compute state. This is 

because its outputs are used only within the PE, so as soon as it receives its input operands and 

the data propagates through the comparison logic, the result is then immediately utilized. 
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Figure 22: State diagram of the PE controller. 
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Figure 23: State cycling in the blocks of a PE. 
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CHAPTER FIVE: MODELING AND IMPLEMENTATION OF 
CRYPTARRAY 

 

This chapter describes the implementation of CRYPTARRAY. Section 5.1 presents an overview 

of the modeling of the array while section 5.2 describes the simulation of the VHDL entities used 

in modeling the components of the array. Section 5.3 explains how the PE model was 

synthesized while section 5.4 presents the synthesis of an SMB. Finally, section 5.5 extends the 

obtained synthesis results to characterize the timing and area performance of CRYPTARRAY. 

 

5.1 Modeling of CRYPTARRAY

To model CRYPTARRAY, an array of 12 PEs and 21 SMBs has been coded in VHDL using a 

mixed level modeling. The SMBs have been modeled using a dataflow approach while the PEs 

and their inner components have been modeled mostly structurally. Table 5 shows the modules, 

their entities, and the lines of VHDL written to model each entity. 

 

Table 5: Breakdown of VHDL lines of code based on the modeled entities. 

Module Entity VHDL Lines of Code 
Array’s Testbench CRYPTARRAY_TB 172 
12-PE 21-SMB Array PE12_MEM21 1,075 
   
 Subtotal 1,247 
   
Shared Memory Block  MEM_512X4BIT 140 
   
PE’s Testbench PE_TOP_TB 1,388 
PE’s Top Level PE_TOP_FULL 444 
      INSTRUCTION_DECODER 128 
      STATE_CONTROLLER 128 
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 Subtotal 2,088 
   
Block 1      MEM_INTRFCE1 111 
           STG1_FRAG_REG 89 
                STG1_CORE 40 
   
 Subtotal 240 
   
Block 2      MEM_INTRFCE2 126 
           STG2_FRAG_REG 100 
                STG2_CORE 44 
   
 Subtotal 270 
   
Block 3      MEM_INTRFCE3 101 
           STG3_FRAG_REG 80 
                STG3_CORE 58 
   
 Subtotal 239 
   
Block 4      MEM_INTRFCE4 114 
           STG4_FRAG_REG 105 
                STG4_CORE 57 
                     FULL_ADDR_4B 32 
   
 Subtotal 308 
   
Block 5      MEM_INTRFCE5 139 
           FULL_ADDR_7BIT 41 
           STG5_FRAG_REG 74 
                STG5_CORE 72 
                     FULL_ADDR_1B 21 
   
 Subtotal 347 
   
Multiplexers      MUX_1BIT_2TO1 26 
      MUX_1BIT_4TO1 27 
      MUX_1BIT_8TO1 33 
      MUX_4BIT_2TO1 29 
      MUX_4BIT_4TO1 33 
      MUX_4BIT_8TO1 35 
      MUX_7BIT_8TO1 41 
      MUX_8BIT_2TO1 33 
      MUX_9BIT_4TO1 43 
      MUX_9BIT_8TO1 45 
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 Subtotal 345 
   
Demultiplexers      DEMUX_1BIT_1TO4 42 
      DEMUX_1BIT_1TO8 95 
      DEMUX_4BIT_1TO4 33 
      DEMUX_4BIT_1TO8 39 
      DEMUX_7BIT_1TO4 40 
      DEMUX_8BIT_1TO4 42 
      DEMUX_9BIT_1TO4 44 
   
 Subtotal 335 
   
D Flip-Flops      DFF_1BIT 30 
      DFF_4BIT 31 
      DFF_7BIT 34 
      DFF_9BIT 36 
      DFF_11BIT 38 
   
 Subtotal 169 
   
Total  5,728 

 

5.2 Verification of the VHDL Entities 

The VHDL model of each entity has been verified through extensive simulation using ModelSim 

XE II simulator version 5.6e. Separate simulations were performed on each individual entity. In 

addition, functional simulation of a prototype array consisting of 12 PEs and 21 SMBs has been 

performed. For the PE blocks and the top level entity of the PE, input stimuli were generated 

using three embedded for loops whereby an outermost loop feeds all possible operation 

combinations while two inner loops cycle through all possible combinations of instructions for 

those operations. Figure 24 shows a simulation snapshot of the top level module of a PE 

receiving an instruction into a fragment register and processing it.  
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Figure 24: Instruction path through the PE simulation. 
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Figure 25 shows a simulation snapshot of block 1 of the PE performing a logical NAND 

operation followed by a logical OR operation.   

 

 

Figure 25: Simulation of the block 1 module. 
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Figure 26 shows a simulation snapshot of a shift to the right by one and two positions as seen 

from the top level of the PE, performed by the barrel shifter core of block 3. 

 

 

Figure 26: Simulation of the block 3 module. 
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Figure 27 shows a simulation snapshot of an addition with carry and a subtraction as seen from 

the top level of the PE performed by the adder/subtractor core of block 4 of the PE. 

 

 

Figure 27: Simulation of the block 4 module. 
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Figure 28 shows a simulation snapshot of two operands being multiplied by the multiplication 

core of block 5 as seen from the top level of the PE. 

 

 

Figure 28: Simulation of the block 5 module. 
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Figure 29 shows a simulation snapshot of the state machine used to control the I/O for the PE. 

 

 

Figure 29: Simulation of the state machine. 
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5.3 Synthesis of the PE Model

Since the PE is the primary computation component in CRYPTARRAY, its synthesis can reveal 

significant insights on the performance of CRYPTARRAY. The model of a PE has been 

synthesized to a LUT netlist using FPGA Compiler II, version 3.5.1, from Synopsys and mapped 

onto a Virtex-II Pro FPGA chip using Xilinx ISE place-and-route tool, version 4.1i. Synthesis 

has been performed to optimize both area and speed. For each synthesis objective, three mapping 

effort levels were tried as shown in Table 6:  

(i) Low mapping effort takes the least time to compile. It is recommended if compilation 

time is a premium and at the same time the design timing has slack to spare.  

(ii) Fast mapping effort reduces the number of iterations the optimization process goes 

through. This effort level attempts to balance between quality of results and 

compilation time. 

(iii) High mapping effort takes longer to compile but should produce better designs. With 

this effort, the optimization process proceeds until it has tried all strategies.  

 

Table 6: Area and Speed optimization of the PE under three mapping effort levels. 

   
Obtained 

Critical
Path 

  Resources 
Used 

 

 
Objective 

Effort 
Level 

Frequency 
(MHz) 

Delay 
(ns) 

 
Module 

 
LUTs 

 
Flip-Flops 

 
Latches

Speed Low 81.30 12.30 PE 2011 223 50
    Instruction Decoder 311 0 0
    State Controller 17 6 0
    Block 1 189 43 0
    Block 2 195 64 0
    Block 3  117 28 0
    Block 4 160 42 0
    Block 5 234 40 0
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 Fast  87.40 11.44 PE 2038 223 50
    Instruction Decoder 334 0 0
    State Controller 17 6 0
    Block 1 189 43 0
    Block 2 193 64 0
    Block 3  117 28 0
    Block 4 166 42 0
    Block 5 234 40 0
     
 High 81.30 12.30 PE 2007 223 50
    Instruction Decoder 299 0 0
    State Controller 17 6 0
    Block 1 189 43 0
    Block 2 203 64 0
    Block 3  117 28 0
    Block 4 160 42 0
    Block 5 234 40 0
     
Area Low 75.99 13.15 PE 1881 223 50
    Instruction Decoder 302 0 0
    State Controller 17 6 0
    Block 1 185 43 0
    Block 2 191 64 0
    Block 3  113 28 0
    Block 4 160 42 0
    Block 5 233 40 0
     
 Fast 78.55 12.73 PE 1897 223 50
    Instruction Decoder 318 0 0
    State Controller 17 6 0
    Block 1 185 43 0
    Block 2 191 64 0
    Block 3  113 28 0
    Block 4 160 42 0
    Block 5 233 40 0
     
 High 78.55 12.73 PE 1869 223 50
    Instruction Decoder 290 0 0
    State Controller 17 6 0
    Block 1 185 43 0
    Block 2 191 64 0
    Block 3  113 28 0
    Block 4 160 42 0
    Block 5 233 40 0
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The results shown in Table 6 are plotted in Figures 30 through 35.  In these tables, the x-axis 

represents the various primary modules that were synthesized, while the y-axis represents the 

number of resources required by the FPGA, categorized by look-up-tables, flip-flops, and 

latches. 
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Figure 30: PE implementation of a timing-driven low-effort mapping. 
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87.4 MHz Fast-Effort Speed Mapping
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Figure 31: PE implementation of a timing-driven fast-effort mapping. 
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Figure 32: PE implementation of a timing-driven high-effort mapping. 
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It is clear from Figures 30 through 32 that the best clock frequency is synthesized by the fast 

effort level mapping. This mapping produces 87.40 81.30 100 7.5%
81.30
−

× =  improvement in clock 

frequency over the worst clock frequency obtained by any mapping with only 

2038 2007 100 1.54%
2007
−

× =  area penalty in the implementation of the top level module of a PE.   

 

75.99 MHz Low-Effort Area Mapping

0
200
400
600
800

10001200
1400
1600
1800
2000

P
E

_T
O

P
_F

U
LL

IN
S

TR
U

C
TI

O
N

D
E

C
O

D
E

S
TA

TE
C

O
N

TR
O

LL
E

R

B
LO

C
K

 1

B
LO

C
K

 2

B
LO

C
K

 3

B
LO

C
K

 4

B
LO

C
K

 5

Modules

N
um

be
r o

f R
es

ou
rc

es

LUTs Flip-Flops Latches

 

Figure 33: PE implementation of an area-driven low-effort mapping. 
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78.55 MHz Fast-Effort Area Mapping
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Figure 34: PE implementation of an area-driven fast-effort mapping. 
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Figure 35: PE implementation of an area-driven high-effort mapping. 
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It is clear from Figures 33 through 35 that the best area implementation is obtained with the high 

level effort mapping. This mapping produces only 1897 1869 100 1.49%
1869
−

× =  marginal 

improvement in area cost over the worst area implementation of the top level of a PE. This 

improvement comes with a slight improvement of 78.55 75.99 100 3.36%
75.99
−

× =  in clock 

frequency. Figure 36 contrasts the area cost in terms of LUTs for the top level module of a PE 

across the various timing and area-driven mapping effort levels where the leftmost three bars in 

the figure represent timing-driven mappings while the rightmost three bars represent area-driven 

mappings. 
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Figure 36: Summary of PE implementations. 
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As the figure shows, the best timing-driven implementation (the second bar from the left in the 

figure) is obtained with a timing-driven fast effort level mapping while the worst timing-driven 

implementation (the fourth bar from the left of the figure) is obtained with an area-driven low 

effort level mapping. The best implementation produces 87.40 75.99 100 15.01%
75.99
−

× =  

improvement in clock frequency with 2038 1881 100 8.34%
1881
−

× =  area penalty in terms of LUTs 

used in the implementation of the top level module of a PE. Figure 37 shows a partial view of the 

floorplan of synthesized PE onto a Xilinx Virtex-II Pro XC2VP125. 

 

 

Figure 37: Partial view of the floorplan of a synthesized PE onto a Virtex-II Pro 
XC2VP125. 
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5.4 Synthesis of the SMB Model

The SMB model has been synthesized to a LUT netlist using FPGA Compiler II, version 3.5.1, 

from Synopsys and mapped onto a Virtex-II Pro FPGA chip using Xilinx ISE place-and-route 

tool, version 4.1i. Synthesis has been performed to optimize speed. Figure 38 shows a partial 

view of the layout of an SMB onto a Xilinx Virtex-II Pro XC2VP125, while Table 7 shows the 

synthesis results of a 512 x 4-bit timing-optimized SMB.  

 

 

Figure 38: Partial view of the floorplan of a synthesized SMB onto a Virtex-II Pro 
XC2VP125. 
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Table 7: Synthesis results of a 512 x 4-bit SMB. 

Parameter Value
Frequency                    (MHz) 80.9
Critical Path Delay          (ns) 12.36
LUTs   14899

 

As the table shows, a read or write from the SMB can be completed in 12.36 ns. In addition, an 

SMB consumes a relatively large number of LUTs compared to a PE. In effect, an SMB occupies 

14899 7.31
2038

=  more area than the largest PE  implementation in terms of LUTs. 

 

5.5 Performance of CRYPTARRAY

In this section, a brief analysis of the performance of a prototype array will be presented in terms 

of clock frequency, area cost, and bandwidth. 

 

5.5.1 Clock Frequency 

By integrating SMBs with PEs to form an array of a given size, the array’s clock frequency will 

be limited by the slowest among SMBs and PEs. Since the clock frequency of the SMBs is lower 

than the best frequency of the PEs, the array’s frequency will subsequently be determined by that 

of the SMBs. As a result, a prototype array running at the frequency of the SMBs, which is 80.9 

MHz, can be obtained by assembling a number of SMBs and PEs. In this case, if the array is 

running in static reconfiguration mode, a PE block of the array can read the operands from an 

SMB, perform its operation, and write the result to an SMB in 3T where T is the clock cycle of 
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the array. Since 31 10 12.36 ns
80.9 MHz

T = × = , a PE block can complete an instruction in 3T = 

3 x 12.36 ns = 37.08 ns. With this PE block performance, the array can have a throughput 

1 sec= 26,968,716.28 outputs/sec
37.08 nsstaticρ = . However, if the array is running in dynamic 

reconfiguration mode, a PE block has to load its fragment register before proceeding with the 

steps of reading the operands from an SMB, computing, and writing the result to an SMB. For a 

lack of an accurate estimate for the time to dispatch and load an instruction into a fragment 

register, one can assume for simplicity that this time can be equal to T. In this case, a PE block 

can perform the four steps in 4T = 4 x 12.36 ns = 49.44 ns. With such a block performance, the 

array can have a throughput 1 sec= 20,226,537.28 outputs/sec
49.44 nsdynamicρ = . 

 

5.5.2 Area Cost 

Based on the results shown in Table 6, a PE can consume 2038 LUTs while an SMB can occupy 

14899 LUTs as shown in Table 7. A tile consisting of an SMB and a PE can occupy 3288 + 

14899 = 18187 LUTs. It is clear that to prototype CRYPTARRAY on FPGAs, large capacity 

FPGA chips are needed. For example, the Virtex-II Pro XC2VP125 which contains 125136 

LUTs can pack an array consisting of only 12 PEs and 12 SMBs. To implement an array of 

reasonable size, it is necessary to use a multi-chip configuration.  
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5.5.3 Possible Bandwidth 

If a single chip configuration is considered, an array consisting of 12 PE and 12 SMBs can be 

packed within a Virtex-II Pro XC2VP125. Assume that the chessboard layout of the array is 

preserved in its placement and layout onto the chip. It is reasonable to view the layout as a set of 

three rows where a row can either have one or two SMBs connected to the IO pins of the chip. 

Since each SMB is a 512 x 4-bit memory block, an SMB can output 4 bits each 37.08 ns if the 

array is running in static reconfiguration mode. This means that an SMB can output 

9

1 sec 4 bits 102.87 Mbps
37.08 ns 10− × =

×
. If a multi-chip configuration is used, it would take only 

10 SMBs be connected to the IO pins of the chips to produce up to 1.02 Gbps. Note that an SMB 

consumes only 4 IO pins on a chip when an FPGA chip such as the Virtex-II Pro XC2VP125 has 

1200 IO pins. It is clear that such a bandwidth can easily support the processing requirements of 

many cryptographic algorithms running on Internet severs. 

 

5.5.4 Summary of CRYPTARRAY’s Performance 

Table 8 summarizes the performance characteristics of the components of CRYPTARRAY 

where the leftmost column shows the array’s components while the second column shows the 

components area in LUTs. The third column shows the ratio of the component area to the area of 

the Virtex II Pro XC2VP125 chip. The fourth column shows the best clock frequency of the 

component obtained through synthesis while the last column shows the bandwidth produced by 

the component based on the obtained clock frequency.  
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Table 8: Summary of the performance characteristics of CRYPTARRAY’s components. 

 
 

 
 Area Ratio  

Clock 

 
 

Component Area 
(LUTs) 

Component Area

Chip Area
 

Frequency 
(MHz) 

Bandwidth 
(Mbps) 

PE 2038 
2038

0.0162
125136

=  87.4  

SMB 14899 
14899 0.119
125136

=  80.9 102.87 

2 2

 Array

SMBs PEs
2 2

N N

N N

×

= +
 

2 214899 2038

2 2

N N
+
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

27449.5N=  

2

2

7449.5
125136
0.0595

N

N=

 
80.9 102.87M 

N = number of array tiles (a tile can be a PE or a SMB); M = number of array SMBs connected to the chip 
output pins; Chip Area = area of a Virtex-II Pro XC2VP125 chip = 125136 LUTs; 
 

An N x N array contains N tiles in each plane dimension where a tile can be either an SMB or a 

PE. For simplification, it is assumed that an N x N array will have all its SMBs placed on the 

periphery of the array and subsequently directly connected to the IO pins of the chip. In such a 

placement, there are SMBs PEs
2 2
N N

+ in each row if N is an even natural number. In this case, 

an array of N rows consists of 
2 2

SMBs PEs
2 2

N N
+ . Since only a subset of the SMBs in the array 

of size M is connected to the output pins of the chip, the bandwidth of the array depends 

primarily on the cardinality of this subset. Note that since the PEs are not connected directly to 

the chip IO pins, they cannot support any bandwidth at all. 

 

 

68 

 
  
 



CHAPTER SIX: CONCLUSION 

 

This thesis proposes CRYPTARRAY, a two-dimensional, scalable architecture in which bus-

based communication is replaced by distributed shared memory communication. At the physical 

level, the length of the wires is kept to a minimum. The array is organized as a chessboard in 

which the dark and light squares represent PEs and SMBs respectively. The granularity and 

resource composition of the PEs is specifically designed to support the computing operations 

encountered in cryptographic algorithms in general, and symmetric algorithms in particular. 

Communication can occur only between neighboring PEs through local SMBs. Because of the 

chessboard layout, the architecture can be reconfigured to allow computation to proceed as a 

pipelined wave in any direction. This organization offers a high computational density in terms 

of datapath resources and a large number of distributed storage resources that easily support a 

high degree of parallelism and pipelining. In addition, this architecture provides a high degree of 

flexibility supported by its reconfigurability. Based on the obtained experimental results, this 

architecture can deliver a performance that can easily address the bandwidth requirements of 

many cryptographic applications if sufficient resources are available.   

 

While this thesis shows how CRYPTARRAY can address the performance requirements of most 

cryptographic applications, future work can improve further the proposed architecture if the 

following issues are considered: 

 

69 

 
  
 



(i) What would be the optimal size of the SMBs considering the variety of cryptographic 

algorithms? The answer to this question can minimize SMB waste when mapping 

cryptographic applications. This answer can be obtained by mapping representative 

cryptographic algorithms on CYRPTARRAY and evaluate memory usage for each 

algorithm in order to derive an optimal size of the SMBs.   

 

(ii) How many ports can an SMB have in order to simplify the access of the PE to the 

SMB? By increasing the number of ports of an SMB, more than one PE can access the 

SMB at the same time. This capability can increase the degree of parallelism in the 

array by simplifying the state controller used to control the access of the PE blocks to 

an SMB. However, implementing multi-ports SMBs onto FPGA chips is not area 

efficient. Such SMBs can be built in an area-economic fashion if implemented as 

custom circuits on ASICs. Examples of such implementations can be found in the 

multi-port memories offered by IDT in which each memory cell consists of four 

CMOS transistors and each port addressing the cell consists of two transistors [40].    

 

(iii)  How can the bit width of the array be improved to handle asymmetric algorithms? 

Since asymmetric algorithms use keys that are thousands of bits wide, it is not clear if 

a 4-bit architecture is suitable for executing these algorithms. Mapping and profiling 

these algorithms on CRYPTARRAY can reveal valuable insights on how the bit 

width can be changed to handle efficiently secret-key cryptography. 
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(iv) How can CRYPTARRAY’s throughput be measured accurately? It seems that an 

accurate measure of the array’s bandwidth can be obtained by mapping representative 

applications and tallying the number of encrypted packets per seconds.  

 

The answers to these questions can increase the flexibility of the array and improve its 

performance further in supporting cryptographic processing on Internet-based applications. 
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