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ABSTRACT

The success of recognizing periodic actions in single-person-simple-background datasets,

such as Weizmann and KTH, has created a need for more complex datasets to push the per-

formance of action recognition systems. In this work, we create a new synthetic action

dataset and use it to highlight weaknesses in current recognition systems. Experiments show

that introducing background complexity to action video sequences causes a significant degra-

dation in recognition performance. Moreover, this degradation cannot be fixed by fine-tuning

system parameters or by selecting better feature points. Instead, we show that the prob-

lem lies in the spatio-temporal cuboid volume extracted from the interest point locations.

Having identified the problem, we show how improved results can be achieved by simple

modifications to the cuboids.

For the above method however, one requires near-perfect localization of the action

within a video sequence. To achieve this objective, we present a two stage weakly supervised

probabilistic model for simultaneous localization and recognition of actions in videos. Dif-

ferent from previous approaches, our method is novel in that it (1) eliminates the need for

manual annotations for the training procedure and (2) does not require any human detection

or tracking in the classification stage. The first stage of our framework is a probabilistic ac-

tion localization model which extracts the most promising sub-windows in a video sequence

where an action can take place. We use a non-linear classifier in the second stage of our

framework for the final classification task. We show the effectiveness of our proposed model

on two well known real-world datasets: UCF Sports and UCF11 datasets.
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Another application of the weakly supervised probablistic model proposed above is in

the gaming environment. An important aspect in designing interactive, action-based inter-

faces is reliably recognizing actions with minimal latency. High latency causes the system’s

feedback to lag behind and thus significantly degrade the interactivity of the user experi-

ence. With slight modification to the weakly supervised probablistic model we proposed

for action localization, we show how it can be used for reducing latency when recognizing

actions in Human Computer Interaction (HCI) environments. This latency-aware learning

formulation trains a logistic regression-based classifier that automatically determines dis-

tinctive canonical poses from the data and uses these to robustly recognize actions in the

presence of ambiguous poses. We introduce a novel (publicly released) dataset for the pur-

pose of our experiments. Comparisons of our method against both a Bag of Words and a

Conditional Random Field (CRF) classifier show improved recognition performance for both

pre-segmented and online classification tasks.
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CHAPTER 1
INTRODUCTION

1.1 Importance Of Application Of Localization

Given a video sequence, an action recognition system focuses on determining what

type of action is being performed. In the recognition process, videos are typically treated

holistically by aggregating video features together in a representation, such as bag-of-words.

For single-person-simple-background datasets, such as Weizmann and KTH, only features

pertaining to the action are detected as the background is simple and uninteresting. Thus,

holistic systems perform almost perfectly on these simple datasets.

Having achieved near-perfect results on these simple datasets, the focus of the re-

search community has shifted towards recognizing actions in more reaslistic and complex

environments e.g. UCF Sports, UCF11 Youtube, Hollywood datasets. Generally, the prob-

lem of recognizing actions in these complex datasets is tackled using holistic recognition

methodologies that work best for simple datasets. One of the benefits of such an approach

is that it implicitly reasons about the context in which the action is being conducted. For

example, the presence of waves in a video is a strong cue that the action is related to water

activities.

While implicitly leveraging context can be helpful, the holistic treatment of an action

video sequence makes it impossible for the system to separate the action from its context.

The presence of irrelevant background information in complex action datasets makes the task

extremely difficult. In this scenario, the knowledge of where the action is being performed
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in the video, spatially as well as temporally, is essential in eradicating irrelevant background

interest points and thus concentrate on action relevant features. In recent work, Lan et al.

[1] have shown that action recognition can be improved by localizing the action and then

considering only the features extracted from the localized sub-window within the overall

video. Incorporating the ability to localize the action is shown to significantly improve the

overall recognition accuracy. Additionally, one expects to achieve results comparable to those

obtained on simple action datasets.

Although employing localization for eliminating background interest points helps im-

prove results, it is not sufficient in achieving the best possible recognition accuracy. The

reason being that spatio-temporal cuboid volumes extracted at action relevant locations are

still corrupted by the complex background motion in the video sequences. Pruning is help-

ful in eliminating erroneous background interest points, but it fails to deal efficiently with

irrelevant background information within selected interest point cuboids. Systems failing

to address this issue are limited in performance [3, 4, 5, 6]. We show how the corruption

within these cuboids can be removed by simple filtering steps, even with not-so-perfect auto-

matic localization. Combined with the interest point pruning strategies, the system performs

equally well on simple as well as complex datasets.

To understand how background complexity affects recognition accuracy, we introduce

a new synthesized dataset that contains videos of simple actions on complex background.

Using this dataset makes it easier to analyze how simply modifying background complexity

influences results. We present our basic classifier method and show that it performs as well

as state-of-the-art on well known datasets. However, it fails to perform equally well on the

new synthesized dataset. We show how localization is imperative for achieving improved

results on this dataset. Even using average automatic localization, we show how simple but

2



effective techniques like interest point pruning and correcting cuboid corruption lead to a

significant improvement in results.

We focus on a bag-of-words systems, a very popular strategy for action recognition

[7, 8, 9, 10, 11], where the classifier is based on quantizing image descriptors gathered at

interest points and examining the frequency of different types of descriptors.

1.2 Localization Using A Weakly Supervised Probabilistic Model

Even though removing corruption within cuboids leads to improvement in results, it

is not an ideal solution from a practical point-of-view. Reason being that, in order for proper

functioning of such a system, the following requirements need to be addressed:

• Develop a mechanism of obtaining automatic localization of the action person.

• Even with perfect localization, best results are only possible using silhouette masks of

the actor. Obtaining silhouette masks is a manual and highly cumbersome process for

large scale datasets.

• As shown in Section 3.5, near-perfect localization on realistic datasets, like UCF Sports,

is still unable to surpass the state-of-the-art results because background is highly dis-

criminative and thus helps improve recognition performance.

It is important to note that the success of the above system is heavily dependent on

localization. It is thus pertinent to construct a system that is able to localize as accurately

as possible. [1] provide a localization technique that is shown to improve the recognition

performance. However, training such a system requires manual annotation of actions for

every frame in the training video set. This is feasible on a small dataset like UCF Sports
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but is highly costly and cumbersome on larger, more complex datasets e.g. UCF11 action

dataset. Additionally, the localization may be obvious given a small set of very distinct

activities, but becomes more subjective as the number of action categories grow.

To counter this problem, we propose a a localization-based action recognition system

that automatically localizes the action during the training process and thus eliminates the

need for manual, ground-truth localization of the action. Our presented method is efficient

as it eliminates the need for pre-processing heuristics and requires no human detector pre-

processing steps. It is shown to significantly increases recognition accuracy, from 73.1% in

[1] to 80.8% on the UCF Sports dataset.

The key insight in this work lies in how non-linear discrimination is incorporated

into the system. Both [1] and our experiments in Section 4.5 show that it is difficult for

linear models to simultaneously localize actions and discriminate between different action

categories.

The response in [1] to this problem is to create a non-linear model for both localizing

and discriminating by introducing a number of new latent variables that make it possible for

the model to selectively ignore descriptors. Unfortunately, this approach expands the size of

the search space for the latent variables in a fashion that affects the computation needed for

all aspects of the system, including both training and testing.

In contrast, we propose that the limitation of the linear model can be solved by

separating localization and discrimination. Our two-stage approach uses linear models to

localize, then applies a non-linear classifier to recognize the action category. Because the

stages are executed sequentially, no increase in the search space over latent variables is

necessary. In addition, the sequential approach allows flexibility in the choice of the classifier.

As Section 4.5 will show, the practical benefit of this is that our system produces higher

accuracies, while not requiring ground-truth localizations in the training data. Our approach
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also utilizes well-known, well-understood tools – making it easier to implement and apply in

a variety of situations.

1.3 Low Latency Action Recognition for Human Computer Interaction

Systems

With the introduction of the Nintendo Wii, Playstation Move and Microsoft Kinect

controllers, human motion is becoming an increasingly important part of interactive enter-

tainment. Beyond gaming, these technologies also have the potential to revolutionize how

humans interact with computers.

A key component to the success of these technologies is the ability to recognize users’

actions. A successful system that is intuitive and pleasant to use will have two fundamental

characteristics:

1. High Accuracy - The system must be accurate at recognizing actions.

2. Low Latency - Latency, which is discussed in Section 5.1.1, is a key issue for interactive

experiences. A system that lags behind users’ actions will feel cumbersome. This is

particularly important for entertainment applications, where complaints about lag have

led to very critical reviews for some motion-based games[12].

Traditionally, accuracy has driven the design of recognition systems. This work takes

a different path by also focusing on the latency in recognition. We pay particular attention

to a type of latency that we refer to as observational latency, which is the latency caused

when the recognition system must wait for the human to move or pose in a fashion that

is clearly recognizable. This is in contrast to computational latency, which is the latency
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caused by the recognition system itself. The focus of our work is to develop a thorough

understanding of the accuracy/latency trade-off which can be used to better design activity

recognizers for interactive applications.

One of the ways to address the latency problem is to enable the system to recognize

the action as soon as possible. It is reasonable to suggest that each action sequence contains

canonical body poses that clearly discriminate it from all other actions. Our goal is to

find a canonical body pose for each action in as few observed frames of the video sequence

as possible. Early classification on body poses might result in a lower latency but also a

significantly lower accuracy. On the otherhand, selecting a canonical body pose too late

might lead to higher accuracy but would also mean an uncomfortably high latency. Thus we

need to maintain a healthy balance between accuracy and latency.

Rather than manually selecting key poses for each action as in [13], we present a novel

Logistic Regression learning framework, similar to the weakly supervised linear probabilistic

model proposed in Section 4.2. The system is designed to automatically find the most dis-

criminative canonical body pose representation of each action and then perform classification

using these extracted poses. It should be noted that we do not assume pre-defined prototype

key poses for each action, but instead choose the key pose through automated learning. For

reduced latency, we introduce additional parameter-controlled costs that forces the system

to find a discriminative action pose by observing as few frames of the video sequence as

possible. This learning strategy makes it possible to rigorously explore the trade-off between

accuracy and latency when spotting actions in an input stream. Experiments are conducted

on a unique dataset collected using Microsoft Kinect which allows us to measure the latency

due to the ambiguity involved in assuming a particular pose. Using the recently introduced

Open-NI platform, we use this approach to implement a skeleton-based action recognition
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system that recognizes 16 different actions. We show how this classifier can significantly

outperform the baseline Bag of Words and Conditional Random Field (CRF) classifiers.

Additionally, we study the effects of reducing the feature count using a GentleBoost

algorithm. We find that we can achieve similar classification accuracy by using a small subset

of our initial features and thus reduce the computational latency of the recognition system.

Furthermore, we analyze the impact of reducing the number of actions in the classification

task on both the latency and the accuracy of the classifier. We find that as actions are

eliminated, the best achievable accuracy improves at each latency range.

We also evaluate the performance of our algorithm against two other datasets, namely

MSRC-12 [14] and MSR Action3D [2]. We classify actions in MSRC-12 with high accuracy,

along with most of the actions in the MSR Action 3D set. The failure cases in the actions

in MSR Action3D set are analyzed in Section 5.8.
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CHAPTER 2
RELATED WORK

A large literature on the problem of recognizing actions in videos has developed over

the past decade. Weinland et al. [15] and Poppe [16] provide an overview of the various

action recognition methods and datasets explored. Wang et al. [17] show comparisons of

different methods on a variety of available well-known complex datasets.

Most action recognition systems are centered around a visual word representation for

videos [7, 3, 18, 19]. Using these visual codebooks, some have suggested codebook refine-

ment techniques for improved recognition results [20, 4] while others employ higher-order

relations between visual words [21, 9, 10]. For recognition on complex datasets however, the

fundamental problem is not only erroneous interest points due to background complexity but

also the presence of background information within action relevant cuboids. Our proposed

method of pruning irrelevant background interest points coupled with correcting cuboid cor-

ruption within action relevant interest point cuboids results in significant improvement in

the recognition results.

One of the limitations of the our cuboid correction method is the dependency on action

localization information. Without somewhat decent localization information, the results of

our method can suffer. Although we use a combination of the human detector [22] and an

image saliency detection method [23], it is imperative that we construct a formulation of

automatically localizing the action within the video sequence.
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Localization has been shown to be an important step for action recognition in complex

environments [24, 25]. There have been efforts in the past that have focused on either using

available person-location information or action detection prior to the task of recognition.

Lan et al. [1] propose a figure-centric representation for action localization and recognition

by treating person location as a latent variable and infer it while simultaneously recognizing

the action. Yao et al. [26] classify and localize human actions in videos using a Hough

transform voting framework. Amer et al. [27] formulate a generative chains model of group

activities to localize and recognize group activities. Yuan et al. [28] propose and use a

discriminative pattern matching technique to locate the action in the 3D video space using a

branch-and-bound search mechanism. Boyraz et al. [29] propose a technique that transforms

the 3D action localization problem into a series of 2D detection tasks. Lu et al. [30] propose

a generative probabilistic model for concurrent action tracking and recognition. Ikizler et

al. [6] employ a “tracking-by-detection” method in association with Felzenswalb’s human

detector [22] for action detection.

Unlike [1, 24, 25, 26, 27, 28, 29, 30, 6], our method does not require manual annotation

of the action person in the video. Instead we present a system that automatically localizes

the action, eliminating the need for manual, ground-truth localizations, which may be costly

to produce in large datasets. Our focus is on finding a per-frame sub-window within the

video that best describes the action being performed and we will show how this best selected

sub-window localizes on the human performing the action.

Another useful application of the above proposed method is real-time gesture recog-

nition. We construct a framework that allows us to recognize an action sequence in as little

time as possible. This helps reduce the latency in recognizing actions which is extremely

useful for Human Computer Interactive (HCI) environments where lags and delays are cum-

bersome. Instead of finding the location of where the action is taking place we concentrate on
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when the action is distinctly recognizable. In other words, in a frame by frame observations

of an action video, we focus our efforts in determining which frame depicts information that

discriminates the action from all other actions.

Our work is related to general action recognition systems [31, 2, 32, 33]. A key,

unique aspect of this work lies in our focus on the observational latency. Traditionally,

action recognition systems have focused on recognizing from temporally segmented videos

after the action has been completed. This type of recognition is less applicable for interactive

systems as it is not real-time. Some systems perform temporal segmentation [28, 34], but

these systems also assume that the action has already been recorded.

Efforts have been made in the past to try and extract key pose frames in action video

sequences [35, 36] and use them for the task of action recognition. Carlsson et al. [13] present

a recognition system that matches shape information of individual frames to prototype key

frames. Zhao et al. [37] finds discriminative key frames that are used to weight features in

a bag-of-words classifier. However, more recent work on action recognition has found better

results using simpler bag-of-words representations [38], as discussed in Section 3.2.

In [39], Vahdat use multiple discriminative frames, chosen in a separate learning

process. In contrast, our approach chooses the optimal key frames as part of the learning

process. Cheema et al. [40] propose to learn weights for contour-based distinctive key poses

and classify using a weighted voting system. Lv et al. [41] represent actions using a series of

2D human poses and perform silhouette matching between input and key frames. None of

the above approaches, however, tackle the problem of observational latency in recognizing

actions. Additionally, these methods rely on manual selection of key frames [13] or the

availability of accurate sihouette images [41, 40].
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Techniques exist for reducing latency in sequential data, such as [42]. However, these

focus on reducing the latency associated with decoding hidden state sequences from observed

data, rather than classifying individual actions as quickly as possible.

A popular strategy for recognizing gestures, used in [43, 44], is based on fitting Hidden

Markov Models to different states in the gesture. An advantage of the system proposed in [43]

is that it is also able to spot and temporally segment the actions. However, this segmentation

has also not been evaluated in terms of the latency induced.

Pose information has also been incorporated into tracking systems, such as [45], which

looks for specific poses while tracking users performing specific actions, such as walking.

The recent availability of commodity RGB-D sensors, such as the Microsoft Kinect,

has led to increased research in the application of human pose data [46, 47]. While this work

has resulted in a significant improvement in the ability to estimate body pose, additional

recognition steps are still needed to translate these poses into actions. Recent work in [48]

uses data from the Kinect sensor to recognize dance movements. While this work presents

a powerful representation of skeletal data, it was evaluated using around 4 seconds of data

per test sequence. This creates a significant amount of observational latency in the system.

A truly interactive system should have the ability to temporally segment actions in

the stream of observations, such as the system in [43] that uses batch-style processing on a

complete video to spot gestures. The structure of the dataset used here, with one action per

video, leads us to focus on just spotting the beginning of the action. This is discussed in

more detail in Section 5.5.
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CHAPTER 3
IMPORTANCE OF APPLICATION OF LOCALIZATION

As discussed in Section 1.1, both accurate localization and its correct application are

equally important for improved performance. The primary purpose of accurate localization

is to differentiate between interest points pertinent to the action and those detected as a

result of background motion in the video. Using this information helps eradicate irrelevant

interest points and thus leads to improved results.

While the above application of localization is helpful, it does not lead to the best pos-

sible results that can be achieved. This is because of the presence of background information

in action relevant interest points for out-of-place actions sequences. The term out-of-place

refers to actions where the person moves as a whole with respect to the background e.g.

running, walking, jogging, etc. As we will show below, using localization information in

eliminating this background information from these ‘good’ interest points is what leads to

the best possible recognition performance.

To investigate the effects of background clutter, we require accurate silhouette-level

localization information. Such information is not readily available for the current complex

datasets like UCF Sports, UCF 11, Hollywood, etc. For this purpose, we create a new syn-

thesized complex dataset and show how application of localization for both action irrelevant

interest point pruning and removing background information from within action relevant

interest points leads to improved recognition performance.
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3.1 Constructing a New Dataset to Understand the Effect of Background

Complexity

In order to understand the effect of background complexity on recognition perfor-

mance, we create a synthetic dataset with the aim of isolating the effects due to complex

backgrounds. We do so by constructing synthetic videos of the same action being performed

on different complex backgrounds. This way the difference in videos comes only from the

background complexity.

To maintain focus on the problem of recognizing specific actions, we introduce a new

synthetic complex dataset based on the Weizmann [49] dataset. This dataset is constructed

by extracting action masks, provided on-line 1, for each Weizmann dataset video and then

replacing the background with a randomly selected Youtube video.

In establishing our reasoning for the construction of a new dataset, it is helpful

to first consider the key properties of the Weizmann dataset. It contains a single actor

performing simple periodic actions with simple fixed backgrounds. This construction forces

the recognition system to focus directly on recognizing the action being performed by the

actor. Also, the dataset allows us to control the quality of localization of the action being

performed.

For this new synthesized dataset, the central recognition problem remains the same,

but the task is made more difficult by the addition of the complex background. Essentially,

our goal is to only modify one aspect, the background, during the recognition experiments.

1http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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3.1.1 Construction Choices

The Weizmann dataset was chosen because the actions are simple and coherent. In

addition, each video has an associated action mask which makes it possible to extract the

action and construct new videos with complex backgrounds.

We avoid the use of realistic complex datasets like Youtube [10, 4] and Hollywood

[3, 8] because isolating the effect of background complexity from within the highly complex

structure (multiple people, multiple actions, camera movement, high diversity within action

class) of these datasets is extremely challenging.

We chose not to make a similar construction for the KTH dataset because the running

and jogging actions in that dataset have not been recorded perfectly. Recent action recogni-

tion systems have near 100% accuracy on all actions except jogging and running [50, 10, 4, 3].

This is because the difference between these actions is not discernible for portions of this

dataset, such as the videos from person 2.

To justify this decision, we conducted an experiment, involving humans, to gauge

the difficulty of correctly recognizing actions between jogging and running. Each person

was shown 2 training videos of each jogging and running and then was asked to correctly

label a total of 50 test videos. Human subjects were only able to correctly recognize 90%

of the jogging and running videos shown, which is approximately the same accuracy as the

state-of-the-art. There was a high degree of agreement between human raters as to which

videos are running and which are jogging. Additionally, most of the videos that the system

misclassified were also incorrectly labeled by humans, highlighting problems in the dataset.

The difficulty that humans have with running and jogging in this set makes it less desirable

for evaluating machine vision systems.
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Figure 3.1: Examples of the Weizmann (top row) and UCF Weizmann Dynamic (bottom

row) datasets. Each video in the UCF Weizmann Dynamic dataset has a highly complex

background. This indicates the background complexity of gradients, textures and contrasts

on which the actions are overlayed.

3.1.2 Construction Methods

We create a new dataset using Weizmann action masks and background from Youtube

videos. We downloaded a total of 15 Youtube videos making sure that each of them contain

some complex scene. We then randomly select a Youtube video from this pool and perform

matting with one of the Weizmann action mask. Keeping the Youtube video pool consid-

erably lower than the number of action masks (93 in this case) ensures different actions

being performed on the same background and thus diminishing the role of background in

differentiating actions.

The dataset is developed using the following strategy:

• UCF Weizmann Dynamic The whole video is matted with the action mask (refer

to Figure 3.2). The moving background makes it a much harder problem to recognize
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Figure 3.2: Examples of the UCF Weizmann Dynamic dataset. The figure shows frames 1,

11, 21, 31 and 41 of 2 running actions with complex, dynamic backgrounds. The top row

indicates running action overlayed on a backround video with fast moving trees with high

gradients and textures. Bottom row indicates running action overlayed on a slow moving

eagle video. Care was taken not to have background videos with humans in order to isolate

the effect of background motion as opposed to multiple human actions.

actions. This helps to analyze how increased background complexity affects recogni-

tion.

This new dataset will be made public and provided online 2. It should be noted that

when creating the dynamic set, we make sure that none of the Youtube backgrounds have

humans in it. This is a necessity as the presence of humans in background videos is most

likely to be accompanied by some action, leading to multiple actions in a single video. Our

aim is to isolate the effect of background motion as opposed to multiple human actions and

therefore we avoid using background videos with humans in them.

2http://www.cs.ucf.edu/~smasood/datasets/UCFWeizmannDynamic.zip
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Our methodology of creating a complex dataset for simple actions is different from

[34]. Our synthesized dataset is complete replica of the simple dataset in terms of the

action being performed, and accuracy of the recognition can be compared directly. Since,

we use matting [51] to create new dataset, it will not add any biases, due to change in the

actor performing the action. Because of the synthetic construction of this dataset, matting

artifacts could pose an issue and this is discussed next.

3.1.2.1 Addressing Matting Artifacts

To measure the effect of matting artifacts, we constructed a separate dataset by mat-

ting the Weizmann action masks with a simple static gray background. We found negligible

(≈ 4%) change in performance, making us confident that matting artifacts were not an issue.

3.2 Baseline Method and Performance

Having created this new synthesized dataset, we need to decide on a baseline system

to be used. In this section, we explain the basic classifier approach we adopted and later

evaluate its performance on both simple and complex datasets.

3.2.1 Baseline: Basic Bag-of-Features Classifier

We use a standard bag-of-features approach [7] as our baseline method. We make use

of the code provided on-line1. Given any video sequence, we detect spatio-temporal interest

1http://vision.ucsd.edu/~pdollar/toolbox/doc/
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points, extract cuboids centered around the interest points and compute gradient descriptor

histograms. These histogram of gradients (HoG) are concatenated and Principal Component

Analysis (PCA) is applied to project the gradients into lower dimensional space. Visual

vocabulary is constructed using subset of the dataset followed by histogram representation

formation for each video sequence. For classification, a Support Vector Machine (SVM)

classifier 2 is learnt using Histogram Intersection Kernel (HIK) and testing is done using

leave-one-out-cross-validation (LOOCV).

Since the Weizmann dataset is relatively small, most research studies use the video

reflection technique to double the size of the dataset [52]. This involves horizontally flipping

each video and saving it as a new video. We use the same reflection approach for all our

datasets.

The performance of this basic bag-of-features classifier as well as that of the state-of-

the-art [3, 4] on different datasets is shown in Table 3.1. Despite being a simple technique,

our baseline method performs reasonably well and is robust across different known datasets.

In the next section, we will discuss why performance degrades for these new synthe-

sized complex datasets and what measures can be taken to improve results. Derived solutions

are later tested on a realistic action dataset i.e. UCF Sports.

3.3 Measuring Performance Degradation

Having evaluated our basic classifier system on well known datasets, we now focus on

how the system performs on the new synthesized dataset. Table 3.2 shows a comparison of

the Weizmann and UCF Weizmann Dynamic datasets for our baseline system. We observe a

2http://www.csie.ntu.edu.tw/~cjlin/libsvm

18

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Table 3.1: Comparison of our baseline and other state-of-the-art techniques on well known

datasets. Comparable results on KTH and Youtube datasets shows robustness of our baseline

approach.

Dataset Our Baseline (Section 3.2) STIPS (HOF) [3] Liu et al. [4]

Original Weizmann 98% 92% 91%

KTH 93.5% 92% 93.8%

Youtube 65% − 71.2%

sharp drop in accuracy when switching from the original to the newly synthesized dynamic

dataset. Since the actions are exactly the same for both datasets, it is only logical to assume

that the performance degradation is caused by the increased background complexity.

Before devising a new solution, we first try some of the well known strategies in order

to achieve improved results. The next section details these methods and shows how they fail

to solve the posed problem.

3.3.1 Unsuccessful Strategies For Dealing With Performance Degradation

A general approach towards solving this degradation in performance is to fine tune

the system parameters. For this reason, we experimented using:

• different vocabulary sizes of 250, 500 and 1000 clusters

• averaging of features across different temporal scales [3, 53]

• cleaner vocabulary generated for Weizmann dataset
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Table 3.2: Comparison of our baseline and other state-of-the-art technique on the UCF

Weizmann Dynamic dataset. We observe a significant drop in performance when switching

from the Weizmann dataset to the UCF Weizmann Dynamic dataset.

Dataset Our Baseline (Section 3.2) STIPS (HOF) [3]

Weizmann 98% 92%

UCF Weizmann Dynamic 36.5% 31%

• χ2 kernel for SVM classification [17]

We achieved a maximum improvement of 2% using these techniques, thus failing to solve

the particular problem that we pose here – recognition with complex backgrounds.

Background complexity plays a vital role when recognizing actions in videos. Even

if the actions are simplistic, recognition systems performance is heavily dependent on the

background they are performed on. In the next section we will discuss how the use of action

localization goes a long way in rectifying this problem. It is no surprise that localization

is helpful but, as will be shown below, it is the application of localization that is equally

important.

3.4 Utilizing Action Localization For Handling Performance Degradation

We observed that the introduction of complex background in videos for simple actions

greatly affects recognition performance (refer to Table3.2). Since the only change between the

Weizmann and UCF Weizmann Dynamic datasets is of the background, it is reasonable to say

that the drop in accuracy is only due to the change in background complexity. This is because
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increased background complexity leads to detection of irrelevant background interest points

that are a main source of performance degradation. One would assume that eliminating

these background interest points should solve the problem. However, that is not the case. In

fact, it is the use of localization for both pruning irrelevant interest points and eradicating

background corruption inside cuboids that leads to optimal results. Thus we can say that:

• Action localization is important but

• Application/use of localization is equally significant

We propose a stepwise solution to the above posed problem:

• First and foremost, we need a good automatic action localization methodology (prefer-

ably a tight bounding box around the person performing the action).

• Once we have localization information, we eliminate all interest points detected due to

background motion

• Having removed erroneous interest points, we use localization to remove cuboid cor-

ruption due to background information i.e. mask out background pixel values within

valid cuboids.

Below, we will discuss each of the above strategies in detail. We will show how simply

localizing the action and pruning irrelevant interest points is insufficient and that optimal

results are achieved only when localization is directly used to modify the cuboids. Thus,

these experiments will show that systems like [5, 6, 54] that use localization just to eliminate

irrelevant interest points will have inferior performance compared with a system that uses

localization information to also directly modify the cuboids.
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We will build on the baseline system described in Section 3.2. To gauge performance of

our system and to provide an upper bound on achievable accuracy, we will also present results

obtained using ground-truth localization. Ground-truth localization masks are generated by

forming a tight bounding box around the silhouette mask, available with the Weizmann

dataset, at each frame.

Having analyzed and proposed solutions to the posed problem, we will show results

on the UCF Sports dataset which is a commonly used complex action dataset in the vision

community.

3.4.1 Automatic Localization

Since adding background complexity leads to significant increase in false positive in-

terest point detections, it is imperative to design a system that accurately detects regions

where the action is being performed. This is especially important for the UCF Weizmann

Dynamic dataset where there is significant background motion. Once we have good localiza-

tion of the action, discarding irrelevant interest points and modifying cuboids can be easily

implemented. In reality however, such localization is hard to achieve for realistic datasets.

We combine an off-the-shelf human detection system [55, 56] and a saliency detection

method [23] for obtaining automatic localization information of the action being performed.

We employ the same technique when dealing with realistic UCF Sports dataset.
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Table 3.3: The above table shows the accuracy on UCF Weizmann Dynamic dataset when

using interest point pruning with automatic localization. Best possible results for interest

point pruning with ground-truth localization are also shown. Although results improve,

they are still not comparable to those achieved on the Weizmann dataset using our baseline

system (Table 3.2).

Method UCF Weizmann Dynamic

Our Baseline (Section 3.2) 36.5%

Automatic Localization + Interest Point Pruning 41%

Ground-truth Localization + Interest Point Pruning 68%

3.4.2 Interest Points Pruning

Directly running our baseline system on the UCF Weizmann Dynamic dataset results

in interest points detected due to both the action and background motion. Having com-

puted automatic localization information, we can now remove irrelevant background interest

points. The goal is to discard all interest points lying outside the automatic localization

mask calculated previously. This technique is applied at each frame of the action video se-

quence. With the removal of these background interest points, the recognition performance

is expected to improve.

Figure 3.3 shows the interest points generated for the mentioned dataset. We see that

almost all interest points in the Weizmann dataset are on or near the person performing the

action. For the UCF Weizmann Dynamic dataset however, a significant number of interest

points are due to background motion. It is essential that we remove these interest points for

improved recognition accuracies. We thus prune interest points lying outside the automatic
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localization masks generated for this dataset. It should be noted that these localization

masks are in fact rectangular bounding boxes and so different from silhouette masks. After

pruning, interest points for the Weizmann dataset remain the same. However, interest points

from the UCF Weizmann Dynamic dataset are reduced by large extent (see Figure 3.3). Since

pruning helps remove irrelevant interest points in the UCF Weizmann Dynamic dataset, we

see improvement in recognition results (see Table 3.3). We also present the best possible

recognition accuracy that can be achieved using ground-truth localization masks.

Although there is improvement in recognition accuracy for the UCF Weizmann Dy-

namic dataset, it is still not comparable to that achieved on the Weizmann dataset (even

when using ground-truth localization). This can be attributed to the presence of back-

ground information within the cuboids extracted around the relevant interest points. This

background is incorporated in the descriptor construction process and thus negatively affects

performance.

In the next section, we will discuss actions that are more prone to the presence of

background in extracted cuboids and how localization can be used to eliminate this irrelevant

information.

3.4.3 Cuboid Correction

Previously, we showed how generating automatic action localization and using it to

prune interest points helps improve recognition accuracy on the UCF Weizmann Dynamic

dataset. However, the results obtained (refer to Table 3.3) are still not comparable to those

achieved by baseline systems on the Weizmann dataset. In this section, we will explore
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the problem further and show how eliminating background information from within relevant

cuboids further improves results.

Out-of-place actions (e.g. running, walking) are more prone to be affected by complex

backgrounds than in-place actions (e.g. bending, waving). Despite pruning interest points,

cuboids may still contain background pixels; cuboids extracted near the mask boundary

contain irrelevant spatial information while cuboids extracted for fast moving actions (such

as legs of running and walking) contain temporal background information. To deal with

this, we make use of localization masks by forcing all pixels of the extracted cuboids, that

lie outside the localization bounding region, to a constant value. This helps mask out the

irrelevant background pixel values, resulting in similar gradients across same actions in the

descriptor construction phase. This modification to the cuboid is what helps in achieving

optimal results for the UCF Weizmann Dynamic dataset.

An illustration of this is shown in Figure 3.4 for the UCF Weizmann Dynamic dataset.

Each row shows the same running action performed by the same person on different dynamic

backgrounds. The 2nd column shows some of the extracted cuboids of the corresponding

video sequence while the 3rd column shows the same cuboids after applying cuboid masking.

The 4th shows temporal gradients corresponding to column 2 while the 5th column shows

temporal gradients corresponding to column 3.

For convenience, we highlight cuboid frames showing background pixels in column 2

through 5 with a red outlining. We observe that the background content in the cuboids (col-

umn 2) varies significantly for each video, leading to different temporal gradients (column 4)

and eventually different descriptors. Although all 3 videos are of the same action, differences

in background force systems to index these videos under different classes and thus decrease

overall recognition performance.
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Table 3.4: The above table shows the accuracy on UCF Weizmann Dynamic dataset using

combination of Interest Point Pruning (IPP) and Cuboid Masking (CM) w.r.t Automatic

masks. We can see that optimal accuracy is achieved when using both IPP and CM strategies.

Method UCF Weizmann Dynamic

Our Baseline (Section 3.2) 36.5%

Automatic Localization + Interest Point Pruning 41%

Automatic Localization + Interest Point Pruning + Cuboid Masking 48%

Table 3.5: The above table shows the accuracy on UCF Weizmann Dynamic dataset using

combination of Interest Point Pruning (IPP) and Cuboid Masking (CM) w.r.t Ground truth

masks. We can see that optimal accuracy is achieved when using both IPP and CM strategies.

Method UCF Weizmann Dynamic

Our Baseline (Section 3.2) 36.5%

Ground-truth Localization + Interest Point Pruning 68%

Ground-truth Localization + Interest Point Pruning + Cuboid Masking 89%

On the contrary, application of our cuboid masking technique handles this problem.

Column 3 shows how all cuboid frames composed of background content are blackened

out. As a result, temporal gradients associated with background information inside cuboids

(column 5) are highly similar for each of the action video. This helps in assigning the same

label for all 3 videos and thus improve recognition performance.

To strengthen our case, we measure the average structural similarity (SSIM) for

temporal gradients with and without cuboid masking of all 3 videos shown in Figure 3.4. We

found the average SSIM value to be 0.67 for the case without cuboid masking and 0.75 for
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the case with cuboid masking. With higher SSIM score, it is evident that cuboid gradients

are more similar after cuboid masking and hence improve the recognition results.

Tables 3.4 and 3.5 shows results associated with cuboid masking for both automatic

and ground-truth localization. We see an improvement of 11.5% and 52.5% respectively over

the baseline results. We can see that even with an average automatic localization method,

we are able to achieve more than 10% improvement over the baseline performance. This is

a significant jump in performance and shows how cuboid masking is able to handle complex

static and dynamic backgrounds. With better localization techniques however, there is

scope of even more improvement as depicted by the results obtained using ground-truth

localization.

Having analyzed the problem using the synthesized dataset, we next test our system

on a realistic dataset. Instead of Youtube [10, 4] and Hollywood [3, 8] datasets, we used the

UCF Sports dataset for this task. The reason for this choice being that the UCF Sports

dataset is more coherent with regards to the action categories as opposed to both Youtube

and Hollywood datasets.

3.5 UCF Sports

In order to show that our suggestions are applicable to real life datasets, we test our

system on the UCF Sports datasets. UCF sports dataset has the complex background and

camera movement which were simulated in the synthetic dataset. At the same time, actions

are more coherent and well captured unlike Youtube and Hollywood.

The results of different experiments on this dataset are presented in tables 3.6 and

3.7. We see that interest point pruning alone does not improve results but when combined
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Table 3.6: The table shows the results on UCF sports with automatic localization masks.

It is evident that interest point pruning (IPP) and cuboid masking (CM) strategies improve

the accuracy by 12%

Method UCF Sports

Our Baseline (Section 3.2) 68%

Automatic Localization + Interest Point Pruning 77%

Automatic Localization + Interest Point Pruning + Cuboid Masking 80%

Table 3.7: The table shows the results on UCF sports with ground-truth masks. It is evident

that interest point pruning (IPP) and cuboid masking (CM) strategies improve the accuracy

by 17%

Method UCF Sports

Our Baseline (Section 3.2) 68%

Ground-truth Localization + Interest Point Pruning 79%

Ground-truth Localization + Interest Point Pruning + Cuboid Masking 85%

with cuboid masking, we see a 12% improvement over the baseline results. We also tested

using ground-truth masks for the best possible results and observed a 17% improvement over

the baseline results. Using either automatic or ground-truth localization, we observe that

the application of localization for the purpose of interest point pruning is not sufficient. It

is the use of localization to remove cuboid corruption that leads to significant improvement

over the baseline method.

28



Figure 3.3: Top row shows the interest points without pruning for Weizmann and UCF

Weizmann Dynamic datasets respectively. Bottom row shows the interest points for the

same frame after pruning. For better recognition, it is thus important to remove background

interest points.
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Figure 3.4: The figure shows the effect of cuboid masking. Column 1: Shows the same

running action performed by the same person matted on 3 different complex moving back-

grounds. Column 2: Shows cuboids extracted from each video sequence. Size of each cuboid

is 13x13x7, where all 7 frames are shown in a single row. Column 3: Illustrates the exact

same cuboids as in column 2 after applying cuboid masking. Column 4: Shows the temporal

gradients of cuboids in column 2. Column 5: Shows the temporal gradients of cuboids in

column 3. The gradient in column 4 corresponding to background content (red outlined)

appear different for each video sequence. However, the gradients of all three actions look

similar after applying cuboid masking, as depicted in column 5. This is confirmed by average

SSIM values of 0.67 and 0.75 for original temporal gradients (column 4) and cuboid masked

temporal gradients (column 5) respectively.
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CHAPTER 4
LOCALIZATION USING A WEAKLY SUPERVISED

PROBABILISTIC MODEL

In the above chapter, we showed how proper application of localization for pruning

irrelevant interest points and removing cuboid corruption within relevant ones significantly

helps improve the recognition accuracy. However, improvement observed for realistic datasets

(e.g. UCF Sports) was very limited in comparison to the improvement for the UCF Weiz-

mann Dynamic dataset. In addition, even after employing near-perfect localization on UCF

Sports, we were unable to surpass state-of-the-art results on this dataset. This observation

can be attributed to the following reasons:

• Unlike the UCF Weizmann Dynamic dataset, we lack silhouette masks for reaslistic

datasets. Although silhouette masks might improve results on reaslitic datasets, ob-

taining them is a manual and highly cumbersome process for large scale datasets.

• Since the background is highly discriminative for UCF Sports, it helps improve recog-

nition performance and thus even near-perfect localization on UCF Sports is unable to

surpass the state-of-the-art results.

Before we address the above concerns, it is important to note that the success of the

above system is heavily dependent on accurate localization. Reliance on human detector [55,

56] and saliency methods [23] as a means of localization is not an ideal solution. It is thus

pertinent to construct a system that is able to automatically localize as accurately as possible

and thus eliminating the need for manual, ground-truth localization of the action.
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Unlike [1] who create a non-linear model for both localization and discrimination by

introducing a number of new latent variables, we propose a localization-based action recogni-

tion system that separately handles localization and discrimination. This is beneficial as the

approach in [1] multiplicatively expands the size of the search space for the latent variables

in a fashion that affects the computation needed for all aspects of the system, including both

training and testing. On the otherhand, our two-stage approach uses linear models to local-

ize, then applies a non-linear classifier to recognize the action category. Because the stages

are executed sequentially, no increase in the search space over latent variables is necessary.

Also the system proposed in [1] requires the action be manually localized for every

frame in the training video set. Our system automatically localizes the action during the

training process and thus eliminates the need for manual, ground-truth localization of the

action. Our presented method is efficient as it also eliminates the need for pre-processing

heuristics and requires no human detector pre-processing steps. It is shown to significantly

increases recognition accuracy, from 73.1% in [1] to 80.8% on the UCF Sports dataset.

4.1 Action Localization and Recognition

The following sub-sections will describe how an action is localized and recognized in

a test video. Section 4.2 will discuss how the model is trained.

4.1.1 Overview of Video Representation

While Section 4.4 will discuss our video representation in more detail, here we give

a brief overview of the video representation. Our descriptor representation is based on the
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Figure 4.1: Two stage action localization and classification model.

popular Space-Time Interest Point (STIP) detector proposed by Laptev et al. in [57]. Using

code provided by [57], we compute a dense representation of the video. Spatio-temporal

descriptors are computed at regular intervals, both spatially and temporally, in the video.

Building on the success of bag-of-words approaches, the descriptors are represented in a

standard vector quantization representation. The descriptors are clustered to create a code-

book and individual descriptors are replaced with the index of the closest descriptor in the

codebook.

After this processing, the video is represented as a series of frames where each pixel

in the frame holds a descriptor index value. Because the descriptor code computes these

descriptors at regular spatial and time intervals, each frame in this new representation is

a descriptor computed from several consecutive frames in the original video. This has the

practical side effect of reducing both the size and number of frames in the video.

Figure 4.1 depicts our two-stage framework for recognizing the action in a video:
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1. A series of action-specific localization models, one per action class, are used to find a

set of sub-windows in the action that may contain the action being performed in the

video.

2. A non-linear classifier, based on the histogram-intersection kernel, examines the sub-

window associated with each possible action class and produces the final classification

of the video.

4.1.2 Stage 1: Action Localization

The first step in our system is the localization of the action. For a particular action c,

such as running, the action is localized in a frame by finding the sub-window that maximizes

a response score, rc:

rc = max
w∈W

~xw · θc (4.1)

where W is the set of all possible sub-windows for a particular frame within the STIP video,

~x denotes the feature within the sub-window w, and θc are the weights used to localize the

action class c.

The set W of all possible sub-windows contains both sub-windows at all possible

locations in the frame and also sub-windows of various sizes. In practice, we use full size,

three-quarter-sized and half-sized sub-windows w.r.t. the frame size for our model compu-

tation.

As mentioned above, the feature vector describing each sub-window is based on STIP

descriptors [57] that have proven successful in other action recognition systems. Building on

the success of bag-of-words systems, each sub-window is represented by a histogram describ-

34



ing how many times different quantized descriptors appear in the window. For consistency

purposes, the histograms were normalized with respect to the size of the subwindow used.

Section 4.4 will discuss feature computation in more detail.

4.1.3 Stage 2: Action Recognition

The response scores computed during localization, as described in the previous sec-

tion, can be used to classify the video by finding the class c∗ such that the sub-window

response rc∗ is maximized. However, since the model is linear, the recognition performance

is likely to be lower than what we can achieve using a non-linear classifier. Thus, the second

stage of our model uses a non-linear classifier to improve recognition accuracy.

For a given video sequence v, we predict the action label as follows:

1. For each frame in the video, determine the best scoring sub-window for each action

label c. Each sub-window is represented by a histogram ~hfc that contains the frequency

of various quantized video descriptors in the highest-scoring sub-window in frame f

for class c.

2. Aggregate the histograms across all frames. Formally, the histogram for action c is

created by

hc =

Nf∑
f=1

hfc , (4.2)

where Nf is the total number of frames in the descriptor representation of the video.

Figure 4.2 gives a visual description of this step. For a given video sequence, we select

the best scoring sub-window per frame for each of the action classes. Once we have

all sub-windows for all classes, we construct histograms w.r.t each action class (as in
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Figure 4.2: Given a video sequence, Nf sub-windows are extracted for each action class using

Equation 4.9. Histograms are computed for the corresponding action class using the STIP

descriptors within the sub-windows.

Equation 4.2) based on the features observed in the highest scoring sub-windows for

that class, in the video sequence.

3. Use the histograms h1, . . . , hc to find the most likely class. In our current implemen-

tation, we use a set of support vector machines (SVMs), trained in a one-versus-all

manner, to find the video’s label. Each SVM, trained in the fashion described in Sec-

tion 4.2.2, computes the probability P (y = c|hc), where y denotes the label of the

current video. The video is assigned the action label that returns the highest proba-

bility score, i.e. arg maxk∈C(P (y = k|hk)).
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4.2 Learning The Model

Just as the recognition process occurs in two stages, the localization and recognition

stages are trained in two different steps.

4.2.1 Learning to Localize

The first step is to learn the weights, θ1, . . . , θC in Equation 4.9 for localizing the

action per frame. In this work, we assume that only the label of each video is provided.

With just this information, the location of the action in each frame is treated as a latent

variable and the weights are trained to optimize the ability of the system to discriminate

between different action classes.

This is implemented using a probabilistic soft-max criterion. The probability of a

frame f in a video sequence v belonging to the ground-truth class T is computed as:

P v
f [l = T |~x] =

exp
(
rT (~xf )

)∑
c

exp
(
rc(~x

f ))
) =

exp

(
max
w∈W v

f

~xfw · θT
)

∑
c

exp

(
max
w∈W v

f

~xfw · θc
) . (4.3)

where ~xf contains all of the features in frame f and ~xfw contains the features in sub-window

w of frame f .

In this formulation, each frame in the video representation is independently classified

with one of the action labels. This label is chosen based on the sub-window with the highest

response.

37



Assuming that frames and videos are independent, the negative log-likelihood function

reduces to the summation

L = −
Nv∑
v=1

Nf∑
j=1

log(P v
f [l = T |~x]). (4.4)

When implementing this learning process, it is useful to make an additional approx-

imation. The max operation in Equation (4.10) makes it difficult to compute the gradient

of the loss. This issue can be overcome by replacing the max operation with a smooth ap-

proximation. Given a set of values x1, x2, ..., xN , we can approximate the maximum of the

set by using a differentiable approximation:

max(x1, x2, . . . , xN) ≈ log (ex1 + ex2 + . . . exN ) (4.5)

Substituting this expression in Equation 4.10 we get:

P v
f [l = T |~xf ] =

exp

log

∑
w∈W v

f

exp
(
~xfw · θT

)
∑
c

exp

log

∑
w∈W v

f

exp
(
~xfw · θc

) =

∑
w∈W v

f

exp
(
~xfw · θT

)
∑
c

∑
w∈W v

f

exp
(
~xfw · θc

) (4.6)

It should be noted that the equations can also be derived from a strictly probabilistic

view, but we find this perspective on the derivation intuitive.

This formulation makes it possible to train the localization weights θ1, . . . , θC using

standard gradient-based techniques. In our experiments, we have had success with both

non-linear conjugate gradient descent1 and the stochastic meta-descent algorithm [58]. The

stochastic meta-descent algorithm reduced optimization time by nearly half.

1http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads/
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4.2.2 Training The Second Stage Non-Linear Classifier

Once the localization weights have been optimized, the classifier at the second stage

can be trained. Assuming that our training dataset consists of V videos, C action classes

and is represented using a k-sized visual codebook, we construct the data representation for

the second stage of our model as follows:

• For each training video sequence v ∈ V and the ground truth action label c ∈ C, we

determine the the best scoring window on a per frame basis for action label c using the

weights learned from the action localization model, i.e. wc
f (~x) = arg maxw∈Wf

(~xw ·θc),

where f is video frame and θ are the action localization weights.

• Using these best windows, we construct a k-sized histogram for video v w.r.t the ground

truth action label c. In other words, each training video is represented as a feature

histogram and corresponding ground truth action label.

Once we have the histograms for all training videos, we train a total of C one-vs-all

non-linear classifiers, one for each action class. We select SVM with Histogram-Intersection-

Kernel (SVM-HIK) as the non-linear classifier for this task. Histograms of the correct action

class are labeled positive while the histograms of all other classes are labeled negative.

Since the SVM scores computed from different classifiers are not calibrated we use

the probability estimates as the confidence score for each classifier. Probability estimates are

computed by fitting a logistic regression model to the SVM output score. For binary classi-

fication problems, the probability of input ~x belonging to label 1 is given by Equation 4.7,

where parameters A and B are learned during the SVM training.

P (y = 1|~x) =
1

1 + expAf(~x)+B
(4.7)
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4.3 Learning a Conditional Random Field (CRF) Model

When analyzing human action sequences, we observe a temporal consistency between

consecutive frames with respect to the location of the person performing the action. In other

words, if we observe a person performing an action in frame ‘i’, we expect the person to be

in the same vicinity in frame ’i+1’. This is governed by our knowledge of the real world

since we know that it is humanly impossible to move from one corner to the other within a

30th of a second. This observation highlights a fundamental aspect of human movement in

video sequences: location smoothness across time.

One of the drawbacks of the proposed approach is the lack of smoothness of the

subwindow search across frames. In other words, since each frame is treated independently,

there is no concept of a connection between adjacent frames within a video sequence. Thus,

we see that the subwindow jumps from one corner of the video to the other in consecutive

frames. This defies our knowledge of the real world and needs to be rectified.

One way of correcting this behavior is by introducing a smoothness term across

frames. Subwindows in the next frame that are roughly in the same location as that of

the current frame be given a higher weight as opposed to other subwindows. This way we

can ensure a consistent behavior when localizing the action.

To handle this situation, we formulate a Conditional Random Field (CRF) model

that optimizes the subwindow locations for the entire video sequence. Thus, the response

scoring function is modified as follows: For a particular action c, the action is localized by

finding a sequence of sub-windows, one per frame, that maximize the response score, rc:

rc = max
~w∈WAll

F∑
f=1

(
~xwf · θc + αS(wf , wf+1)

)
(4.8)
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where WAll is the set of all possible sub-windows permutations for a STIP video, ~xwf denotes

the feature for frame f within the sub-window w, α is the weight assigned to the smoothness

term and S is a gaussian smoothness term for subwindows across adjacent frames defined

as:

S(i, j) =
1

2πσ2
e−

(ix−jx)2+(iy−jy)2

2σ2 (4.9)

The new soft-max criterion is thus modified to reflect the above changes:

P v[l = T |~xv] =
exp (rT (~xv))∑
c

exp (rc(~x
v)))

=

exp

(
max
~w∈W v

All

F v∑
f=1

(
~xvwf · θT + αS(wf , wf+1)

))
∑
c

exp

(
max
~w∈W v

All

F v∑
f=1

(
~xvwf · θc + αS(wf , wf+1)

)) .
(4.10)

Substituting the approximation to the maximum, we get:

P v[l = T |~xv] =

exp

log

 ∑
~w∈W v

All

exp

(
F v∑
f=1

(
~xwf · θT + αS(wf , wf+1)

))
∑
c

exp

log

 ∑
~w∈W v

All

exp

(
F v∑
f=1

(
~xwf · θc + αS(wf , wf+1)

))

=

∑
~w∈W v

All

exp

(
F v∑
f=1

(
~xwf · θT + αS(wf , wf+1)

))
∑
c

∑
~w∈W v

All

exp

(
F v∑
f=1

(
~xwf · θc + αS(wf , wf+1)

)) (4.11)

Instead of localizing the action independently across frames, this new formulation

ensures smoothness in adjacent frames. The added smoothness term penalizes subwindows

from jumping randomly between consecutive frames and thus depicting a more realistic

action localization scheme.

As done before, we train the localization weights θ1, . . . , θC using standard gradient-

based techniques. Once the weights have been trained, we employ the second stage non-linear
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classifier (Section 4.2.2) without any modification. As will be shown in Section 4.5, using

the CRF model improves both the localization score as well as the recognition accuracy.

4.4 Video Feature Representation

The video regions are represented using Historgam of Gradient (HoG) and Histogram

of Flow (HoF) descriptors computed at densely sampled interest points using Laptev’s STIP

detector [57]. We then randomly select 100, 000 descriptors from the training set and con-

struct a visual codebook of size 4000 using the K-means clustering algorithm. Each STIP

pj is represented as the tuple (xj, yj, tj, cj), denoting that a STIP was observed at (xj, yj) in

the tj’th frame of the video; the label cj corresponds to the index of the visual word in the

codebook that is closest in feature space to pj’s descriptor.

The densely sampled interest point option for the STIP detector returns interest

point locations based on the spatial and temporal scale size used. These locations are highly

sparse, making it possible to compact the images and significantly reduce the amount of

computation necessary to localize the action.

As shown in Equation 4.9, the action is localized using a score that is a linear function

of the histogram of feature descriptors occuring in a window. An advantage of this function

is that it can be computed efficiently using the integral image representation, similar to [59].

Using this technique, we can significantly reduce the size of the video data and thus

improve efficiency of our model with respect to both time and memory usage. We will refer

to this compact feature representation of a video as a STIP video whenever needed.
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4.5 Experimental Evaluation

In this section we present results of our method described above on two well known

real-world datasets and show the effectiveness of our proposed model at both localizing and

recognizing actions in video sequences.

4.5.1 Datasets

We evaluate our model on two well known real world datasets, namely UCF sports

dataset [60] and UCF11 dataset [4]. Both the UCF sports and UCF11 action datasets are

very challenging due to large variations in camera motion, object appearance and pose,

object scale, viewpoint, cluttered background and illumination conditions.

UCF Sports Action Dataset The UCF sports action dataset contains 150 video sequences

and includes 10 human actions: swinging (on the pommel horse and on the floor), diving, golf

swinging, horse riding, kicking (a ball), weight lifting, swinging (at the high bar), running,

skateboarding and walking.

UCF11 Action Dataset The UCF11 action dataset contains 11 human actions: basketball

shooting, bicycling, diving, golf swinging, horse riding, soccer juggling, swinging, tennis

swinging, trampoline jumping, volleyball spiking and walking with a dog. There are total of

1168 video sequences in the dataset with bicycling and walking with a dog actions having

more videos than the rest. The videos are divided in a total of 25 folders per action class,

where videos within a folder are treated as performed by the same person.
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4.5.2 Results on UCF Sports Action Dataset

While it is common to use a Leave-One-Out-Cross-Validation (LOOCV) testing method-

ology when conducting experiments with the UCF Sports dataset, Lan et al. [1] have recently

pointed out that many of the videos in this dataset are clips taken from a longer video. This

is problematic when conducting LOOCV tests because several training clips will often be

drawn from the same video as the testing clip. This causes the classifier to perform best when

it effectively memorizes the appearance of the training clips to exploit the strong inherent

context correlation among clips drawn from the same video segment.

In order to overcome this issue, [1] suggest using a third of the videos from each action

class for testing while the remaining videos are used for training. We use the same train/test

split2.

Table 4.1 shows results using the train-test split suggested in [1]. The key results in

this table include:

• Classifying the videos based on just the localization scores, as in Equation 4.11, per-

forms comparably to a classifier based on a global representation of the image.

• However, using a linear SVM as a second stage classifier significantly improves classi-

fication accuracy by almost 8% to 72.3%. A likely reason for this is that treating the

classification separately makes it possible for the classifier to focus on discriminating

between action classes without having to compensate for the effect on how windows

are localized.

• Utilizing a non-linear classifier based on the histogram intersection kernel produces

another significant improvment to 80.8%.

2Available at http://www.sfu.ca/~tla58/other/train_test_split
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Table 4.1: Mean per-class action recognition accuracies (split) on UCF Sport actions. We

show that our method outperforms both global and results reported in [1] for UCF Sports

dataset

Method Accuracy

Global Bag-of-Words (SVM-Linear) 62.97%

Global Bag-of-Words (SVM-HIK) 68.81%

Lan et al.[1] 73.1

Our Method (Localization Model) 64.6%

Our Method (Localization Model + SVM-Linear) 72.3%

Our Method (Localization Model + SVM-HIK) 80.8%

Our Method (CRF Localization Model + SVM-HIK) 84.3%

• Using a CRF model, we were able to achieve better localization and improve the overall

accuracy by 4% to 84.3%.

Our results using the linear SVM are comparable to those proposed in [1] with the added

advantage of automatic action localization, i.e. no ground truth annotations are necessary for

training. However, our best result using a CRF localization model with non-linear SVM-HIK

shows significant improvement over both the baseline and results from [1]. It is important

to note that we neither use ground truth action locations during training nor use any person

detector/tracking algorithm for initial action location estimates when testing.

Figure 4.3 shows the localization results obtained using our proposed technique. We

observe how the automatic localization model is able to accurately identify the actor in the

video as the best representation of that action.
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Table 4.2: Mean per-class action recognition accuracies (LOOCV) on UCF Sport dataset.

Our LOOCV results are comparable to the state-of-the-art on the UCF Sports dataset

Method Accuracy

Kovashka et al. [21] 87.3%

Klaser [24] 87.3%

Wang et al. [17] 85.6%

Yeffet et al. [61] 79.3%

Rodriguez et al. [60] 69.2%

Lan et al. [1] 83.7%

Our Method 83.7%

We also performed experiments using the LOOCV method on the UCF sports dataset.

The accuracies for the LOOCV method are provided in Table 4.2 and class specific breakdown

is highlighted in Figure 4.4(a). We can see that our method is comparable to results reported

by others.

4.5.2.1 Localization Score

Utilizing the ground-truth location information available for UCF sports dataset, we

can compute a measure of how well our system is localizing. Using an evaluation criteria

similar to the one in [1], we first compute the intersection-over-union score per frame using

Area(Wf∩W g
f )

Area(Wf∪W g
f )

where Wf is the detection window in frame f and the W g
f is the ground truth

action bounding box. Then, we compute the average intersection-over-union score for a video
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Figure 4.3: We show some of the localization results obtained using our method on the UCF

Sports action dataset. The white square indicates the subwindow chosen by the localization

algorithm to represent the action being performed in the video. A key advantage of our

approach is that the localization is learned automatically from just the label of each video.

using all frames in the video. If this score is greater than a threshold σ, we consider the

video to be correctly localized.

Using this measure with the σ = 0.2 used in [1], we were able to achieve true positive

and false positive rates of approximately 38% and 42% respectively. However, once we

implemented the CRF localization model, our localization results improved to 62% true

positive rate and 50% false positive rate. The true positive rate is directly comparable to

64% reported by [1] while we achieve a lower false positive rate than the 60% reported in

[1]. It should be noted that our system achieves a better localization without having access

to ground truth localization information during training. We consider this to be a strong

result given that our system is just trained with overall class labels.
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(a) (b)

Figure 4.4: Confusion matrices for both UCF Sports and UCF11 dataset using LOOCV

testing approach.

4.5.3 Results on UCF11 Action Dataset

With the success of our model on the UCF Sports action dataset, we perform a similar

experiment on the UCF11 action dataset. We use a 25 fold LOOCV technique as suggested

in [4]. The results obtained for both the baseline global bag-of-words representation as

well as our method are listed in Table 4.3, with a more detailed confusion matrix shown in

Figure 4.4(b). We again see that using our localization model, we can improve recognition

performance over the baseline by 4%. Figure 4.5 shows sample localization results that

demonstrate how our localization model is able to correctly identify the action sub-window

within the video.

It should be noted that the final accuracy of our system is below that reported by

[62]. This is largely due to our choice of video features. In [63], Oh et al. have observed that
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Figure 4.5: We show localization results obtained using our method on the UCF11 action

dataset. We can see that our model is able to correctly identify a sub-window around the

human actor as the best possible representation of the action being conducted in the video.

STIP-based descriptors are more accurate for high resolution sequences, like the UCF Sports

dataset, but not well-suited for low resolution videos, which dominate the UCF11 dataset.

4.5.4 Computational Performance

The STIP video representation explained in Section 4.4 improves the efficiency of our

model with respect to both time and memory requirements. The sub-window scores can

be computed effectively for a STIP frame using an integral image. In order to show the

efficiency of our model we provide some timing information for training and testing on the

UCF sports action dataset: The average time for computing the gradient term for a single

STIP video is around 36.5 ms with a 3.3 GHz processor. A single iteration of the conjugate

gradient-descent algorithm on the whole split training dataset takes around 15 seconds and
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Table 4.3: Mean per-class action recognition accuracies using 25 fold LOOCV on UCF11

dataset. We show improved performance over the global bag-of-words features

Method Accuracy

Global Bag-of-Words (Linear SVM) 58.82%

Global Bag-of-Words (SVM-HIK) 63.36%

Our Method 67.77%

the algorithm converges within 30 iterations, therefore the overall training time for the first

stage of our model is around 450 seconds. During the testing phase, it takes around 106.38

ms for classification of a STIP video. This can be improved further since the action location

hypothesis and classification scores can be computed in parallel for each action class as shown

in Figure 4.1.
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CHAPTER 5
LOW LATENCY ACTION RECOGNITION FOR HUMAN

COMPUTER INTERACTION (HCI) SYSTEMS

The weakly supervised probabilistic model proposed in Chapter 4 can be used in a

variety of problems. In this chapter, we will discuss how this formulation can be used to

reduce latency in recognizing actions for Human Computer Interaction (HCI) systems, more

specifically gaming environments.

The two fundamental characteristics of successful HCI systems are:

1. High Accuracy - The system must be accurate at recognizing actions.

2. Low Latency - Latency, which is discussed in Section 5.1.1, is a key issue for interactive

experiences. A system that lags behind user actions will feel cumbersome. This is

particularly important for entertainment applications, where complaints about lag have

led to very critical reviews for some motion-based games[12].

As opposed to traditional recognition systems that focus solely on achieving high

accuracy, we formulate a system that couples accuracy and latency in recognition. There

are two main categories of latency that systems encounter:

• Observational Latency, which is the latency caused when the recognition system must

wait for the human to move or pose in a fashion that is clearly recognizable,

• Computational Latency, which is the latency caused by the recognition system itself.
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Our primary focus is towards observational latency but we also propose methods to

handle computational latency. In general, the focus of our work is to develop a thorough

understanding of the accuracy/latency trade-off which can be used to better design activity

recognizers for interactive applications.

A solution to reducing observational latency is enabling the system to recognize the

action with as few observations as possible. In other words, we want to design a system that

recognizes an action based on some canonical body poses that easily discriminate the action

from all other actions. The goal is to encourage the system to find a discriminating canonical

pose in as few observed frames of the video sequence as possible. We have to be mindful of

the fact that classifying an action too soon might lead to a significantly lower accuracy and

so need the system to strike an agreeable balance between accuracy and latency.

We previously used the probabilistic model proposed in Chapter 4 for determining the

spatial location of where the action is being conducted in a video sequence. We will modify

the formulation slightly so that it focuses on when the action is discriminative i.e. finding

a canonical pose from a sequence of frames that best describes the action. For reducing

latency, we introduce additional parameter-controlled costs that force the system to find a

discriminative action pose by observing as few frames of the video sequence as possible. This

learning strategy makes it possible to rigorously explore the trade-off between accuracy and

latency when spotting actions in an input stream.

Experiments are conducted on a unique dataset collected using Microsoft Kinect

which allows us to measure the latency due to the ambiguity involved in assuming a particular

pose. We show how this classifier can significantly outperform the baseline Bag of Words

and Conditional Random Field (CRF) classifiers. We also evaluate the performance of our

algorithm against both the MSRC-12 [14] and MSR Action3D [2] datasets and discuss the

results in detail.
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5.1 Basic Approach and Assumptions

With the release of the Microsoft Kinect sensor, reasonably accurate joint positions

can be recovered in real-time. Since we use Kinect sensor data, we assume that the user faces

the sensor and stands within its field of view. Our method could be extended to non-depth

video, but that would require some method of estimating pose, such as [64, 33].

Each video in the dataset consists of one person performing one action, from a set of

16 actions, a single time.1 Figure 5.1 lists the set of actions used. These actions are chosen

based on experiments in [65], which used the game Mirror’s Edge to identify a set of actions

which would be natural for an interactive gaming experience. Section 5.4.2 reports results

for simultaneously distinguishing between all 16 actions. Although the set of actions is not

as extensive as [48], it is still substantially larger than in other previous work such as [2].

Each action is performed starting from a rest state, making it possible to measure

how quickly the action is recognized from this rest state. Collecting data in this fashion is

reasonable because the vast majority of the actions, which have been chosen through user

studies in [65], require returning to a rest pose. In the set of 16 actions in Table 5.1, the only

exceptions to this are “balance” and “run” actions. In addition, beginning each action from

a rest pose makes it possible to produce a more realistic estimate of latency in a system with

a variety of gestures. While modifications for special cases, such as repeated combinations of

punches, may be able to reduce latency for special situations, our goal is to examine latency

as it would occur over a wide variety of gestures.

We gathered a new dataset, rather than using an existing one such as the HumanEVA

dataset [66]. This is because, at the time we began, previous datasets had not been gathered

in a fashion that makes it possible to measure the recognition latency from the moment the

1See Section 5.3 for more details on the data gathering process.
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Table 5.1: The list of actions used in constructing the dataset.

Balance Kick

Climb Up Punch

Climb Ladder Twist Left

Duck Twist Right

Hop Step Forward

Vault Step Back

Leap Step Left

Run Step Right

human begins the action. However, recently new datasets have become available, and we

present our results in Section 5.8.

5.1.1 Latency and Action Recognition

We define the latency of an action as the difference between the time a user begins the

action and the time the classifier classifies the action. This total time has several different

components. At a high level, the latency can be broken down into two parts:

1. Observational Latency, which is the time it takes for the system to observe enough

frames so that there is sufficient information to make a good decision, and
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2. Computational Latency, which is the time it takes the system to perform the actual

computation on the observations.

It should be noted that a cleverly designed system may be able to perform the nec-

essary computations in between observations, effectively masking the computational latency

with the total latency being dependent on only the observational latency.

In this paper, we focus on observational latency because reducing this latency requires

examining the fundamental recognition strategy. Once a good strategy is found, it can often

be accelerated with optimizations like classifier cascades [67, 68, 69]. In Section 5.6, we

show how a GentleBoost method [70] leads to reduced computational latency and better

recognition performance.

In the worst case, the observational latency would be the total number of frames

it took for a user to perform the action. Such a large latency significantly degrades the

user’s interactive experience because the system cannot respond to an action until after it

has completed. In the best case, the observational latency would be just one frame (at the

start of the action), which is infeasible in practice since actions are initially very similar.

We present a computational mechanism for designing classifiers that reduce this latency as

much as possible, while maximizing recognition accuracy.

5.1.2 Defining and Measuring Observational Latency

Defining and measuring the observational latency of a system involves subtle decisions.

In previous work, such as the Action Snippets proposed by Schindler and Van Gool [52], and

the work of Davis and Tyagi [44], the system is tested on sequences where the action is being
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performed continuously (no transition from a rest position), ensuring that every subset of

frames shows the action in full progress.

Evaluating data on video where the action is being performed continuously eliminates

the ambiguity that occurs as the user transitions into different actions. Observations that

contain the user beginning an action can be ambiguous as the user moves through poses

that are common to several different actions. For example, at the start of both climbing and

punching actions, the user’s hand often passes near the head.

This introduces a different type of latency than those measured in [44] or [52]. As

shown in our experiments, even if it is still possible to recognize the action from a small

number of frames, many more frames may be required for the user to assume a distinctive

pose that can be reliably recognized.

Our dataset is gathered with each action starting from the initial rest state, where the

participant is standing up straight with their arms hanging loosely at their sides, ensuring

that the classifier must cope with ambiguous poses at the start of each action. This at-

rest pose also enables us to precisely measure the observational latency and to minimize

the variation due to the reaction time of the participant. The learning method described

in Section 5.2 is designed to find distinctive poses within each action that can be reliably

classified. The ambiguity issues are compounded by the large number of actions (16 actions

as opposed to the 6 KTH dataset actions used in [52]) because an increased number of actions

naturally increases the chance that the different actions appear visually similar.

We argue that measuring latency in this fashion is useful because it is quite likely

that an action recognition system will have to recognize multiple actions over the course of

the session with the system. In this situation, the lag perceived by the user depends on how

quickly the system can detect the beginning of the action. In this dataset, this is measured in
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terms of the time to move from a rest state to a definitive frame in an action. As mentioned

above, this is done to simplify the data collection process.

5.2 Finding Poses with Multiple Instance Learning

To minimize the observational latency at the outset, the classifier must be designed

to require as few observations as possible, similar to [52]. Using the minimum number of

frames possible, the system is able to focus on the observational latency inherent in human

motion and pose, as discussed in Section 5.1.2.

To minimize the number of observations necessary, this classifier classifies actions

based on pose and motion information available from the current, the frame captured 10

frames previously, and the frame captured 30 frames previously, as discussed in Section 5.3.

The underlying idea behind the classifier is that the action can be reliably recognized when

the user assumes a distinctive pose that unambiguously characterizes the action. As demon-

strated in Section 5.4.2, this strategy perform very well.

The virtue of automatically identifying a distinctive “canonical” pose for each action

is that this makes it possible to ignore confusing intermediate poses that make classifying

similar actions difficult. For example, as shown in Figure 5.1, the “climb up” and “leap”

actions have a similar median pose as both involve raising the arms. However, the learning

process has automatically found canonical poses for each action that look very different.

When the system observes the canonical pose, it can unambiguously classify the action.

This is effective because it enables the system to ignore ambiguous data leading up to the

canonical pose without fixating on ambiguous poses that could potentially be misclassified.
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Figure 5.1: These skeletons shows several of the poses associated with different actions. The

skeleton on the left of each panel is the median of poses associated with each action. The

skeletons on the right are examples of poses considered to be most like the canonical pose in

a particular video.

58



5.2.1 Classifying Videos by Examining Individual Frames

In our dataset, discussed in detail in Section 5.3, each video consists of one individual

performing one action only once. These videos are labeled based on the similarity of a frame

in the sequence to a canonical pose associated with each action. Thus, the labeling process

can be thought of as labeling a bag of frames according to the instances inside that bag.

Formally, the classification begins with a set of weight vectors, θ1, . . . , θNA , where

NA is the number of actions. The first step in classifying a video is to automatically find

the frame for each action class that exhibits a canonical pose most similar to that class.

Formally, we denote this as a max-response for class c:

rc(~x) = max
f∈F

~xf · θc (5.1)

where F denotes the set of all frames in the bag and ~xf represents the vector of features for

frame f .

The probability that the label l of a video should take the correct label T can then

be computed using the soft-max function, as in logistic regression:

P [l = T |~x] =
exp (rT (~x))

1 +
∑
c

exp (rc(~x)))

=

exp

(
max
f∈F

~xf · θT
)

1 +
∑
c

exp

(
max
f∈F

~xf · θc
) . (5.2)

Adding a 1 to the denominator of Equation (5.2) is different than the typical soft-max

function. In this formulation, the addition of 1 implicitly models a null action that always

has a response of 0. In practice, this makes it possible for the classifier to better manage
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uncertainty as it classifies an action as null until the user assumes a pose that makes the

current action clear.

As mentioned above, this formulation is similar to multiple instance learning because

the video, or bag of frames, is classified according to how one of the frames in that bag is

classified. The use of the max operator is also somewhat similar to Felzenszwalb et al.’s

latent SVM formulation for object detection in images [67].

5.2.2 Smooth Approximation

While logistic regression models are typically trained using gradient-based optimiza-

tion, the introduction of the max operator in Equation 5.2 makes the training criterion

non-smooth. This can be overcome by using the approximation to the maximum of a set of

values V = v1, . . . , vN as

max(v1, v2, . . . , vN) ≈ log (ev1 + ev2 + . . . evN ) . (5.3)

Incorporating this approximation into Equation 5.1 leads to the following expression

for computing the probability of a particular class:

P [l = T |~x] =

exp

(
log

(∑
f∈F

exp (~xf · θT )

))

1 +
∑
c

exp

(
log

(∑
f∈F

exp (~xf · θc)

))

=

∑
f∈F

exp (~xf · θT )

1 +
∑
c

∑
f∈F

exp (~xf · θc)
. (5.4)

As an aside, we note that in Equation 5.4, the sharpness of the max approximation

could be tuned using a scaling parameter as: max(v1, . . . , vN) ≈ log
(
ekv1 + . . .+ ekvN

)
.
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However, such a scaling is subsumed in the weights, θ, during optimization and apart from

changing the local minimum that is found, has no impact on the system. We experimentally

verified this finding using a range of k from 1 to 100. Thus, we employ a unit scaling, k = 1.

Given training examples ~x1, . . . , ~xNT and training labels t1, . . . , tNT , the weights θ1, . . . , θNA

for the NA actions can be found by optimizing the log-loss criterion created by taking the

log of Equation 5.4. In our implementation, we use the non-linear conjugate gradient algo-

rithm to optimize the log-loss. To increase the generalization performance of the system, a

regularization term, R(θi) is summed over all entries in θ and added to the final optimization

criterion. To encourage sparsity, we use a Lorentzian term:

R(θi) = α log(1 + βθ2i ), (5.5)

where α and β are chosen to be 1/4 and 1 through cross-validation.

Replacing the max with the soft approximation causes the system to consider all of

the observed frames when computing the label, though the greatest weight is assigned to the

frames with the highest response.

In our experiments, the weights are initialized randomly with the initial weights drawn

from a zero-mean, unit-variance Gaussian distribution.

5.3 Dataset and Features

Our dataset was gathered from 16 individuals (13 males and 3 females, all ranging

between ages 20 to 35) using a Microsoft Kinect sensor and the OpenNI platform to estimate

skeletons. Each individual performs all 16 actions 5 times for a total of 1280 action samples.2

2The dataset has been made publicly available at http://www.cs.ucf.edu/~smasood/datasets/

UCFKinect.zip
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In each frame, the 3-dimensional coordinates of 15 joints are available. Orientation and

binary confidence values are also available for each joint, but are not used in this work. It

may prove useful to make use of confidence values to aid the selection of canonical poses,

however, in practice we have found that our system is not particularly sensitive to noisy

joint data. By allowing our system to learn the weights of each feature, it can automatically

reduce the importance of features with high amounts of noise or low information gain.

When gathering the data for each action, we asked the individuals to stand in a

relaxed posture with their arms hanging down loosely at their sides. They were then told

the action they were to perform and if requested, given a demonstration of the action. A

countdown was given at the end of which recording began and the individual performed the

action. The recording was manually stopped upon completion of the action. Gathering the

data in this fashion simulates a gaming scenario where the user performs a variety of actions,

such as punches and kicks, and returns to a resting pose between actions.

We chose a set of features that can be computed quickly and easily from a set of

frames. For each given frame of data, we construct a feature set from information in three

frames: the current frame xt, the frame captured 10 frames previously, xt−10, and the frame

captured 30 frames previously, xt−30. While including data from xt−10 and xt−30 makes our

features not precisely a “pose”, we consider it a more intuitive term, as we do not use fine-

grained sequence data, nor do we delay classification by looking further ahead in the data

stream.

The first set of features is computed by calculating the Euclidean distance between

every pair of points in the xt. From the skeletons computed by the OpenNI software, the 15

joint positions are used to calculate 105 distances.
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To capture motion information, the Euclidean distance for all joint location pairs

between frame xt and frame xt−10 are computed, resulting in an additional 225 distance

pairs.

To capture the overall dynamics of body movement, similar distances are computed

between frame xt and a generic skeleton that simulates a typical pose of a person at rest.

The features are computed by translating the center-of-mass of the generic skeleton to the

same location of the center of mass of the user’s skeleton at frame xt−30. In the case that

previous frames are not available, such as when t is less than 30, center of mass of the the

first frame is used as a substitute. The feature values are the distance between every possible

pairs of points in the user’s skeleton at frame t and the generic skeleton translated to the

user’s center-of-mass at frame t − 30. This brings the total number of distance pairs up to

555. The generic skeleton is computed by averaging the skeleton in the first frame of the

training set. Outside of translation, we did not find it necessary to scale or warp the generic

skeleton to match the user’s pose.

Each feature vector computed at a particular time instant is independently normalized

by dividing the vector by the standard deviation of the vector.

The time required for training the system was significantly reduced by transforming

these features into a binary, cluster-based representation. Each individual feature value was

clustered into one of 5 groups via k-means and replaced with a 5 bit vector containing a

1 at the cluster index of the value, and a 0 for all other bits. Each of these vectors are

concatenated to create a new discretized binary feature vector. We add one additional bias

term which always has the value 1. The final feature size is thus 555 × 5 + 1 = 2776.

This transformation leads to a small increase in recognition performance and a significant

reduction in training time.
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5.4 Experiments on Temporally Segmented Actions

First, the classifiers are trained on data where the temporal segmentation of actions is

available. The goal of the training process is to find the weight vector θ such that a classifier

that computes class probabilities using Equation 5.4, classifies each video as accurately as

possible. This is done by automatically finding the frame with the discriminative canonical

pose for each action class. For each classifier, this process involves the following steps:

1. Processing the frames in the video to create a bag of feature vectors. A feature vector is

computed for each frame after the initial frame in the video. As described in Section 5.3,

the vector for a particular frame is computed from the frame, the preceding frame, and

the first frame in the video.

2. Learn the weight parameters θ1, . . . , θNa according to the method described in Sec-

tion 5.2.1.

3. For each action class, c ∈ {1, . . . , NA}, find the feature vector ~xf∗
c

such that ~xf∗
c
· θc has

the highest value. At a high-level, this is equivalent to finding the frame in each video

that most resembles the action class c. Notice that f ∗c is unique for each class.

4. Label the video with class c∗, where

c∗ = arg max
c
~xf∗

c
· θc. (5.6)

For evaluation, we used a set of data gathered from 16 people (as discussed in Section

5.3). All of our experiments are implemented using 4-fold cross-validation.

Figure 5.1 shows visualizations of the best poses learned by the classifier. For each

video in the training set, we automatically found the frame corresponding to f ∗c for the action

contained in the video. The skeleton on the left of each panel in Figure 5.1 shows the skeleton
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created by taking the median of each joint location across the best frames from each action

video. The skeletons on the right of each panel show examples of the best frame skeletons.

As can be seen in this figure, these skeletons are visually intuitive.

5.4.1 Baseline Models

Our experiments employ two different models for baseline comparisons: The first is

Bag-of-Words (BoW), chosen for its popularity and simplicity of implementation; the second

is a Linear Chain Conditional Random Field (CRF), which is a natural choice for a model

that can exploit the temporal sequence of hidden state information.

For both these baseline approaches we use the same feature size and training pro-

cedure as our proposed method. For the CRF baseline we employ the same regularization

term as in Equation 5.5.

5.4.1.1 Bag of Words Model

Bag-of-Words (BoW) is a straightforward approach that is known to consistently

perform well on a wide variety of action datasets, such as [9]. While Zhao et al. [37] propose

extensions for the BoW model that use key frames, we use the original BoW model because

recent work [38] has shown that in direct comparisons on KTH, the original BoW outperforms

the variant proposed in [37].

In our baseline, the BoW employs the same distances described in Section 5.3, dis-

cretized to 1000 clusters using k-means. Each video is represented by a histogram describing

the frequency of each cluster center. Histograms are normalized to avoid bias based on
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the length of the video. Classification is performed using a Support Vector Machine with

Histogram Intersection Kernel (SVM-HIK).

5.4.1.2 Linear Chain CRF Model

The Conditional Random Field (CRF) model [71] has demonstrated strong perfor-

mance in classifying time sequence data across several application domains and is thus a

natural choice for a strong second baseline. The CRF-based classification strategy is similar

to Equations (5.2) and (5.4). However, in this case, the probability is computed using a

function Ck(~y; ~x) that expresses the cost of a sequence of hidden states, expressed in the

vector ~y, given the observation ~x.

Following Section 5.2.2, the probability of a particular class is expressed as

p[l = T |x] =

exp

{
min
y

(−CT (y;x))

}
∑

k exp

{
min
y

(−Ck(y;x))

} (5.7)

≈
exp

{
− log

∑
y exp (CT (y;x))

}
exp

{
− log

∑
k

∑
y exp (Ck(y;x))

} . (5.8)

The function Ck(~y; ~x) is constructed to be a typical chain-structured CRF model,

with pairwise Potts model potentials [72] and the terms relating the observations to states

being linear functions of the observations.

The primary difference between the CRF model and our approach is that the CRF

model attempts to model the entire sequences of body poses, while our approach seeks the

most informative pose. While it could be expected that the more detailed CRF model could
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Table 5.2: A tabular representation of the data from Figure 5.2. Note that our proposed

method outperforms baselines even when they have access to more frames of pose informa-

tion.

Frames

10 15 20 25 30 40 60

Ours 13.91 36.95 64.77 81.56 90.55 95.16 95.94

CRF 14.53 25.46 46.88 67.27 80.70 91.41 94.29

BoW 10.70 21.17 43.52 67.58 83.20 91.88 94.06

lead to better recognition performance, our results clearly demonstrate the advantages of

focusing on a single, reliably occurring, highly discriminative pose.

5.4.2 Results for Temporally Segmented Actions

To understand the time required for humans to make easily identifiable movements or

poses, both the proposed system and the baseline BoW and CRF systems were trained and

evaluated on videos of varying lengths. From the base dataset, new datasets were created

by varying a parameter termed maxFrames. Each new dataset was created by selecting only

the first maxFrames frames from the video. For videos shorter than maxFrames, the entire

video was used.

Varying maxFrames makes it possible to measure how much information is available

in a specific time span. It should be noted that our classifier operates by finding the best

feature vector in the first maxFrames frames, but that this vector is itself only based on
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Figure 5.2: Accuracy vs. Bag of Words and CRF over videos truncated at varying maxi-

mum lengths. The pose-based classifier proposed here achieves higher accuracy with less

observations.
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Figure 5.3: Confusion matrix for full video temporally segmented classification. Results

shown are from uncropped action data. Overall accuracy achieved is 95.94%.

three frames. On the other hand, the BoW and CRF classifiers use the feature vectors from

all maxFrames frames.

As shown in Figure 5.2, our classifier clearly outperforms both BoW and CRF clas-

sifiers. Each point on a curve in this figure shows the accuracy achieved by the classifier

given only the number of frames shown on the horizontal axis. Thus, given only 30 frames of

input, our system achieves 90.6% accuracy, while BoW and CRF classifiers are only able to

achieve accuracy rates of 83.2% and 80.7%, respectively. Table 5.2 shows numerical results

at several points along the curves in Figure 5.2. As these curves show, all of the systems

perform poorly given a small number of frames because users have not had enough time
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to form distinctive poses. Likewise, all of the methods perform similarly well when a large

number of frames can be observed. However, in the important middle range, our approach

achieves a much higher accuracy given the same number of frames. This shows that our

approach improves accuracy for a given latency requirement and can recognize actions at

the desired accuracy with a much lower latency.

Figure 5.3 shows recognition results of our method with respect to each action in the

dataset. We can observe that the twistleft and twistright actions are confused with each

other as well as the vault action. Since our feature set is the difference between skeleton

joint positions, the limb configurations in twistleft and twistright are found to be similar to

arm and leg positions in each other, as well as vault.

This result validates our strategy of looking for “canonical” poses instead of trying

to aggregate pose information over time. The BoW and CRF classifiers can be thought of

as trying to aggregate weaker pose information over time to get an estimate of the action,

but these classifiers do not outperform our method at any frame window size.

Figure 5.2 also shows that with fewer than 15 frames each classifier performed poorly,

but with more than 15 frames the performance of our system rises appreciably. This can

be understood by considering the range of movements observed in the beginning frames of

the actions. Figure 5.4 depicts the variation in feature vectors over time. Each point on

the graph is created by computing the standard deviation of each feature across all feature

vectors at that time. It is clear that the variation in pose and movement at frame 10 is very

similar to that at frame 2, indicating that the users have not had the time to assume poses

or movement that are significantly different. The peak in variation occurs around frame 30,

but our classifier does benefit from having more frames available because these extra frames

give more opportunity for the user to assume an easily identifiable pose. By frame 40, our
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system performs as well as when trained on the full video. The drop-off for larger frames is

caused by the low number of videos that have such a large number of frames.

Figure 5.2 also shows that the data gathering procedure, where the user begins from

a relaxed pose, does not simplify the recognition task. The improvement in classification

accuracy as more frames become available indicates that the system prefers to use later

frames; the improved accuracy comes directly from the benefits of observing the distinctive

features that are visible only in these later frames.

5.4.3 Benefits of Soft Approximation

The choice of the frame used for classifying the action is treated as a latent variable

during the training process, much like the location of parts in the object detection model

in [67]. In this work, we use a soft approximation of the max operator during the training

process while the training system in [67] uses a coordinate descent optimization that involves

two alternating steps. The first step fixes the location of the parts. This results in a standard

margin-based criterion that is optimized using sub-gradient descent.

To measure the influence of the soft approach taken in Section 5.2, we also imple-

mented a coordinate descent approach, similar to [67], with two steps. In the first step, the

frames are selected to calculate the score of the different action classifications. For a task

with 16 different actions, this means that 16 different frames are chosen for each training

video. The frame chosen for a particular action is the frame with the highest score.

Once these frames are fixed, the parameters can be optimized with a negative log-loss

criterion similar to Equation (5.4). As mentioned above, this criterion is based on one frame

per action category. The indices of the frames chosen for each action will be denoted as
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f1, . . . , fNA , where NA is the number of actions. With these frames, the negative log-loss

learning criterion becomes

L = −~x · θT + log

(
1 +

∑
c

exp(~xfc · θc

)
. (5.9)

This can be optimized with standard minimization techniques. In our implemen-

tation, this second step was implemented with a fixed number of iterations of non-linear

conjugate gradient descent. We then return to step 1, taking the learned parameters from

the second step, and reselect the maximum scoring frames. This process iterates until the

sum of squared differences of the learned parameters converge.

To measure the effect of the soft approximation, we performed the same experiment

described by Section 5.4.2, with whole videos and four-fold cross-validation. We found the

behavior of the coordinate descent approach, with a hard choice of frames, to be sensitive to

the initialization of the optimization. As mentioned at the end of Section 5.2.2, a random

initialization is used to learn the weights using the soft approximation. If coordinate de-

scent optimization is started with the same type of random initialization, then the average

classification accuracy was 73.1%. This compares poorly with the 95.94% accuracy achieved

using the soft approximation.

However, if we take advantage of the observation that later frames in the video tend

to be more indicative, the accuracy can be significantly improved. In a second experiment,

we initialized the coordinate descent optimization by fixing the frame used for each action to

the 35th frame, or final frame for short videos. This frame was chosen because, on average,

this frame was one of the most distinct between different actions. With this initialization,

the classification accuracy increases significantly to 92.7%, which is still slightly worse than

the accuracy of our soft approach.
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Our conclusion from this experiment is that using a coordinate descent approach,

similar to [67], can perform similarly to the soft approach used in this paper, but is much

more sensitive to the initialization used.

5.5 Experiments with Online Detection of Actions

While the temporally segmented results are useful for understanding baseline perfor-

mance, in real-world scenarios, the system must identify actions in real-time. We focus on

a particular sub-problem of the general online action spotting task by focusing on spotting

the beginning of each action. This is in line with our goal of characterizing and reducing the

observational latency of the recognition system.

The spotting is implemented using the probabilities computed with the soft-max

probability, similar to Equation (5.4). The weights, θ, are the identical weights learned for

the experiments in Section 5.4. The key difference is that they are applied to every frame.

An action is spotted by computing the probability for each class on each frame in the

video and comparing each probability to a threshold T , which is optimized on the training

set by linear search. Once any class probability exceeds T , that probability is used to classify

the action in the whole video. This simulates the task of detecting actions from a stream

of real-time sensor input, as the classifier does not know a priori when the action begins or

ends.

This process can be thought of as scanning the video until one of the classifiers fires

strongly enough, then using that result to classify the whole video. If no probability exceeds

T , the video is considered a missed detection and an error.
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5.5.1 Modifying the Learning Criterion to Improve Online Detection Perfor-

mance

A weakness of the approach described in the previous section is that the classification

weights have been trained for the situation where the classifier can view all of the frames to

make a decision. This is quite different from the online detection task described above and

the weights may not be suitably adapted to this different task.

To better adapt the weights, the learning criterion can be modified to reflect the

online detection task more purposefully. This can be done by introducing a new loss Lm

that is basically identical to the original training loss, but is computed on videos that have

been cropped to m frames, similar to the procedure in Section 5.4.2 with maxFrames. This is

combined with the original loss to create the learning criterion for online detection, denoted

as LOnline(·),

LOnline(θ) = LFull(θ) +
∑
m∈M

(γ ·m)LM(θ) +R(θ), (5.10)

where R(θ) is the regularization term from Equation (5.5).

In this criterion, the loss computed over smaller time scales is added to the overall

loss thus providing an incentive for detecting the action in as few frames as possible. The set

M contains the time scales used in the training process. In our experiments, we use the set

M = {10, 15, 20}. The term γ ·m is a scaling factor. Incorporating m into the scaling factor

places more weight on correctly classifying longer timescales. This is to avoid over-fitting

noise in videos with fewer frames.
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5.5.2 Measuring Latency and Accuracy

It is possible to measure the observational latency of the system directly because

the system waits until it is confident enough to make a classification. Figure 5.5 shows the

relationship between the observational latency and system accuracy on the testing set for

different values of γ in Equation (5.10).3

Figure 5.5 shows that as γ rises, the accuracy of the online detection system decreases

along with the latency. This indicates that the learning criterion in Equation (5.10) provides

a parameter to tune the classifier between accuracy and latency. At the optimal γ, the

system has an accuracy of 85.78%. This compares well with the result from Section 5.4.2

as this task is much harder. It should also be pointed out that the online detector still

outperforms the baseline classifiers, even though they do not have the burden of detecting

the action in the stream. The classifier is able to achieve this accuracy by the 26th frame of

the action on average, even though the standard deviation over all features does not peak

until after the 30th frame.

The reason for the drop in classification accuracy can be seen in Figure 5.6, which

compares the median frame, per action class, chosen by the classifier for temporally seg-

mented videos against that chosen by the online detection system. As can be seen in this

figure, the online detection system typically chooses a frame earlier than would be chosen if

the entire video could be viewed prior to classification. However, for a 66% average reduction

in classification time, accuracy only drops approximately 8%.

Figure 5.7 shows the confusion matrix in the online detection system. A column has

been added for those actions where video has been mistakenly labeled as having no action.

3The optimal value of the threshold T was found for each value of γ using the training set.
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Figure 5.6: Comparison of frame of highest response from full video TS classifier with frame

of classification from OL classifier. The value of γ for the results shown is 0. The error bars

depict the std. deviation of the frame of classification. Recall that the TS classifier must look

at the entire pre-segmented action to classify, so its frames correspond to the frames with

the highest probability of being the correct action. The OL classifier frame is the earliest

point that the probability of the correct action passes the threshold.
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Figure 5.7: Confusion matrix for online classification with optimal γ. Due to the added

constraint of recognizing actions as soon as possible, we see more confusion between the

actions. However, by sacrificing a small drop of approximately 8% in recognition performance

(from 95.94% in Figure 5.3 to 85.78% above), we are able to achieve a significant drop (approx

66%) in classification latency.
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Table 5.3: GentleBoost recognition performance for different number of best selected features

against our temporally segmented (TS) results. By using only 300 best features out of a total

of 2775, we can achieve recognition performance within 2% of our best temporally segmented

result.

GentleBoost Features (TS) All Features (TS)

Features 100 200 300 2776

Accuracy 92.11% 93.52% 94.06% 95.94%

5.5.3 Reducing Latency

Figure 5.5 also shows that this learning criterion can reduce the latency significantly,

but that comes at the cost of significant reductions in accuracy. As γ increases, temporal

segmentation classification accuracy decreases gradually. The online classifier also degrades

in performance gradually until the classifier begins firing too early, after which accuracy

drops off sharply.

From these results, the accuracy and latency of the system appear strongly correlated.

When γ is small, accuracy is high and the system classifies only when it is highly probable

to be correct. With large γ, too much emphasis is placed on early classification. Since the

amount of variance in the early frames of the data is negligible for accurate classification,

we see a drop in both accuracy and latency.
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Table 5.4: GentleBoost vs All Features for online (OL) classification. We see the same trend

as observed for the temporally segmented videos in Table 5.3. For the best possible value

of γ, the boosted feature online classification system is within 1.7% of our original online

result.

GentleBoost Features (OL) All Features (OL)

γ = 1e− 5 83.08% 85.78%

5.6 Reducing Computational Latency

While our focus is on reducing the observational latency, real-time applications may

also face issues with computational latency. To improve this type of latency, we use a boosting

approach to find a subset of features that perform as well. This makes it possible to greatly

improve the efficiency of our system with negligible reduction in recognition performance.

For selecting the best features, we used a GentleBoost [70] technique to greedily

select a set of features. This algorithm operates through a stage-wise minimization of the

negative log-likelihood of Equation (5.4). At each iteration, the system chooses a feature

and parameter value by minimizing a quadratic approximation to the criterion.

When testing our algorithm, we evaluated the system at multiples of 100 features up

to a maximum of 300. Table 5.3 shows our results achieved on temporally segmented videos.

We can see that this approach is able to achieve an overall recognition accuracy of 94.06%

by only using less than one-third of the original features. This is negligibly lower than our

original best result of 95.94% (as shown in Table 5.3) but with greatly improved efficiency.

The same trend is observed for online classification for the best possible γ value (refer to

Table 5.4).
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5.6.1 Examining the Boosted Features

When examining the features chosen by the boosting algorithm, we can gain insight as

to which features are more useful for classification. As described in Section 5.3, the features

for each frame are constructed from pairwise distances between joints in the current, the

frame captured 10 frames previously and the frame captured 30 frames previously. Of the 300

features selected by the boosting algorithm, 18 contained two joints from the current frame,

88 contained a joint from the current frame paired with a joint from the frame captured 10

frames previously, and 194 contained joints paired between the current frame and the frame

captured 30 frames previously. As nearly two-thirds of the features were selected from the

latter category, we can infer that pairwise distances between the current frame and frame

captured 30 frames previously yield the most useful information toward classification. In

other words, our most informative features are those that show how different the user’s pose

is from their “at rest” reference pose. On the other hand, the least useful features simply

measure distances between joints within a single frame.

Now that we know which frames are the most interesting, we should examine which

joints are the most informative. Figure 5.8 shows the occurrence of each joint in the 300

boosted features. The right and left hands are the most common, with the right hand in the

lead, most likely owing to the right-handedness of the majority of the training subjects. Less

articulate and less used joints, such as the head, torso, and feet, are much less commonly

used.

By eliminating less important features, we can reduce the computational latency com-

monly associated with large sparse feature vectors such as the one used in our classification

system. This is especially useful in systems where classification must be done on inexpensive

commodity hardware alongside other computational tasks, such as in PCs and game consoles.
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Further reduction in computational latency can be achieved by tracking fewer joints, espe-

cially from the central and lower body regions, as these joints were less commonly selected

by the boosting algorithm and are likely to be less informative.

5.7 Managing Accuracy and Latency by Reducing Possible Actions

While the focus of this paper is on minimizing latency for a fixed set of actions, some

applications could allow for flexibility in the specification of which actions must be detected.

To study the effect of the choice of actions, we measured how accuracy and latency changed

as we iteratively eliminated actions. The set of actions were reduced by greedily removing an

action from the set of actions one at a time per value of γ. After training the system across

the same set of values of γ used in Figure 5.5, the action that was most often confused with

other actions was removed. The action sets chosen are shown in Table 5.5. In this problem,

different values of γ affect the actions chosen because higher values of γ encourage the use

of actions that can be recognized early.

Figure 5.9 shows curves representing achievable accuracy and latency results for prob-

lems with action sets of different sizes. Each of these curves was created by first training

our system across the sets created by different values of γ. Using the online classification

strategy described in Section 5.5, we then evaluated the system across variety of thresholds,

T in Section 5.5. Figure 5.9 shows the best accuracies achieved for different latency values.

All accuracies are averaged in the same four-fold cross-validation framework described in

Section 5.4.

As Figure 5.9 shows, reducing the number of actions generally increases accuracy. The

difference is most significant for lower levels of latency because less information is available to
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Figure 5.8: List of joints by occurrence in the 300 feature set found by boosting. Notice that

the right and left hands are the two most commonly used joints. Less articulate joints, such

as the head and torso, as well as less used joints, such as the left and right foot, are used

less often.
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Table 5.5: This figure shows the action sets chosen per γ at 16, 12, 8, and 4 actions. Note

that for each given γ, at 8 actions, the action set includes the actions from both the 8 and

4 action rows. Likewise, the 12 action set includes the actions from the 12, 8, and 4 action

rows, and 16 actions includes the entire column.

γ 101 100 10−1 10−2 10−3 10−4 10−5

4 actions

balance balance balance balance balance balance duck

hop climbladder climbup leap leap leap leap

stepleft stepleft stepfront stepfront stepfront run run

stepright stepright stepright stepright stepright stepfront stepfront

8 actions

climbup climbup duck duck duck duck balance

kick leap kick run kick stepback climbup

twistright twistright stepback stepback stepback stepleft stepleft

vault vault stepleft stepleft stepleft stepright stepright

12 actions

duck hop hop climbladder climbup climbup hop

leap run leap climbup hop hop kick

stepback stepback twistright hop run kick punch

twistleft twistleft vault kick vault vault stepback

16 actions

climbladder duck climbladder punch climbladder climbladder climbladder

punch kick punch twistleft punch punch twistleft

run punch run twistright twistleft twistleft twistright

stepfront stepfront twistleft vault twistright twistright vault
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Figure 5.9: These curves show how the accuracy and latency in recognition changes as

actions are eliminated. As actions that are difficult to recognize are greedily eliminated, the

recognition rate at different latencies rises.
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the classifier, making the reduction in the number of possible actions more beneficial. Once

only four actions remain, recognition rates rise rapidly, though it should be remembered that

these four actions are chosen to make discrimination easy. These actions tend to be easier

for the classifier to distinguish from one another, such as balance and step right.

5.8 Accuracy Results on Additional Datasets

We also validated our system in terms of recognition accuracy using two additional

datasets — the MSR Action3D dataset from [2] and the MSRC-12 Kinect Gesture dataset

[14]. Both of these datasets were gathered with Kinect or Kinect-like devices. Similar to

our work, the MSRC-12 dataset chooses gestures inspired by interactive games. The MSR

Action3D dataset predates the release of the Kinect device and focuses on a mix of sports-

based and interaction-based gestures.

5.8.1 Results on MSRC-12 Kinect Gesture Dataset

The MSRC-12 Kinect Gesture dataset was constructed to both measure the perfor-

mance of recognition systems and evaluate various methods of teaching human subjects how

to perform the different actions [14]. Thus, the dataset is partitioned along different meth-

ods of instruction, such as text-only or text and video. Similar to our work, this dataset is

designed to make the consideration of latency possible. An action point is identified in the

data stream that captures a unique pose, similar to the idea of the canonical pose proposed

in this work. However, latency is considered differently. Rather than directly minimizing
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latency, the experiments in [14] measure whether the system can correctly recognize the

gesture within a window 333 milliseconds before and after the gesture’s action point.

To replicate the experimental setup described in Section 5.4, we used the action point

to divide the videos in this dataset into temporally-segmented examples of each action. The

different instruction types were ignored and videos from all instruction types were combined

together. Following the protocol in Section 5.4, our system achieved a recognition accuracy

of 88.7%. This is similar to the performance on our dataset and shows that our method can

be applied to a wide variety of gestures.

We followed the protocol from Section 5.4 to balance limitations in both our method-

ology and the protocol in [14]. While the experiments in [14] can only measure detections

within a fixed window of latency, our experimental method can directly measure latency

in recognition. The disadvantage of this methodology is that focusing on time-segmented

examples can make the system prone to false-firing in streams of data.

5.8.2 Results of MSR Action3D Dataset

The MSR Action3D dataset from [2] consists of a set of temporally segmented actions,

so we followed the experimental methods outlined in [2]. Table 5.6 compares the recognition

accuracy produced using our method against previous systems. As this table shows, our

method outperforms a number of time-series based methods, including dynamic time warping

and a Hidden Markov Model. Our approach is outperformed by two recently proposed

methods, but this result should be viewed in the context of the accuracy/latency trade-off.

The two approaches that outperform our approach require that the entire action be viewed

before recognition can occur.
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Table 5.6: This table compares the recognition achieved with our system against previous

work on the MSR Action3D dataset from [2]. Our approach outperforms a number of

previous approaches in terms of accuracy. The methods that outperform our system require

that the complete action be viewed before recognition is possible. As we have argued earlier,

low-latency, interactive recognition is impossible if the whole gesture must be seen before it

can be recognized.

Method Accuracy(%)

Recurrent Neural Network [73] 42.5%

Dynamic Temporal Warping [74] 54%

Hidden Markov Model [75] 63%

Our Approach 65.7%

Action Graph on Bag of 3D Points [2] 74.7%

Actionlet Ensemble [76] 88.2%
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Insight into our system’s performance can be gained by examining recognition accu-

racy for specific action classes. Table 5.7 shows the accuracy on the five worst-performing

actions and five best-performing classes. Our system is able to easily distinguish between

actions that have different body poses, such as a golf swing and wave motions. However,

our method has difficulty distinguishing between actions that have a similar body pose and

differ primarily in motion, such as a hammering motion and a high throwing motion.

Our system has a difficult time distinguishing between the three types of Draw actions

in the dataset: the Draw X, Draw Circle, and Draw Tick actions. These actions in particular

do not have a single canonical pose, instead needing a temporally aligned series of poses

for classification. Due to the temporal nature of these actions, the entire action must be

observed before classification is possible, and thus our low-latency driven approach is not as

appropriate. Further study is needed to determine precisely how important low latency is in

these types of abstract actions.
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Table 5.7: This table shows the accuracy of the five least-recognized actions in the MSR

Action3D dataset [2] and the five best-recognized actions. Our system performs the worst

when the gestures have similar body poses and the motion between gestures is the primary

differentiating factor. However, when the actions have different body poses, our system

performs quite well.

Action Accuracy Action Accuracy

Hammer 0% Hand Clap 100%

Hand Catch 0% Two Hand Wave 100%

High Throw 14.3% Forward Kick 100%

Draw Circle 20% Golf Swing 100%

Draw X 35.7% Tennis Serve 100%
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CHAPTER 6
CONCLUSION

This work argues the importance of localizing actions in video sequences for the task of

recognition. Not only accurate localization is important for improving recognition accuracy

but, as we have shown, the proper application of localization information is highly essen-

tial especially for complex scenes. To support our claim, we introduced a new synthesized,

complex dataset which we argue is better suited for analyzing how recognition is affected by

background complexity. We show how a change from simple to complex background signif-

icantly affects the performance of traditional recognition tools. Using our new synthesized

complex dataset, we established that drop in accuracy is directly related to localization and

its application in eliminating background information from the recognition pipeline. A de-

tailed analysis of the new dataset is presented, with special emphasis on the impact of factors

such as background gradients, background motion and action localization on the recognition

results. In light of the analysis, we show how person localization combined with removing

cuboid corruption helps tackle the background complexity problem and thus substantially

improve the overall recognition results. We show how ’proper’ use of localization for interest

point pruning and cuboid modification leads to a substantial increase in performance accu-

racy on both the synthesized and realistic datasets. An automatic localization method is

also presented which is shown to outperform the baseline approach. Results are shown with

ground-truth masks to show how near-perfect localization helps in improving the recognition

accuracy.
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The above approach, though useful, is hampered by the fact that we rely heavily

on the availability of ground-truth silhouette information. Obtaining them is a manual

and highly cumbersome process for large scale datasets. Since the success of the above

system is constrained on accurate localization, reliance on human detector [55, 56] and

saliency methods [23] as a means of localization is not an ideal solution. Additionally, for

most realistic datasets like UCF Sports or UCF11, the background is highly discriminative

making it impossible to achieve results better than the state-of-the-art even if we use near-

perfect localization. To address the above concerns, we formualted a two-stage system that

is designed to:

1. localize the action using a sub-window search learning framework over the entire video.

2. represent an action video sequence using information extracted from the localized re-

gion followed by non-linear classification.

Using this proposed model, we were able to show the significance of localization for action

recognition. Unlike [1, 24, 25, 26, 27, 28, 30, 6], our system is unique in that it is independent

of the requirement of manual ground truth annotations of the actor for the training process.

We showed how a system, given the task of selecting a subregion within a video that best

represents an action, generally localizes on the actor performing the action. We presented

results on two well known complex datasets, namely UCF Sports and UCF11.

Another aspect of the action recognition task that has gained considerable attention

recently is determining how quickly an action can be recognized. In other words, what is

the minimal observation required by the system to classify an action with reasonably high

accuracy. This is a major concern for Human Computer Interaction (HCI) environments

where even a small latency is extremely undesirable. Using the probabilistic model proposed

above, we modified it so that instead of determining where an action is occuring spatially,
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we can address the issue of when an action happens temporally. For this task, we collected

an skeletal action dataset using Microsoft Kinect. The goal of our approach was to learn

a discriminative canonical body pose for each action class. We evaluated a temporally

segmented version of the classifier against baseline Bag of Words and Conditional Random

Field implementations and found our model to be superior, yielding 95.94% accuracy. We

then adapted our model to an online variant, and evaluated two schemes to drive down

the latency due to classification. We found that we were capable of classifying a large set

of actions with a high degree of accuracy and low latency. We additionally introduced a

parameter which can be used to fine-tune the trade off between high accuracy and low

latency. With this variant we achieved an overall accuracy of 85.78%.

To address computational latency, we used GentleBoost to select a reduced set of best

features. We then examined this set of features and found that the most informative joints

were the upper extremities, and the most informative joint pairwise distances were between

the current and the generic reference pose. Using these boosted features, we were able

to achieve greater efficiency with a negligible drop in recognition performance (94.06% and

83.08% for temporally segmented and online classification, respectively). We further explored

the trade-off between accuracy and latency in domains where the number of actions being

classified is flexible. We then demonstrated that as the number of actions being classified is

reduced, higher accuracy is achievable at lower latency. Finally, we evaluated our approach

on two additional datasets. We achieve high accuracy on the MSRC-12 dataset, and most

of the MSR Action3D dataset, and identify a class of actions which are not appropriate for

canonical pose techniques.
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