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ABSTRACT 
 

Symmetry plays a crucial role in exploring the laws of nature. By exploiting some of the 

underlying analogies between the mathematical formalism of quantum mechanics and that 

of electrodynamics, in this dissertation we show that optics can provide a fertile ground for 

studying, observing, and utilizing some of the peculiar symmetries that are currently out of 

reach in other areas of physics. In particular, in this work, we investigate two important 

classes of symmetries, parity-time symmetry (PT) and supersymmetry (SUSY), within the 

context of classical optics.  

The presence of PT symmetry can lead to entirely real spectra in non-Hermitian 

systems. In optics, PT-symmetric structures involving balanced regions of gain and loss 

exhibit intriguing properties which are otherwise unattainable in traditional Hermitian 

systems. We show that selective PT symmetry breaking offers a new method for achieving 

single mode operation in laser cavities. Other interesting phenomena also arise in 

connection with PT periodic structures. Along these lines, we introduce a new class of 

optical lattices, the so called mesh lattices. Such arrays provide an ideal platform for 

observing a range of PT-related phenomena. We show that defect sates and solitons exist in 

such periodic environments exhibiting unusual behavior. We also investigate the scattering 

properties of PT-symmetric particles and we show that such structures can deflect light in 

a controllable manner.  

In the second part of this dissertation, we introduce the concept of supersymmetric 

optics. In this regard, we show that any optical structure can be paired with a superpartner 
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with similar guided wave and scattering properties. As a result, the guided mode spectra of 

these optical waveguide systems can be judiciously engineered so as to realize new families 

of mode filters and mode division multiplexers and demultiplexers. We also present the 

first experimental demonstration of light dynamics in SUSY ladders of photonic lattices. In 

addition a new type of transformation optics based on supersymmetry is also explored. 

Finally, using the SUSY formalism in non-Hermitian settings, we identify more general 

families of complex optical potentials with real spectra. 
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CHAPTER ONE: INTRODUCTION 
 

Within the last two decades, the design of artificial materials with desired optical 

properties and functionalities has been one of the major fields of research in optics. In this 

regard, by engineering constitutive parameters of materials, photonic crystals and optical 

metamaterials have been proposed [1-4]. Due to the high degree of fabrication 

complexities, however, the practicability of such structures is still a matter of debate. Of 

interest would be to develop new type of synthetic materials as well as new design 

techniques to achieve a desired functionality in optical devices. 

In this work we study a new class of artificial optical materials which incorporate 

gain and loss. Such non-Hermitian optical structures has recently attracted a considerable 

amount of attention due to the recently developed notions of PT-symmetric optics. We 

investigate such symmetry in both discrete and continuous optical arrangements.  

In addition we utilize supersymmetry (SUSY) as a strong mathematical tool for 

engineering guided wave and scattering properties of dielectric structures. We show that 

for any one-dimensional optical structure, a superpartner can obtained that share the exact 

same eigenvalue spectra. Also, each one-dimensional optical structure belongs to a one 

parameter family of structures which again share the exact same bound sate and scattering 

properties. Such structures can be obtained via SUSY transformations which are originally 

inspired from quantum mechanics. 
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This dissertation is divided in two major parts. In the first part, including Chapters 

2-6, we investigate PT-symmetric optical systems. In the second part, which includes 

Chapters 7-9, we introduce the concept of supersymmetry in the context of optics. Finally 

in Chapter 10 we draw a line between these two different symmetries and explore the 

mathematical formalism of supersymmetry in the context of non-Hermitian PT-symmetric 

optical structures. 

In Chapter 2 we review the basic concepts of PT symmetry. We first present the 

mathematical formalism and show how the presence of such symmetry leads to real-valued 

eigenvalues. PT-symmetry-breaking and other related phenomena are then explained 

through the PT-symmetric coupler which is one of the simplest examples of PT systems. 

Afterwards we find the necessary conditions of PT symmetry for various scenarios of 

optical structures. This ranges from the low contrast structures that can be explained 

through scalar paraxial wave approximation to general materials that need to be analyzed 

through full-wave Maxwell’s equations.  

Chapter 3 is devoted to PT-symmetric lasers. In general in multimode PT system, 

different modes exhibit different critical point for symmetry breaking. We show that this 

same principle can be utilized to achieve single mode lasing in PT lasers. We first 

demonstrate this effect through examples of single transverse mode lasing in 

semiconductor and fiber laser amplifiers. Afterwards we show that this approach can be 

applied to micro-ring resonator laser systems to filter either transverse or longitudinal 

modes. The experimental results of single mode lasing in micro-ring resonator laser 

systems are also presented in this chapter. 
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In the 4th the scattering properties of PT-symmetric structures are investigated. In 

this chapter, first by considering the symmetries of the governing equations, we restate the 

optical theorem and the reciprocity theorem for PT-symmetric objects. In addition, a 

general formalism for treating two-dimensional scattering problems in complex dielectric 

settings is also presented. In particular, we calculate the scattering pattern of a PT 

dielectric cylinder, where half of the cylinder involves gain and the other half the same 

amount of loss. We show that such structure can deflect light through a certain angle that 

depends on the gain/loss contrast. 

In Chapter 5 we investigate PT symmetry in a new class of optical lattices, the so 

called mesh lattices. Mesh lattices were first proposed as a new platform for observing a 

range of PT-related phenomena in a periodic environment. Such lattices while offering 

flexibility in the real and imaginary parts of their associated potentials are designed 

cleverly to bypass undesired mismatches typically caused by Kramers-Kronig relations. In 

this chapter we first analyze both Hemitian and PT-symmetric versions of mesh lattices 

through their corresponding band structure and Bloch wave solutions. Afterwards the 

unconventional properties of defect states in such lattices are explored. We show that mesh 

lattices, in the nonlinear regime can also support soliton solutions. At the end experimental 

results of time domain mesh lattices are also presented. 

Chapter 6 of this dissertation targets integrability in two nonlinear PT systems. The 

first system is a PT-symmetric grating, in the presence of Kerr nonlinearity. We show that 

stable Bragg soliton solutions can be found for such structures. In addition we consider a 
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Schrödinger-like equation with PT-symmetric nonlinearity and we show such system is 

fully integrible. 

In Chapter 7 we introduce the basics of supersymmetry in the context of optics. We 

first present the general mathematical formalism of supersymmetry and show that two 

superpartner operators can share the exact same eigenvalue spectra while the only 

exception can be the eigenvalue associated with the fundamental state depending on 

whether supersymmetry is in unbroken or broken regime. This idea is then applied to one-

dimensional optical structures in the paraxial and non-paraxial regimes. In addition we 

show that by starting from a given optical potentials one can construct a one-parameter 

family of iso-spectral potentials. Such potentials all share the exact same eigenvalue 

spectra. 

It is then shown in Chapter 8 that SUSY formalism can be applied to a wide range of 

optical waveguides. In this manner a superpartner can be obtained for a given optical 

waveguide with an arbitrary refractive index profile. We show that SUSY formalism 

becomes much simpler in the framework of the tight-binding approximation where the 

differential operators are replaced with matrix operators. This approach is then applied to 

establish SUSY partnership in photonic lattices. The results of the first experimental 

demonstration of supersymmetric behavior in such photonic lattices are then presented. In 

this chapter, we also show that the formalism of supersymmetry can be applied to optical 

fibers with circularly symmetric cross sections. Finally we show how these ideas can be 

used for mode filtering, and mode multiplexing applications.   
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In Chapter 9 we investigate scattering properties of supersymmetric structures. We 

show that two superpartner scatterers can have similar reflection and transmission 

coefficients for all angles of incidence. In fact, while the intensities of the reflected and 

transmitted waves are the same, the corresponding phases are in general different and this 

depends also on whether supersymmetry is in unbroken or broken regime. On the other 

hand for all members of iso-spectral potentials the scattering coefficients are exactly the 

same in both intensity and phase. Based on these three different scenarios we introduce a 

new class of transformation optics in one-dimensional settings and propose possible 

applications.  

In Chapter 10, SUSY transformations are applied to non-Hermitian systems. While 

for a real potential the unbroken superpartner is generally obtained by removing the 

ground state’s eigenvalue, we show that any arbitrary higher order state can be removed 

from the spectrum of a PT-symmetric potential. Interestingly the parametric family of 

potentials which are all iso-spectral with a given PT potential no longer preserve the PT 

symmetry. In addition we show that a more general class of non-Hermitian and non-PT-

symmetric Hamiltonians can exhibit entirely real spectra. This is because such 

Hamiltonians exhibit a Hermitian superpartner. 

Finally in Chapter 11 we summarize our results and present an outlook for future 

works. 
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1.1. Assumptions and conventions 

 

In this dissertation, we use the terminology of optical potential or potential for the spatial 

dependent permittivity or refractive index distribution. This term is used in analogy with 

the quantum mechanical potential function as appearing in Schrödinger equation. When 

treating time harmonic fields, in this entire work, we use exp(−𝑖𝑖𝑖𝑖𝑖𝑖) as the convention of 

time dependency. 
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CHAPTER TWO: PT SYMMETRY IN OPTICS 
 

It took more than seventy years to realize that Hermiticity of quantum Hamiltonians 

depends on the choice of the inner product in the physical Hilbert space of states. This 

latter was first pointed out by Bender and Boettcher [1]. They showed that a wide class of 

Hamiltonians that respect PT symmetry can exhibit entirely real spectra. Since then PT 

symmetry has been a subject of intense interest in the field of quantum mechanics [1-15]. 

Later it was shown by Mostafazadeh that PT-symmetric Hamiltonians are only specific 

class of the general families of pseudo-Hermitian operators [9-12]. We will further discuss 

this concept in the Chapter 10 of this dissertation where we investigate supersymmetry in 

non-Hermitian operators. 

Unfortunately however, quantum mechanics is by nature a Hermitian theory and 

thus any evidence of PT symmetry in such systems has remained out of reach. On the other 

hand, due to the presence of gain and loss, optics provides a fertile ground for observation 

of PT symmetry. Based on this fact, in 2008, it was suggested that notions from PT 

symmetry can be directly introduced in the optical domain [16-18]. Afterwards it was 

shown in several studies that PT-symmetric structures can exhibit unusual properties that 

does not have a counterpart in traditional Hermitian structures what so ever [19-29]. 

In this chapter we first review the mathematical formalism of PT-symmetric 

Hamiltonians. We show how the presence of PT symmetry leads to real-valued eigenvalues. 

Then we show how this concept can be utilized in the context of optics. First we discuss a 
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PT symmetric coupler that is perhaps the simplest model that exhibits this symmetry. 

Through this example some of the peculiar properties of PT-symmetric systems including 

PT symmetry breaking and non-orthogonality of modes are explained. Afterwards we 

consider the eigenmode equation of one-dimensional optical waveguides in paraxial and 

non-paraxial regimes and we show how PT symmetry can be imposed in optical 

waveguides due to similarity of the governing equations with that of quantum mechanics. 

Finally the necessary condition of PT symmetry is investigated for general optical 

waveguides and other electromagnetic media. 

 

2.1. PT symmetry and real spectra 

 

Consider the following general eigenvalue problem:  

ℋ𝜓𝜓(𝑥𝑥) = 𝜆𝜆𝜆𝜆(𝑥𝑥)          (2.1) 

where ℋ represents a Hamiltonian operator that is assumed to be PT-symmetric, i.e., it 

should commute with the parity-time (𝒫𝒫𝒫𝒫) operator:  

[ℋ,𝒫𝒫𝒫𝒫] = 0          (2.2) 

Here the parity 𝒫𝒫 and time 𝒯𝒯 operators enforce a spatial reflection with respect to the 

center of 𝑥𝑥 coordinate and a complex conjugation respectively: 

𝒫𝒫𝒫𝒫(𝑥𝑥) = 𝜓𝜓(−𝑥𝑥)          (2.3.a) 
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𝒯𝒯𝒯𝒯(𝑥𝑥) = 𝜓𝜓∗(𝑥𝑥)           (2.3.b) 

Since ℋ and 𝒫𝒫𝒫𝒫 commute, they share the same set of eigenvectors 𝜙𝜙𝑚𝑚 with in general 

different eigenvalues: 

ℋ𝜙𝜙𝑚𝑚(𝑥𝑥) = 𝜆𝜆𝑚𝑚𝜙𝜙𝑚𝑚(𝑥𝑥)            (2.4.a) 

𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥) = Ω𝑚𝑚𝜙𝜙𝑚𝑚(𝑥𝑥)         (2.4.b) 

Note, however, that successive operations of the 𝒫𝒫𝒫𝒫 operator leads to the identity operator 

(𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 = 1) therefore  |Ω𝑚𝑚|2 = 1 and this means that all the eigenvalues of the 𝒫𝒫𝒫𝒫 

operator reside on the unit circle: Ω𝑚𝑚 = 𝑒𝑒𝑖𝑖𝜔𝜔𝑚𝑚 . As a result one can always renormalize the 

eigenvectors as 𝜙𝜙𝑚𝑚(𝑥𝑥) → 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚 2⁄ 𝜙𝜙𝑚𝑚(𝑥𝑥) to make all the eigenvalues of the 𝒫𝒫𝒫𝒫 operator 

unity. In this case: 

𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥) = 𝜙𝜙𝑚𝑚∗ (−𝑥𝑥) = 𝜙𝜙𝑚𝑚(𝑥𝑥)         (2.5) 

Let us now consider again the eigenvalue equation (2.4.a). After multiplying both sides 

with 𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥) and integrating over the entire 𝑥𝑥 axis one reaches at 

∫ 𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥)ℋ𝜙𝜙𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ = 𝜆𝜆 ∫ 𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥)𝜙𝜙𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞  which in turn leads to 

𝜆𝜆𝑚𝑚 = ∫ 𝜙𝜙𝑚𝑚∗ (−𝑥𝑥)ℋ𝜙𝜙𝑚𝑚(𝑥𝑥)+∞
−∞

∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)𝜙𝜙𝑚𝑚∗ (−𝑥𝑥)+∞
−∞

          (2.6) 

On the other hand, by first applying the 𝒫𝒫𝒫𝒫 operator on both sides of Equation (2.4.a) and 

then multiplying by 𝜙𝜙𝑚𝑚(𝑥𝑥) and integrating again, we reach at ∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)ℋ𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥)+∞
−∞ =

𝜆𝜆𝑚𝑚∗ ∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)𝒫𝒫𝒫𝒫𝜙𝜙𝑚𝑚(𝑥𝑥)+∞
−∞ , which leads to 
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𝜆𝜆𝑚𝑚∗ = ∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)ℋ𝜙𝜙𝑚𝑚∗ (−𝑥𝑥)+∞
−∞

∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)𝜙𝜙𝑚𝑚∗ (−𝑥𝑥)+∞
−∞

          (2.7) 

Given the fact that 𝜙𝜙𝑚𝑚∗ (−𝑥𝑥) = 𝜙𝜙𝑚𝑚(𝑥𝑥), a comparison between Equations (2.6) and (2.7) 

directly follows that all the eigenvalues are real since 𝜆𝜆𝑚𝑚 = 𝜆𝜆𝑚𝑚∗ .  

Note that, based on Equations (2.6) and (2.7), one can define a new inner product in the 

Hilbert space spanned by the eigenstates of the PT-symmetric operator ℋ: 

〈𝜙𝜙𝑛𝑛,𝜙𝜙𝑚𝑚〉 = ∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)𝒫𝒫𝒫𝒫𝜙𝜙𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ = ∫ 𝜙𝜙𝑚𝑚(𝑥𝑥)𝜙𝜙𝑛𝑛

∗(−𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ .       (2.8) 

This definition contain all the conditions of an inner product. In fact, assuming 𝑓𝑓,𝑔𝑔 and ℎ 

being three eigenfunctions of ℋ, the following properties directly follows; (a) conjugate 

symmetry 〈𝑔𝑔,𝑓𝑓〉 = 〈𝑓𝑓,𝑔𝑔〉∗, (b) 〈ℎ,𝑓𝑓 + 𝑔𝑔〉 = 〈ℎ,𝑓𝑓〉 + 〈ℎ,𝑔𝑔〉, (c) 〈𝑔𝑔,𝑎𝑎𝑎𝑎〉 = 𝑎𝑎〈𝑔𝑔,𝑓𝑓〉, and (d) 

〈𝑓𝑓,𝑓𝑓〉 ≥ 0 while the equality holds if and only if 𝑓𝑓(𝑥𝑥) = 0. It is then easy to show that the 

orthogonality relation between the basis functions 𝜙𝜙𝑚𝑚 can be represented in terms of this 

new inner product as: 

〈𝜙𝜙𝑛𝑛,𝜙𝜙𝑚𝑚〉 = (−1)𝑚𝑚𝛿𝛿𝑚𝑚𝑚𝑚               (2.9) 

In addition it has been shown that the eigenfunctions of the PT-symmetric operator ℋ 

form a complete set [7]: 

∑ (−1)𝑚𝑚𝜙𝜙𝑚𝑚(𝑥𝑥)𝜙𝜙𝑚𝑚(𝑥𝑥′)𝑚𝑚 = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)        (2.10) 

As a result an arbitrary function can then be written as a sum of all the eigenfunctions of ℋ 

as: 
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Φ(𝑥𝑥) = ∑ 𝑎𝑎𝑚𝑚𝜙𝜙𝑚𝑚(𝑥𝑥)𝑚𝑚            (2.11) 

where the coefficients 𝑎𝑎𝑚𝑚 are obtained from the projections: 

𝑎𝑎𝑚𝑚 = (−1)𝑚𝑚〈𝜙𝜙𝑚𝑚,Φ〉                      (2.12) 

After this general overview, let us turn our attention to the Hamiltonian operator 

associated with the time-dependent Schrödinger equation ℋ = − ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2
+ 𝑉𝑉(𝑥𝑥) where the 

quantum mechanical potential is in general a complex function: 𝑉𝑉(𝑥𝑥) = 𝑉𝑉𝑅𝑅(𝑥𝑥) + 𝑖𝑖𝑉𝑉𝐼𝐼(𝑥𝑥). One 

can simply show that this Hamiltonian commutes with the 𝒫𝒫𝒫𝒫 operator if the following 

condition is satisfies: 

𝑉𝑉∗(−𝑥𝑥) = 𝑉𝑉(𝑥𝑥).          (2.13) 

This in turn means that the real and imaginary parts of this potential should be real and 

odd functions of position respectively. 

 

2.2. PT symmetry breaking 

 

It should be emphasized however that the commuting with the 𝒫𝒫𝒫𝒫 does not necessarily 

warrant that all the eigenvalues of a Hamiltonian ℋ are real. In fact, there are scenarios 

where the Hamiltonian operator ℋ commutes with the 𝒫𝒫𝒫𝒫 operator but the eigenvalue 

spectrum is partially or totally complex. In such cases, the two operators ℋ and 𝒫𝒫𝒫𝒫 do not 

share the same set of eigenstates (therefore equations (2.4) to (2.7) are no longer valid) in 
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spite of the fact that they commute. Under these conditions the PT symmetry is said to be 

spontaneously broken. As a result, for a Hamiltonian that commutes with the 𝒫𝒫𝒫𝒫 operator, 

two regimes are distinguished; (a) exact PT phase regime, where the eigenvalues are 

entirely real, and (b) broken PT regime, where the eigenvalues are partially or entirely 

complex. 

As mentioned before, PT operators are also discussed in the context of pseudo-Hermitian 

operators. In this regard it can be shown that a PT Hamiltonian in the exact PT phase 

regime can always be transformed to a Hermitian one [9]. On the other hand, under the 

same transformation this Hamiltonian is converted to a non-Hermitian Hamiltonian.  

In the following section we show that PT-symmetric Hamiltonians can be realized in the 

optical domain. 

 

2.3. PT-symmetric optical coupler 

 

Perhaps one of the simplest arrangements of PT-symmetric structures in optics is that of a 

PT coupler [30]. As shown in Figure 2.1 this can be achieved by having two coupled 

waveguides or cavities. Let us assume first these two elements have different propagation 

constants and different amounts of gain or loss. We assume that these two elements are 

weakly coupled, and in addition we assume that the gain/loss values are small 

perturbations so that the Hermitian coupled mode theory gives a valid approximation. 
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Under these conditions, the evolution of the modal amplitudes in such system is governed 

by the following equation: 

−𝑖𝑖 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎𝑏𝑏� = �𝛿𝛿1 + 𝑖𝑖𝛾𝛾1 𝜅𝜅

𝜅𝜅 𝛿𝛿1 + 𝑖𝑖𝛾𝛾1
� �𝑎𝑎𝑏𝑏�,        (2.14) 

where 𝛿𝛿1,𝛿𝛿2 denotes the propagation constant (resonance frequency) of the first and 

second waveguide (resonator) when being isolate and and 𝛾𝛾1, 𝛾𝛾2 represents the distributed 

gain or loss constant (depending on their sign) of each element. Finally, 𝜅𝜅 shows the 

coupling between the two elements. The evolution parameter 𝜉𝜉 represents the longitudinal 

coordinate 𝑧𝑧 in the case of optical waveguides or time 𝑡𝑡 in the case of optical cavities. By 

assuming supermodes of the form (𝑎𝑎, 𝑏𝑏) = (𝐴𝐴,𝐵𝐵)𝑒𝑒𝑖𝑖Ω𝜉𝜉 , Eq. (1) reduces to the following 

eigenvalue equation: 

�𝛿𝛿1 + 𝑖𝑖𝛾𝛾1 𝜅𝜅
𝜅𝜅 𝛿𝛿1 + 𝑖𝑖𝛾𝛾2

� �𝐴𝐴𝐵𝐵� = Ω�𝐴𝐴𝐵𝐵�.        (2.15) 

The corresponding Hamiltonian can be defied as the following 2 × 2 matrix: 

ℋ = �𝛿𝛿 + 𝑖𝑖𝑖𝑖 𝜅𝜅
𝜅𝜅 𝛿𝛿 − 𝑖𝑖𝑖𝑖�,          (2.16) 

Obviously this is not a Hermitian operator (matrix) since in general ℋ† ≠ ℋ. On the other 

hand, of our interest is to find appropriate parameters that makes ℋ a PT-symmetric 

operator. For this reason, by assuming an arbitrary vector in two-dimensional vector space 

𝜓𝜓 = (𝐴𝐴 ,𝐵𝐵)𝑇𝑇 with arbitrary complex numbers 𝐴𝐴 and 𝐵𝐵, we define the parity (𝒫𝒫) and time 

(𝒯𝒯) operators as follows: 
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𝒫𝒫 �𝐴𝐴𝐵𝐵� = �𝐵𝐵𝐴𝐴�,          (2.17.a) 

𝒯𝒯 �𝐴𝐴𝐵𝐵� = �𝐴𝐴
∗

𝐵𝐵∗�.          (2.17.b) 

Under this conditions it is straightforward to show that ℋ satisfies the necessary condition 

of PT symmetry, i.e., [𝒫𝒫𝒫𝒫,ℋ] = 𝒫𝒫𝒫𝒫ℋ −ℋ𝒫𝒫𝒫𝒫 = 0 if: 

𝛿𝛿1 = 𝛿𝛿2 = 𝛿𝛿          (2.18.a) 

𝛾𝛾1 = −𝛾𝛾2 = 𝛾𝛾          (2.18.b) 

This simply means that the two elements should be identical in every aspect except for 

their gain/loss. While one elements exhibits certain amount of gain +𝛾𝛾, the other element 

should have the same amount of loss – 𝛾𝛾. As a result, one expects real eigenvalues for the 

non-Hermitian operator ℋ, as long as PT symmetry is not broken. This can be shown by 

directly calculating the eigenvalues of Equation (2.15). Interestingly the eigenvalues can be 

distinguished in two different regimes. If the coupling constant is stronger than the gain 

loss contrast (𝜅𝜅 > 𝛾𝛾):  

Ω1,2 = 𝛿𝛿 ± �𝜅𝜅2 − 𝛾𝛾2,                                 (2.19.a) 

�
𝐴𝐴1,2
𝐵𝐵1,2

� = �
1

−𝑖𝑖 𝛾𝛾 𝜅𝜅⁄ ± �1 − (𝛾𝛾 𝜅𝜅⁄ )2�.        (2.19.b) 

Note that in this case both supermodes are symmetrically distributed between the two 

channels, i.e., �𝐴𝐴1,2�
2

= �𝐵𝐵1,2�
2
.  
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If on the other hand the gain/loss contrast exceeds the coupling strength (𝜅𝜅 < 𝛾𝛾), PT 

symmetry is said to be spontaneously broken. In this regime the eigenvalues are no longer 

real and instead they appear in the form of complex conjugate numbers: 

Ω1,2 = 𝛿𝛿 ± 𝑖𝑖�𝛾𝛾2 − 𝜅𝜅2,                                 (2.20.a) 

�
𝐴𝐴1,2
𝐵𝐵1,2

� = �
1

−𝑖𝑖 𝛾𝛾 𝜅𝜅⁄ ± 𝑖𝑖�1 − (𝛾𝛾 𝜅𝜅⁄ )2�.        (2.20.b) 

Note that in this case the broken PT-symmetry regime, even the symmetry of the 

supermodes is lost since �𝐴𝐴1,2�
2
≠ �𝐵𝐵1,2�

2
. Finally the behavior of this Hamiltonians 

becomes even more interesting at the PT-symmetry-breaking threshold that is the exact 

point where the transition between unbroken and broken symmetry regimes occurs (𝜅𝜅 =

𝛾𝛾). At this point both the eigenvalues are the same: 

Ω1,2 = 𝛿𝛿,                  (2.21.a) 

�
𝐴𝐴1,2
𝐵𝐵1,2

� = �1
𝑖𝑖 �.          (2.21.b) 

Note that at this symmetry breaking threshold, not only the eigenvalues but also the 

eigenvectors are the same. In fact, the PT-symmetry breaking point shows all the 

characteristics of an exceptional point singularity. In general, exceptional points appear as 

singularities of non-Hermitian eigenvalue problems and can be compared with 

degeneracies in Hermitain operators. In contrast to the degeneracies, at an exceptional 

point both the eigenvalues and eigenvectors coalesce [31].  

15 
 



 

Figure 2.1. PT-symmetric arrangement of (a) coupled waveguides and (b) coupled 

microcavities. (c) Eigenvalues of the PT-symmetric coupler as a function of the gain/loss 

coefficient 𝛾𝛾. 

 

Here, it is worth noting that in general, as in other non-Hermitian system, in PT 

arrangements power is not conserved. As an example, in the PT coupler which is fully 

integrible one can simply show that in general 𝑃𝑃 = |𝑎𝑎|2 + |𝑏𝑏|2 is not conserved during 

evolution in 𝜉𝜉. On the other hand it is straightforward to show that the quasi-power 

𝑄𝑄 = 𝑎𝑎∗𝑏𝑏 + 𝑏𝑏∗𝑎𝑎 is always conserved for any initial condition. This again has to do with the 

inner product in PT systems and will be discussed later in more complicated PT systems.   
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2.4. PT-symmetric wavguides: 1D 

 

Consider now a dielectric waveguide which is described by a one-dimensional distribution 

of the relative permittivity along the 𝑥𝑥 axis; 𝜖𝜖(𝑥𝑥) = 𝑛𝑛2(𝑥𝑥). In that case by considering time-

harmonic waves propagating in the 𝑥𝑥𝑥𝑥 plane, the electric field component of the TE-

polarized light satisfies the following equation:  

𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦2

+ 𝑘𝑘02𝜖𝜖(𝑥𝑥)𝐸𝐸𝑧𝑧 = 0.         (2.22) 

By assuming eigenfunctions of the form 𝐸𝐸𝑧𝑧(𝑥𝑥, 𝑦𝑦) = 𝜓𝜓(𝑥𝑥) exp(𝑖𝑖𝑖𝑖𝑖𝑖), Equation (2.22) reduces 

to 

𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥2

+ 𝑘𝑘02𝜖𝜖(𝑥𝑥)𝜓𝜓(𝑥𝑥) = 𝛽𝛽2𝜓𝜓(𝑥𝑥),         (2.23) 

which is very similar to the Schrödinger equation where the Hamiltonian is defined as 

ℋ = 𝑑𝑑2

𝑑𝑑𝑥𝑥2
+ 𝑘𝑘02𝜖𝜖(𝑥𝑥). In such a continuous system the parity and time operators are again 

defined as spatial reversal and complex conjugation as 𝒫𝒫𝒫𝒫(𝑥𝑥) = 𝜓𝜓(−𝑥𝑥), 𝒯𝒯𝒯𝒯(𝑥𝑥) = 𝜓𝜓∗(𝑥𝑥). In 

this case the necessary condition of PT symmetry, i.e., [𝒫𝒫𝒫𝒫,ℋ] = 0, demands that 

𝜖𝜖(𝑥𝑥) = 𝜖𝜖∗(−𝑥𝑥) which by assuming 𝜖𝜖 = 𝜖𝜖𝑅𝑅(𝑥𝑥) + 𝑖𝑖𝜖𝜖𝐼𝐼(𝑥𝑥) leads to: 

𝜖𝜖𝑅𝑅(−𝑥𝑥) = +𝜖𝜖𝑅𝑅(𝑥𝑥),             (2.24.a) 

𝜖𝜖𝐼𝐼(−𝑥𝑥) = −𝜖𝜖𝐼𝐼(𝑥𝑥).            (2.24.b) 
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Figure 2.2. PT-symmetric waveguide with the following distribution of the relative 

permittivity: 𝜖𝜖(𝑥𝑥) = 1 + (2 + 𝑖𝑖𝑖𝑖 tanh(𝑥𝑥 0.1⁄ ) ) exp(−(𝑥𝑥 2⁄ )20) where 𝛾𝛾 = 0 for (a,b), 

𝛾𝛾 = 0.6 for (c,d) and 𝛾𝛾 = 1.2 in (e,f). Here the grey shows area the real part of the relative 

permittivity while the blue and red represent its imaginary part. In each case, absolute 

values of the two guided modes are shown by the solid black curve. 

 

Figure 2.2 depicts an exemplary PT-symmetric slab waveguide when half of the waveguide 

involves gain (red) and the other half an equivalent amount of loss (blue). As shown in the 

figure by increasing the gain/loss contrast the symmetry of the guided mode breaks and 

one of the two modes lives mostly in the gain side while the other remains on the lossy 
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region. Similar results are obtained for a PT-symmetric arrangement of coupled 

waveguides as illustrated in Figure 2.3.   

 

 

Figure 2.3. The same as Figure 2.2 when this time gain and loss regions are embedded into 

two different waveguides. 

 

2.5. PT-symmetric waveguides: 2D 

 

In previous section, the necessary condition of PT symmetry was found for a 1D waveguide. 

Here we extend this concept to general waveguides with arbitrary cross sections. Assume a 
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waveguide with a 2D cross section in the 𝑥𝑥𝑥𝑥 plane and uniform along the propagation 

direction 𝑧𝑧 the electric and magnetic fields for the eigenmodes can be considered as:  

𝑬𝑬(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑬𝑬𝑡𝑡(𝑥𝑥,𝑦𝑦) + 𝑬𝑬𝑧𝑧(𝑥𝑥,𝑦𝑦)�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖        (2.25.a) 

𝑯𝑯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑬𝑬𝑡𝑡(𝑥𝑥,𝑦𝑦) + 𝑬𝑬𝑧𝑧(𝑥𝑥,𝑦𝑦)�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖        (2.25.b) 

where 𝑬𝑬𝑡𝑡,𝑯𝑯𝑡𝑡 and 𝑬𝑬𝑧𝑧,𝑯𝑯𝑧𝑧 represent the transverse and longitudinal components of the 

electric/magnetic fields respectively. Since the structure is uniform along the propagation 

direction 𝑧𝑧, after assuming the gradient operator as ∇= ∇𝑡𝑡 + 𝑧̂𝑧 𝜕𝜕
𝜕𝜕𝜕𝜕

, the eignmode equations 

can be separated as transverse and longitudinal parts. The transverse electric and magnetic 

fields are governed by [32]: 

ℒ𝐸𝐸𝑡𝑡𝑬𝑬𝑡𝑡 = 𝛽𝛽2𝑬𝑬𝑡𝑡          (2.26.a) 

ℒ𝐻𝐻𝑡𝑡𝑯𝑯𝑡𝑡 = 𝛽𝛽2𝑯𝑯𝑡𝑡          (2.26.b) 

where: 

ℒ𝐸𝐸𝑡𝑡 = ∇𝑡𝑡2 + ∇𝑡𝑡�(∇t ln 𝜖𝜖) ∙ (∙)� + 𝑘𝑘02𝜖𝜖(𝑥𝑥, 𝑦𝑦)                (2.27.a) 

ℒ𝐻𝐻𝑡𝑡 = ∇𝑡𝑡2 + (∇𝑡𝑡 ln 𝜖𝜖) × �∇t × (∙)� + 𝑘𝑘02𝜖𝜖(𝑥𝑥,𝑦𝑦)        (2.27.b) 

In this again one can simply show that both of these operators can commute with the 𝒫𝒫𝒫𝒫 

operators as long as: 

𝜖𝜖∗(−𝑥𝑥,−𝑦𝑦) = 𝜖𝜖(𝑥𝑥,𝑦𝑦)                (2.28) 

 

20 
 



2.6. PT-symmetry in a general electromagnetic media 

 

PT symmetry can also be investigated in three-dimensional (3D) settings which are in 

general governed by the full-wave Maxwell’s equations: 

∇ × 𝑬𝑬 = 𝑖𝑖𝑖𝑖𝜇𝜇0𝑯𝑯                     (2.29.a) 

∇ × 𝑯𝑯 = −𝑖𝑖𝑖𝑖𝜖𝜖0𝜖𝜖(𝒓𝒓)𝑬𝑬         (2.29.b) 

∇ ∙ 𝑫𝑫 = 0                                 (2.29.c) 

∇ ∙ 𝑩𝑩 = 0                                 (2.29.d) 

where the relative permittivity 𝜖𝜖(𝒓𝒓) is a complex function of position for a linear, 

anisotropic and non-magnetic material. The curl equations can be combined to get the 

following equation [33]: 

∇ × � 1
𝜖𝜖(𝒓𝒓)∇ × 𝑯𝑯� = 𝜔𝜔2

𝑐𝑐2
𝑯𝑯          (2.30) 

which can be written as an eigenvalue problem ℒ𝑯𝑯 = Ω𝑯𝑯 where ℒ = ∇ × � 1
𝜖𝜖(𝒓𝒓)∇ × (∙)� and 

Ω = 𝜔𝜔2 𝑐𝑐2⁄ . For a real valued permittivity, it is straightforward to show that the operator ℒ 

is formally self-adjoint, meaning that for two arbitrary vector field 𝑨𝑨 and 𝑩𝑩 

∫𝑨𝑨∗ ∙ ℒ𝑩𝑩 𝑑𝑑3𝒓𝒓 = ∫𝐵𝐵 ∙ ℒ𝑨𝑨∗ 𝑑𝑑3𝒓𝒓         (2.31) 

where the integration is taken over the entire 3D space. Note that formally self-adjoint 

operators do not necessarily admit real-valued eigenvalues. In fact, in the context of 
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differential operators, being Hermitian demands additional conditions on the boundary 

conditions [34]. For example such conditions are not satisfied by the Sommerfeld’s 

boundary condition at the infinity, as a result a dielectric sphere in the free space does not 

support any bound states. On the other such structure supports infinitely many meta-stable 

states all exhibiting complex eigenfrequencies where the imaginary parts represent the 

finite life-time of such states. Here it is worth noting that that Maxwell’s Equations (2.29) 

can also be formulated in terms of the electric field as an eigenvalue problem 1
𝜖𝜖(𝒓𝒓)∇ × ∇ ×

𝑬𝑬 = 𝜔𝜔2

𝑐𝑐2
𝑬𝑬. However, it can be easily shown that such equation is not even formally-self 

adjoint. Therefore we use the magnetic field formulation of Equation (2.30).  

Now that we found out Equation (2.30) is formally self-adjoint for real-valued 

permittivities, of interest would be to find necessary condition for the complex permittivity 

so that operator ℒ still remains formally self-adjoint. To show this, note that Equation 

(2.30) should still be valid for complex permittivities. It is straightforward to show that this 

equation is satisfied if   

𝜖𝜖∗(−𝒓𝒓) = 𝜖𝜖(𝒓𝒓)          (2.32) 

Finally, more general cases where the magnetic materials and anisotropy are also 

considered is discussed in reference [35]. 
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CHAPTER THREE: MODE SELECTION IN PT-SYMMETRIC LASERS 

 

High-power laser amplifiers nowadays play a crucial role in optics. Their applications range 

from cutting and welding to optically pumping other laser systems. In all occasions, 

extreme care is taken to avoid unwanted side effects arising from the delivery of such high 

power levels. These include, among others, nonlinear processes such as stimulated Raman 

and Brillouin scattering effects. Scaling up the cross section of the gain medium provides a 

natural way to achieve this goal. Not only does it lead to higher output powers, but it also 

provides a solution in reducing the impact of nonlinear effects. Unfortunately however, 

such an increase in size comes at a price: it makes the structure multimoded. This in turn 

has a detrimental effect on the output beam quality and the temporal stability of the laser 

itself.  

In order to force these large area optical amplifiers to only lase in their fundamental 

mode, several strategies have been suggested. For broad area semiconductor laser 

amplifiers, the majority of these methods relies on spatial filtering. Modal reflectors [1], 

external cavities [2,3], and distributed feedback gratings [4] have been used as a means to 

increase the loss associated with higher order modes. Another approach is based on using 

tapers to gradually increase the width of the device while exciting only the fundamental 

mode [5]. For fiber laser amplifiers, on the other hand, several other approaches have also 

been proposed to address this problem. One way is to use large area endlessly single- mode 

photonic crystal fibers [6] or leakage channels structures [7]. Other schemes utilize the 
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distributed loss offered by coiled fibers to filter out higher order modes [8]. Selective 

excitation of the fundamental mode using ultrashort pulses was demonstrated in 

multimode fibers [9], while spatial doping has been used to achieve gain filtering among 

different modes [10]. Gain guiding with index antiguiding provides yet another technique 

for single- mode large area lasers [11]. Given that none of the aforementioned methods can 

single-handedly address all the underlying problems in this area, of interest will be to 

explore alternative routes to achieve this goal for both one- and two-dimensional 

structures in different geometries. 

Here, we propose a novel avenue in order to encourage single-mode operation of 

large area optical amplifiers. This is done by exploiting recently developed notions in 

parity–time (PT) symmetric optics. As we will see, what distinguishes this new class of 

systems from the previously mentioned schemes is that only the fundamental mode 

experiences gain while all the higher order modes undergo oscillations and hence remain 

neutral. 

 

3.1. PT symmetry breaking and transverse mode selection in laser cavities 

 

In this section we show that the concept of PT-symmetry can be utilized for filtering higher 

order transverse modes in a large area laser cavity. For this reason, let us consider a 

structure composed of two identical multimode waveguides coupled to each other (Figure 

.1). 

27 
 



 

Figure 3.1. A pair of coupled PT-symmetric multimode waveguides  

 

In this case, PT symmetry around the central axis demands that one of the waveguides 

exhibits gain while the other an equal amount of loss. By considering only coupling effects 

between identical modes, the evolution of the modal amplitudes 𝑎𝑎𝑚𝑚 and 𝑏𝑏𝑚𝑚 of the 𝑚𝑚′𝑡𝑡ℎ 

modes in these two guides is described through the coupled mode equations: 

𝑑𝑑𝑎𝑎𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑖𝑖𝜅𝜅𝑚𝑚𝑏𝑏𝑚𝑚 + 𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚    (3.1.a) 

𝑑𝑑𝑏𝑏𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑏𝑏𝑚𝑚 + 𝑖𝑖𝜅𝜅𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑔𝑔𝑚𝑚𝑏𝑏𝑚𝑚    (3.1.b) 

where, 𝛽𝛽𝑚𝑚 is their respective propagation constant, 𝜅𝜅𝑚𝑚 is coupling coefficient among these 

modes and ±𝑔𝑔𝑚𝑚 stands for the modal gain or loss in the 𝑚𝑚′𝑡𝑡ℎ mode. 

The solution of these coupled wave equations, can be obtained through their 

respective supermodes. For convenience we introduce the dimensionless quantity 

𝜌𝜌𝑚𝑚 = 𝑔𝑔𝑚𝑚 𝜅𝜅𝑚𝑚⁄ . Two regimes are identified. If the system is kept below threshold (𝜌𝜌𝑚𝑚 < 1) 

the two supermodes are: 
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�𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚� = � 1
±exp (±𝑖𝑖𝜃𝜃𝑚𝑚)� exp(±𝑖𝑖𝑖𝑖 cos(𝜃𝜃𝑚𝑚) 𝑧𝑧) exp(𝑖𝑖𝛽𝛽𝑚𝑚𝑧𝑧)  (3.2) 

where sin(𝜃𝜃𝑚𝑚) = 𝜌𝜌𝑚𝑚 . Note that in this case none of the modes experiences gain-instead 

they both remain neutral and therefore oscillate during propagation. If on the other hand 

𝜌𝜌𝑚𝑚 > 1 then: 

�𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚� = � 1
𝑖𝑖exp(±𝜃𝜃𝑚𝑚)� exp(∓𝜅𝜅 sinh(𝜃𝜃𝑚𝑚) 𝑧𝑧) exp(𝑖𝑖𝛽𝛽𝑚𝑚𝑧𝑧)  (3.3) 

where cosh(𝜃𝜃𝑚𝑚) = 𝜌𝜌𝑚𝑚 . In this case, the PT-symmetry is “spontaneously broken” and hence 

one of the two supermodes enjoys amplification while the other decays exponentially with 

distance. The limit 𝜌𝜌𝑚𝑚 = 1 designates this transition point. 

To understand how the proposed arrangement works, one has to bear in mind that 

the coupling coefficient between higher-order modes is typically higher than that for lower 

ones like the fundamental. Hence for a given gain level, 𝜌𝜌𝑚𝑚 is expected to be higher for 

lower-order modes. If the system is appropriately designed, then only the fundamental 

mode will exhibit a ratio, 𝜌𝜌1 > 1 while the rest are kept below unity. As a result, only the 

fundamental mode will experience PT-symmetry breaking and thus will be amplified. On 

the hand, the rest of the modes will be neutral and therefore remain bounded in amplitude 

(as in Equation (3.2)), exhibiting oscillations. 
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Figure 3.2. Field intensity profile of the first six TE modes. 

 

In what follows we provide pertinent examples to elucidate this possibility. First we 

consider a semiconductor amplifier waveguide system consisting of two identical PT-

symmetric ridge guides in contact to each other. The index in this region is throughout the 

same while one guide experiences gain and the other an equal amount of loss. Each 

waveguide is taken here to be 30µm thick and the operating wavelength is assumed to be 

1µm. The substrate has a refractive index of 3.5 while the core has a relatively high index 

contrast of 0.003 compared to the substrate so as to discourage any beam filamentation 

effects arising from spatial hole burning. A bulk gain/loss of ±5.906 cm−1 is assumed in 

these two regions of this waveguide. Table.1. provides the effective index of the first six TE 

modes while the intensity profile of the first six is depicted in Figures 3.2(a-f). Evidently 

only the first pair of super modes (corresponding to the fundamental TE0 in each region) is 

in the broken phase regime while the rest of the modes lie below threshold and hence they 

are neutral. Figure 3.2 illustrates the main difference between broken phase modes and 

ordinary modes in this PT-symmetric structure. For modes kept below threshold the 
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optical intensity is symmetric while for those with broken symmetry is asymmetric. Note 

that one of these latter modes mostly lies in the gain region and is hence amplified while 

the other one occupies the loss region and is attenuated. 

 

Table 3.1. Complex effective indices of the first TE modes of a large area semiconductor 

laser 

Mode number Complex effective index Gain/Loss (cm−1) 

TE0 3.502973 + 𝑖𝑖0.00003976 −5 

TEO 3.502973 − 𝑖𝑖0.00003976 +5 

TE1 3.502891 0 

TE1 3.502877 0 

TE2 3.502765 0 

TE2 3.502674 0 

 

We also analyze a two dimensional PT fiber based system.  In such arrangements higher-

order modes may not necessarily have the highest coupling. In fact the coupling in this case 

depends on the nature of the mode itself [12]. As an example we consider two circular 

cores each having a diameter of 60µm-in contact with each other. Such double-core 

arrangements may be feasible by appropriately structuring the fiber preform [13]. The 

refractive index of the core and cladding regions is assumed to be 1.535 and 1.534 

respectively, corresponding to a numerical aperture of 0.055. A differential gain/loss of 
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±0.5 cm−1 is assumed that is typical of phosphate glass laser amplifiers [14]. The operating 

wavelength is 1.54 µm. 

According to finite element simulations the fundamental LP01 is not the first mode 

to experience symmetry breaking.  Instead two degenerate pairs (one for each 

polarization) of the LP11 supermodes are the first to break the PT symmetry in this 

example, experiencing a gain/loss of ±0.4541 cm−1. This result can be explained through 

Figure 3.3 which shows the intensity profile for the 𝑥𝑥-polarized LP modes of this structure. 

As this figure indicates, a specific set of LP11 modes has very small overlap, and thus their 

coupling coefficient is lower than that of the fundamental LP01. As a result they are the first 

to break the PT symmetry. 

 

Figure 3.3. Intensity profile of the first few modes in the PT fiber laser. 

 

To overcome this problem, we confine the gain/loss process in two cocentric cylindrical 

regions of 20µm in diameter, as shown in Figure 3.4 In this case the two cores are also 

further separated by 6.8µm to decrease the coupling constants. Figure 3.4 shows the 
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intensity profile of the first few x-polarized modes of this new structure. In this case the 

fundamental LP01 mode is the first to break the symmetry and its modal gain/loss is 

approximately ±0.1 cm−1. Thus this coupled multimode PT-symmetric structure is 

expected to lase only in the fundamental mode (of the gain region) while all higher-order 

modes will remain neutral. 

 

Figure 3.4. Intensity profile of the first few modes in a PT-symmetric multi-moded coupled 

system. Gain/loss is provided within the dashed area. 

 

Finally it is important to note that many of these features associated with PT-symmetry can 

actually persist in spite of imperfections and perturbations, like for example bending, 

thermal and saturation effects that may spoil the assumed symmetry. In principle, 

appreciable losses can be introduced to the system by scattering regions so as to avoid any 

unnecessary thermal effects because of absorption. However, on many occasions this 

perfect symmetry may not be absolutely essential in exploiting these effects. For example, 

let us consider a perturbed PT system where the 𝑚𝑚’th mode in the first waveguide 
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experience a modal gain of +𝑔𝑔𝑚𝑚
(1) while this same mode in the second one experiences a 

loss of −𝑔𝑔𝑚𝑚
(2). In this case, if we define a common gain/loss factor of 

±𝑔𝑔𝑚𝑚 = ±�𝑔𝑔𝑚𝑚
(1) + 𝑔𝑔𝑚𝑚

(2)� 2⁄ , it is straightforward to show that Equations (3.2) and (3.3) still 

hold under these same conditions provided that a net gain(or loss depending on the sign) 

of �𝑔𝑔𝑚𝑚
(1) − 𝑔𝑔𝑚𝑚

(2)� 2⁄  is added to all modes. Thus, some of the higher-order modes may no 

longer be neutral. Yet, even in the presence of such imperfections, single-mode operation 

can be restored by appropriately shifting the overall zero gain/loss line of the structure. 

Essentially, perturbations in the spectrum tend to increase linearly with the strength of 

such asymmetries. 

 

3.2. PT-symmetric micro-ring lasers 

 

Micro-ring resonators due to their high confinement and high quality factor of their 

whispering gallery modes serve as ideal cavities for many applications. In fact, as shown in 

Appendix A, in coupled micro-ring resonator systems, PT-symmetry-breaking can occur at 

lower gain values. This is due to the fact that in such systems, coupling occurs in a small 

frction of the rings while gain or loss mechanism take place in the entire ring. This makes 

micro-ring resonator systems ideal platform for observation of PT-symmetry-breaking. 

Several recent studies have demonstrated PT related phenomena in micro-ring resonator 
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arrangements [15-17]. Here we show that PT-based single mode lasing can be observed in 

micro-ring resonators. 

 

Figure 3.5. A micro-ring laser with an exemplary gain spectrum. 

 

Consider first a single micro-ring resonator (Figure 3.5(a)) with an exemplary gain 

bandwidth as depicted in Figure 3.5(b). The lasing frequencies or the resonances of the 

corresponding passive micro-ring should in general be obtained through a full-wave 

solution of Maxwell’s equation. In a first order approximation however, the micro-ring can 

be considered as a curved waveguide that closes to itself. Therefore the resonance 

condition can be interpreted as a condition for constructive interference of a waveguide 

mode that travels in the ring. Therefore, assuming an effective propagation index of 𝑛𝑛e(𝜆𝜆) 

for the straight waveguide, the resonance condition of the micro-ring resonator turns to be 

𝑘𝑘0𝑛𝑛e𝑙𝑙ring = 2𝜋𝜋𝜋𝜋 which directly leads to: 

2𝜋𝜋𝜋𝜋
𝜆𝜆𝑚𝑚

𝑛𝑛e(𝜆𝜆𝑚𝑚) = 𝑚𝑚,          (3.4) 
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where 𝑅𝑅 represents the effective radius of the micro-ring resonator. Based on this relation, 

the free spectral range (FSR) can be easily calculated as FSR = 𝜆𝜆𝑚𝑚 − 𝜆𝜆𝑚𝑚+1 ≈
𝜆𝜆𝑚𝑚2

2𝜋𝜋𝜋𝜋 𝑛𝑛g(𝜆𝜆𝑚𝑚) 

where 𝑛𝑛g(𝜆𝜆) = 𝑛𝑛e(𝜆𝜆) − 𝜆𝜆 𝜕𝜕𝑛𝑛e
𝜕𝜕𝜕𝜕

 represents the effective group index of the corresponding 

waveguide. Typically, the free-spectral range of micro-ring resonators is much less than the 

gain bandwidth as a result, several resonances of a single micro-ring resonator may fall 

within the gain bandwidth and therefore all can lase at the same time. This situation 

becomes even worse when the corresponding waveguide supports more than one 

transverse modes. In this case, several longitudinal variations of each transverse mode can 

fall into the gain spectrum and therefore the resulting laser becomes highly multi-moded.    

As we will show in the next sections, the concept of PT symmetry can be utilized to 

filter out both longitudinal and transverse modes in micro-ring resonator systems. The 

experimental results, which completely support our theoretical predictions, are also 

presented in these sections. 

 

3.3. Longitudinal mode filtering 

 

Consider the micro-ring laser of Figure 3.6 when being accompanied with another micro-

ring resonator which is any aspect identical with the original ring except that is involves 

loss instead of gain. In this case again the temporal evolution of the 𝑚𝑚P

th mode pairs of this 

coupled system can be described via the temporal coupled mode equations: 
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𝑑𝑑𝑎𝑎𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑖𝑖𝜇𝜇𝑚𝑚𝑏𝑏𝑚𝑚 + 𝛾𝛾𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚,        (3.5.a) 

𝑑𝑑𝑏𝑏𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑚𝑚𝑏𝑏𝑚𝑚 + 𝑖𝑖𝜇𝜇𝑚𝑚𝑎𝑎𝑚𝑚 + 𝛾𝛾𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚,        (3.5.b) 

where 𝜇𝜇𝑚𝑚 represents the coupling coefficient between the 𝑚𝑚P

th modes of the two resonators 

and 𝛾𝛾𝑎𝑎𝑚𝑚 , 𝛾𝛾𝑏𝑏𝑚𝑚 model the net gain/loss (depending on its sign) of the two resonators which 

include all the losses due to absorption, radiation and scattering as well as the gain due to 

the quantum wells. It is worth noting that here we use 𝜇𝜇 and 𝛾𝛾 for the coupling and 

gain/loss coefficient of the microring resonators in the time-domain coupled mode 

equations as opposed to the 𝜅𝜅 and 𝑔𝑔 which we use for the coupling and gain coefficients of 

the corresponding waveguides in the space-domain coupled mode equations. The relation 

between these parameters is calculated in Appendix A. By assuming eigenmodes of the 

form: 

�𝑎𝑎𝑚𝑚
(𝑡𝑡)

𝑏𝑏𝑚𝑚(𝑡𝑡)� = �𝐴𝐴𝑚𝑚𝐵𝐵𝑚𝑚
� 𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑡𝑡              (3.6) 

The eigenfrequencies are obtained to be: 

𝜔𝜔𝑚𝑚
(1,2) = 𝜔𝜔𝑚𝑚 + 𝑖𝑖 𝛾𝛾𝑎𝑎𝑚𝑚+𝛾𝛾𝑏𝑏𝑚𝑚

2
± �𝜇𝜇𝑚𝑚2 − �𝛾𝛾𝑎𝑎𝑚𝑚 2⁄ − 𝛾𝛾𝑏𝑏𝑚𝑚 2⁄ �

2
       (3.7) 

Obviously these eigenfrequencies are in general complex. Depending on the sign of each 

eigenfrequcy the corresponding mode will be either lasing or attenuating. Therefore, in 

order to have a single mode laser, all the eigenfrequnecies should have a negative 
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imaginary part except for one mode. This last equation can be understood under perfect 

PT-symmetric conditions where 𝛾𝛾𝑎𝑎𝑚𝑚 = −𝛾𝛾𝑏𝑏𝑚𝑚 = 𝛾𝛾𝑚𝑚. In this case, equation (3.7) reduces to: 

𝜔𝜔𝑚𝑚
(1,2) = 𝜔𝜔𝑚𝑚 ± �𝜇𝜇𝑚𝑚2 − 𝛾𝛾𝑚𝑚2 .          (3.8) 

According to this relation, to have a single mode laser, the coupling level should be adjusted 

so that only a pair of modes can break their PT symmetry while the rest of the modes 

remain neutral. As illustrated in Figure 3.6, this can be achieved as long as 𝛾𝛾sc < 𝜇𝜇 < 𝛾𝛾max 

where 𝛾𝛾max represents the net gain of the dominant lasing mode and 𝛾𝛾sc that of the 

strongest competing mode. 

 

Figure 3.6. The lasing spectrum of (a) single and (b) PT-symmetric micro-ring lasers. 

 

It is worth noting that single-mode operation can also be achieved in a single micro-ring 

laser simply by increasing the overall loss of the system, so that only the dominant mode 
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can experience a net gain while even the strongest competing mode cannot overcome the 

losses. In this case, however the net gain of the lasing mode cannot exceed 𝛾𝛾max − 𝛾𝛾sc. On 

the other in the case of the single mode PT-symmetric laser the maximum gain is achieved 

when the coupling level is set to be equal to the gain of the strongest competing mode, i.e., 

𝜇𝜇 = 𝛾𝛾𝑠𝑠𝑠𝑠. Therefore, according to Equation (3.8), the maximum gain achieved in the PT laser 

is �𝛾𝛾max2 − 𝛾𝛾sc2 . Obviously, compared to the single-mode single ring laser, the gain of the PT 

laser is enhanced by a factor 𝜂𝜂 which is: 

𝜂𝜂 =
�𝛾𝛾max

2 −𝛾𝛾sc2

𝛾𝛾max−𝛾𝛾sc
= �1+𝛾𝛾sc 𝛾𝛾max⁄

1−𝛾𝛾sc 𝛾𝛾max⁄ .         (3.9) 

 

     3.3.1. Design and simulations of PT micro-ring lasers 

 

The micro-ring resonators used in the experiment are based on Indium-Phosphide (InP) 

and are buried in a silica glass substrate [17]. The active regions are obtained by 

embedding six layers of Indium-Gallium-Arsenide-Phosphide (InGaAsP) quantum wells 

inside the rings [17]. Each ring has an outer radius of 𝑅𝑅o = 10µm while the widths and 

heights are 𝑤𝑤 = 500nm and ℎ = 210nm respectively. In simulations the refractive index of 

the rings and its surrounding medium are assumed to be 𝑛𝑛g = 3.4, and 𝑛𝑛c = 1.45 at 

telecommunication wavelength 𝜆𝜆0 = 1.55µm respectively. Let us first consider the 

corresponding waveguide of a single ring. According to finite element simulations, such 

waveguide supports three different modes. The fundamental mode is a TE polarized mode 
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which has the most overlap with the active regions and therefore experiences the 

maximum amount of gain. On the other had the second TE mode is close to its cutoff while 

the only TM mode does not have a significant overlap with the quantum wells. As a result 

we only consider the fundamental TE mode in our analysis.     

The coupling coefficient between the two rings can be roughly estimated from the 

coupling constant between the associated straight waveguides and the effective coupling 

length (See Appendix A). 

 

Finally it is worth noting that simulations of a straight waveguide cannot fully represent 

the behavior of a curved waveguide. In fact due to such curvature, the mode profiles will be 

distorted and shift toward the opposite direction of the bend [18]. This effect becomes even 

more prominent at lower radii of curvatures. 

 

     3.3.2. Experimental results 

 

In experiment, two micro-rings are put in a close proximity 𝑑𝑑 = 200nm. The gain and loss 

regions are obtained by selectively pumping one of the two rings as depicted in Figure 3.7. 

While the pump laser operates at 𝜆𝜆0 = 1064 nm, the gain bandwidth obtained from active 

regions ranges from 1350nm to 1600nm.  
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Figure 3.7. Achieving gain and loss regions via selective pumping of the micro-ring 

resonators [17] 

 

The lasing spectrum of the single and PT-symmetric micro-ring lasers are shown in Figure 

3.8. According to this figure, while the single ring lases prominently at four modes, single-

mode-lasing is enforced in the PT-symmetric system. 
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Figure 3.8. The lasing spectrum and the corresponding intensity pattern of (a,b) the single 

and (c,d) PT-symmetric micro-ring lasers [17] 

 

3.4. Transverse mode filtering 

 

As mentioned in previous sections, if a micro-ring resonator supports several transverse 

modes, the number of lasing modes increases tremendously. As we will show in this 

section, similar strategies can be used to suppress both the transverse and longitudinal 

modes at the same time. In a different experiment, we considered micro-ring resonators 

with outer radii of 𝑅𝑅o = 6µm and with widths of 𝑤𝑤 = 1.5µm. As depicted in finite element 

simulations of Figure 3.9, this time the each ring supports four transverse TE modes. 
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Figure 3.9. Different transverse modes of a micro-ring resonators with a width of 

𝑤𝑤 = 1.5µm and an outer radius of 𝑅𝑅o = 6µm. 

As shown in Figure 3.10(a), a single micro-ring lases in six prominent modes. According to 

simulations all these modes, are different longitudinal variations of the TE0 and TE1 modes. 

As we expect, in the PT-symmetric arrangement, all longitudinal versions of the transverse 

TE1 mode will be suppressed simultaneously (Figure 3.10(b)). On the other hand, by 

adjusting the power level, two longitudinal variations of the TE0 mode can also be 

suppressed to achieve a single mode laser (Figure 3.10(c)).     
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Figure 3.10. Lasing spectrum of (a) single micro-ring and (b,c) PT-symmetric micro-ring 

lasers. For a certain power level in the PT arrangement, all longitudinal variations of the 

TE1 mode can be removed at once as shown in part (b). In addition by further adjusting the 

power level, only one longitudinal version of the TE0 modes survives as depicted in part 

(c).    
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CHAPTER FOUR: SCATTERING PROPERTIES OF PT-SYMMETRIC OBJECTS 

 

In this section, the scattering of light from PT-symmetric dielectric objects is studied. In 

order to avoid dealing with vectorial fields we restrict our attention to two-dimensional 

objects that are infinitely long in the third dimension. In particular we consider a PT-

symmetric Janus-like dielectric cylinder that involves half gain and the half loss as shown in 

Figure 4.1. 

We show that such a structure can deflect the scattered light through a certain angle 

that is related to the gain/loss contrast.  In addition, as we will see, such objects are highly 

anisotropic and the far-filed scattering pattern can change with the angle of incidence. 

Finally we discuss two important issues related to the general scattering properties of PT-

symmetric structures; the associated optical theorem and reciprocity relations. 

 

Figure 4.1. Plane wave incident on a PT-symmetric dielectric cylinder where red and blue 

represent the gain and loss regions respectively. 

 

47 
 



4.1. Mathematical formulation 

 

As discussed in previous chapters, in general, a dielectric object respects PT symmetry 

provided that its relative electric permittivity satisfies: 

𝜖𝜖∗(−𝒓𝒓) = 𝜖𝜖(𝒓𝒓).          (4.1) 

This latter relation directly indicates that for this symmetry to hold, the real part of 

permittivity (or refractive index) must be an even function of the position vector while its 

imaginary (gain/loss profile) must be antisymmetric. For example this condition can be 

readily observed in homogeneous (in terms of their refractive index) Janus spherical or 

cylindrical configurations where one half exhibits gain while the other an equal amount of 

absorption. Other more involved PT-symmetric patterns can also ensue from Equation 

(4.1) in both 2D and 3D systems. 

To demonstrate these effects, let us consider a two-dimensional dielectric body in 

the 𝑥𝑥𝑥𝑥 plane. For reasons of simplicity, we restrict our analysis to the TE case where the 

electric field component 𝐸𝐸𝑧𝑧 = 𝐸𝐸(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 is perpendicular to the plane of propagation. In 

this case the electric field obeys: 

∇2𝐸𝐸(𝒓𝒓) + 𝑘𝑘2𝜖𝜖(𝒓𝒓)𝐸𝐸(𝒓𝒓) = 0         (4.2) 

where in this notation, ∇= 𝒙𝒙�𝜕𝜕 𝜕𝜕𝜕𝜕⁄ + 𝒚𝒚�𝜕𝜕/𝜕𝜕𝜕𝜕, 𝒓𝒓 = 𝒙𝒙�𝑥𝑥 + 𝒚𝒚�𝑦𝑦, and 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄  represents the 

wavenumber in the background medium (of permittivity 𝜖𝜖𝑏𝑏) and finally 𝜖𝜖(𝒓𝒓) = 𝜖𝜖𝑜𝑜(𝒓𝒓) 𝜖𝜖𝑏𝑏⁄  

corresponds to the normalized spatial distribution of the relative permittivity of this object 
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𝜖𝜖𝑜𝑜(𝒓𝒓) which is in general a complex quantity. When a dielectric object is illuminated by an 

arbitrary incoming wave, the total electric field can always be decomposed in terms of an 

incident 𝐸𝐸(𝑖𝑖) and scattered 𝐸𝐸(𝑠𝑠) component as follows 

𝐸𝐸(𝒓𝒓) = 𝐸𝐸(𝑖𝑖)(𝒓𝒓) + 𝐸𝐸(𝑠𝑠)(𝒓𝒓),          (4.3) 

where the incident field, of-course, satisfies the Helmholtz equation in the background 

medium ∇2𝐸𝐸(𝑖𝑖)(𝒓𝒓) + 𝑘𝑘2𝐸𝐸(𝑖𝑖)(𝒓𝒓) = 0. Therefore the scattered field should satisfy the 

following equation: 

∇2𝐸𝐸(𝑠𝑠) + 𝑘𝑘2𝐸𝐸(𝑠𝑠) = −𝑘𝑘2(𝜖𝜖(𝑥𝑥,𝑦𝑦) − 1)𝐸𝐸(𝒓𝒓).        (4.4) 

Note that the right hand side is non-zero only inside the scatterer. By using the two-

dimensional Green’s function of Equation (4.3) 

∇2𝐺𝐺(𝒓𝒓 − 𝒓𝒓′) + 𝑘𝑘2𝐺𝐺(𝒓𝒓 − 𝒓𝒓′) = −𝛿𝛿(2)(𝒓𝒓 − 𝒓𝒓′)        (4.5) 

which is found to be: 

𝐺𝐺(𝒓𝒓 − 𝒓𝒓′) = 𝑖𝑖
4
𝐻𝐻0

(1)(𝑘𝑘|𝒓𝒓 − 𝒓𝒓′|),         (4.6) 

one can show that the scattered field can be written in terms of the total field inside the 

scatterer according to: 

𝐸𝐸(𝑠𝑠)(𝒓𝒓) = 𝑖𝑖𝑘𝑘2

4 ∫(𝜖𝜖(𝒓𝒓′) − 1)𝐸𝐸(𝒓𝒓′)𝐻𝐻0
(1)(𝑘𝑘|𝒓𝒓 − 𝒓𝒓′|)𝑑𝑑2𝑟𝑟′,            (4.7) 
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where 𝐻𝐻0
(1) represents a Hankel function of the first kind and the integral is taken over the 

entire surface of the scatterer. On the other hand, the total electric field inside the scatterer 

can be obtained from the following integral equation: 

𝐸𝐸(𝒓𝒓) − 𝑖𝑖𝑘𝑘2

4 ∫(𝜖𝜖(𝒓𝒓′) − 1)𝐸𝐸(𝒓𝒓′)𝐻𝐻0
(1)(𝑘𝑘|𝒓𝒓 − 𝒓𝒓′|)𝑑𝑑2𝑟𝑟′ = 𝐸𝐸(𝑖𝑖)(𝒓𝒓).       (4.8) 

In general, for an arbitrary scattering object, Equation (4.6) does not admit an analytical 

solution. However, it can always be solved numerically by using the method of moments as 

in ref. [1]. 

In most scattering problems, the far-field (𝑘𝑘𝑘𝑘 ≫ 1) scattering pattern is of a 

particular importance. Here by using the asymptotic form of the Hankel function at the far-

field, 𝐻𝐻0
(1)(𝑘𝑘|𝒓𝒓 − 𝒓𝒓′|) ~ � 2

𝜋𝜋𝑘𝑘0𝑟𝑟
exp �𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝒓𝒓� ∙ 𝒓𝒓′ − 𝑖𝑖 𝜋𝜋

4
�, one can simply show that Equation 

(4.4) reduces to: 

𝐸𝐸(𝑠𝑠)(𝒓𝒓) = 𝑘𝑘2(1+𝑖𝑖)
2√𝜋𝜋

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

√𝑘𝑘𝑘𝑘
∫(𝜖𝜖(𝒓𝒓′) − 1)𝐸𝐸(𝒓𝒓′) exp(−𝑖𝑖𝑖𝑖𝒓𝒓� ∙ 𝒓𝒓′)𝑑𝑑2𝑟𝑟′,       (4.9) 

where 𝒓𝒓� denotes a unit vector along the position vector 𝒓𝒓. Therefore, for an incoming plane 

wave 𝐸𝐸(𝑖𝑖) = 𝐸𝐸0 exp(𝑖𝑖𝒌𝒌 ∙ 𝒓𝒓), the far-field scattering behavior can be described via: 

𝐸𝐸 = 𝐸𝐸0 �exp(𝑖𝑖𝒌𝒌 ∙ 𝒓𝒓) + 𝑓𝑓(𝜃𝜃) 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖

√𝑘𝑘𝑘𝑘
�,         (4.10) 

where 𝑓𝑓(𝜃𝜃) represents the so called scattering amplitude. It is worth noting that the 

scattering amplitude 𝑓𝑓 also implicitly depends on the direction 𝒌𝒌� of the incoming plane 

wave. 
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4.2. Light deflection by a PT cylinder 

 

We now turn our attention to a PT-symmetric infinitely long dielectric cylinder, as depicted 

in Figure 4.1. In this case, the upper half of this system displays gain, 𝜖𝜖1 = 𝜖𝜖𝑅𝑅 − 𝑖𝑖𝜖𝜖𝐼𝐼 , whereas 

the lower half an equal amount of loss, 𝜖𝜖2 = 𝜖𝜖𝑅𝑅 + 𝑖𝑖𝜖𝜖𝐼𝐼 , (𝜖𝜖𝐼𝐼 > 0). The scattering strength is 

quantified via the following two dimensionless quantities 𝑚𝑚𝑅𝑅 = 𝑘𝑘0𝑎𝑎𝜖𝜖𝑅𝑅 = 2𝜋𝜋𝜖𝜖𝑅𝑅(𝑎𝑎 𝜆𝜆⁄ ) and 

𝑚𝑚𝐼𝐼 = 𝑘𝑘0𝑎𝑎𝜖𝜖𝐼𝐼 = 2𝜋𝜋𝜖𝜖𝐼𝐼(𝑎𝑎 𝜆𝜆⁄ ). 

Figure 4.2 shows the near and far-field scattering pattern arising from such a PT- 

symmetric cylinder when illuminated by a plane wave along the 𝑥𝑥 direction. According to 

this figure, in the near field, light is mostly concentrated in the gain side. However, in the 

far field light tends to bend toward the lossy section. Note that, aside from this deflection, 

the azimuthal distribution of the scattering amplitude is almost preserved. By further 

increasing the gain/loss contrast the bending angle increases until reaching a point where 

the scattering pattern changes drastically and the deflection angle cannot even be defined. 

51 
 



 

Figure 4.2. (a,b) The near-field pattern of the total electric field intensity (|𝐸𝐸|2) and far-filed 

patterns of the scattered electric field intensity (|𝑓𝑓(𝜃𝜃)|2) for the case of a passive lossless 

scatterer i.e., ±𝜖𝜖𝐼𝐼 = 0, (c,d) near-field and far-field patterns for a PT-symmetric scatterer 

with ±𝜖𝜖𝐼𝐼 = ±0.2, (e,f) the same as in the previous case when the imaginary part of 

permittivity is increased to ±𝜖𝜖𝐼𝐼 = ±0.4. In all cases 𝜖𝜖𝑅𝑅 = 2.1 and diameter of the cylinder is 

equal to the wavelength of the incoming plane wave. In the above examples a heavy 

gain/loss contrast has been used to exemplify these features. 

 

Such deflection of light is an outcome of the local energy flow from the gain toward the loss 

region which in turn leads to a tilt in the phase front of light while propagating along the 

gain/loss interface of the PT-symmetric cylinder. Figures 4.3(a,b) depict the Poynting 

vector 𝑺𝑺 = (−𝑖𝑖 𝜔𝜔𝜔𝜔⁄ )𝐸𝐸(𝒙𝒙�𝜕𝜕 𝜕𝜕𝜕𝜕⁄ + 𝒚𝒚� 𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝐸𝐸∗ in the near-field of the cylinder which clearly 

shows the local energy flow at the boundaries of gain/loss regions. 
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Figure 4.3. (a,b) The Poynting vector associated with the Hermitian and the PT-symmetric 

cylinders of part (a) and (e) of Figure 4.2 respectively. 

 

According to this discussion, the scattering profile of the PT particle should vary when the 

angle of the incoming changes with respect to the gain/loss interface. To verify this latter, 

we performed simulations with different angles of incidence of the incoming plane wave. 

As illustrated in Figure 4.4, the angle of deflection as well as the maximum scattering 

amplitude change drastically when the incoming light propagates parallel or normal to the 

interface. 

It is worth noting that, the amount of gain used in the examples of Figure 4.2 might 

be large and experimentally out of reach. 
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Figure 4.4. The deflection angle (a) and the maximum scattering amplitude (b) for different 

angles of the incoming plane wave for the example of Figure 4.2. 

 

Of interest would be to see if one can get similar results without exploiting such gain 

values. For this reason, we consider again the PT cylinder of the previous example while 

this time the gain region is replaced with a transparent material with the same relative 

permittivity, i.e., 𝜖𝜖1 = 𝜖𝜖𝑅𝑅, and 𝜖𝜖2 = 𝜖𝜖𝑅𝑅 + 𝑖𝑖𝜖𝜖𝐼𝐼 . As shown in Figure 4.5, even in the absence of 

gain, the deflection property is preserved while compared to the PT structure the 

deflection angle is reduced. This is expected since the deflection depends on the total 

contrast in the imaginary parts of the two regions rather than the absolute values. Note 

however that the scattering amplitude is overall reduced and this was expected since there 

is no net gain to compensate the effect attenuations created in the loss region. 
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Figure 4.5. Scattering pattern of a PT-like cylinder. The real parts of the relative 

permittivity in the two regions are the same. While half of such cylinder is transparent 

(neither gain and nor loss), the other half exhibits loss.    

 

4.3. Modified optical theorem in PT-symmetric structures 

 

According to Figures 4.2, for a transparent dielectric cylinder, maximum scattering 

amplitude occurs right behind the cylinder. Indeed optical theorem demands that the 

scattering amplitude right behind a Hermitian scatterer is never zero. Optical theorem is an 

outcome of the power conservation in Hermitian systems.  In such systems it relates the 

total scattered power to the scattering amplitude right behind the scatterer. For 2D 

structures and under TE polarization this relation can be stated as ∫ |𝑓𝑓(𝜃𝜃)|2𝑑𝑑𝑑𝑑2𝜋𝜋
0 =

−2√𝜋𝜋Re[(1 + 𝑖𝑖)𝑓𝑓(0)]. 

Even though in the presence of gain and loss power conservation is lost, as we will 

show here for PT-symmetric strcutures optical theorem can be modified. To show this, let 

55 
 



us start with Equation (4.2) in the presence of the PT-symmetric relative permittivity of 

Equations (4.1). Using Equation (4.2) along with its parity and time reversed counterpart 

one can simply show that 𝐸𝐸(𝒓𝒓)∇2𝐸𝐸∗(−𝒓𝒓) − 𝐸𝐸∗(−𝒓𝒓)∇2𝐸𝐸(𝒓𝒓) = 0. By integrating this relation 

over a circle of radius 𝑟𝑟 → ∞ which spans over the entire 𝑥𝑥𝑥𝑥 plane, one reaches at 

∫ �𝐸𝐸(𝒓𝒓) ∙ ∇𝐸𝐸∗(−𝒓𝒓) − 𝐸𝐸∗(−𝒓𝒓) ∙ ∇𝐸𝐸(𝒓𝒓)� ∙ 𝒓𝒓�𝑑𝑑𝑑𝑑2𝜋𝜋
0 = 0. Now, the far-field approximation of 𝐸𝐸 

(Eq. (8)) can be used in this relation. By choosing 𝒌𝒌 = 𝒙𝒙�𝑘𝑘, after neglecting terms that decay 

faster than (𝑘𝑘𝑘𝑘)−1 2⁄ , the stationary phase approximation can be used to show: 

∫ 𝑓𝑓(𝜃𝜃)𝑓𝑓∗(𝜃𝜃 + 𝜋𝜋)𝑑𝑑𝑑𝑑2𝜋𝜋
0 = −2√𝜋𝜋Re[(1 + 𝑖𝑖)𝑓𝑓(𝜋𝜋)],        (4.11) 

which is the modified optical theorem for PT-symmetric objects. 

 

4.4. Reciprocity in PT-symmetric structures 

 

Finally in the following we consider reciprocity in PT-symmetric structures. Here we 

change the notation used for the scattering amplitude from 𝑓𝑓(𝜃𝜃) to 𝑓𝑓�𝒌𝒌�1 → 𝒌𝒌�2�, where 𝒌𝒌�1 

denotes the unit vector along the direction of the incoming wave and 𝒌𝒌�2 a unit vector along 

an arbitrary direction of scattering. The reciprocity relation can be proved in a similar 

manner to reference [2]. We assume two solutions of Equation (4.2), 𝐸𝐸1 and 𝐸𝐸2, that are 

generated by two plane waves with wavevectors 𝒌𝒌1 and −𝒌𝒌2 respectively. In the far field 

far-filed these two solutions can be written as 
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𝐸𝐸1 = 𝐸𝐸0 �exp(+𝑖𝑖𝒌𝒌𝟏𝟏 ∙ 𝒓𝒓) + 𝑓𝑓�+𝒌𝒌�1 → 𝒌𝒌�� exp(𝑖𝑖𝑖𝑖𝑖𝑖)
√𝑘𝑘𝑘𝑘

�,       (4.12.a) 

𝐸𝐸2 = 𝐸𝐸0 �exp(−𝑖𝑖𝒌𝒌𝟐𝟐 ∙ 𝒓𝒓) + 𝑓𝑓�−𝒌𝒌�2 → 𝒌𝒌�� exp(𝑖𝑖𝑖𝑖𝑖𝑖)
√𝑘𝑘𝑘𝑘

�.       (4.12.b) 

On the other hand note that any two arbitrary solutions of Equation (4.2) satisfy 

𝐸𝐸2∇2𝐸𝐸1 − 𝐸𝐸1∇2𝐸𝐸2 = 0 which after integrating over a circle of radius 𝑟𝑟 → ∞ leads to 

𝑟𝑟 ∫ (𝐸𝐸2∇𝐸𝐸1 − 𝐸𝐸1∇𝐸𝐸2) ∙ 𝒓𝒓�𝑑𝑑𝑑𝑑2𝜋𝜋
0 = 0. This is nothing but the Lorentz reciprocity theorem [2]. 

After inserting solutions of Equations (4.11), into this last relation and using the stationary 

phase approximation one can show that 

𝑓𝑓�𝒌𝒌�1 → 𝒌𝒌�2� = 𝑓𝑓�−𝒌𝒌�2 → −𝒌𝒌�1�         (4.13) 

It should be noted that Equation (4.12) is not limited to Hermitian or PT-symmetric 

scatterers. As a matter of fact, this relation is quite general for any arbitrary complex 

distribution of the relative permittivity as long as it is linear and time invariant. This is 

because the Lorentz reciprocity theorem as mentioned here is independent of the relative 

permittivity. 

It one-dimensional scattering settings the results of the reciprocity relation is 

counterintuitive. In such configurations by starting from the Helmholtz equation 

�𝑑𝑑2 𝑑𝑑𝑥𝑥2⁄ + 𝑘𝑘02𝜖𝜖(𝑥𝑥)�𝐸𝐸(𝑥𝑥) = 0 (for TE polarized light) one can show that two arbitrary 

solutions 𝐸𝐸1 and 𝐸𝐸2 satisfy the relation 𝐸𝐸2 𝑑𝑑2𝐸𝐸1 𝑑𝑑𝑥𝑥2⁄ − 𝐸𝐸1 𝑑𝑑2𝐸𝐸2 𝑑𝑑𝑥𝑥2⁄ = 0 which in turn leads 

to the one-dimensional representation of the Lorentz reciprocity theorem as follows: 

𝐸𝐸2 𝑑𝑑𝐸𝐸1 𝑑𝑑𝑑𝑑⁄ − 𝐸𝐸1 𝑑𝑑𝐸𝐸2 𝑑𝑑𝑑𝑑⁄ = Const. Now we assume 𝐸𝐸1 and 𝐸𝐸2 to be the electric fields 
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generated by two plane waves propagating toward the left and right hand sides 

respectively therefore: 

𝐸𝐸1 = �𝐸𝐸0
(exp(+𝑖𝑖𝑘𝑘0𝑥𝑥) + 𝑟𝑟1 exp(−𝑖𝑖𝑘𝑘0𝑥𝑥));   𝑥𝑥 → −∞

𝐸𝐸0𝑡𝑡1 exp(+𝑖𝑖𝑘𝑘0𝑥𝑥) ;                                  𝑥𝑥 → +∞              (4.14) 

and: 

𝐸𝐸2 = �𝐸𝐸0𝑡𝑡2 exp(−𝑖𝑖𝑘𝑘0𝑥𝑥) ;                                  𝑥𝑥 → −∞
𝐸𝐸0(exp(−𝑖𝑖𝑘𝑘0𝑥𝑥) + 𝑟𝑟2 exp(+𝑖𝑖𝑘𝑘0𝑥𝑥));   𝑥𝑥 → +∞              (4.15) 

By using these two last relations into the reciprocity relation one can simply show that: 

𝑡𝑡1 = 𝑡𝑡2.                  (4.16) 

This simple relation states that the transmission coefficients of the both left- and right-

propagating waves are the same. Interestingly nothing can be said about the reflection 

coefficients of these two waves.  

In conclusion, we have studied the scattering properties of PT-symmetric cylinders. 

We showed that such scatterers can deflect light toward an angle which is controlled via 

gain/loss contrast. We also investigated two important point regarding the scattering 

theory of PT-symmetric structures in general; optical theorem and reciprocity. Our results 

can have potential applications in alignment of micro-particles. 
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CHAPTER FIVE: OPTICAL MESH LATTICES 

 

In this section we investigate PT-symmetry in new class of optical lattices, the so called 

mesh lattices. As we explain later in this section, what makes such lattices a perfect host for 

realization of PT-symmetric conditions is the fact that coupling between adjacent 

waveguides of this lattice occurs at discrete positions. And this allows for a physical 

separation of the coupling and amplification/attenuation segments in a PT lattice [1].  

 

5.1. Hermitian optical mesh lattices 

 

Figure 5.1 illustrates the spatial realization of such a mesh lattice when only passive phase 

elements are involved. This configuration can be synthesized using an array of waveguides 

that are periodically and discretely coupled to their next neighbors (at the rectangular 

regions of Figure 5.1). In addition phase elements can also be inserted. Each phase element 

introduces at every array site 𝑛𝑛 a phase 𝜙𝜙𝑛𝑛 that happens to be independent of the discrete 

propagation step 𝑚𝑚. The location of each phase modulator in the lattice is denoted in the 

figure by a circle.  As we will later demonstrate, these phase modulators effectively play the 

role of a refractive index profile in spatial arrangements. By exciting only one waveguide, 

after traveling a certain distance in this waveguide, light couples to the adjacent left (right) 

channel through a coupler, and after propagating this same distance it then couples to the 
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adjacent waveguide to its right (left). Indeed light propagation in this system leads to an 

interference process that is equivalent to a discrete time quantum walk [2]. 

 

Figure 5.1. An optical mesh lattice; the lattice is composed of an array of waveguides which 

are periodically coupled together in discrete intervals. Circles indicate the position of phase 

elements and rectangles the coupling regions. The dashed lines show the discrete points 

where the field intensity is evaluated before coupling occurs. 

 

As Figure 5.1 clearly indicates, this mesh lattice is di-atomic in nature. Using the simple 

input/output relation of a 50:50 coupler [3] and by considering the effect of the phase 

elements, it is straightforward to show that the light evolution equation in this system 

takes the form: 

𝑎𝑎𝑛𝑛𝑚𝑚+1 = 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛

2
�(𝑎𝑎𝑛𝑛𝑚𝑚 + 𝑖𝑖𝑏𝑏𝑛𝑛𝑚𝑚) + 𝑒𝑒−𝑖𝑖𝜙𝜙𝑛𝑛(−𝑎𝑎𝑛𝑛−1𝑚𝑚 + 𝑖𝑖𝑏𝑏𝑛𝑛−1𝑚𝑚 )�       (5.1.a) 
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𝑏𝑏𝑛𝑛𝑚𝑚+1 = 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛

2
�(𝑏𝑏𝑛𝑛𝑚𝑚 + 𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚) + 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛+1(−𝑏𝑏𝑛𝑛+1𝑚𝑚 + 𝑖𝑖𝑎𝑎𝑛𝑛+1𝑚𝑚 )�       (5.1.b) 

In Equations (5.1), 𝑎𝑎𝑛𝑛𝑚𝑚 and 𝑏𝑏𝑛𝑛𝑚𝑚 represent the field amplitudes at adjacent waveguide sites n 

(in the 𝑛𝑛’th column) at a discrete propagation step or distance 𝑚𝑚 (𝑚𝑚’th row). It should be 

noted that in deriving these equations the phase accumulated due to propagation in any 

waveguide section is ignored. Indeed a waveguide section of length 𝑙𝑙 between two 

subsequent couplers leads to a phase accumulation of 𝛽𝛽𝛽𝛽, where 𝛽𝛽 is the propagation 

constant of the guide. Yet, one can readily show that even in the presence of these 

additional phase terms Equations (5.1) remain the same once a simple gauge 

transformation is used; (𝑎𝑎𝑛𝑛𝑚𝑚, 𝑏𝑏𝑛𝑛𝑚𝑚) → (𝑎𝑎𝑛𝑛𝑚𝑚, 𝑏𝑏𝑛𝑛𝑚𝑚)𝑒𝑒𝑖𝑖2𝑚𝑚𝑚𝑚𝑚𝑚. 

To establish the necessary periodicity, we assume that the phase elements provide a 

phase potential that alternates between two different values in 𝑛𝑛: 

𝜙𝜙𝑛𝑛 = �+𝜙𝜙0;          𝑛𝑛 even
−𝜙𝜙0;            𝑛𝑛 odd           (5.2) 

This kind of phase potential has a translational symmetry 𝜙𝜙𝑛𝑛+2 = 𝜙𝜙𝑛𝑛 which leads to a 

transverse periodicity in this “four-atom” lattice with a fundamental period of 𝑁𝑁 = 2 where 

each cell is diatomic. In addition the lattice is now periodic in both 𝑛𝑛 and 𝑚𝑚. 
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     5.1.1. The band structure  

 

First we study the band structure of this mesh system.  Once the band characteristics and 

corresponding Bloch modes are known, the dynamic properties of the system can then be 

extrapolated. To find the dispersion relation of this lattice we consider discrete “plane 

wave solutions” of the form 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 where 𝑄𝑄 represents a Bloch momentum in the 

transverse direction and 𝜃𝜃 plays the role of a propagation constant. To obtain the 

corresponding band structure we assume solutions of the form 

�𝑎𝑎𝑛𝑛
𝑚𝑚

𝑏𝑏𝑛𝑛𝑚𝑚
� = �𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖          (5.3) 

where 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛 are periodic Bloch functions with the period of 𝑁𝑁 = 2, ie. 𝐴𝐴𝑛𝑛+2 = 𝐴𝐴𝑛𝑛 and 

𝐵𝐵𝑛𝑛+2 = 𝐵𝐵𝑛𝑛. In general, for  𝑛𝑛 = 2𝑗𝑗, we use 𝐴𝐴𝑛𝑛,𝐵𝐵𝑛𝑛 = 𝐴𝐴0,𝐵𝐵0 while for 𝑛𝑛 = 2𝑗𝑗 + 1 we employ 

𝐴𝐴𝑛𝑛,𝐵𝐵𝑛𝑛 = 𝐴𝐴1,𝐵𝐵1. This comes from the fact that a unit cell of this periodic structure includes 

two discrete positions 𝑛𝑛. 

By inserting Equations (5.3) in (5.1), and by adopting the phase potential of 

Equation (5.2), we obtain the following dispersion relation after expanding the 

corresponding 4×4 determinant of a unit cell: 

cos(2𝑄𝑄) = 8 cos2(𝜃𝜃) − 8 cos(𝜙𝜙0) cos(𝜃𝜃) + 4 cos2(𝜙𝜙0) − 3       (5.4) 

As expected from the double periodicity of this system in both 𝑛𝑛 and 𝑚𝑚 the band structure 

is also periodic in both 𝑄𝑄 and 𝜃𝜃 having fundamental periods of 2𝜋𝜋 and 𝜋𝜋 respectively. This 

represents a major departure from optical waveguide arrays where the propagation 
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dimension is a continuous variable. Under the assumption of Equation (5.2), this mesh 

arrangement exhibits four primary bands which are periodic with respect to the two Bloch 

momenta. Figure 5.2 depicts the band structure of this mesh lattice when 𝜙𝜙0 = 0.2𝜋𝜋. 

 

Figure 5.2. Band structure of the optical mesh lattice in the presence of periodic step-like 

potential created from phases, alternating between −𝜙𝜙0 and 𝜙𝜙0 where 𝜙𝜙0 = 0.2𝜋𝜋. The 

shaded area shows the band gap regions and the dotted boundary depicts the primary 

Brillouin zone of this lattice. 

 

Equation (5.4) is valid in general for any arbitrary choice of 𝜙𝜙0. However it should be 

noticed that in the special case where 𝜙𝜙0 = 0 (empty lattice) this relation becomes 

degenerate. Indeed for the empty lattice the periodicity of this diatomic lattice is 𝑁𝑁 = 1 and 

hence its Brillouin zone involves two bands and lies in the domain between −𝜋𝜋 and 𝜋𝜋 for 

−𝜋𝜋 < 𝜃𝜃 < 𝜋𝜋. The folded version of this Brillouin zone (corresponding to the empty lattice) 

is shown in Figure 5.4 (a) where the two bands are degenerately folded into four. Figures 

5.4(b,c,d) depict the band structure of this mesh lattice for three nonzero values of 𝜙𝜙0 

64 
 



within the Brillouin zone as a function of the Bloch momenta, i.e., −𝜋𝜋/2 < 𝑄𝑄 < 𝜋𝜋/2 and 

−𝜋𝜋 < 𝜃𝜃 < 𝜋𝜋. Again the shaded areas show the associated band gaps. According to Figure 

5.3, a nonzero 𝜙𝜙0 lifts the degeneracy and leads indeed to four bands. 

 

Figure 5.3. Band structure of an optical mesh lattice for several cases; (a) Lattice without 

any phase potential 𝜙𝜙0 = 0 (empty lattice), (b) Lattice with a symmetric phase step-like 

potential varying between −𝜙𝜙0 and 𝜙𝜙0 when 𝜙𝜙0 = 0.2 𝜋𝜋, (c) same as in (b) but with 

𝜙𝜙0 = 0.5 𝜋𝜋,  (d) 𝜙𝜙0 = 0.7 𝜋𝜋. For case (a) the reduced Brillouin zone is depicted while for the 

rest the first Brillouin zone is shown in its entirety. 

 

According to Equation (5.4) and as one can see from the figures the band structure has a 

reflection symmetry around 𝑄𝑄 = 0 and 𝜃𝜃 = 0. For any finite 𝜙𝜙0 there are four bands in the 

Brillouin zone, all having a zero slope at the center (𝑄𝑄 = 0) and at the edges (𝑄𝑄 = ±𝜋𝜋/2). 

For the empty lattice on the other hand, in reality there are two bands and the slope is zero 

at the center (𝑄𝑄 = 0) of the top band while it is non-zero at the two edges (𝑄𝑄 = ±𝜋𝜋/2) and 
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at 𝑄𝑄 = 𝜃𝜃 = 0 where the bands collide and there is no band gap between them. The addition 

of the phase potential ±𝜙𝜙0 to the empty lattice breaks this degeneracy and creates band 

gaps at these points. This breaking of the degeneracy becomes clear by comparing Figures 

5.4 (a) and (b). Equation (5.4) can also be written in a more explicit form as a function of 𝑄𝑄:  

𝜃𝜃 = ± cos−1 �1
2
�cos(𝜙𝜙0) ± �cos2(𝑄𝑄) + sin2(𝜙𝜙0)��          (5.5) 

where in this relation any combination of the two plus/minus signs corresponds to each of 

the four bands.  

Before ending this discussion, it is worth noting that this phase potential does not 

need to be symmetrized in a ±𝜙𝜙0 fashion as done before in this section. In fact any periodic 

potential that is alternating in 𝑛𝑛 between two different phase values will break the 

degeneracy of an empty lattice, thus creating four bands in the first Brillouin zone. For 

example let us consider a phase potential that varies between 0 and 2𝜙𝜙0 in 𝑛𝑛: 

𝜙𝜙(𝑛𝑛) = �2𝜙𝜙0;          𝑛𝑛 even
0;                 𝑛𝑛 odd          (5.6) 

Note that this latter phase potential has the same strength as the one used before. In this 

latter case, by using the same ansatz of Equation (5.3) we directly obtain the dispersion 

relation corresponding to the new potential of Equation (5.6).  

cos�2(𝑄𝑄 + 𝜙𝜙0)� = 8 cos2(𝜃𝜃 − 𝜙𝜙0) − 8cos(𝜙𝜙0) cos(𝜃𝜃 − 𝜙𝜙0) + 4 cos2(𝜙𝜙0) − 3       (5.7) 

A close examination of Equation (5.7) reveals that this latter dispersion curve is identical to 

that of Equation (5.4), apart from a phase shift in both 𝜃𝜃 and 𝑄𝑄. More specifically 𝑄𝑄 has 

66 
 



shifted by an amount of  −𝜙𝜙0 while 𝜃𝜃 by 𝜙𝜙0. Figure 5.4 shows a plot of this dispersion 

relation for 𝜙𝜙0 = 0.2𝜋𝜋. The shift of origin (compared to Figure 5.3(b)) is evident in this 

figure. 

 

Figure 5.4. Band structure of an optical mesh lattice with a non-symmetric step-like phase 

potential alternating between 0 and 2𝜙𝜙0 while 𝜙𝜙0 = 0.2𝜋𝜋. Compared to the case of a 

symmetric phase potential (Fig. 4(b)) the band structure is shifted from the center. 

 

In the rest of this work we consider for simplicity symmetric phase potentials for which the 

band structure is symmetric around 𝑄𝑄 = 𝜃𝜃 = 0.  

 

     5.1.2. Beam dynamics 

 

Here, we investigate optical dynamics in passive mesh lattices. The impulse response of the 

system is of particular importance since is known to excite the entire band structure. For 
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this reason only one of the waveguide elements is excited at 𝑚𝑚 = 0. In what follows, the 

impulse response will be studied by using 𝑎𝑎00 = 1with all the other elements in the array 

initially set to zero.  

 

Figure 5.5. Impulse response of a mesh lattice where the intensity profile of 𝑎𝑎𝑛𝑛𝑚𝑚 and 𝑏𝑏𝑛𝑛𝑚𝑚 is 

plotted; (a) 𝜙𝜙0 = 0 (empty lattice), (b) 𝜙𝜙0 = 0.4𝜋𝜋. In both cases 𝑎𝑎00 = 1 and all other 

elements are initially set to zero. 

 

Figure 5.5(a) shows the impulse response of this array lattice when  𝜙𝜙0 = 0 and 𝑎𝑎00 = 1. 

According to this figure light transport in this system exhibits upon spreading a highest 

slope of Ω𝑚𝑚𝑚𝑚𝑚𝑚 = ±1/√2 with respect to the longitudinal axis. As we will see this result will 

be formally justified by considering the group velocity in this arrangement. The impulse 

response of the mesh lattice in the presence of a periodic phase potential with 𝜙𝜙0 = 0.4𝜋𝜋 is 

also plotted in Figure 5.5(b) when this time 𝑏𝑏00 = 1 . In this last case, it becomes clearly 

apparent that the maximum speed of the excitation spreading becomes slower when 𝜙𝜙0 
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increases. As in waveguide arrays [4], the impulse response can be viewed as a “ballistic” 

transport across the array.   

The band structure can also provide useful information concerning the evolution of 

more complicated initial excitations like localized wavepackets. More specifically, we 

consider initial distributions of 𝑎𝑎𝑛𝑛0  and 𝑏𝑏𝑛𝑛0 of the form 𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑄𝑄0𝑛𝑛 where 𝑓𝑓𝑛𝑛 is a slowly varying 

envelope function (with a narrow spatial spectrum) and 𝑒𝑒𝑖𝑖𝑄𝑄0𝑛𝑛 is a rapidly varying phase 

term signifying the central Bloch momentum 𝑄𝑄0 of this wavepacket. Therefore the 

propagation process of this discrete beam excitation can be effectively treated through a 

Fourier superposition of the Floquet-Bloch modes 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 assumed before to analyze this 

system. In this regard, both the group velocity and the dispersion broadening of this 

wavepacket can be obtained by expanding the propagation constant 𝜃𝜃 in a Taylor series 

around 𝑄𝑄0, that is: 

𝜃𝜃 = 𝜃𝜃0 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑄𝑄0

(𝑄𝑄 − 𝑄𝑄0) + 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑄𝑄2

�
𝑄𝑄0

(𝑄𝑄 − 𝑄𝑄0)2        (5.8) 

As in continuous lattices, the tangent of the beam angle (or “group velocity”) is associated 

with the term: 

Ω = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑄𝑄0

                      (5.9) 

Using the dispersion Equation (5.4), this group speed can then be written as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
4

sin (2𝑄𝑄)
[sin(2𝜃𝜃)−cos(𝜙𝜙0) sin(𝜃𝜃)]

               (5.10) 
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where in this relation 𝜃𝜃 could be replaced from the dispersion relation of Equation 5.5 to 

obtain the right hand side as a function of 𝑄𝑄 and the band under consideration. Using 

similar arguments, the discrete diffraction factor can be obtained from: 

𝐷𝐷 = 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑄𝑄2

�
𝑄𝑄0

                    (5.11) 

Figure 5.6 depicts the beam angle Ω for several lattices with different amplitudes of the 

phase potential, 𝜙𝜙0. According to this figure, in an empty lattice (𝜙𝜙0 = 0) this beam angle is 

zero at the center (𝑄𝑄 = 0) and it is maximum at 𝑄𝑄 = 𝜃𝜃 = 0 in the folded Brillouin zone 

scheme where to first order the dispersion relation dictates that 𝑄𝑄 = ±√2𝜃𝜃. Hence, as 

previously indicated, the maximum slope expected in this configuration is Ωmax = ±1/√2. 

On the other hand for a lattice having a periodic phase potential, each band exhibits a zero 

group velocity at the center and at the edges (𝑄𝑄 = ±𝜋𝜋/2) of the zone while the maximum 

happens somewhere in between. For the special case of 𝜙𝜙0 = 𝜋𝜋/2  the bands are translated 

in 𝜃𝜃 and hence in groups of two have identical group velocity curves, and as shown in 

Figure 5.6(c) they lie on top of each other. 
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Figure 5.6. Beam tangent angle (Ω) for several cases; (a) empty lattice (note that in this 

case the curve is folded to the reduced Brillouin zone), (b) for a lattice in the presence of 

periodic phase potential with 𝜙𝜙0 = 0.2𝜋𝜋, (c) 𝜙𝜙0 = 0.5𝜋𝜋, (d) 𝜙𝜙0 = 0.7𝜋𝜋.  

 

To demonstrate some these transport effects, let us consider for example the evolution of a 

Gaussian wavepacket having the following initial profile: 

𝑎𝑎𝑛𝑛0 = 𝑒𝑒−(𝑛𝑛 Δ)⁄ 2
𝑒𝑒𝑖𝑖𝑄𝑄0𝑛𝑛         (5.12) 

where 2Δ represents the Gaussian beamwidth and 𝑄𝑄0 designates the initial tilt in its phase 

front or central Bloch momentum. In this case the same input profile is assumed for 𝑏𝑏𝑛𝑛0 in 

order to symmetrize the dynamics. Figure 5.7 shows the propagation dynamics of this 

Gaussian beam in this mesh lattice. Here the lattice involves a periodic phase potential with 

𝜙𝜙0 = 0.2𝜋𝜋. The Gaussian beam width 2Δ is large enough to avoid the diffraction effects and 

in addition 𝑄𝑄0 = 0.25𝜋𝜋. According to this figure four independent beams (of the same 

width) result from this initial excitation, each emanating from a corresponding band, and 

propagating in different directions. To elucidate these results, the band structure is also 
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plotted in this same Figure 5.7(c) where the arrows perpendicular to the bands indicate the 

propagation direction of each of these four beams. 

 

Figure 5.7. Gaussian wavepacket propagating in a mesh lattice. The beam has a width of 

2Δ = 30 and an initial phase tilt of 𝑄𝑄0 = 0.25𝜋𝜋. The lattice has a phase potential of 

𝜙𝜙0 = 0.2𝜋𝜋 (a) intensity |𝑎𝑎𝑛𝑛𝑚𝑚|2, (b) intensity of |𝑏𝑏𝑛𝑛𝑚𝑚|2, (c) band structure of the lattice with 

the dashed line crossing the band at four points at 𝑄𝑄0 = 0.25𝜋𝜋 and the arrows show the 

propagation direction of the four resulting beams, (d) intensity profile of the initial 

Gaussian beam, (e) 𝑎𝑎𝑛𝑛𝑀𝑀 intensity profile of 𝑎𝑎𝑛𝑛𝑚𝑚 at the last discrete longitudinal step (here 

𝑀𝑀 = 300), (e) 𝑏𝑏𝑛𝑛𝑀𝑀.  
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Finally in order to investigate diffraction effects in passive mesh systems, we consider the 

propagation properties of a relatively narrow Gaussian wavepacket. Figure 5.8 depicts the 

propagation dynamics of a Gaussian beam with a width of 2Δ = 8 in a lattice with 

𝜙𝜙0 = 0.5𝜋𝜋. The figures compare the beam propagation for two different values of 𝑄𝑄0, 0 and 

0.25𝜋𝜋. According to this figure when 𝑄𝑄0 = 0, the beam has a very low transverse velocity 

and experiences a considerable degree of diffraction. As shown in the other panels, when 

the beam is launched at the dispersion free point of the band (𝑄𝑄0 = 0.25𝜋𝜋) where 𝐷𝐷 = 0 

and the transverse group velocity is maximum.  

 

Figure 5.8. Diffraction properties of a Gaussian beam in a mesh lattice with 𝜙𝜙0 = 0.5𝜋𝜋. The 

Gaussian beam has a width of 2Δ = 8 while the initial phase tilt is: (a) 𝑄𝑄0 = 0, (b) 

𝑄𝑄0 = 0.25𝜋𝜋. 

 

According to Figure 5.3 this selection of 𝜙𝜙0 leads to four bands.  Figure 5.8(a) depicts 

Gaussian beanm spreading at 𝑄𝑄0 = 0 and at the same time interference effects resulting 
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from the excitation of multiple bands. On the other hand for 𝑄𝑄0 = 0.25𝜋𝜋 two Gaussian 

beams symmetrically emerge with two different propagation speeds. Yet, the interference 

pattern in each of the two branches demonstrates that all four bands are actually in play in 

these dynamics. Notice however that at this point little beam spreading occur since for 

these parameters 𝐷𝐷 = 0. 

 

5.2. PT-symmetric optical mesh lattices 

 

After understanding the Hermitian case, in this section we turn our attention to the PT 

symmetric mesh lattices. 

  

     5.2.1. PT synthetic coupler 

 

Before exploring a large-scale PT-symmetric mesh lattice, it is worth analyzing the 

elemental building block involved in such a network. Figure 5.9 (a) shows a PT-symmetric 

coupler where the gain and loss is uniformly distributed along the two arms, a structure 

similar to that considered in previous experimental studies [5,6]. Figure 5.9 (b), on the 

other hand, depicts a passive coupler where the gain and loss mechanisms are separately 

inserted in the two arms only. Here we show that this new type of a PT-symmetric coupler 
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displays exactly the same behavior and characteristics of a standard PT-coupler 

arrangement considered before. 

 

Figure 5.9. A distributed  PT-symmetric coupler and a PT-synthetic coupler; (a) The PT-

coupler is composed of two similar dielectric waveguides coupled to each other, with one 

experiencing gain (red) while the other an equal amount of loss (blue), (b) A PT-synthetic 

coupler is composed of a passive coupler while the gain and loss waveguides are separately 

used in the arms.  

 

In Figure 5.9(b) we assume a 50:50 passive directional coupler connected to two arms, one 

providing amplification (red) while the other an equal amount of loss (blue). We assume 

that each arm delivers an amplification or attenuation of 𝑒𝑒±𝛾𝛾 2⁄  right before and after the 

coupler. Hence the modal amplitudes 𝑎𝑎′ and 𝑏𝑏′ at the output of this system, are related to 

those at the input ports, 𝑎𝑎 and 𝑏𝑏, in the following way:  
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�𝑎𝑎′𝑏𝑏′� = �𝑒𝑒
𝛾𝛾/2 0
0 𝑒𝑒−𝛾𝛾/2�

1
√2
�1 𝑖𝑖
𝑖𝑖 1� �

𝑒𝑒𝛾𝛾/2 0
0 𝑒𝑒−𝛾𝛾/2� �

𝑎𝑎
𝑏𝑏�       (5.13) 

in which case 

�𝑎𝑎′𝑏𝑏′� = 1
√2
�𝑒𝑒

𝛾𝛾 𝑖𝑖
𝑖𝑖 𝑒𝑒−𝛾𝛾� �

𝑎𝑎
𝑏𝑏�         (5.14) 

where 𝑎𝑎 and 𝑏𝑏 represent optical amplitudes in the gain and loss channes respectively. The 

two supermodes and their respective eigenvalues of this system can be readily found. 

Depending on the amount of gain/loss in the system two regimes can be distinguished; if 

𝛾𝛾 < cosh−1�√2� this PT system is operating below the PT-symmetry breaking threshold 

and its supermodes are given by: 

�𝑎𝑎0𝑏𝑏0� = � 1
± exp(±𝑖𝑖𝑖𝑖) � exp(±𝑖𝑖𝑖𝑖)         (5.15) 

where cos(𝜔𝜔) = 1
√2

cosh(𝛾𝛾) and sin(𝜔𝜔) = 1
√2

cos(𝜂𝜂). Thus for 𝛾𝛾 < cosh−1�√2� the two 

modes repeat themselves after passing through this discrete sytem exept from a trivial 

phase shift of ±𝜔𝜔. On the other hand if 𝛾𝛾 > cosh−1�√2� the system operates above the PT-

symmetry breaking threshold and: 

�𝑎𝑎0𝑏𝑏0� = � 1
𝑖𝑖 exp(∓𝜂𝜂) � exp( ±𝜔𝜔)         (5.16) 

where cosh(𝜔𝜔) = 1
√2

cosh(𝛾𝛾) and sinh(𝜔𝜔) = 1
√2

sinh(𝜂𝜂). Interstingly this same behavior is 

displayed by a standard PT-symmetric coupler where the gain and loss is continuously 

distributed. Finally at exactly the PT-symmetry breaking threshold 𝛾𝛾 = cosh−1�√2� the two 

supermodes collapse to one and thus: 
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�𝑎𝑎0𝑏𝑏0� = �1𝑖𝑖  �           (5.17) 

which clearly shows the existence of a phase difference of 𝜋𝜋/2 between the two 

waveguides. 

It is worth noting that this arrangment has certain advantages over a standard 

distributed PT-symmetric coupler. First of all it is experimentally easier to achieve the 

delicate balance required for PT symmetry. In addition the coupling and 

amplification/attenuation process take place in two separate steps so there are no physical 

restrictions imposed by the Kramers-Kronig relations. As previously mentioned, these 

effects have so far hindered progress in implementing large-scale PT-symmetric networks, 

since they limit the possibility of achieving the required values for gain/loss and refractive 

index, all at the same time. 

 

     5.2.2. The band structure of PT mesh lattices 

 

Figure 5.10 shows a PT-symmetric mesh lattice made of PT-synthetic couplers, identical to 

that of Fig. 2.9 (b).  In addition phase elements are inserted in this same lattice (shown by 

circles in Fig. 2.10(a)) in order to provide the needed real part in the potential function. In 

Fig. 2.10(b) the distributions of phase modulation and that of gain/loss are plotted as a 

function of the discrete position 𝑛𝑛 - clearly satisfying the requirement for PT-symmetry, i.e. 

an even distribution for the phase and an odd distribution for the gain/loss profile in 𝑛𝑛. In 

fact a comparison with continuous systems suggests that the phase and gain/loss discrete 
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elements play the role of the real and imaginary parts in the refractive index respectively. 

By considering an amlification/attenuation factor of 𝑒𝑒±𝛾𝛾 2⁄  in each waveguide section 

between two subsequent couplers, then one can show that light propagation in this PT-

synthetic mesh network is governed by the following discrete evolution equations: 

 

 

Figure 5.10. (a) A PT-synthetic mesh lattice, (b) transverse distribution of the phase 

potential (symmetric) and gain/loss (antisymmetric). 

 

𝑎𝑎𝑛𝑛𝑚𝑚+1 = 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛

2
�𝑒𝑒−𝛾𝛾(𝑎𝑎𝑛𝑛𝑚𝑚 + 𝑖𝑖𝑏𝑏𝑛𝑛𝑚𝑚) + 𝑒𝑒−𝑖𝑖𝜙𝜙𝑛𝑛(−𝑎𝑎𝑛𝑛−1𝑚𝑚 + 𝑖𝑖𝑏𝑏𝑛𝑛−1𝑚𝑚 )�,       (5.18.a) 

𝑏𝑏𝑛𝑛𝑚𝑚+1 = 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛

2
�𝑒𝑒+𝛾𝛾(𝑏𝑏𝑛𝑛𝑚𝑚 + 𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚) + 𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛+1(−𝑏𝑏𝑛𝑛+1𝑚𝑚 + 𝑖𝑖𝑎𝑎𝑛𝑛+1𝑚𝑚 )�.       (5.18.b) 

78 
 



To understand the behavior of this system, the band structure should be first determined. 

By adopting the same ansatz of Equations (5.3), one can derive the following dispersion 

relation for this PT lattice: 

cos(2𝑄𝑄) = 8 cos2(𝜃𝜃) − 8 cosh(𝛾𝛾) cos(𝜙𝜙0) cos(𝜃𝜃) + 4 cos2(𝜙𝜙0) − 4 + cosh(2𝛾𝛾)     (5.19) 

Figure 5.11 shows the band structure of this system for several different values of the 

phase potential amplitude 𝜙𝜙0 and gain/loss coefficients 𝛾𝛾. In each case the real parts of the 

propagation constant (𝜃𝜃) is plotted in blue while the imaginary parts are shown in red. 

 

Figure 5.11. Band structure of PT-synthetic mesh lattice for several values of 𝜙𝜙0 and 𝛾𝛾. In 

these plots the real part of propagation constant, 𝜃𝜃 is indicated in blue, while the imaginary 

part in red. 

 

As it is illustrated in this figure, the presence of a symmetric phase potential in this system 

tends to pull apart the bands thus creating a band gap, while the antisymmetric gain/loss 

tends instead to close the gap. The system is said to be operating below the PT-symmetry 
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breaking threshold as long as the eigenvalues associated with all bands are real. However 

at a critical amount of gain/loss the bands merge at the so called exceptional points, and for 

even higher gain/loss values, sections with conjugate imaginary eigenvalues appear in the 

bands. 

In what follows, we consider the case where 𝜙𝜙0 is fixed and discuss how the band 

structure will change by gradually increasing the gain/loss coefficient 𝛾𝛾. Analysis shows, 

that for a given value of 𝜙𝜙0, the first band merging occurs at two different positions; if 

0 < 𝜙𝜙0 < 𝜋𝜋 4⁄ , the bands merge at 𝑄𝑄 = 𝜃𝜃 = 0 and the second band gap remains open till 

reaching the a critical value of gain/loss coefficient 𝛾𝛾. For even higher gain/loss values the 

system finds itself in the broken phase regime. For 𝜋𝜋/4 < 𝜙𝜙0 < 𝜋𝜋 2⁄  on the other hand all 

bands are open till a critical point. Exactly at this threshold, the band gap at the edges of the 

Brillouin zone at 𝑄𝑄 = ±𝜋𝜋/2 closes while the first band gap remains open till reaching 

another critical point where it eventually evaporates. Based on this observations analytical 

results for the symmetry breaking point can be obtained. We first consider the case where 

0 < 𝜙𝜙0 < 𝜋𝜋/4. In this case, as   𝛾𝛾 increases, we expect that for a fixed 𝜙𝜙0,  the symmetry 

breaking will occur at 𝑄𝑄 = 𝜃𝜃 = 0 . Therefore Eq. 19 can be rewritten as: 

cosh2(𝛾𝛾) − 4 cos(𝜙𝜙0) cosh(𝛾𝛾) + 2 cos2(𝜙𝜙0) + 1 = 0.        (5.20) 

From here one can easily show that this critical 𝛾𝛾is given by: 

𝛾𝛾 = cosh−1�2 cos(𝜙𝜙0) −�cos (2𝜙𝜙0)�.         (5.21) 
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This relation dictates the merging condition for the first two bands and is only valid for 

0 < 𝜙𝜙0 < 𝜋𝜋/4, consistent with our previous observations. To find the corresponding 

relation for the band merging occurring at the edges, in Equation (5.19) we set = 𝜋𝜋/2 , 

which in turn leads to a second order algebraic equation in cos (𝜃𝜃). Since we expect that the 

two eigenvalues will collapse into one (exceptional point), one may use this degeneracy 

condition in Equation (5.19) at  𝑄𝑄 = 𝜋𝜋/2. After setting the discriminant of the quadratic 

equation to zero one finds that: 

𝛾𝛾 = cosh−1�√2� ≈ 0.8814         (5.22) 

This last relation provides the PT-threshold for band merging at the edges of the Brillouin 

zone and is independent of 𝜙𝜙0. Interestingly this same value 𝛾𝛾 = cosh−1�√2�coincides with 

the critical PT-thresold of the basic unit involved in this lattice, as found in previous 

section. 

Figure 5.12 depicts the PT-symmetry breaking threshold in the parameter space of 

𝜙𝜙0 and 𝛾𝛾. The area below the curve corresponds to the case where the system operates in 

the exact PT phase where all the eigenvalues are real. On the curve symmetry breaking 

occurs and above this line the spectrum is in general complex. The top flat line of this curve 

corrsponds to the critical value of 0.8814 while the part between 0 < 𝜙𝜙0 < 𝜋𝜋 4⁄  can be 

obtained from Equation (5.21). The other segement symmetrically folows.  
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Figure 5.12. PT-symmetry breaking threshold curve in a two dimensional parameter space 

of 𝜙𝜙0 and 𝛾𝛾. The region below the curve corresponds to the exact PT-phase while the region 

above the curve designates the domain where PT symmetry is broken. 

 

     5.2.3. Beam dynamics in PT-symmetric mesh lattices 

  

To dynamically explore the symmetry breaking threshold, the impulse response of system 

is studied. Since the impulse is expected to excite the entire band of this mesh lattice, one 

should expect that an exponential growth in the total energy of the system should be 

observed once the PT-symmetry is broken. 
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Figure 5.13. Impulse response of the PT-symmetric lattice with a periodic phase potential 

of 𝜙𝜙0 = 0.2𝜋𝜋 while several different amounts of gain/loss are considered; (a) 𝛾𝛾 = 0 (the 

passive lattice), (b) 𝛾𝛾 = 0.3 (below threshold), (c) 𝛾𝛾 = 0.35 (at threshold), (d) 𝛾𝛾 = 0.4 

(above threshold) 

 

Figure 5.13 shows the impulse response (𝑎𝑎𝑛𝑛0 = 1 , while all other elements are initially 

zero) of a PT-symmetric mesh lattice for several different values of gain/loss 𝛾𝛾 when 

𝜙𝜙0 = 0.2𝜋𝜋. This range covers the passive scenario, or the case where the system operates 

below, at, and above the PT-symmetry breaking threshold. The total energy in the system 

𝐸𝐸𝑚𝑚 = ∑ |𝑎𝑎𝑛𝑛𝑚𝑚|2 + |𝑏𝑏𝑛𝑛𝑚𝑚|2 𝑛𝑛 , is also plotted in each case at each discrete step of propagation, 𝑚𝑚 

in Figure 5.13. While for the passive system (𝛾𝛾 = 0) the total energy remains constant 

during propagation, for a PT-symmetric lattice used below its threshold the total energy 
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tends to oscillate during propagation –but always remains below a certain bound. Note that 

such power oscillations were previously encountered in other PT-symmetric periodic 

structures. At exactly the PT-threshold a linear growth in energy is observed (see Figure 

5.13(c)). Finally above thereshold an exponential growth in energy is observed as expected 

from a system involving complex eigenvalues (Figure 5.13(d)). 

To further explore the behavior of this PT-synthetic mesh lattice, we use at the input 

a Gaussian wavepacket, as in Equation (5.12). Indeed by exciting this system with a wide 

input beam (that has a narrow spectrum) one can selectively excite different sections of the 

band structure. We now consider a PT-symmetric mesh lattice with a periodic phase 

potential of amplitude 𝜙𝜙0 = 0.2𝜋𝜋 and a gain/loss factor of 𝛾𝛾 = 0.4. The band sturucture 

corresponding to this structure is plotted in Fig. 5.11.  
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Figure 5.14. Gaussian beam propagation in a PT-symmetric lattice operating in the broken 

PT phase regime. The lattice has a periodic phase potential of amplitude 𝜙𝜙0 = 0.2𝜋𝜋 and a 

gain/loss factor of 0.4. The Gaussian beam has a width of 2∆= 30 and is launched with 

three different values of initial phase tilt; (a) 𝑄𝑄0 = 0, (b) 𝑄𝑄0 = 0.25𝜋𝜋, (c) 𝑄𝑄0 = 0.5𝜋𝜋. In (a) 

the intensities are only shown up to a level of 100. 

 

Figure 5.14 depicts the propagation of a Gaussian wavepacket in this lattice, when launched  

with a Bloch momentum 𝑄𝑄0. Three different valus for 𝑄𝑄0 have been selected for this 

example: 𝑄𝑄0 = 0, 0.25𝜋𝜋 and 0.5𝜋𝜋. According to Figure 5.14 while for the first case an 

exponential energy growth is observed, for the other two cases energy remains essentially 

bounded. These results reveal that even above the PT-symmetry breaking threshold, non-
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growing/decaying modes can be excited in such systems. This all depends on which section 

of the band structure is excited by the initial conditions.  

Compared to a passive mesh lattice, the band structure of its PT-symmetric 

counterpart reveals another intersting property. As previously discussed, the maximum 

beam transport angle (Ω𝑚𝑚𝑚𝑚𝑚𝑚) in an empty lattice is 1/√2, and even in the presence of a 

periodic phase potential this angle is always less than this maximum transverse velocity. 

However according to the Figure 5.11, when approaching the exceptional points from the 

real section (blue part) of the band, its slope tends to considerably increase and eventually 

approaches exceedingly around the exceptional points. 
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Figure 5.15. A broad Gaussian beam propagating in a passive and a PT-symmetric lattice; 

(a) evolution of the Gaussian beam in a passive empty lattice, (b) in a PT-symmetric lattice, 

(c) normalized intensity profiles of the beam at the last propagation step (m=300) in both 

lattices. The parameters of the PT lattice are 𝛾𝛾 = 0.039 and 𝜙𝜙0 = 0. The Gaussian beam has 

a beam width of 2∆= 400 and an initial phase front tilt of 𝑄𝑄0 = 0.9817𝜋𝜋. 

 

Figure 5.15 compares the propagation a Gaussian beam in a passive and a PT-symmetric 

mesh lattice operating above threshold. Both lattices are excited with the same Gaussian 

beam having a Bloch momentum 𝑄𝑄0, which is chosen such that is close to that 

corresponding to the exceptional point of the PT-symmetric lattice. Close to the exceptional 

point, the slope of the band structure tends to infinity and therefore, the associated group 

velocity can become almost arbitarily high for any narrow-bandwith wave packet. While 
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the maximum beam angle in passive empty lattice is ~0.7 (which is close to the maximum) 

for the PT-symmetric lattice this angle is approximately 1.04 which is certainly above the 

maximum limit of the passive lattice. This effect has in fact a counterpart in continuous 

media. As previously shown, in the presence of a gain medium [7,8] and in PT-symmetric 

gratings and lattices [9] used close to the exceptional points, the group velocity of light can 

be superluminal. It should be noted however that none of these effects violates causality 

since non-causal waveforms are used for excitation. 

 

5.3. References 

 

1. M.-A. Miri, A. Regensburger, U. Peschel, and D. N. Christodoulides, “Optical mesh lattices 
with PT symmetry,” Phys. Rev. A 86, 023807 (2012). 
 

2. Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum random walks,” Phys. Rev. A 48, 
1687 (1993). 
 

3. A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 
1997). 
 

4. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in 
linear and nonlinear waveguide lattices,” Nature (London), 424, 817 (2003). 
 

5. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. 
Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex 
optical potentials,” Phys. Rev. Lett. 103, 093902 (2009). 
 

6. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, 
“Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192 (2010). 
 

7. R. Chiao, “Superluminal (but causal) propagation of wave-packets in transparent media 
with inverted atomic populations,” Phys. Rev. A 48, R34 (1993). 

88 
 



 
8. L. J. Wang, A. Kuzmich and A. Dogariu, “Gain-assisted superluminal light propagation,” 

Nature 406, 277 (2000). 
 

9. A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, M. Segev, “PT-symmetry in honeycomb 
photonic lattices,” Phys. Rev. A 84, 021806(R) (2011). 

 

 

  

89 
 



CHAPTER SIX: PT-SYMMETRY IN NONLINEAR SYSTEMS 

 

In this chapter we find an analytical solution for a nonlinear PT-symmetric grating. It has 

been known for long time that nonlinear gratings can support a special class of soliton 

solutions-the so called Bragg solitons [1-3]. Unlike optical solitons propagating in nonlinear 

dispersive fibers, this family of waves is made possible by nonlinearly interlocking both the 

forward and backward propagating modes. Here we study behavior of this same family in 

the presence of an anti-symmetric gain/loss modulation [4]. 

 

6.1. Nonlinear PT-symmetric gratings 

 

To begin our work by considering a PT-symmetric optical grating having the following 

periodic complex refractive index distribution: with let us consider a fiber with the 

following refractive index of the core: 

𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛1𝑅𝑅 cos �2𝜋𝜋
𝛬𝛬
𝑧𝑧� + 𝑖𝑖𝑛𝑛1𝐼𝐼 sin �2𝜋𝜋

𝛬𝛬
𝑧𝑧� + 𝑛𝑛2|𝐸𝐸|2                (6.1) 

In this profile the first term stands for the refractive index background of the material 

involved while the three other terms are considered to be small perturbations on 𝑛𝑛0; the 

second term describes periodic Bragg grating, the third term represents the superimposed 
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complex PT potential (gain or loss) and the last term accounts for the Kerr nonlinearity. We 

now express the solution as a sum of forward and backward propagating waves: 

𝐸𝐸 = 𝐸𝐸𝑓𝑓(𝑧𝑧, 𝑡𝑡) exp[𝑖𝑖(𝛽𝛽0𝑧𝑧 − 𝜔𝜔0𝑡𝑡)] + 𝐸𝐸𝑏𝑏(𝑧𝑧, 𝑡𝑡) exp[−𝑖𝑖(𝛽𝛽0𝑧𝑧 + 𝜔𝜔0𝑡𝑡)]             (6.2) 

where 𝜔𝜔0 = 2𝜋𝜋𝜋𝜋/𝜆𝜆0 is the carrier angular frequency, 𝜆𝜆0 is the free space wavelength and 

𝛽𝛽0 = 𝑛𝑛0𝜔𝜔0/𝑐𝑐 is the unperturbed propagation constant. Finally 𝐸𝐸𝑓𝑓(𝑧𝑧, 𝑡𝑡) and 𝐸𝐸𝑏𝑏(𝑧𝑧, 𝑡𝑡) 

represent slowly varying amplitudes for the forward and backward waves respectively. In 

this case, it can be directly shown that the two slowly varying envelope functions satisfy 

the following coupled wave equations: 

+𝑖𝑖 �𝜕𝜕𝐸𝐸𝑓𝑓
𝜕𝜕𝜕𝜕

+ 1
𝑣𝑣
𝜕𝜕𝐸𝐸𝑓𝑓
𝜕𝜕𝜕𝜕
� + (𝜅𝜅 + 𝑔𝑔)𝑒𝑒−𝑖𝑖2𝛿𝛿𝛿𝛿𝐸𝐸𝑏𝑏 + 𝛾𝛾 ��𝐸𝐸𝑓𝑓�

2
+ 2|𝐸𝐸𝑏𝑏|2�𝐸𝐸𝑓𝑓 = 0,             (6.3.a) 

−𝑖𝑖 �𝜕𝜕𝐸𝐸𝑏𝑏
𝜕𝜕𝜕𝜕

− 1
𝑣𝑣
𝜕𝜕𝐸𝐸𝑏𝑏
𝜕𝜕𝜕𝜕
� + (𝜅𝜅 − 𝑔𝑔)𝑒𝑒+𝑖𝑖2𝛿𝛿𝛿𝛿𝐸𝐸𝑓𝑓 + 𝛾𝛾 �|𝐸𝐸𝑏𝑏|2 + 2�𝐸𝐸𝑓𝑓�

2
�𝐸𝐸𝑏𝑏 = 0.                      (6.3.b) 

In the above equations 𝑣𝑣 = 𝑐𝑐/𝑛𝑛0 is the wave velocity in the background material, 

𝜅𝜅 = 𝜋𝜋𝑛𝑛1𝑅𝑅/𝜆𝜆0 is the coupling coefficient arising from the real Bragg grating itself, and 

𝑔𝑔 = 𝜋𝜋𝑛𝑛1𝐼𝐼/𝜆𝜆0 is the anti-symmetric coupling coefficient arising from complex PT potential 

term. In addition, 𝛿𝛿 = (𝑛𝑛0/𝑐𝑐)(𝜔𝜔0 − 𝜔𝜔𝐵𝐵) is a measure of detuning from the Bragg angular 

frequency 𝜔𝜔𝐵𝐵 = 𝜋𝜋𝜋𝜋/(𝑛𝑛0Λ) and 𝛾𝛾 = 𝑛𝑛2𝜔𝜔0/𝑐𝑐  is the self-phase modulation constant.  

In the linear regime, the properties of Equations (6.3) can be readily understood by 

using the following gauge transformation, 𝐸𝐸𝑓𝑓 = 𝐹𝐹𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑏𝑏 = 𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , in which case 

one obtains: 

+𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + (𝜅𝜅 + 𝑔𝑔)𝐵𝐵 = 0,         (6.4.a) 
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−𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + (𝜅𝜅 − 𝑔𝑔)𝐹𝐹 = 0.         (6.4.b) 

By assuming time harmonic solutions of the form, (𝐹𝐹,𝐵𝐵) = (𝐹𝐹0,𝐵𝐵0) exp�𝑖𝑖(𝐾𝐾𝐾𝐾 − 𝛺𝛺𝛺𝛺)� we 

arrive at the dispersion relation: 

𝐾𝐾2 = Ω2

𝑣𝑣2
− (𝜅𝜅2 − 𝑔𝑔2).               (6.5) 

The effect of the PT-symmetric term arising from 𝑔𝑔 on the overall dispersion 

characteristics of this Bragg grating is obvious. In essence, its presence can effectively shift 

the photonic band gap as illustrated in Figure 6.1, for different ratios of 𝑔𝑔/𝜅𝜅. 

 

Figure 6.1. Band structure of a PT-symmetric periodic grating (linear case) for different 

ratios of 𝑔𝑔/𝜅𝜅; (a) 0, (b) 0.8, (c) 1, and (d) 1.2. 

 

In Figure 6.1, the dispersion properties of this periodic PT grating are depicted for three 

different regimes, depending on the ratio of 𝑔𝑔/𝜅𝜅; (a) for 𝑔𝑔 ≤ 𝜅𝜅 (below PT-symmetry 
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breaking threshold) the band structure has essentially the shape of an ordinary Bragg 

grating-with the photonic band gap reduced, (b) for 𝑔𝑔 = 𝜅𝜅 (at the PT threshold or 

exceptional point) the band gap is closed and the dispersion curve is identical to that 

expected from the homogeneous background material, and (c) for 𝑔𝑔 ≥ 𝜅𝜅 (above threshold) 

where no band gap exists and the dispersion relation is totally different in shape. As Figure 

6.1(d) illustrates, above the PT-symmetry breaking threshold, around the origin, there is 

always a range of wavevectors associated with complex frequencies. As we will see, this 

latter observation explains why in this case field configurations can grow/decay 

exponentially with propagation distance. In addition, in this same regime the group 

velocity is always larger than velocity of light within the background material. In this work, 

we mainly restrict our attention in the first range, i.e., we will assume that the PT grating 

will be operated below the PT threshold where the entire frequency spectrum is real. 

 

6.2. PT Bragg solitons: Mathematical model 

 

In this section we investigate the existence of solitary wave solutions for the coupled wave 

equations (6.3). To do so, we exploit the existing similarity between Equations (6.3) and of 

that of the massive Thirring model [5]. By introducing the two parameters 𝜌𝜌 =

�(𝜅𝜅 − 𝑔𝑔) (𝜅𝜅 + 𝑔𝑔)⁄  and 𝜅𝜅𝜌𝜌 = �𝜅𝜅2 − 𝑔𝑔2 and by employing the gauge transformations 

𝐸𝐸𝑓𝑓 = 𝐹𝐹𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑏𝑏 = 𝜌𝜌𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , these coupled wave equations can be written in the 

following form: 
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+𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜅𝜅𝜌𝜌𝐵𝐵 + 𝛾𝛾(|𝐹𝐹|2 + 2𝜌𝜌2|𝐵𝐵|2)𝐹𝐹 = 0       (6.6.a) 

−𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜅𝜅𝜌𝜌𝐹𝐹 + 𝛾𝛾(𝜌𝜌2|𝐵𝐵|2 + 2|𝐹𝐹|2)𝐵𝐵 = 0       (6.6.b) 

We note that the above mentioned gauge transformation is only valid when 𝜅𝜅 > 𝑔𝑔, e.g. 

below the PT threshold point. As a next step we consider a solution of the form: 

(𝐹𝐹,𝐵𝐵) = 𝛼𝛼�𝜓𝜓𝑓𝑓 ,𝜓𝜓𝑏𝑏�𝑒𝑒𝑖𝑖𝑖𝑖(𝑧𝑧,𝑡𝑡)          (6.7) 

where the constant 𝛼𝛼 and the function 𝜂𝜂(𝑧𝑧, 𝑡𝑡) remain to be determined. On the other hand, 

�𝜓𝜓𝑓𝑓 ,𝜓𝜓𝑏𝑏� represent solutions to the Thirring model [5]: 

𝜓𝜓𝑓𝑓 = +�
𝜅𝜅𝜌𝜌
2𝛾𝛾

1
𝛥𝛥

sin(𝜎𝜎) 𝑒𝑒𝑖𝑖Φ sech �𝜃𝜃 − 𝑖𝑖 σ
2
�            (6.8.a) 

𝜓𝜓𝑏𝑏 = −�
𝜅𝜅𝜌𝜌
2𝛾𝛾
𝛥𝛥 𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎) 𝑒𝑒𝑖𝑖Φ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ �𝜃𝜃 + 𝑖𝑖 𝜎𝜎

2
�            (6.8.b) 

where 𝜎𝜎 and 𝜃𝜃 are functions of 𝑧𝑧 and 𝑡𝑡 defined as follows: 

𝜃𝜃 = 𝜅𝜅𝜌𝜌 sin(𝜎𝜎) 𝑧𝑧−𝑣𝑣𝑣𝑣𝑣𝑣
√1−𝑚𝑚2          (6.9) 

Φ = 𝜅𝜅𝜌𝜌 cos(𝜎𝜎) 𝑚𝑚𝑚𝑚−𝑣𝑣𝑣𝑣
√1−𝑚𝑚2          (6.10) 

In the above, the dimensionless quantity 𝑚𝑚 is defined as 𝑚𝑚 = (1 − Δ4) (1 + Δ4)⁄  and finally 

Δ and 𝜎𝜎 (0 < 𝜎𝜎 < 𝜋𝜋) are free parameters. After inserting these solutions into equations 

(3.9) we then obtain: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= + �1
2
𝛼𝛼2

Δ4
+ 𝜌𝜌2𝛼𝛼2 − 1� sin(𝜎𝜎) | sech �𝜃𝜃 − 𝑖𝑖 𝜎𝜎

2
� |2            (6.11.a) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�1
2
𝛼𝛼2𝜌𝜌2Δ4 + 𝛼𝛼2 − 1� sin(𝜎𝜎) | sech �𝜃𝜃 − 𝑖𝑖 𝜎𝜎

2
� |2       (6.11.b) 

A valid solution of Equation (6.11) requires that both sides are equal. This condition in turn 

determines the unknown coefficient 𝛼𝛼: 

𝛼𝛼 = �1+𝜌𝜌
2

2
+ 1+𝜌𝜌2Δ8

4Δ4
�
−12               (6.12) 

Finally 𝜂𝜂 can then be obtained by integrating either one of Equations (6.11): 

𝜂𝜂(𝜃𝜃) = 2 � 𝛼𝛼
2

2Δ4
+ 𝜌𝜌2𝛼𝛼2 − 1� tan−1 �tanh(𝜃𝜃) tan �𝜎𝜎

2
��          (6.13) 

Here it is worth discussing the velocity and instantaneous frequency associated with this 

soliton solution. According to Equations (6.8) and (6.9) the soliton velocity can be readily 

obtained from: 

𝑣𝑣𝑠𝑠 = (1−Δ4)
(1+Δ4)

𝑣𝑣          (6.14) 

Hence the soliton velocity can reach any value between zero (Δ = 1) and the group velocity 

in the background medium (Δ = 0). Using an amplitude and phase representation of Eqs. 

(6.7) and (6.8), the corresponding phase of this soliton solutions could be written as,  

Ξ = 𝜂𝜂 + Φ ± tan−1 �tanh(𝜃𝜃) tan �𝜎𝜎
2
��                (6.15) 

where the plus and minus signs correspond to the forward 𝐹𝐹 and backward component 𝐵𝐵 

respectively. Note that these phases are obtained after the aforementioned gauge 

transformation. Hence to obtain the actual phases for the forward and backward waves 
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(𝐸𝐸𝑓𝑓 ,𝐸𝐸𝑏𝑏) the term  𝜈𝜈𝜈𝜈𝜈𝜈 ∓ 𝛿𝛿𝛿𝛿 must be added to these phases respectively. The instantaneous 

angular frequency can then be obtained from a first order term Taylor series expansion of 

the respective phase of Equation (6.15): 

Ω𝑠𝑠 = 𝜅𝜅𝜌𝜌𝑣𝑣
√1−𝑚𝑚2 �cos(𝜎𝜎) + 𝑚𝑚� 𝛼𝛼

2

2Δ4
+ 𝜌𝜌2𝛼𝛼2 − 1 ± 0.5� sin2 (𝜎𝜎)�       (6.16) 

Given that a gauge transformation was used, the quantity 𝑣𝑣𝑣𝑣 must be subtracted from the 

result of Equation (6.16), which is measured with respect to the Bragg frequency. Thus the 

total instantaneous angular frequency of this soliton solution is given by 𝜔𝜔𝑠𝑠 = Ω𝑠𝑠 − 𝑣𝑣𝑣𝑣 +

𝜔𝜔𝐵𝐵. According to the linear dispersion analysis used in the previous section, the frequency 

band gap for the PT-symmetric grating can be obtained from −𝜅𝜅𝜌𝜌𝑣𝑣 < Ω < 𝜅𝜅𝜌𝜌𝑣𝑣. Therefore, 

based on Equation (6.16) the soliton frequency Ω𝑠𝑠 may or may not lie in the band gap.  

Up to this point, the solutions were obtained for 𝜅𝜅 > 𝑔𝑔, i.e., before the PT symmetry 

is broken. On the other hand, at exactly the PT-symmetry breaking point (𝜅𝜅 = 𝑔𝑔), the 

effective coupling coefficient 𝜅𝜅𝜌𝜌 goes to zero. In this case, the evolution equations are not 

completely decoupled and can be more effectively treated in the original set of variables. By 

introducing the gauge transformations 𝐸𝐸𝑓𝑓 = 𝐹𝐹𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑏𝑏 = 𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , the coupled 

wave equations (6.3) reduce to: 

+𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 2𝜅𝜅𝜅𝜅 + 𝛾𝛾(|𝐹𝐹|2 + 2|𝐵𝐵|2)𝐹𝐹 = 0,        (6.17.a) 

−𝑖𝑖 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝛾𝛾(|𝐵𝐵|2 + 2|𝐹𝐹|2)𝐵𝐵 = 0.                     (6.17.b) 
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The linear coupling term between the forward and backward waves now breaks the 

symmetry in the evolution equations. Note that there is no energy transfer from the 

forward wave to the backward but the backward wave facilitates energy transfer to the 

forward. This can be better understood by considering the general solution of Equation 

6.17(b), given by:  

𝐵𝐵 = 𝑏𝑏(𝑦𝑦) 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑖𝑖𝑖𝑖�𝑏𝑏2(𝑦𝑦)𝑥𝑥 + 2∫ |𝐹𝐹|2𝑑𝑑𝑑𝑑𝑥𝑥
0 ��        (6.18) 

where 𝑥𝑥 = 𝑧𝑧 − 𝑣𝑣𝑣𝑣, 𝑦𝑦 = 𝑧𝑧 + 𝑣𝑣𝑣𝑣 are forward and backward propagation coordinates and 𝑏𝑏 is 

an arbitrary function.  On the other hand Equations (6.17) admit a trivial solution when 

𝐵𝐵 = 0. In this latter case, Equation 6.17 (a) reduces to that describing a forward 

propagating wave in the presence of nonlinear self-phase modulation, which admits the 

following solution: 

𝐹𝐹 = 𝑓𝑓(𝑥𝑥) exp(𝑖𝑖𝑖𝑖𝑓𝑓2(𝑥𝑥)𝑦𝑦)          (6.19) 

where 𝑓𝑓 is an arbitrary function. In the other words, in this regime the intensity profile of 

the forward propagating wave remains invariant during propagation while no energy is 

transferred to the backward mode. 
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6.3. PT Bragg solitons: Simulations 

 

In what follows we exemplify our results through numerical simulations of Equations (6.6). 

The numerical methods used for solving the coupled wave equations presented are based 

on finite difference methods using different discretizing approaches in order to account for 

numerical stability. Here for discretization we use Euler’s method that is based on a first 

order approximation for both temporal and spatial derivatives. In this case stability would 

not be an issue as long as the temporal step size is way smaller than the spatial step size. 

First we investigate the behavior of the solitary wave solution given by Equations 

(6.7-6.13). Figure 6.2 depicts the corresponding propagation dynamics of this solution for 

both the forward and backward waves. According to this figure, these two components 

propagate at a common velocity and they have the same profile.  

 

Figure 6.2. Propagation dynamics of a solitary wave solution in a PT-symmetric Bragg 

structure; intensity evolution for both the forward (left) and backward waves (right) 

during propagation. 
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In this numerical example 𝑔𝑔 𝜅𝜅⁄ = 0.8 , and the space-time coordinates are normalized as 

follows: 𝑍𝑍 = 𝜅𝜅𝜅𝜅 and 𝑇𝑇 = 𝜅𝜅𝜅𝜅𝜅𝜅. In addition the forward and backward electric fields are also 

here normalized with respect the quantity 𝐸𝐸0 = �𝜅𝜅 𝛾𝛾⁄ . The parameter 𝜎𝜎 that determines 

the beam width of these solitons is taken to be 𝜋𝜋 2⁄  , and parameter Δ that determines the 

common velocity of the two constituent waves is taken to be 0.8. In this figure the total 

energy of each component that is proportional to ∫ |𝐻𝐻(𝑧𝑧, 𝑡𝑡)|2𝑑𝑑𝑑𝑑∞
−∞  (where 𝐻𝐻 is either a 

forward or a backward wave) is plotted as a function of time. In the case of PT-symmetric 

soliton solutions this quantity is constant with propagation. 

Figures 6.3 and 6.4 on the other hand show the evolution of a Gaussian pulse when 

it excites only the forward wave within such a PT-symmetric Bragg grating, for three 

different cases: below the PT-symmetry breaking point and at threshold. In these 

simulations 𝑔𝑔 𝜅𝜅⁄  is set to be 0.8 and 1 respectively. 
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Figure 6.3. Propagation dynamics of a Gaussian wavepacket when injected only in the 

forward direction when the PT grating is operated below the PT-symmetry breaking 

threshold. Parts (a) and (b) depict the forward and backward components respectively, and 

(c) the associated energy as a function of normalized time. 

 

According to Figure 6.3, below PT threshold there is an oscillatory power exchange 

between the forward and backward waves. In this same regime, by increasing the 

amplitude of the imaginary potential (amplitude of gain or loss), then the rate of this 

energy exchange decreases.   
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Figure 6.4. The same as Figure (6.3) when the PT grating is operated at the PT-symmetry 

breaking threshold. Parts (a) and (b) depict the forward and backward components 

respectively and (c) the associated energy as a function of normalized time. 

 

Figure 6.4 shows that the forward Gaussian wave remains unchanged during propagation 

while the backward wave is not excited at all. This is in agreement with our previous 

discussion, as expected from equation (6.19). This is because there is no energy coupling 

between the forward and backward wave. 
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CHAPTER SEVEN: SUPERSYMMETRY IN OPTICS 

 

Supersymmetry (SUSY) emerged within quantum field theory as a means to relate fermions 

and bosons [1–6]. In this mathematical framework, these seemingly very different entities 

constitute superpartners and can be treated on equal footing. Transitions between their 

respective states require transformations between commuting and anticommuting 

coordinates—better known as supersymmetries. The development of SUSY was also meant 

to resolve questions left unanswered by the standard model [7], such as the origin of mass 

scales or the nature of vacuum energy, and to ultimately link quantum field theory with 

cosmology towards a grand unified theory. Moreover, SUSY has found numerous 

applications in random matrix theory and disordered systems [8]. Even though the 

experimental validation of SUSY is still an ongoing issue, some of its fundamental concepts 

have been successfully adapted to nonrelativistic quantum mechanics. Interestingly, in this 

context, SUSY has led to new methods in relating Hamiltonians with similar spectra. In this 

regard, it has been used to identify new families of analytically solvable potentials and to 

enable powerful approximation schemes [9–12]. SUSY schemes have been also 

theoretically explored in quantum cascade lasers [13,14] and ion-trap arrangements [15].  

In this chapter we show how the mathematical formalism of the supersymmetric 

quantum mechanics can be used to establish a peculiar relation between two optical 

structures [16]. In this manner we show that for any given one-dimensional structure a 

superpartner can be constructed. Such superpartner can share interesting properties with 
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the original structure even though it is different in shape. This formalism can be applied to 

optical guided wave settings as well as scatterers. Each case is discussed in greater details 

in the next two chapters.  

 

7.1. SUSY operators 

 

Assume the general eigenvalue equation ℒX = ΩX for two different operators ℒ (1) and ℒ (2): 

ℒ (1)𝑋𝑋(1) = Ω(1)𝑋𝑋(1),         (7.1.a) 

ℒ (2)𝑋𝑋(2) = Ω(2)𝑋𝑋(2).         (7.1.b) 

An interesting question arises as to whether two different operators ℒ (1) ≠ ℒ (2) can have 

the exact same eigenvalue spectra Ω(1) = Ω(2). This classical problem has been addressed 

in different areas of physics and mathematics. In linear algebra, for example, the answer 

can be found through the concept of similar matrices. In the framework of linear 

differential operators, on the other hand, similar questions are addressed in inverse 

scattering theories. However, supersymmetry is known to offer a simple and 

straightforward answer to this problem, although its equivalence to the previous methods 

has been proved in many occasions. 

Assume that the first operator can be factorized in terms of two operators 𝐴𝐴 and 𝐵𝐵 

as 
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ℒ (1) = ℬ𝒜𝒜.           (7.2) 

Then it is straightforward to show that the second operator (superpartner) defined as 

ℒ (2) = 𝒜𝒜ℬ,           (7.3) 

can share its entire spectra with the original operator. To show this, consider again 

Equation (7.1.a) based on relation (7.2) ℬ𝒜𝒜𝑋𝑋(1) = Ω(1)𝑋𝑋(1). Now by multiplying both sides 

by ℬ from the left this relation becomes 𝒜𝒜ℬ𝒜𝒜𝑋𝑋(1) = Ω(1)𝒜𝒜𝑋𝑋(1) which based on Equation 

(7.3) reduces to ℒ (2)𝒜𝒜𝑋𝑋(1) = Ω(1)𝒜𝒜𝑋𝑋(1). Comparing this with Equation (7.1.b) simply 

results in the following relation between the eigenvalues: 

Ω(2) = Ω(1).          (7.4) 

and for eigenstates: 

𝑋𝑋(2) ∝ 𝒜𝒜𝑋𝑋(1).          (7.5) 

Similarly one can also show that: 

𝑋𝑋(1) ∝ ℬ𝑋𝑋(2),          (7.6) 

where, in these two last relations a normalization factor is required to maintain the 

equality. Consider now the case where the operator 𝒜𝒜 annihilates the fundamental 

eigenstate (associated with the largest eigenvalue) of the first operator ℒ (1). In addition to 

Equations (7.2) and (7.3) supersymmetry also demands that 𝒜𝒜 annihilates the ground 

state of ℒ (1). In this case, the corresponding eigenvalue is then removed from the spectrum 

of ℒ (2) while according to Equation (7.4) all the other eigenvalues are the same for both 
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operators. If on the other hand, 𝒜𝒜 does not annihilate the ground state of ℒ (1), then the two 

operators share the exact same spectrum, and supersymmetry is said to be broken. These 

two scenarios are schematically shown in Figure 7.1. 

 

Figure 7.1. The eigenvalue spectrum of two superpartner operators in (a) unbroken and (b) 

broken supersymmetry regimes. 

 

After this general introduction about supersymmetric linear operators, we now turn our 

attention to the case of differential operators in one-dimensional optical structures.  

 

7.2. SUSY formalism in paraxial regime 

 

Here we show how the formalism of supersymmetry can be applied to one-dimensional 

optical structures governed by the paraxial wave equations. This formalism is then 

generalized beyond the paraxial approximations for both TE and TM polarizations in the 
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next two sections. Let us consider an index landscape 𝑛𝑛(𝑥𝑥) = 𝑛𝑛0 + Δ𝑛𝑛(𝑥𝑥) in the transverse 

coordinate 𝑥𝑥, where the index modulation Δ𝑛𝑛(𝑥𝑥) is assumed to be weak compared to the 

background index 𝑛𝑛0, Δn(𝑥𝑥) ≪ 𝑛𝑛0. Under these conditions one finds that the slowly varying 

envelope 𝑈𝑈 of the electric field component 𝐸𝐸(𝑥𝑥, 𝑧𝑧) = 𝑈𝑈(𝑥𝑥, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑘𝑘0𝑛𝑛0𝑧𝑧 satisfies the following 

evolution equation: 

𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑋𝑋2

+ 𝑉𝑉(𝑋𝑋)𝑈𝑈 = 0.          (7.7) 

Here the normalized transverse and longitudinal coordinates are respectively given by 

𝑋𝑋 = 𝑥𝑥 𝑥𝑥0⁄  and 𝑍𝑍 = 𝑧𝑧 (2𝑘𝑘0𝑛𝑛0𝑥𝑥02)⁄ , where 𝑥𝑥0 is an arbitrary length scale, and 𝑘𝑘0 = 2𝜋𝜋 𝜆𝜆0⁄  is 

the wave number corresponding to the free space wavelength 𝜆𝜆0. The optical potential 

𝑉𝑉(𝑋𝑋) is directly proportional to the refractive index variation, 

𝑉𝑉 = 2𝑘𝑘02𝑛𝑛0𝑥𝑥02Δ𝑛𝑛.               (7.8) 

Looking for stationary (modal) solutions of the form 𝑈𝑈(𝑋𝑋,𝑍𝑍) = 𝜓𝜓(𝑋𝑋) ⋅ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, we then obtain 

the following Schrödinger eigenvalue problem: 

ℋ𝜓𝜓 = 𝜇𝜇𝜇𝜇,           (7.9) 

where the operator ℋ = 𝑑𝑑2

𝑑𝑑𝑋𝑋2
+ 𝑉𝑉(𝑋𝑋) represents the Hamiltonian of the optical 

configuration and 𝜇𝜇 the respective eigenvalue. The resulting Hamiltonian can be factorized 

as 

ℋ = 𝑑𝑑2

𝑑𝑑𝑋𝑋2
+ 𝑉𝑉(𝑋𝑋) = ℬ𝒜𝒜 + 𝛼𝛼,         (7.10) 
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and, on the other hand, a superpartner Hamiltonian can be defined as: 

ℋ𝑝𝑝 = 𝑑𝑑2

𝑑𝑑𝑋𝑋2
+ 𝑉𝑉𝑝𝑝(𝑋𝑋) = 𝒜𝒜ℬ + 𝛼𝛼.         (7.11) 

Here 𝛼𝛼 is a constant to be discussed later and the intervening operators 𝒜𝒜 and ℬ are 

defined as first order differential operators as follows: 

𝒜𝒜 = 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑊𝑊,          (7.12.a) 

ℬ = 𝑑𝑑
𝑑𝑑𝑑𝑑
−𝑊𝑊.          (7.12.b) 

where the unknown function 𝑊𝑊(𝑋𝑋) is the so-called superpotential. Note that ℬ = −𝒜𝒜† 

where “†” represents the Hermitian conjugate. According to Equations (7.11-13), the 

original optical potential and its suerpartner can be written in terms of the superpotential 

𝑊𝑊 as follows: 

𝑉𝑉 = +𝑊𝑊′ −𝑊𝑊2 + 𝛼𝛼,         (7.13.a) 

𝑉𝑉𝑝𝑝 = −𝑊𝑊′ −𝑊𝑊2 + 𝛼𝛼.         (7.13.b) 

We note that two options for choosing 𝛼𝛼 exist: (a) Assuming that the structure supports at 

least one bound state, one may opt to set 𝛼𝛼 equal to the fundamental mode’s eigenvalue, 

i.e., 𝛼𝛼 = 𝜇𝜇0. (b) The other possibility is to choose 𝛼𝛼 > 𝜇𝜇0, irrespective of whether the system 

supports bound states or not. The first case corresponds to an unbroken SUSY where the 

two potentials share the guided wave eigenvalue spectra, except for that of the 

fundamental mode, which does not have a corresponding state in the partner. In the second 
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case, however, SUSY is broken, and the two arrangements share an identical eigenvalue 

spectrum, including that of the fundamental mode.  

It is worth noting that by knowing a given optical potential 𝑉𝑉(𝑋𝑋), and by choosing 

the parameter 𝛼𝛼 one can always solve the nonlinear Riccati equation (7.14.a) for 𝑊𝑊(𝑋𝑋) 

numerically. This is of course doable in unbroken and broken supersymmetry regimes. 

Interestingly however, in the unbroken supersymmetry regime, 𝑊𝑊 can be found 

analytically. In this case, by rewriting the eigenvalue equation (7.10) for the fundamental 

bound state of the original potential ℋ𝜓𝜓0 = 𝜇𝜇0𝜓𝜓0 and after using the factorization relation 

(7.11) one finds that: ℬ𝒜𝒜𝜓𝜓0 = 0. This in turn leads to 𝒜𝒜𝜓𝜓0 = 0 and as a result 𝑊𝑊 can be 

obtained in terms of this fundamental mode as: 

𝑊𝑊(𝑋𝑋) = − 𝑑𝑑
𝑑𝑑𝑑𝑑

ln𝜓𝜓0                (7.14) 

Note that 𝜓𝜓0 is a nonzero function of 𝑋𝑋 and therefore the superpotential 𝑊𝑊 obtained by Eq. 

(7.15) is never singular.  

 

Figure 7.2. (a) Finding a superppartner for a given original potential, (b) finding two 

superpartner potentials from a given superpotential 𝑊𝑊. 
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As a result by starting from an original optical potential, one can always obtain the 

superpotential 𝑊𝑊 and from there the superpartner potential 𝑉𝑉𝑝𝑝 can be obtained easily by 

using Equation (7.14.b). This process is shown in Figure (7.2.a). Note also that in this case, 

one can deliberately find an unbroken or broken superpartner. An alternative approach is 

to start with an arbitrary superpotential 𝑊𝑊(𝑋𝑋) and construct the two superpartner 

potentials 𝑉𝑉(𝑋𝑋) and 𝑉𝑉𝑝𝑝(𝑋𝑋) according to Equations (7.14) (Figure 7.2(b)). In this scenario, a 

question natural arises as to whether these two superpartner potentials are in the 

unbroken or broken supersymmetry regimes. In quantum field theories this is addressed 

through a topological number so-called Witten index [6]. In our case, to answer this 

question, let us first assume that SUSY is unbroken. As a result the ground state of the first 

potential can be obtained through Equation (7.15): 

𝜓𝜓0 ~ exp �−∫ 𝑊𝑊(𝑋𝑋′)𝑑𝑑𝑋𝑋′𝑋𝑋
−∞ �         (7.15) 

Note that 𝜓𝜓0 can represent a bound state only if it is square integrible and for this to 

happen 𝑊𝑊(𝑋𝑋) should take opposite signs at positive and negative infinities. On the other 

hand all realistic optical potentials approach a finite and constant value at infinities 

therefore for 𝑋𝑋 → ±∞ the superpotential approaches constant values 𝑊𝑊 → 𝑊𝑊±. As a result 

unbroken SUSY regime unbroken SUSY requires 𝑊𝑊+  =  −𝑊𝑊−, while a broken SUSY 

demands that 𝑊𝑊+  =  𝑊𝑊−. 
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Finally, note that based on Equations (7.11) and (7.12) the eigenstates of the two 

superpartner Hamiltonians can be related pairwise via: 

𝜓𝜓𝑝𝑝(𝑋𝑋) ∝ 𝒜𝒜𝒜𝒜(𝑋𝑋) = � 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑊𝑊�𝜓𝜓(𝑋𝑋),         (7.16.a) 

𝜓𝜓(𝑋𝑋) ∝ ℬ𝜓𝜓𝑝𝑝(𝑋𝑋) = � 𝑑𝑑
𝑑𝑑𝑑𝑑
−𝑊𝑊�𝜓𝜓𝑝𝑝(𝑋𝑋).        (7.16.b) 

This relation is in general true not only for the bound states of the two partner structures 

but also for the scattering states. 

Figure 7.3 depicts an exemplary optical potential, along with its superpartner in the 

unbroken SUSY regime. The associated superpotential is also depicted in part (c) of this 

figure. In this example, the original potential supports six bound states while its unbroken 

superpartner supports five modes. 
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Figure 7.3. (a) Exemplary refractive index landscape (gray area) and its six bound modes 

(vertical placement indicates their respective eigenvalues). (b) SUSY partner and its five 

modes. The operators 𝒜𝒜, ℬ transform the phase-matched modes into each other. (c) Both 

index landscapes can be constructed from the superpotential 𝑊𝑊(𝑋𝑋) and its first derivative 

𝑊𝑊′(𝑋𝑋). 

 

7.3. Iso-spectral potentials 

 

It is important to note that more than one superpotential can exist for any given 

distribution 𝑉𝑉(𝑋𝑋). In fact, as we show here, one can systematically generate an entire 

parametric family 𝑊𝑊𝑓𝑓(𝑋𝑋;𝐶𝐶) of viable superpotentials (with parameter 𝐶𝐶) which establish a 
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partnership relation between a family of original potentials 𝑉𝑉𝑓𝑓(𝑋𝑋;𝐶𝐶) and a fixed 

superpartner potential 𝑉𝑉𝑝𝑝(𝑋𝑋). To show this, let us first consider: 

𝑉𝑉𝑓𝑓(𝑋𝑋;𝐶𝐶) = +𝑊𝑊𝑓𝑓
′(𝑋𝑋;𝐶𝐶) −𝑊𝑊𝑓𝑓

2(𝑋𝑋;𝐶𝐶) + 𝛼𝛼,         (7.17.a) 

𝑉𝑉𝑝𝑝(𝑋𝑋)      = −𝑊𝑊𝑓𝑓
′(𝑋𝑋;𝐶𝐶) −𝑊𝑊𝑓𝑓

2(𝑋𝑋;𝐶𝐶) + 𝛼𝛼.         (7.17.b) 

and solve for the family of 𝑊𝑊𝑓𝑓 that satisfy the second equation. Starting from a particular 𝑊𝑊, 

this solution can be generalized by adopting the form 𝑊𝑊𝑓𝑓 = 𝑊𝑊 + 1/𝑣𝑣, in which case the 

unknown function 𝑣𝑣 satisfies (𝑑𝑑 𝑑𝑑𝑑𝑑⁄ − 2𝑊𝑊)𝑣𝑣 = 1. Direct integration readily leads to 

𝑣𝑣 = 𝑒𝑒+2∫ 𝑊𝑊𝑊𝑊𝑋𝑋′𝑋𝑋
−∞ �𝐶𝐶 + ∫ 𝑒𝑒−2∫ 𝑊𝑊𝑊𝑊𝑋𝑋′′𝑋𝑋′

−∞ 𝑑𝑑𝑋𝑋′𝑋𝑋
−∞ �, where 𝐶𝐶 is an arbitrary real-valued constant, 

giving rise to a parametric family 𝑊𝑊𝑓𝑓 of superpotentials 𝑊𝑊𝑓𝑓(𝑋𝑋;𝐶𝐶) = 𝑊𝑊 + ∂𝑋𝑋 ln �𝐶𝐶 +

∫ 𝑒𝑒−2∫ 𝑊𝑊𝑊𝑊𝑋𝑋′′𝑋𝑋′
−∞ 𝑑𝑑𝑋𝑋′𝑋𝑋

−∞ �. If the superpotential 𝑊𝑊 has been specifically obtained from the 

bound state 𝜓𝜓0 (from Equation (7.15)), then this parametric family can be obtained via: 

𝑊𝑊𝑓𝑓(𝑋𝑋;𝐶𝐶) = 𝑊𝑊 + d
𝑑𝑑𝑑𝑑

ln �𝐶𝐶 + ∫ 𝜓𝜓02(𝑋𝑋′)𝑑𝑑𝑋𝑋′𝑋𝑋
−∞ �.        (7.18) 

Whereas all members of this family lead to the same superpartner 𝑉𝑉𝑝𝑝, each of them 

describes a different original potential 𝑉𝑉𝑓𝑓(𝑋𝑋;𝐶𝐶) according to Equation (7.18.a). The 

resulting parametric family [12] of structures 𝑉𝑉𝑓𝑓(𝑋𝑋;𝐶𝐶) is associated with the fundamental 

distribution 𝑉𝑉(𝑋𝑋) and its ground state 𝜓𝜓0 as follows: 

𝑉𝑉𝑓𝑓(𝑋𝑋;𝐶𝐶) = 𝑉𝑉(𝑋𝑋) + 2𝜕𝜕𝑋𝑋𝑋𝑋 ln �𝐶𝐶 + ∫ 𝜓𝜓02(𝑋𝑋′)𝑑𝑑𝑋𝑋′𝑋𝑋
−∞ �,       (7.19) 
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where 𝐶𝐶 represents a free parameter. Note that here the transformation between the 

original structure and its superpartner was only used to prove Equation (7.20), which itself 

is completely independent from the superpartner. According to this equation, simply by 

starting from a given potential and its ground state eigenfunction, a whole family of iso-

spectral potentials can be established. According to equations (7.18), the eigenstates of the 

iso-spectral potentials 𝜓𝜓𝑓𝑓 are related to that of the superpartner potential 𝜓𝜓𝑝𝑝 according to 

𝜓𝜓𝑓𝑓 ∝ �𝑑𝑑 𝑑𝑑𝑑𝑑⁄ −𝑊𝑊𝑓𝑓 �𝜓𝜓𝑝𝑝. On the other hand, according to Equations (7.14), 𝜓𝜓𝑝𝑝(𝑋𝑋) =

(𝑑𝑑 𝑑𝑑𝑑𝑑⁄ + 𝑊𝑊)𝜓𝜓, therefore: 

𝜓𝜓𝑓𝑓 ∝ � 𝑑𝑑
𝑑𝑑𝑑𝑑
−𝑊𝑊𝑓𝑓 � � 𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑊𝑊�𝜓𝜓.         (7.20) 

 

7.4. Inverse supersymmetry 

 

In the unbroken symmetry regime, the conventional SUSY transformation may remove a 

mode from a given fundamental structure 𝑉𝑉. In doing so, the total area of the refractive 

index is reduced. This can be shown easily by noting that in the unbroken supersymmetry 

regime the two superpartners are related via 

𝑉𝑉𝑝𝑝 − 𝑉𝑉 = −2𝑊𝑊′.          (7.21) 

After integrating both sides of this equation we get 

∫ 𝑉𝑉𝑝𝑝(𝑋𝑋)𝑑𝑑𝑑𝑑+∞
−∞ − ∫ 𝑉𝑉(𝑋𝑋)𝑑𝑑𝑑𝑑+∞

−∞ = −2(𝑊𝑊+ −𝑊𝑊−) .        (7.22) 
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Since in the unbroken supersymmetry regime 𝑊𝑊− ≠ 𝑊𝑊+, the SUSY transformation cannot 

preserve the total area of the relative permittivity distribution.   

On the other hand, one can utilize an inverse SUSY transformation and add a bound 

state to a given structure 𝑉𝑉, and in doing so elevate the total area of a given permittivity 

distribution. We factorize the fundamental Hamiltonian as ℋ = 𝒜𝒜ℬ + 𝛼𝛼 and define the 

partner Hamiltonian as ℋ𝑒𝑒 = ℬ𝒜𝒜 + 𝛼𝛼. Consequently, the two superpartner permittivity 

distributions can be written as: 

𝑉𝑉(𝑋𝑋) = −𝑊𝑊𝑒𝑒
′ −𝑊𝑊𝑒𝑒

2 + 𝛼𝛼,            (7.23.a) 

𝑉𝑉𝑒𝑒(𝑋𝑋) = +𝑊𝑊𝑒𝑒
′ −𝑊𝑊𝑒𝑒

2 + 𝛼𝛼.            (7.23.b) 

Equation (7.24.a) can be solved numerically to obtain the superpotential 𝑊𝑊𝑒𝑒, and from that 

the partner structure 𝑉𝑉𝑒𝑒 can be constructed through Equation (7.24.b). Note that, by 

imposing appropriate asymptotic conditions for this superpotential, both the unbroken and 

broken supersymmetry regimes can be established. In this case, in the unbroken SUSY 

regime, the partner structure 𝑉𝑉𝑒𝑒 exhibits all the guided mode eigenvalue spectrum of the 

fundamental structure 𝑉𝑉, as well as an additional guided mode, which takes the place of its 

previous ground state. As it turns out, the eigenvalue of this additional state is given by the 

factorization parameter 𝛼𝛼. Note that any value 𝛼𝛼 > 𝛺𝛺0 can be chosen, where 𝛺𝛺0 represents 

the ground state eigenvalue of the fundamental structure. 
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7.5. SUSY in non-paraxial regime: TE polarization 

 

Assume now an arbitrary one-dimensional distribution of the relative permittivity 

𝜖𝜖(𝑥𝑥) = 𝑛𝑛2(𝑥𝑥) along the 𝑥𝑥 axis. Waves propagating in the 𝑥𝑥𝑥𝑥-plane can always be The 

evolution of TE waves is governed by the Helmholtz equation �𝜕𝜕2 𝜕𝜕𝑥𝑥2⁄ + 𝜕𝜕2 𝜕𝜕𝑦𝑦2⁄ +

𝑘𝑘02𝜖𝜖(𝑥𝑥)�𝐸𝐸𝑧𝑧(𝑥𝑥,𝑦𝑦) = 0 where the 𝐸𝐸𝑧𝑧 component is normal to the plane of propagation. By 

assuming eigenmode solutions of the form 𝐸𝐸𝑧𝑧(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and after defining 

normalized dimensionless coordinates 𝑋𝑋 = 𝑘𝑘0𝑥𝑥 and 𝑌𝑌 = 𝑘𝑘0𝑦𝑦, the following Schrödinger-

like equation is obtained: 

� 𝑑𝑑2

𝑑𝑑𝑋𝑋2
+ 𝑉𝑉(𝑋𝑋)�𝜓𝜓(𝑋𝑋) = Ω𝜓𝜓(𝑋𝑋),         (7.24) 

in which 𝑉𝑉(𝑋𝑋) = 𝜖𝜖(𝑋𝑋) and Ω = 𝛽𝛽2 𝑘𝑘02⁄ . Note that this is the same as Equation (7.10) 

therefore supersymmetry can be directly applied. 

 

7.6. SUSY in non-paraxial regime: TM polarization 

 

Under TM polarization conditions the magnetic field component satisfies the equation: 

� 𝜕𝜕2

𝜕𝜕𝑋𝑋2
− 𝜕𝜕

𝜕𝜕𝜕𝜕
(ln 𝜖𝜖) 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜖𝜖�𝐻𝐻𝑍𝑍 = Ω𝐻𝐻𝑍𝑍        (7.25) 
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As is, this is not a Schrödinger-like equation, and hence the factorization technique cannot 

be directly applied. On the other hand, by using the transformation 𝜓𝜓 = √𝜖𝜖𝐻𝐻𝑍𝑍, this 

equation can be converted to the desired form: 

� 𝑑𝑑2

𝑑𝑑𝑋𝑋2
+ 𝑉𝑉eff�𝜓𝜓 = Ω𝜓𝜓          (7.26) 

where 𝑉𝑉eff is an effective potential that can be expressed in terms of the relative 

permittivity 𝜖𝜖 as 𝑉𝑉eff = 𝜖𝜖 − 3
4

(𝜖𝜖′ 𝜖𝜖⁄ )2 + 1
2

(𝜖𝜖′′ 𝜖𝜖⁄ ). This relation can also be rewritten as: 

𝑉𝑉eff = 𝜖𝜖 + �𝜖𝜖
′

2𝜖𝜖
�
′
− �𝜖𝜖

′

2𝜖𝜖
�
2

          (7.27) 

Following the SUSY formalism, the two superpartner effective potentials can now be 

written in terms of the superpotential 𝑊𝑊 via 

𝑉𝑉eff(𝑋𝑋) = +𝑊𝑊′ −𝑊𝑊2 + 𝛼𝛼,          (7.28.a) 

𝑉𝑉eff,𝑝𝑝(𝑋𝑋) = −𝑊𝑊′ −𝑊𝑊2 + 𝛼𝛼.        (7.28.b) 

One can then reconstruct the relative permittivity of the partner structure 𝜖𝜖𝑝𝑝 from its 

corresponding effective potential 𝑉𝑉eff,𝑝𝑝 by numerically solving the nonlinear equation 

𝑉𝑉eff,𝑝𝑝 = 𝜖𝜖𝑝𝑝 + � 𝜖𝜖𝑝𝑝
′

2𝜖𝜖𝑝𝑝
�
′
− � 𝜖𝜖𝑝𝑝

′

2𝜖𝜖𝑝𝑝
�
2

.         (7.29) 
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CHAPTER EIGHT: SUPERSYMMETRY IN OPTICAL WAVEGUIDES 

 

In this chapter we utilize the formalism of supersymmetry in guided wave optical 

structures in order to establish a superpartnership relation between optical waveguides. 

We first explore this possibility in graded index planar waveguides. We show that two such 

superpartners can share the same set of propagation constants. In addition, we present 

analytical expressions for the superpartners of the well-known planar optical waveguides. 

Afterwards we explore supersymmetry in periodic array of optical waveguides and we 

show that two superpartner periodic systems exhibit identical band structures. In addition 

we show that, within the framework of the tight-binding approximation, SUSY formalism 

can be applied to photonic lattices by using simple matrix operations. We then present the 

first experimental demonstration of beam dynamics in supersymmetric lattices. We finally 

show that SUSY formalism can also be applied to circularly symmetric fiber waveguides. 

Based on the interesting global phase matching property of SUSY partner waveguides, we 

propose the possibility of mode filtering and mode multiplexing in SUSY structures. 

 

8.1. Supersymmetry in one-dimensional optical waveguides 

 

In this section we show use the SUSY formalism developed in previous chapter to find a 

superpartner for several examples of optical waveguides [1]. Let us consider again a 
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dielectric waveguide which is described by a one-dimensional distribution of the relative 

permittivity along the 𝑥𝑥 axis; 𝜖𝜖(𝑥𝑥) = 𝑛𝑛2(𝑥𝑥). Assuming time-harmonic waves propagating in 

the 𝑥𝑥𝑥𝑥-plane, the electric field component of the TE-polarized light satisfies the following 

equation 𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦2

+ 𝑘𝑘02𝜖𝜖(𝑥𝑥)𝐸𝐸𝑧𝑧 = 0, where 𝑘𝑘0 = 2𝜋𝜋 𝜆𝜆0⁄  represents the free-space 

wavevector associated with the vacuum wavelength 𝜆𝜆0. The guided wave solutions 

(𝐸𝐸𝑧𝑧 = 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖) of this latter equation are governed by the eigenmode equation 

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝜓𝜓(𝑥𝑥) + 𝑘𝑘02𝜖𝜖(𝑥𝑥)𝜓𝜓(𝑥𝑥) = 𝛽𝛽2𝜓𝜓(𝑥𝑥). Assuming that 𝜓𝜓0(𝑥𝑥) represents the ground sate of the 

original waveguide, the relative permittivity of the superpartner waveguide is obtained 

from 𝜖𝜖𝑝𝑝(𝑥𝑥) = 𝜖𝜖(𝑥𝑥) + 2
𝑘𝑘02

𝑑𝑑2

𝑑𝑑𝑥𝑥2
ln�𝜓𝜓0(𝑥𝑥)�, which can also be simplified to: 

𝜖𝜖𝑝𝑝(𝑥𝑥) = 𝜖𝜖(𝑥𝑥) + 2
𝑘𝑘02
��𝜓𝜓0

′′

𝜓𝜓0
� − �𝜓𝜓0

′

𝜓𝜓0
�
2
�.         (8.1) 

In the following sections we will employ this mathematical framework to identify 

superpartner structures for a number of exemplary optical waveguide profiles. 

 

     8.1.1 Slab waveguide 

 

Consider a symmetric step-index slab waveguide with a core of relative permittivity 𝜖𝜖𝑔𝑔 and 

width 2ℎ embedded in a substrate material with relative permittivity 𝜖𝜖𝑠𝑠. The overall 

relative permittivity of this structure can be written as   
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𝜖𝜖(𝑥𝑥) = �
𝜖𝜖𝑔𝑔     |𝑥𝑥| ≤ ℎ  
𝜖𝜖𝑠𝑠     |𝑥𝑥| > ℎ .

          (8.2) 

For such a waveguide, the fundamental mode is known to follow the analytical expression 

𝜓𝜓0(𝑥𝑥) = �
𝐴𝐴 cos(𝜅𝜅1𝑥𝑥)      |𝑥𝑥| ≤ ℎ  
𝐵𝐵𝑒𝑒−𝛾𝛾1(|𝑥𝑥|−ℎ)     |𝑥𝑥| > ℎ .

                  (8.3) 

where 𝜅𝜅1 = �𝑘𝑘02𝜖𝜖𝑔𝑔 − 𝛽𝛽02, 𝛾𝛾1 = �𝛽𝛽02 − 𝑘𝑘02𝜖𝜖𝑠𝑠, 𝜅𝜅1 tan(𝜅𝜅1ℎ) = 𝛾𝛾1 and 𝐵𝐵 = 𝐴𝐴 cos(𝜅𝜅1ℎ). Under 

these conditions, by using Equation (8.1) it is straightforward to show that the 

superpartner has the following form: 

𝜖𝜖𝑝𝑝(𝑥𝑥) = �𝜖𝜖𝑔𝑔 − 2 𝜅𝜅12

𝑘𝑘02
sec2(𝜅𝜅1𝑥𝑥)    |𝑥𝑥| ≤ ℎ  

𝜖𝜖𝑠𝑠                                      |𝑥𝑥| > ℎ .
         (8.4) 

Based on Equation (8.4), the following points can be deduced: (a) The peak value of the 

relative permittivity of the partner waveguide is reduced to 𝜖𝜖max = 𝜖𝜖𝑔𝑔 − 2 𝜅𝜅12 𝑘𝑘02⁄ . This is to 

be expected, since the partner waveguide should support one mode less. (b) Due to 

discontinuity of the original waveguide (and as a results the second derivative of its 

fundamental mode) at 𝑥𝑥 = ±ℎ, the partner profile is also discontinuous at these edges. (c) 

The discontinuity of the original waveguide, leads to sharp features in the partner 

waveguide especially at the edges of the core where the relative permittivity goes even 

below that of the substrate medium. However, it should be noted that 𝜖𝜖(2) is free of any 

singularities since 𝜅𝜅1ℎ is always less than 𝜋𝜋 2⁄ . 
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Figure 8.1 depicts the relative permittivity of the slab waveguide and its 

superpartner. In each case the mode profiles are also shown, while the vertical position of 

these modes indicates their respective eigenvalue 𝛽𝛽𝑛𝑛2 𝑘𝑘02⁄  (effective index squared). In this 

example, the slab waveguide (parameters 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1, ℎ = 3µm) supports four guided 

modes, and its superpartner supports three guided modes. 

 

 

Figure 8.1. (a) Relative permittivity distribution of a slab waveguide with 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1 

and ℎ = 3µm. (b) Relative permittivity distribution of the superpartner waveguide. In each 

case the mode profiles are also plotted while the vertical position of each mode shows their 

respective eigenvalue Ω𝑛𝑛 = 𝛽𝛽𝑛𝑛2/𝑘𝑘02. 

 

     8.1.2. Super-Gaussian waveguide 

 

In order to avoid the inherent discontinuities of the step-index slab waveguide and its 

superpartner, here we consider a super-Gaussian profile    
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𝜖𝜖 = 𝜖𝜖𝑠𝑠 + �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠� exp �−�𝑥𝑥
ℎ
�
2𝑛𝑛
�,              (8.5) 

of high order 2𝑛𝑛 ≫ 1. Note that for 2𝑛𝑛 → ∞, such a profile approaches the step-index 

waveguide profile of Equation (8.2). To obtain a reasonably sharp transition, here we 

choose 2𝑛𝑛 = 8. Figure 8.2(a) depicts the corresponding super-Gaussian profile with 

parameters similar to that of Figure 8.1(a). In this case the eigenmodes and the 

superpartner waveguide are obtained numerically by using standard finite-difference 

schemes. As can be seen in Figure 8.2(b) the superpartner waveguide now features a 

smooth permittivity profile. 

 

 

Figure 8.2. A super-Gaussian waveguide profile (a) and its superpartner (b).  
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     8.1.3. Parabolic waveguide 

 

Next, we consider the parabolic waveguide. This profile is one of the few continuous index 

distributions, which can be solved analytically [2] (after using some approximations). 

Similar to the quantum mechanical harmonic oscillator, the parabolic waveguide exhibit 

interesting properties including an equidistant eigenvalue spectrum. As a result, as we will 

see, the superpartner of a parabolic waveguide is another parabolic waveguide that is 

downshifted in relative permittivity. In general a parabolic graded index waveguide profile 

can be described via   

𝜖𝜖 = � �𝜖𝜖𝑔𝑔 − �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠�(𝑥𝑥 ℎ⁄ )2�     |𝑥𝑥| ≤ ℎ
    𝜖𝜖𝑠𝑠                                            |𝑥𝑥| > ℎ .

        (8.6) 

For highly multimode structures, this can be approximated with by an infinitely extended 

parabola 

𝜖𝜖 ≈ 𝜖𝜖𝑔𝑔 − �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠�(𝑥𝑥 ℎ⁄ )2          (8.7) 

with the corresponding fundamental mode 

𝜓𝜓0 = exp �− 𝑘𝑘0
2ℎ �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠𝑥𝑥2�         (8.8) 

and its associated propagation constant: 

𝛽𝛽0 = �𝑘𝑘02𝜖𝜖𝑔𝑔 −
𝑘𝑘0
ℎ �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠�

1 2⁄
         (8.9) 

Using, Equation (8.1) the superpartner waveguide profile can be obtained as: 
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𝜖𝜖𝑝𝑝 ≈ 𝜖𝜖𝑔𝑔 −
2
𝑘𝑘0ℎ

�𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠 − �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠� �
𝑥𝑥
ℎ
�
2

         (8.10) 

This last relation again represents a parabola, which is vertically shifted by Δ𝜖𝜖 =

− 2
𝑘𝑘0ℎ

�𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠 with respect to the original one. Figure 8.3(a) depicts a parabolic waveguide 

with 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1 and ℎ = 5µm. The dashed blue line outlines the envelope parabola. 

The superpartner waveguide along with its parabolic envelope calculated from Equation 

(8.10) are plotted in Figure 8.3(b). 

 

 

Figure 8.3. Parabolic waveguide with 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1 and ℎ = 5µm (a) and its superpartner 

(b). In each case the solid black line shows the waveguide itself while the dashed blue line 

depicts the parabolic envelope. Note that the superpartner and all the eigenmodes are 

calculated numerically. However, the analytical results obtained from the parabolic 

approximation are very close to numerical findings. 
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     8.1.4. Exponential waveguide 

 

Here, we consider the exponential waveguide which again exhibits an analytic solution. The 

exponential profile is described with: 

𝜖𝜖 = 𝜖𝜖𝑠𝑠 + �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠�𝑒𝑒−|𝑥𝑥| ℎ⁄ .          (8.11) 

Using a change of variable of 𝜉𝜉 = 𝑒𝑒−|𝑥𝑥| 2ℎ⁄ , one can show that the governing Helmhltz 

equation under this distribution of permittivity can be converted to the Bessel equation 

and therefore the fundamental mode of this waveguide can be written as [2]: 

𝜓𝜓0(𝑥𝑥) = 𝐽𝐽𝑝𝑝0�𝑉𝑉𝑒𝑒
−|𝑥𝑥| 2ℎ⁄ �,          (8.12) 

and the fundamental mode has the following eigenvalue:  

𝛽𝛽0 = �𝑘𝑘02𝜖𝜖𝑠𝑠 + 𝑝𝑝02 4ℎ2⁄ ,          (8.13) 

where 𝑉𝑉 = 2𝑘𝑘0ℎ�𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠, and 𝑝𝑝0 can be obtained from the following relation 

𝐽𝐽𝑝𝑝0
′ (𝑉𝑉) = 0.           (8.14) 

As a result, the partner waveguide can be written as: 

𝜖𝜖𝑝𝑝(𝑥𝑥) = 𝜖𝜖𝑠𝑠 + �𝜖𝜖𝑔𝑔 − 𝜖𝜖𝑠𝑠�𝑒𝑒−|𝑥𝑥| ℎ⁄ +                                                                                                          

                          + 1
2𝑘𝑘02ℎ2

�𝑉𝑉2𝑒𝑒−|𝑥𝑥| ℎ⁄ �
𝐽𝐽𝑝𝑝0
′′ �𝑉𝑉𝑒𝑒−|𝑥𝑥| 2ℎ⁄ �
𝐽𝐽𝑝𝑝0�𝑉𝑉𝑒𝑒

−|𝑥𝑥| 2ℎ⁄ �
−

𝐽𝐽𝑝𝑝0
′ 2�𝑉𝑉𝑒𝑒−|𝑥𝑥| 2ℎ⁄ � 
𝐽𝐽𝑝𝑝0
2 �𝑉𝑉𝑒𝑒−|𝑥𝑥| 2ℎ⁄ �

� + 𝑉𝑉𝑒𝑒−|𝑥𝑥| 2ℎ⁄ 𝐽𝐽𝑝𝑝0
′ �𝑉𝑉𝑒𝑒−|𝑥𝑥| 2ℎ⁄ �
𝐽𝐽𝑝𝑝0�𝑉𝑉𝑒𝑒

−|𝑥𝑥| 2ℎ⁄ �
�         (8.15) 
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Figure 8.4 depicts an exponential waveguide profile with 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1 and ℎ = 3µm and 

its superpartner. As this figure shows, the superpartner faithfully reproduces the 

decreasing eigenvalue spacing for higher order modes in such a structure. 

 

 

Figure 8.4. The exponential waveguide with 𝜖𝜖𝑠𝑠 = 2, 𝜖𝜖𝑔𝑔 = 2.1 and ℎ = 3µm (a), and its 

superpartner (b). 

 

     8.1.5. Hierarchichal ladder of supersymmetric waveguides 

 

The formalism outlined in the previous sections can be iteratively applied in order to 

synthesize a ladder of optical waveguides, each of which acts as superpartner to the 

adjacent channel. This is shown in Figure 8.5, using the super-Gaussian waveguide shown 

in Figure 8.2 as fundamental structure. SUSY transformations are then used to remove the 

guided modes one by one, until reaching a single-mode configuration. In each step, the 
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remaining modes of the resulting waveguide are phase matched to the higher order modes 

of the previous step’s waveguide.  

 

 

Figure 8.5. A hierarchical ladder of SUSY waveguides. 

 

8.2. Supersymmetric optical fibers 

 

As discussed in the previous chapter, supersymmetry is based on the factorization of the second 

order Hamiltonian operator of the Schrödinger equation. In general such factorization is limited to 

one-dimensional operators. In particular cases, however, the formalism of supersymmetry can be 

applied to two-dimensional structures. Perhaps the simplest case will be a separable potential i.e., 

𝑉𝑉(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑦𝑦). In this case the 2D Schrödinger equation can be reduced to two 1D 

schrodinger equation. On the other hand as we will see here, for structures with cylindrical 
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symmetry the formalism of supersymmetry can be exploited to construct superpartner structures 

with cylindrical symmetry. 

In this section we investigate the formalism of supersymmetry in circularly symmetric 

dielectric waveguides. Perhaps the best know example of such a waveguide is the step index fiber. 

As we will show for such structure, under the paraxial approximation the evolution equation can 

reduce to a 1D Schrödinger-like equation. The factorization technique can then be applied and as a 

result SUSY partner fibers can be constructed. 

Consider a circularly symmetric refractive index profile of 𝑛𝑛(𝑟𝑟) = 𝑛𝑛0 + Δ𝑛𝑛(𝑟𝑟) where 

Δ𝑛𝑛 ≪ 𝑛𝑛0 and the profile is assumed to be uniform in the propagation direction 𝑧𝑧. Within the 

framework of paraxial approximation the slowly varying field envelope satisfies the paraxial 

equation 

𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈 + � 𝜕𝜕2

𝜕𝜕𝜂𝜂2
+ 1

𝜂𝜂
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝜂𝜂2

𝜕𝜕2

𝜕𝜕𝜙𝜙2
+ 𝑉𝑉(𝜂𝜂)�𝑈𝑈 = 0,        (8.16) 

where in this relation 𝑈𝑈 is the slowly varying envelope of the electric field, and 𝜂𝜂 is the normalized 

radial coordinate 𝜂𝜂 = 𝑟𝑟/𝑟𝑟0, 𝜙𝜙 represents the azimuthal coordinate and 𝜉𝜉 stands for the normalized 

longitudinal coordinate 𝜉𝜉 = 𝑧𝑧/(2𝑘𝑘0𝑛𝑛0𝑟𝑟02). Finally 𝑉𝑉 = 2𝑛𝑛0𝑘𝑘02𝑟𝑟02𝑛𝑛1 is the optical potential. By 

assuming eigenmode solutions of the form 𝑈𝑈 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅(𝜂𝜂) Equation (8.16) can be simplified as  

� 𝜕𝜕2

𝜕𝜕𝜂𝜂2
+ 1

𝜂𝜂
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉(𝜂𝜂) − 𝑙𝑙2

𝜂𝜂2
�𝑅𝑅 = 𝜇𝜇𝜇𝜇. This equation can be converted to the standard canonical form 

by using the gauge transformation 𝑅𝑅 = 𝜂𝜂−
1
2𝑢𝑢: 

� 𝑑𝑑2

𝑑𝑑𝑟𝑟2
+ Veff(𝑟𝑟)�𝑢𝑢 = 𝜇𝜇𝜇𝜇,         (8.17) 
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where 𝑉𝑉eff is an effective potential defined as 𝑉𝑉eff(𝜂𝜂) = 𝑉𝑉(𝜂𝜂) +
1
4−𝑙𝑙

2

𝜂𝜂2
. Clearly this effective potential 

depends on the azimuthal mode number 𝑙𝑙. Therefore one expect the supersymmetry to be hold 

only for a specific pair of modes corresponding to one azimuthal order 𝑙𝑙. In other words by labeling 

different modes of the guide by 𝑅𝑅𝑙𝑙𝑙𝑙 (where 𝑙𝑙 and 𝑛𝑛 are azimuthal and radial mode numbers 

respectively) for certain 𝑙𝑙1 and 𝑙𝑙2 only the two set of 𝑅𝑅𝑙𝑙1𝑚𝑚 and 𝑅𝑅𝑙𝑙2𝑚𝑚 from two guides can share the 

eigenmode spectra. To find the relation between 𝑙𝑙1 and 𝑙𝑙2 we use SUSY algebra to first establish the 

second potential. By assuming 𝑢𝑢0 as the ground state of Equation (8.17) the second potential can 

be written as 𝑉𝑉𝑝𝑝,eff = 𝑉𝑉eff + 2 𝑑𝑑2

𝑑𝑑𝜂𝜂2
(ln𝑢𝑢𝑙𝑙0). By writing the effective potentials in terms of the 

original potential and by using the fact that 𝑅𝑅𝑙𝑙0 = 𝜂𝜂−
1
2𝑢𝑢𝑙𝑙0 one can show: 

𝑉𝑉𝑝𝑝(𝜂𝜂) = 𝑉𝑉(𝜂𝜂) + 2 𝑑𝑑2

𝑑𝑑𝜂𝜂2
�ln�𝜂𝜂

𝑙𝑙1
2−𝑙𝑙2

2+1
2 𝑅𝑅𝑙𝑙1,0

(1) ��    (8.18) 

Note that here 𝑅𝑅𝑙𝑙1,0 is the radial part of the ground state of Equation (8.16). In general the partner 

potential 𝑉𝑉𝑝𝑝 due to its second term in Equation (8.18) can be singular at the origin 𝜂𝜂 = 0. However 

as we will discuss in what follows 𝑙𝑙1 and 𝑙𝑙2 can be chosen in a correct way so as to avoid this 

singularity. In general one can show that for any arbitrary well behaved potential 𝑉𝑉𝑝𝑝(𝜂𝜂), solution of 

the radial part of Equation (8.16) for an azimuthal number 𝑙𝑙1 and for 𝜂𝜂 ≪ 1 is proportional to 𝜂𝜂|𝑙𝑙1|, 

therefore 𝑅𝑅0(𝜂𝜂)~𝜂𝜂|𝑙𝑙1| for 𝜂𝜂 ≪ 1. Therefore the only possible choice of 𝑙𝑙2 which leads to a non-

singular solution is governed by: 

|𝑙𝑙2| = |𝑙𝑙1| + 1.          (8.19) 
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This latter relation reveals an interesting property of supersymmetric circularly symmetric optical 

waveguides; the supersymmetric ladder holds only between two sets of modes while there is a 

difference of unity between the azimuthal numbers of these two sets. Finally since the behavior of 

the partner potential 𝑉𝑉𝑝𝑝 was studied for 𝜂𝜂 → 0, it is also interesting to see how this potential 

behaves for large very large 𝜂𝜂 in the so called cladding regions of the fiber. This latter can be of 

practical importance in realization of supersymmetric optical fibers. Assuming that the first 

potential is approximately zero for large values of 𝜂𝜂 it can be shown that 𝑅𝑅𝑙𝑙1,0
(1) ~ 1

�𝜂𝜂
𝑒𝑒−√𝜇𝜇𝜂𝜂. Using 

this latter relation in Equation (8.18) we finally get 𝑉𝑉𝑝𝑝(𝜂𝜂) → 1 𝜂𝜂2⁄  for 𝜂𝜂 → ∞. 
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Figure 8.6. (a) Refractive index profile of a cylindrically symmetric fiber. (b) Index profile of 

the SUSY partner obtained for a choice of 𝑙𝑙(1) = 1 / 𝑙𝑙(2) = 2. (c) Bound states of potential 1 

with radial mode number 𝑙𝑙(1) = 1. (d) Corresponding SUSY states of potential 2 with radial 

mode number 𝑙𝑙(2) = 2. (e,f) Complete eigenvalue spectra (effective refractive indices) of 

both potentials. The respective subsets of SUSY states are indicated by dashed frames. 
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Figure 8.6(a,b) depicts two super-partner circularly symmetric optical waveguides. The first guide 

is a multimode optical fiber of 60µm diameter while the index difference between the core and 

cladding is assumed to be Δ = 0.002 and cladding has a refractive index of 𝑛𝑛0 = 1.5. By assuming 

a refractive index profile of 𝑛𝑛(𝑟𝑟) = 𝑛𝑛0 + Δ𝑒𝑒−(𝑟𝑟 𝑟𝑟0⁄ )8  where 𝑟𝑟0 = 30𝜇𝜇𝜇𝜇, numerical solution of 

eigenvalue Equation (8.18) shows that this waveguide without counting the degeneracies supports 

12 modes (modes corresponded to 𝑙𝑙1 = 0 are not degenerate while those with 𝑙𝑙1 ≠ 0 are two-fold 

degenerate. Also note that in general there is a second factor of degeneracy due to polarization. 

Here we only consider one of the two linear polarization i.e. either 𝑥𝑥 or 𝑦𝑦) with 𝑙𝑙1 = 0,1, … ,5. For 

𝑙𝑙1 = 1, which includes three modes with different radial index, we numerically obtain the partner 

potential via Eq. (8.18). The eigenvalue ladders of both waveguides are shown in terms of effective 

indices (𝑁𝑁𝑙𝑙𝑙𝑙
(1,2)) in Figures 8.6(e,f). As expected the supersymmetric ladder holds between modes 

with 𝑙𝑙1 = 1 in the first and 𝑙𝑙2 = 2 in the second guide i.e. 𝑁𝑁1,𝑚𝑚+1
(2) = 𝑁𝑁2,𝑚𝑚

(1)  for 𝑚𝑚 = 1,2 but 𝑁𝑁11
(1) that 

is completely removed from the second guide. The corresponding filed profiles of this set of modes 

are also plotted in Figures 8.6(c,d). Although the supersymmetric ladder exist only between the set 

of 𝑙𝑙1 = 1 and 𝑙𝑙2 = 2, the eigenvalues between any set of 𝑙𝑙1 and 𝑙𝑙2 = 𝑙𝑙1 + 1 are very close even 

though they do not match and supersymmetry does not exist. This qusi-supersymmetric behavior 

is clearly indicated in Figures 8.6(e,f). 
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8.3. SUSY for mode filtering and mode demultiplexing applications 

 

As shown in section 8.1, SUSY provides a way to achieve global phase matching condition 

between a large number of modes in two multimode optical waveguides while the 

fundamental mode is excluded from this phase matching principle. This interesting 

property can be exploited for mode filtering applications [3]. This idea is illustrated in 

Figure 8.7 where the first channel has the form of a step-index like waveguide that 

supports three modes at 𝜆𝜆0 = 1µm. The optical propagation when this system is excited 

with an arbitrary input beam, is depicted in the first propagation section of this figure. In 

this range, the field evolution is almost chaotic because of modal interference. Once 

however the superpartner waveguide is put in proximity, then because of phase matching, 

all the modes of of 𝑛𝑛 (apart from the fundamental) are periodically coupled between these 

two structures. If for example the second waveguide is made intentionally lossy, then all 

the modes of 𝑛𝑛 eventually disappear except the fundamental-as shown in Figures 8.7(b,c). 

In principle, the fundamental mode in this arrangement can also be selectively amplified if 

gain is introduced in the first waveguide while suppressing the rest of the modes. This 

behavior could be potentially very useful in large area laser sources. 
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Figure 8.7. Beam propagation in a multimode waveguide. (a) When isolated (before dashed 

line), and when coupled to its lossy superpartner (after dashed line, losses: 0.4cm−1). Two 

more advanced stages of this same field evolution in the coupled system are shown in (b), 

(c). 
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CHAPTER NINE: SYPERSYMEETRY AND SCATTERING 

 

The problem of reconstructing the shape of a potential distribution solely from information carried 

by its far-field scattering pattern has a long-standing history in various disciplines. These include 

classical optics [1-3], quantum mechanics [4,5] and applied mathematics [6,7]. Naturally, the 

question of uniqueness is of crucial importance: Is an object fully described by the amplitudes and 

phases of its reflection and transmission coefficients for all angles of incidence? Indeed, as long as a 

potential does not support any bound states, the far-field scattering information is unique. This is 

because one can always identify an 𝑁𝑁-parameter family of potentials with an identical discrete set 

of 𝑁𝑁 bound-state eigenvalues, which exhibit the same scattering coefficients [7]. Closely related to 

this subject is the concept of supersymmetry (SUSY). In the context of quantum mechanics, 

supersymmetric methods have been utilized to identify isospectral and phase-equivalent 

potentials [8-12].  

In recent years, advances in the field of transformation optics and optical conformal 

mapping, have brought forth a powerful new approach in solving inverse problems. 

Transformation optics allows one to find the constitutive parameters of a medium, which are 

required to manipulate optical wavefronts in a desired manner. Based on this method, optical 

devices with peculiar properties like invisibility cloaks, optical black holes and broadband graded 

index lenses have been proposed [13-18], to mention a few.  

In general however, such structures call for a substantial range of control over the spatial 

distribution of electric permittivities and magnetic permeabilities of the materials involved. Clearly 
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of interest would be to develop alternative strategies that allow one to systematically control the 

scattering properties of an object, while at the same time reducing the complexity of the structures 

involved. 

In this chapter, we explore the implications of optical supersymmetry in the context of 

scattering and introduce a new type of optical transformations in one-dimensional refractive index 

landscapes. Along these lines, we show that, in addition to superpartners with similar scattering 

behavior, systematic deformations allow one to construct structures that exhibit identical 

reflection and transmission coefficients, down to the phase, for all incident angles, rendering them 

perfectly indistinguishable in the far field. Our analytical results are illustrated in terms of pertinent 

examples. 

 

9.1. Reflection/transmission coefficients of supersymmetric structures 

 

In one-dimensionally inhomogeneous systems, the propagation of TE polarized waves is 

known to obey the Helmholtz equation [𝜕𝜕𝑥𝑥𝑥𝑥 + 𝜕𝜕𝑦𝑦𝑦𝑦 + 𝑘𝑘02𝜖𝜖(𝑥𝑥)]𝐸𝐸𝑧𝑧(𝑥𝑥,𝑦𝑦) = 0 where 𝑘𝑘0 is the 

vacuum wavenumber and 𝜖𝜖(𝑥𝑥) is the relative permittivity. The spatial dependence of the 

electric field 𝐸𝐸𝑧𝑧 can be described via 𝐸𝐸𝑧𝑧(𝑥𝑥, 𝑦𝑦) = 𝜓𝜓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. Here, 𝛽𝛽 = 𝑘𝑘0𝑛𝑛𝑏𝑏 sin𝜃𝜃 represents 

the 𝑦𝑦-component of the wave vector for an incidence angle 𝜃𝜃, and 𝑛𝑛𝑏𝑏 = �𝜖𝜖𝑏𝑏 is the 

background refractive index. By employing the normalized quantities 𝑋𝑋 = 𝑘𝑘0𝑥𝑥, 𝑌𝑌 = 𝑘𝑘0𝑦𝑦 

and 𝛺𝛺 = 𝛽𝛽2/𝑘𝑘02, the Helmholtz equation then reduces to a 1D Schrödinger-like equation 
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𝐻𝐻𝐻𝐻(𝑋𝑋) = 𝛺𝛺𝛺𝛺(𝑋𝑋). In the following we related the reflection and transmission coefficients of 

two superprtner potentials. 

 

     9.1.1. Structures with similar backgrounds 

 

We first assume that the original structure (and therefore its superpartner) has the same 

asymptotic behavior in positive and negative infinity, i.e., 𝑛𝑛(𝑥𝑥 → ±∞) = 𝑛𝑛0. This restriction 

is then removed in the next section where the general case is studied. 

Consider two superpartner structures. Assuming a plane waves propagating towards such 

scatterers, of interest would be to see how the reflection/transmission coefficients of these 

superpartners are related. Let us first consider an incident plane wave with an angle 𝜃𝜃 

described by exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) that hits both structures from the left side. 

The reflected and transmitted waves in the original structure are then described by 

𝑟𝑟 exp(−𝑖𝑖𝑥𝑥𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) and 𝑡𝑡 exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) respectively. 

Accordingly, in the superpartner structure the corresponding reflected and transmitted 

wave components are given by 𝑟𝑟 exp(−𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) and 

𝑡𝑡 exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃). To find a relation between the scattering coefficients of 

the original (𝑟𝑟, 𝑟𝑟) and the superpartner (𝑟𝑟𝑝𝑝, 𝑡𝑡𝑝𝑝) structures, we use the fact that the 

scattering states of these two structures are related via the intervening operators 𝒜𝒜 and ℬ. 

Such states are defined as 
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𝜓𝜓(𝑥𝑥) = 𝑁𝑁 × �𝑒𝑒
𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + 𝑟𝑟𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃,      𝑥𝑥 → −∞
𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃,                                𝑥𝑥 → +∞

              (9.1) 

for the original and as 

𝜓𝜓𝑝𝑝(𝑥𝑥) = 𝑁𝑁𝑝𝑝 × �
𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + 𝑟𝑟𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃,      𝑥𝑥 → −∞
𝑡𝑡𝑝𝑝𝑒𝑒𝑖𝑖𝑥𝑥𝑛𝑛0 cos𝜃𝜃 ,                               𝑥𝑥 → +∞

                (9.2) 

for the superpartner which both corresponds to the eigenvalue Ω = Ω𝑝𝑝 = 𝑛𝑛02 sin2 𝜃𝜃. Note 

that here 𝑁𝑁1,2 represents an arbitrary scale for the scattering state that can be compared 

with the normalization factor in bound states. After applying the intervening relation 

𝜓𝜓𝑝𝑝 ∝ (𝑑𝑑/𝑑𝑑𝑑𝑑 + 𝑊𝑊)𝜓𝜓 between the wave functions of such radiation states from the two 

structures, one can readily show that 

𝑁𝑁𝑝𝑝�𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + 𝑟𝑟𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃� = 𝑁𝑁 �(+𝑖𝑖𝑛𝑛0 cos 𝜃𝜃 + 𝑊𝑊−)𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + (−𝑖𝑖𝑛𝑛0 cos 𝜃𝜃 + 𝑊𝑊−)𝑟𝑟𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃�      (9.3) 

for 𝑥𝑥 → −∞, and 

𝑁𝑁𝑝𝑝𝑡𝑡𝑝𝑝𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 = 𝑁𝑁(+𝑖𝑖𝑛𝑛0 cos 𝜃𝜃 + 𝑊𝑊+)𝑡𝑡𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃            (9.4) 

for 𝑥𝑥 → +∞. In these two equations 𝑊𝑊± denotes the asymptotic limits of the superpotential 

𝑊𝑊 at 𝑥𝑥 → ±∞ respectively. Based on this two last relations, one can simply show that the 

reflection/transmission coefficients of the superpartner structures are related via: 

𝑟𝑟𝑝𝑝 = 𝑊𝑊−−𝑖𝑖𝑘𝑘0𝑛𝑛0 cos𝜃𝜃
𝑊𝑊−+𝑖𝑖𝑘𝑘0𝑛𝑛0 cos𝜃𝜃

𝑟𝑟,         (9.5.a) 

𝑡𝑡𝑝𝑝 = 𝑊𝑊++𝑖𝑖𝑘𝑘0𝑛𝑛0 cos𝜃𝜃
𝑊𝑊−+𝑖𝑖𝑘𝑘0𝑛𝑛0 cos𝜃𝜃

𝑡𝑡.         (9.5.b) 
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Obviously, the intensity of the reflected (𝑅𝑅 = |𝑟𝑟|2 = |𝑟𝑟𝑝𝑝|2) as well as the transmitted 

(𝑇𝑇 = 1 − 𝑅𝑅 = |𝑡𝑡|2 = |𝑡𝑡𝑝𝑝|2) waves in the superpartner structures are identical. However, the 

phases are in general different and the phase difference depend on whether 

supersymmetry is unbroken or broken. In particular the reflection phases of the 

superpartners are different in both regimes. The transmission phases on the other hand 

are equal in the case of the broken supersymmetry since in this regime 𝑊𝑊− = 𝑊𝑊+. 

 

     9.1.2. Structures with dissimilar backgrounds 

 

Consider now the case where the original structure (and therefore its superpartner) has 

different asymptotic behavior at positive and negative infinity, i.e., 𝑛𝑛(𝑥𝑥 → ±∞) = 𝑛𝑛± where 

𝑛𝑛− ≠ 𝑛𝑛+. In this case the incident plane wave is assumed to be of the form of 

exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛− cos 𝜃𝜃− + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛− sin𝜃𝜃−) while the reflected and transmitted wave components 

of the superpartners are (𝑟𝑟, 𝑟𝑟𝑝𝑝) exp(−𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛− cos 𝜃𝜃− + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛− sin𝜃𝜃−) and 

(𝑡𝑡, 𝑡𝑡𝑝𝑝) exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛+ cos𝜃𝜃+ + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛+ sin 𝜃𝜃+) respectively. Here 𝜃𝜃± represent the propagation 

angles of the incoming or scattered waves at 𝑥𝑥 → ±∞ and are related via the Snell’s law: 

𝑛𝑛− sin𝜃𝜃− = 𝑛𝑛+ sin𝜃𝜃+. After following analogous steps to those of the previous section, it 

can be shown that the reflection/transmission coefficients of the two superpartners are 

connected through:  

𝑟𝑟𝑝𝑝 = 𝑊𝑊−−𝑖𝑖𝑘𝑘0𝑛𝑛− cos𝜃𝜃−
𝑊𝑊−+𝑖𝑖𝑘𝑘0𝑛𝑛− cos𝜃𝜃−

𝑟𝑟,         (9.6.a) 
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𝑡𝑡𝑝𝑝 = 𝑊𝑊++𝑖𝑖𝑘𝑘0𝑛𝑛+ cos𝜃𝜃+
𝑊𝑊−+𝑖𝑖𝑘𝑘0𝑛𝑛− cos𝜃𝜃−

𝑡𝑡.         (9.6.b) 

Again, it follows that the intensity of the reflected (𝑅𝑅 = |𝑟𝑟𝑝𝑝|2 = |𝑟𝑟|2) and the transmitted 

(𝑇𝑇 = 1 − 𝑅𝑅 = |𝑡𝑡𝑝𝑝|2 ⋅ (𝑛𝑛+/𝑛𝑛−)(cos𝜃𝜃+ / cos 𝜃𝜃−) = |𝑡𝑡|2 ⋅ (𝑛𝑛+/𝑛𝑛−)(cos𝜃𝜃+ / cos 𝜃𝜃−)) waves in 

the two structures are identical. 

 

     9.1.3. Scattering coefficients of the iso-spectral family of structures 

 

In order to derive a relation between the reflection/transmission coefficients of the family 

iso-spectral structures 𝑛𝑛𝑓𝑓(𝑥𝑥;𝐶𝐶) (which includes the original structure 𝑛𝑛(𝑥𝑥)) we assume 

reflected and transmitted waves as 𝑟𝑟𝑓𝑓 exp(−𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) and 

𝑡𝑡𝑓𝑓 exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 cos 𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin𝜃𝜃) respectively. We can then relate 𝑟𝑟𝑓𝑓 and 𝑡𝑡𝑓𝑓 to 𝑟𝑟 and 𝑡𝑡 via 

the relation 𝜓𝜓𝑓𝑓 ∝ �∂𝑥𝑥 −𝑊𝑊𝑓𝑓�(∂𝑥𝑥 + 𝑊𝑊)𝜓𝜓. Note that 𝑊𝑊𝑓𝑓 itself can be written in terms of 𝑊𝑊 

and the ground state of the original potential. According to this relation, 𝑊𝑊𝑓𝑓 and 𝑊𝑊 have the 

same asymptotic behavior at 𝑥𝑥 → ±∞, i.e., 𝑊𝑊𝑓𝑓,± = 𝑊𝑊±. Therefore, in the far field, the 

intervening relation simplifies to 𝜓𝜓𝑓𝑓 ∝ (∂𝑋𝑋 −𝑊𝑊)(∂𝑋𝑋 + 𝑊𝑊)𝜓𝜓. On the other hand, note that 

(∂𝑋𝑋 −𝑊𝑊)(∂𝑋𝑋 + 𝑊𝑊) = (∂𝑋𝑋𝑋𝑋 + 𝑊𝑊′ −𝑊𝑊2) = 𝐻𝐻 − 𝛼𝛼, and therefore 𝜓𝜓𝑓𝑓 ∝ (𝐻𝐻 − 𝛼𝛼)𝜓𝜓 =

(𝛺𝛺 − 𝛼𝛼)𝜓𝜓. Since the scattering states depend on 𝑦𝑦 according to exp(𝑖𝑖𝑖𝑖𝑘𝑘0𝑛𝑛0 sin 𝜃𝜃), the 

corresponding eigenvalue in the Helmholtz equation is given by 𝛺𝛺 = 𝑛𝑛02 sin2 𝜃𝜃. Hence, 

𝜓𝜓𝑓𝑓 ∝ (𝑛𝑛02 sin2 𝜃𝜃 − 𝛼𝛼)𝜓𝜓, and therefore: 
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𝑁𝑁𝑓𝑓�𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + 𝑟𝑟𝑓𝑓𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃� = 𝑁𝑁(𝑛𝑛02 sin2 𝜃𝜃 − 𝛼𝛼)�𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 + 𝑟𝑟𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃�      (9.7) 

for 𝑥𝑥 → −∞, and 

𝑁𝑁𝑓𝑓𝑡𝑡𝑓𝑓𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃 = 𝑁𝑁(𝑛𝑛02 sin2 𝜃𝜃 − 𝛼𝛼)𝑡𝑡𝑒𝑒+𝑖𝑖𝑖𝑖𝑛𝑛0 cos𝜃𝜃        (9.8) 

for 𝑥𝑥 → +∞, where 𝑁𝑁 and 𝑁𝑁𝑓𝑓 represent the scaling factors for the scattering states of the 

original structure and the iso-spectral family of structures respectively. These two last 

equations directly lead to: 

𝑟𝑟𝑓𝑓 = 𝑟𝑟,          (9.9.a) 

𝑡𝑡𝑓𝑓 = 𝑡𝑡.          (9.9.b) 

 

9.2. SUSY transformation optics 

 

Figure 9.1 schematically shows that by staring from a given structure, how different 

variations of a secondary potential can be established by using appropriate 

transformations [19]. Table 9.1 on the other hand summarizes the relations between the 

reflection/transmission coefficients of superpartner structures in the unbroken and broken 

supersymmetry regime as well as the iso-spectral family of potentials. According to this 

table, by starting from a given structure one can construct a secondary structure with 

similar scattering properties. As a result SUSY transformations can be viewed as a one-
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dimensional transformation optics technique since it offers several degrees of freedom for 

obtaining a 1D structure with desired scattering properties. 

 

 

Figure 9.1. Schematic overview of the different SUSY optical transformations. Starting from 

a given fundamental structure 𝜖𝜖, supersymmetric partners 𝜖𝜖𝑝𝑝 can be constructed. Whereas 

the broken SUSY system 𝜖𝜖𝑝𝑝
(𝑏𝑏𝑏𝑏) preserves all bound modes, unbroken SUSY (𝜖𝜖𝑝𝑝

(𝑢𝑢𝑢𝑢)) removes 

the fundamental mode. Regardless, in both cases the intensity reflection and transmission 

coefficients of the superpartners are identical to those of the fundamental system. In order 

to maintain the full complex scattering characteristics, a family 𝜖𝜖𝑓𝑓 of iso-phase structures 

can be synthesized. Finally, a hierarchical sequence of higher-order superpartners 𝜖𝜖𝑝𝑝,2…𝑁𝑁
(𝑢𝑢𝑢𝑢)  

may be utilized to obtain a scattering-equivalent structure, which requires a substantially 

lower refractive index contrast than that involved in the original system 𝜖𝜖. 
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Table 9.1. Reflection and transmission coefficients for the different SUSY transformations. 

𝑾𝑾− = 𝑾𝑾(𝑿𝑿 → −∞) designates the asymptotic value of the superpotential on the left side of 

the structure, and 𝒓𝒓, 𝒕𝒕 are the coefficients of the original structure. 

 

Coefficient Unbroken SUSY Broken SUSY Iso-phase 

Reflection 𝑟𝑟𝑝𝑝 = 𝑟𝑟 ⋅ exp �−2𝑖𝑖 tan−1 �
𝑛𝑛0 cos𝜃𝜃
𝑊𝑊−

�� 𝑟𝑟𝑝𝑝 = 𝑟𝑟 ⋅ exp �−2𝑖𝑖 tan−1 �
𝑛𝑛0 cos 𝜃𝜃
𝑊𝑊−

� � 𝑟𝑟𝑝𝑝(𝐶𝐶) = 𝑟𝑟  

Transmission 𝑡𝑡𝑝𝑝 = 𝑡𝑡 ⋅ exp �−2𝑖𝑖 tan−1 �
𝑛𝑛0 cos 𝜃𝜃
𝑊𝑊−

� � 𝑡𝑡𝑝𝑝 = 𝑡𝑡  𝑡𝑡𝑝𝑝(𝐶𝐶) = 𝑡𝑡  

 

Figure 9.2 depicts different SUSY transformed variations of an original potential defined as 

𝜖𝜖(𝑋𝑋) = 1 + exp[−(𝑋𝑋/5)8]. In all cases the amplitude of the reflection and transmission 

coefficients are the same for all angles of incidence while in general phases are different.   
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Figure 9.2. Relative permittivity distributions of the original and the transformed 

potentials, (a) The fundamental system has a step-like profile 𝜖𝜖(𝑋𝑋) = 1 + exp[−(𝑋𝑋/5)8]. 

(b) The superpartner in the unbroken SUSY regime, (c) The superpartner in the broken 

SUSY case, and (d) phase-equivalent structures. (e) Scattering geometry. (f-h) 

Superpotentials 𝑊𝑊 corresponding to panels (b-d). (j) Identical reflectivity 𝑅𝑅 (solid line) and 

transmittivity 𝑇𝑇 (dashed line) corresponding to Figs. 1(a-d). (k-m) Relative phases of the 

reflection (𝛥𝛥𝛷𝛷𝑟𝑟 , solid line) and transmission (𝛥𝛥𝛥𝛥𝑡𝑡 , dashed) coefficients of the structures in 

(b-d) compared to the fundamental system (a) as a function of the incident angle 𝜃𝜃. The 

scattering characteristics were evaluated by means of the differential transfer matrix 

method. 
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9.3. Wavelength dependencies of supersymmetric scattering 

 

So far the performance of these systems has been examined at a given operating 

wavelength 𝜆𝜆0. Of importance would be to investigate to what extend their supersymmetric 

properties persist when the wavelength 𝜆𝜆 varies around 𝜆𝜆0. As one would expect, even if 

two dissimilar profiles exhibit the same phases at a given wavelength, their internal light 

dynamics may gradually undergo different changes with 𝜆𝜆. To elucidate this structural 

dispersion, we provide the spectral dependence of the difference in transmittivities 𝛥𝛥𝛥𝛥 (or 

reflectivities 𝛥𝛥𝛥𝛥) between the fundamental structure (Figure 9.2(a)) and its superpartners 

(Figure 9.2(b-d)) as a function of the incidence angle 𝜃𝜃, as shown in Figures 9.3(a-c). As 

these figures indicate, this difference only becomes notable in the unbroken SUSY regime 

(Figure 9.3(a)), while it is almost absent under broken SUSY and iso-phase conditions 

(Figures 9.3(b,c)). The difference in the corresponding reflection phases is similarly 

presented in Figures 9.3(d-f). The dashed lines trace the abrupt phase jumps of 𝜋𝜋, which 

mark the resonances in the two partners and intersect at the design wavelength 𝜆𝜆0. 

Evidently, the iso-phase design displays the greatest resilience with respect to spectral 

deviations. Note that resonances play no role in the transmission phases, as can be seen in 

Figures 9.3(g-j). In this latter case, the iso-phase system again proves to be the least 

susceptible to spectral deviations. These results demonstrate that SUSY transformations 

can be robust over a broad spectral range around the design wavelength. 
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Figure 9.3. Reflection/transmission characteristics of structures obtained by SUSY 

transformations depicted in Figure 9.2 as function of wavelength 𝜆𝜆 and angle of incidence 

𝜃𝜃. (a-c) Intensity difference in transmission. (d-f) Relative phases in reflection and (g-j) 

Relative phases in transmission. The dashed lines follow the resonance-induced 𝜋𝜋 phase 

jumps in fundamental structure and unbroken-SUSY partner. Top row: Unbroken SUSY, 

Middle row: Broken SUSY, bottom row: Iso-phase case (𝐶𝐶 = 0.5). 
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9.4. Index contrast reduction using SUSY 

 

One of the main challenges in designing optical systems is the limited dynamic range of 

refractive indices associated with available materials. This issue becomes particularly acute 

when high contrast arrangements are desirable. For example, the number of grating unit 

cells required to achieve a certain diffraction efficiency grows with the inverse logarithm of 

the index contrast 𝑛𝑛2/𝑛𝑛1 between the individual layers [20]. As it turns out, SUSY optical 

transformations can be utilized to reduce the index contrast needed for a given structure. 

This can be done through a hierarchical ladder of superpartners, i.e. sequentially removing 

the bound states of the original high-contrast arrangement (Figure 9.4(a)). As a general 

trend, each successive step demands less contrast in the corresponding index landscape 

than the previous one (Figure 9.4(b)). The ultimate result is a low-contrast equivalent 

structure that fully inherits the reflectivity and transmittivity of the original configuration 

(Figures 9.4(c,d)). 
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Figure 9.4. (a) Hypothetical high-contrast dielectric layer arrangement that supports 𝑁𝑁 = 9 

guided modes. (b) Hierarchical sequence of partner structures obtained through iterative 

SUSY transformations. (c) Despite the general trend towards lower-contrast configurations, 

each intermediate step inherits the reflectivity and transmittivity of the fundamental 

system (a). (d) The resulting low-contrast structure is free of bound states and faithfully 

mimics the intensity scattering characteristics of the original high-contrast configuration 

for all angles of incidence. 
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9.5. Replacing negative permittivity materials using SUSY 

 

Finally, SUSY transformations can provide a possible avenue in replacing negative-

permittivity inclusions (typically accompanied by losses) by purely dielectric materials. In 

this respect, inverse SUSY transformations, which now add modes with certain propagation 

constants to a given structure, can instead be used to locally elevate the permittivity (see 

supplementary information). Along similar lines, it is possible to find superpotentials that 

relate a structure with metallic or negative permittivity regions to an equivalent 

arrangement with entirely positive 𝜖𝜖, as depicted in Figure 9.5. Here we make use of the 

fact that in a broken-SUSY transformation, the spatial average of 𝜖𝜖 happens to be a 

conserved quantity. Therefore, changes in the broader vicinity of the original metal-

dielectric structure can be used to achieve this goal. 
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Figure 9.5. (a) A metal-dielectric grating arrangement comprising five layers of negative 

electrical permittivity (red sections). (b) An entirely dielectric superpartner grating 

constructed in the broken SUSY regime, using the respective superpotential (c). (d) Despite 

the absence of any metallic regions, the equivalent structure exhibits identical 

reflectivities/transmittivities. 
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CHAPTER TEN: SUPERSYMMETRY AND COMPLEX POTENTIALS 

 

In this section we explore the ramifications of supersymmetry in the context of complex 

optical potentials [1-8]. First we consider PT-symmetric potentials only and we show that 

the SUSY formalism allows for the construction of partner structures where the 

fundamental mode, or any other higher order bound state, can be removed at will [9]. We 

then investigate iso-spectral families of non-Hermitian index landscapes that share the 

exact same spectrum starting from a PT-symmetric configuration. Through this approach, 

one can synthesize optical structures where the guided modes experience zero net gain and 

loss despite of the fact that their shape violates PT-symmetry. In addition, refractive index 

profiles with spontaneously broken PT symmetry are investigated. Here, the contrast 

between gain and loss is sufficiently strong as to prevent their mutual compensation in the 

overlap of a guided mode. In this case it is shown that removing the resulting pair of 

complex conjugate modes by means of SUSY leads to a PT-symmetric potential without 

spontaneous symmetry breaking.  

 

10.1. SUSY formalism in PT-symmetric optical potentials 

 

Let us first consider how the notion of supersymmetry can be applied in complex optical 

potentials. As previously discussed the SUSY formalism can be generally used in arbitrary 
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one-dimensional refractive index landscapes. In fact, this is the case even under high-

contrast conditions where the degeneracy between TE and TM waves is broken and 

necessitates the use of the Helmholtz equation. Here, for brevity, we limit the scope of our 

work to one-dimensional weakly guiding settings. In this regime, the beam dynamics can be 

described within the paraxial approximation. In our system 𝑛𝑛(𝑥𝑥) = 𝑛𝑛0 + Δ𝑛𝑛(𝑥𝑥) describes 

the refractive index distribution in the transverse coordinate 𝑥𝑥, where the index 

modulation Δ𝑛𝑛(𝑥𝑥) is assumed to be weak compared to the background index 𝑛𝑛0, 

Δn(𝑥𝑥) ≪ 𝑛𝑛0. Under these conditions one finds that the slowly varying envelope 𝑈𝑈 of the 

electric field component 𝐸𝐸(𝑥𝑥, 𝑧𝑧) = 𝑈𝑈(𝑥𝑥, 𝑧𝑧)𝑒𝑒𝑖𝑖𝑘𝑘0𝑛𝑛0𝑧𝑧 satisfies the following evolution equation: 

𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑋𝑋2

+ 𝑉𝑉(𝑋𝑋)𝑈𝑈 = 0.             (10.1) 

Here the normalized transverse and longitudinal coordinates are respectively given by 

𝑋𝑋 = 𝑥𝑥 𝑥𝑥0⁄  and 𝑍𝑍 = 𝑧𝑧 (2𝑘𝑘0𝑛𝑛0𝑥𝑥02)⁄ , where 𝑥𝑥0 is an arbitrary length scale, and 𝑘𝑘0 = 2𝜋𝜋 𝜆𝜆0⁄  is 

the wave number corresponding to the free space wavelength 𝜆𝜆0. The optical potential 

𝑉𝑉(𝑥𝑥) is directly proportional to the refractive index variation, 

𝑉𝑉 = 2𝑘𝑘02𝑛𝑛0𝑥𝑥02Δ𝑛𝑛(𝑥𝑥)           (10.2) 

and in general is complex, 𝑉𝑉 = 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝐼𝐼, where the real part 𝑉𝑉𝑅𝑅(𝑋𝑋) is the outcome of index 

modulation, while the imaginary part 𝑉𝑉𝐼𝐼(𝑋𝑋) indicates the presence of gain or loss. Looking 

for stationary (modal) solutions of the form 𝑈𝑈(𝑋𝑋,𝑍𝑍) = 𝜓𝜓(𝑋𝑋) ⋅ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, we then obtain the 

following Schrödinger eigenvalue problem: 

𝐻𝐻𝐻𝐻 = −𝜇𝜇𝜇𝜇,      (10.3) 
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where the operator 𝐻𝐻 = − 𝑑𝑑2

𝑑𝑑𝑋𝑋2
− 𝑉𝑉(𝑋𝑋) represents the Hamiltonian of the optical 

configuration and 𝜇𝜇 the respective eigenvalue.  

We now assume that a given potential 𝑉𝑉(1) supports at least one guided optical 

mode 𝜓𝜓1
(1)(𝑋𝑋) with a corresponding eigenvalue 𝜇𝜇1

(1). Following the approach detailed in 

[10], one can then factorize the Hamiltonian as 𝐻𝐻(1) + 𝜇𝜇1
(1) = 𝐵𝐵𝐵𝐵 with 

𝐴𝐴 = + 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑊𝑊,          (10.4.a) 

𝐵𝐵 = − 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑊𝑊.          (10.4.b) 

Note that, whereas in Hermitian systems described by a real-valued superpotential 𝑊𝑊(𝑋𝑋) 

the two operators 𝐵𝐵 = 𝐴𝐴† form a Hermitian-conjugate pair, this is no longer true in the 

general case of a complex 𝑊𝑊. 

Defining a partner Hamiltonian as 𝐻𝐻(2) + 𝜇𝜇1
(1) = 𝐴𝐴𝐴𝐴, one quickly finds that the optical 

potentials of original and the partner system can both be generated from the 

superpotential and its transverse derivative: 

𝑉𝑉(1,2)(𝑋𝑋) = 𝜇𝜇1
(1) −𝑊𝑊2 ± 𝑊𝑊′         (10.5) 

It readily follows that the two optical potentials 𝑉𝑉(1,2) then share a common set of 

eigenvalues: 

𝜇𝜇𝑚𝑚
(1) = 𝜇𝜇𝑚𝑚−1

(2)    ∀  𝑚𝑚 ≥ 2.                  (10.6) 
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The only exception is the fundamental mode of 𝑉𝑉(1), which lacks a counterpart in 𝑉𝑉(2). Note 

that this SUSY mode partnership is not limited to the discrete sets of bound states, but 

rather extends to the continua of radiation modes of both structures. The operators 𝐴𝐴 and 

𝐵𝐵 also provide a link between the wave functions of the two potentials: 

𝜓𝜓𝑚𝑚
(2) = 𝐴𝐴𝜓𝜓𝑚𝑚+1

(1)      (10.7.a) 

𝜓𝜓𝑚𝑚+1
(1) = 𝐵𝐵𝜓𝜓𝑚𝑚

(2).     (10.7.b) 

In order to derive an expression for the superpotential, we make use of the fact the 𝐴𝐴 

should annihilate the fundamental mode of the first potential; 𝐴𝐴𝜓𝜓1
(1) = 0. Therefore, by 

using Equation 10.4(a), 𝑊𝑊 can be written as a logarithmic derivative of the fundamental 

mode’s wave function: 

𝑊𝑊 = − 𝑑𝑑
𝑑𝑑𝑑𝑑

ln�𝜓𝜓1
(1)�,                (10.8) 

Similarly, the partner potential 𝑉𝑉(2) can be expressed in terms of 𝑉𝑉(1) and 𝜓𝜓1
(1) as follows: 

𝑉𝑉(2) = 𝑉𝑉(1) + 2 𝑑𝑑2

𝑑𝑑𝑋𝑋2
ln�𝜓𝜓1

(1)�         (10.9) 

We now apply this formalism when 𝑉𝑉(1) is PT-symmetric, i.e. 𝑉𝑉(1)(−𝑋𝑋) = �𝑉𝑉(1)(𝑋𝑋)�
∗
. At 

this point we also assume that the symmetry of 𝑉𝑉(1) is not spontaneously broken. Under 

these conditions, the eigenvalue spectrum is real-valued, i.e. 𝐼𝐼𝐼𝐼�𝜇𝜇𝑚𝑚
(1)� = 0, and the 

individual modes inherit the potential’s symmetry: 𝜓𝜓𝑚𝑚
(1)(−𝑋𝑋) = �𝜓𝜓𝑚𝑚

(1)�
∗
. Following Eq. 

(10.8), one then concludes that the superpotential should be anti-PT-symmetric: 
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𝑊𝑊∗(−𝑋𝑋) = −𝑊𝑊(𝑋𝑋). On the other hand, Eq. (10.9) clearly shows that 𝑉𝑉(2) again respects the 

condition of PT symmetry. Since SUSY dictates that its spectrum is also real-valued, it 

follows that PT symmetry is unbroken in the partner potential. 

Figure 10.1 illustrates the implications of supersymmetry when for example a PT-

symmetric multimode waveguide is considered, that has the refractive index profile 

𝛥𝛥𝑛𝑛(1)(𝑥𝑥) = 𝛿𝛿 ⋅ �1 + 𝑖𝑖𝑖𝑖 tanh 𝑥𝑥
0.2𝜆𝜆0

� ⋅ exp �− � 𝑥𝑥
0.8𝜆𝜆0

�
8
�          (10.10) 

Here, the index elevation is 𝛿𝛿 = 4.2 × 10−2 and the imaginary gain/loss contrast is 𝛾𝛾 = 0.1. 

This waveguide supports a total of four guided modes at a wavelength of 𝜆𝜆0 = 10−6 m. The 

figure shows the real- and imaginary parts of the refractive index profile as well as the 

absolute value �𝜓𝜓𝑚𝑚
(1)� of the modal distributions (Fig. 10.1(a)). The corresponding 

superpartner waveguide and its three guided modes are depicted in Fig. 10.1(b), and the 

eigenvalue spectra of both structures are compared in Fig.1c. Note that none of the PT-

symmetric modes exhibit any nodes in their intensity profile. 
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Figure 10.1. (a) Refractive index profile (real part: light gray / imaginary part: dark gray 

area) of a PT-symmetric multimode waveguide supporting a total of four bound states 

(shown absolute values �𝜓𝜓𝑚𝑚
(1)� at the vertical positions corresponding to their respective 

eigenvalues Re�𝜇𝜇𝑚𝑚
(1)�. (b) Corresponding SUSY partner and its three modes. (c) Eigenvalue 

spectra of the two structures Re�𝜇𝜇𝑚𝑚
(1,2)� are shown as full circles, whereas empty circles 

denote Im�𝜇𝜇𝑚𝑚
(1,2)�. 

 

10.2. Removal of higher modes 

 

In Hermitian systems, all modes except for the fundamental state exhibit nodes where the 

absolute value of the wave function vanishes. Given that the superpotential 𝑊𝑊 as 
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constructed from Eq. (10.8) relies on the logarithmic derivative of an eigenfunctions 𝜓𝜓𝑚𝑚
(1), 

in this case one can only use the nodeless ground state 𝜓𝜓1
(1). In contrast, the zeros of the 

real and imaginary parts of modes associated with non-Hermitian systems do not occur at 

the same positions. This peculiar behavior now allows one to use any higher order mode 

𝜓𝜓𝑚𝑚
(1) (see Figure 10.2(a)) in constructing a SUSY partner, i.e. by removing the eigenvalue 

𝜇𝜇𝑚𝑚
(1) from the spectrum. In other words, 

𝑉𝑉� (1,2)(𝑋𝑋) = 𝜇𝜇𝑚𝑚
(1) −𝑊𝑊� 2 ± 𝑊𝑊� ′           (10.11.a) 

𝑊𝑊� = − 𝑑𝑑
𝑑𝑑𝑑𝑑

ln�𝜓𝜓𝑚𝑚
(1)�                 (10.11.b) 

The relations between eigenvalues and wave functions for these two structures then can be 

written as 

𝜇𝜇𝑚𝑚
(1) = 𝜇𝜇𝑚𝑚

(2)     ∀    𝑚𝑚 < 𝑚𝑚0  , 𝜇𝜇𝑚𝑚
(1) = 𝜇𝜇𝑚𝑚−1

(2)      ∀    𝑚𝑚 > 𝑚𝑚0     (10.12.a) 

𝜓𝜓𝑚𝑚
(2) = 𝐴𝐴𝜓𝜓𝑚𝑚

(1)  ,      𝜓𝜓𝑚𝑚
(1) = 𝐵𝐵𝜓𝜓𝑚𝑚

(2)     ∀  𝑚𝑚 < 𝑚𝑚0         (10.12.b) 

𝜓𝜓𝑚𝑚
(2) = 𝐴𝐴𝜓𝜓𝑚𝑚+1

(1)   ,      𝜓𝜓𝑚𝑚+1
(1) = 𝐵𝐵𝜓𝜓𝑚𝑚

(2)     ∀  𝑚𝑚 > 𝑚𝑚0           (10.12.c) 

respectively. 

 

161 
 



 

Figure 10.2. (a) Refractive index profile of a PT-symmetric multimode waveguide 

supporting a total of four bound states, as in Figure 10.1. (b) Corresponding SUSY partner 

where the second mode has been removed from the original waveguide. (c) Eigenvalue 

spectra of the two structures. 

 

Figure 10.2 illustrates the removal of the eigenvalue associated with the second mode from 

the spectrum of the multimode waveguide discussed in Figure 10.2(a) Again the SUSY 

partner potential (Figure 10.2(b)) supports three modes, which now are matched to the 

eigenvalues of the first, third and fourth mode of the original structure. Note that the 

partner waveguide has been most strongly altered in regions where the removed state had 

an intensity minimum. There, the second derivative of the wave function’s absolute value is 

maximal, resulting in a pronounced feature in the SUSY partner. In the Hermitian limit 

𝐼𝐼𝐼𝐼�𝛥𝛥𝑛𝑛(1)� → 0, this feature is transformed into a singularity. 
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10.3. SUSY in structures with spontaneously broken PT-symmetry 

 

In this section we investigate SUSY in systems with spontaneously broken PT symmetry. 

When the contrast between gain and loss exceeds a certain limit, a given real refractive 

index profile can no longer maintain the symmetry of the bound states. For our example 

waveguide profile, an imaginary contrast of 𝛾𝛾 = 0.2 places the system well inside this 

broken-symmetry regime (see Figure 10.3(a)). As it is expected for this type of complex 

potential, the eigenvalues of the lowest two modes are transformed into a complex 

conjugate pair with identical real parts 𝑅𝑅𝑅𝑅�𝜇𝜇1
(1)� = 𝑅𝑅𝑅𝑅�𝜇𝜇2

(1)� and opposite imaginary parts 

𝐼𝐼𝐼𝐼�𝜇𝜇1
(1)� = −𝐼𝐼𝐼𝐼�𝜇𝜇2

(1)�. The corresponding states reside predominantly on the gain (loss) 

region. Note that the remaining higher order modes retain their PT symmetry, and 

therefore continue to exhibit an entirely real spectrum.  

Following the previously established formalism, SUSY allows us to remove one of 

the broken-symmetry modes (Figure 10.3(b)). As in the case of unbroken PT symmetry, 

SUSY preserves the remaining set of eigenvalues. In our example the partner waveguide 

supports two neutral modes as well as the remaining amplified mode as fundamental state. 

Removing the latter by means of SUSY restores the symmetry of the underlying structure 

(Figure 10.3(c)) and yields a waveguide with unbroken PT symmetry that is perfectly 

phase matched to the two neutral modes of the original system (Figure 10.3(d)). 
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Figure 10.3. (a) Refractive index profile of a multimode waveguide supporting a total of 4 

bound states. Here, the imaginary contrast was increased to 𝛾𝛾 = 0.2 to induce spontaneous 

PT symmetry breaking of the two lowest states. Removing the attenuated (b) and the 

amplified (c) mode by means of SUSY restores PT symmetry to the structure (d). 

 

10.4. One-parameter family of non-PT potentials with real spectra 

 

In this section we will focus our attention on synthesizing complex, non-PT-symmetric 

potentials that support entirely real-valued spectra. In the context of nonrelativistic SUSY 

quantum mechanics, it is known that one can establish whole isospectral families of 

potentials sharing the spectrum of a given “parent” potential. Here we will show that this 
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approach can be adapted to find optical potentials, which are iso-spectral to a PT-

symmetric potential. 

Consider again a PT-symmetric potential with at least one guided mode and otherwise 

arbitrary shape. According to Equation (10.5) (for the partner potential) the superpotential 

satisfies the well-known Riccati equation 𝑉𝑉(2)(𝑋𝑋) = 𝜇𝜇𝑚𝑚
(1) −𝑊𝑊2 −𝑊𝑊′. A general solution of 

this equation 𝑊𝑊�  can be written in terms of the particular solution 𝑊𝑊 found in Equation 

(10.8) as [10]: 𝑊𝑊� = 𝑊𝑊 + 1
𝑣𝑣
 where 𝑣𝑣 satisfies the first order equation 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑣𝑣 = 1 + 2𝑊𝑊𝑊𝑊. By 

using 𝑊𝑊 given in Eq. (10.8), the solution of this equation can be written as 𝑣𝑣(𝑥𝑥) =

�𝜓𝜓𝑚𝑚
(1)(𝑋𝑋)�

−2
�𝐶𝐶 + ∫ �𝜓𝜓𝑚𝑚

(1)(𝑋𝑋′)�
2
𝑑𝑑𝑑𝑑′𝑋𝑋

−∞ �, resulting in the following parametric family of 

superpotentials: 

𝑊𝑊� = 𝑊𝑊 + 𝑑𝑑
𝑑𝑑𝑑𝑑

ln �𝐶𝐶 + ∫ �𝜓𝜓𝑚𝑚
(1)(𝑋𝑋′)�

2
𝑑𝑑𝑋𝑋′𝑋𝑋

−∞ �         (10.13) 

and the corresponding isospectral family of complex optical potentials 

𝑉𝑉� (1) = 𝑉𝑉(1) + 2 𝑑𝑑2

𝑑𝑑𝑋𝑋2
ln �𝐶𝐶 + ∫ �𝜓𝜓𝑚𝑚

(1)(𝑋𝑋′)�
2
𝑑𝑑𝑋𝑋′𝑋𝑋

−∞ �            (10.14) 

In order to avoid singular behavior, the parameter 𝐶𝐶 can be freely chosen in a range that 

makes a nonzero denominator. Note that the superpotential corresponding to each value of 

the parameter 𝐶𝐶 can be used to construct a potential 𝑉𝑉� (2) that is isospectral to the 

superpartner 𝑉𝑉(2), and therefore constitutes a valid superpartner of 𝑉𝑉(1) in its own right.  
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Figure 10.4. (a) Refractive index profile of a PT-symmetric multimode waveguide 

supporting a total of 4 bound states. For 𝐶𝐶 → ∞, the parametric family converges toward 

this parent potential. As 𝐶𝐶 approaches 0, the potentials and their guided modes become 

visibly distorted (b,c). Regardless, all members of the family share the exact same 

eigenvalue spectrum (d,e). Shape of the real- and imaginary of the isospectral family for 

continuously varying 𝐶𝐶. 
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Obviously, the members of an isospectral family constructed from a PT-symmetric original 

potential according to Equation (10.14) generally do not retain a PT symmetric shape, i.e. 

𝑉𝑉� ∗(−𝑋𝑋) ≠ 𝑉𝑉�(𝑋𝑋) (see Figure 10.3(a-c)). Nevertheless, as long as PT symmetry is not 

spontaneously broken in the parent potential, the identical spectra of all family members 

will be entirely real-valued (Figure 10.3(d)).  

A closer look at the shape of the respective eigenstates reveals the mechanism 

behind this unexpected behavior. Even though the gain/loss is no longer symmetrically 

distributed across the waveguide’s profile (Figure 10.3(f)), the real part is deformed 

(Figure 10.3(e)) such that the redistributed mode profiles can maintain a neutral imaginary 

overlap. To confirm this intuitive explanation, consider again the paraxial equation 

governing the eigenmodes of a waveguide, and its complex conjugate: 

𝑑𝑑2𝜓𝜓�

𝜕𝜕𝑋𝑋2
+ 𝑉𝑉�(𝑋𝑋)𝜓𝜓� = 𝜇𝜇𝜓𝜓�         (10.15.a) 

𝑑𝑑2𝜓𝜓�∗

𝜕𝜕𝑋𝑋2
+ 𝑉𝑉� ∗(𝑋𝑋)𝜓𝜓�∗ = 𝜇𝜇∗𝜓𝜓�∗         (10.15.b) 

After multiplying these equations by 𝜇𝜇 and 𝜇𝜇∗ respectively, their difference yields: 

𝜓𝜓�∗ 𝑑𝑑
2𝜓𝜓�

𝑑𝑑𝑋𝑋2
− 𝜓𝜓� 𝑑𝑑

2𝜓𝜓�∗

𝑑𝑑𝑋𝑋2
+ �𝑉𝑉� − 𝑉𝑉� ∗��𝜓𝜓��

2
= (𝜇𝜇 − 𝜇𝜇∗)�𝜓𝜓��

2
       (10.16) 

The first term represents a total differential. With a real eigenvalue 𝜇𝜇∗ = 𝜇𝜇, we therefore 

find 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜓𝜓�∗ 𝑑𝑑

𝑑𝑑𝑑𝑑
𝜓𝜓� − 𝜓𝜓� 𝑑𝑑

𝑑𝑑𝑑𝑑
𝜓𝜓�∗� + 2�𝜓𝜓��

2
⋅ 𝐼𝐼𝐼𝐼(𝑉𝑉�) = 0.        (10.17) 
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Taking into account that the bound states decay exponentially outside the guiding region 

and vanish at infinity, integration over the entire 𝑋𝑋 axis yields 

∫ 𝐼𝐼𝐼𝐼(𝑉𝑉�) ⋅ �𝜓𝜓��
2
𝑑𝑑𝑋𝑋+∞

−∞ = 0.          (10.18) 

Moreover, a direct integration over the imaginary part of the potential shows that a 

transformation according to Equation (10.18) does not introduce any changes to the 

overall gain/loss of the system. Using the fact that imaginary part of the PT-symmetric 

parent potential 𝑉𝑉(1) itself is anti-symmetric, one finds 

∫ 𝐼𝐼𝐼𝐼(𝑉𝑉�)𝑑𝑑𝑑𝑑+∞
−∞ = 2𝐼𝐼𝐼𝐼 � 𝑑𝑑

𝑑𝑑𝑑𝑑
ln �𝐶𝐶 + ∫ �𝜓𝜓𝑚𝑚(𝑋𝑋′)�

2
𝑑𝑑𝑋𝑋′𝑋𝑋

−∞ �� �
−∞

+∞
= 0.      (10.19) 

 

10.5. SUSY and general families of non-Hermitian potentials with real spectra 

 

In this section by considering general relations between superpartners we show that a 

more general class of non-Hermitian potentials that can have entirely real spectra. As we 

will see PT-symmetric potentials form only a specific class of such potentials. Let us 

consider again the general superpartner potentials defined in the previous chapters: 

𝑉𝑉 = 𝛼𝛼 −𝑊𝑊2 + 𝑊𝑊′          (10.20.a) 

𝑉𝑉𝑝𝑝 = 𝛼𝛼 −𝑊𝑊2 −𝑊𝑊′         (10.20.b) 

Assuming that Now assume the general complex superpotentials: 
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𝑊𝑊 = 𝑊𝑊𝑅𝑅 + 𝑖𝑖𝑊𝑊𝐼𝐼          (10.21) 

As a result the two superpartners can be written as: 

𝑉𝑉 = 𝛼𝛼 −𝑊𝑊𝑅𝑅
2 + 𝑊𝑊𝐼𝐼

2 + 𝑊𝑊𝑅𝑅
′ + 𝑖𝑖(−2𝑊𝑊𝑅𝑅𝑊𝑊𝐼𝐼 + 𝑊𝑊𝐼𝐼

′)        (10.22.a) 

𝑉𝑉𝑝𝑝 = 𝛼𝛼 −𝑊𝑊𝑅𝑅
2 + 𝑊𝑊𝐼𝐼

2 −𝑊𝑊𝑅𝑅
′ + 𝑖𝑖(−2𝑊𝑊𝑅𝑅𝑊𝑊𝐼𝐼 −𝑊𝑊𝐼𝐼

′)        (10.22.b) 

Assuming that the broken supersymmetry regime, these two complex optical potentials 

will share the exact same eigenvalue spectra. Now of interest would be to find special cases 

where one of the two partners becomes real and the other one complex. In that case a 

complex potential will have a real superpartner and as a result it will have a completely 

real spectra. Assume a particular superpotential which satisfies the relation: 

𝑊𝑊𝐼𝐼
′ = 2𝑊𝑊𝑅𝑅𝑊𝑊𝐼𝐼          (10.23) 

This selection leads to: 

𝑉𝑉 = 𝛼𝛼 −𝑊𝑊𝑅𝑅
2 + 𝑊𝑊𝐼𝐼

2 + 𝑊𝑊𝑅𝑅
′          (10.24.a) 

𝑉𝑉𝑝𝑝 = 𝛼𝛼 −𝑊𝑊𝑅𝑅
2 + 𝑊𝑊𝐼𝐼

2 −𝑊𝑊𝑅𝑅
′ − 𝑖𝑖2𝑊𝑊𝐼𝐼

′        (10.24.b) 

Obviously the first potential is real therefore the complex superpartner can have real 

spectra. In summary any complex potential of the form: 

𝑉𝑉 = 𝛼𝛼 − �𝑔𝑔
′

2𝑔𝑔
�
2
− �𝑔𝑔

′

2𝑔𝑔
�
′

+ 𝑔𝑔2 − 𝑖𝑖2𝑔𝑔′                 (10.25) 
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where 𝑔𝑔(𝑥𝑥) is a real non-zero function can exhibit entirely real spectra. Note that when 

𝑔𝑔(𝑥𝑥) is even, 𝑉𝑉 becomes PT-symmetric. On the other hand in general, the optical potential 

of Equation (10.25) does not satisfy any type of symmetry. 
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CHAPTER ELEVEN: CONCLUSIONS 

 

In this dissertation we explored two major classes of symmetries, namely PT symmetry and 

supersymmetry, in the framework of classical optics. Even though both theories are 

originated and developed in quantum field theories and then quantum mechanics, due to 

the similarity of the governing equations, such ideas can be directly transferred into optics.     

PT-symmetric optical structures by employing balanced regions of gain and loss, in 

addition to their refractive index profiles, exhibit interesting properties which cannot be 

obtained in traditional Hermitian structures. Here we proposed a new method for 

achieving single mode lasing operation in dielectric laser cavities. We also studied the effect 

of anti-symmetric gain/loss profile in periodic structures and in particular in optical mesh 

lattices. Furthermore we considered scattering properties of PT symmetric particles and 

we showed that such entities can controllably deflect the scattered light. 

In the second part of this work, guided wave and scattering properties of 

supersymmetric structures were investigated. Supersymmetry can be utilized as a versatile 

means for engineering guide mode spectra of optical waveguides thus allowing for a new 

class of mode filters and mode multiplexers. Along these lines the first experimental 

demonstration of supersymmetric photonic lattices was reported in femtosecond laser-

written array of glass waveguides. Finally we showed that, supersymmetry can also be 

utilized as a new type of transformation optics.  
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APPENDIX A: COUPLED MODE THEORY OF PT MICRO-RING RESONATORS 
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Coupled mode theory has been widely used to describe the directional coupler composed 

of two straight and uniformly coupled dielectric optical waveguides [1]. For PT-symmetric 

waveguide coupler when one waveguide involves gain and the other loss, the Hermitian 

coupled mode analysis can still be used with adding gain and loss coefficients as first order 

correction terms. Coupled mode analysis has also been widely used to describe coupling 

between micro-ring resonators [2]. Here we find a relation between the coupled mode 

parameters of PT micro-ring resonators and that of their corresponding straight 

waveguides. For the straight PT coupler: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝛽𝛽0𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑔𝑔         (A1.a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝛽𝛽0𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑔𝑔         (A1.b) 

On the other hand for two PT micro-ring resonators: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔0𝐴𝐴 + 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾         (A2.a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔0𝐵𝐵 + 𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛾𝛾𝛾𝛾         (A2.b) 

Evidently the resonance frequencies of each ring is obtained through the propagation 

constant of the corresponding waveguide as:  

𝛽𝛽0(𝜔𝜔0)𝑅𝑅 ≈ 𝑚𝑚          (A3) 

The coupling coefficients are on the other hand related via: 

𝜇𝜇 = 𝑣𝑣𝑔𝑔𝜅𝜅
𝐿𝐿eff
2𝜋𝜋𝜋𝜋

          (A4) 
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where 𝑣𝑣𝑔𝑔 represents the group velocity of light inside the mico-ring resonator and 𝐿𝐿eff 

shows an effective length to be calculated later. The gain/loss coefficinets can also be 

related through:   

𝛾𝛾 = 𝑣𝑣𝑔𝑔𝑔𝑔.                    (A5) 

Equations (A4) and (A5) directly lead to: 

𝛾𝛾 𝜇𝜇⁄
𝑔𝑔 𝜅𝜅⁄

= 2𝜋𝜋𝜋𝜋
𝐿𝐿eff

> 1,          (A6) 

As a result in a PT-symmetric arrangement of coupled ring resonator the gain to coupling 

ration is enhanced by a factor that is proportional to the size of the ring. Therefore PT-

symmetry breaking can be observed at lower thresholds in coupled ring resonators 

compared to coupled waveguides [3]. 

 

A1. Effective coupling length 

 

In order to calculate the effective coupling length, consider two coupled passive curved 

waveguides as depicted in Figure A1. 
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Figure A1. Non-uniform coupling along two curved waveguides 

 

In this case the evolution of light in the two waveguides can be described by coupled mode 

equations with a 𝑧𝑧-dependent coupling coefficient:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖(𝑧𝑧)𝑏𝑏,          (A7.a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖(𝑧𝑧)𝑎𝑎.          (A7.b) 

After using the following transformation: 

𝜂𝜂 = ∫ 𝜅𝜅(𝑧𝑧′)𝑑𝑑𝑧𝑧′𝑧𝑧
𝑧𝑧0

,                (A8) 

Equations (A8) can be converted to a constant coupling equation as: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖,           (A9.a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑖𝑖.           (A9.b) 

Therefore the solution of the no-uniform coupler of Figure A1 can be written as: 

𝑎𝑎(𝑧𝑧) =   𝑎𝑎0 cos �∫ 𝜅𝜅(𝑧𝑧′)𝑧𝑧 
−𝑧𝑧0

𝑑𝑑𝑧𝑧′�   +   𝑏𝑏0 sin �∫ 𝜅𝜅(𝑧𝑧′)𝑧𝑧 
−𝑧𝑧0

𝑑𝑑𝑧𝑧′�,       (A10.a) 

176 
 



𝑏𝑏(𝑧𝑧) = −𝑖𝑖𝑎𝑎0 sin �∫ 𝜅𝜅(𝑧𝑧′)𝑧𝑧 
−𝑧𝑧0

𝑑𝑑𝑧𝑧′� − 𝑖𝑖𝑏𝑏0 cos �∫ 𝜅𝜅(𝑧𝑧′)𝑧𝑧 
−𝑧𝑧0

𝑑𝑑𝑧𝑧′�.       (A10.b) 

Comparing this to the solution of the standard coupled mode equations with a constant 

coupling coefficient, one can deduce that 𝜅𝜅𝐿𝐿eff = ∫ 𝜅𝜅(𝑧𝑧′)𝑧𝑧 
−𝑧𝑧0

𝑑𝑑𝑧𝑧′. Therefore the effective 

coupling length as: 

𝐿𝐿eff = 1
𝜅𝜅max

∫ 𝜅𝜅(𝑧𝑧)+𝑧𝑧0 
−𝑧𝑧0

𝑑𝑑𝑑𝑑          (A11) 

On the other hand the coupling coefficient between two waveguides decreases 

exponentially by increasing the distance between the two guides [2]. Therefore assuming a 

distance of 𝑑𝑑 between the two guides the coupling constant will be 𝜅𝜅(𝑑𝑑) = 𝜅𝜅max exp(−𝑝𝑝𝑝𝑝). 

On the other hand from Figure A1 we have 𝑑𝑑(𝑧𝑧) = 2�𝑅𝑅 − √𝑅𝑅2 − 𝑧𝑧2� ≈ 𝑧𝑧2 𝑅𝑅⁄ . Finally, since 

the coupling coefficient decreases rapidly for after a certain length, we can use ±∞ for the 

limits of integral (A11). Therefore the coupling length is obtained as: 

𝐿𝐿eff = ∫ exp(−𝑝𝑝 𝑧𝑧2 𝑅𝑅⁄ )+∞ 
−∞ 𝑑𝑑𝑑𝑑 = �𝜋𝜋𝜋𝜋

𝑝𝑝
.                (A12) 
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Here we show that for an arbitrary cylindrically symmetric potential 𝑉𝑉(𝜂𝜂) as described in Chapter 

8 solution of the following equation: 

� 𝑑𝑑2

𝑑𝑑𝜂𝜂2
+ 1

𝜂𝜂
𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑙𝑙2

𝜂𝜂2
+ 𝑉𝑉(𝜂𝜂)�𝑅𝑅 = 𝜇𝜇𝜇𝜇,                (B1) 

for an azimuthal index 𝑙𝑙, around the origin (𝜂𝜂 → 0) behaves like 𝜂𝜂𝑙𝑙 . Note that 𝜂𝜂 = 0 is a regular 

singular point of this differential equation i.e. one can avoid this singularity by multiplying both 

sides with 𝜂𝜂2: 

�𝜂𝜂2 𝑑𝑑2

𝑑𝑑𝜂𝜂2
+ 𝜂𝜂 𝑑𝑑

𝑑𝑑𝑑𝑑
+ (𝑉𝑉(𝜂𝜂) − 𝜇𝜇)𝜂𝜂2 − 𝑙𝑙2� 𝑅𝑅 = 0.        (B2) 

Now let us consider the solution 𝑅𝑅 as a multiplication of 𝜂𝜂𝑡𝑡  and a power series around 𝜂𝜂 = 0 

𝑅𝑅 = 𝜂𝜂𝑡𝑡 ∑ 𝑎𝑎𝑛𝑛𝜂𝜂𝑛𝑛∞
𝑛𝑛=0 ,                (B3) 

where 𝑡𝑡 and all coefficients should be determined. Note that 𝑎𝑎0 is assumed to be nonzero which 

guarantees that the first term in Equation (B3) is proportional to 𝜂𝜂𝑡𝑡 . We also assume that the 

potential 𝑉𝑉(𝜂𝜂) is a well behaved function around the origin and can be described in a power series 

representation: 

𝑉𝑉 = ∑ 𝑏𝑏𝑛𝑛𝜂𝜂𝑛𝑛∞
𝑛𝑛=0 .          (B4) 

By plugging Equation (B3) and Equation (B4) into Equation (B2) and putting the coefficients all the 

equal ordered term equal to zero, for the zeroth order term we find: 

[𝑡𝑡(𝑡𝑡 − 1) + 𝑡𝑡 − 𝑙𝑙2]𝑎𝑎0 = 0.                (B6) 

Since 𝑎𝑎0 is assumed to be nonzero we have: 
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𝑡𝑡 = ±|𝑙𝑙|.           (B7) 

The negative solution is not acceptable since it leads to singularity at the origin. The positive 

solution on the hand can be a physical solution for a bound state. Therefore the lowest order term 

in Eq. (A3) is 𝜂𝜂|𝑙𝑙| i.e. for 𝜂𝜂 → 0: 

𝑅𝑅(𝜂𝜂)~𝜂𝜂|𝑙𝑙|.           (B8) 

Next, we find the asymptotic behavior of the radial function 𝑅𝑅(𝜂𝜂) for its other limit when 𝜂𝜂 → ∞. 

Assume the potential 𝑉𝑉(𝜂𝜂) is zero for large values of 𝜂𝜂. Therefore Eq. (A1) can be rewritten as: 

�𝜂𝜂2 𝑑𝑑2

𝑑𝑑𝜂𝜂2
+ 𝜂𝜂 𝑑𝑑

𝑑𝑑𝑑𝑑
− (𝜇𝜇𝜂𝜂2 + 𝑙𝑙2)�𝑅𝑅 = 0.         (B9) 

This latter equation is nothing more than the modified Bessel equation and the desired solution is 

the modified Bessel function of the second type. Therefore for 𝜂𝜂 → ∞: 

𝑅𝑅(𝜂𝜂)~𝐾𝐾𝑙𝑙(√𝜇𝜇𝜂𝜂).          (B10) 

On the other by using the asymptotic behavior of the modified Bessel function for 𝜂𝜂 → ∞ we have:  

𝑅𝑅(𝜂𝜂)~ 1
�𝜂𝜂
𝑒𝑒−√𝜇𝜇𝜂𝜂          (B11) 
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