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ABSTRACT 

Human-Robot Interaction (HRI) research is examining ways to make human-robot (HR) 

communication more natural. Incorporating natural communication techniques is expected to 

make HR communication seamless and more natural for humans. Humans naturally incorporate 

implicit levels of communication, and including implicit communication in HR communication 

should provide tremendous benefit. The aim for this work was to evaluate a model for human-

robot implicit communication. Specifically, the primary goal for this research was to determine 

whether humans can assign meanings to implicit cues received from autonomous robots as they 

do for identical implicit cues received from humans. 

An experiment was designed to allow participants to assign meanings to identical, 

implicit cues (pursuing, retreating, investigating, hiding, patrolling) received from humans and 

robots. Participants were tasked to view random video clips of both entity types, label the 

implicit cue, and assign a level of confidence in their chosen answer. Physiological data was 

tracked during the experiment using an electroencephalogram and eye-tracker. Participants 

answered workload and stress measure questionnaires following each scenario. 

Results revealed that participants were significantly more accurate with human cues 

(84%) than with robot cues (82%), however participants were highly accurate, above 80%, for 

both entity types. Despite the high accuracy for both types, participants remained significantly 

more confident in answers for humans (6.1) than for robots (5.9) on a confidence scale of 1 - 7.  

Subjective measures showed no significant differences for stress or mental workload 

across entities. Physiological measures were not significant for the engagement index across 
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entity, but robots resulted in significantly higher levels of cognitive workload for participants via 

the index of cognitive activity.  

The results of this study revealed that participants are more confident interpreting human 

implicit cues than identical cues received from a robot. However, the accuracy of interpreting 

both entities remained high. Participants showed no significant difference in interpreting 

different cues across entity as well. Therefore, much of the ability of interpreting an implicit cue 

resides in the actual cue rather than the entity. Proper training should boost confidence as 

humans begin to work alongside autonomous robots as teammates, and it is possible to train 

humans to recognize cues based on the movement, regardless of the entity demonstrating the 

movement.   
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CHAPTER ONE: GENERAL INTRODUCTION 

 In the 1977 film, Star Wars, George Lucas captivated audiences by introducing a 

fictional realm in which humans coexisted with completely autonomous robots. Although the 

robots in the film were subordinate to humans, they were treated as peers and cooperated with 

characters in the film in social and support roles. Robots aided humans during decision-making, 

flight navigation, and foreign language interpretation. Thirty-five years later, an actual robot that 

is completely autonomous might still be considered fictional, yet much work is underway to 

make Lucas’ vision a modern reality. 

 Researchers are working to bridge the gap between the Star Wars universe and our own. 

Current robotic advances include Leonardo, a highly expressive robot designed to interact with 

humans in a social manner (Breazeal, Kidd, Thomaz, Hoffman & Berlin, 2005), and BigDog, a 

robot designed to carry heavy equipment across rough terrain (Raibert, Blankespoor, Nelson, 

Playter & the BigDog Team, 2008). However, researchers today are faced with many of the same 

challenges encountered by the characters of the Star Wars movies. Anakin Skywalker found 

intricacies in building C3PO, such as sensors, intelligence, and interactions, and Luke Skywalker 

discovered complications in terms of proper functioning and cooperation, in fixing a newly 

bought droid named R2D2.  

As a result of such complexities, several sub-disciplines exist within the robotics field. 

One addresses artificial intelligence (AI), which Luger and Stubblefield (1989) defined as 

science concerned with the automation of intelligent behavior. Another is dexterous mobility and 

manipulation, which focus on designing robots with the ability to rotate the body and reach 
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reference points near the body (Haug, Adkins & Cororian, 1998). A third is perception, which 

aims to increase a robot’s ability to recognize environmental stimuli (color, distance, movement) 

based on internal sensors (Steinfeld, Fong, Kaber, Lewis, Scholtz & Schultz, 2006). Finally, 

human-robot interaction (HRI) addresses the ways in which humans and robots influence each 

other (Fong, Thorpe & Baur, 2003). 

The ultimate goal for robotics is to design and develop an autonomous robot capable of 

acting as a teammate. This implies that the current state-of-the-art for a robot is use as a tool, 

requiring direct control by a human, oftentimes increasing workload and stress depending on the 

roles or number of robots being utilized (Prewett, Johnson, Saboe, Elliott & Coovert, 2010). 

Also, controlling a robot directly requires a dedicated human operator, thus decreasing the 

number of tasks completed simultaneously and often diminishing situation awareness (Prewett et 

al., 2006). Even with these limitations, the use of robots reduces cost in terms of finances and 

safety, especially in high-risk environments such as urban search and rescue (USR; Baker & 

Vanco, 2004; Burke, Murphy, Coovert & Riddle, 2004; Drury, Scholtz & Yanco, 2004; Scholtz, 

Young & Drury, 2004) and explosive ordnance disposal (EOD). Robots aid humans in USR by 

easily maneuvering through areas that are difficult for humans to navigate, or are hazardous due 

to falling debris or unstable, damaged structures (Murphy, 2004). Robots are beneficial in EOD 

because they are more resilient than humans conducting the same task. For example, robots are 

not psychologically distracted or stressed, and can absorb damage more readily than humans 

(Barnes & Evans, 2010; Fielding, 2006; Montgomery, 2005). In addition, replacing a lost robotic 

leg, sensor, or damaged processor, allows robots the opportunity to return to the team more often 

than humans suffering similar damage.  
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It is evident that the benefits yielded from robots, even as direct-control tools, are 

substantial. The alternative is not having robots at all, which would significantly increase cost in 

terms of money and safety for conducting many operations particular to the military or other 

armed government agencies. To illustrate, unlike a robot that is able to return to a team once a 

sensor is replaced, humans experiencing “equivalent” loss have a lesser chance of returning to 

duty.  

Recognizing the advantages offered by using robots as tools versus not having robots 

available at all is an important step in the progress of HRI. However, in order to shift this 

paradigm to that of creating human-robot (HR) teams, each sub-discipline of robotics must 

address specific challenges. The HRI sub-discipline needs to address topics including culture, 

shared mental models, trust, and communication. Of those problem areas, the methods and 

means for communicating between human and robot are central. Lewis and Wang (2010) argued 

that the performance of HR teams is affected by the quality of their communication. 

Communication, though, is multi-faceted. Each culture has a set of social norms for interacting 

and those norms shape mental models shared by the people prescribing to those parameters for 

communicating. A relationship is required to have the concept of trust present and relationships 

are built upon communication. For the purposes of the present effort, communication is 

investigated from a multi-modal perspective with emphasis given to implicit communication.  

Mutlu, Yamaoka, Kanda, Ishiguro and Hagita (2009) suggested that implicit 

communication plays a vital role in relationships. In order to optimize the interactions between 

humans and robots, implicit communication must be explored as a viable aspect of team 

communication. Castelfranchi (2009) stated that relationships between humans and robots should 
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exist such that both parties understand each other’s goals, plans, actions, and assumptions 

autonomously without explicit communication. Fong (2005) pressed for researchers to develop 

techniques so that robots will be able to make use of implicit language and gesturing. These 

examples demonstrate that researchers are clamoring for robots to gain additional modalities for 

the benefit of working with humans already experienced in multi-modal communication.  

Implicit communication is key because it adds clarity and robustness to messages 

(Adams, Rani & Sarkar, 2004), aids teams in performing tasks more quickly (Blickensderfer, 

Reynolds, Salas & Cannon-Bowers, 2010), and enhances performance of teams over those using 

only explicit interaction (Greenstein & Revesman, 1986). Incorporating implicit modalities into 

HRI is expected to benefit communication among HR teams just as it does human teams. 

To concretely understand the importance of implicit communication to the successful 

development of HR teams, it is necessary to describe in more detail the theoretical underpinnings 

of implicit communication. Specifically, the present experiment is rooted in the history of HRI 

and is derived from communication theory.  
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CHAPTER TWO: REVIEW OF THE LITERATURE 

Human Communication Theory 

 Several definitions of communication exist. Some defined communication as a process 

(Carey, 1989; Miller, 2002). Others proposed that it is impossible to not communicate and all 

action is communication (Montagu & Matson, 1979; Wood, 2000). Leeds-Hurwitz (1989) added 

that communication is action with a pattern. Nonetheless, the bulk of communication definitions 

involve a message, a sender, and a receiver. The integrated communication model (Figure 1) 

supports this notion and shows communication flowing to and from communicators. The model 

highlights a perception filter through which messages pass in order to be encoded/decoded by 

communicators. Ultimately, the model shows that messages are transmitted via channels. 

 
Figure 1: Integrated Communication Model (adapted from 

http://www.infofanz.com/2009/01/29/the-business-communication-1/) 
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Communication channels are routes by which communication travels (Mehmood, 2009), 

or the method a sender employs to send a message (Stone, Singletary & Richmond, 1999). 

Montagu and Matson (1979) described communication as multidimensional, allowing a sender to 

choose a variety of channels to convey a message. The authors mentioned three available 

channels—the auditory-acoustic channel (paralanguage, linguistics), the kinesthetic-visual 

channel (kinesics, proxemics, gestures, postures), and the tactile channel (touch, feel). Ruben and 

Stewart (1998) discussed additional channels such as the chronemics channel, in which time or 

timeliness is used to convey a message, and the appearance-attractiveness channel that uses 

exterior characteristics such as dress, physique, hair, or adornment to communicate a message. 

Montagu and Matson (1979) credited Ray Birdwhistell as the founder of multichannel 

communication models since prior to his 1952 book, Introduction to Kinesics, many viewed 

communication as only explicit, auditory messages. 

A communication strategy is the way in which a communicator chooses to share 

information (Wood, 1976). Communication strategies consist of using the appropriate channel 

for the appropriate situation. Examples of communication strategies include choosing the 

appropriate volume while in a theatre, tone when expressing sarcasm or seriousness, or touch 

while flirting or comforting. Humans learn to utilize the appropriate channel(s) through 

experience (Lucas, 2008).  

Wood (1976) supported this idea with an example of a child whose initial communication 

strategy is to reach for items of interest. At this stage, the child is unknowingly employing action 

language. At the next stage, the child may reach for the item while saying the word “mine”. At 

this point action language and verbal communication support the child’s desire to attain the item. 
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Next, a more mature communicator learns to ask and reach toward the object while making a 

facial expression to denote the mood behind the request (anger, urgency, joy). Ultimately, the 

child will have several communication modalities at his/her disposal—gestures, glances, verbal 

communication, and facial expressions. 

Regardless of the channel used, the message must pass through a perception filter and be 

decoded/encoded in order to be effective. Effective message perception results from the 

sender/receiver’s understanding of the meaning of a particular message (Mehmood, 2009), and 

relies upon the perception of both the message and the source. Message perception, the focus of 

this study, is hindered by puzzling messages (meaning), absence of receiver schema (mental 

model), absence of redundancy (multimodality), and earlier experiences, assumptions, or biases 

(culture) (Stone et al., 1999). Communication is therefore made more effective by evaluating one 

or more of four aspects of the communication environment—meaning, multimodality, mental 

models, and culture. This research effort focuses on multimodality. 

Multimodal Communication 

Communication involves sharing messages (Messer, 1994) that can exist as external data 

such as directions, facts, events, or procedures; or internal data such as experiences, ideas, 

feelings, goals, intentions, or expectations (Blickensderfer et al., 2010; Tronick, 1989; Wood, 

1976). Since messages can be internal or external, communication can occur via various means. 

Types of communication modalities include gaze, expressions, posture, speech, tone, rate, mood, 

gestures, and cultural norms. Multiple modes of communication can enhance the robustness of 

message transmission and reception by unintentionally, yet accurately, supporting the nature of 
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the message. Several aspects of communication are controlled subconsciously, so at times it is 

out of the hands of the communicator to alter such behavior. Nor should the communicator want 

to control these modalities, unless based on context, as these modalities aid to accurately enhance 

the message of the communicator (Kress & Van Leeuwen, 2001). Although humans tend to 

prefer unimodal communication, multimodal communication has shown to be more effective 

(Kress & Van Leeuwen, 2001). 

Messages can be misinterpreted in situations where multiple modalities are limited (i.e. 

phone conversations, emails, letters, or texting). As a result, communication support devices, 

such as emoticons (smiley faces, LOL, or j/k for just kidding), are added in order to counteract 

the lack of supporting cues (Derks, Bos & Von Grumbkow, 2007; Rezabek & Cochenour, 1998; 

Walther & D’Addario, 2001). Supporting cues are the communicator’s attempt to ensure that the 

receiver accurately understands the nature of the message. Derks and his associates (2007) found 

that using emoticons enhanced the intensity of the message by revealing the true tone that 

inspired the message. Rezabek and Cochenour (1998) wrote that messages written with text 

alone lack the overt and subtle undertones integrated with visual communication. Consequently, 

both senders and receivers of the typed messages understand that text lacks the fullness of visual, 

verbal communication. This example highlights the two-sided nature of communication, which 

works best when messages are received based on the intent by which they were sent. Ultimately, 

this discussion is not to support the use of emoticons, nor to argue that visual, verbal 

communication is superior to written communication, but rather to reinforce the notion that a 

single mode of communication lacks the communicative strength of several modalities in 

concert.  
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The example above refers to the intentional use of communication modalities. Wood 

(1976) explained that expertise in using communication strategies comes with experience, and 

that some strategies can be developed unintentionally as parties have more experience 

interacting. The increase in experience amongst communicators leads to the development of 

unintentional communication strategies (Messer, 1994). The addition of unintentional 

communication strategies (Figure 2 on page 10) increases the number of communication 

modalities at the communicator’s disposal, resulting in an increased use of implicit 

communications. Wood (1976) explained that as a communicator matures, their ability to select 

appropriate strategies becomes second nature, and that appropriate communication strategies 

improve communication power.  

Communication power is the ability to choose, intentionally or unintentionally, the best 

communication options to accomplish communication goals, which results in communicating 

effectively and efficiently (Wood, 1976). Effective communication results when the 

communicator conveys a message in such a way that the receiver has an improved chance of 

understanding the nature, intent, and meaning of the message. Lackey, Barber, Reinerman, 

Badler & Hudson (2011) echoed the importance of selecting appropriate communication tactics 

by defining multi-modal communication as the exchange of information through a flexible 

selection of explicit and implicit modalities that enables interactions and influences behaviors, 

thoughts, and emotions.  
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Figure 2: Diagram of the Process of Communication (adapted from Messer, 1994) 

 

Whether multi-modal communication is intentional or unintentional, it aids to add 

redundancy to messages. Stone et al. (1999) describe redundancy as being important because it 

gives the receiver multiple chances to properly interpret the message. Noise interrupts 

communication and redundancy provides additional opportunities for the receiver to acquire the 

message. Stone et al. (1999) call for repeating messages via the same channel as effective 

redundancy. Humans naturally build in redundancy via multiple modalities by using implicit 

communication (Kress & Van Leeuwen, 2001).  
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Implicit Communication 

Communication modalities benefit communication power by increasing the opportunities 

for the use of implicit communication. There is ubiquitous research demonstrating implicit 

communication enhancing communication and team performance (Adams et al., 2004; 

Blickensderfer et al., 2010; Greenstein & Revesman, 1986; Pagello, 1999; Rani, 2006). 

Communication limited to explicit modalities lengthens message transmission and leaves room 

for error (Mehrabian, 1981). As in the example discussed previously, humans learn to use several 

different communication modalities as they grow from children to adults. Even at maturity, 

humans never lose the use of their initial communication channel—action language. The 

continued use of this modality, although oftentimes unintentional, strengthens the 

communication message by adding redundancy.  

Implicit communication adds fullness to explicit communication thereby enhancing the 

quality and perceive-ability of the message by supplementing the message with additional 

modalities (Wilson, 2006). Implicit modalities such as gestures and facial expressions, offer the 

receiver opportunities to interpret multi-channel messages from any channel uninterrupted by 

noise. The benefits of implicit communication in team communication have been documented as 

reducing communication and coordination overhead (Entin & Serfaty, 1999); providing 

information to indirectly guide teammates’ actions when explicit communication is unavailable 

(Serfaty et al., 1993; Shah and Breazeal, 2010), and aiding teams to achieve communication 

goals more quickly (Carston, 2009).  

Communication based on the explicit modality alone, lacks the robustness associated 

with natural explicit and implicit communication (Adams et al., 2004). So just as those who 
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communicate via text discover, the deliberate conveyance of information can be misunderstood 

unless the message includes supporting segments of information that make up for the lack of 

implicit modalities. Adding these extra layers delays and lengthens the communication process, 

which undermines the purpose for communicating by text. The additional layers are included to 

make up for implicit cues, yet since they are purposefully included, they in fact become 

additional layers of explicit communication. 

Lackey et al. (2011) defined implicit communication as the inadvertent conveying of 

information about a team member’s behavior patterns and thought processes that will affect 

interpretation, behaviors, and actions in response to observed cues. Although inadvertent, 

implicit communications have certain advantages over explicit communications, making it 

beneficial for teams operating in high stress environments. These benefits greatly aid any 

military unit communicating silently, in harm’s way, or with damaged communication devices. 

Damaged or incomplete communication in military operations is highly likely, yet implicit 

communication allows subordinate units to take initiative and complete tasks often without 

words (Wilson, 2006). If communication must be truncated, implicit modalities are beneficial 

because of their ability to reduce the communication footprint, allowing for enhanced military 

operations. Mehrabian (1981) argued that explicit communication could be reduced when 

implicit communication is available. These arguments support the idea that the more 

recognizable a robotic teammate’s behavior is implicitly, the better for human cognition.  

Matari (1995) found that implicit behavior speaks to a communicator’s own goals. By 

understanding each other’s goals, implicit communication allows communicators to bypass 

lengthy explicit communication and establish a direct link to each other’s minds (Figure 3). 
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Goals of communication are quickly obtained when interactants imply more and explicitly 

convey less (Carston, 2009). Under this notion, teammates are free to execute their assigned 

 
Figure 3: Implicit Communication Bypass Model (adapted from Ingalls, 1981) 

 

tasks that support the team’s goals, allowing other team members to read and react to their 

behavior appropriately (Wilson, 2006). Implicit communication is the information that can be 

gathered by merely observing the environment, and relies on the perceptual capabilities of the 

observer (Martins & Demiris, n.d.). Humans use action language in place of explicit 

communication (to include verbal and/or non-verbal) while interacting (Castelfranchi & 

Giardini, 2003). Humans are accustomed to complex communication strategies, and effective 

interactions should include a combination of implicit and explicit modalities such as actions, 

behavior, gestures, and expressions in order to create robust communication (Giardini & 
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Castelfranchi, 2004). By using practical actions, the need to communicate with explicit actions 

and symbols is eliminated. Then, communicators are able to accomplish two goals at once by 

acting and communicating simultaneously. Deliberate communication is not as critical as 

implicit communication when it comes to communication robustness for team performance 

(Balch & Arkin, 1994).  

Action Language 

Behavioral implicit communication (BIC) is the process of using practical actions as the 

communicated message (Castelfranchi & Giardini, 2003; Giardini & Castelfranchi, 2004; 

Castelfranchi, 2009). Castelfranchi and Giardini (2003) explained that humans use action 

language in place of explicit communication (to include verbal and/or non-verbal) while 

interacting. By using practical actions, the need to communicate with explicit actions and 

symbols is eliminated. Then, communicators are able to accomplish two goals at once by acting 

and communicating simultaneously.  

 Any BIC is based on the perception of an action (Castelfranchi, 2009). Types of BIC 

include an infant reaching for a bottle, a host holding a door open for a guest, or a driver slowing 

down in sight of a pedestrian. All of these actions have practical application, yet each eliminates 

the explicit form of communication. The purposeful performing of these actions by the 

communicator, allows the observer to implicitly understand the explicit message governing the 

actions such as “I am hungry”, “come in”, or gesturing the pedestrian to cross the street. The 

omission of the phrase and the gesture demonstrates how BIC can be used to replace both verbal 

and non-verbal forms of explicit communication.  
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As mentioned previously, Wood (1976) claimed that humans learn to communicate 

through action as children. In fact, Tronick (1989) supported Wood by saying that humans first 

learn to communicate through action, and added that they are even more comfortable doing so. 

Adults maintain the action language learned as children (reaching, looking, or holding) as a way 

to communicate implicitly. These additional modalities provide more robust communication 

when incorporated with verbal communication rather than being replaced by (explicit) verbal 

communication. Warfighters use BIC techniques such as tapping a radio to signal a 

communication issue, or loading a weapon, in sight of teammates, to signal danger is near. This 

supports Mehrabian and Ferris (1967) who claimed that implicit visual cues have more impact 

than auditory implicit communication. Castelfranchi (2009) suggested that teammates interacting 

in a proximate location would incorporate BIC into their collaboration and develop it as they 

become more experienced in their interaction.  

Coordinated Management of Meaning Theory 

The coordinated management of meaning (CMM) theory (Pearce & Cronen, 1980; 

Miller, 2002; Wood, 2000) is a rule-based theory developed in the 1970s by Pearce and Cronen. 

The theory is based on the notion that communication is created, coordinated, and managed 

based on experience. The theory emphasizes that cultural norms are used to coordinate meaning 

between communicators and that those norms are learned behavior patterns developed over time 

(Wood, 2000, p. 147). The model has six levels of coordinated communication (Table 1 on page 

16) and each level focuses on different aspects of communication. CMM, although developed for 

mass communication, can be beneficial to HRI communication models. 
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Table 1: Coordinated Management of Meaning Theory (adapted from Miller, 2002) 

Level Coordinated Meaning 

Content Communication based on content meaning  

Speech Action Communication based on the action of the message 

Episode Communication based on the situation at hand 

Relationship Communication based on the relationship 

Life Script Communication based on self-perception, experiences, feelings and/or 

emotions 

Cultural Pattern Communication based on the shared system of meaning developed by a 

social group or society 

  

While utilizing the cultural pattern as the foundational level, the remaining five levels can 

be mapped to certain aspects of cultural based HRC research. For example, each of Wood’s 

(2000) levels of communication meaning, content and relationship, are closely related to the five 

levels of the CMM model. Content meaning, sending messages the correct way, is the focus of 

the content and speech action level. The content level involves the proper formulation of the 

message, and speech action involves formulating the proper action to coincide with the message. 

The episode, relationship, and life script levels are related to Wood’s relationship meaning, 

which involves sending the correct message based on the current situation, sender/receiver 

relationship, or emotional state of the communicator. HRI communication research should be 

evaluated at each of the cultural norms levels in order to foster natural and effective 

communication.  
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Table 2 shows the research focus for all levels. For the speech action level, action 

language is the research focus. Action language, as explained by Montagu and Matson (1979), 

focuses on movements that are not used as explicit signals. They continued on to say that actions 

such as walking, jogging, staring, or sleeping have dual functions of 1) serving the personal need 

of the one performing the action, and 2) they communicate statements to those who may perceive 

the actions.  

 

Table 2: Revised Coordinated Management of Meaning Theory 

Level Coordinated Meaning Research 

Focus 

Content Communication based on content meaning  Functional 

Design 

  

Speech 

Action 

Communication based on the action of the message Action 

Language, 

BIC  

Episode Communication based on the situation at hand Situation 

Awareness 

Relationship Communication based on the relationship Mental 

Models, 

Team 

Interaction 

Life Script Communication based on self-perception, experiences, 

feelings and/or emotions 

Self-

exploration, 

Self-

awareness, 

(AI) 

Culture Communication based on the shared system of meaning 

developed by a social group or society 

Culture 
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Human Robot Interaction 

Isaac Asimov was one of the initial influences of imagining a world in which humans and 

autonomous robots coexisted. Many researchers credit the literature of Asimov as the origin of 

HRI (Bauer, Wollherr & Buss, 2008). Goodrich and Schultz (2007) suggested that Asimov 

provided the initial guidelines for researchers in HRI. In Asimov’s fictional book, I, Robot, the 

three laws of robotics were:  

1. A robot may not injure a human being or, through inaction, allow a human being to come 

to harm. 

2. A robot must obey the orders given to it by human beings, except where such orders 

would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not conflict with 

the First or Second Laws. 

 

Since then robots have infiltrated our society and assist humans in hospitals (Eriksson, 

Matari & Winstein, 2005; Groom, Srinivasan, Nass, Murphy & Bethel, 2010), and even 

museums (Shiomi, Kanda, Ishiguro & Hagita, 2007). Numerous ways of interacting have 

resulted in varying ways of defining HRI. For example, Fong, Nourbakhsh & Dautenhahn (2003) 

defined HRI as “the study of humans and robots, and the ways they influence each other” (p. 

265). Goodrich and Schultz (2007) wrote that HRI is “a field of study dedicated to 

understanding, designing, and evaluating robotic systems for use by or with humans” (p. 203). 

Despite the definition, the ways that robots have been “for use by” humans have changed 

considerably since Asimov’s imagined reality. As a result, several organizations are actively 

pursuing robots to take on increased roles.  

The US Department of Defense (DoD) is a primary pursuer of operational robot 

technology (Barber, Davis, Kemper, Smith & Nicholson, 2007; Future Combat Systems, 2011; 
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McLurkin, 1996; Wilson, 2006;). In fact, Congress has mandated that one-third of military 

ground vehicles be unmanned by 2015-2020 (Chacksfield, 2008; National Defense, 2007; 

Taylor, 2008; Warren, 2006). Ground robots are typically used to maneuver on different terrains, 

and locate and deactivate mines (Kowalczuk & Czubenko, 2010). In addition to unmanned 

ground vehicles (UGVs), unmanned aerial vehicles (UAVs) are also taking on increased roles in 

military operations. In 2005, only 5% of military aircraft were unmanned, but in 2012 that 

number jumped to 70% (Ackerman & Shachtman, 2012). The Future Combat System (FCS) 

plans to employ networks of unmanned systems with varying levels of lethality and 

functionality, with each requiring unique rules of interacting (FCS, 2011). The plans to 

incorporate robots in military capacities would not be possible if robots had not made great 

strides in functionality since Asimov’s time.  

Robot Controls 

Originating early in the 20
th

 century, teleoperation, the operating of a system at a distance 

(Fong & Thorpe, 2001), gained popularity during the latter quarter of the century. Control and 

manipulation of these tools was similar to using a video game controller or remote-controlled toy 

(Sheridan, 1992). Since the most important aspect of the system was environmental 

maneuverability, human operators were required to closely monitor the system to ensure safety 

and obstacle avoidance. This type of control was, by necessity, limited to proximate interactions. 

EOD uses teleoperated robots to locate mines, but incorporating a dedicated operator ties a 

human asset to the robot asset, rather than free him/her for other duties. So just as early machine 

users suffered from heat and noise, collocated military operators are subject to adverse 
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environmental conditions, thereby reducing much of the advantages of robots in military 

operations. 

The current state of HRI research results from improvements in robot technology that 

occurred in the 1980s, as robots began to exhibit more behavior-based functionality (Arkin, 

1998). Advances in computer technology allowed robots to make decisions based on the 

environment (Goodrich & Schultz, 2007). As a result, robots were able to provide force 

feedback, and make decisions under shared control for obstacle avoidance. Updated systems 

removed a portion of the burden of control from the operators, yet remained under direct control. 

These changes, coupled with the advent of telecommunication advances, allowed humans to 

control robots from remote locations. Telepresence (Tachi, Arai & Maeda, 1989) allowed 

humans to maneuver robots in extreme locations such as sea exploration (Yuh, 2000), and outer 

space (Fong, 2005; Fong & Nourbakhsh, 2005). Telepresence also allowed soldiers to control 

unmanned systems from several miles away. By incorporating shared control with telepresence, 

robots are able to carry out certain decisions made by the operator and provide information about 

environmental cues of which the operator is unaware. The military uses UAVs such as the 

Predator, which remove the pilot from the cockpit and allow remotely controlled robots to 

execute identical missions as manned entities. Humans are now removed from danger and can 

fly planes from remote safe zones or even half way across the globe. Although telepresence 

removes humans from the environment, they still remain tied to controlling the system.  
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Figure 4: HRI Levels of Autonomy (adapted from Trafton et al., 2006) 

 

This increase in proactivity shifted a portion of the operator’s role to that of a supervisor 

(Figure 4). In fact, supervisory control, monitoring displays for scheduled or unscheduled events, 

(Wickens & Hollands, 2000) removes much of the burden of actively controlling the robot. In 

addition, a robot’s ability to perform certain actions in a more effective and safe manner than 

humans led to the increase in the number of platforms being used. More robot independence 

required less control-based interaction (Yanco & Drury, 2002), resulting in varying changes to 

the nature of human and robot interactions. As a result, HRI began to incorporate research from 

various fields such as robotics, computer science, psychology, and engineering as the role of the 

operator changed based on the nature of control or role of the robot. Therefore, HRI expands HR 
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relationships beyond mere tool manipulation by allowing for evaluations of increased autonomy 

and its affect on those relationships (Scholtz, 2003).  

Previous types of controls are beneficial, but limit the robot to being used as a tool 

relegated to task-specific functions. The control of the robot also makes the operator susceptible 

to loss in awareness and skill (Mitchell, Cummings & Sheridan, 2004; Sheridan, 1997). The 

types of interactions that humans have with robots depend on the level and behavior of 

autonomy, nature of information exchange, and team structure (Goodrich & Schultz, 2007). As 

autonomy level increases (Figure 4), the robot transitions from a tool to a peer (Breazeal, 2004; 

Scholtz, 2003). Scholtz (2003) discussed the need to shift interaction with a robot from a 

controlled entity to a teammate. The author went on to define a teammate as humans and robots 

working alongside one another to accomplish specific goals, while each performs their 

individually assigned tasks. The NASA Robonaut program is dedicated to building an 

autonomous humanoid robot to work side-by-side with astronauts (Murphy, 2004). Ultimately, 

the DoD desires a fully autonomous operational soldier robot by 2035 (National Defense, 2007; 

Warren, 2006). Robots will need to transition to the right side of the autonomy spectrum shown 

in Figure 4 in order for the visions of NASA and the DoD to take form.  

Autonomy 

Automation is the performing of a task, formerly assigned to a human, by a computerized 

system (Parasuraman & Riley, 1997). Though rooted in machine systems, and further developed 

in computerized systems, automation is autonomy’s predecessor. Autonomy is “a robot’s ability 

to accommodate variations in its environment” (Thrun, 2004, p. 14). Automation and autonomy 
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allow humans to be freed from certain tasks by shifting responsibility to the automated entity. 

Manual control requires the human to make and execute all decisions (Endsley & Kaber, 1999). 

An autonomous robot’s greatest benefit would be a reduction in human workload. Advances to 

teleoperated systems enhanced the design of controls and visual layouts, but were unable to free 

the robot from control, or lighten the operator’s cognitive duties. Autonomy makes it possible for 

human operators to use their cognitive skills more appropriately, and allows humans to oversee a 

plethora of tasks they would not be able to perform otherwise. However, there are certain issues 

that change the nature of work for the human at each level of autonomy. Consequently, Endsley 

& Kaber (1999) developed ten Levels of Automation (LOAs), which provide an understanding 

of how tasks change based on the level of automation (Table 3 on page 24). These automation 

levels parallel autonomy in robots. 

 

Autonomy Progression 

Teleoperation and telepresence controls remain near the direct control end of the 

spectrum of autonomy levels (Figure 4). But for tasks requiring true peer-to-peer (P2P) 

interaction, moving toward the right end of the spectrum is critical. Many telepresence systems 

incorporate shared control, thereby removing much of the burden of manual operation, and 

shifting a portion of decision making to the robot. But shared control requires the human to 

remain mentally engaged in monitoring displays and maneuvering controls, thereby creating an 

additional task along with manipulation.  
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Table 3: Levels of Automation (adapted from Endsley & Kaber, 1999) 

Level Title 

1 Manual Control 

2 Action Support 

3 Batch Processing 

4 Shared Control 

5 Decision Support 

6 Blended Decision Making 

7 Rigid System 

8 Automated Decision Making 

9 Supervisory Control 

10 Full Autonomy 

 

Mixed-initiative interaction (MII) is a type of autonomous interaction in which 

interactants autonomously initiate actions or respond to another’s actions appropriately (Adams 

et al., 2004; Driewer, Sauer & Klaus, 2007; Rosenthal & Veloso, 2010). MII is more advanced 

than shared control, but falls short of the supervisory control level. MII allows the robot to 

initiate decision generation and selection, and aids in keeping the human in the loop by allowing 

the robot to proactively communicate with the operator, rather than remain passively controlled 

or pinged. MII has proven beneficial for teleoperated and telepresence systems with long lag 

times such as space rovers (Fong & Thorpe, 2001). MII also benefits team performance by 

allowing collaboration to be based on the context of communication rather than scripted 

responses (Huntsberger, 2011), which allows the human to remain aware of system behavior. 

However, systems using MII continually keep the robot’s role reduced to that of task executer, 

rather than an independent decision maker.  
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Higher degrees of supervisory control are successful in freeing the human from direct 

control. At the supervisory control level, the system generates and selects options while the 

human observes. Increased responsibility by the robot changes the operator’s role from a 

controller to a monitor of robot actions. Since the operator shifts to becoming a passive monitor 

of systems, this level of enhanced autonomy results in a loss of operator system awareness and 

operator skill. In fact, humans tend to be less aware of system and environmental changes when a 

system makes a change of which the human is unaware (Endsley & Strauch, 1997).  

As robots function in roles that are less tool-based and more relational-based, the need for 

autonomy increases (Breazeal, 2004). At the full autonomy level (Table 3), the system carries 

out all tasks while the human is busy executing his/her own assigned tasks. Autonomy level 

determines whether or not a robot is a true teammate (Groom et al., 2010), and teammates 

operate differently than supervisors and subordinates (Goodrich, Olsen, Crandall & Palmer, 

2001). Reduced operator control increases the use and functionality of the robot—making it a 

greater asset to its human counterparts (Luck, McDermott, Allender & Russell, 2006). 

Automation can fundamentally change the nature of cognitive demands and 

responsibilities (Parasuraman, 2000). Robot autonomy levels should have immediate benefit to 

human workload. By removing the need for prompts, cognitive demand can be reduced for 

operators and teammates (Johnson, Saboe, Prewett, Coovert & Elliot, 2009). But as discussed 

previously, increasing levels of autonomy provide a new set of experiences for the human. As 

joysticks and control panels are removed, humans will gravitate toward more natural ways of 

interacting with robots. As robots begin to interact with humans as peers, the way those changes 

will affect the human is unclear. Luck and his associates (2006) evaluated levels of robot 
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autonomy and determined robot autonomy has an inverse relationship with human cognitive 

demand in that higher robot autonomy lowers robot error and reduces cognitive load of the 

operator. However, autonomy does not eliminate cognitive demand, it only redistributes it.  

Workload 

Although mental workload lacks a universally accepted definition, Sarno & Wickens 

(1995) defined it as the relationship between supply and demand of mental resources. Others 

defining workload discussed the relationship between information processing, mental effort and 

cognitive resources (Eggemeier, Wilson, Kramer & Damos, 1991; Gopher & Donchin, 1986; 

Hockey, 1997; Moray, 1979). Workload is affected by the demand of mental resources brought 

on as a result of task load and type, and when demand based on load and type compete for, or tax 

the supply of resources, performance suffers (Dixon & Wickens, 2003).  

Workload has a very close relationship with system autonomy. Autonomy is dedicated to 

reducing the cognitive responsibilities of the operator by assigning tasks to the automated agent 

(Prewett, Johnson, Saboe, Elliott & Coovert, 2010). The level of autonomy has varying affects 

on mental workload. The primary relationship between autonomy and workload is that taskings 

change with the operator’s role, and autonomation does not necessarily translate into reduced 

workload. Teleoperation taxes manual control and visual resources, but increases in autonomy 

make demands on attention and mental processing. As tasks change from active to passive, 

problems arise with situation awareness and although human tasks are minimized, the operator’s 

workload can increase due to more tasks he has to monitor. Failure to properly collaborate with 
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autonomous systems causes errors even more detrimental than if the operator was without the 

system.  

Current theories of workload evolved from Kahneman’s (1973) unitary resource theory. 

Kahneman theorized that all workload demands tax a single supply of cognitive resources. And 

that difficult tasks, rather than types of tasks, create a greater demand on those resources 

(Kahneman, 1973). Later Wickens (1976) developed the multiple resource theory (MRT). The 

MRT expands on the unitary model by suggesting that tasks pull from resources based on type. 

For example, auditory and visual tasks can be performed simultaneously by pulling from 

auditory and visual resources respectively, whereas the unitary model suggests that performance 

sufferes with concurrent tasks (Wickens, 2008). The Wickens model (Figure 5 on page 28) 

suggests that there are four dimensions of cognitive processing: work process, perceptual 

modalities, vusual channels, and processing codes. 
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Figure 5: The 4-D MRT from Wickens (2008) 

 

The work process demension divides tasks based on perception and cognition, which 

Wickens (2002) believed would draw from the same resource pool, from those based on 

responding to tasks, which draw from separate resources. Perceptual modalities, which are 

nested in the perception stage of the work process, divide stimuli based on the sensory modality 

used, such as auditory or visual. Visual channels are divided between focal vision, which is used 

to read text or recognize objects, and ambient vision, which is used for movement and self 

orientation. Finally, the processing codes dimension breaks tasks down into either spatial/manual 

skills or verbal comprehension/processing.   

Workload can be measured using subjective questionnaires and objective physiological 

measures. The NASA-Task Load Index (NASA-TLX; Hart & Staveland, 1988) measures 

subjective workload using six subscales: Mental Demand, Temporal Demand, Performance, 
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Effort, and Frustration. The NASA-TLX also produces a weighted average of the six subscales. 

The NASA-TLX has been shown to correlate to changes in workload (Matthews, Campbell, 

Falconer, Joyner, Huggins, Gilliland, Grier & Warm, 2002), and a high sensitivity to small 

workload changes (Collet, Averty & Dittmar, 2009).  

EEG has been used to measure workload. Studies have shown that changes in Alpha, 

Beta, and Theta activity reflect changes in participant workload (Brookings, Wilson & Swain, 

1996; Murata, 2005; Smith et al., 2001). Evaluating brain activity at each lobe (Taylor, 

Reinerman-Jones, Consenzo & Nicholson, 2010) and at each hemisphere (Dussault, Jouanin, 

Philippe & Guezennec, 2005) has also shown correlations to changes in workload. Indices have 

been derived to evaluate various aspects of workload such as the engagement index (Pope, 

Bogart & Bartolome, 1995; Scerbo, 2003), which uses Alpha, Beta, and Theta [ /(  + )]. The 

index of cognitive activity (ICA; Marshall, 2002) is a psychophysiological measurement of 

cognitive workload derived from changes in pupil dilation (Marshall, Pleydell-Pearce & 

Dickson, 2002). Eye tracking devices are used to measure ICA, which has been shown to reveal 

increases in mental workload (Marshall, 2002).  

Government agencies are actively pursuing methods by which to lessen the cognitive 

workload for warfighters, and simultaneously limit the affects induced by new systems 

(Allender, 2010; Consezo, Parasuraman & De Visser, 2010; Gillian, Riley & McDermott, 2010). 

Currently, pilots are required to monitor or operate several UAVs simultaneously, and even share 

those assets with other operators. Maintaining situation awareness affects workload. By 

removing the need for prompts and other forms of interactions, workload can be reduced for 

operators and teammates (Johnson et al., 2009).  
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If robot autonomy is designed to decrease the cognitive load of interactants, then those 

benefits will be counterproductive if humans are redirecting resources to interpret robot 

behavior. Warfighters operate under high stress environments and any added stress, or increased 

workload, could prove detrimental. In order to ultimately achieve HR teams in which the robot is 

fully autonomous and the operator’s workload is minimized, communication needs to be as 

natural as possible. As robots begin to take on more P2P roles, the ways in which they 

communicate will change (Yanco & Drury, 2002). P2P interactions will require teams to rely 

more on implicit communication and less on the explicit form. An important issue in P2P 

interactions is immediate, multi-modal feedback. Workload has been evaluated under different 

communication modalities and results show multimodal communication is most effective in high 

workload situations (Coovert, 2008). Human-human feedback occurs via communication, and 

humans are experts at interpreting the actions of other humans. Evaluating the current way in 

which humans communicate will be of great importance to communication in future HR teams. 

However, one drawback is the lack of theory associated with HRI and more specifically, HRI 

communication. A solid theoretical foundation should guide and benefit future HRI 

communication development.  

Purpose for Present Study 

Social signaling, which incorporates gestures, postures, and/or proxemics into 

communication, is a vital aspect of creating natural human-robot interplays. However, the 

explicit or implicit use of such signaling creates a dichotomy based on the intent of the signals. 
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Explicit communication, verbal or non-verbal, is intentional, whereas implicit communication is 

unintentional (Lackey et al., 2011). Research has primarily focused on the explicit nature and 

function of social signaling. In explicit communication, the message is primary and the action 

(gesture, posture, etc.) is supplementary. Since research shows that over half of human-human 

communication can be considered non-intentional (Mehrabian & Friar, 1969), this is an area that 

should not be overlooked by roboticists and researchers alike.  

This study will systematically and empirically compare perceptions of humans and robots 

executing identical actions. This study will contribute by empirically examining the perceived 

implicit meaning of actions executed by robots. Work has been done to have a robot explain its 

actions (Brooks, 2007); however this is not optimal for situations in which humans already have 

high cognitive responsibilities. This study will use previous research as a foundation (Blythe, 

Todd & Miller, 1999; Ellis, Sims, Chin, Pepe, Owens, Dolezal, Shumaker & Finkelstein, 2005; 

Riek, Rabinowitch, Bremner, Pipe, Fraser & Robinson, 2010; Saerbeck & Bartneck, 2010), but 

develop it further by analyzing human perceptions of the intent associated with the behavior 

rather than the functionality of the behavior. Given that humans have strong expectations for 

how particular non-verbal cues reflect specific mental states of another, it is important that the 

robot’s implicit non-verbal cues and the internal states to which they map adhere to human 

expectations (Breazeal et al., 2005).  

This study also provides benefit to future military operations that incorporate autonomous 

robots into HR warfighting teams. Pereira, Pimentel, Chaimowicz & Campos (2002) found that 

robots communicating implicitly with limited communication capabilities performed similarly to 

robotic teams communicating explicitly with advanced communication systems. They also found 
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that implicit behavior aids to provide a cover of stealth to communication, since implicit 

channels need not be utilized. Finally, Piunti, Castelfranchi & Falcone (2007) discovered an 

additional benefit to warfighters and argued that implicit communication strategies reduce the 

need for communication devices, which reduce cost, weight, and unreliability.  

The results of this study will provide new theoretical contributions to the training science 

community and evidence to support or contradict current theories related to human perception of 

robotic behavior. Additionally, the results will have generalizable implications for the use of 

implicit communication in HR teams. The following chapter will detail the experiment 

conducted in the present study. 

Research has been conducted in the area of HRI in order to include an implicit layer of 

communication within HRI. The majority of existing work has placed an emphasis on aiding the 

robot to accurately assess implicit signals sent from humans. Most of these efforts hope to aid 

robots in becoming better assistants, or tools, to humans (Goetz, Kiesler & Powers, 2003). 

Research has also evaluated implicit communication within robot-robot teams. However, little 

work has examined implicit modalities of communication for HR teams. Effective 

communication between humans and robots will only benefit the team if they share a mutual 

assessment of implicit cues. The aim for this work is to evaluate the effectiveness of humans at 

recognizing implicit actions of a non-anthropomorphic robot. Specifically, the primary goal for 

this research is to determine whether humans assign identical meanings to implicit cues received 

from a robot as they do for implicit cues received from a human by evaluating the following 

hypotheses: 
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H1: Participants will have no difference in objective performance measures for both video types.  

H2: Participants will have no difference in subjective performance measures for both video 

types.  

H3: Participants will report no difference in subjective workload after viewing both video types.  

H4: Participants will demonstrate no difference in physiological responses associated with 

increased workload while viewing both video types.   
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CHAPTER THREE: METHOD 

Sample Population 

Experimental data was collected from a total of 54 university students, who received 

class credit for participating, between the ages of 18-40 (age: M = 20.0, SD = 2.7). However, one 

outlier was removed from the data. Of the 53 remaining participants there were 26 males (age: M 

= 19.6, SD = 2.0) and 27 females (age: M = 20.5, SD = 3.1). Potential participants were excluded 

if they were pregnant, left-handed, or on medication. Participants were requested not to consume 

alcohol 24 hours before the study, and to abstain from caffeine two hours prior.  

Experimental Task 

 The experimental task required participants to view video recorded scenarios of human 

and robot soldiers executing movements associated with standard military operations in a 

deployed environment. The scenarios were prerecorded using standard recording video 

equipment. The participant’s task was completed on a standard desktop computer with a 22” 

(16:10 aspect ratio) monitor with a mouse. Each participant was tasked to view the executed 

movement, categorize each movement based on its implicit nature, and select a level of 

confidence in their chosen answer. Scenarios consisted of one entity executing each of the five 

implicit communications from two different angles. In one angle the entity moved from right to 

left, and in the other left to right. The participants saw each clip twice for a total of 20 clips per 

scenario.  
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Experimental Design 

Independent Variables 

The experiment was designed as a 2 x 2 x 5 repeated-measures design with three 

independent variables: type, size, and implicit communication. All 24 possible orders of the type 

x size condition were randomized and balanced for presentation to the participants. Since this 

was a repeated-measures design, each participant viewed each entity, as four separate scenarios, 

execute all five implicit communications. In addition, the presentation order of each implicit 

communication was randomized using a Latin Rectangle.  

 
Figure 6: Screenshot of Human Scenario 

 

Entity 

The four conditions for entity were Human 1 (Figure 6), Human 2, Robot 1, and Robot 2 

(Figures 7 & 8 on page 36). Human 1 was 6’1, 200 lbs, Human 2 was 5’10, 160 lbs, Robot 1 was 

a four-wheeled robot of size 47 x 33 x 25 in
3
, and Robot 2 was a four-wheeled robot of size 12 x 
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13 x 7 in
3
. Research assistants from the Active Lab at the Institute for Simulation and Training 

(IST) controlled the robots via teleoperation while recording the videos. 

 
Figure 7: Screenshot of Robot 1 Scenario 

 
Figure 8: Screenshot of Robot 2 Scenario 
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Implicit Communication 

The Headquarters Department of the Army’s Manual of Common Tasks: Warrior Skills 

Level 1 (HDAMCT; 2009) manual consists of several tasks that a soldier is required to carry out 

during combat. The manual is over 600 pages long and provides an extensive list of duties 

expected of a soldier. Duties include supporting an injured soldier, reacting to signals, and 

engaging the enemy. A few selected duties are shown in Table 4 and correlate to action 

languages (fleeing, hiding, pursuing, investigating, and patrolling) that coincide with activities 

that a robot soldier should be able to perform. These duties have been chosen for this experiment. 

 

Table 4: Implicit Communication Actions 

Action Language Definition Compiled Common Tasks 

Fleeing Run away from 

danger 

React to attack, gunfire, protect yourself 

Hiding Hide from danger React to attack, gunfire, protect yourself from 

enemy 

Pursuing To chase in order to 

overtake 

Engage an enemy 

Investigating To check, scan or 

evaluate  

React to a flare, examine an injury, recover a 

mine 

Patrolling To monitor an area Monitoring an area to check for danger 

Dependent Variables 

Classification 

 Participants were required to classify each video clip based on a list provided. The list 

included the following seven options: Patrolling, Hiding, Retreating, Investigating, Pursuing, I 
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do not know, and Other. Although there is no correct answer for each video, expected answers, 

based on definitions from the HDAMCT, were used to evaluate participant answers. 

 

Confidence 

 Each participant was required to self-report a level of confidence for his/her answer for 

each video clip. The confidence level was based on a seven-point Likert-type scale ranging from 

1 (strongly not confident) to 7 (strongly confident). 

 

Participant Questionnaires 

Participants completed a demographics questionnaire (Appendix A) to record information 

such as age, gender, and experience level with certain types of technologies. A restrictions 

checklist (Appendix B) was used to ensure that the participant met the inclusion criteria: normal 

state of health, normal or corrected vision, and handedness. 

 

Subjective Stress Measure 

The Dundee Stress State Questionnaire (DSSQ; Matthews et al., 2002) was used to assess 

each participant’s subjective stress level following each experimental scenario. Due to time 

limitations, the short form was used (Helton, 2004). The form allows participants to report 

changes in Task Engagement, Distress, and Worry. The DSSQ consists of a pre-test that was 

completed before beginning the experiment (Appendix C) and a post-test that was completed 

following each experimental scenario (Appendix D). 
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Subjective Workload Measure 

The NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988) was used to measure 

the participant’s subjective workload from each experimental scenario. The measure produces 

six workload subscales: Mental Demand, Physical Demand, Temporal Demand, Performance, 

Effort, and Frustration Level, as well as a single combined measure of Global Workload. The 

Global Workload measure is calculated as the weighted average of the six subscales, with each 

subscale weighted according to the number of times it is selected as the more important 

contributor in the paired comparisons section. The NASA-TLX was administered on the 

computer through a standard computer program (Appendix E).  

 

Physiological Measures 

Electroencephalogram (EEG) 

A system from Advanced Brain Monitoring (Figure 9 on page 41) was used to monitor 

Electroencephalography (EEG), which is the recording of electrical brain activity along the scalp 

(Gevins & Smith, 2007). The system uses the B-Alert X10 that samples at 256 Hz (256 samples 

per second). The ten-channel system has a nine-channel (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) 

EEG cap, with two references at each mastoid, and 2 electrocardiography (ECG) connectors, 

which monitor the activity of the heart and act as the tenth channel. Power spectral density 

analysis is used to compute values for Alpha (8-13 Hz), Beta (14-26 Hz), and Theta (4-7 Hz) 

activity at each site (Taylor et al., 2010). 

EEG was used to assess the workload of the participants. Studies have shown that 

changes in Alpha, Beta, and Theta activity reflect changes in participant workload (Brookings et 
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al., 1996; Murata, 2005; Smith et al., 2001). Evaluating brain activity at each lobe (Taylor et al., 

2010) and at each hemisphere (Dussault et al., 2005) has also shown correlations to changes in 

workload. The engagement index (Pope, Bogart & Bartolome, 1995; Scerbo, 2003) was derived 

to evaluate workload by using a single value consisting of a relationship between Alpha, Beta, 

and Theta [ /(  + )]. Data from sensor sites Cz, Pz, P3, and P4 was used, with each individual’s 

baseline value subtracted from their activity during the scenario to produce a change from 

baseline value. In addition, ECG records information concerning participants’ heart rate, heart-

rate variability, and inter-beat interval, which have been shown to reveal increases in workload 

(Veltman & Gaillard, 2010).  
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Figure 9: Advanced Brain Monitoring Ten Channel EEG System 

 

Eye Tracking 

The faceLAB 5 product by Seeing Machines was used to monitor eye tracking, aspects of 

the gaze and position of the eye (McCarley & Kramer, 2007). The faceLAB 5 device consists of 

a pair of cameras which are located off of the body (non-obtrusive) and samples at 60 Hz. The 

metrics recorded are Marshall’s Index of Cognitive Activity (ICA; Marshall, 2002), as well as 

information about randomness of fixation points, fixation duration, saccade duration, head 

position, blink rate, and blink length. The metric used for this research will be the ICA, which 

tracks changes in pupil dilation and reveals increases in cognitive effort (Marshall, 2002).  



 

 

42 

Experimental Procedure 

After the restrictions checklist was completed, acceptable participants were provided with 

an Informed Consent form that detailed their rights as a research participant, the purpose of the 

study, an overview of the procedure, and the potential risks associated with participating. 

The EEG cap was placed on the participant. The cap was aligned using the nasion (the 

midpoint between the eyes, just above the bridge of the nose) and inion (the bump found at the 

center of the occipital bone on the back of the skull). If necessary, the participant’s hair was 

parted at the site of each EEG sensor to ensure direct contact between the sensor and the scalp. 

Conductive gel was also used to ensure proper connection and to reduce the electrical impedance 

of the signal. In addition to the nine EEG sensors, the system used two reference electrodes – one 

on each mastoid bone (behind the ear), which were attached directly to the participant’s skin 

using adhesive pads. The tenth channel, consisting of two ECG sensors, was connected to the 

participant’s upper right collarbone and lower left rib bone. Once all sensors were in place, they 

were tested to confirm that the electrical resistance of each was below 40 kΩ. The participant 

was asked to relax with their eyes open while the data was collected. The data recorded during 

this period was used as a baseline to which recordings made during the experimental scenarios 

compared, accounting for the random variation in individual physiological differences. 

Once the baseline EEG data was collected, the participant was seated in front of a 

computer monitor and asked to complete a validated calibration technique that was developed by 

the eye tracker company. First, the research assistant adjusted the eye tracker to locate the 

participants’ face. Then a computer program automatically presented a series of calibration 

points that were used to map their visual field to the computer screen; the participant was guided 
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to set their gaze on each point one at a time and in order. The research assistant asked the 

participant to shift their gaze to the next location only after a valid measure for that location was 

obtained. A valid measure was determined by the amount of data loss while viewing each 

calibration point.  

The participant then completed the demographics questionnaire and the DSSQ pre-test.  

Following these questionnaires, the participant viewed the experimental rules via a PowerPoint 

presentation. Following the presentation, the participant completed a brief training scenario in 

order to become familiar with operating the system.  

Following the training scenario, the participant began the first experimental scenario. The 

order in which all participants completed the experimental scenarios was randomized and 

balanced. Participants viewed the scenarios one entity at a time. After viewing the clips, they 

were tasked to assign a meaning communicated by each action, and their level of confidence in 

their choice using a seven-point Likert type scale. A dialogue box (Figure 10 on page 44) 

appeared at the end of each clip, and participants chose one of the implicit communications. 

After an option was selected, confirmed, and confidence level chosen, the next clip began.  

After completing the first scenario, the participant completed the DSSQ Post-Test and the 

NASA-TLX. This pattern was repeated for the remaining three levels of entity. After the 

completion of the fourth experimental scenario and questionnaires, the EEG cap and sensors 

were removed from the participant, who was then allowed to leave. 
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Figure 10: Screenshot of dialogue box 
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CHAPTER FOUR: RESULTS 

Rationale 

The rationale for choosing the following analysis is to examine communication saliency. 

Although there are no correct answers, expected answers, based on the HDAMCT (2009), were 

used to score each implicit communication video for answer correctness. This analysis is based 

on those results. The answer selected for each implicit communication matched our expected 

answer over 50% of the time for each implicit communication video. The results showed that the 

expected answer was also the most frequent answer choice for each implicit communication for 

each type and entity. ** Denotes that sphericity was violated and the Greenhouse-Geisser 

correction was used. 

Order Effects 

Answer Correctness 

Unless stated otherwise, answer correctness, which is the measure of a match between a 

participant’s answer and the expected answer, was evaluated using repeated-measures ANOVAs 

with a 2 x 2 x 5 structure with variables type (Human and Robot), size (Large and Small), and 

implicit communication (Patrolling, Hiding, Retreating, Investigating, and Pursuing). Further 

analysis was conducted for each entity (Human 1, Human 2, Robot 1, and Robot 2) as necessary.  
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Answer Correctness for Scenario Order  

Significant main effects were found for answer correctness based on scenario order 

[F(2.97, 3099.61) = 10.67, p = 0.001]**. Participants scored significantly lower for Scenario 1 

(M = 77.9%, SD = 0.42) than Scenario 2 (M = 84.2%, SD = 0.36), Scenario 3 (M = 85.1%, SD = 

0.36), and Scenario 4 (M = 85.6%, SD = 0.35). 

 
Figure 11: Mean Answer Correctness for each Scenario 

 

Answer Correctness for Scenario Order by Type 

 Significant main effects were found for answer correctness based on type [F(1, 1058) = 

7.736, p = 0.006] for Scenario 2. Participants scored significantly higher on Human videos (M = 

87%, SD = 0.34) than Robot videos (M = 81%, SD = 0.39) during Scenario 2. There were no 

significant differences by type for Scenarios 1, 3, and 4.  
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Figure 12: Mean Answer Correctness for each Scenario by Type 

 

Answer Correctness Grouped by Entity Order 

Answer correctness was evaluated using a between-subjects ANOVA to compare groups 

who viewed a human first to those who viewed a robot first. No significant main effects were 

found. 

Subjective Confidence 

Subjective confidence for Scenario Order 

Significant main effects were found for subjective confidence based on scenario order 

[F(2.93, 3099.61) = 28.99, p = 0.001]**. Participants reported significantly lower confidence for 

Order 1 (M = 5.83, SD = 1.08) than for Order 2 (M = 6.05, SD = 1.01), Order 3 (M = 6.12, SD = 

1.01), and Order 4 (M = 6.13, SD = 1.05). Subjective confidence was also significantly higher for 

Order 4 (M = 6.13, SD = 1.05) than for Order 2 (M = 6.05, SD = 1.01). 
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Figure 13: Mean Subjective Confidence for Scenario Order 

 

Subjective Confidence for Scenario Order by Type 

Significant main effects were found for subjective confidence based on type for each 

Scenario. Participants reported significantly higher confidence on Human videos than Robot 

videos during each Scenario. Statistical values for each Scenario are listed in Table 5 below.   

 

Table 5: Statistical Values for Subjective Confidence by Scenario Order 

Scenario F (1, 1058) Value P Value Human M Human SD Robot M Robot SD 

1 7.47 0.006 5.91 1.02 5.73 1.14 

2 14.52 0.001 6.16 0.99 5.92 1.02 

3 6.69 0.010 6.2 1.04 6.04 0.99 

4 19.71 0.001 6.32 0.90 5.98 1.13 
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Figure 14: Mean Subjective Confidence for each Scenario by Type 

 

Subjective confidence Grouped by Entity Order 

Subjective confidence was evaluated using a between-subjects ANOVA to compare 

groups who viewed a human first to those who viewed a robot first. No significant main effects 

were found. 

Performance 

Answer Correctness 

Answer Correctness by Type & Entity 

Significant main effects were found for answer correctness based on type [F(1, 1059) = 

4.26, p = 0.039]. Participants scored significantly higher for Human Videos (M = 84.1%, SD = 

0.31) than Robot Videos (M = 82.3%, SD = 0.32).  
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Figure 15: Mean Answer Correctness by Type 

 

Significant main effects were found for answer correctness based on entity [F(3, 3177) = 

5.52, p = 0.001]. Participants scored significantly higher for Human 2 (M = 85.7%, SD = 0.35) 

than Human 1 (M = 82.5%, SD = 0.38) and Robot 2 (M = 80.8%, SD = 0.39). Participants also 

scored significantly higher for Robot 1 (M = 83.8%, SD = 0.37) than Robot 2 (M = 80.8%, SD = 

0.39).  
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Figure 16: Mean Answer Correctness for each Entity 

 

Answer Correctness by Type for each Implicit Communication 

There were no significant main differences for type answer correctness for any of the 

implicit communications. Since answer correctness for Patrolling videos had an overall mean of 

76%, and answer correctness for Investigating videos had an overall mean of 61%, Pareto charts 

for selected answers for both implicit communications are shown in Figure 16 and 17 on page 53. 

 
Figure 17: Mean Answer Correctness by Type for each Implicit Communication 
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Figure 18: Selected Answers for Patrolling Videos 

 

 
Figure 19: Selected Answers for Investigating Videos 

 

Answer Correctness by Implicit Communication 

 Significant main effects were found for answer correctness based on implicit 

communication [F(3.01, 2552.29) = 169.04, p = 0.001]**. Participants scored significantly 

higher for Hiding (M = 98.3%, SD = 0.13) than Patrolling (M = 75.9%, SD = 0.43), Retreating 
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(M = 94.1%, SD = 0.24), Investigating (M = 61.2%, SD = 0.49), and Pursuing (M = 86.4%, SD = 

0.34). Participants scored significantly higher for Retreating (M = 94.1%, SD = 0.24) than 

Patrolling (M = 75.9%, SD = 0.43), Investigating (M = 61.2%, SD = 0.49), and Pursuing (M = 

86.4%, SD = 0.34). Participants scored significantly higher for Pursuing (M = 86.4%, SD = 0.34) 

than Patrolling (M = 75.9%, SD = 0.43). Investigating scores were significantly lower than all 

other implicit communications. 

 
Figure 20: Mean Answer Correctness for each Implicit Communication 

Subjective Confidence 

Unless stated otherwise, subjective confidence was evaluated through repeated-measures 

ANOVAs using a 4 x 5 structure with variables entity (Human 1, Human 2, Robot 1, and Robot 

2), and implicit communication (patrolling, hiding, retreating, investigating, and pursuing). 
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Subjective Confidence by Type 

 Significant main effects were found for subjective confidence based on type [F(1, 1059) = 

80.89, p < 0.001]. Participants reported significantly higher confidence for Human videos (M = 

6.14, SD = 0.85) than Robot videos (M = 5.92, SD = 0.93).  

 
Figure 21: Mean Subjective Confidence by Type 

 

Subjective Confidence by Entity 

 Significant main effects were found for subjective confidence based on entity [F(3, 3177) 

= 31.77, p = 0.001]. Participants reported significantly higher confidence for Human 1 (M = 

6.09, SD = 1.04) and Human 2 (M = 6.19, SD = 0.95) than Robot 1 (M = 5.91, SD = 1.05) and 

Robot 2 (M = 5.93, SD = 1.11). Subjective confidence was also significantly higher for Human 2 

(M = 6.19, SD = 0.95) than Human 1 (M = 6.09, SD = 1.04). 
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Figure 22: Mean Confidence for each Entity 

 

Subjective Confidence by Entity for each Implicit Communication 

Patrolling 

Significant main effects were found for subjective confidence based on type for implicit 

communication. Participants reported significantly higher confidence for answers on Human 

videos than answers on Robot videos for each implicit communication except Investigating. 

Statistical values for each Scenario are listed in Table 6 below.   

 

Table 6: Statistical Values for Subjective Confidence by Implicit Communication 

Implicit Comm. F(1, 846) Value P Value Human M Human SD Robot M Robot SD 

Patrolling 9.45 0.002 5.83 1.20 5.58 1.17 

Hiding 13.09 0.001 6.46 0.72 6.26 0.90 

Retreating 4.32 0.038 6.28 0.88 6.15 0.97 

Investigating 1.51 0.220 5.97 1.00 5.89 1.07 

Pursuing 32.50 0.001 6.15 1.00 5.74 1.11 

 

5.7 

5.8 

5.9 

6 

6.1 

6.2 

6.3 

H1 H2 R1 R2 

C
o

n
fi

d
e

n
ce

 (
1

-7
) 



 

 

56 

 
Figure 23: Mean Confidence for each Entity by Implicit Communication 

Subjective Measures 

Stress (DSSQ) 

 Responses to the DSSQ short version were used to calculate values of Distress, 

Engagement, and Worry. The values computed from the baseline measure administered prior to 

the experimental sessions were subtracted from the values obtained from each experimental 

scenario to account for individual variation in baseline stress. The resulting change scores were 

each evaluated through repeated-measures ANOVAs using a 4 x 5 structure with variables entity 

(Human 1, Human 2, Robot 1, and Robot 2), and implicit communication (patrolling, hiding, 

retreating, investigating, pursuing). There were no significant main effects for Distress, 

Engagement, or Worry across type or entity.   
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Figure 24: Mean Scores for DSSQ by Type 

Workload (NASA-TLX) 

 The NASA-TLX produced six workload subscales: Mental Demand, Physical Demand, 

Temporal Demand, Performance, Effort, and Frustration Level, as well as a single combined 

Total Workload based on the weighted average of the six subscales. Each of these values was 

evaluated through repeated-measures ANOVAs using a 4 x 5 structure with variables entity 

(Human 1, Human 2, Robot 1, and Robot 2), and implicit communication (patrolling, hiding, 

retreating, investigating, pursuing). There were no significant main effects across entity for 

Mental Demand, Physical Demand, Temporal Demand, Effort, Frustration, or Total Workload.   
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Figure 25: Mean Values for NASA-TLX Subscales for each Type 

Physiological Measures 

Experimental data was collected from a total of 54 university students (age: M = 20.0, SD 

= 2.7). However, due to errors with the physiological sensors 2 participants were removed from 

the data. Of the 52 remaining participants there were 25 males (age: M = 19.6, SD = 2.0) and 27 

females (age: M = 20.5, SD = 3.2).  

Electroencephalogram (EEG) 

 Results from this analysis yielded no significant main effects or interactions across type. 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

H
u

m
an

 

R
o

b
o

t 

Global Mental Physical Temporal Perf. Effort Frust. 

N
A

S
A

-T
L

X
 



 

 

59 

 
Figure 26: Mean Values for the Engagement Index by Type 

Electrocardiogram (ECG) 

 Data collected from the ECG was used to determine heart rate variability (HRV), which 

is the statistical variance of the time period between heartbeats. Type was found to have a 

significant effect on HRV [F(1, 51) = 5.43, p = 0.024]. Participants had significantly higher HRV 

while completing Robot videos (M = 6.60, SD = 18.04) than while completing Human videos (M 

= 3.54, SD = 19.42).  
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Figure 27: Mean HRV Change in Baseline by Type 

 

Entity was found to have a significant effect on HRV [F(3, 153) = 2.83, p = 0.040]. 

Participants had significantly higher HRV while completing the Robot 1 (M = 7.96, SD = 19.86) 

scenario than while completing the Human 1 (M = 2.05, SD = 20.14) scenario.  
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Figure 28: Mean HRV Change from Baseline for each Entity 

Eye Tracker 

Experimental data was collected from a total of 54 university students (age: M = 20.02, 

SD = 2.7). However due to errors with the eye tracker, 9 participants were removed from the 

data. Of the 45 remaining participants there were 24 males (age: M = 19.7, SD = 2.1) and 21 

females (age: M = 20.5, SD = 3.6).  

 

Index of Cognitive Activity 

Type was found to have a significant effect on ICA [F(1,44) = 19.09 p < 0.001]. 

Participants had significantly higher ICA values while viewing robot videos (M = 0.33, SD = 

0.09) than while viewing Human videos (M = 0.30, SD = 0.08).  
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Figure 29: Mean ICA Values by Type 

 

Entity was found to have a significant effect on ICA [F(3, 132) = 9.04, p = 0.001]. 

Participants had a significantly higher ICA value for Robot 1 (M = 0.32, SD = 0.09) than Human 

1 (M = 0.29, SD = 0.09), and a significantly higher ICA value for Robot 2 (M = 0.33, SD = 0.09) 

than Human 1 (M = 0.29, SD = 0.09) and Human 2 (M = 0.31, SD = 0.08). Participants also had a 

significantly higher value for ICA for Human 2 (M = 0.31, SD = 0.08) than Human 1 (M = 0.29, 

SD = 0.09).  

 

 0.260  

 0.270  

 0.280  

 0.290  

 0.300  

 0.310  

 0.320  

 0.330  

 0.340  

 0.350  

Human Robot 

IC
A

 V
a

lu
e

s 



 

 

63 

 
Figure 30: Mean ICA Values for each Entity 

Size Effects 

NASA-TLX Performance Subscale 

Significant main effects were found for size for the NASA-TLX Performance Subscale 

[F(1, 52) = 9.26, p = 0.004]. Participants scored Performance significantly higher (meaning that 

they believed they performed worse) for the large entities (Human 1, Robot 1; M = 30.09, SD = 

20.81) than the small entities (Human 2, Robot 2; M = 24.53, SD = 17.08).  
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Figure 31: Mean Values for the NASA-TLX Performance Subscale for each Size 

 

Performance Subscale 

Significant main effects were found for the Performance Subscale [F(2.51, 130.72) = 

4.03, p = 0.013]** across entity. Participants scored Performance significantly higher (meaning 

that they believed they performed worse) for Human 1 (M = 29.53, SD = 22.50) and Robot 1 (M 

= 30.66, SD = 19.10) than Human 2 (M = 23.68, SD = 19.20). And scored Performance 

significantly higher (meaning that they believed they performed worse) for Robot 1 (M = 30.66, 

SD = 19.10) than Robot 2 (M = 25.38, SD = 14.90).  

 

0 

5 

10 

15 

20 

25 

30 

35 

Large Small 

P
e

rf
o

rm
a

n
ce

 S
u

b
sc

a
le

 



 

 

65 

 
Figure 32: Mean Values for the NASA-TLX Performance Subscale for each Entity 

Index of Cognitive Activity 

Significant main effects were found for size for the ICA [F(1, 44) = 6.21, p = 0.017]. 

Participants had significantly higher ICA values for the small entities (Human 2, Robot 2; M = 

0.324, SD = 0.09) than the large entities (Human 1, Robot 1; M = 0.309, SD = 0.09).  
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Figure 33: Mean ICA Values for each Size 
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CHAPTER FIVE: CONCLUSION 

Hypothesis H1 

Summary of Results 

Hypothesis H1, which predicted that participants would have no difference in objective 

performance measures, was not supported by the empirical data. Participants scored significantly 

higher for Human videos than for Robot videos. 

Discussion 

Although participants scored significantly higher for Human (84%) than for Robot (82%) 

videos, both scores were above 80%. This shows that participants had a high chance of 

accurately interpreting the cues of both entity types. However, the difference was significant 

between the two. Regardless of entity type, participants scored lower on the less salient implicit 

communications (patrolling and investigating), and higher for the more salient (hiding and 

retreating), for each entity. This shows that communication saliency may not depend on entity. 

Since one human entity outperformed one robot and one robot also outperformed one human, it 

can be argued that humans can successfully interpret implicit cues from any entity. There was 

also an increase in performance based on scenario order. The primary struggle of correctly 

labeling an action occurred during Scenario 1, effectively making Scenario 1 a training scenario. 

The actual training task that participants underwent did not include any of the executed implicit 

communications. So, participants saw the implicit actions for the first time during Scenario 1. 
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After each participant saw the behaviors, regardless of entity, they were able to properly assign 

those movements to the proper category. This shows that learning of certain behaviors can occur 

across any entity. This is further supported by the fact that participants who viewed human 

videos prior to robot videos showed an increase in performance for successive scenarios, as did 

participants who saw robot videos first. Also, the lack of significant difference between groups 

who saw robots or humans first implies that performance was relatively identical regardless of 

entity.   

A limitation of the study was the limited amount of answer choices. Allowing 

participants to write in all answers might have revealed more significant differences, but would 

have also lengthened the study. Even when participants selected “other”, most chose an answer 

synonymous with the expected answer, such as scanning or looking, for investigating.  

Hypothesis H2 

Summary of Results 

 Hypothesis H2, which predicted that participants would have no difference in subjective 

performance measures, was not supported by the empirical data. Participants were consistently, 

significantly more confident in answer choices for Human videos than for Robot videos.  

Discussion 

 Unsurprisingly, participants reported more confidence during human videos than robot 

videos. Human participants have more experience interacting with humans than with robots. 
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Even when robots performed identical movements, the participants were more confident in their 

answers for the human entities. This was also the case for the more salient implicit 

communications, and one of the less salient implicit communications (patrolling). However, 

there was no significant difference for the least salient implicit communication (investigating). 

Humans are more comfortable communicating with humans (Breazeal, 2004), but as experience 

interacting with robots produces more expertise, this difference could subside. It is also 

important to note that even though answer choices were limited, participants still showed more 

confidence in their answers for humans. Finally, when robot entities resulted in higher objective 

scores than a human entity, robots maintained lower levels of subjective confidence. 

Hypothesis H3 

Summary of Results 

Hypothesis H3, which predicted that participants would report no difference in subjective 

workload between video types, was not supported by the empirical data. Participant’s responses 

resulted in no significant differences for the DSSQ or the NASA-TLX. 

Discussion 

Subjective load is correlated to the cost of the task to the operator (Averty, Collet, 

Dittmar, Athenes & Vernet-Maury, 2004). Since the tasks were designed to be equal across 

entities, they were of equal cost to the participants. Most likely, participants exerted identical 

levels of cognitive effort in interpreting, and labeling, the cues of each entity type.   
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 Hypothesis H4 

Summary of Results 

Hypothesis H4, which predicted that participants would demonstrate no difference in 

physiological responses associated with increased workload while viewing robot videos versus 

human videos was only partially supported by the empirical data. Robot videos had significantly 

higher values for ICA than Human videos. However, differences in the engagement index across 

entities were insignificant. Participants also had significantly lower HRV for Human videos than 

for Robot videos. 

Discussion 

 Lower HRV has been shown to reveal increased levels of workload (Fairclough, 

Venables & Tattersall, 2004). However, HRV has been analyzed across certain bandwidths, as 

bandwidths have varying responses to increased workload (Fairclough et al., 2004). The system 

used for this experiment totaled HRV across each bandwidth so it is unclear how the bands 

responded individually.  

Task difficulty was identical across entities. Apparently, the engagement level did not 

require a change based on entity, since the task had not changed (Freeman, Mikulka, Scerbo, 

Prinzel & Clouatre, 2000). Participant engagement level settled into a range and most likely 

stayed in that range regardless of entity. 

But the ICA values reveal increased cognitive effort during the robot videos. Perhaps this 

workload response was based on learning since the participants were unfamiliar with the robots. 
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Learning has been shown to demonstrate physiological workload responses (Faircloug et al., 

2004; Coyne, Baldwin, Cole, Sibley & Roberts, 2009). The participants may also have been 

paying more attention to the robots, resulting in increased mental effort. Pupil dilation can also 

be the result of ambient light (De Greef, Lafeber, Oostendorp & Lindenberg, 2009). A limitation 

of the study is that the robots, due to their heights, were lower on the screen than humans. So the 

change in pupil diameter may have resulted from a change in eye position relative to light on the 

screen or in the laboratory. Mental demand has been shown to decrease with experience 

(Fairclough et al., 2004) but robot ICA was higher than humans regardless of scenario order. 

Differences may have been the result of a change in strategy for robots or a reduction of 

cognitive effort in humans (Marshall et al., 2002). 

Conclusions 

Fong, Thorpe, and Baur (2003) suggested that research should focus on how human and 

robot entities “influence each other”, which assumes that humans are influenced by their 

perception of robotic behavior. There is evidence to support this, since humans had increased 

ICA values for robots. Although this experiment only taxed one channel of cognitive resources, 

there is still evidence to support an increase in the demand of that channel while viewing robot 

videos.  

Increased autonomy is viewed as the answer to the mental workload problem. But 

between supervisory control and full autonomy, a great chasm exists. And it remains unclear 

how working alongside robots will affect the human cognitively. Controlling and supervising 

robots is a top-down relationship, but operating in proximity to a robot is a side-by-side 
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relationship that has rarely been investigated. Further evaluation is necessary in order to 

understand how humans will work with robots as peers.  

Implicit communication should be evaluated at all levels of autonomy as an additional 

modality of communication. Just as adaptive automation has benefits, adaptive communication 

may benefit teammates as well. Since physiological measures are being researched to make 

robots aware of human state (Rani & Adams, 2007), it may be beneficial for explicit 

communication to trigger if the human shows a spike in cognitive activity, similar to adaptive 

automation shifts based on cognitive load (Freeman et al., 2000). 

Future Research 

 Kiesler & Goetz (2002) evaluated humans’ mental models of robots related to the 

sociability, intellect, and personality of the robot. These attributes are important in areas where 

robots behave in a more humanlike manner. In order to balance the one-sidedness of research 

regarding this relationship, more work is needed to develop the human mental model of robot 

behavior and also focus on the intent of robot behavior based on observed actions. Having the 

ability to properly interpret robotic behavior will allow humans to infer intent from those actions, 

which is the case when observing human behavior. Brooks (2007) suggested that just as humans 

construct mental models of one another based on abilities and intentions; humans will also 

construct mental models of robots based on the robot’s abilities and intentions. 

Future research should evaluate human decision-making based on implicit cues of a 

robot. It is one thing to label the implicit nature of an action, but it is quite another to make 

decisions based on the cues of an autonomous robot teammate. Using similar movements such as 
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those used in this study in the context of a simulated battlespace should reveal how human 

behavior differs when receiving cues from humans versus robots.  

Application 

Research has evaluated how anthropomorphic features enhance communication between 

humans and robots (Blow, Dautenhahn, Appleby, Nehaniv & Lee, 2006; Bruce, Nourbakhsh & 

Simmons, 2002; O’Brien, Sutherland, Rich & Sidner, 2011; Powers & Kiesler, 2006; Waldherr, 

Romero & Thrun, 2000), but practical actions have not been explored as often (Giardini & 

Castelfranchi, 2004). The perception of the action is the most important aspect implicit 

communication. Unnoticed, invisible, or misinterpreted actions break down the communicative 

intent of the actions being performed. This results in delayed goal accomplishment, delayed 

communication, or reverting back to explicit communication modalities. Castelfranchi (2009) 

suggested that teammates interacting in a proximate location would incorporate implicit 

communication into their collaboration and develop it as they become more experienced in their 

interaction. The dynamic nature of the operational environment requires soldiers to perform 

simultaneous tasks with little room for error (Muth, Kruse, Hoover & Schmorrow, 2006). Mental 

resources are occupied with military operations, and do not need to be spent interpreting robotic 

actions (Gillian et al., 2010). Once the mental model of robotic behavior is solidified, human 

teammates should be able to operate alongside robots as viable social partners. However, 

familiarity with this relationship should not occur in the field. Long-term improvements to HRI 

should increase a robot’s utility, increase team performance, and reduce stress on human 

teammates (Evans & Jentsch, 2010).  
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APPENDIX A: DEMOGRAPHICS QUESTIONNAIRE 
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Demographics Questionnaire 

 

Participant # _______    Age ______ Major ________________  Date ___________  Gender 

___ 

 

1.  What is the highest level of education you have had? 

Less than 4 yrs of college ____  Completed 4 yrs of college ____  Other ____ 

 

2.  When did you use computers in your education? (Circle all that apply) 

 

Grade School  Jr. High  High School   

Technical School  College   Did Not Use 

 

3.  Where do you currently use a computer? (Circle all that apply) 

Home  Work  Library Other________           Do Not Use 

 

4. How many hours per day do you use a computer? ___________ 

 

5.  For each of the following questions, circle the response that best describes you. 

 

How often do you: 

Use a mouse?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use a joystick?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use a touch screen?  Daily, Weekly, Monthly, Once every few months, Rarely, 

Never 

Use icon-based programs/software? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use programs/software with pull-down menus? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use graphics/drawing features in software packages? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use E-mail?   Daily, Weekly, Monthly, Once every few months, Rarely, 

Never 

Operate a radio controlled vehicle (car, boat, or plane)?   

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Play computer/video games?   

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

 

6.  Which type(s) of computer/video games do you most often play if you play at least once 

every few months? 

 

7.  Which of the following best describes your expertise with computers? (check √ one) 

_____ Novice 

_____ Good with one type of software package (such as word processing or slides) 
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_____ Good with several software packages 

_____ Can program in one language and use several software packages 

_____ Can program in several languages and use several software packages 

 

8. How many hours per day do you watch television? ________ 

 

9. How many hours per day do you spend reading? __________ 

 

10.  Are you in your usual state of health physically?   YES          NO 

     If NO, please briefly explain: 

 

11.  How many hours of sleep did you get last night? ______ hours 
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12. What is your occupation? ______________ 

 

13. How often do you feel eye strain?  

0  1  2  3  4  5 

Not at all  Mildly    Average    Highly 

 

14. During an average work day, do you feel that you focus on near objects (about 2 meters 

away) more than objects that are far away (6 meters or more)?  

1  2  3  4  5 

          Strongly disagree     Agree      Strongly 

agree  
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APPENDIX B: RESTRICTIONS CHECKLIST 
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Participant #: Date:   
 Start time:  

Restrictions Checklist    

 Yes No  

Are you 18-40 years old?      

Have you had any caffeine in the last 2 hours?      

Have you had any nicotine in the last 2 hours?       

Have you had any Alcohol in the last 24 hours?       

Have you had any sedatives or tranquilizers in the last 24 hours?      

Have you had any aspirin, Tylenol, or similar medications in the last 24 
hours?       

Have you had any antihistamines or decongestants in the last 24 
hours?       

Have you had any anti-psychotics or anti-depressants in the last 24 
hours?       

Is your hair wet?      

Do you have woven or artificial hair?       

Are you pregnant?       

Do you have any metal plates in your head?       

Are you color blind?       

Do you have normal or corrected to normal vision?      

Do you have a history of epilepsy or seizures?      

    
    

 Left  Right Either 

Do you have any impairment of your dominant arm or hand?        

Are you right handed?        

Which hand do you use to write with?       

Which hand do you use to throw a ball?        

Which hand do you hold a toothbrush with?        

Which hand holds a knife when you cut things?       

Which hand holds a hammer when you nail things?        
 

 

 



 

 

80 

APPENDIX C: DUNDEE STRESS QUESTIONNAIRE PRE-TEST 
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QUESTIONNAIRE 

 
 

General Instructions 

 

This questionnaire is concerned with your feelings and thoughts at the moment. Please answer every 

question, even if you find it difficult.  Answer, as honestly as you can, what is true of you.  Please do not 

choose a reply just because it seems like the 'right thing to say'. Your answers will be kept entirely 

confidential.  Also, be sure to answer according to how you  feel AT THE MOMENT. Don't just put 

down how you usually feel. You should try and work quite quickly:  there is no need to think very hard 

about the answers.  The first answer you think of is usually the best. 

 

 For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes 

your feelings AT THE MOMENT.  

 

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true  = 4  
  

1. The content of the task will be dull.  0 1 2 3 4 

2. I feel relaxed.        0 1 2 3 4  

3. I am determined to succeed on the task.  0 1 2 3 4 

4. I feel tense.  0 1 2 3 4 

5. Generally, I feel in control of things.  0 1 2 3 4 

6. I am reflecting about myself.  0 1 2 3 4  

7. My attention is directed towards the task.  0 1 2 3 4 

8. I am thinking deeply about myself.  0 1 2 3 4 

9. I feel energetic.  0 1 2 3 4  

10. I am thinking about something that happened earlier today. 0 1 2 3 4 

11. I will find the task too difficult for me.   0 1 2 3 4 

12. I will find it hard to keep my concentration on the task. 0 1 2 3 4 

13. I am thinking about personal concerns and interests.  0 1 2 3 4 

14. I feel confident about my performance.  0 1 2 3 4 

15. I am examining my motives.  0 1 2 3 4 

16. I feel like I could handle any difficulties I encounter.  0 1 2 3 4 

17. I am motivated to try hard at the task.  0 1 2 3 4 

18. I am thinking about things important to me.  0 1 2 3 4 

19. I feel uneasy.  0 1 2 3 4 

20. I feel tired.  0 1 2 3 4 
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APPENDIX D: DUNDEE STRESS QUESTIONNAIRE POST-TEST 
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QUESTIONNAIRE 

 
 

General Instructions 

 

This questionnaire is concerned with your feelings and thoughts while you were performing the task. 

Please answer every question, even if you find it difficult.  Answer, as honestly as you can, what is true of 

you.  Please do not choose a reply just because it seems like the 'right thing to say'. Your answers will be 

kept entirely confidential.  Also, be sure to answer according to how you  felt WHILE PERFORMING 

THE TASK. Don't just put down how you usually feel. You should try and work quite quickly:  there is 

no need to think very hard about the answers.  The first answer you think of is usually the best. 

 

 For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes 

your feelings WHILE PERFORMING THE TASK.  

 

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true  = 4  
  

1. The content of the task was dull.  0 1 2 3 4 

2. I felt relaxed.        0 1 2 3 4  

3. I was determined to succeed on the task.  0 1 2 3 4 

4. I felt tense.  0 1 2 3 4 

5. Generally, I felt in control of things.  0 1 2 3 4 

6. I reflected about myself.  0 1 2 3 4  

7. My attention was directed towards the task.  0 1 2 3 4 

8. I thought deeply about myself.  0 1 2 3 4 

9. I felt energetic.  0 1 2 3 4  

10. I thought about something that happened earlier today.  0 1 2 3 4 

11. I found the task too difficult for me.   0 1 2 3 4 

12. I found it hard to keep my concentration on the task. 0 1 2 3 4 

13. I thought about personal concerns and interests.  0 1 2 3 4 

14. I felt confident about my performance.  0 1 2 3 4 

15. I examined my motives.  0 1 2 3 4 

16. I felt like I could handle any difficulties I encountered.  0 1 2 3 4 

17. I was motivated to try hard at the task.  0 1 2 3 4 

18. I thought about things important to me.  0 1 2 3 4 

19. I felt uneasy.  0 1 2 3 4 

20. I felt tired.  0 1 2 3 4 
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APPENDIX E: NASA TASK LOAD INDEX 
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Figure 34: Part 1 of the NASA-TLX Computer Program 
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Figure 35: Part 2 of the NASA-TLX Computer Program 
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