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ABSTRACT 

Discrete models are used in describing various microscopic phenomena in many branches 

of science, ranging from biology through chemistry to physics. Arrays of evanescently coupled, 

equally spaced, identical waveguides are prime examples of optical structures in which discrete 

dynamics can be easily observed and investigated. As a result of discretization, these structures 

exhibit unique diffraction properties with no analogy in continuous systems. Recently nonlinear 

discrete optics has attracted a growing interest, triggered by the observation of discrete solitons 

in AlGaAs waveguide arrays reported by Eisenberg et al. in 1998. So far, the following 

experiments involved systems with third order nonlinearities. 

 In this work, an experimental investigation of discrete nonlinear wave propagation in a 

second order nonlinear medium is presented. This system deserves particular attention because 

the nonlinear process involves two or three components at different frequencies mutually locked 

by a quadratic nonlinearity, and new degrees of freedom enter the dynamical process. 

In the first part of dissertation, observation of the discrete Talbot effect is reported. In 

contrast to continuous systems, where Talbot self-imaging effect occurs irrespective of the 

pattern period, in discrete configurations this process is only possible for a specific set of 

periodicities.   

The major part of the dissertation is devoted to the investigation of soliton formation in 

lithium niobate waveguide arrays with a tunable cascaded quadratic nonlinearity. Soliton species 

with different topology (unstaggered – all channels in-phase, and staggered – neighboring 
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channels with a π relative phase difference) are identified in the same array. The stability of the 

discrete solitons and plane waves (modulational instability) are experimentally investigated. 

In the last part of the dissertation, a phase-insensitive, ultrafast, all-optical spatial 

switching and frequency conversion device based on quadratic waveguide array is demonstrated. 

Spatial routing and wavelength conversion of milliwatt signals is achieved without pulse 

distortions.     
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CHAPTER ONE: INTRODUCTION 

Stanisław Ulam, the celebrated Polish mathematician and godfather of the field now 

known as nonlinear science, famously remarked that using term “nonlinear science” was like 

“calling the bulk of zoology the study of non-elephants”. He meant that linear processes are the 

exception rather than the rule; that most phenomena are inherently nonlinear; and that the effects 

of nonlinearity are apparent everywhere in nature, from the synchronized flashing of fireflies 

through clear-air turbulence to tornadoes and tsunamis [1]. Therefore experimental investigations 

of nonlinear processes, which at first look seem to be very academic and not applicable to 

anything real, are attracting growing attention.  

On the other hand, classical physics, developed over thousands of years, treats 

phenomena occurring in nature in a continuous manner. However it can only represent average 

behavior of many microscopic interactions between smaller entities, i.e. electrons, molecules, 

organized in larger scale structures. The dynamics of the structures can be described using 

discrete models, under the assumption that energy is localized in discrete points in space and the 

forces governing the interactions between the entities are dissociated from them. The 

investigation of the interactions is a hot topic currently in physics. The year 1939 witnessed the 

origin of the study of dynamics in discrete systems when Frenkel and Kontorova [2] used a 

discrete model to describe the propagation of dislocations inside a crystal. Fifteen years later 

Fermi, Pasta and Ulam [3] reported, in their seminal paper, the observation of recurrence 

phenomenon in a nonlinear lattice.  Discrete nonlinear models were used to explain vibration in 
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crystals [4, 5] and the dynamics of crystals exhibiting structural phase transitions [6]. Within the 

last three decades nonlinear localization phenomena in lattices has attracted a steadily growing 

interest, and their existence has been predicted in a wide range of systems (in molecular chains 

[7], atomic lattices [8, 9], hydrocarbon structures [10, 11], Josephson-junction ladders [12, 13] 

and electrical transmission lines [14] to mention just a few). Quite recently, nonlinearly self-

trapped states in arrays of Bose-Einstein condensates were predicted using a discrete Schrödinger 

model and observed experimentally [15, 16]. The diversity of these phenomena and their 

richness compared to those in continuous systems stems essentially from the mutual interplay of 

the peculiar transport properties (diffusion, diffraction, dispersion, tunneling) coupled with the 

specific nonlinearity of the lattices. In particular, the differences to continuous systems are 

significant if the lattice topology is such that the excitation dynamics may be described by the 

linear interaction of many nonlinear, but fairly simple unit cells. In this particular case the lattice 

is frequently termed a discrete system. Consequently, the respective localized structures are 

called discrete breathers or discrete solitons. 

 Because of the geometrical dimensions involved, the approaches to experimental 

observations in the above mentioned cases are limited. However it is often possible to develop 

discrete models of a macroscopic phenomenon. In optics, weakly coupled waveguide arrays [17], 

chains of coupled microresonators [18] and photonic crystals [19] are prime examples of 

structures where discrete dynamics can be observed and investigated. The linear properties of 

one-dimensional waveguide chains were first theoretically addressed in 1965 by Jones [20] and 

experimentally verified a few years later [17]. The idea that light could trap itself and form a 

soliton due to the Kerr nonlinear effect in optical waveguide arrays was suggested by 

Christodoulides and Joseph in 1988 [21]. Their work was followed by theoretical studies of 

 2 



 

discrete optical systems with other kinds of nonlinearities, i.e. quadratic [22, 23], photorefractive 

[24] and recently dissipative systems [25, 26]. To date the experimental studies are restricted to 

frequency degenerate effects in media with Kerr [27, 28], photorefractive [29, 30] and 

orientational nonlinearities [31] where various discrete solitons associated with a diversity of 

linear diffraction properties have been observed. But because the very interplay between these 

linear transport phenomena and the nonlinearity govern the localization process, it is challenging 

to study localization phenomena for other more diverse nonlinearities. In this respect quadratic 

nonlinearities deserve particular attention because the interaction process involves two or three 

components at different frequencies and new degrees of freedom enter the dynamical process. 

The main goal of the work presented in this dissertation was to experimentally verify 

theoretical predictions about discrete soliton formation, properties and stability (namely 

conditions for existence of modulation instability) in a quadratically nonlinear medium in 

degenerate configuration. Two additional experiments were performed, the Talbot effect 

illustrating a discrete analog of the effect occurring in continuous media and parametric 

switching utilizing the linear and nonlinear properties of the quadratic waveguide arrays.  

In Chapter 2 the theoretical basics of the physical phenomena necessary for 

understanding wave propagation in discrete quadratic medium are presented. The governing 

equations are derived based on coupled mode theory. The linear and nonlinear properties of 

quadratic arrays are discussed in detail. 

Chapter 3 is dedicated to the description of the design, fabrication and characterization of 

the lithium niobate samples used in the experiments presented in this dissertation. Based on 

group experience with lithium niobate over the last 15 years, the sample design methodology is 

described in detail. New linear and nonlinear methods of characterization of the samples, which 
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were developed in the lab during the work on the project, are presented. Results of 

characterization studies are compared with simulations based on the design. 

  The apparatus used in the experiments is presented in Chapter 4. Most of the chapter is 

devoted to a fiber-based high power laser system build especially for the project to match the 

requirements set by the samples. 

The Talbot effect being a direct result of Fresnel diffraction belongs to the most basic 

phenomena in optics. So far, it has only been investigated in continuous systems either in the 

space or time domain. Because of the unique properties of the diffraction relations in discrete 

arrays, the question arises if this fundamental process exists in these systems. In Chapter 5 the 

first observation of the discrete Talbot effect is presented together with analytical analysis and 

discussion [32]. 

In Chapter 6 the existence of staggered and unstaggered quadratic discrete solitons is 

demonstrated.  They are found to exist only for certain combinations of diffraction and 

nonlinearity. Two different cases are considered: weakly localized [33], where 4-5 channels are 

excited and strongly localized [34] where most of the power is guided in one channel. The 

quadratic nature of the solitons is confirmed by the soliton power dependence on the wavevector 

mismatch in the second harmonic process. Nonlinearly enhanced beam broadening is 

demonstrated for complimentary combinations of diffraction and nonlinearity. 

Modulational instability refers to the instability of a plane wave propagating in a 

nonlinear medium in the presence of noise perturbations. If the perturbations grow exponentially 

on propagation, the wave is called modulationally unstable. In Chapter 7 the conditions for stable 

propagation of wide beams in quadratic waveguide arrays is investigated [35]. 
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In Chapter 8 the demonstration of a phase-insensitive, ultrafast, all-optical switching and 

frequency conversion scheme based on quadratically nonlinear arrays is presented [36, 37]. 

Routing of milliwatt signals with wavelengths in the communication band is achieved without 

pulse distortions by parametric interaction. 

In Chapter 9 major contributions of the thesis are summarized.  
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CHAPTER TWO:  THEORY OF DISCRETE QUADRATIC OPTICS 

2.1. Physics of cascaded quadratic nonlinearity 

When light passes through matter, it interacts with individual atoms or molecules of the 

material and induces dipole moments. The average of these dipole moments is called 

polarization. When the beam intensity is small, the response of atoms or molecules is linear to 

the applied optical field. However if the electric field strength of the incident light is comparable 

with the electric fields binding electrons to a nucleus, the response is no longer linear. 

Mathematically, the polarization in this case can be described as a power series in the electric 

field as 

 ( ) ( ) ( )( )...321
0 +++= EEEEEEP

rrrtrrtrtr
χχχε  (2.1) 

where P
r

and E
r

are the polarization and the total electric field respectively [38]. The terms 

associated with the first, second and third order susceptibilities ( )1χ
t

, ( )2χ
t

 and are the linear, 

second and third order contributions to the total polarization, respectively. In general the 

susceptibilities are tensors whose rank increases as the order of the nonlinear interaction 

increases. Molecular, amorphous and crystal structures can be classified into two broad 

categories: those with a center of symmetry (centrosymmetric) and those without (non-

centrosymmetric) [39]. Because of symmetry reasons, quadratic terms can exist only in a non-

centrosymmetric medium. On the other hand, the third order term (cubic nonlinearity) has no 

( )3χ
t
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such limitations and is always non-zero. Because the strength of the nonlinear polarization 

induced usually decreases as the order increases, typically for a non-centrosymmetric material 

the second order response is much stronger than the third order one. As most of the work 

presented in this thesis was done close to a phase-matching condition for second harmonic 

generation (SHG), the higher order terms (starting from the cubic one) will be neglected in the 

derivations presented in this chapter. 

When light propagates through matter, the evolution of the electric field of the light can 

be described by a wave equation which can be derived from Maxwell’s equations [40]. 

 2

2

02

2

2

2
2

t
P

t
E

c
nE

NL

∂
∂

=
∂
∂

−∇
rr

r
µ  (2.2) 

where NLP
r

is the second order polarization. In more detail, the second order polarization can be 

expressed as, 

 ( ) .
,

2
0∑=

kj
kjijki EEP χε  (2.3) 

In general a second order process involves three beams coupled by the susceptibility ( )2χ  which 

is a third rank tensor. Therefore the resulting nonlinear polarization depends not only on the 

magnitude of the incident fields but also on their polarization directions. Although the discussion 

can be easily extended to other parametric processes such as sum-frequency generation etc., in 

the derivations in this chapter the focus will be put on the SHG process that involves two waves 

– a fundamental (FH) at frequencyω and a second harmonic (SH) at frequency ω2 . This 

typically requires either Type I or QPM phase-matching. 

 First, the slowly varying envelope approximation (SVEA) for plane waves is applied, 
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  (2.4) 

which assumes that the propagating field envelopes ( )xAω and ( )xA ω2 change slowly with 

propagation distance x. and are the slowly varying amplitudes of the plane wave fields at 

the FH and SH frequencies. The appropriate nonlinear polarizations which generate fields at

ωA ω2A

ω2  

andω respectively are 

  (2.5) 
*

20

2
02

2 ωωω

ωω

ε

ε

AAdP

AdP

eff

eff

=

=

and the effective nonlinear coefficient is defined as [41] effd

 ( ) ( ) ( ) ( ) ( ).ˆˆ,;22ˆ
2
1 2 ωωωωωχω eeedeff ××=

t  (2.6) 

Inserting equation (2.4) into (2.2) and assuming slow changes of amplitude over a wavelength 

during propagation 

 
dx
dAk

dx
Ad
<<2

2

 (2.7) 

gives the well-known coupled mode equations. 

 
.2

2

2

*
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kxieff

kxieff
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d
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dx
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eAA
cn

d
i

dx
dA

∆

∆−

=

=

ω
ω

ω

ωω
ω

ω

ω

ω

 (2.8) 

These equations describe the change in the amplitude and phase of the FH and SH fields along 

the propagation co-ordinate x. The first equation describes down-conversion (by which the FH is 

generated), and the second up-conversion (by which the SH is generated). The wavevector 

mismatch is defined as k∆
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 ( ωωωω λ
)π

22
42 nnkkk −=−=∆  (2.9) 

and depends on wavelength and refractive index, and therefore on material temperature, 

polarization and direction of propagation in the material. It is important to note that Kleinman’s 

symmetry [39] of the susceptibility tensor ( )2χ
t

was used to derive the expression in (2.8).  

 The wavevector mismatch plays a crucial role in any second order nonlinear process. 

For a non-zero wavevector mismatch, the SH which is generated earlier in the sample will be out 

of phase with that generated at a longer distance from the input. Due to this destructive 

interference the SH will be converted back to the fundamental. The distance after which the 

relative phase between the FH and SH fields changes by π is defined as the coherence 

length , and is given by the formula 

k∆

cohL

 ( ) .4 2ωω

λπ
nnk

Lcoh −
=

∆
=  (2.10) 

After propagation of two coherence lengths the FH is fully restored and SH starts to build again. 

It is possible to derive an analytical solution for SHG in the so-called low depletion 

regime when the amount of generated SH is much smaller than the FH. Mathematically, 

negligible contribution of down-conversion is assumed. In this case, the generated SH intensity 

is given by 

 ( ) .
2

2
, 222

0
32

2

22

2 ⎟
⎠
⎞

⎜
⎝
⎛ ∆=∆

kxSincIx
cnn
d

xkI eff
ω

ωω
ω ε

ω
 (2.11) 

Therefore, if the wavevector mismatch k∆ is zero the intensity of the generated SH grows 

quadratically with the propagation distance x. For the oscillatory behavior ( ), the larger 

, the smaller the period of the power oscillations and the smaller the peak SH power reached. 

0≠∆k

k∆
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Although processes are normally associated with frequency conversion, it turns out 

that nonlinear (cascading) phase shifts also occur. The physics of the cascaded second order 

nonlinearity is rooted in the second harmonic generation process itself. The simple explanation 

of how the FH wave can obtain a nonlinear phase shift during the second order process is shown 

in Figure 2.1.  

( )2χ

 

χ(2)

χ(2)

vFH

vSH

 

Figure 2.1 Schematic diagram showing the physical origin of the nonlinear phase shift due to 

cascading. Note that the regenerated FH is out of phase with the original FH so that the total FH 

is shifted in phase. 

When an intense FH beam propagates through a quadratically nonlinear medium, part of it is 

always converted to SH. If there is a finite wavevector mismatch k∆ , the SH so generated will 

also travel in the medium, but with a phase velocity different to that of the FH, . After 

some distance, typically of order of the coherence length , the SH will be down converted 

back to the FH. Because of the phase velocity difference between the two waves, the returning 

FH wave has a different phase from the original FH beam that was not converted to SH. The 

phase shift from the down-converted FH beam changes the overall phase of the FH. As a result, 

the more of the SH that is generated, the larger the net FH phase shift that can be achieved, i.e. it 

SHv FHv

cohL
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is nonlinear phase shift and the process is known as the cascaded nonlinearity. Therefore a good 

material for SHG is also a good candidate for the cascaded nonlinearity. It is important to note 

that the cascading nonlinearity is a non-local process. Even though SHG itself is a local process, 

one should remember that to gain a phase shift requires some propagation distance. 

The variation in the nonlinear phase shift with propagation distance and input FH 

intensity is now well-known and understood [42]. The cascaded phase shift increases with 

propagation distance in a stair-case fashion as shown in Figure 2.2a. Note that for large enough 

phase-mismatch ( π>∆kL where L is the sample length), the nonlinear phase shift becomes 

approximately linear with distance.  
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0.0

0.2

0.4

0.6

0.8

1.0

 ∆kL = 0.01π
 ∆kL = π
 ∆kL = 10π
 ∆kL = 100π

∆
φN

L  [π
]

Propagation distance x
0 5 10 15 20 25

0

1

2

3

4

5

 ∆kL = 0.1π
 ∆kL = π
 ∆kL = 10π

∆
φN

L [π
]

Input FH intensity

 

Figure 2.2 Variation in the nonlinear phase shift ∆φNL with propagation distance (left-hand-side) 

and input intensity (right-hand-side) for various phase-mismatches. 

Furthermore, for small intensities, is linear with input intensity but becomes sub-

linear when the phase shifts exceeds

NLφ∆

π because its origin is due to ( )2χ and not for which the 

nonlinear phase shift remains linear with intensity [42]. 

( )3χ
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The regions of linear response correspond to small or negligible fundamental depletion 

during propagation. In this limit it is possible to obtain a simple analytical formula for the 

effective cascading , , where2n effn2
2

2 ωAnn =∆ where is the nonlinear intensity dependent 

index coefficient associated with

2n

( ) ( )ωωωωχ ,,;3 −− . If it is assumed that there is no depletion in 

the FH beam, the second equation in (2.8) can be integrated directly resulting in 

 
kcn
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k

e
cn
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kxi

eff

∆
+

∆
−=

∆− 1

2

2

2

2

2
ω

ω

ω

ω
ω

ωω
 (2.12) 

which can be inserted into the first equation in (2.8) giving  

 .1 2
2

2

22

ωω
ωω

ω ω
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d

i
dx

dA kxi
eff

∆
−

=
∆

 (2.13) 

By comparing this equation with the equivalent equation for a third order nonlinear process [43] 

gives an expression for an effective nonlinear refractive index coefficient due to cascading as  effn2

 ( )[ .cos1
2

0
22

2

2

2 kx
kcnn

d
n eff

eff ∆−
∆

=
ε

ω

ωω

]

)]

 (2.14) 

For large , averages to 1 and a space averagedkx∆ ([ kx∆− cos1 effn2 can be written as 

 .
2

0
22

2

2

2 kcnn
d

n eff
eff ∆
=

ε
ω

ωω

 (2.15) 

It is important to note that in contrast to the Kerr nonlinearity where is strictly a material 

constant, the cascading induced

2n

effn2 depends also on the wavevector mismatch. Thus it is 

possible to control both the strength and the sign of the effective nonlinearity by varying k∆ . 

Therefore, if one operates far from the phase-matching ( effn2 was derived under assumption of 

low FH depletion) the system behaves like a Kerr medium with a tunable nonlinear coefficient. 
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2.2. Quasi phase-matching 

As discussed in detail in the previous section, phase-matching is a very important 

variable in quadratic nonlinear processes. Because of a material’s refractive index dispersion 

with wavelength, phase-matching cannot be achieved for two interacting co-polarized waves. 

Birefringent phase-matching [41, 44] is a commonly used approach, where the effective indices 

of the interacting waves having different polarizations in a birefringent medium can result 

in  at some well-defined wavelength. However this approach is very limited in the range 

of potentially phase-matchable wavelengths.  

0=∆k

Yet another phase-matching option is a very powerful technique called quasi-phase- 

matching (QPM) whereby materials can be engineered to phase-match any parametric process 

involving frequencies for which the material is transparent. The technique was first suggested in 

1962 [45], at the time of the initial discovery of SHG. However because of fabrication problems, 

the method was the first realized efficiently in 1980s [46]. This method involves reversal of the 

sign of the nonlinear coefficient with propagation distance every time the accumulated phase 

difference reaches π. Hence the period of the QPM reversal gratingΛ is double the coherence 

length . The QPM sign reversal at each multiple of  prevents down conversion and results 

in continuous SH grow. However, because the growth occurs under conditions of phase-

mismatch

cohL cohL

2/2/ ππ ≤∆≤− kx , the overall efficiency is less than for a perfectly phase-matched 

process with the same value of material nonlinearity. It is also important to note that this 

approach allows the FH and SH waves to be co-polarized so that diagonal elements of the 

susceptibility tensor, which are frequently the largest, can be used. 

The periodic variation of the nonlinear coefficient produced by the QPM grating can be 

represented by the following Fourier series [46, 47] 
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  (2.16) ( ) ( )∑
∞

−∞=

=
m

mm xiKGxg exp

where the wavevector of the m-th spatial harmonic is given by 

 
Λ

=
mKm
π2  (2.17) 

and the Fourier amplitude for a square wave of duty cycle D is 

 ( Dm
m

Gm π
π

sin2
= )  (2.18) 

The effective nonlinear coefficient is given then by 

 meffeff Gdd =′  (2.19) 

For a first order ( ) QPM grating, the optimum duty cycle is1=m %50=D , such that 

 
π

eff
eff

d
d

2
=′  (2.20) 

The effective nonlinear second order susceptibility is reduced by factor of π/2 . In this case, the 

modified wavevector mismatch becomes  

 .22 21 Λ
+−=−∆=′∆

π
ωω kkKkk  (2.21) 

For QPM, ' replaces in equations (2.8) to (2.15). k∆ k∆

2.3. Wave propagation in channel dielectric waveguides 

It was shown in equation (2.11) that the larger the fundamental intensity, the more 

efficient the conversion to SH becomes. Since intensity is power per unit area, the smaller the 

beam cross-sectional the area, the more efficient the SH generation. The confinement of an 

optical beam inside a dielectric waveguide to dimensions of the order of the wavelength of light 

is possible due to a combination of total internal reflection and constructive interference. This 
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can be achieved by an index difference between the guiding, high index region and its lower 

index surroundings. Using such a waveguide allows the light to remain confined without 

diffraction, hence providing high intensities for long propagation distances, optimum conditions 

for highly efficient nonlinear interactions. Since all of the experiments described in this 

dissertation were performed in waveguides, in this section the basic properties of channel 

waveguide will be reviewed and the well-known coupled mode equations governing the 

evolution of 2D guided waves in a quadratically nonlinear medium derived. For a detailed 

derivation see reference [48]. 

Consider the simple embedded channel geometry, shown in Figure 2.3, where a 

transverse refractive index profile 

  ( ) ( )zyzyn ,, ε=  (2.22) 

is independent of the x (propagation) coordinate. This structure has modal solutions 

(eigenvalues) , which can be found by solving Maxwell’s equations [40] ( zyEm ,ˆ )
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r
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µ

ε

ε

µ

 (2.23) 

where the dielectric media are assumed to be non-magnetic materials, i.e. 1=rµ . Here the 

parameter m which describes the mode is in fact a combination of two integers p and q usually 

written as (p, q) with each identifying the number of zeros in the field distribution across the 

transverse (y, z) dimensions of the waveguide. For example, (0, 1) would indicate no field zeros 

in the y-dimension and one in the z-dimension. 
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Figure 2.3 Simple waveguide geometry under consideration. 

Propagating solutions to Maxwell’s equations are assumed to take the form 
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where and are the electric and magnetic field distributions for the m-th (p, q-th) mode 

and is the corresponding modal wavevector. Therefore, Maxwell’s equations in the frequency 

domain can be written in form 

mÊ mĤ

mβ

 
( ) ( )
( ) ( ).,,

,, 0

ωωεω

ωωµω

rEirH

rHirE
rrrr

rrrr

−=×∇

=×∇
 (2.25) 

Taking the curl of both sides of equations (2.25) yields 
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22
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HHH

EEE
rrr

rrr

ε
εεµω

εµω
 (2.26) 

These are the principle equations, subject to the continuity of the usual tangential fields across 

the dielectric interfaces, that need to be solved for the modal field distribution and effective 

mode index. They can be solved with the help of numerical methods, i.e. finite difference or 
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finite element methods or using approximate solutions of simplified models, i.e. the effective 

index method. In the case of the in-diffused waveguides used in the experiments presented in this 

dissertation and described in the next chapter, a weakly guiding approximation can be assumed. 

It implies an existence of two types of orthogonal modes: transverse electric (TE) with a 

dominant field component and transverse magnetic (TM) with a dominant field. It can 

be easily shown that the TM mode has a dominant electric field component in the z direction, 

, and it is of course this component that enters the nonlinear polarization equations. In further 

ymE ymH

zmE

derivations, a scalar approach which utilizes only the dominant electric field is used.  

In order to derive the nonlinear coupling between the FH and SH interacting modes one 

can represent their fields in the form 
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 (2.27) 

where and are the FH and SH transverse mode profiles, and are the 

complex field amplitudes normalized so that  and give the guided wave 

power in Watts and and are the FH and SH modal propagation wavevectors. Using 

standard couple mode theory [48, 49], 

m
FHÊ n

SHÊ )(xu FH )(xu SH

2|)(| xu FH 2|)(| xuSH

m
FHβ m

SHβ

 ( )∫ ∫
∞

∞−

∞

∞−

−−= dydzeEPi
dx
du xipert pertββω *ˆ

4
 (2.28) 

where represents the perturbation polarization described by equation (2.5) appropriate to 

guided waves, the resulting coupled mode equations are 

pertP
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where the overlap integral ( )2K is defined as 

  (2.30) ( ) ,ˆˆˆˆˆˆ ***2 ∫ ∫∫ ∫
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and . Equation (2.29) is the guided wave equivalent to the coupled mode 

equations (2.8). For the waveguide case, the effective indices of the modes should be considered 

rather than the bulk refractive indices when calculating wavevector mismatch (

SH
n

FH
m βββ −=∆ 2

β∆ instead 

of ). Also the efficiency of SHG can be changed dramatically according to the value of the 

overlap integral. If indeed either the FH or the SH field distributions have zeros, interference 

effects in the overlap integral can significantly reduce the net SH efficiency. As a result, it is 

usually advantageous to work with the zero order modes, p = q = 0. In the experiments, p = q = 0 

always for the FH modes and the values for the SH will depend on the detailed phase-matching 

conditions so henceforth the use of subscripts to describe the mode numbers will be dropped. 

k∆

2.4. Quadratically nonlinear directional coupler 

When two waveguides are placed in close proximity (see Figure 2.4) and their modal 

profiles overlap, a directional coupler is formed. The energy can be transferred from one channel 

to another due to the tunneling effect via the evanescent field of the first channel overlapping the 

second guide, and vice versa [49, 50]. The efficiency of this energy transfer mechanism depends 

on the separation between the guides, the size of modes and the propagation constants of both 
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channels. When only one channel is excited, a periodic power exchange between the two 

channels occurs. 

 

Figure 2.4 Nonlinear directional coupler geometry. 

This situation is some what analogous to the power transfer between the FH and SH for finite 

wavevector mismatch described in the previous chapter. Actually the strength of the coupling 

can be derived using the same coupled mode theory given in equation (2.28). In this case the 

perturbation polarization produced in the second channel by the field in the first channel is 

defined as 

  (2.31) 102 ÊP pert εε∆=

where ε∆ is the change in the relative permittivity introduced by the presence of the second guide 

and is the unperturbed field of the first waveguide. This results in coupled mode equations [51]  1Ê
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where and are the FH complex amplitudes of the fields propagating in channels 1 and 2 

respectively. The mismatch between the propagation constants of the two channels (to be 

distinguished from the wavevector mismatch

FHu1
FHu2

β∆ between the FH and SH) is . 

Note that the subscripts on

FHFH
12 ββκ −=∆

β which previously referred to mode numbers now refer to the 

channels and that as stated previously it is implicitly assumed that the FH mode is the lowest 

order mode. The choice of only the FH and the neglect of coupling between the SH in adjacent 

waveguides will be discussed later. For two identical waveguides with the same propagation 

constants ( 0=∆κ ) equation (2.32) simplifies to an expression of the form 
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where 

  (2.34) ( ) ∫ ∫∫ ∫
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∞
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2122

*
1211

1 ˆˆ2ˆˆ2

and is the coupling constant between adjacent channels.  FHC

The distance required for complete energy transfer from one (the input) channel (usually 

called the bar channel) to another (cross channel) is defined as a half-beat coupling length and it 

can be expressed as 

 .
2 FH

c C
L π

=  (2.35) 

This is one of the most important parameters, both for a directional coupler, and the arrays to be 

discussed later in this chapter.  
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A nonlinear device (either Kerr or cascaded second order nonlinearity) with a length 

equal to the coupling length is called a nonlinear directional coupler (NLDC). In the cascading 

case, the nonlinearity introduces additional nonlinear phase shifts which affect the wavevector 

matching condition. At sufficiently high powers, the input channel is detuned from the adjacent 

channel so that energy transfer between channels is inhibited [52] (as shown in red in Figure 

2.4). Combining now both the linear and nonlinear effects, the equations governing a cascading 

NLDC are 

cL
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 (2.36) 

It will be argued in the next section that the coupling between the SH fields of the adjacent 

channels can be neglected so that 0≈SHC .  

 NLDC’s have been extensively studied previously, both theoretically [53-55] and 

experimentally [56-58] utilizing Kerr and cascaded second order nonlinearities. However 

practical applications in signal processing have been restricted by the high powers required for 

operation. 

2.5. Waveguide arrays 

Waveguide arrays consist of equally spaced, parallel, weakly coupled, channel 

waveguides. They are a natural extension of directional couplers with now every channel flanked 

by two channels [17]. Let us assume an infinitely wide array in the y direction (see Figure 2.5). 
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Figure 2.5 Waveguide array geometry. 

The propagation of the envelopes of the complex amplitude fields in the individual 

channels, specifically channel n , is governed by the same kind of coupled equations as for the 

NLDC,               
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 (2.37) 

where both linear (constants and ) and nonlinear (constantFHC SHC γ ) couplings are included. 

Equations (2.37) are a discrete version of the well-known coupled equations describing SHG in a 

bulk medium. Note that the field in the n -th channel is coupled to the fields in both neighboring 

channels  and . For the SH case it can be assumed that1+n 1−n 0≈SHC . This can be easily seen 

in Figure 2.6 which shows the PPLN samples used and the associated modal fields. The field 

overlap is effectively zero for the SH in any two adjacent channels. 
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Figure 2.6 Cross-sectional cut of the PPLN waveguide array sample used in the transverse y-z 

plane showing the channel index profile, and the overlapped FH ( ) fields and SH 

( ) fields. Note the tight confinement of SH causing

( )ˆ 0

)ˆ 0

zyEFH ,

( zyESH , 0≈SHC . 

It is straightforward to show that these equations for the envelope FH fields reduce, in the 

appropriate limit of small waveguide spacing relative to the beam width, to the continuum 

coupled mode equations. (The SH fields do not couple between channels.) After a simple 

transformation 

 xCiFH
n

FH
n

FHeuu 2~ −=  (2.38) 

the linear FH part becomes 

 ( FH
n

FH
n

FH
nFH

FH
n uuuC

dx
udi 11

~~2~ )
~

+− +−=  (2.39) 

where the nonlinear part has been temporarily dropped for convenience. The term 

FH
n

FH
n

FH
n uuu 11

~~2~
+− +− can be recognized as the discrete approximation of the second derivative 
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operator 22~ yu FH ∂∂ where ( is a separation between adjacent channels). Thus in the 

continuum approximation, when an input beam excites many channels, equation (2.39) can be 

approximated by 

ndy = d
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2

y
udC

dx
udi

FH
n

FH

FH
n

∂
∂

=  (2.40) 

In contrast to the continuous case where the diffraction coefficient is a constant and equal to 

k21 , the discrete diffraction coefficient is adjustable by varying the coupling constant and 

channel separation . 

FHC

d

However for the case when only few or just a single channel is excited, the discreteness 

of the system plays a very important role. The linear and nonlinear properties of quadratic 

waveguide arrays in the discrete regime are discussed in next two sections. 

Finally, it is noteworthy that the coupled mode approach used here just gives the lowest 

order band of this periodic structure. A more rigorous analysis using Bloch waves would predict 

additional higher order bands [59, 60]. These in fact do appear in the experimental results, but 

principally as spurious effects and will be noted when appropriate. 

2.5.1. Linear properties of discrete arrays 

For beam propagation in a continuous medium, the standard approach used to derive the 

dispersion relation between k
r

andω is to assume plane wave solutions and substitute them into 

Maxwell’s equations. For example, in an one dimensional isotropic medium, this yields 

, i.e. the modulus of the wavevector is a constant. The equivalent procedure is 

now used to derive a relation between and in an array. The propagation of a discrete “plane 

wave” in the coupled mode approximation consists of setting the envelope fields evaluated at the 

2
0

222 knkk yx =+

xk yk
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center of each waveguide equal to the complex value . Taking into account the spatial 

periodicity of the array, the “plane wave” field in one transverse dimension is written as 

nu 0u

 ( ).0
dnkxkiFH

n
yxeuu +∆=  (2.41) 

Here is the additional longitudinal wavevector contribution to the single channel propagation 

constant

xk∆

β , i.e. xx kk ∆+= β due to the inter-channel coupling and represents the relative 

phase difference between neighbor channels which occurs when the “plane wave” travels 

transversely across the array.  (This phase difference is achieved in an array simply by tilting the 

input beam in the x-y plane about the z-axis.) Substituting the “plane wave” ansatz (2.41) into 

the first equation of (2.37) ith the nonlinear term set to zero one can find the linear relation 

between and to be [21] 

dk y

xk∆ dk y

 ( ).cos2 dkCk yFHx =∆  (2.42) 

This functional relation is shown in Figure 2.7. Thus the magnitude of the longitudinal 

propagation constant in the array becomes 

 ( ).cos2 dkCk yx += β  (2.43) 

When compared to the angular dependence of the propagation wavevector in a continuous 

system, it is clear that the discrete system shows some unique properties. The “discrete 

diffractive” properties, i.e. beam spreading due to inter-channel transfer, can be obtained by 

analogy again to the continuous medium case. Two quantities are defined based on the two 

lowest order spatial derivatives 

 

2

2

y

x

y

x

k
kD

k
k

G

∂

∂
=

∂
∂

=

 (2.44) 

 25 



 

whereG is called a “group” velocity and represents the transverse angular displacement of the 

beam, and is a diffraction parameter describing angular spread of the beam. The angular 

dispersion is periodic with a periodicity of 2π in , so that the analysis can be restricted to the 

first Brillouin zone of this periodic system, i.e. to 

D

dk y

π≤dk y without loss of generality. 
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Figure 2.7 Angular dispersion in the coupled array induced propagation wavevector, 

β−=∆ kk kxx vs. in a waveguide array. y

 The “discrete dispersion” relation exhibits two curvatures with inflection points located at 

2/π=dk y . In the first region 2π≤dk y , where the diffraction parameter is negative, it 

resembles the diffraction properties of a continuous system and hence is called “normal 

diffraction”. In the second region

D

ππ ≤≤ dk y2 , the diffraction parameter changes its sign 

and becomes positive. In analogy to pulse propagation i.e. in fibers [43], this region exhibits so-

called “anomalous diffraction” which does not exist in continuous system in the spatial domain 

and is a unique feature of the discrete properties of the system. 

D
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Knowing this angular dispersion relation, one can find the impulse response of the 

system, i.e. when only one channel is excited. The exact solution is given by [17, 21] 

  (2.45) )2()()( CxJixu n
nFH

n =

and is shown in Figure 2.8 where is the n -th order Bessel function. The discrete diffraction 

pattern exhibits a preferential power flow from the initially excited channel towards the 

outermost wings of the input. Most of the power is concentrated there. This is in contrast to the 

“bell-shaped distribution associated with continuous media which maintains a peak centered on 

the transverse position of the input. These two lobes travel with the maximum group velocity 

.  

nJ

CdG 2max =

 

Figure 2.8 Discrete diffraction pattern for single channel excitation. 

2.5.2. Nonlinear properties and discrete quadratic solitons 

Discrete diffraction can be reduced and even canceled by nonlinear effects, just as in the 

continuous media case. (This of course implies that spatial solitons are possible in discrete 
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systems.) In the simplest case, a high intensity beam can utilize the Kerr nonlinearity to change 

locally the refractive index and hence the propagation constants of the array’s channels. The 

resulting mismatch in the propagation constants will detune the synchronous linear coupling due 

to the tunneling effect between the channels, an effect well-known in NLDCs. Solitons are the 

self-trapped, non-diffracting beams that can propagate in the medium without change in 

amplitude profile. Before the work described in this dissertation, the experimental studies of 

discrete solitons were restricted primarily to frequency degenerate effects in media with Kerr 

[27, 61], photorefractive [29, 62], and orientational nonlinearities [31] where various discrete 

solitons associated with diverse linear diffraction properties have been observed. But because the 

very interplay between these linear transport phenomena and the nonlinearity governs the 

localization process, it is challenging to study localization phenomena for other more diverse 

nonlinearities. In this respect quadratic nonlinearities deserved particular attention because the 

interaction involves two or three components at different frequencies and new degrees of 

freedom enter the dynamical process. 

In the case of quadratically nonlinear media, the strong interaction between the FH and 

SH waves produces nonlinear (cascading) phase shifts which are equivalent to changes in 

refractive index, thus potentially arresting diffraction. Quadratic solitons are the stationary 

solutions to the FH-SH coupled wave equations and have indeed been observed in a variety of 

-active continuous media near the phase-matching condition for second harmonic 

generation. These solitons consist of both an in-phase FH and SH field component, with the 

amplitude ratio and total power determined by the wavevector mismatch. There is already a rich 

literature on these solitons [63]. 

( )2χ
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By analogy, discrete quadratic solitons in the lowest order band of this periodic structure 

are stationary solutions of coupled mode equations (2.37). Under appropriate conditions they can 

propagate in a limited range of directions ( , ) down and across the array although the details 

of the field structure can be different in different regions of discrete diffraction. Six different 

bright soliton solutions have been predicted [22, 23], depending on the sign of nonlinearity (or 

wavevector mismatch

xk yk

β∆ ), sign of the diffraction coefficient , symmetry of the excited guides 

and position of the field maximum in respect to the guides (see Figure 2.9). If the soliton’s 

envelope maximum is centered on one of the guides the soliton is called odd (or on-site), if the 

maximum occurs between waveguides the soliton is called even (or inter-site). Only the odd 

solitons are stable and robust to small perturbations. The even ones, under any perturbation, try 

to evolve on propagation into one of the stable odd solutions. Special cases are twisted solutions 

which resembles even solitons with a

D

π phase jump in the center of symmetry of the field. 

The distinction between the staggered and unstaggered families comes from location of 

the soliton in the Brillouin zone. The unstaggered solitons (all channels excited in-phase) are 

located in the middle of the zone ( 0=dk y ), while the staggered ones (π phase shift between 

neighbor channels) are located at the edge of the zone ( π=dk y ). To support the solitons, the 

correct combination of diffraction and nonlinearity has to be met. Unstaggered bright solitons 

exist only for the positive nonlinearity (wavevector mismatch 0>∆β ). On the other hand, 

staggered ones exist only for the negative nonlinearity ( 0<∆β ). The wrong combination of 

signs for the diffraction coefficient and nonlinearity leads to enhanced diffraction. This would 

occur for negative andD 0<∆β , as well as for positive andD 0>∆β . 

At intensities far above soliton threshold, discrete solitons can no longer slide across the 

array and they become “locked” into their incidence channels. This is a consequence of an 

 29 



 

increased decoupling between adjacent channels with increasing intensity, i.e. the field 

distributions become narrower and are no longer given by the modal ones associated with the 

individual waveguides. 

 

Figure 2.9 FH envelope field distribution for different kinds of bright solitons. 

collaborating group of Dr. Falk Lederer at the Friedlich Schiller University in Jena, Germany. 

A computer program based on the coupled equations was developed and made available by the 

Temporal effects like group velocity dispersion (GVD) and pulse walk-off, and spatial variations 

of wavevector mismatch due to temperature profile were included. For degenerate case, i.e. 

SHG, the following system of equations was solved numerically 
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where and are GVD parameters, and the linear losses for the FH and SH fields 

respectively and

FH
2β

SH
2β

FHα SHα

δ is a walk-off parameter defined as 

 
ω
β

ω
βδ

∂
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−
∂
∂

=
FHSH

 (2.47) 

These programs were used to simulate many of the experiments described later in this 

dissertation. 
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CHAPTER THREE:  SAMPLES 

3.1. Introduction 

Many factors were considered during choosing lithium niobate (LiNbO3) as the sample 

material. It is a ferroelectric, uniaxial oxide which has many attractive properties. Its large 

piezoelectric coefficient has led to its extensive use in radio frequency acoustic wave devices 

[64]. Lithium niobate also has a large electro-optic coefficient which is used in guided wave 

interferometry [65]. These and other applications have led to a large-scale production of quality 

lithium niobate substrates. 

Lithium niobate is also a very attractive nonlinear optical material with a relatively large 

nonlinear coefficient (d33 = 22.7 pm/V for congruent LiNbO3). Recent development of QPM 

technology enables, by accessing this coefficient, an efficient Second harmonic Generation 

(SHG). Its transparency range spans from ultraviolet to mid-infrared (325 – 4500 nm) [66].  

Various approaches to waveguide fabrication in lithium niobate have been investigated 

over the past thirty years, including in-diffusion of titanium [67, 68], zinc [69] and protons [70]. 

Among these methods, titanium in-diffusion exhibits the best linear properties. Typical loss 

measured experimentally in SHG experiments at 1550 nm was in order of 0.15÷0.20 dB/cm for 

the fundamental wave (FH) and 0.30÷0.40 dB/cm for the second harmonic (SH). Homogeneity 

of the sample, both transverse and longitudinal, was excellent. 
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3.2. Fabrication 

Samples for the experiments shown in this dissertation were fabricated at University of 

Paderborn in Dr. Wolfgang Sohler’s group. Figure 3.1 schematically shows the fabrication steps. 

Congruent Z-cut LiNbO3 wafers of 4 inch diameter and 0.5 mm thickness from Crystal 

Technology Inc. were used as substrates. A 98 nm thick titanium layer was vacuum deposited by 

electron beam evaporation on the (-Z)-surface of the LiNbO3 substrate. Using photolithography 7 

µm wide channels were defined (see Figure 3.1a). The titanium was in-diffused into the surface 

region for 7.5 hours at 1060 °C in an argon atmosphere, followed by one hour post-diffusion at 

1060 °C in oxygen (see Fig. 2.1b). During the Ti in-diffusion, a shallow domain inverted layer is 

formed on the (+Z)-face (see Figure 3.1b). Since this layer prohibits electric field poling it is 

removed by careful grinding (see Figure 3.1c). Domain inversion always starts from the (+Z)-

face. Therefore, it is advantageous to have the waveguides and the periodic electrode structure on 

the (+Z)-face in order to obtain the best definition of the QPM grating in the waveguide. 

 

Figure 3.1 Fabrication steps to obtain a periodically poled channel waveguide.  
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The next fabrication step is a homogeneous polarization reversal of the whole sample 

(see Figure 3.1d). Thereafter, the periodic micro-domain structure was fabricated by using the 

electric field poling method with the structured electrolyte electrode on the (+Z)-side (see Figure 

3.1e). The poling conditions including time, voltage, current and total charge were optimized in 

order to obtain a 50/50 duty cycle of the grating and a good homogeneity. The substrate was 

diced and both end faces were polished (see Figure 3.1f). 

The sample waveguides and periodic poling were designed based on the Sellmeier 

equation published in [71] which defines the dispersion in the refractive index. The refractive 

index change is determined by the local Ti concentration ( )zyc , investigated in [72, 73] 

 ( ) ( ) ( )sgufczyc 0, =  (3.1) 

where 
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and y and z are the lateral and the depth coordinates in a plane perpendicular to the waveguide 

propagation axis X (see Figure 3.2). W is the Ti-strip width and , are the diffusion 

constants parallel and perpendicular to axis Z respectively. The following values of the diffusion 

depth constants were assumed, based on previous work done by Schiek in [74] and [68]: = 

5.78 µm and = 4.5 µm and is given by the Ti strip thickness,

ZD|| ZD⊥

ZD||

ZD⊥ 0c τ = 98 nm, before in-diffusion 

 
ZD

cmc
||

322
0 10412.6 τ−×=  (3.5) 
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Figure 3.2 Geometry of the sample relative to the crystal axes. 

The refractive index profile typical for in-diffused waveguides is shown in Figure 3.3 – 

the dark blue region at the top of the figure represents air. In the current case the maximum 

refractive index change due to Ti in-diffusion was n∆ < 8⋅10-3.  

 

Figure 3.3 Typical refractive index distribution for a Ti in-diffused channel waveguide. 

Only TM modes were considered in the design because only they can be quasi-phase-

matched (QPM) using the nonlinear coefficient . Such channels support, for TM polarization, 

single mode propagation for the FH and multi-mode (seven modes) for the SH. The finite 

33d
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element method was used to calculate mode profiles. Figure 3.4 shows calculated the FH 

fundamental TM00 mode intensity. 

 

Figure 3.4 Calculated FH fundamental TM00 mode intensity. 

Figure 3.5 shows selected calculated SH TM mode intensities. However not all of them 

are phase-matchable – i.e. SH TM10 because of the modal symmetry in horizontal plane cannot 

couple efficiently with FH TM00 – i.e. the field overlap integral of these modes is zero. Notice 

also the much tighter confinement of the SH fundamental mode in comparison with the FH 

fundamental mode, a consequence of the factor of two between the frequencies. 
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Figure 3.5 Calculated SH TM mode intensities: a) TM00, b) TM01, c) TM10, d) TM02. 

The wavelength and temperature dependent effective mode indices are needed to 

determine the phase-matching conditions. They can be expanded in Taylor series 
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where 

 0λ = 1550 nm for the FH 
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 0λ = 775 nm for the SH 

 = 220°C 0T

Mixed second order and higher order derivatives can be neglected. Table 3.1 lists calculated 

effective indices of TM modes based on equation (3.6) for the fundamental FH and the four 

lowest orders SH modes.  

Table 3.1 Effective mode indices at = 220°C for FH and SH modes. 0T

 TM00 TM01 TM02 TM03

FH 2.149302    

SH 2.195426 2.193753 2.192568 2.192242 

 

Table 3.2 lists the values of the Taylor expansion coefficients used in equation (3.6). 

Table 3.2 Taylor series expansion coefficients for FH and SH TM00 modes for 0λ = 1550 nm for 

the FH and = 775 nm for the SH atT = 220°C.  0λ 0

 
λ∂

∂ in
 [nm-1] 

2

2

λ∂
∂ in

 [nm-2] 
T
ni

∂
∂

 [K-1] 
2

2

λ∂
∂ in

 [K-2] 

FH -32.8x10-6 23x10-9 57.8x10-6 132x10-9

SH -135.6x10-6 535x10-9 71.5x10-6 151x10-9

 

A vanishing wavevector mismatch between two modes, defined as 

 ( ) ( ) ,
2,

2
,2

T
TT

QPM

FH
FHFH Λ

+⎟
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⎞

⎜
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πλβλββ  (3.7) 

determines the phase-matching wavelength for a given temperature and waveguide profile. Here, 
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is the temperature dependent (due to the thermal expansion of the crystal) required QPM-grating 

period. 

The QPM period was chosen to phase-match the TM00 modes of the FH and SH which 

have the highest mode overlap integral at the elevated temperature = 220°C (elevated to avoid 

photorefractive effects in the crystal). This is achieved for the QPM period of = 16.803 µm 

at = 220°C, which corresponds to QPM period of 

0T

Λ

0T Λ = 16.751 µm at room temperature.  

For this QPM grating period, a graphic solution of equation (3.8) for the resonances 

between the FH TM00 mode and three lowest order phase-matchable SH TM modes are shown in 

Figure 3.6 for a temperature of 220°C. For the dispersion of the higher order SH modes, the 

Taylor series coefficients of the SH TM00 as discussed above were used.  

 

Figure 3.6 Wavelengths for phase-matching between the FH TM00 and different SH TM modes 

for a QPM grating with = 16.751 µm (at room temperature) forT = 220°C. Λ 0
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Figure 3.7 shows the expected wavevector mismatch versus temperature and wavelength 

for a L = 5 cm long sample. The theoretical data are limited in accuracy to ±2 nm due to 

truncation of the Taylor expansion after the 2nd order. The calculated temperature-wavelength 

dependence is 4.47 °C/nm. 
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Figure 3.7 Phase-mismatch Lβ∆ between the FH and the SH TM00 modes for a QPM grating 

with = 16.751 µm (at room temperature) versus temperature and wavelength for a 5 cm long 

sample. 

Λ

From the mode profiles of the TM modes at the FH and SH wavelength the overlap 

integrals ( )2K (see chapter 2.3) can be calculated (see Table 3.3). Neglecting losses and FH 

depletion, the SH output power in a uniform phase-matched waveguide can be expressed by  
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where L is the crystal length and ,  are FH and SH powers in W and is the effective 

second order nonlinear susceptibility. 

FHP SHP )2(
effχ

The frequently quoted SHG efficiencies are 

 
( )2

FH

SH
n P

P
=η  (3.10) 

 
( )2LP

P

FH

SH
nl =η  (3.11) 

Table 3.3 Coupling integrals K(2) and SHG efficiencies for different FH-SH resonances for a 5 

cm long sample. 

FH TM00 ⇒ SH TM00 SH TM01 SH TM02

K(2) [V3/m] 7.84x108 4.26x108 0.78x108

ηn [%/W] 930 275 9.25 

ηnl [%/W⋅cm-2] 37.2 11.0 0.37 

 

Eight different waveguide arrays, with various channel-to-channel separation ranging 

from 12 to 16 µm, each consisting of 101 channels (some samples fabricated later had only 51 

channels for 16 µm separation array) were designed. As discussed previously in Chapter 2, the 

fundamental building block of the arrays is a directional coupler consisting of two coupled 

channel waveguides. As it was also shown there, it is the coupling length that governs the 

response of the array. This coupling length is the distance required for light, initially injected into 

one channel, to emerge completely to the second.  It was evaluated numerically by using the 

same finite element mode solver used for single channel waveguides to calculate the effective 

indices of the two “supermodes” of a directional coupler with variable separation between 

channels. It was assumed that the titanium concentration in the coupler structure is a 
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superposition of the concentration profiles of the two separate channels. The coupling 

length of the coupler can be determined from the difference cL n∆ of the effective indices of the 

two “supermodes”. 

 
n

LC ∆
=

2
λ  (3.12) 

Because of the strongly confined nature of the SH fields, the coupling length for SH is very large 

relative to the sample length. Thus SH coupling between channels can be neglected. The 

coupling length for the FH depends on the center-to-center distance between channels (see 

Figure 3.8). For our samples the coupling length can be fitted with the formula 
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Figure 3.8 Calculated coupling length versus channel-to-channel separation. 

For phase-matching exactly at the wavelength ofλ = 1.55 µm a QPM grating with a 

periodicity of = 16.751 µm at room temperature is needed. With the available technology 

(resolution of 20 nm) this grating cannot be fabricated. Therefore an averaging technique was 

Λ
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used where periods within the raster of the mask resolution were distributed such that the spatial 

average provides the desired periodicity [75]. For example, for Λ = 16.751 µm, this requires a 

mixture of periods containing 11 periods with Λ = 16.760 µm and 9 periods with = 16.740 

µm. 

Λ

3.3. Characterization 

Eleven samples, each containing 4 different arrays, were delivered to CREOL and 

characterized over a period of three years. It was concluded that making the required samples to 

the necessary tolerances was a major technological problem. The actual parameters measured for 

the samples were different from the designed ones. The uncertainty in the diffusion constants 

[76] is believed to be a major reason for that. Also small variations in the fabrication procedure 

influenced the linear and nonlinear properties of the sample. They were characterized at room 

temperature as well as at an elevated temperature exceeding 180°C in order to avoid the 

photorefractive effect.  

The detailed layout of the sample is sketched in Figure 3.9. Each sample contained four 

arrays and eight single “witness” channels distributed between the arrays for loss and SHG 

efficiency characterization purposes.  
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Figure 3.9 Typical sample layout. 

Two of the best arrays, one strongly and one weakly coupled, were ultimately chosen as 

described below and used in the experiments. The total length of the weakly coupled (with 

channel-to-channel separation 14.0÷16.0 µm) Pb381z sample was 71 mm and the strongly 

coupled (12.0÷13.5 µm) Pb344z was 51 mm.  

For the characterization of the sample a tunable low power CW source HP81680A by 

Agilent was used. Linear properties were probed by exciting every single channel in the array 

and measuring the discrete diffraction pattern at the output. Only arrays with diffraction patterns 

resembling those in Chapter 2 were deemed acceptable. Later the data was fitted, using a Matlab 

program, to the equation (2.45) to determine a coupling constantC . This simple experiment was 

actually the best way of estimating the linear properties of the samples. First of all it gave direct 

information about the local coupling constant  (or coupling length ). Additional information 

can be extracted from: the uncertainty of the fitting – related to local transverse and longitudinal 

homogeneities, and variation of C  across the whole array – related to overall homogeneity of the 

array. An example of the one of the best discrete diffraction patterns obtained by a single channel 

excitation is shown in Figure 3.10. 

C cL
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Figure 3.10 The measured discrete diffraction pattern (solid line) for array # 2 with coupling 

length = 15.74 mm in the sample Pb381z for comparison with the best theoretical fit from 

which the coupling constants were obtained. 

cL

Measured values of coupling length for the two chosen arrays are shown in Figure 3.11 

and compared with those calculated by the design process. The difference between them can be 

due to many causes, for example by the assumption of a linear superposition of the titanium 

concentration contributing from the two neighboring channels. 

Dependence of the coupling constant in function of the FH wavelength was measured and 

results are shown in Figure 3.12. In contrast to AlGaAs arrays [77] where the dispersion was 

fairly flat, in the case of PPLN samples a significant coupling constant change with wavelength 

was observed. 
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Figure 3.11 Comparison of the measured coupling lengths of the Pb344z and Pb381z samples 

with calculated ones based on design. 
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Figure 3.12 Measured coupling constants (on the left) and coupling lengths (on the right) for the 

Pb381z sample. Each curve represents one array on the sample.  

In order to test an array’s dispersion relation (see equation (2.43)) and hence the validity 

of CMT, a wide elliptical beam was launched into the sample. The input beam was then tilted 

away from the direction of the individual channels and the position at the array output was 
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recorded. This tilting changes the relative phase between adjacent channels at the input, the angle 

referred to in Figure 3.13. The variation in the output position with angle gives directly the 

dispersion relation which is clearly well-approximated by a sine function with good accuracy. 

However, at the high angles (see angles close to π and -π) a significant part of energy is coupled 

to the higher order bands of this periodic structure which indicates a restriction on the validity of 

CMT to angles just below π. 

  

Figure 3.13 Measured dispersion relations for the lowest band for array # 2 in the sample Pb381z 

with a coupling length = 15.74 mm. cL

The technique just described [78] is an indirect, band structure characterization method 

based on measuring the shape of the group velocity curve. However, for the PPLN samples in 

which SHG occurs, there is another method also available. It is based on SHG which requires 

phase-matching between the FH and the SH waves. Thus if one of the wavevectors is known, the 

other can be retrieved from the resonance condition. In the case of the PPLN samples, the SH 

propagation constant has only a longitudinal component (assuming no linear coupling of SH 
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between channels) and is constant, independent of the tilt angle. Again, an elliptical FH wide 

beam was launched in the sample and tilted from the direction of channels. For each excitation 

angle, the FH input wavelength was scanned from 1540 to 1550 nm and the SH tuning curve 

measured with a photodiode. As a result of the measurement a direct plot of the FH fundamental 

band was obtained (see Figure 3.14). 

 

Figure 3.14 Dependence of the SH power versus the FH input wavelength and tilt of FH input 

beam for Pb344z sample. 

The SHG efficiency was measured on the witness channels using the same HP tunable 

laser for internally controlled square-pulse modulation with a repetition rate of 1 kHz. A circular 

beam was launched into the witness channels and output measured separately on Ge (for the FH) 

and Si (for the SH) diodes working as current sources. Using lock-in techniques it was possible 

to detect SH powers at nW levels. In order to assure low depletion regime, low input powers 

were used and the FH wavelength was scanned around the resonance in order to register the total 
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shape of the SH tuning curve for comparison with a theoretical one. Finally power calibration 

was made at the peak of SHG using an Ophir power meter. 

Figure 3.15 shows the edge channels (channels #’s 1 and 8, see Figure 3.9) SH tuning 

curves of the best samples Pb344z and Pb381z. The first one exhibits a nearly theoretical (sinc2-

like) shape with multiple small secondary maxima on the low wavelength side which can be 

explained by the existence of a non-uniform wavevector mismatch condition along the 

waveguide [79]. There is a small shift (0.3 nm) in the positions of the main maxima and 

negligible SHG efficiency difference observed between the measurements in sample Pb344z. For 

the second, weakly coupled sample Pb381z, the SH tuning curves are not as good – clearly the 

sample has a serious problem with uniformity of the phase-matching profile. Also the shape and 

efficiency is significantly different for first and eight witness channels. 
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Figure 3.15 SH tuning curves for the edge witness channels for the two best samples: Pb344z 

and Pb381z at temperature of T = 195°C. 

To estimate the quality of the QPM grating a spatially resolved SHG experiment, which 

geometry and results shown in Figure 3.16, was performed. A narrow (50÷60 µm FWHM) FH 

beam was launched at an angle for which the beam experiences no spreading (diffraction, see 
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Chapter 2) as it crosses the array (relative phase angle π/2). The FH input wavelength was 

scanned around the SHG resonance and the SH output image was measured on a Si CCD 

camera. Because the SH is not coupled between channels and once generated in a given channel 

can only propagate straight along that channel, the registered picture (Figure 3.16 on the right) 

resembles the wavevector mismatch condition along the propagation direction. In the case of the 

Pb381z sample, for which results are shown in Figure 3.16, the QPM non-uniformity is quite 

severe (spreads in range of 3 nm), restricting the useful region of wavevector mismatch for 

investigation in the experiment. 

 

Figure 3.16 Geometry of the spatial resolved SHG experiment (on the left) and result of two 

measurements taken for two diffractionless angles (-π/2 and π/2) for the Pb381z sample at room 

temperature. 

Table 3.4 and Table 3.5 list basic parameters of the Pb344z and Pb381z samples obtained 

during the characterization. Arrays # 3 and 4 from Pb344z sample were not fully characterized as 

their inter-channel linear coupling was too strong and they were never used in any experiment. 
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Table 3.4 Summary of the experimentally measured basic parameters for the Pb344z sample. 

 Pb344z sample Array # 1 Array # 2 Array # 3 Array # 4 

Length [mm] 51 51 51 51 

Period [µm] 13.5 13.0 12.5 12.0 

Loss @ λ = 1550nm [dB⋅cm-1] 0.16 0.23 0.15 0.25 

Coupling length @ λ = 1550nm [mm] 6.08 4.74 – – 

Coupling constant @ λ = 1550nm [m-1] 260 330 – – 

PM wavelength @ T = 20°C [nm] 1521.3 1521.0 – – 

PM wavelength @ T = 195°C [nm] 1546.3 1546.2 1546.3 1546.4 

SHG efficiency ηn [%W-1] 160 120 160 150 

SHG efficiency ηl [%W-1cm-2] 6.2 4.61 6.2 5.8 

Table 3.5 Summary of the experimentally measured basic parameters for the Pb381z sample. 

Pb381z sample Array # 1 Array # 2 Array # 3 Array # 4 

Length [mm] 71 71 71 71 

Period [µm] 16.0 15.0 14.5 14.0 

Loss @ λ = 1550nm [dB⋅cm-1] 0.30 0.20 0.15 0.30 

Coupling length @ λ = 1550nm [mm] 25.56 15.74 12.16 9.53 

Coupling constant @ λ = 1550nm [m-1] 61 100 129 165 

PM wavelength @ T = 20°C [nm] 1527.6 1527.4 1527.1 1527.1 

PM wavelength @ T = 195°C [nm] 1553.0 1553.1 1552.8 1552.7 

SHG efficiency ηn [%W-1] 180 160 100 170 

SHG efficiency ηl [%W-1cm-2] 3.57 3.17 1.98 3.37 
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CHAPTER FOUR:  EXPERIMENTAL SYSTEM 

4.1. Sources 

The transparency region of lithium niobate is wide, covering the range of 325-4500 nm 

[66].  Although experiments could have been performed at arbitrary sets of fundamental and 

second harmonic wavelengths lying in this region, the choice to work at the telecommunication 

wavelength is preferable because of possible future applications in this field. Four different laser 

systems were used in the experiments described in this dissertation, all of them covering the C 

communications wavelength band (1525-1565 nm). 

4.1.1. Tunable Agilent HP81680A CW diode laser  

This diode laser was mostly used for linear and nonlinear sample characterization at low 

fundamental depletion. It is an InGaAsP tunable laser with a built-in wavelength control loop to 

ensure high wavelength accuracy. Its narrow bandwidth and computer-based interface makes it 

perfect for the automated sample characterization. The internal amplitude modulation option, 

together with lock-in detection techniques, allows low-noise low-power measurements. Table 4.1 

lists the most important parameters of the HP81680A diode laser [80]. 
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Table 4.1 Main parameters of HP 81680A diode laser. 

Wavelength range 1456-1584nm 

Max. CW output power ≥ 5dBm  (1520-1570nm) 

Wavelength resolution 0.1pm (1550nm) 

Absolute wavelength accuracy 0.01nm 

Power flatness 0.3dB 

Effective linewidth 50MHz 

 

4.1.2. Burleigh FC-120 Color Center Laser  

  This laser, doubled externally with a PPKTP crystal, was used in parametric switching 

experiments. The Burleigh FC-120 is a NaCl:OH-(F2+:O2-) Color Center Laser [81-83] 

synchronously pumped by a Coherent Antares 76 Nd:YAG laser. By varying the cavity length, 

this laser operates either in a mode-lock configuration, producing 7-9 ps pulses with up to 500 W 

peak power at 76 MHz repetition rate, or by destroying the mode-lock condition in a quasi-CW 

configuration. It is tunable from 1480 to 1660 nm. The CCL performance was monitored in real 

time using a scanning Burleigh TL series Fabry-Perot etalon. In the pulsed regime, the pulse 

duration was measured with a Femtochrome FR-103 SHG autocorrelator and the spectrum was 

monitored with a fiber-coupled Instrument System SPECTRO 320 spectrometer. 

Table 4.2 Main parameters of Burleigh FC-120 color center laser. 

Wavelength range 1480÷1660nm 

Repetition rate 76MHz 

Pulse duration 7-9ps 

Spectral bandwidth transform limited 0.30-035nm 

Peak power 500W 
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4.1.3. Fiber-based system  

Unfortunately the CCL alone could not deliver enough peak power for soliton 

experiments in the PPLN samples described in Chapter 3. The prospective replacement of the 

CCL had to fulfill a few key parameters restricted by the sample properties. The length of the 

samples determined from the SHG acceptance bandwidth of the device was calculated to be 

0.2÷0.3 nm theoretically. Because efficient SHG is desired over the full channel length, the 

bandwidth of the source should be comparable with the SHG bandwidth. For the optimum case 

of transform limited pulses, a 0.25 nm bandwidth corresponds to 10 ps long pulses. Another 

consideration determining the pulse width is the walk-off between the FH and the SH over the 

sample length due to their different group velocities. Theoretically the pulses walk-off by 13 ps 

for a 7 cm long single channel. Thus ideally pulses of minimum 10 ps (preferable 20 ps) are 

desired. Also the peak power was an important issue – theoretical calculations showed that the 

minimum required power for the soliton excitation on phase-match is of order of few hundreds 

Watts. Off phase-match, the required power scales approximately linearly with the phase-

mismatch. Given the losses in a typical beam shaping system, the target was to achieve 4 kW 

peak power. Secondary but still important requirements were the pulse-to-pulse stability and the 

source’s repetition rate. The first relates to the reproducibility of the results and the second to the 

signal-to-noise ratio of the detection system. Based on previous experience, these parameters 

were set at a minimum of 1 MHz repetition rate and pulse-to-pulse stability better than 5%. No 

commercial system, fulfilling all requirements, was available on the market. That is why a home-

built fiber based system was designed, built and characterized for these experiments. 
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Originally the fiber system was proposed to consist of 2 parts, a picosecond fiber laser 

and large-core Erbium doped fiber amplifier (EDFA). A commercial large-core EDFA was 

purchased from Keopsys. It consisted of two amplifier stages: preamplifier with the average 

output of 10 mW and a booster with the maximum average power output of 500 mW. The CCL 

was used to test the amplifier (see Figure 4.1). A bulk electro-optic Conoptics M360-3 modulator 

was set up in the path of the laser beam in order to reduce the repetition rate of the laser, by an 

arbitrary integer factor .  N

 

Figure 4.1 Large core Erbium doped fiber amplifier characterization setup.  

At the repetition rate of 19 MHz (the closest value to the planned 20 MHz) a significant 

spectral broadening at the output from large core amplifier (see Figure 4.2 on the left) was 

observed starting at power levels of a few hundreds Watts, resulting from self phase modulation 

(SPM) in both the 1 m long SMF-28 fiber at the amplifier output and the Erbium doped fiber in 

the amplifier itself. The output fiber was cut to 15 cm. This improved but did not solve the 

problem as SPM persisted (see Figure 4.2 on the right). It was decided to use a pulse stretcher 
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before the amplifier to reduce the peak power intensity (and hence the spectral broadening due to 

SPM). The amplifier then amplified the pulse energy and a pulse compressor was used in the last 

stage to recover the peak power. This is basically the well known Chirped Pulse Amplification 

(CPA) technique [84]. Although the stretcher could be fiber-based because the input peak power 

of a few Watts is insufficient to produce spectral broadening, the pulse compressor outputs 

intensity levels which would produce significant spectral broadening in a compression fiber. 

Thus the compression stage requires a bulk system involving bulk gratings. Figure 4.3 shows the 

designed CPA system consisting of four discrete elements: picosecond fiber laser, chirped fiber 

Bragg grating (CFBG), large-core EDFA and bulk grating compressor. 
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Figure 4.2 Spectral broadening at the output of the amplifier due to self phase modulation: before 

(on the left) and after (on the right) shortening the output fiber as a function of pumping diode 

current. 2.75 A corresponds to 2.5 kW optical peak power at the output.  
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Figure 4.3 Application of Chirped Pulse Amplification technique to the fiber based system. 

A number of custom-made chirped fiber gratings for the pulse stretching phase were 

fabricated using the photosensitive-laser writing method by Dr. Ian Bennion’s group at Aston 

University in the UK and characterized. The reflection properties were measured using the setup 

shown in Figure 4.4 on the left and the results are presented on the right. These are typical 

reflection results showing that the output from the long wavelength input end of the fiber 

exhibits a slope due to the wavelength-dependent coupling into the cladding modes. It is this 

spectral bandwidth of the grating which limits the tuning range of whole system to 7 nm. 
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Figure 4.4 Characterization of reflection of chirped fiber Bragg grating: setup (on the left) and 

results for inputs into both ends (on the right). 

Second order dispersion of the fiber grating was measured, using the broad-band 

interferometric setup [85, 86] shown in Figure 4.5, to be 120 ps/nm, which limits the stretched 

pulse to 45÷50 ps. 
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Figure 4.5 Second order dispersion characterization setup. 

The previously tested large-core EDFA was used to amplify the stretched pulses. 

Different repetition rates were tested and, based on output peak power, spectral broadening and 

the amplified spontaneous emission content, an optimum 4.75 MHz repetition rate was chosen. 

The estimated peak output power of 2 kW (intensity of 3 GW/cm2 assuming a mode diameter of 

9.2 µm) was too low to produce a significant spectral broadening in the amplifier. In fact, 

depending on which input end of the fiber Bragg grating was used, the output spectrum was a bit 

wider (for input at the long wavelength end) or a bit narrower (for input at the short wavelength 

end) than the input spectrum. This variation is indicative of a small amount of residual SPM in 

the amplifier. If the input pulse is positively chirped, the spectrum broadens during propagation 

in the amplifier due to SPM. On the other hand, a negative chirp causes initially a spectral 

narrowing near the input and some distance down the fiber a subsequent spectral broadening as 

in the previous case.  The second case matched better the requirements of the desired source 

because it produced marginally longer pulses. Figure 4.6 shows experimentally measured input 

and output spectra for a negatively chirped input pulse. 
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Figure 4.6 Input and output spectra for an initially negatively chirped pulse. 

The last stage of the system, the bulk grating compressor [87], was based on the design of 

the stretcher in the Spitfire – regenerative amplifier by Spectra-Physics (see Figure 4.7). 

 

Figure 4.7 Compressor layout based on the Spectra-Physics design with the beam output at 

various positions shown. 

 59 



 

It is a folded version design of the telescopic version proposed first by Martinez [88] in which a 

negative chirp can be compensated. A high modulation holographic reflective grating with 1100 

grooves/mm was purchased from Thermo Richardson Grating Laboratory. Figure 4.8 shows the 

variation in efficiency of coupling to the first diffracted order with deviation from the Littrow 

angle of 58°. Although the angles have to be adjusted for wavelength changes, the grating 

efficiency is > 90% over hundreds of nm. 
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Figure 4.8 Efficiency of coupling to the first diffracted order as a function of the angular 

deviation from the Littrow angle. 

A 2 inch diameter silver coated concave mirror with 3 m radius of curvature was used in 

the setup as the focusing element. The distance between the concave mirror and grating was 50 

cm, which yields an effective grating separation (for a standard non-folded design) of 2 m. After 

achieving successful compression (autocorrelation indicated 13 ps FWHM) based on the CCL 

input, that laser reached the end of its useful life and died. 
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Next a custom designed fiber laser, with the parameters shown in Table 4.3, was 

purchased from Pritel. It is a linear cavity, passively mode-locked laser producing nearly 

transform-limited 9-11 ps long pulses.  

Table 4.3 Main parameters of the Pritel picosecond fiber laser. 

Wavelength range 1535÷1565nm 

Repetition rate 5MHz 

FWHM pulse duration 9-11ps depending on wavelength 

FWHM spectral bandwidth 0.28-0.38nm, close to transform limit 

Average power 3-5mW 

 

It was expected that small differences in seeding pulse parameters, between the CCL and 

Pritel fiber laser, would result in different amplified pulses because of weak but still present 

nonlinear effects. A non-collinear SHG Frequency Resolved Optical Gating (FROG) [89, 90] 

setup (see Figure 4.9) was built and used to characterize the pulse quality after compression. To 

control the relative delay of the pulses in two arms, a prism in one of the arms was placed on 

motorized stage. A high resolution fiber coupled ANDO AQ-6315E spectrum analyzer was used 

to collect the spectral data. A LabVIEW program was developed to synchronize these two pieces 

of equipment to ensure good quality of the data. 
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Figure 4.9 SHG frequency resolved optical gating setup used to characterize pulses from the 

fiber based system. 

A comparison of the FROG traces (see Figure 4.10), taken for two different values of 

pumping currents of the diode in the booster stage of the amplifier: Id2 = 1.0 A and Id2 = 5.0 A, 

confirms that there is still some SPM present in the amplification process at the higher current 

settings. As there was no commercial software available for pulses longer than 1ps, a pulse 

retrieval program was developed in Matlab based on a generalized projection method [91-93].  

 

Figure 4.10 SHG frequency resolved optical gating traces for two different settings of pumping 

currents of booster stage diode: Id2 = 1.0 A on the left and Id2 = 5.0 A on the right. 
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The pulse amplitudes and phases retrieved from the FROG for different pump diode currents are 

shown in Figure 4.11. The pulses are a slightly asymmetric and the best fit to a sech function 

gives a FWHM of 7.65 ps for a pumping diode current of Id2 = 5.0 A. To check the reliability of 

the FROG measurements the autocorrelation and the power spectrum were calculated from the 

retrieved pulses, for the two different pumping currents, and compared with the measured ones 

(see Figure 4.12). The agreement is excellent and small differences come from the resolution of 

the equipment used.  

 

Figure 4.11 The retrieved pulse amplitudes and phases for two different settings of the diode’s 

pumping current (booster stage diode): Id2 = 1.0 A on the left and Id2 = 5.0 A on the right. 

It would be an interesting problem to investigate the nonlinear dynamics during 

amplification and its influence on the pulse shape but this was not the topic of this dissertation 

and further improvements were not necessary to perform nonlinear experiments in the waveguide 

array samples. Table 4.4 lists the most important output parameters of fiber based system. 
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Figure 4.12 Comparison of measured (green) with calculated from the retrieved pulses (blue) 

autocorrelation (first row) and power spectrum (second row) for two different settings of the 

pumping currents of the booster stage diode Id2 = 1.0 A (on the left) and Id2 = 5.0 A (on the 

right). 

Table 4.4 Main parameters of fiber based system. 

Wavelength range 1554÷1561nm 

Repetition rate 5MHz 

FWHM pulse duration 7.65ps 

FWHM spectral bandwidth 0.22nm 

Peak power 4.5kW 
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4.1.4. Ekspla PG501VIR OPG-OPA system 

This system was used in the modulational instability experiment. It is a commercial 

system consisting of two modules: a passively mode-locked picosecond Nd:YAG laser (Ekspla 

PL2143A) as a pump source and  a OPG-OPA unit (Ekspla PG501VIR) [94, 95]. The Nd:YAG 

laser has two outputs: 1064 nm fundamental output with maximum pulse energy of 25 mJ and 

extra-cavity doubled 532 nm output with energy up to 11 mJ – both delivering 25 ps long pulses 

at repetition rate of 10 Hz. The green 532 nm output is used to pump the OPG-OPA unit which is 

tunable from 680-2300 nm. The average output energy is wavelength dependent and higher than 

0.2 mJ. The output energy stability of the unit (usually around 10% rms) is mainly influenced by 

the pump laser stability (usually below 1.5%). The bandwidth of the source is around 0.5 nm at 

wavelength 1550 nm. Thus the time-bandwidth product, for measured 15 ps long pulses, is four 

times the transform limit. The spatial quality, in comparison with the previously described 

system, is not very good. Moreover there are some problems related with beam pointing stability 

due to nonlinear instabilities in the parametric interaction.  

Table 4.5 Main parameters for the Ekspla OPG-OPA system. 

Wavelength range 680÷2300nm 

Repetition rate 10Hz 

FWHM pulse duration 15ps 

FWHM spectral bandwidth 0.5nm 

Pulse energy > 0.2mJ 
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4.2. Power Measurements 

The laser sources described in this chapter can be divided, with respect to different 

methods of power detection, into two groups: CW or quasi-CW sources (when the response of 

the detector is much slower than the repetition rate of the source) for which an average power is 

measured, and low repetition rate sources where pulse energy is measured. The average power 

and pulse energy detection methods used in the experiments described in this thesis are discussed 

below separately. 

4.2.1. CW and high repetition rate systems 

Two commercial, calibrated power meters for measuring power were available. A 

Coherent LaserMate thermal detector with digital readout was used to measure average power 

levels between 1 mW and 10 W. An Ophir InGaAs detector PD-300-IRG (power range 1 pW-

300 mW for the FH) and a Silicon detector PD-300 (power range 1 nW-300 mW for SH) were 

used with digital LaserStar readout to measure low average output powers. 

In order to increase the number of points at which the power is monitored in the 

experiment, Ge (for FH) and Si (for SH) photodiodes connected to EG&G 5209 lock-in 

amplifiers were used. The detected current from the photodiodes was read out by a computer and 

(after calibration against the Ophir power meter) converted directly to optical power. Care has 

been taken to ensure that these detectors do not work in the saturation regime due to high peak 

powers. Silicon polished plates were placed in front of the Ge photodiodes (for the FH detection) 

and KG3 filters in front of the Si photodiodes (for the SH detection) to prevent cross-talk 

between the FH and SH wavelengths. When working with a CW HP81680A diode laser an 

internal modulation of 1 kHz was used as the reference frequency for the lock-in amplifier. For 
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high repetition rate systems, a mechanical chopper with a duty cycle of 1:10 was placed in the 

path of the beam and rotated at 60 Hz frequency in order to avoid frequency beating phenomena 

on cameras.  

4.2.2. Low repetition rate system 

A Laser Precision Corporation pyro-electric PjP-735 head was used with a digital Rj7100 

readout to measure pulse energy when using the low repetition Ekspla system. Additional power 

measuring points were setup with the help of Ge (for the FH) and Si (for the SH) photodiodes, 

calibrated against the Laser Precision Corporation energy meter, and commercial Stanford 

Research boxcar integrator system. On-demand data transfer was available through the GPIB 

bus. Again Si plates and KG3 filters were used to avoid the cross-talk between the FH and the 

SH. 

4.3. Cameras 

Observation of the spatial power distribution at the sample output required cameras 

responding to the FH and SH wavelengths. For the FH, a Hamamatsu C2070 Vidicon camera 

was used. A silicon plate was placed in front of the camera to block SH radiation as its 

sensitivity also covers the SH wavelength. For the SH a Pulnix TM-745 CCD Silicon camera 

was used, gen-locked to the horizontal synchronization signal of the Hamamatsu camera. 

Pictures from both cameras were acquired at 30 frames-per-second by a computer program 

written in LabVIEW. In the “highly localized” soliton experiment, a third camera, an 

ElectroPhysics MicronViewer 7290A Vidicon camera, was used to measure the relative phase 

changes of the SH seed.  
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For the modulational instability experiment when the average FH power was very low 

and the Hamamatsu camera was not sensitive enough, a Roper Scientific OMA V InGaAs line 

camera (512x1 pixels) was used. 
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CHAPTER FIVE:  DISCRETE TALBOT EFFECT 

The repeated self-imaging in space of a diffraction grating on propagation in a continuous 

medium was first observed by Talbot [96] in 1836. A few decades later Lord Rayleigh explained 

this remarkable effect by showing that any periodic one-dimensional field pattern reappears, 

upon propagation, at even integer multiples of the so-called Talbot distance , 

where

λ/2LxT =

L represents the spatial period of the pattern andλ the light wavelength [97]. The question 

arises as to whether the Talbot effect is also possible in discrete systems. Unlike in continuous 

media where the dispersion relation (of the paraxial Fresnel or Schrödinger equation) is 

parabolic, in discrete systems the dispersion curve has a cosine-like character (see Figure 2.7). 

Does this difference affect the Talbot effect in discrete media? 

In this chapter the theory and experimental observation of discrete Talbot effects in 

weakly coupled waveguide arrays will be presented [32]. 

5.1. Overview of Talbot effect in continuous media 

The phenomenon of Talbot self-imaging is caused by Fresnel diffraction of a grating in 

its near field [98-100]. Because there are interesting differences in diffraction between 

continuous and discrete media, the well-known continuous case will be briefly reviewed first. It 

can easily be derived using the 1D wave propagation equation for a wave propagating along x , 

and diffracting in the y direction 
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whereϕ represents the complex field amplitude. There is a corresponding equation in the Fourier 

domain, 
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In general a periodic input pattern can be represented by a Fourier series in the space domain 
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For a propagation distance x in Fourier space using the paraxial approximation 
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the inverse Fourier transform results in a final output pattern of the form 
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which can be compared with the input distribution ( )y0ϕ . Perfect re-imaging requires that the 

second exponential term be equal to 1. This results in the following condition for the Talbot 

distance  

 
λ

2LmxT =  (5.8) 

where is an integer. m

In addition to the integer Talbot effect, fractional revivals are also known to occur at 

distances that are rational multiples of , i.e.,Tx qpxx T // = where and are relatively prime 

integers. In fact, as shown in several studies, these fractional Talbot images consist of  

coherently superimposed and equally spaced copies of the initial image with a complex phase 

relation [98, 101]. In Figure 5.1 some fractional 1D intensity images are shown for multiples of a 

quarter of the Talbot distance for a 50% duty cycle amplitude grating. The initial pattern with 

most of the power centered at undergoes diffraction and at the distance is centered 

at . This cycle continues and at

p q

q

0/ =Ly Txx =

5.0/ =Ly Txx 2= the pattern looks exactly like the input one. 

On the other hand, if happens to be irrational, the resulting image is fractal in nature, 

i.e. the structure of the image is very complex as the number of superimposed copies creating the 

image is infinite. This interesting relationship between the Talbot effect and number theoretic 

issues has been recently suggested as a possible way to factorize integers [102].  

Txx /
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Figure 5.1 One-dimensional fractional Talbot patterns for: a) Txorx 20= , b) , 

c) , d) , e) 

TT xorxx 4/74/=

TT xorxx 2/32/= xorxx 4/54/3= xxTT T= . 

In the last few years, there has been a renewed interest in optical Talbot effects because 

of possible applications, not only in the spatial [103, 104] but also in the temporal domain (in 
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optically dispersive fibers) [105]. In addition to optics, Talbot recurrences have been encountered 

in many other areas of physics such as in atom optics [106], Bose-Einstein condensates [107], 

and in the interferometry of large fullerene molecules [108]. Generally speaking, the Talbot 

process belongs to a broader family of phenomena exhibiting wave packet revivals [109]. 

Revivals of this sort can occur for example in the generation and detection of atomic Rydberg 

electron wave packets [110], in molecular systems [111], in quantum billiards and carpets [109, 

112], during Bloch oscillations [113, 114], and in systems described by the Jaynes-Cummings 

model [109] just to mention a few. Yet, so far, the Talbot process has only been investigated in 

continuous systems using either the Fresnel equation in optics or its mathematically equivalent 

Schrödinger equation in atom optics.  

70C

5.2. Theory of discrete Talbot effect 

The theoretical analysis which follows indicates that Talbot recurrences only occur when 

the period of the initial pattern belongs to the setN }6,4,3,2,1{∈N . This is unlike to what occurs 

in the continuous Talbot process where the revivals are period independent. 

To analyze the discrete Talbot effect, the wave propagation in an infinite array of weakly 

coupled discrete waveguides is described by the array’s coupled wave equation [17] 

 ( ) 011 =++ +− nn
n uuC

dx
dui  (5.9) 

where is complex field amplitude in the n-th channel and is complex constant. As discussed 

in Chapter 2, Equation (5.9) is known to admit solutions of the form 

nu C

( )dnkxki
n

yxeuu +∆= 0 where 

is a phase shift between successive sites and dk y xk∆  is an eigenvalue given by 
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)cos(2 dkCk yx =∆ . For the Talbot effect to take place, the input field distribution should be 

periodic, and thus in general nNn uu =+ where represents the spatial period of the input. 

Because of this periodic condition, can only take values from the discrete set  

where

N

dk y θmdk m
y =

N/2πθ = and 1,..,2,1,0 −= Nm . Therefore as a result of this periodicity, the field 

evolution at site can be in general described by expansion into a set of orthogonal functions  

, i.e. . It is therefore clear that field revivals 

are possible at intervals

n

)exp()exp(2/1)( xkidinkNa m
x

m
y

m
n ∆= − ∑

−

=

=
1

0

)(
N

m

m
nmn acu

x if  (where νπ2=∆ xk j
x ν  is an integer) and hence the ratio of any two 

eigenvalues must be a rational number, i.e.  where, qpkk j
x

i
x // =∆∆ p  and  are relatively 

prime integers. From the ratio  one arrives at the conclusion that

q

01 / xx kk ∆∆ )/2cos( Nπ must also 

be rational for field revivals to occur. In addition, one can also directly show that the intensity 

patterns will repeat if the ratio  is also rational, where the 

eigenvalue indices 

qpkkkk j
x

i
xxx /)/()( =∆−∆∆−∆ νµ

}1,..,1,0{,,, −∈ Njiνµ  and are taken at least three at a time. By considering 

the ratio one can then reestablish the fact that)/()( 0102
xxxx kkkk ∆−∆∆−∆ )/2cos( Nπ should be 

rational. Therefore, for discrete Talbot revivals (field or intensity) to occur it is necessary 

that qpN /)/2cos( =π , i.e. it is a rational number.  

 The question now is: for which values of , is N )/2cos( Nπ  a rational number? This issue 

is addressed by observing the fact that all higher-order eigenvalues can be obtained from the first 

one using Chebyshev polynomials )(ζmT , that is ))(cos()cos( θθ mTm = , where N/2πθ = , 

and where [ represents the integer part of . All the Chebyshev 

coefficients are integer numbers and of importance to this discussion is the fact that the first 

∑
=

−=
][

0

2)()(
m

k

kmm
km cT ζζ ]m m

)(m
kc
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Chebyshev coefficient is given by . Given that  are integers, then 1)(
0 2 −= mmc )(m

kc )/2cos( Nmπ is 

rational if and only if )/2cos( Nπ  is rational. To find all possible that will permit Talbot 

recurrences it is first assumed that is odd. From the relation 

sN '

N 1)cos())(cos( == θθ NTN , one 

obtains the following polynomial in )cos(θ , . By applying 

the rational root theorem, the possible rational roots of this polynomial, if any, should belong to 

the set . It turns out that these are indeed roots only if

01)cos(...))(cos(2 ]2/[
1 =−++− θθ N

N
NN c

}2/1,...,2/1,2/1,1{ 12 −± N 3,1=N . 

For , 5=N 4/)15()5/2cos( −=π  is irrational and in addition for any odd integer greater than 

6, it is expected that 

N

1)/2cos(2/1 << Nπ . Since from the previous discussion this is impossible, 

then )/2cos( Nπ  is rational for only 3,1=N . By using similar techniques and a fundamental 

theorem of arithmetic (unique factorization theorem), one can then show that for even , N

)/2cos( Nπ  is rational only if . Thus one can formally show that discrete Talbot 

revivals are only possible for a finite set of periodicities. These belong to the 

set where represents the trivial case of a discrete plane-wave solution. For 

any other periodicity in general, the field evolution is non-periodic. This is in contrast to what 

happens in the continuous Talbot case where the recurrences happen to be period independent.  

Of course, for specific periodic inputs, it is also possible to have revivals even when does not 

belong to the above mentioned set. This may happen in cases where only a subset of eigenvalues 

is involved (because of the input pattern) that happen to be rational with respect to each other.  

6,4,2=N

}6,4,3,2,1{∈N 1=N

N

Now some of the aspects associated with the discrete Talbot effect are going to be 

illustrated by means of relevant examples. Let us first assume a binary pattern at the input. More 

specifically, let )exp(0 φinaun = for even n sites and )exp(0 φinbun = for odd. In this case, one can 

show that the field in the even/odd elements evolves according to 
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[ ] )exp())cos(2sin(),())cos(2cos(),( 0000 φφφ inCxabiCxbaun += . Figure 5.2 depicts periodic 

intensity revivals when the binary input is [1, 0, 1, 0, …]. The intensity Talbot “carpet” 

corresponding to this case is shown in units of coupling lengths CLc 2/π= . For this example 

where 00 == φb  (shown in Figure 5.2a), the patterns reappear every , i.e. the discrete Talbot 

distance is . An interesting case arises when the array is excited at an angle (at a finite 

Bloch momentum) and thus the binary input is phase shifted according to  

( ). From the previous discussion, one then finds that the discrete Talbot period is 

given by

cL

2/cT Lx =

...],0,,0,[ 3 φφ ii ee

0,1 00 == ba

))cos(2/( φcT Lx = . Figure 5.2b shows the same pattern but with a Bloch momentum 

equal to π/4. Indeed the Talbot distance got shorter. It is interesting to note that 

as

Tx

φ approaches 2/π , the Talbot revivals slow down and totally disappear at 2/πφ = as shown in 

Figure 5.2c. One may interpret this effect from the fact that the diffraction/dispersion of the array 

is zero in the middle of the Brillouin zone (at 2/π ) and so the Talbot process that derives from 

these effects vanishes.  
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Figure 5.2 Talbot intensity "carpets" for input field pattern [1, 0, 1, 0, ...] and different Bloch 

momentumφ : a) 0, b) π/4, c) π/2. 

Figure 5.3 shows additional Talbot intensity “carpets” for the input periodic patterns [1, 

0, 0, 1, 0, 0, …] which has a period 3=N and [1, 0, 0, 0, 1, 0, 0, 0, …] with a period 4=N , both 

excited in-phase. In the first case the intensity in the initially excited channels evolves according 
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to  whereas in the channels that were not excited at the input it varies 

like . For this pattern the Talbot period is given by

9/))3cos(45( Cx+

))3cos(1)(9/2( Cx− 6/4 cT Lx = .  In general for 

 and for in phase excitations, the Talbot recurrence distance is given by the 

largest period that results from the eigenvalues involved in the initial pattern. 

}6,4,3,2,1{∈N

)/( j
x

i
xT kkx ∆−∆= π

 

Figure 5.3 Talbot intensity "carpets" for different in-phase input field patterns: a) [1, 0, 0, 1, 0, 0, 

...] and  b) [1, 0, 0, 0, 1, 0, 0, 0, …]. 

5.3. Setup and experimental results   

For an experimental demonstration of discrete Talbot effects, array # 2 of the Pb381z 

sample with coupling length of 15.74 mm atλ = 1550 nm was used (see Table 3.5 for details). 

 78 



 

The inter-channel coupling length was measured experimentally as a function of wavelength 

(results shown in Figure 3.12 in green). In the experimental setup (see Figure 5.4) a HP81680 

tunable diode laser was used as the source. The laser output beam was shaped, using a telescope 

based on two cylindrical lenses C1 and C2 to be highly elliptical and was focused by a 10X 

microscope objective to a size of 500 x 3.5 µm FWHM on the input facet of the array sample. 

Amplitude transmission masks, with periodicities that are multiples of the array inter-channel 

spacing and exhibiting different patterns, were fabricated using laser writing and etching 

techniques. The masks were then put in contact with the sample for clean in-phase mode 

excitation. 

 

Figure 5.4 Experimental setup. 

To control the tilt of the input beam and hence the initial phase difference between adjacent 

channels, a mirror M2 was placed on a motorized stage between the telescope and the 

microscope objective. The horizontal displacement of the beam from the center of the 

microscope objective caused a beam tilt at the input facet of the sample. Because of the sample’s 

excellent linear properties (low scattering) it was not possible to observe the Talbot revivals 

when looking from the top. Instead, an indirect observation of the Talbot process at the output of 
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the array was achieved by varying the wavelength (and hence the coupling length) over the full 

spectral range of the laser (1456-1584 nm). This change in coupling strength with wavelength is 

essentially equivalent to varying the effective sample length. This in turn allows one to observe 

the Talbot effect without affecting the diffraction properties of the beam.  

The experimental results corresponding to the periodic [1, 0, 1, 0, …] excitation 

conditions with different Bloch momentum (simulated in Figure 5.2) are shown in Figure 5.5a-c 

respectively. These figures depict the intensity at the output of the array as a function of 

wavelength, in good agreement with theory. In Figure 5.5a, a Talbot recurrence and an 

intermediate state (at ) where all elements are equally excited, was observed. On the 

other hand, as per our previous discussion, in Figure 5.5c this periodic recursion disappears since 

the phase difference between successive waveguides is π/2. Similarly, Figure 5.6 demonstrates 

Talbot revivals when the initial patterns have a period

4/)3,1( cL

3=N and 4=N . Both sets of results are in 

very good agreement with simulations presented in Figure 5.3. The “wavy” nature of the 

observed patterns is a consequence of the wavelength tuning. This introduces wavefront 

aberrations at the input facet due to the chromatic dispersion in the optical elements that leads to 

focal point shifts with wavelength. This results in a very weak excitation of higher order bands 

which interfere with the lowest order band of interest.  
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Figure 5.5 Experimentally observed Talbot revivals for the input field pattern [1, 0, 1, 0, ...] and 

different Bloch momentumφ : a) 0, b) π/4, c) π/2.a). 
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Figure 5.6 Experimentally observed Talbot revivals for in-phase input field patterns: a) [1, 0, 0, 

1, 0, 0, ...] and  b) [1, 0, 0, 0, 1, 0, 0, 0, …] excitations. 

In conclusion, discrete Talbot revivals in one-dimensional waveguide arrays were 

experimentally observed. Unlike continuous systems where the Talbot self-imaging effect 

always occurs irrespective of the pattern period, in discrete configurations this process is only 

possible for a specific set of periodicities. Moreover, the Talbot distance is dependent on the 

Bloch momentum of the excited beam. The results may be relevant to other areas of physics 

where such Talbot recurrences may be observed. These include, for example, optical wave 

propagation in photonic crystal structures and Bose-Einstein condensates in optically induced 

periodic potentials [109]. 
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CHAPTER SIX:  QUADRATIC SOLITONS 

The experiments on the excitation of discrete quadratic solitons in PPLN waveguide 

arrays for two different confinement cases are presented in this chapter. Weakly-localized 

solitons were excited by the FH only beam. Relatively wide, stable solitons were formed on 

propagation due to the balance between diffraction and cascading [33]. On the other hand, the 

excitation of strongly-localized solitons required both the FH and SH fields to be launched in-

phase. The formation of the solitons for different relative phase differences between the FH and 

SH was studied and a close relation between the highly-localized solitons and the nonlinear 

eigenmodes of the single channel was discussed [34].  

6.1. Introduction 

Different kinds of quadratic discrete solitons have been theoretically predicted to exist in 

waveguide arrays [22, 23, 115]. Their continuous media counterparts, i.e. multi-colored or 

quadratic spatial solitons, had already been experimentally demonstrated previously [116, 117]. 

It was shown that the wavevector mismatch ( ) ( )ωβωββ 22 −=∆  between the participating 

waves is a crucial parameter which determines the features of the respective soliton families 

[118]. The size and the sign of this mismatch govern the character and strength of nonlinear 

phase modulation [42, 119]. It is now well-known that this cascading nonlinear phase shift can 

also lead to a self focusing of both the FH and the SH [120]. In fact, the inhibition of transfer of 
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between the two channels of a dual directional coupler has been observed at high intensities due 

to this effect [58]. Thus it is not surprising that discrete quadratic solitons were subsequently 

predicted theoretically to exist in weakly coupled arrays of channel waveguides tuned close to 

their phase-matching condition for second harmonic generation. 

)2(χ

For the experimental investigation of quadratic discrete solitons, the fiber-based laser 

system producing a 5 MHz train of bandwidth limited 7.65 ps long pulses at 1557.3 nm was used 

(see detailed parameters in Table 4.4). All experiments were performed with the weakly coupled 

sample Pb381z (see detailed parameters in Table 3.5). The phase-matching temperature was 

234°C. The required wavevector mismatch Lβ∆ was adjusted by varying the sample temperature 

according to the formula T

 [ ]( )CTL o−×=∆ 2341.8β  (6.1) 

which is based on the known temperature dispersion in the refractive indices and detailed 

modeling of the waveguide channels. 

6.2. Weakly localized solitons 

The experimental setup used in the excitation of weakly localized solitons is shown in 

Figure 6.1. The laser output beam was shaped spatially, with a cylindrical lens C, into an 

elliptical shape 62 µm wide (FWHM) and 3.5 µm high, and focused by a 10X FL-10B 

microscope objective onto the polished front facet of the waveguide array. In this way the FH 

was launched into TM00 modes of the array waveguides with an overlap efficiency of 50÷60%. 

No SH was inputted and the SH soliton component was generated near the input facet during 

propagation. A half-waveplate in a motorized mount was placed in front of the polarizer to 
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control the input power. Another motorized stage controlled the tilt of an antireflection coated 3 

mm thick window W. It resulted in a tilt-dependent transverse beam translation of the beam 

incident onto the in-coupling MO and consequently in a tilt relative to the channel direction of 

the input beam at the input facet of the sample, i.e. a controlled relative phase between adjacent 

channels was generated. To reduce the average power in the waveguides a mechanical chopper 

with duty cycle 1:10 was used. The sample was heated in an oven both to minimize 

photorefractive effects and to adjust the wavevector mismatch. The output of the array was 

observed with the separate cameras for the FH and the SH, and quantified by measuring the 

temporally averaged output intensities using calibrated diodes and lock-in techniques. 

FH beam
SH beam

 

Figure 6.1 Experimental setup for the excitation of weakly localized solitons. 

 First measurements were taken for a positive wavevector mismatch Lβ∆ and normal 

diffraction – the combination of parameters for which an unstaggered soliton was expected to 

exist. Hence we focused the FH input beam untilted onto the sample, i.e., with a phase front 

parallel to the input facet, and the beam maximum centered on the guide. A narrowing of the FH 

and the SH at the output was observed with increasing input power until the width of the FH 

output equaled the width of the input beam. A typical output FH energy distribution as a function 

of the input FH peak power is shown in Figure 6.2. At input power levels (>800W) exceeding 
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twice the soliton threshold power (400W) the beam broadens. This is not predicted by the simple 

theoretical model used for simulating the experiment. Residual photorefraction, nonlinearly 

induced absorption and longitudinal inhomogeneities in the channels are believed to be the 

principal reasons for this discrepancy. These effects are all expected to come into play for high 

input powers and are not included in theoretical modeling. Figure 6.3 shows typical measured 

and simulated output intensities for both wavelength components for an odd, unstaggered soliton. 

The low power diffraction patterns are also shown for comparison.  

 

Figure 6.2 The FH energy distribution output from the array as a function of the input peak 

power for an array with the coupling length = 9.53 mm for a positive wavevector mismatch. cL
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Figure 6.3 Spatial pulsed energy profile of the two nonlinearly coupled frequency components of 

an unstaggered odd discrete soliton ( Lβ∆ = 140π , = 15.74 mm, FH input peak power of 

500 W). Dotted lines and open circles show the low power FH diffracted beam, solid lines and 

circles show the soliton. Circles identify theoretical data. 

cL

In order to obtain a more complete insight into the physics of soliton formation the 

experiments were repeated for a several positive values of Lβ∆ (and thus positive nonlinear 

phase shift) and in different arrays with varying coupling lengths. As expected from theoretical 

predictions, Figure 6.4 (on the positive side of phase-matching) confirms the powers needed for 

soliton formation increased with the coupling strength and Lβ∆ . The latter result is a clear 

indication of the quadratic nature of the nonlinear process, i.e. nonlinear phase modulation 

decreases with increasing Lβ∆ .  
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Figure 6.4 Soliton peak power versus Lβ∆ for arrays with different coupling lengths . cL

In Figure 6.5a the calculated evolution with distance of the FH and the SH energy 

distribution for a single pulse clearly indicates soliton behavior since the energy profile does not 

change significantly during the propagation. Moreover, the generation of the SH part of the 

soliton shortly after the input can be observed. The waveguide losses, although very small, are 

responsible for the power loss during the propagation over 7 cm. Furthermore, the simulations 

help to interpret the measured temporally averaged SH profiles, which in principle developed a 

complex temporal structure due to walk-off effects caused by the unequal FH and SH group 

velocities. In general, most of the SH temporally overlaps the FH and represents the soliton’s SH 

component. A second SH (radiation) pulse, decoupled from the soliton, trails the soliton by the 

24 ps walk-off time in a 7 cm long sample.  
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Figure 6.5 (a) Simulated evolution of the transverse energy (time integrated) spatial profile of 

beams excited by a FH input ( Lβ∆ = 140π , = 15.74 mm, FH input peak power of 442 W). (b) 

Spatio-temporal output distribution of the simulation in (a). 

cL

The calculated spatiotemporal distribution at the output, shown in Figure 6.5b, indicates 

soliton propagation for the mutually locked FH and SH. The spatial narrowing of the FH in the 

pulse center is evident. Although the soliton’s SH component increases closer to phase-matching, 

the SH radiation that has temporally walked away from the soliton increases even faster. 

Therefore an increasing part of the measured, temporally averaged, SH output no longer belongs 

to the soliton and a reliable SH soliton profile measurement is not possible for πβ 20<∆ L  with 

7.65 ps long pulses in the sample. 

Next an experiment for a negative wavevector mismatch and in-phase (unstaggered) as 

well as anti-phase (staggered) excitation was performed. As theory predicts for unstaggered 

excitation, delocalization additional to that caused by discrete diffraction was observed due the 
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negative cascading nonlinearity (see Figure 6.6), i.e. the output beam broadens with increasing 

power because negative phase modulation reinforces normal diffraction.  

 

Figure 6.6 FH output energy distribution as a function of input peak power for an array with the 

coupling length = 9.53 mm, negative wavevector mismatch and unstaggered excitation. cL

Bright soliton formation can be expected only for a staggered excitation under these 

conditions of wavevector mismatch at the edges of the Brillouin zone where diffraction is 

anomalous. Excitation with the required phase difference of π between modes in adjacent 

waveguides was realized by appropriately tilting the input beam by ~3 degrees. Figure 6.7 shows 

a typical measured output energy distribution of the FH as a function of the input peak power for 

negative wavevector mismatch and staggered excitation. Similarly to the case of the unstaggered 

soliton for a positive wavevector mismatch, the beam initially narrows down to the input beam 

width with increasing input power. At the input powers exceeding about twice the soliton 

threshold power, the output broadens again.  
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Figure 6.7 FH output energy distribution as a function of input peak power for an array with the 

coupling length = 15.74 mm, for a negative wavevector mismatch and for staggered 

excitation. 

cL

The profiles of the nonlinearly broadened beam and staggered soliton for the cases just 

described are shown in Figure 6.8. The low power diffraction pattern is also shown for 

comparison. The non-ideal low power linear diffraction pattern observed for staggered excitation 

is caused by the approximate method of anti-phase excitation used in the experiment and the 

corresponding aberrations introduced. Specifically, tilting of the input beam results in a non-

planar but rather curved wavefront at the input facet as well as strong excitation of the higher 

order bands of the periodic array. Note, however, that soliton formation results in a very clean 

output signal. Again the quadratic nature of the nonlinear process was confirmed (see Figure 6.4 

for negative values of phase-matching), as soliton power decreases with decreasing wavevector 

mismatch.  
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Figure 6.8 Nonlinearly reinforced beam broadening for in-phase excitation for Lβ∆ = -50π , = 

12.16 mm, FH input peak power of 870 kW) (on the left); Staggered soliton profile (

cL

Lβ∆ = 

-16π , = 15.74 mm, input peak power of 150 W) (on the right). Solid and empty circles 

identify the high and low power theoretical data, respectively. 

cL

Finally, the stability of the excited discrete solitons was also investigated experimentally. 

Odd solitons are centered on a channel and even solitons are centered between channels. As 

predicted by theory and explained in chapter 2.5.2, odd solitons are stable, whereas the even ones 

are unstable. In agreement with this prediction, it was found that very careful transverse beam 

alignment, with the input beam maximum centered as precisely as possible on a channel, was 

necessary to obtain stationary in time output pictures of the soliton profiles. For example, 

different time frames in Figure 6.9a show stable powers in the three central waveguides of an 

odd unstaggered soliton ( Lβ∆ > 0). When the input maximum was centered between the 

waveguides, a strongly flickering output as documented in the time frames of Figure 6.9b was 

observed. The output profile’s maximum jumped between the two waveguides adjacent to the 

input beam’s maximum; i.e. the excitation tried to evolve into a beam profile centered on either 

one of the two neighboring channels. The observed instability was presumably seeded by small 
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fluctuations in the pointing direction of the input beam due to vibrations in the optical mounts, 

etc. 
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Figure 6.9 Time sequence of FH output energies, sampled at intervals of 200 ms, from 

waveguides in the soliton center as indicated in the insets ( = 15.7 mm,cL Lβ∆ = 140π ). (a) 

Stable output for odd soliton excitation. b) Unstable output for even excitation. 

In summary, the first experimental proof of the existence of both staggered and 

unstaggered stable discrete quadratic solitons was presented in this chapter. Both solitons were 

excited in the same sample by merely changing the excitation conditions, namely as the input 

beam tilt and the wavevector mismatch. Increased beam broadening was also measured when the 

wavevector mismatch and thus the sign of phase modulation were chosen to reinforce instead of 

to cancel discrete diffraction. 
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6.3. Strongly localized solitons 

Calculations have shown that the excitation of quadratic strongly localized solitons 

(solitons for which most of the power is guided in one channel) requires both the FH and the SH 

to be present in-phase at the input. This is in contrast to their counterparts in continuous media 

[116], slab waveguide [117] or even weakly localized discrete solitons in waveguide arrays [33], 

where a only FH field can be launched and it will evolve into a stable quadratic soliton on 

propagation. In that case, the interplay between SHG, diffraction and self-focusing leads to 

soliton formation and the excess electromagnetic energy is radiated away into the diffracting 

dimensions. However this is not the case for highly localized discrete quadratic solitons since the 

excess SH radiation is not able to escape into the bounding media. For high FH input powers 

launched into the sample, no stationary mode is obtained and periodic power exchange between 

FH and SH occurs with a period equal to the coherence length for SHG (see simulation in Figure 

6.10). Similar results were obtained over a large range of input conditions. These results 

resemble the energy oscillations during SHG, for non-zero wavevector mismatch in an isolated 

waveguide when the ratio of FH to SH at the input differs from that for the steady state case 

[119]. A balanced case (steady state), where there is no net energy exchange between the FH and 

the SH on propagation, corresponds to the nonlinear eigenmode of the waveguide. Two species 

of these nonlinear eigenmodes exist with FH and SH fields either in-phase or out-of-phase, and 

with a specific amplitude ratio which depends on the wavevector mismatch and the total power 

[121, 122]. 
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Figure 6.10 Numerical simulations for CW propagation of the FH (on the left) and SH (on the 

right) with input conditions of = 560 W, = 0 W, and FHP PSH πβ 106=∆ L . Only the FH is input. 

The fact that there is a close relation between the in-phase eigenmodes and quadratic 

solitons in continuous media is well known. Numerical modeling of propagation in waveguide 

arrays was performed for initial values of the FH and the SH fields equal to the isolated channel 

eigenmode solutions. It confirmed that a stable propagating soliton was indeed formed after 

initial small oscillations. Furthermore, the final powers of the soliton’s FH and SH components 

are essentially the powers associated with an eigenmode of the isolated channel. Figure 6.11 

shows numerical simulation of FH and SH beam propagation in the array when the in-phase 

eigenmode of an isolated channel was launched with the same total power as in Figure 6.10. 
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Figure 6.11 Numerical simulations of the CW propagation in an array of the FH (on the left) and 

SH (on the right) with input conditions associated with an in-phase eigenmode of an isolated 

channel. Here = 525 W, = 35 W, and FHP PSH πβ 106=∆ L . 

Next, the dependence of the output from the array on the input relative phase between the 

FH and SH fields in the seeded case was investigated numerically. For comparison with the 

experimental results, all experimental details were taken into account, including also losses, 

pulsed excitation and the measured longitudinal non-uniformities in the wavevector mismatch. 

Shown in Figure 6.12 is the dependence of the array’s output FH and SH on the relative input 

phase between them for pulsed single channel excitation. The input peak power levels were 

chosen for the best soliton formation which differed from the powers used in the idealized CW 

simulations. Note that for the in-phase case, the FH beam at the output is primarily localized to 

the central (excitation) channel and the SH, although also localized, is weak. For the out-of-

phase case, the FH output resembles a discrete diffracted beam spreading through the array, and 

it is the SH that is strongly localized in the central channel. In fact as shown in Figure 6.12, 

inputs over the full range of relative phases evolve always into essentially two well-defined 

output states. The one centered at zero relative phase difference corresponds to a stable, highly 

localized discrete quadratic soliton closely related to the in-phase single channel eigenmode, 
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whereas the second is centered on a relative phase difference of π and corresponds to the out-of-

phase eigenmode because of the lack of coupling in SH. In the second case part of the initial FH 

power is up-converted to the SH and the excess is diffracted. 

 

Figure 6.12 Numerical simulations of the array output versus relative phase difference between 

FH (on the left) and SH seed (on the right) pulses, assumed to be 7.65 ps. Input powers for FH 

and SH are 400 W and 7 W, mismatch πβ 90=∆ L . 

Experiments were performed, because of power restrictions, only with the weakest 

coupled array on the Pb381z sample, with a coupling length of 25.6 mm for the FH. The 

experimental setup, shown in Figure 6.13, is a modification of setup used for the excitation of 

weakly localized solitons. The FH beam was split into two arms. One beam was frequency 

doubled in a PPKTP crystal. Both, the FH and the SH beams were shaped to match the 

waveguide mode profiles, combined with help of a dichroic beam combiner BC and launched 

into a single channel of the array. A high suppression ratio filter was used in the SH arm to 

remove any existing FH content and prevent it from coupling to the sample. A pulse delay line 

was used to ensure optimum pulse overlap. An active control of the relative phase difference 

between the FH and the SH with was realized with a mirror attached to a piezo element in the SH 
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arm. In order to measure the phase difference changes dynamically a He-Ne laser beam was 

beam-split with one part transmitted in the FH arm of the input and the second part in the SH 

arm of the apparatus. Changes in the interference fringes from the two He-Ne beams were 

monitored by a vidicon camera, translated into phase changes at 775 nm and applied to evaluate 

changes in the relative phase between the FH and SH. The output of the sample was observed 

with cameras for the FH and the SH separately and with power detectors. 

 

Figure 6.13 Experimental setup for the excitation of strongly localized discrete quadratic 

solitons. 

The experimental results for the FH and SH output from the array are shown in Figure 

6.14. The data for both the array output and the relative input phase were taken at 30 frames per 

second and then processed to produce the plots of the FH and SH intensities. Note that there is 

either a strong or a weak output in the central channel for both cases and essentially no 

intermediate states, as predicted theoretically in Figure 6.12. For the case with in-phase FH and 

SH, a strong central channel FH confinement occurs together with a weak SH component 
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forming the stable propagating highly localized quadratic array soliton. Due to the pulsed 

excitation the soliton is accompanied by weak remnants of linear diffraction peaks far from the 

input waveguide due to the weak wings of the pulses. In the out-of-phase case a strong SH is 

very tightly localized to the central channel accompanied by only a weak FH. All of these results 

are in good quantitative and qualitative agreement with the theoretical discussion above. The 

remaining small differences between theory and experiment, for example smaller contrast and 

poorer localization of the experimental FH, are due to effects like residual photorefraction and 

nonlinear absorption not included in the model. 

  

Figure 6.14 Experimental FH (on the left side) and SH (on the right side) output power 

distribution vs. input relative phase difference, for the following input conditions:  = 400 W, 

= 7W, 

FHP

P LSH β∆ = 90π. 

In summary, it was found that single channel discrete solitons in weakly coupled 

quadratically nonlinear waveguide arrays are much richer phenomenon than in their counterpart 

Kerr waveguide arrays. This is a direct consequence of the dual frequency nature of the solitons, 

coupled to the fact that only the FH fields can undergo discrete diffraction. This has led to the 

existence of two output states for a single excited channel, one in which the FH dominates and 
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the second in which the SH dominates. Modeling based on the discrete coupled wave equations 

predicts this behavior and indicates that the relative phase between the FH and SH at the input 

determines the output state. 
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CHAPTER SEVEN:  MODULATION INSTABILITY 

One of the most fundamental consequences of propagating high intensity, plane wave 

beams in media with an effective self-focusing nonlinearity is that filamentation due to 

modulational instabilities (MI) occurs because of any amplitude or phase noise present on the 

beam [123, 124].  For finite, but still very broad input beams, these filaments can evolve with 

distance into spatial solitons for appropriate conditions on the dimensionality of the medium, and 

the detailed form of the nonlinearity. Such phenomena have been observed in a variety of 

continuous nonlinear systems including hydrodynamics [125, 126], plasma physics [127], and 

Bose-Einstein condensates [128]. In nonlinear optics, MI has been observed in both the temporal 

[129] and spatial domains [130-132]. The spatial behavior shares many universal properties 

independent of the origin of the nonlinearity because diffraction has only one sign in continuous 

media.  

However in a discrete system, because of it is unique diffraction properties, modulational 

instability exists only for correct combination of signs of diffraction and nonlinearity [21]. In 

quadratically nonlinear media, this diversity is even larger because the nonlinearity can be either 

self-focusing or self-defocusing, depending on the sign of the wavevector mismatch. In this 

chapter, experimental results of an investigation of discrete modulational instability in 

quadratically nonlinear waveguide arrays are presented [35]. 

 101 



 

7.1. Introduction 

The nonlinear behavior of beams in discrete media consisting of arrays of weakly 

coupled channel waveguides has been of intense interest recently in cubic, quadratic and 

photorefractive media [27, 30, 33]. One of the reasons for the proliferation of spatial discrete 

solitons when compared to that found in continuous media is the sinusoidal shape of the 

wavevector dispersion relation (see Figure 2.7). Thus the diffraction coefficient can be either 

normal (negative as in continuous media) or anomalous (positive with no analog in continuous 

media). For a self-focusing nonlinearity, filamentation due to MI is expected to occur for regions 

of normal diffraction and to be absent for regions of anomalous diffraction [21, 133]. This 

diversity of behavior forbidden in continuous media has been reported recently in 1D arrays of 

AlGaAs channel waveguides which exhibit self-focusing Kerr nonlinearities [134]. 

D

Quadratically nonlinear media play a unique role in soliton science because their solitons 

consist of two or three frequency components, which are strongly coupled in a parametric 

interaction based on the quadratic nonlinearity ( )2χ . Moreover, in quadratic arrays, not only can 

the sign of diffraction for the fundamental beam be changed by varying the propagation direction 

across the array, but also the sign of the effective nonlinearity by varying the wavevector 

mismatch condition for the parametric interaction [120]. Therefore in terms of MI, filamentation 

can occur for the combinations of positive wavevector mismatch and normal diffraction ( 0<D ), 

and also for negative wavevector mismatch and anomalous diffraction ( ). For the 

remaining two combinations of diffraction and sign of wavevector mismatch, no filamentation is 

expected. 

0>D
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7.2. Setup and experimental results 

A layout of experimental setup is shown in Figure 7.1. The broad input fundamental 

beam was obtained from an Ekspla OPG/OPA system (see Table 4.5 for details) producing 15 ps 

pulses with energies up to 200 µJ with energy stability of ±15%. A telescope, consisting of two 

cylindrical lenses C1 and C2, was used to produce a highly elliptical beam (350 x 3.5 µm 

FWHM) approximately Gaussian in shape in two dimensions with a planar wavefront at the 

sample’s input facet. The beam covered approximately 23 channels. Array # 2 of Pb381z sample 

(see Table 3.5 for details) with a coupling length of 15.74 mm was used in the experiment. The 

sample was housed in an oven and heated to temperatures of 200°C in order to minimize 

photorefractive damage. The phase-matching condition was tuned by varying the OPG/OPA 

wavelength from 1547 to 1565 nm. An anti-reflection coated, 3 mm thick window W,  placed on 

a motorized rotational stage was used to control the angle of incidence of the beam. It produced a 

tilt-dependent horizontal translation of the beam incident onto the in-coupling microscope 

objective and consequently in a beam tilt relative to the channel direction at the input facet of the 

sample, i.e. a controlled relative phase between adjacent channels ( ) was generated. The 

output facet of the sample was imaged, using a 10X MO onto the Roper Scientific OMA V 

InGaAs line camera. For alignment purposes a Hamamatsu vidicon camera was used. An 

additional Si CCD camera was used for imaging of SH. 

dk y
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Figure 7.1 Experimental setup. 

The first nonlinear experiments consisted of directing the input fundamental beam at 

normal incidence ( ) for which the array exhibits normal diffraction onto the array for 

both positive and negative wavevector mismatch. The beam observed emerging from the output 

facet was measured as a function of increasing fundamental input energy of the pulse and is 

shown in Figure 7.2. As the input intensity is increased for positive wavevector mismatch, self-

focused filaments form and narrow with increasing power. Here waveguide imperfections play 

the role of an amplitude “seed”. Collapse becomes more pronounced with increasing input 

energy indicating MI. On the other hand, for negative wavevector mismatch the cascading 

nonlinearity is defocusing and indeed no filaments are formed. Note that moving from one limit 

to the other just involved a change in the input wavelength. The small linear modulation 

observed at low powers is due to interference with modes associated with higher order bands. 

0=dk y
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Figure 7.2 Distribution across the array of the fundamental beam output power from the array for 

normal incidence as a function of the input pulse energy: positive wavevector mismatch 

πβ 170=∆ L πβ 40−=∆ L (on the left) and negative wavevector mismatch (on the right). Note 

the different behavior of the two defect-created “hot spots” at the positions 200 and 250. 

The effect of varying the relative input phase through the zero diffraction point was 

also investigated. These measurements were limited primarily by the large sample lengths and 

the total number of channels in an array because reflections occur at the array boundaries 

for

dk y

π75.0≥dk y . Nevertheless, it is clear from the high input power pictures in Figure 7.3 that 

for positive wavevector mismatch filamentation only occurs for π5.0<dk y (i.e. normal 

diffraction) and disappears for π5.0>dk y (anomalous diffraction). In contrast to this, for 

negative wavevector mismatch, no filamentation occurs for π5.0<dk y but does occur for 

π5.0>dk y . All of these results are consistent with filamentation when the product of the 

diffraction coefficient and the wavevector mismatchD Lβ∆ is negative, and no filamentation 

when the product is positive. These results are in agreement with the previous experiments on MI 
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observed due to the Kerr nonlinearity in AlGaAs arrays [134]. In the present case, MI for self-

defocusing nonlinearities by working at negative wavevector mismatch was also demonstrated. 

 

Figure 7.3 Distribution across the array of the fundamental beam output power from the array as 

a function of the relative input phase between adjacent channels: positive wavevector mismatch 

πβ 170=∆ L πβ 40−=∆ L(on the left) and negative wavevector mismatch (on the right). The 

input pulse energy was 0.27 µJ. 

In summary, MI gain due to discrete modulation instability in arrays with quadratic 

nonlinearities was observed. Whether filamentation occurs or not depends on the sign of the 

product of the diffraction coefficient and the cascading nonlinearity as given in the Table 

7.1 below. 

D effn2

Table 7.1 Conditions for existence of the modulational instability in the quadratic discrete 

system.  

Filamentation D < 0 D > 0 

n2eff < 0 No Yes 

n2eff > 0 Yes No 
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CHAPTER EIGHT:  PARAMETRIC SWITCHING 

There are a variety of guided-wave devices based on ultrafast second and third order 

optical nonlinearities by which information can be split into different output paths on-demand 

via optical control beams. Nonlinear directional couplers, X switches, and nonlinear loop mirrors 

inherently have two spatially separated output ports [135-138]. Other options that involve 

nonlinearly induced changes in the polarization, wavelength, or arrival time of signals require 

additional elements such as polarizers and etalons for separating out the desired signal [135]. 

Despite their impressive processing speed all these procedures suffered from small values of fast 

off-resonance optical nonlinearities that result in either high required peak powers or long device 

dwell times. Active semiconductor optical amplifiers based on complex pumping schemes have 

offered a drastic reduction of the control powers to some milliwatts with tens of picoseconds 

response times [136, 137]. In parallel, different all-optical devices have been developed to shift 

signal wavelengths, an important function in wavelength-division multiplexing communications 

systems [136, 139-142]. Second-order nonlinear devices that rely on sum- and (or) difference-

frequency generation have been developed for this purpose [140-142]. To date, both of these 

functions, spatial routing and wavelength shifting have been implemented in separate devices. 

Many previously suggested spatial second-order switching designs were based primarily on 

quadratic solitons effects that require high signal power levels [143].   

 In this chapter an efficient switching and routing of low power signals in second-order 

nonlinear waveguide arrays is demonstrated [36, 37]. The signal can be switched to different 
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spatial output positions by a control beam and can be simultaneously converted to another 

wavelength with a low cross-talk. This approach utilizes a combination of the nonlinear 

processes of parametric amplification and difference-frequency generation and the linear 

characteristics of wave propagation in arrays of weakly coupled channel waveguides. 

8.1. Introduction 

The main idea of the novel switching scheme investigated in this chapter is to collide two 

low power beams consisting of a signal with wavelength ∆+= 0λλS , where represents a 

relatively small wavelength shift, and a control (pump) beam whose wavelength is half of the 

signal

∆

2/0λλ =P . As described in Chapter 2.5.1, diffraction (beam spreading) of optical beams 

in waveguide arrays occurs by light coupling from channel to channel. The strength of discrete 

diffraction depends on the phase difference between the excited modes in adjacent waveguides 

of the array which can be simply adjusted by a slight tilt of the input beam with respect to 

waveguide direction. Additionally, there is a strong chromatic dispersion of the inter-channel 

coupling, due to different confinement of the FH and SH mode profile. For example, beams with 

a shorter wavelength (SH) are strongly confined in the waveguide and consequently couple to 

neighboring channels very weakly, i.e. with typical coupling distances many times the sample 

length. Thus depending on the angle of incidence and the wavelength, beams with completely 

different diffraction properties can co-exist in the same waveguide array. This property is used in 

this scheme to confine the pump beam (shorter wavelength) in a single channel, whereas the 

signal beam (longer wavelength) can slide across the array. The few-channel-wide signal beam is 

launched at a diffractionless angle (Bloch momentum
2
π

=dky ) and crosses the array (see Figure 
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8.1). It experiences only weak higher order diffraction. At the same time, one channel is excited 

by the control beam, which propagates straight down the array. At the crossing, the intersecting 

straight propagating pump and the tilted diffractionless signal beam interact in a parametric 

mixing process.  

( )2χ

 

Figure 8.1 Geometry of the all-optical switching and frequency conversion scheme. 

Because the interaction occurs in a single guide, the newly generated fields at the signal 

frequency spread symmetrically from this waveguide on both sides while the original channel-to-

channel phase relation and therefore the directions of diffractionless propagation are maintained. 

Hence the process results in the amplification of the original signal beam and in the emission of 

an additional signal beam (see Figure 8.2c), which crosses the array without diffraction at the 

mirror angle. In addition, two more beams at the idler wavelength ∆−= 0λλI are generated (see 

Figure 8.2d) in the parametric mixing process, approximately following the path of the signal. 

For a small wavelength difference 2∆ between signal and idler (near degeneracy), the idler’s 

propagation is also diffractionless. Because the output position and the powers of the new signal 
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and idler beams are controlled by the input position and power of the pump beam, this beam can 

be called the control beam.  
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Figure 8.2 Simulated propagation of the signal and idler beams for the all-optical switching and 

frequency conversion scheme. 

Owing to the non-degeneracy of the parametric process, the switching is phase 

insensitive. It is important to note that in this switching scheme the nonlinearity is used only to 

transfer light between individual light beams of different frequencies, and the spatial switching is 

accomplished by the wavelength-dependent discrete diffraction phenomena of linear waves in 

the array. Furthermore, because the device operates in the low depletion of the control beam 

regime, spectral broadening and pulse breakup of the signal are negligible. Because can be )2(χ
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considered an instantaneous nonlinearity, the bandwidth of the switching process is limited only 

by the chromatic dispersion of the wavevector mismatch, which is the source of temporal walk-

off between signal and control. However because of the short interaction lengths involved, this is 

not a crucial limit. Time-resolved simulations predict a switching capability of the device up to a 

data rate of 100 GHz. 

8.2. Setup and experimental results 

The experiment was performed in array # 1 of the Pb344z sample (see Table 3.4 for 

detailed data) with a center-to-center channel spacing of 13.5 µm and a linear coupling length 

between adjacent waveguides of ~6 mm for the signal and idler. The sample was heated to a 

temperature of 215 °C which corresponds to a phase-matching wavelength of PMλ = 1548.7 nm. 

 The experimental setup is shown in Figure 8.3. The control (pump) beam, whose 

wavelength Pλ = 774.35 nm was half the phase-matching wavelength, was generated by 

frequency doubling the color center laser, giving 5 ps long, transform limited pulses with a 

repetition rate of 76 MHz. A 10 mm long periodically poled KTP (PPKTP) crystal was used as 

the doubling crystal. In order to verify the phase-insensitivity of the switching concept, a 

different laser (tunable CW HP81680A laser diode) was used for the signal with a wavelength 

Sλ = 1548.7 + nm. Although using a pulsed and a CW source avoided the problem of 

synchronizing two pulsed lasers, it also reduced dramatically the measured efficiency of the 

interaction due to the color center’s small duty cycle (3.8x10

∆

-4).  

The output of the laser diode was shaped into an elliptical beam using a cylindrical 

telescope (cylindrical lenses C1 and C2), and was subsequently focused onto the entrance facet 

of the array to form a spot 3.5 µm high and 61 µm wide (FWHM) using a 10X microscope 
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objective FL-10B. The input beam tilt (and hence the relative phase between adjacent channels) 

was adjusted by moving horizontally a beam combiner BC which in turn displaced the beam 

from the center of the microscope objective and caused a tunable beam tilt. This tilt was adjusted 

to 1.6°, which corresponds to a phase difference of π/2 between the adjacent channels and hence 

zero diffraction in the array. With this simple setup the excitation efficiency of the ~4 waveguide 

wide signal beam was 36%. To control independently the relative position of the pump beam an 

afocal system, consisting of lenses L4, L5 and 10X MO and mirror M2, was built. The horizontal 

movement of the mirror which was placed on a translation stage together with lens L4 gave full 

control over the horizontal beam position, and at the same time did not affect the tilt and 

coupling efficiency. An additional mode matching lens L3 was used to bring both beams into 

focus at the input facet. It resulted in 20% coupling efficiency into the desired SH TM00 mode. 

 

Figure 8.3 Experimental layout. 
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The output from the array was characterized by spatially resolved scanning of the 

spectrum. The output facet of the sample was imaged, with help of a 10X FL-10B microscope 

objective (MO), in a plane approximately 15 cm from the MO. A bare fiber on a motorized 

translation stage, was placed at the image plane to collect data and deliver it to a computerized 

spectrum analyzer ANDO AQ-6315E. A LabVIEW program was developed to synchronize the 

data acquisition. A typical result, plotted on a logarithmic scale, is shown in Figure 8.4. 

 

Figure 8.4 Geometry of the experiment (on the left) and spatial-spectral scan of the output of a 

waveguide array after parametric interaction of a signal beam ( Sλ = 1550.7 nm, = 13 mW, 

input centered at guide 12) and a control beam (

SP

Pλ = 1550.7 nm, = 10.7 W, input centered 

at guide 1) which generates an idler (

PpeakP

Iλ = 1546.7 nm). 

The signal beam was injected centered on guide 12 and exits the array centered on guide 

–13. With the injection of the control in guide 1, the parametrically deflected signal and idler 

exited the array centered on guide 15 at the output face. There are two strong cross-talks present 

in the scan, due to the small duty cycle associated with the signal-pump interaction. That is the 
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CW signal beams are acquired continuously by the detectors where-as the parametrically created 

beams only appear at the detectors 3.8×10-4 of the time. The first one is due to stray scattering of 

the CW signal by imperfections in the array as represented by narrow-bandwidth line at 1550.7 

nm. The second cross-talk appears because of low finesse noise rejection of the spectrum 

analyzer – channel from -9 to -16. However, the deflected generated signal and idler can be 

distinguished from CW signal due to their different spectral widths because of the pulsed nature 

of the control beam, i.e. they are spectrally wider than the noise due to the CW signal. Scans for 

specific output channels versus wavelength are shown in Figure 8.5. Spectra of the deflected 

idler and signal in waveguide 15 are shown in Figure 8.5a for two different control power levels. 

The results verify the linear dependence of the peak power of the generated idler on the power of 

injected control pulse (in the low-depletion limit). Because of the duty cycle of the control and 

the limited suppression of the spectral cross-talk in the spectrum analyzer it was impossible to 

detect the parametrically amplified signal and idler pulses with a CW detector near guide -13, 

where both of them spatially overlap the strong CW signal output beam. Hence a lock-in 

technique was used together with spectral filtering to measure the idler’s distribution, as shown 

in Figure 8.5b. 
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Figure 8.5 a) Output spectral density from waveguide 15 for a control input with  = 3.8 

(red) and 10.7 W (blue),  = 19 mW. The control spectrum is also shown (black). b) Peak 

power of the idler (

PpeakP

SP

Iλ  = 1546.7 nm) at the output for = 10.7 W, = 19 mW. Dashed lines 

and circles show theory.  

PpeakP SP

For the maximum available control peak power of = 10.7 W in our experiment, a 

= 4 mW CW input signal (power in the center waveguide of the beam) was converted to idler 

pulses having = 0.45 mW peak power (in the waveguide at the beam center). Simulations 

have shown that 38 W of control peak power would yield transparent switching with idler pulses 

with also 4 mW peak power. For higher control powers the device would provide parametric 

gain. The all-optical control of the output position and wavelength was also verified. Figure 8.6a 

shows the spatial output distribution of the idler for four different control beam input channels. 

PpeakP

SP

IpeakP
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Furthermore, the simultaneous wavelength conversion to the idler, for five different signal 

wavelengths, is verified in Figure 8.6b with a bandwidth exceeding 10nm. 
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Figure 8.6 a) Spatial output distribution of the deflected idler for different positions of the control 

beam. b) Spectral density of the deflected signal and idler in waveguide 15 for a number of 

different signal wavelengths, = 10.7 W, = 19 mW. PpeakP SP

In summary, a powerful concept which can be used to build a versatile transparent device 

with a complex functionality, based on a quadratically nonlinear waveguide array was 

demonstrated in this chapter. Ultrafast, phase-insensitive all-optical spatial switching, 

amplification, and wavelength conversion was implemented in a single device. It can process a 

milliwatt signal with low cross-talk and negligible pulse distortion at 100 GHz data rate. 
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CHAPTER NINE: CONCLUSIONS 

The common link to all of the experiments presented in this dissertation was titanium 

indiffused lithium niobate waveguide array samples with tunable cascaded quadratic nonlinearity 

– the sign and strength of the effective nonlinearity could be adjusted by changing the 

wavevector mismatch for second harmonic generation. Their realization with state-of-the-art 

technology resulted in linear (low losses and perfect uniformity) and nonlinear properties which 

allowed very demanding experiments involving integrating optics structures to be performed.  

First of all was the observation of linear discrete Talbot revivals in waveguide arrays. 

Major differences between continuous systems, where the Talbot self-imaging effect always 

occurs irrespective of the pattern’s period, and discrete configurations, where this process is only 

possible for a specific set of periodicities }6,4,3,2,1{∈N , were predicted. It was also observed 

that the Talbot distance is dependent on the Bloch momentum of the excited beam. 

The major part of the dissertation was devoted to the formation of discrete quadratic 

solitons. Two different confinement cases were investigated. Weakly-localized solitons were 

excited by the FH beam only. Relatively wide, stable solitons were formed on propagation due to 

the balance between diffraction and cascading nonlinearity. Staggered and unstaggered solitons 

were observed for appropriate combinations of the signs of diffraction and nonlinearity (when 

their product was negative), for complimentary combinations nonlinearly enhanced diffraction 

occurred. On the other hand, the excitation of strongly-localized solitons required both the FH 

and SH fields to be launched in-phase. This was a consequence of the reduced degrees of 
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freedom in quadratic arrays in which the second harmonic field was not coupled between 

neighboring waveguides. The formation of the solitons for different relative phase differences 

between the FH and SH was studied and a close relation between the highly-localized solitons 

and the nonlinear eigenmodes of the single channel was observed.  

The natural connection between soliton formation and modulational instability of discrete 

plane waves was investigated experimentally. Whenever conditions appropriate to the formation 

of stable solitons occurs, filamentation due to modulational instability was found in arrays with 

quadratic nonlinearities for a negative product of diffraction and nonlinearity. For a positive 

product the plane wave propagates in quadratically nonlinear medium without modulational 

instability, i.e. without beam filamentation. 

It is amazing how fast fundamental research can lead to applications these days. The last 

experiment demonstrated a phase-insensitive, ultrafast, all-optical spatial switching and 

frequency conversion device based on a quadratically nonlinear waveguide array. Routing of 

milliwatt signals with wavelengths in the communication band (1550 nm) was achieved without 

pulse distortions by parametric interaction with a control beam with 10 W power and 

wavelengths near 775 nm. Numerical simulations confirmed the ultrafast switching capability of 

the device up to a data rate of 100 GHz. 

This thesis by no means exhausts the interesting science that can be performed in such 

quadratically nonlinear arrays. For example, spatial solitons guided by the interface between a 

continuous slab waveguide and the discrete array are expected to exist. There has been a great 

deal of interest in waves guides by an interface due to the existence of nonlinearity have been of 

interest since the late 1970s. Because of the tenability in the strength and sign of the cascading 

nonlinearity, a richer variety of such solitons should be present in the PPLN arrays. 
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Contributions from higher bands of this periodic structure were observed frequently in 

the experiments discussed here. In principle it should be possible to excite these bands cleanly 

and study their linear and nonlinear properties. The fields of such higher order bands are no 

longer centered in the channels and it may be possible to introduce coupling of the second 

harmonic between channels in this way. 

Weakly coupled nonlinear waveguides have proven to be an excellent, controlled way to 

probe the effects of discreteness in nature and one should expect this field to flourish for years to 

come. 
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