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ABSTRACT 

Electrostatic discharge (ESD) is defined as the transfer of charge between bodies at 

different potentials. The electrostatic discharge induced integrated circuit damages occur 

throughout the whole life of a product from the manufacturing, testing, shipping, handing, to end 

user operating stages. This is particularly true as microelectronics technology continues shrink to 

nano-metric dimensions. The ESD related failures is a major IC reliability concern and results in 

a loss of millions dollars to the semiconductor industry each year. Several ESD stress models and 

test methods have been developed to reproduce the real world ESD discharge events and 

quantify the sensitivity of ESD protection structures. The basic ESD models are: Human body 

model (HBM), Machine model (MM), and Charged device model (CDM). To avoid or reduce 

the IC failure due to ESD, the on-chip ESD protection structures and schemes have been 

implemented to discharge ESD current and clamp overstress voltage under different ESD stress 

events. 

Because of its simple structure and good performance, the junction diode is widely used 

in on-chip ESD protection applications. This is particularly true for ESD protection of low-

voltage ICs where a relatively low trigger voltage for the ESD protection device is required. 

However, when the diode operates under the ESD stress, its current density and temperature are 

far beyond the normal conditions and the device is in danger of being damaged. For the design of 

effective ESD protection solution, the ESD robustness and low parasitic capacitance are two 

major concerns. The ESD robustness is usually defined after the failure current It2 and on-state 

resistance Ron. The transmission line pulsing (TLP) measurement is a very effective tool for 

evaluating the ESD robustness of a circuit or single element. This is particularly helpful in 
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characterizing the effect of HBM stress where the ESD-induced damages are more likely due to 

thermal failures. 

Two types of diodes with different anode/cathode isolation technologies will be 

investigated for their ESD performance: one with a LOCOS (Local Oxidation of Silicon) oxide 

isolation called the LOCOS-bound diode, the other with a polysilicon gate isolation called the 

polysilicon-bound diode. We first examine the ESD performance of the LOCOS-bound diode. 

The effects of different diode geometries, metal connection patterns, dimensions and junction 

configurations on the ESD robustness and parasitic capacitance are investigated experimentally. 

The devices considered are N+/P-well junction LOCOS-bound diodes having different device 

widths, lengths and finger numbers, but the approach applies generally to the P+/N-well junction 

diode as well. The results provide useful insights into optimizing the diode for robust HBM ESD 

protection applications. 

Then, the current carrying and voltage clamping capabilities of LOCOS- and polysilicon-

bound diodes are compared and investigated based on both TCAD simulation and experimental 

results. Comparison of these capabilities leads to the conclusion that the polysilicon-bound diode 

is more suited for ESD protection applications due to its higher performance. The effects of 

polysilicon-bound diode’s design parameters, including the device width, anode/cathode length, 

finger number, poly-gate length, terminal connection and metal topology, on the ESD robustness 

are studied. Two figures of merits, FOM_It2 and FOM_Ron, are developed to better assess the 

effects of different parameters on polysilicon-bound diode’s overall ESD performance. 

As latest generation package styles such as mBGAs, SOTs, SC70s, and CSPs are going to 

the millimeter-range dimensions, they are often effectively too small for people to handle with 

fingers. The recent industry data indicates the charged device model (CDM) ESD event becomes 
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increasingly important in today’s manufacturing environment and packaging technology. This 

event generates highly destructive pulses with a very short rise time and very small duration. 

TLP has been modified to probe CDM ESD protection effectiveness. The pulse width was 

reduced to the range of 1-10 ns to mimic the very fast transient of the CDM pulses. Such a very 

fast TLP (VFTLP) testing has been used frequently for CDM ESD characterization. 

The overshoot voltage and turn-on time are two key considerations for designing the 

CDM ESD protection devices. A relatively high overshoot voltage can cause failure of the 

protection devices as well as the protected devices, and a relatively long turn-on time may not 

switch on the protection device fast enough to effectively protect the core circuit against the 

CDM stress. The overshoot voltage and turn-on time of an ESD protection device can be 

observed and extracted from the voltage versus time waveforms measured from the VFTLP 

testing. Transient behaviors of polysilicon-bound diodes subject to pulses generated by the 

VFTLP tester are characterized for fast ESD events such as the charged device model. The 

effects of changing devices’ dimension parameters on the transient behaviors and on the 

overshoot voltage and turn-on time are studied. The correlation between the diode failure and 

poly-gate configuration under the VFTLP stress is also investigated. 

Silicon-controlled rectifier (SCR) is another widely used ESD device for protecting the 

I/O pins and power supply rails of integrated circuits. Multiple fingers are often needed to 

achieve optimal ESD protection performance, but the uniformity of finger triggering and current 

flow is always a concern for multi-finger SCR devices operating under the post-snapback region. 

Without a proper understanding of the finger turn-on mechanism, design and realization of 

robust SCRs for ESD protection applications are not possible. Two two-finger SCRs with 

different combinations of anode/cathode regions are considered, and their finger turn-on 
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uniformities are analyzed based on the I-V characteristics obtained from the transmission line 

pulsing (TLP) tester. The dV/dt effect of pulses with different rise times on the finger turn-on 

behavior of the SCRs are also investigated experimentally.  

In this work, unless noted otherwise, all the measurements are conducted using the Barth 

4002 transmission line pulsing (TLP) and Barth 4012 very-fast transmission line pulsing 

(VFTLP) testers. 
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CHAPTER 1.   INTRODUCTION 

Electrostatic discharge (ESD) is defined as the transfer of charge between bodies at 

different potentials. Most people have such a shock experience when touching the metal 

doorknob after walking across a carpeted floor or sliding the car seat. The shock is a result of 

discharging the accumulated charges on human body through the conductive metal doorknob. 

Normally, this electrostatic discharge can reach a few kilo-volts and sparks can even be seen due 

to the ionization of air gap between the charged human body and zero-potential surface of 

doorknob. The ESD is a rather general concept and occurs almost everywhere. One should never 

overlook the kind of damages caused by ESD. Before going through the details of ESD 

phenomenon, we start from the understanding of how electrostatic charge occurs. 

1.1 Static electricity 

The electrostatic charge, or static electricity, is defined as an electrical charge caused by 

an imbalance of electrons on the surface of a material. The very first documented observation of 

static electricity generation is back to 600 B.C. The Greeks rubbed amber with a piece of fur and 

observed attraction of lightweight objects to the amber. A charge can be generated on a material 

in several ways: triboelectric charging, induction, ion bombardment and contact with another 

charged object. Triboelectric charging is the most common electrostatic generation mechanism, 

where the static electricity is created by the contact and separation of two materials. For example, 

when a person walks across a carpeted floor, the static charges are accumulated on the human 

body as the shoe soles contact and then separate from the surface of floor. Based on the nature of 

materials, the electrons transfer from one material to the other during the contact and separation 
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procedures. The material that loses electrons becomes positively charged and the other object 

that gets electrons becomes negatively charged. The opposite polarities of electrostatic charges 

lead to different electrostatic potentials for the two materials. However, the process of material 

contact, electron transfer and separation is a complex mechanism. The amount of accumulated 

charge is affected by material types, speed of contact and separation, humidity and several other 

factors.  

1.2 Electrostatic discharge (ESD) 

Once the charge is created on the material, it becomes an “electrostatic” charge. When 

two objects with different electrostatic potentials are brought into close proximity, this charge 

may transfers from one object to the other and creates the electrostatic discharge (ESD) event. In 

the semiconductor industry, the ESD events occur throughout the whole life of a product. The 

exposure to the undetected ESD starts in the fabrication environment during process [1] and 

extends through the various manufacturing stages up to the system level. 

Though ESD only gives harmless shock to the human body, it is lethal to sensitive 

electronic components and integrated circuits (ICs). In a typical working environment, a human 

with body capacitance of 150 pF can accumulate the amount of charge up to 0.6 µC, which leads 

to an electrostatic potential of over 4000 V. Any contact between the charged human body and 

grounded object such as a pin of ICs will results a discharge for about 100 ns with several 

amperes peak discharge current. The energy associated with the electrostatic discharge is 

released into an object with small volume, such as a device in the integrated circuit and generates 

the “self-heating”. The heat gives rise to a sudden temperature increase inside the body of 

semiconductor device. If the heat cannot be dissipated quickly enough, the device will be 
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damaged as the temperature arrive the melting point of either the silicon or metal. On the other 

hand, the high discharging current could also lead to voltage drop that may be high enough to 

cause the breakdown of gate oxide in thin gate MOS processes. 

The ESD induced integrated circuit failures occur in any environment from 

manufacturing, testing, handling to customer operating. The damage caused by an ESD event can 

be latent defect, which is also named as soft failure. In the case of soft failure, the performance 

of device or circuit is partially degraded after exposed to the ESD pulse, such as an increased 

leakage current or decreased reverse breakdown voltage. The soft failure usually occurs when an 

ESD pulse is not strong sufficiently to destroy the device and is more difficult to identify due to 

the basic functionalities of device or circuit still operative. The other type of damage to the 

electronic devices is catastrophic, or named hard failure. In the case of hard failure, the device is 

permanently destroyed during the ESD event and cannot function any more. The ESD induced 

hard failure can be associated with different mechanisms, such as the dielectric rupture, junction 

burnout and metal melting [2]-[4]. The junction burnout and metal melting are mainly due to the 

thermal damages, which are caused by high current induced Joule-heating, localized over-

heating and heat distribution. On the other hand, the dielectric rupture is usually caused by high 

electric field density under high voltage stresses, where gate oxide breakdown in CMOS 

transistors is the typical failure signature.  

Figure 1.1(a)-(c) show the photos of gate oxide damage to an input buffer after the CDM 

stress, drain-junction burnout in an NMOS after HBM stress and a fused metal line respectively. 
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(a)                                                    (b) 

 

      (c)  

Figure 1.1: Photos of three ESD failure mechanisms: (a) gate oxide breakdown, (b) junction burnout, and 

(c) metal melting 

The ESD failure is a profound reliability problem in semiconductor industry. Statistics 

indicated over 30% of IC failures might be attributed to ESD, which cost millions dollars to the 

semiconductor industry each year [5]-[6]. Thus, the precautions to suppress ESD become 

important topics through all phases of an IC’s life. 

1.3 ESD stress models and test methods 

In an IC environment, the static charges can be accumulated in different objects, such as 

a human body, a manufacturing machine or an integrated circuit itself. When the charged objects 

contact a grounded surface, the discharge waveforms are not the same due to their different 

parasitic capacitance, resistance, and inductance in the discharging paths. The manufacturers and 

users of ICs have derived several ESD stress models and test methods based on different cases of 
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real-world ESD phenomenon. These ESD models and test methods produce repeatable discharge 

pulses to characterize and classify the sensitivity and robustness of ESD protection structures 

under different ESD events. The typical ESD models include human body mode (HBM), 

machine model (MM), charged device model (CDM) and system-level IEC61000-4-2 model. 

The simplified RLC equivalent circuits with ideal switches are developed to describe those 

different models. Their implementation in real ESD test system is associated with additional 

distributed parasitic elements connected to the stressed ICs. The values of resistor, inductor and 

capacitor in model circuits are based on the different system parasitic parameters. Different 

standardization groups such as ESD Association (ESDA) and Joint Electron Device Engineering 

Council (JEDEC) still continuously review and re-edit these models to specify globally applied 

and cost-effective test methods. 

1.3.1 HBM model 

The human body mode (HBM) was developed to represent the ESD event caused by 

charged human body discharging the current into a grounded IC. Under various conditions, the 

human body can be charged with static electricity. When the charged human body contacts a 

grounded semiconductor device or integrated circuit directly, the static charge will transfer from 

the human body into the device or circuit. The HBM model is the most classical and commonly 

used discharge model in semiconductor industry. Several HBM simulation circuits and pulse 

waveforms exist based on different standardized test models. The primary HBM standards 

include JEDEC JESD22-A114-B [7] and ESDA STM5.1-1998 [8]. Figure 1.2 shows the 

simplified equivalent circuit of HBM model, where the value of           ,           , 
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and             are typically used to model the capacitor, resistor and inductor of a 

charged human body. 

     

Vesd

A B

RHBM=1.5kΩ

LHBM=7500nH

CHBM=100pF

DUT

 
Figure 1.2: A simplified equivalent circuit for HBM ESD model 

 

1.3.2 MM model 

In addition to human body, the manufacturing machines can also accumulate static 

charges in semiconductor fabrication environment. Once the charged machine is in contact with 

a grounded device or circuit, the accumulated charges can transfer from the machine into the 

device or circuit. The machine model (MM), intended by the Japanese IC manufacturers to create 

a worst-case HBM event, replicates the discharging event from a charged machine into a 

grounded IC. The primary MM standards include JEDEC JESD22-A115-A [9], ESDA STM5.2-

1999 [10] and AEC-Q100-003-Rev-E [11]. A simplified equivalent circuit of MM model is 

shown in Figure 1.3, where the           and          . The damage on IC caused by 

MM ESD stress is similar to HBM event. However, due to the higher parasitic capacitance and 

lower overall impedance during the MM discharge, the MM damages usually occur at a much 

lower threshold level. 
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Figure 1.3: A simplified equivalent circuit for MM ESD model 

1.3.3 CDM model 

Both HBM and MM models replicate the ESD events occur when charged objects (e.g., 

human body or manufacturing machine) discharge current into a grounded semiconductor device 

or integrated circuit. However, the device or circuit itself can also store static charges during 

various manufacturing and automatic handling stages. When any pin of a charged IC-package is 

toughed by a grounded surface, the electrostatic discharge happens from the inside of IC to the 

outside ground. The charged device model (CDM) was developed to replicate the integrated 

circuit self-charging and self-discharging events. Two different methods are defined to charge 

the device under test (DUT): direct contact charging and filed-induced charging. The filed-

induced charging is recommended by many test standards since the possible charging damage 

can be avoided with electrical field induction. The primary CDM standards are known as JEDEC 

JESD22-C101-A [12] and ESDA STM5.3.1-1999 [13]. Figure 1.4 shows the simplified 

equivalent circuit of CDM model, where the          ,         ,       , and 

       . The      is the sum of all capacitances in the device and package with respect to 

ground and      is the total resistance of discharge path. For CDM model, the parasitic 

capacitance, resistance and inductance is small due to the self-discharge nature of integrated 

circuit. The CDM levels are dependent on the package sizes and types. 
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Figure 1.4: A simplified equivalent circuit for CDM ESD model 

 

Figure 1.5 and Table 1.1 compares the different current discharge waveforms of HBM, 

MM, and CDM ESD models. As shown in Figure 1.5, the HBM pulse has the lowest current 

peak and longest duration. Under a 2 kV HBM ESD stress, the typical value of peak current is 

1.2~1.48 A with a rise time of 2~10 ns and decay time of 130~170 ns. The MM current 

waveform shows a damped sinusoidal oscillation characteristic and has higher peak current than 

HBM pulse. A 200 V MM ESD event can generate the current peak reaching 3.5 A in a typical 

rise time of 10~15 ns and with the pulse duration of approximately 40 ns. Although the pulse 

width of MM appears to be less than HBM stress, the power dissipation in the ICs is dominated 

by the time at the peak current level, and this is nearly the same for both HBM and MM events. 

Different from the HBM and MM models, the CDM ESD is the fastest transient event with 

highest value of current peak. The CDM discharge can arrive a peak current as high as 12 A 

within a rise time of only 200 ps under a typical 1 kV CDM ESD stress and dissipates most of its 

energy in about 1 ns. The resulting damage due to such direct discharge is normally the gate 

oxide breakdown [14]. 
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Figure 1.5: Current waveforms of HBM, MM and CDM ESD models 

Table 1.1: The comparison of HBM, MM and CDM ESD models 

Model Voltage Level Peak Current Rise Time Pulse Duration 

HBM 2kV 1.33A 2~10ns ~150ns 

MM 200V 3.5A 10~15ns ~40ns 

CDM 1kV 12A 100~500ps ~1ns 

1.3.4 IEC model 

The traditional HBM, MM and CDM models are developed to ensure the integrated 

circuits survive being assembled into a finished system during manufacturing environment. 

However, they are not sufficient for system level testing, where both the voltage and current 

level of ESD strikes can be much greater in the system end user environment. The purpose of 

system level testing is to ensure the finished product can survive normal operation where the user 

of the product usually will not take any ESD precautions to lower ESD stress to the product. The 

new testing standard IEC61000-4-2 was developed for system level ESD testing [15]. A typical 
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IEC discharge pulse has a rise time of less than 1 ns and dissipates most of its energy in the first 

30 ns with current peak of several tens of amperes. Two different testing methodologies, contact 

discharge and air-gap discharge, are suggested by IEC test model. 

1.3.5 TLP testing 

The limitation of existing HBM, MM, CDM and IEC ESD test methods is that they only 

offer the results of ESD failure threshold for the ESD protection structures, however, without 

insights into the current-voltage characteristics of those structures during ESD stress and the 

possible failure mechanisms, which are also critical considerations for designing of ESD 

protection devices. The transmission line pulsing (TLP) testing technique was introduced by 

Maloney and Khurana [16] in 1985 to provide such information. The principle for TLP testing is 

to produce a stable square waveform to stress the device under test by charging a transmission 

line with high-voltage DC source. Figure 1.6 shows a schematic diagram of current-source TLP 

system. The transmission line is charged by a high voltage DC source first. When the 

transmission line discharges, the pulses it creates inject current into the device under test. The 

TLP testing can provide reliable, repeatable and constant amplitude waveforms. The TLP tester 

typical begins with low voltage pulses and successively increases in amplitude. The 

instantaneous current-voltage curves and leakage current information are obtained and visualized 

with an oscilloscope to describe the behaviors of device under ESD stress. 
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Figure 1.6: Schematic diagram of current-source TLP system 

The TLP pulse waveform with a 50-200 ns pulse width and 2-10 ns rise time provides 

correlation to the HBM pulse of 150 ns exponential pulse width. The TLP and HBM 

measurement results of different test structures implemented in 0.35 µm [17] and 0.18 µm [18] 

CMOS technologies verify this correlation. Another technique, named very fast TLP (vf-TLP) 

testing [19], offers the capability of transient behavior description of ESD protection structures 

for CDM application. 

The use of TLP and vf-TLP testing techniques in ESD industry are now in increasing 

number. In this work, most of measurements were performed using pulses generated from the 

Barth 4002 transmission line pulsing (TLP) and Barth 4012 very fast transmission line pulsing 

(vf-TLP) testers. 

1.4 ESD protection  

As mentioned in previous section, the electrostatic discharge induced integrated circuit 

damages occur throughout the whole life of a product from the manufacturing, testing, shipping, 

handing, to end user operating stages. This is particularly true as microelectronics technology 

continues shrink to nano-metric dimensions. The ESD related failures is a major IC reliability 
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concern and results in a loss of millions dollars to the semiconductor industry each year [20]. To 

avoid or reduce the IC failure due to ESD, two methods are widely used in semiconductor 

industry. One is using static control and awareness programs to reduce the buildup of static 

charges and the exposure of ICs to ESD [21]-[22]. It can be achieved by following several rules, 

such as any person handing the ICs should be grounded with a wrist strap, using work surface 

made of static-dissipative material, and neutralizing all insulator materials with ionizer. The 

other method is implementing on-chip ESD protection devices and circuits to shunt high 

discharge current and keep ESD strikes away from protected internal circuit during ESD event 

[23]-[24]. Static control and awareness are two important programs to combat ESD in the 

semiconductor manufacturing stage. However, they are not enough to guarantee the total ESD 

immunity especially in the end user environment. With the proper design of on-chip ESD 

protection structures, the threshold of sustainable ESD stress can be significantly increased, 

resulting in improved reliability of the ICs and electronic systems [25]-[26]. A good on-chip 

ESD protection structure should achieve high current carrying and voltage clamping capabilities, 

low leakage current at operating voltage, fast turn-on speed and minimized parasitic effect based 

on different protection applications. 

1.4.1 ESD protection schemes 

According to the ESD testing standards, an ESD event should be delivered between any 

two pins of an integrated circuit. To adequately protect the ICs from damage during ESD event, 

an ESD protection network must provide the current discharge path between those two pins and 

must also limit the voltage drop on any sensitive devices, such as gate oxide of an NMOS output 

driver. There are four kinds of pin combinations for achieving a whole-chip ESD test, which are 
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known as Pin-to-VDD, Pin-to-VSS, Pin-to-Pin, and VDD-to-VSS [27]-[28]. The VDD and VSS 

are power supply pin and ground pin respectively. Most ESD solutions rely on shunting current 

from an I/O pin to a power supply, from which the current can be distributed to other I/O pins or 

supplies. These solutions fall into two general categories: VDD-based and VSS-based ESD 

protection [29]. Figure 1.7(a) shows the VDD-based protection scheme, which is comprised of a 

single-direction ESD protection structure from I/O to VDD (ESD-Cell-1) and VSS to I/O (ESD-

Cell-2) paths and a bi-directional power supply clamp between VDD and VSS path. The other 

VSS-based protection scheme is shown in Figure 1.7(b). It has a dual-direction ESD protection 

structure (ESD-Cell-3) between I/O and VSS path and a bi-directional power supply clamp 

between VDD and VSS path. Both VDD- and VSS-based schemes can provide whole-chip ESD 

protection for the ICs, however, the difference between these two methods becomes apparent 

when examining the current discharge path under various pin combinations. For example, under 

the Pin-to-VSS combination, a positive ESD stress is applied to I/O pin when the VSS pin is 

connected to ground. For the VSS-based protection scheme, the ESD current can flows directly 

from the ESD-cell-3 to the VSS. On the other hand, for the VDD-based scheme, since there is no 

shunt path between I/O to VSS directly, the ESD discharge will flows through the ESD-cell-1 

onto VDD rail first and reaches the VSS through the power supply clamp. For both cases, the 

voltage drop on the discharge path should be lower than the failure voltage of devices that they 

appear in parallel with in the core circuit. The choice of different protection schemes is based on 

the technology, available ESD protection devices, and the design widow under different 

protection applications.  
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(a)                                                                       (b) 

Figure 1.7: The (a) VDD-based and (b) VSS-based ESD protection schemes 

1.4.2 ESD protection devices 

ESD is a high current and high energy event. Therefore, the ESD protection structures in 

discharge path are required to carry amperes of current without be destroying and clamp the 

voltage drop under a safe region. A number of semiconductor devices can be used as candidates 

for ESD protection at I/O pins and power supply rails of ICs. Base on the shape of their current-

voltage characteristics, they are divided into two main categories: non-snapback devices and 

snapback devices. The I-V curve and design window of non-snapback device are shown in 

Figure 1.8(a). For non-snapback device, the voltage on the device increases gradually with a 

small current first. After the voltage reaches a certain value (e.g., turn-on voltage), the current 

starts to increase rapidly while the voltage remains almost constant. The key design parameters 

for non-snapback devices include the turn-on voltage         , on-state resistance Ron and 

failure current It2. The snapback devices has S-type I-V characteristic as shown in Figure 1.8(b). 

The trigger voltage         , holding voltage         , on-state resistance Ron and failure current 
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It2 are their key design considerations. The ESD protection devices should be in off state during 

normal circuit operation, turning on to discharge current under ESD stress, clamping the voltage 

across protected structure under safe region, such as breakdown voltage of gate oxide, and 

turning off after the ESD event. The design window gives ESD designers the guideline for 

realizing effective ESD protection without interfering with the normal operation of the protected 

circuits. The key considerations for effective ESD design include: (1) the turn-on voltage 

         for non-snapback device or trigger voltage          for snapback device and the 

clamping voltage at the required ESD protection level have to be lower than the breakdown 

voltage of internal circuitry, (2) the holding voltage          of snapback device as supply clamp 

has to be larger than the power supply voltage to avoid latch-up problems, (3) low leakage 

current at operating voltage and (4) good robustness, i.e., high failure current It2. 
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   (a) 
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Figure 1.8: I-V characteristics and design windows of (a) non-snapback and (b) snapback device 

 

The most commonly used non-snapback ESD protection devices are PN junction diode, 

zener diode and diode string. Because of its simple structure and good performance, the junction 

diode is widely used for ESD protection at I/O pins of integrated circuits [30]-[32]. The forward-

biased junction diode can conduct significant current with very low on-state resistance when the 

applied voltage is greater than its turn-on voltage which is normally 0.7 V. Zener diode and 

diode string with higher turn-on voltages compared to junction diode are usually used as power 

supply clamp [33]-[35]. Zener diode formed by highly doped N+ and P+ diffusion regions works 

under reverse bias condition and has lower triggering voltage than regular reverse-biased 

junction diode. Diode string with forward-biased junction diodes in series gives the flexibility to 

control its turn-on voltage by adjusting the number of diodes. The cross section of junction diode, 

zener diode and diode string are shown in Figure 1.9, respectively. 
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Figure 1.9: Cross sections of junction diode, zener diode and diode string 

 

The snapback devices with controllable triggering and holding voltages are widely used 

for ESD protection applications at I/O pins and power supply rails. The Grounded-Gate NMOS 

(GGNMOS) [36]-[37] and Silicon-Controlled Rectifier (SCR) are two most important snapback 

devices in the CMOS technology [38]-[40].  

Figure 1.10 shows the cross section and equivalent circuit of a GGNMOS device. The 

gate and source contacts of NMOS transistor are shortened to ensure turn-off of NMOS function 

at all times. When ESD pulse stresses on the drain contact of GGNMOS, the parasitic NPN 

bipolar transistor formed by the N+ drain contact, the P-substrate and N+ source contact turns on 

to sink the ESD current under a certain voltage and current. The GGNMOS goes into snapback 

operation region. One drawback of GGNMOS device is that it can suffer long-term reliability 

problems if a relatively large electric field is applied at the gate during the ESD event. 
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Figure 1.10: (a) Cross section and (b) equivalent circuit of GGNMOS 

 

SCR is also known as the thyristor. Figure 1.11 shows the cross section and equivalent 

circuit of a SCR device. The SCR consists of a PNPN structure. Its anode and cathode are 

formed by the P+ diffusion region in N-well and the N+ diffusion region in P-substrate, 

respectively. The trigger of SCR is followed by the turn-on of parasitic NPN (N-well/P-

substrate/N+ cathode) bipolar and PNP (P+ anode/N well/P-substrate) bipolar transistors. SCR is 

the most efficient protection structure in terms of ESD performance per unit area. However, its 

compact model is not widely available due to the operation of SCR for ESD protection is in 

high-current and breakdown regimes which the regular circuit models do not cover. 
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Figure 1.11: (a) Cross section and (b) equivalent circuit of SCR 

1.5 Summary 

The static charges are generated in both fabrication and end user environments, including 

all the stages through the manufacturing, testing, shipping, handing to user operating. The 

electrostatic discharge can occur as the result of a discharge to the device, from the device, or 

field-induced discharge. The ESD induced failures can be catastrophic, where the semiconductor 

devices or integrated circuits are damaged immediately, or ESD can result in latent defect that 

may escape immediate attention. Several ESD stress models and test methods are developed by 

semiconductor industries to simulate the real world ESD phenomenon and characterize the 

sensitivity of device or circuit attributed to different types of ESD events in an IC environment. 

The on-chip ESD protection structures and schemes are implemented to effectively guard the 

microchips against ESD induced damage. 

The organization of the dissertation is as following. Chapter 2 starts with design and 

optimization of LOCOS-bound diode. The effects of different diode geometries, metal 

connection patterns, dimensions and junction configurations on the ESD robustness and parasitic 
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capacitance are investigated experimentally. The results provide useful insights into optimizing 

the diode for robust HBM ESD protection applications. Chapter 3 compares the current carrying 

and voltage clamping capabilities of LOCOS- and polysilicon-bound diodes based on both 

TCAD simulation and experimental results. The better performed polysilicon-bound diode will 

then be investigated in more detail. Two figures of merits are developed to better assess the 

effects of different design parameters on polysilicon-bound diode’s overall ESD performance. 

Chapter 4 investigates the transient behavior of polysilicon-bound diodes under fast ESD events 

such as CDM. The effects of changing devices’ dimension parameters on the overshoot voltage 

and turn-on time are studied experimentally using pulses generated by the very-fast TLP tester. 

The correlation between the diode failure and poly-gate configuration under the VFTLP stress is 

also investigated. In chapter 5, the turn-on uniformity of two multi-finger silicon-controlled 

rectifiers (SCRs) with different combinations of anode/cathode regions are studied using the 

transmission line pulsing (TLP) tester. The finger turn-on mechanisms of these devices are 

explained from the current flow path and equivalent circuit views. The dV/dt effect of pulses 

with different rise times on the finger turn-on behavior of the SCRs are also investigated 

experimentally. Chapter 6 comes summary and conclusion of the dissertation.  
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CHAPTER 2.   DESIGN AND OPTIMIZATION OF LOCOS-BOUND 

DIODES FOR ESD PROTECTION APPLICATIONS 

Because of its simple structure and good performance, diodes are frequently used in 

providing on-chip electrostatic discharge (ESD) protection solutions for various integrated 

circuits [41]-[44]. However, when the diode operates under the ESD stress, its current density 

and temperature are far beyond the normal conditions and the device is in danger of being 

damaged. To this end, the failure current level It2 is an important indicator as it dictates the 

robustness of ESD protection devices. This current is defined as the point where the measured 

transmission line pulsing (TLP) I-V curve deviates significantly from its linearly extrapolated 

value or the leakage current increases considerably from its normal value [45]. 

For the design of effective ESD protection solutions, the ESD robustness and low 

parasitic capacitance are two major considerations. ESD robustness is usually defined as high 

failure current It2 and low on-state resistance Ron, which can be affected by several design 

factors such as the device’s dimension, geometry, finger number, junction configuration, and 

metal connection pattern. In this work, we will focus on LOCOS-bound diodes fabricated using 

the IBM BiCMOS technology. Diodes with various layouts, metal patterns, geometries, and 

dimensions will be considered, and their It2 and Ron measured using Barth 4002 TLP tester with 

a pulse width of 100 ns and rise time of 10 ns will be compared and discussed. The work will 

provide useful information on design and optimization of LOCOS-bound diodes for low-voltage 

ESD protection applications. 
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2.1 LOCOS-bound diode 

LOCOS, short for Local Oxidation of Silicon, is a traditional fabrication process for 

growing oxide insulation structures. The silicon dioxide is formed in the selected regions of a 

silicon wafer with   -      interface lower than the rest of silicon surface. Figure 2.1 shows the 

cross section of an N+/P-well junction LOCOS-bound diode, where the grey areas denote the 

LOCOS oxide separating the P+ anodes and N+ cathode of diode, and La and Lc are the length 

of anode and cathode diffusion regions, respectively. 

N+P+ P+

cathodeanode anode

P well

La Lc La

 
Figure 2.1: Cross section of N+/P-well junction LOCOS-bound diode 

The ESD robustness and parasitic capacitance of LOCOS-bound diode depends on 

several design factors, including the different layout structures of N+/P+ diffusion regions, 

different metal connection patterns, junction configurations, geometries and dimension 

parameters. In the following discussion, the effect of each factor will be investigated in detail 

and an optimal combination of those factors will be achieved for reaching the objectives of high 

performance ESD protection application. 

All measurements will be conducted using the Barth 4002 TLP tester which generates 

pulses with a width of 100 ns and a rise time of 10 ns, a stress condition equivalent to that of the 

human body model (HBM). 
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2.2 Layout structures 

Two different layout structures for N+/P-well LOCOS-bound diode are shown in Figure 

2.2. The one on the left is called the stripe structure, where the N+ and P+ diffusion regions are 

laid out as stripes. The W and L are the width and length of diffusion region respectively. In this 

device, one N+ diffusion stripe is located in the middle and two P+ diffusion stripes are placed 

on each side. The majority of diode’s current flows from the two P+ regions to the N+ region 

along the width W of the diffusion regions. The one on the right is called the waffle structure 

[46]-[47]. In this device, the N+ diffusion region is divided into several small squares, and each 

N+ square is surrounded by the P+ diffusion region. The current flows from the P+ region into 

the N+ regions along the perimeter of each N+ square. The red arrows show the current 

conduction paths. The two diode structures are designed with the same PN junction area, where 

for the stripe structure the junction area is W*L and for the waffle structure the area is d*d*N (N 

is the number of squares). 
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Figure 2.2: N+/P-well LOCOS-bound diodes having the stripe (left) and waffle (right) structures 
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Figure 2.3 shows the I-V characteristics of stripe and waffle structure LOCOS-bound 

diodes with the same junction area of 64    . For stripe structure diode, the W and L are 40 µm 

and 1.6 µm respectively. For waffle structure, the diode has square number N of 25 with the cell 

size d equal to 1.6 µm for each square, where the 1.6 µm is the smallest value can be used under 

this specified BiCMOS technology. As expected, the waffle structure diode shows a higher 

failure current It2 (3.9 A) than its stripe counterpart (3.5 A) since the current distribution is more 

uniform along the perimeters of multiple N+ squares. However, the ESD performance of waffle 

structure diode highly depends on the combinations of its d and N values under a same PN 

junction area. 
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Figure 2.3: I-V characteristics of stripe and waffle N+/P-well LOCOS-bound diodes 

Figure 2.4 shows the failure current It2 of waffle structure diodes having cell size d 

increasing from 1.6, 2, 4 to 8 µm and square number N decreasing from 25, 16, 4, to 1. It can be 

seen, increasing d and reducing the number N of squares, while keeping the same total PN 
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junction area, the waffle structure diode’s failure current decreases significantly from 3.75 A to 

2.1 A. The combination of smaller cell size and more square numbers gives higher ESD 

protection performance for diode with waffle structure layout. However, since the d with 1.6 µm 

is the smallest value available for this specified technology, the highest failure current for waffle 

structure diode is limited to 3.75 A. Considering the complex and time-consuming layout 

required for the waffle structure, the minor ESD robustness improvement does not warrant the 

use of such a structure. As such, we will focus on the stripe LOCOS-bound diode in the 

following discussion. 
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Figure 2.4: Failure current It2 of waffle structure diodes with different cell sizes 

2.3 Metal connection patterns  

There are several different metal connection patterns for the N+/P-well diode: the parallel 

pattern [48]-[49], tapered pattern [48], [50], and crossing pattern [45], [49]. Different metal 
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connection patterns affect diode’s current carrying and voltage clamping capabilities and 

consequently its failure current and on-state resistance. 

2.3.1 Parallel metal pattern 

Figure 2.5 shows the layout of the parallel metal pattern. The N+ and P+ diffusion 

regions are covered by low level metal-1 lines (pink color) and the high level metal-2 lines 

(green color) are placed in parallel with the diffusion regions and connected to metal-1 lines by 

multiple vias. Wm is the metal width, and L and W are the length and width of the N+/P+ 

diffusion regions, respectively. The width W of the diffusion region is also defined as the diode 

width. Under the forward ESD stress condition, the current starts from diode’s anode on the right 

hand side, flows perpendicularly across the LOCOS oxide region between the P+ and N+ 

diffusion regions, and exits from the cathode on the left hand side. However, the distribution of 

current in the diode is highly non-uniform. A higher current density occurs in the areas close to 

the electrodes (i.e., anode and cathode) and a lower current density occurs in the mid-section of 

the diffusion regions. The further away from the electrodes, the lower is the current density. The 

non-uniform current distribution phenomenon of LOCOS-bound diode with parallel metal 

pattern can be verified by the following two groups of experiments.  
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Figure 2.5: Layout of LOCOS-bound diode with parallel metal pattern 

 

Experiment 1 investigates the width of metal-1 line (Wm1) affecting on the failure current 

and on-state resistance of LOCOS-bound diode. As shown in Figure 2.6, the diode-1 at the left 

side has metal-1 width of 2.8 µm (e.g. Wm1= 2.8 µm), which is the largest value available for this 

specified BiCMOS technology to avoid any layout error under design rule check. Keeping all 

other design parameters same, the diode-2 at the right side reduces the width of metal-1 line to 

half of diode-1’s (e.g., Wm1=1.4 µm). Two groups of N+/P-well LOCOS-bound diodes are 

fabricated under the same junction area for comparison. The diodes in group 1 have long 

diffusion width (W=20 µm) and less anode/cathode fingers (5 fingers) and diodes in group 2 

have short diffusion width (W=10 µm) and more finger numbers (10 fingers). Table 2.1 

compares the failure current It2 and on-state resistance Ron of diodes in the two groups. It’s 

clear to see, the diode-2 in both groups have lower failure current and higher on-state resistance 

than diode-1. This is because the narrow width of metal-1 line causes the increase of current 

density at regions near the electrodes and finally results in the melting of metal lines. 
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Figure 2.6: Experiment 1: Diode-1 (left) with Wm1=2.8 µm and Diode-2 (right) with Wm1=1.4 µm 

Table 2.1: Failure current and on-state resistance of Diode-1 and Diode-2 in two groups 

 Diode-1 10fingers 

W=10 µm  

Wm1=2.8 µm 

Diode-2 10fingers 

W=10 µm  

Wm1=1.4 µm 

Diode-1 5 fingers 

W=20 µm 

Wm1=2.8um 

Diode-2 5 fingers 

W=20 µm  

Wm1=1.4 µm 

Failure current   

It2 (A) 

 

8.65 

 

7.37 

 

6.53 

 

4.02 

On-state 

resistance  

Ron (Ω) 

 

0.52 

 

0.6 

 

0.63 

 

1.04 

 

In experiment 2, the LOCOS-bound diodes with parallel and tapered metal connection 

pattern are compared. Figure 2.7 shows the layout of diode-3 with the tapered metal pattern, 

where the metal-1 lines are divided into three parts with equal length. The parts nearest to the 

electrodes (i.e., anode and cathode) have the widest metal-1 width of 2.8 µm which is the same 

as that of diode-1 device, then the width reduces to 2.1 µm for those in the middle regions, and 

the parts furthest to the electrodes have the narrowest metal-1 width of 1.4 µm. All other design 

parameters are kept the same and two groups of diodes are fabricated. Table 2 shows the It2 and 

Ron of diodes in the two groups. In contrast to diode-2 shown in table 1, the diode-3 with tapered 
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metal pattern and diode-1 with parallel metal pattern have same value of failure current and on-

state resistance for both groups. This is because diode-3 has the same metal-1 width (e.g., 

Wm1=2.8 µm) as diode-1 at the regions close to the electrodes, the current density is reduced and 

gives uniform current distribution. 
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Figure 2.7: Experiment 2: Diode-1 (left) with parallel metal pattern and Diode-3 (right) with tapered 

metal pattern 

Table 2.2: Failure current and on-state resistance of Diode-1 and Diode-3 in two groups 

 Diode-1  

10 fingers 

W=10 µm  

Parallel pattern 

Diode-2  

10 fingers 

W=10 µm  

Tapered pattern 

Diode-1  

5 fingers 

W=20 µm  

Parallel pattern 

Diode-2  

5 fingers 

W=20 µm 

 Tapered pattern 

Failure current  

It2 (A) 

 

8.65 

 

8.66 

 

6.53 

 

6.54 

On-state 

resistance 

Ron (Ω) 

 

0.52 

 

0.51 

 

0.63 

 

0.62 

 

The measurement results in experiment 1 and 2 reveal the phenomenon that current 

distribution in the LOCOS-bound diode with parallel metal pattern is highly non-uniform, with a 

higher current density occurs in the areas close to the electrodes (i.e., anode and cathode) and a 
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lower current density occurs in the mid-section of the diffusion regions. The further away from 

the electrodes, the lower is the current density. The non-uniform current distribution decreases 

diode’s current carrying capability and consequently degrades its ESD robustness, especially for 

diodes with a large W. Figure 2.8 shows the It2 of parallel metal pattern diodes with L=1.6 µm 

and W changing from 10 to 40 µm. It is shown that It2 increases linearly with increasing W 

when W is smaller than 20 µm. However, beyond 20 µm, It2 is saturated. This is because the 

metal width Wm is independent of W, and for a relatively large W, Wm becomes the main factor 

limiting the current carrying capability. As such the metal lines can be damaged even the 

diffusion regions can survive the ESD stress. 
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Figure 2.8: It2 of parallel metal pattern diodes having different widths 

The junction area of the diode is equal to W*L. Diodes with the parallel metal pattern 

exhibit very low failure current It2 per junction area, especially when the diode width W is large. 

One solution to this problem is keeping a short diode width and using multiple anode/cathode 

fingers. Figure 2.9 shows the results of diodes having a fixed W of 10 µm and finger number 
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increasing from 1 to 4. Clearly, It2 increases linearly with increasing finger number. However, 

the expenses of having too many fingers are the larger die size and increased parasitic 

capacitance. 
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Figure 2.9: It2 for parallel metal pattern diodes having different finger numbers 

2.3.2 Crossing metal pattern 

Another type of metal connection called the crossing metal pattern is shown in Figure 

2.10. The N+ and P+ diffusion regions are still covered by the low level metal-1 lines, however, 

the high level metal-2 lines are placed across the diffusion regions. Multiple rows and columns 

of vias are then used to connect metal-1 and 2. Under the forward ESD stress condition, the 

current starts from the anode on the left hand side, flows in and out of the diode’s diffusion 

regions from the different vias connected between metal-1 and metal-2, and then exits from the 

cathode on the right hand side. Because of the symmetry of the current paths, the current 

distribution in crossing metal pattern diode is more uniform and consequently the failure current 

It2 is higher than those of the parallel metal pattern diode. 
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Figure 2.10: Layout of LOCOS-bound diode with crossing metal pattern 

Figure 2.11 shows the results of crossing pattern diodes having L=1.6 µm and W 

changing from 10 to 40 µm. In contrast with the trend observed in Figure 2.8, the failure current 

It2 increase linearly and monotonically with increasing W. Since the diodes with the crossing 

metal pattern show superior current carrying capability, these devices will be the focus of our 

following analysis. 
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Figure 2.11: It2 for crossing pattern diodes having different widths 
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2.4 Dimension consideration 

Figure 2.12 and 2.13 show the failure current It2 (blue line) and on-state resistance Ron 

(red line) of N+/P-well LOCOS-bound diode versus the anode length La and cathode length Lc, 

respectively. It is clear to see, both It2 and Ron are insensitive to La, whereas changing the 

cathode length Lc alters It2 and Ron quite significantly as It2 increases and Ron decreases 

almost linearly with increasing Lc from 1.6 to 4.8 µm. 
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Figure 2.12 It2 (left) and Ron (right) of N+/P-well LOCOS-bound diode vs. anode length La 
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Figure 2.13: It2 (left) and Ron (right) of N+/P-well LOCOS-bound diode vs. cathode length Lc 
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Figure 2.14 shows the I-V characteristics of N+/P-well diodes having the same total 

width but different finger numbers. Diode 1 has 1 finger with a width of 80 µm, diode 2 has 2 

fingers each with a width of 40 µm, and diode 3 has 4 fingers each with a 20 µm width. While 

these devices have the same total width, their failure current It2 and on-state resistance Ron 

differ considerably. Diode 1 possesses the highest It2 and lowest Ron. This is due to the fact that 

the total width of metal-2 lines in such a device is the largest among the three diodes considered. 
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Figure 2.14: I-V characteristics of N+/P-well diode having the same total width but different finger 

numbers 

2.5 Geometry consideration 

As mentioned above, the diode width W, cathode length Lc and finger number N all 

affect the ESD performance of the N+/P-well diodes. Since the diode’s parasitic capacitance 

primarily depends on the area of its N+ region, keeping the same N+ area and finding an optimal 

combination of those parameters to achieve the highest It2 and lowest Ron is highly desirable for 
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reaching the objectives of robust ESD protection and low capacitance. Figure 2.15 shows three 

different diode geometries with the same N+ diffusion area but different combination of W, Lc 

and N. Geometry 1 has a single finger, large diode width 2*W and short cathode length Lc. 

Geometry 2 has two fingers, a small diode width W and short cathode length Lc. Geometry 3 has 

a single finger, small diode width W and long cathode length 2*Lc. 
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Figure 2.15: Three different N+/P-well diode geometries having different diode widths, cathode lengths 

and finger numbers 

Table 2.3 compares the results of It2 and Ron obtained from the following two groups: 

Group one consists of diodes with the three different geometries (Geometries 1, 2 and 3) but the 

same N+ diffusion area of 32    , and Group two consists of diodes with the three geometries 

but the same area of 48    . Clearly, It2 increases and Ron decreases with increasing N+ area 

for all three geometries. Under the same N+ area, Geometry 1 diode (single finger, large diode 
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width, and short cathode length) has the highest It2 and lowest Ron, whereas Geometry 3 diode 

(single finger, small diode width, and long cathode length) has the lowest It2 and highest Ron. 

The superior ESD performance of Geometry 1 diode can be attributed to the presence of 4 metal-

2 layer lines, instead of 2 metal-2 layer lines in Geometries 2 and 3, in such a device. For diodes 

having the same number of metal-2 layer lines (i.e., Geometries 2 and 3 diodes), It2 increases 

and Ron decreases with increasing finger number. 

Table 2.3: It2 and Ron of N+/P-well diodes having three different geometries but the same N+ area of 32 

μm
2
 (Group 1) and 48μm

2
 (Group 2) 

Geometry W*Lc*N Total area (   ) It2 (A) Ron (Ω) 

1 20*1.6*1 32 1.77 2.65 

2 10*1.6*2 32 1.66 2.97 

3 10*3.2*1 32 1.37 3.4 

1 30*1.6*1 48 2.59 1.82 

2 10*1.6*3 48 1.95 2.55 

3 10*4.8*1 48 1.76 3.21 

2.6 Parasitic capacitance 

The dual-diode structure with an effective power supply clamp between VDD and VSS is 

the most commonly used ESD protection scheme [51]-[53]. Usually, one P+/N-well junction 

diode is located between I/O pin and power rail VDD and another N+/P-well junction diode is 

placed between I/O pin and ground rail VSS. In this approach, diodes are operated in forward 

mode to provide low impedance discharge paths for ESD pulse and prevent the internal circuitry 

from being destroyed. During normal working operation, both two diodes are under reverse-

biased condition and should be in off state. However, the parasitic capacitance associated with 

ESD diodes will introduce inevitable parasitic effects to the internal circuitry, such as RC delay, 
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substrate noise coupling, and impedance mismatch. Such ESD-induced parasitic effects seriously 

degrade the performance of the protected core circuit. This is particularly true for very high 

frequency applications. Thus, the low parasitic capacitance is another key consideration for 

designing of ESD protection diode.  

The parasitic capacitance of a reverse-biased diode is dominant by its depletion 

capacitance, which is defined by equation (2.1) [54]: 

                                 
          

               
 
 

                       (2.1) 

where     is the effective area of PN junction,    and    are the doping concentration of anode 

and cathode regions, respectively. As shown in equation (2.1), the depletion capacitance of diode 

is the function of junction area, doping concentration and the voltage applied on the diode.  

2.6.1 High/Low well doping concentration 

There are several ways to reduce diode’s parasitic capacitance. One is reducing the 

junction area, this however will also decreases the ESD robustness of diode as shown in Table 

2.3. Another way is reducing the junction doping concentrations. In the BiCMOS process, the 

availability of multiple implants and diffusion layers gives a degree of flexibility in choosing the 

junction configurations for low parasitic capacitance. Figures 2.16(a)-(c) compares the failure 

current It2, on-state resistance Ron and parasitic capacitance of diodes constructed using high 

and low-doped well layers. The width of diodes increase from 10 to 40 µm. Figures 2.16(a) and 

(b) show that It2 is almost unchanged and Ron is reduced slightly when using a high doped well 

layer. However, in such a case, the parasitic capacitance is increased notably, especially for a 

relatively large diode width W, as can be seen in Figure 2.16(c). This suggests that diodes 

fabricated using the low doped well are more promising for ESD applications. 
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Figure 2.16: (a) Failure current It2, (b) on-state resistance Ron, and (c) parasitic capacitance of N+/P-well 

LOCOS-bound diodes constructed using high and low doped well layers 

 

2.6.2 Total capacitance 

The flatness of total pad capacitance versus pad bias is another consideration. For the 

circuit with supply rail VDD powered up to 5 V and VSS rail being grounded, as the voltage at 

I/O pad increasing from 0 to 5 V, the voltage drop on the N+/P-well and P+/N-well junction 

diodes are 0 V ~  -5 V and -5 V ~ 0 V, respectively.  

Figure 2.17 shows the parasitic capacitance of N+/P-well (left) and P+/N-well (right) 

diodes versus pad voltage. It is clear to see the capacitance of N+/P-well diode decreases, while 

on the other hand, the capacitance of P+/N-well diode increases with increasing of pad voltage 

from 0 V to 5 V. By adjusting the sizes of two diodes, good capacitance linearity versus pad bias 



40 

 

can be achieved for this dual-diode ESD protection structure because the compensation of 

parasitic capacitance between N+/P-well and P+/N-well diodes. 
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Figure 2.17: Capacitance of N+/P-well (left) and P+/N-well (right) diode vs. pad voltage 

 

The total pad capacitance is the sum of parasitic capacitance for N+/P-well diode 

between I/O and VDD rail and P+/N-well diode between I/O and VSS rail. Figure 2.18 compares 

the total capacitance at the I/O pad using a pair of diodes with high or low doped well layer. The 

pair of high doping diodes has a maximum capacitance of 70 fF and minimum capacitance of 50 

fF within a voltage range of 0 to 5 V. On the other hand, the pair of low doping diodes has a total 

capacitance varying between 30 and 40 fF. Thus, using a pair of low doping diodes is more 

beneficial from the perspective of lower and flatter total capacitance at the I/O pad. 
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Figure 2.18: Total pad capacitance versus pad voltage using a pair of diodes with high or low well doping 

concentration 

2.7 Summary 

The effects of diffusion region’s layout structure, metal connection pattern, dimension, 

geometry and junction configuration on the LOCOS-bound diode’s ESD protection performance 

have been investigated experimentally using pulses generated by Barth 4002 transmission line 

pulsing (TLP) tester.  

For diodes with the parallel metal connection, a smaller diode width and larger number of 

fingers give rise to higher failure current It2 and lower on-state resistance Ron. On the other 

hand, diodes with the crossing metal connection would work more effectively when a multiple-

finger and/or multiple-metal line structure was used. To account for both the ESD robustness and 

lowest parasitic effect to the protected circuit, the diode having a stripe structure, crossing metal 

pattern, large device width, and low doped well layer yields the best overall ESD protection 

performance and lowest parasitic capacitance. The devices considered are N+/P-well junction 
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LOCOS-bound diodes having different device widths, lengths and finger numbers, but the 

approach applies generally to the P+/N-well junction diode as well. The results provide useful 

insights into optimizing the LOCOS-bound diode for robust HBM ESD protection applications. 
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CHAPTER 3.   DESIGN OF POLYSILICON-BOUND DIODES FOR 

ROBUST ESD PROTECTION APPLICATIONS 

As discussed in chapter 2, the junction diode is widely used in on-chip electrostatic 

discharge (ESD) protection applications because of its relatively simple structure and good 

performance. This is particularly true for ESD protection of low-voltage IC’s where a relatively 

low trigger voltage for ESD protection device is required. Nonetheless, the ESD robustness of 

the diode is a major concern, which is usually defined after the on-state resistance Ron and 

failure current It2. Research works have demonstrated that different technologies for the 

isolation between the diode’s anode and cathode regions can play an important role on the 

diode’s ESD robustness. These technologies include the shallow trench isolation (STI-bound), 

LOCOS oxide (LOCOS-bound), and polysilicon gate (polysilicon-bound) [55]-[56]. It has been 

reported that, for ESD protection purposes, diodes with STI are inferior to those with other 

isolations [57]-[58]. 

In this chapter, we will first study and compare the ESD performances of the LOCOS- 

and polysilicon-bound diodes fabricated in a BiCMOS technology. The better performed device 

will then be investigated in more details in an effort to identify an optimal diode structure for 

robust ESD protection applications.  

In 1998, the first polysilicon gated diode was developed by Voldman et al. in bulk CMOS 

technology for ESD protection [57]. Figure 3.1 shows the cross section of an N+/P-well junction 

polysilicon-bound diode, where the polysilicon gate (with a length      ) separates the diode’s 

anode and cathode region. The La and Lc are the length of anode and cathode diffusion regions, 

respectively. 
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Figure 3.1: Cross section of N+/P-well polysilicon-bound diode 

The critical ESD figures of merit, failure current It2 and on-state resistance Ron, of the 

diodes depend on various factors including the diode’s dimension, geometry, junction 

configuration, and metal pattern [42], [59]. For the diode structure considered having two anode 

regions and one cathode region (see Figure 3.1), it had been found that the anode length La plays 

a marginal role on the diode’s ESD performance [59]. Moreover, for the issue of metal topology, 

the crossing pattern was found to be the best metal layout for the diode’s ESD robustness [59]. 

As such, we will in the following not account for the effect of La and will consider only diodes 

using the crossing metal pattern. Furthermore, unless noted otherwise, all measurements will be 

performance using pulses generated from the Barth 4002 transmission line pulsing (TLP) tester 

with a pulse width of 100 ns and a rise time of 10 ns, a stress condition equivalent to a well-

known ESD event called the human body model (HBM). 

3.1 Comparison of LOCOS- and Polysilicon-bound diodes 

Figure 3.2 compares the I-V characteristics of N+/P-well and P+/N-well LOCOS- and 

poly-bound diodes with the same dimension and metal connection pattern. The anode length La 

and cathode length Lc are both 1.6 µm. The diode width W, or the width of anode/cathode region, 
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is 40 µm. The anode to cathode distance (i.e., isolation length) for both diode types is 2 µm. It 

can be seen the poly-bound diodes have higher failure current It2 (i.e., the currents at which the 

I-V curves ended in Figure 3.2) than that of the LOCOS-bound diode for both the N+/P-well and 

P+/N-well junction configurations (i.e., 4.3 vs. 3.7 A for P+/N-well and 3.9 vs. 3.4 for N+/P-

well). As such, the poly-bound diode possesses a better ESD current carrying capability than the 

LOCOS-bound diode. The lower It2 in the LOCOS-bound diode is due mainly to the higher 

current density induced in the bird beak region. 
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Figure 3.2: I-V characteristics of LOCOS- and poly-bound diodes 

In addition to It2, the voltage drop or voltage clamping on a diode is also important to 

robust ESD applications, and a good voltage clamping capability (i.e., producing a low voltage 

drop) is needed to minimize the possibility of ESD induced core circuit damage. Such a 

capability is directly related to the on-state resistance Ron of the diode, since a lower on-state 

resistance leads to a smaller voltage drop after the diode is triggered by an ESD event. For the 

LOCOS-bound diode, the current between the anode and cathode must pass underneath the 
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curved LOCOS oxide. For the poly-bound diode, on the other hand, since the polysilicon gate is 

flat and not penetrating into the silicon, the current flows straight between the anode and cathode. 

As a result, the current path for the poly-bound diode is shorter compared to that for the LOCOS-

bound diode, and hence a smaller on-state resistance for the poly-bound diode. This reasoning is 

consistent with Ron values given in Table 3.1 extracted from the TLP I-V curves in Figure 3.2. 

Clearly, the poly-bound diode shows a better voltage clamping capability than the LOCOS-

bound diode for both the N+/P-well and P+/N-well junction configurations. 

Table 3.1: On-state resistance Ron of LOCOS- and poly-bound diodes 

Isolation N+/P-well junction 

diode 

P+/N-well junction 

diode 

LOCOS-bound 1.25 Ω 1.4 Ω 

Polysilicon-bound 1.02 Ω 1.21 Ω 

 

TCAD simulation was also carried out to provide physical insights of the two different 

diodes. Figure 3.3 shows the current density contours of the N+/P-well LOCOS- and poly-bound 

diodes under the forward operation condition. Note that the hot spot (i.e., region of the highest 

current density) of the two devices is located near the cathode region. For the LOCOS-bound 

diode, the hot spot at the interface between the LOCOS oxide and N+ diffusion region has a 

current density of             , which will also be the place most likely to fail under the 

ESD stress. For the poly-bound diode, on the other hand, because of the absence of the LOCOS 

oxide, the current distribution is more uniform with the highest current density being      

        . These simulation results are consistent with data given in Figure 3.2 indicating that 

the poly-bound diode is more robust than the LOCOS-bound diode. The ESD robustness of the 

poly-bound diode will be analyzed in details below. 
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Figure 3.3: Simulated current density contours for LOCOS- (top) and poly-bound (bottom) diodes under 

the same forward ESD condition 

For a fast ESD transient event such as the charged device model (CDM), the diode’s turn-

on speed becomes another key consideration. Figure 3.4 shows the voltage vs. time waveforms 

of the N+/P-well and P+/N-well LOCOS- and poly-bound diodes subject to a very-fast TLP 

pulse with a 100 ps rise time, 2 ns duration and 15 V amplitude. The device’s turn-on speed can 

be characterized from such a transient as the time it takes from the point where the voltage peaks 

to the point where the voltage becomes relatively constant. Clearly, for both the N+/P-well and 

P+/N-well junction configurations, the poly-bound possesses a faster turn-on speed than the 

LOCOS-bound diode. This stems mainly from the fact that the voltage overshoot is less 
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prominent in the poly-bound diode [60]. The further study to understand the physical mechanism 

underlying this phenomenon will be addressed in detail in next chapter. 
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Figure 3.4: Transient voltage waveforms for N+/P-well (left) and P+/N-well (right) junction LOCOS- and 

poly-bound diodes subject to a very-fast TLP pulse with a 2 ns duration and 15 V amplitude 

 

3.2 Optimization of poly-bound diode  

The preceding analysis has illustrated clearly that the poly-bound diode is superior to the 

LOCOS-bound diode for ESD protection applications. In an effort for designing an optimal ESD 

diode, we will in the section investigate the factors that can influence the ESD robustness of the 

poly-bound diode. The optimization will be focused on the failure current and on-state resistance 

of the N+/P-well structure, but the approach applies generally to the P+/N-well diodes as well. 

Different device parameters will be varied and their effects on the poly-bound diode’s ESD 

performance will be studied based on the TLP experimental data. In changing the parameters, a 

typical nominal value will first be selected, and an increment of about 50% of the nominal value 

will be used. 
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3.2.1 Diode width  

The first consideration is the diode width (i.e., width of anode/cathode) W, which can 

influence considerably the poly-bound diode’s failure current It2 and on-state resistance Ron. 

Figure 3.5 shows the I-V characteristics of N+/P-well poly-bound diode with anode length La = 

1.6 µm, cathode length Lc = 1.6 µm, polysilicon gate length       = 2 µm, and different diode 

width W of 20, 30 and 40 µm (i.e., 20 is the nominal value and increment is 50% of the nominal). 

It is expected that increasing W will increase It2 and decrease Ron due to the enlarged device 

size. This is indeed the case, as evidenced from the trends demonstrated in Figure 3.6.  
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Figure 3.5: I-V characteristics of N+/P-well poly-bound diodes having different widths 

 

It can be seen the failure current It2 increases linearly with increasing diode width (i.e., 

It2 are 1.98, 2.93, and 3.92 A, respectively) and the on-state resistance Ron decreases with 

increasing W. However, the drawback of increasing diode width W is the increased diode’s size 

and associated parasitic effects, which will be accounted for later. 
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Figure 3.6: Failure current It2 (left) and on-state resistance Ron (right) of N+/P-well poly-bound diode 

having different widths 

 

3.2.2 Finger number 

The ESD robustness is also a function of the number of anode/cathode fingers. Figure 3.7 

shows the I-V characteristics of poly-bound diodes having the same diode width of 40 µm but 

three different finger numbers. Diode 3 and 1 have the highest and lowest It2 and the smallest 

and largest Ron, respectively, indicating that increasing the finger number offers an appealing 

means in enhancing the poly-bound diode’s ESD robustness. Nonetheless, when the total area is 

fixed and the finger number is increased (i.e., the diode width is reduced with increasing finger 

number), we have found that the diode actually becomes less robust due to the fact that the 

maximum metal width allowed on each finger is inversely proportional to the finger number. 
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Figure 3.7: I-V characteristics of N+/P-well poly-bound diodes having different finger numbers 

 

3.2.3 Cathode length 

Changing the cathode length Lc can also affect notably the ESD performance of the poly-

bound diode. Figure 3.8 shows that the failure current It2 increases from 2 to 3 A when Lc 

increases from 1.6 to 3.8 µm. The on-state resistance Ron decreases with increasing Lc, as can 

also be seen in the Figure 3.8. The improved ESD robustness stems from the fact that increasing 

the cathode length gives rise to a reduced current density and thus a lower temperature in the 

region. The down side of increasing Lc is of course an increased device size and increased 

parasitic capacitance. These effects will be discussed later. 
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Figure 3.8: Failure current It2 (left) and on-state resistance Ron (right) of N+/P-well poly-bound diodes 

with different cathode lengths 

 

3.2.4 Polysilicon gate length 

Next we consider the effect of polysilicon gate length      . Figure 3.9 shows the I-V 

curves of N+/P-well poly-bound diodes with polysilicon length       increasing from 2 to 7 µm. 

It can be seen that the failure current It2 is almost unchanged for the different       values. On 

the other hand, the larger polysilicon length gives rise to a longer current path from the anode 

and cathode and thus results in a higher on-state resistance Ron, as evidenced from the data 

given in Figure 3.10. So the use of a relatively small       seems to be advantageous from the 

perspective of diode’s voltage clamping capability. 
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Figure 3.9: I-V characteristics of N+/P-well poly-bound diodes with different polysilicon gate lengths 
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Figure 3.10: Failure current It2 (left) and on-state resistance Ron (right) of N+/P-well poly-bound diodes 

with different polysilicon gate lengths 

However, the length of polysilicon gate cannot be reduced indefinitely and is subject to a 

minimal value as explained below. Table 3.2 shows the It2 results for different polysilicon 

lengths ranging from 1 to 7 µm. When the polysilicon lengths are higher than 2 µm, It2 increases 

slightly with decreasing      . But when the polysilicon length reduces further from 2 to 1 µm, 
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It2 is decreased by 30%. This It2 reduction stems from the metal failure, as the maximum width 

of metal layer above the N+ cathode region is mandated by the layout design rule. Having a very 

small       reduces the metal width, increases the current density in the metal, and consequently 

decreases It2. Junction punch-through is another factor limiting how small       can be 

implemented. So, it can be concluded that the use of       < 2 µm should be excluded from the 

design consideration. 

Table 3.2: Failure current It2 of poly-bound diodes with different polysilicon gate lengths 

      1 µm 2 µm 3 µm 5 µm 7 µm 

It2 1.37 A 1.98 A 1.95 A 1.90 A 1.85 A 

 

As illustrated, changing the above-mentioned design parameters, i.e., the diode width W, 

cathode length Lc, polysilicon gate length      , and finger number, can influence considerably 

the poly-bound diode’s It2 and Ron. Moreover, these changes also alter the device size and 

capacitance, two other important criterions related to the ESD device’s compactness and 

parasitics. Table 3.3 shows the capacitances of the poly-bound diodes with different design 

parameters. It should be pointed out that the capacitance is a function of not just the device size, 

but also the junction perimeter length.  

Table 3.3: Parasitic capacitances of poly-bound diodes having different design parameters 

Diode width 

W (µm) 

20 30 40 - 

Capacitance (fF) 38.72 58.08 77.44 - 

Cathode length 

Lc (µm) 

1.6 2.2 3.0 3.8 

Capacitance (fF) 38.72 47.4 58.92 70.22 

Polysilicon length 

Lgate (µm) 

2 3 5 7 
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Capacitance (fF) 38.72 43 51.54 60.08 

Finger numbers 

 

1 2 4 - 

Capacitance (fF) 38.72 77.8 155.9 - 

3.3 Figures of merit for It2 and Ron 

To account for the effects of changing these design parameters on the ESD robustness, 

device size, and capacitance of the poly-bound diode in a more unified manner, we define the 

following two figures of merit (FOM) for It2 and Ron for the purpose of determining 

quantitatively how much ESD robustness is enhanced vs. an increased design parameter: 

                                 
    

                 
                                 (3.1) 

                                
    

                 
                             (3.2) 

where     ,     ,             , and      are increase of It2, Ron, diode size, and parasitic 

capacitance, respectively, due to the increase of a specific design parameter. These two FOMs 

can more effectively reflect the ESD robustness of the diode than It2 and Ron alone. The more 

positive the FOM_It2 and the more negative the FOM_Ron (i.e., Ron decreases with increasing 

design parameter), the more suitable is increasing the particular design parameter for ESD 

applications. Conversely, the more negative the FOM_It2 and the more positive the FOM_Ron, 

the more beneficial is decreasing the particular design parameter. 

Figure 3.11 compares FOM_It2 and FOM_Ron values obtained for the four different 

design parameters considered. The results suggest that increasing the cathode length is the best 

way to enhance the diode’s ESD robustness, followed by the diode width increase and finger 
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number increase. On the other hand, decreasing the polysilicon length is advantageous from the 

viewpoint of ESD diode optimization. 
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Figure 3.11: Figures of merit for It2 (top) and Ron (bottom) obtained for the four different design 

parameters 
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3.4 Gate connection and metal topology 

Two more design parameters can affect the diode’s ESD performance, but changing these 

parameters does not vary the device size and alters the capacitance only minimally. As such, 

these two parameters were not considered in the above-mentioned FOM_It2 and FOM_Ron.  

3.4.1 Gate terminal connections 

The first consideration is the different ways in which the polysilicon gate can be 

connected. The three possible ways are gate-to-anode, gate-to-cathode, and gate-floating [48]. 

Figure 3.12 shows the I-V characteristics of the poly-bound diode having the three different 

terminal connections and two different device widths of 20 and 40 µm. As can be seen in the 

figure, It2 is insensitive to the types of terminal connection for both the diode widths considered. 

However, allowing the polysilicon gate to float will be of a concern for the issue of gate potential 

uncertainty. For the case of polysilicon connecting to cathode, a risk of gate oxide breakdown 

can occur if a sufficiently high voltage is built between the polysilicon and P-well region. Thus 

the best connection is to tie the polysilicon gate to the P+ anode. 
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Figure 3.12: I-V characteristics of poly-bound diodes with gate-to-anode, gate-to-cathode, and gate-

floating connections 

3.4.2 Metal topologies 

Lastly, we examine the effect of metal topology on the diode’s ESD performance. Figure 

3.13 shows N+/P-well poly-bound diodes having the same area but five different metal 

topologies using the crossing pattern. In the figure, the light purple color denotes the level-1 

metal M1 placed on the diode’s diffusion regions, and the light green color denotes the level-2 

metal M2 connected to the vias. For example, Diode_A1C1 has 1 M2 line connected to the 

anode and 1 M2 line to the cathode. On the other hand, Diode_A4C4 has 4 M2 lines connected 

to the anode and 4 M2 lines to the cathode. The widths of each M2 line in Diode_A1C1 and in 

Diode_A4C4 are the widest and narrowest, respectively, among the five cases considered. Table 

3.4 compares It2 and on-state resistance Ron obtained for the five different metal topologies. 

Diode_A4C4 has the highest It2 since its current flow can utilize the most inward and outward 

paths. The on-state resistance does not benefit from having a large number of metal lines, 
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however, and Diode_A2C2 exhibits the smallest Ron among the 5 different topologies. Overall, 

the topologies Diode_A2C2 and Diode_A3C3 seem to offer the best ESD performance. 
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Figure 3.13: Poly-bound diodes having the same area but five different crossing metal topologies 

Table 3.4: It2 and Ron of poly-bound diodes having the different metal topologies shown in Figure 3.13 

 Diode_A1C1 Didoe_A2C1 Diode_A2C2 Diode_A3C3 Diode_A4C4 

It2 (A) 3.05  3.52  3.49  3.55  3.56  

Ron (Ω) 1.29  1.57  1.16  1.19  1.27  

3.5 Summary 

In this chapter, ESD robustness of the LOCOS- and polysilicon-bound diodes were first 

studied and compared based on TCAD simulation and experimental measurement results. Then 
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the better performed polysilicon-bound diode was investigated in more details in order to come 

up with an optimal diode structure for robust ESD protection applications.  

Specially, the effects of the diode width, cathode length, finger number, polysilicon gate 

length, terminal connection, and metal topology on the diode’s failure current and on-state 

resistance were considered. Two figures of merits were also developed to better judge the effects 

of these parameters on the overall diode’s ESD performance. Our study suggested that a 

polysilicon-bound diode with a relatively large cathode length, relatively large diode width, 

relatively large number of fingers, relatively small polysilicon gate length, poly-to-anode 

terminal connection, and metal topology having 2 or 3 anode/cathode metal lines would be an 

excellent candidate for constructing effective HBM ESD protection solutions for low-voltage 

integrated circuits. 
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CHAPTER 4.   EVALUATION OF TRANSIENT BEHAVIOR OF DIODES 

FOR FAST ESD APPLICATIONS 

4.1 Introduction 

Human body model (HBM) is a mature, well-understood electrostatic discharge (ESD) 

event for simulating charge transfer from a person’s finger to an electric component. However, 

recently industry data indicates the HBM rarely simulates real-world ESD failures. For example, 

latest generation package styles such as mBGAs, SOTs, SC70s, & CSPs with millimeter-range 

dimensions are often effectively too small for people to handle with fingers. On the other hand, 

the charged device model (CDM) ESD event becomes increasingly important in today’s 

manufacturing environment and packaging technology [61]-[63]. This event generates highly 

destructive pulses with a very short rise time and very small duration [64]. 

Transmission line pulsing (TLP) measurement is a very effective tool for evaluating the 

ESD robustness of a circuit or single element. This is particularly helpful in characterizing the 

effect of HBM stresses where the ESD-induced damages are more likely due to the thermal 

failures. TLP has been modified to probe CDM protection effectiveness [65]-[68]. The pulse 

width was reduced to the range of the 1-10 ns to mimic the very fast transient of the CDM pulses. 

Such a very fast TLP (VFTLP) testing has been used frequently for CDM ESD characterization. 

A commonly asked question is as to how closely the VFTLP characterization resembles 

CDM event. Due to the completely different current and time domains, the CDM testing does not 

correlate well with the HBM and thus the TLP testing, but the VFTLP technique satisfies these 

requirements [64], [69]. Specifically, the VFTLP with a rise time of 100 ps offers an attractive 

means to extract the CDM time domain parameters [70]. The exact VFTLP and CDM correlation, 

however, is difficult to establish and not yet available in the literature due to the fact that the 
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CDM testing is strongly influenced by the types of package used, an effect not accounted for in 

the VFTLP testing. 

In this chapter, the transient behaviors of the ESD protection devices subject to the 

VFTLP stress will be studied and evaluated in details. Measurements will be carried out based on 

pulses generated by the Barth 4012 VFTLP tester. 

4.2 Definition of overshoot voltage and turn-on time 

The overshoot voltage and turn-on time are two key considerations for designing the 

CDM ESD protection devices. A relatively high overshoot voltage can cause failure of the 

protection devices as well as the protected devices, and a relatively long turn-on time may not 

switch on the protection device fast enough to effectively protect the core circuit against the 

CDM stress. The overshoot voltage and turn-on time of an ESD protection device can be 

observed and extracted from the voltage vs. time waveforms measured from the VFTLP testing. 
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Figure 4.1: Transient voltage waveform of (a) an ESD protection device and (b) an open apparatus subject 

to the VFTLP stress 

A Barth Model 4012 system was used for the VFTLP testing and characterization. Figure 

4.1(a) shows the time-dependent voltage waveform of an ESD protection device subject to a 

VFTLP pulse with a 5-ns duration (from 1.25 to 6.25 ns as shown in Figure 4.1(a)) and 100-ps 

rise time. Initially, the voltage on the device increases quickly to reach a peak value, which is 

defined as the overshoot voltage Vos, then the voltage decades exponentially and settles at a 

noisy but relatively constant value. An asymptote can be constructed using a linear regression for 

the relatively constant value [71]. However, it is not easy to obtain the linear regression 

accurately due to the noise in the region. Here, we create such an asymptote using a constant 

voltage Vave calculated by averaging the voltages between the 25% and 75% time portions of 

the voltage waveform (from 2.5 to 5 ns as shown in Figure 4.1(a)). The 10%Vave point is the 

point where the voltage increases to 10% of Vave from the start point. The 110%Vave point is 

the point where the voltage decreases to 110% of Vave after reaching the peak point. The turn-on 



64 

 

time Ton of the ESD protection device is defined as the time it takes to go from 10%Vave point 

to 110%Vave point. The voltage vs. time waveform of an open apparatus subject to the same 

VFTLP pulse is given in Figure 4.1(b) to demonstrate that the voltage overshoot observed in 

Figure 4.1(a) is not a result of the parasitics associated with the probes and cables. 

4.3 Effect of stressed pulse 

Figure 4.2 shows the cross-section view of the N+/P-well poly-bound diode considered in 

this study, where the Ld is the diffusion length, W is the diode width (in the third dimension, not 

shown in Figure 4.2), and the Lg is the poly-gate length. The devices were fabricated in a 0.6-µm 

BiCMOS process. In the ESD testing, the cathode and anode are connected to the VFTLP ground 

and signal probes, respectively. 

N+P+ P+

cathodeanode anode

P well

Ld Ld Ld

Lg Lg

 
Figure 4.2: Cross-section view of N+/P-well poly-bound diode 

4.3.1 Pulse amplitude 

Figure 4.3(a) and (b) shows the voltage and current waveforms, respectively, of an N+/P-

well poly-bound diode with Ld = 1.6 µm, Lg = 2 µm, W = 20 µm, and one anode/cathode finger 

subject to VFTLP voltage pulses with a 5-ns duration, a 100-ps rise time and amplitudes ranging 

from 10 to 60 V. The corresponding overshoot voltage and turn-on time vs. pulse amplitude (i.e., 

pulse voltage) of the poly-bound diode are given in Figure 4.4. It can be seen the diode’s 
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overshoot voltage increases roughly linearly with increasing pulse amplitude. On the other hand, 

the turn-on time is relatively constant versus the pulse voltage, except for a small drop taking 

place at a voltage of 50 V. 
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Figure 4.3: (a) Voltage waveforms and (b) current waveforms of N+/P-well poly-bound diode stressed 

with VFTLP pulses having different voltage amplitudes 
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Figure 4.4: Overshoot voltage and turn-on time of N+/P-well poly-bound diode vs. pulse amplitude 

 

4.3.2 Pulse rise time 

Figure 4.5 shows the voltage waveforms of the N+/P-well poly-bound diode subject to 

voltage pulses with a 5-ns duration, a 20-V amplitude, and different pulse rise times of 100, 200, 

and 400 ps. For the case of a longer rise time, the diode exhibits a lower overshoot voltage but 

wider overshoot regime. This is because, as the pulse rise time is increased, the minority free-

carriers (electrons) have more time to recombine with the majority free-carriers (holes) in the P-

well region, thus resulting in a slower conductivity modulation in the diode and the observed 

transient characteristics [60]. 
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Figure 4.5: Voltage waveforms of N+/P-well poly-bound diode subject to pulses with different rise times 

 

The overshoot voltage and turn-on time of poly-bound diode as functions of the pulse 

voltage and rise time are given in Figure 4.6(a)-(b). Of all three rise times considered, the 

overshoot voltage increases monotonically but the turn-on time is relatively insensitive with 

increasing pulse amplitude. The stress with the smallest rise time gives rise to the highest 

overshoot voltage but smallest turn-on time.  
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Figure 4.6: (a) Overshoot voltage and (b) turn-on time of N+/P-well poly-bound diode vs. pulse amplitude 

for 3 different pulse rise times 
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4.4 Effect of dimensions 

In this section, we will study the effects of the poly-bound diode’s dimensions on the 

overshoot voltage and turn-on time characteristics. VFTLP pulse having a 5-ns duration, 100-ps 

rise time, and 20-V magnitude will be used. The norm diode dimensions are Ld = 1.6 µm, Lg = 2 

µm, W = 20 µm, and one anode/cathode finger. When changing one parameter, the other three 

parameters are kept the same. 

Figure 4.7(a)-(d) shows the voltage waveforms of poly-bound diodes with different 

diffusion lengths, diode widths, finger numbers and poly-gate lengths. Clearly, changing Ld 

impacts minimally the diode’s transient behavior under the fast transient event. For two other 

parameters, diode width W and finger number, a large parameter value yields a lower peak 

voltage and smaller sustain voltage Vave. But none is as obvious as the effect of Lg on the 

voltage waveforms, as altering Lg changes both the overshoot voltage and turn-on time 

considerably (see Figure 4.7(d)). 
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       (d) 

Figure 4.7: Voltage waveforms of N+/P-well poly-bound diodes with different (a) diffusion lengths, (b) 

diode widths, (c) finger numbers, and (d) poly-gate lengths 

 

Based on the results in Figure 4.7(a)-(d), the overshoot voltage and turn-on time vs. 

different dimension parameters can be extracted and are shown in Figure 4.8. The diffusion 

length Ld makes almost no impact on both the overshoot voltage and turn-on time. The 

overshoot voltage decreases and turn-on time remains fairly constant with increasing diode width 

W and finger number. The effect of poly-gate length Lg is the most prominent, and a smaller 

poly-gate length gives rise to a lower overshoot voltage as well as a shorter turn-on time. 
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Figure 4.8: Overshoot voltages and turn-on times of N+/P-well poly-bound diodes vs. diffusion length Ld, 

diode width W, finger numbers and poly-gate length Lg 

The reason that the poly-gate length Lg plays such a dominant role in the poly-bound 

diode’s turn-on speed is because it can strongly influence the transit time of the minority free-

carriers in the device. Under a fast ESD event, the turn-on time of the N+/P-well poly-bound 

diode is approximately the transit time of electrons needed to travel across the P-well region. The 

transit time is defined as [29], [60]:  

                                                 
  
 

   
                                                  (4.1) 

where    is the diffusion coefficient of electrons in the P-well region. So the larger is the Lg, the 

larger is the transit time, and the larger is the turn-on time. As the turn-on time shows no 
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dependence on the width and finger number of the diode, it does not scale with increasing device 

size or current, as evidenced by the trends shown in Figure 4.8. 

The overshoot voltage is mainly caused by the modulation of the series resistor    in the 

diode’s quasi-neutral regions, which is modeled by [72]-[73]: 

                                       
   

       
                                    (4.2) 

where     is the constant part of the series resistances including the N+/P+ active diffusion 

region and metal line connection,     is the modulated part of the series resistance in the P-well 

region;    is the threshold charge for the onset of resistance modulation in the P-well region, and 

   is the modulated charge for neutralizing the excess electron carriers in the P-well region 

under high level injection which is dependent of diode’s turn-on time    and current    [72]: 

                                                                                         (4.3) 

For times short than   , the modulated charge    will not reach its steady state (   

  ), and as a result, the series resistance becomes         and the overshoot voltage of diode 

is dependent of this series resistance. The higher is the series resistance, the higher is the 

overshoot voltage. 

Since     and     are mainly resulted from the resistances in the highly doped N+/P+ 

diffusion region and lowly doped P-well region, respectively, the series resistance can be further 

simplified to    , which is defined as: 

                                        
  

       
                                    (4.4) 

where     is the resistivity of the P-well region, and            are the poly-gate length, 

finger number, diode width, and depth of P-well region, respectively. 
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It is clear from equation (4.4) that the series resistance is insensitive to the diffusion 

length Ld, is proportional to the poly-gate length Lg, and is inversely proportional to the diode 

width W and finger number N. Such dependencies are consistent with the overshoot voltage 

trends observed in Figure 4.8. 

4.5 Failure mechanisms under fast transient event 

In this section, we will investigate in details the correlation between the poly-bound diode 

failure and the poly-gate configuration, which has been demonstrated in the previous section as 

the dimension parameter influencing most significantly the diode’s transient performance under 

the VFTLP stress. 

Figure 4.9 shows the quasi-static I-V characteristics extracted from the transient 

waveforms of poly-bound diodes with different gate lengths. The curves in the upper figure are 

results of diodes stressed by a VFTLP pulse (5-ns duration and 100-ps rise time) to simulate the 

CDM ESD event, and in lower figure are results stressed by a TLP pulse (100-ns pulse duration 

and 10-ns rise time) to simulate the HBM ESD event. We define the failure of the poly-bound 

diodes at the point where the leakage current increases considerably from its normal value. It is 

interesting to see that under the TLP stress, the on-state resistance of poly-bound diode increases 

and the failure current remains almost the same with increasing poly-gate length. Under the 

VFTLP stress, the on-state resistance also increases with the poly-gate length, but the failure 

current decreases significantly when the poly-gate length becomes longer. This is because the 

polysilicon gate is connected to the anode region as shown in Figure 4.2, and the voltage pulse 

that applies to the anode also stresses the gate directly. In addition, unlike the case of TLP stress, 

the device failure under the very fast transient stress depends less on the energy dissipation but 
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more on the voltage overshoot [74]-[75]. As the overshoot voltage is directly proportional to the 

gate length (see Figure 4.8), the gate oxide of poly-bound diode is more likely to be damaged by 

the VFTLP stress-induced voltage overshoot when Lg is relatively large. 
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Figure 4.9: Quasi-static I-V characteristics of poly-bound diodes subject to VFTLP (top) and TLP 

(bottom) stresses 



76 

 

Figure 4.10 shows the voltage waveforms of poly-bound diodes having different poly-

gate lengths subject to the VFTLP pulses that cause device failure. It can be seen that the highest 

voltage the diode can tolerate decreases with increasing gate length. In other words, the diode 

with the shortest gate length can sustain the largest voltage stress. For example, the diode with a 

gate length of 2 µm fails at a pulse voltage of 60 V, whereas the diode with a gate length of 7 µm 

fails at a pulse voltage of 22 V. This is consistent with the finding in Figure 4.9. Note that all the 

overshoot voltages in Figure 4.10 are about the same (i.e., 30 V) even though the pulse voltages 

vary. As such, 30 V is the threshold voltage for inducing damage to the 14 nm-thick oxide used 

in the diodes subject to this particular stress of 100-ps rise time and 5-ns duration. 
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Figure 4.10: Voltage waveforms of poly-bound diodes having different poly-gate lengths subject to the 

VFTLP voltage pulses that causes device failure 

A comparison of quasi-static I-V characteristics extracted from the transient waveforms 

of poly-bound diodes having the gate floating and the gate tied to anode stressed with VFTLP 

pulses is shown in Figure 4.11. The results suggest that the diode having the gate floating 
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configuration has a much higher failure current that its gate tied to anode counterpart. This is due 

to the fact for the case of gate floating, the pulse does not stress directly to the gate oxide. As 

such, the failure is related to the damage takes place in the silicon and/or metal, which have a 

higher ESD tolerance, rather than in the gate oxide.  
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Figure 4.11: Comparison of quasi-static I-V characteristics of poly-bound diodes with gate floating and 

gate connected to anode  

 

In Figure 4.12, the transient behaviors of the devices with two different poly-gate 

configurations subject to the VFTLP pulses that cause failure indicate that the gate floating 

device can tolerate a much higher overshoot voltage than the gate connected to anode diode, a 

finding in agreement with the results in Figure 4.11. However, the gate potential uncertainty 

would be a concern for allowing the gate to float. 
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Figure 4.12: Comparison of transient waveforms for poly-bound diodes with gate floating and gate 

connected to anode subject to the VFTLP pulses that cause failures 

Thus, the preceding study has suggested that a poly-bound diode with a normal diffusion 

length, relatively large width, relatively large number of fingers, relatively small poly-gate length, 

and gate floating configuration would be an excellent candidate for constructing effective and 

robust diode-based protection solutions for fast ESD events. However, the gate potential of gate-

floating poly-bound diode may be a reliability concern, and a gate-to-anode configuration could 

be used instead to eliminate such a concern but with the trade-off of a reduced ESD robustness. 

4.6 Summary 

Transient characteristics of poly-bound diodes under fast ESD events, such as the 

charged device model (CDM), were investigated using pulses generated from the Barth 4012 

very-fast transmission line pulsing tester. In particular, the effects of poly-bound diode’s 

dimension parameters on two ESD figures of merit, namely the overshoot voltage and turn-on 

time, extracted from the transient waveforms were studied and discussed.  
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It was found that among the 4 different dimension parameters considered (i.e., diode 

width, diffusion length, poly-gate length, and finger number), the poly-gate length plays the most 

dominant role in affecting the diode’s fast transient behavior. This is because such a behavior is 

governed mainly by the minority carrier transport between the anode and cathode regions 

separated by the polysilicon gate. Specifically, a smaller poly-gate length gives rise to a smaller 

overshoot voltage and shorter turn-on time, making the diode more suitable for fast ESD 

protection applications. The correlation between the poly-bound diode failure and poly-gate 

configuration under the fast transient stress were also addressed, and the results suggested that 

diodes having the gate floating configuration and a relatively small gate length are less likely to 

suffer damages induced by fast ESD events. 
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CHAPTER 5.   MULTIPLE-FINGER TURN-ON UNIFORMITY IN 

SILICON-CONTROLLED RECTIFIERS (SCRs) 

5.1 Introduction 

Silicon-controlled rectifier (SCR) is a widely used electrostatic discharge (ESD) device 

for protecting the I/O pins and power supply rails of integrated circuits [39], [76]. Since the SCR 

operates with snapback characteristic and is triggered under the avalanche breakdown condition 

of low-doped N-well/P-substrate junction, the trigger voltage is generally greater than the gate-

oxide breakdown voltage of input stages and makes it hard to achieve ESD protection for low-

voltage applications. The modified lateral SCR (MLSCR) inserts an additional highly doped N+ 

diffusion region at the boundary of N-well and P-substrate regions and lowers its trigger voltage 

to the breakdown voltage of N+/P-substrate junction [77]. However, it could be still too high to 

effectively protect the thin gate oxide of input stages. To further reduce the trigger voltage, the 

low-voltage triggering SCR (LVTSCR) is invented with the integration of a grounded-gate 

NMOS to trigger the SCR action and the trigger voltage is equivalent to the lower drain 

breakdown voltage of short channel NMOS device [78]. 

To achieve an optimal ESD protection performance, multiple fingers of SCR are often 

needed. However, the uniformity of finger triggering and current flow is always a concern for 

multi-finger SCR devices operating under the post-snapback region [79]. Without a proper 

understanding of the finger turn-on mechanism, design and realization of robust SCRs for ESD 

protection applications are not possible. The placement of SCR’s anode and cathode regions is 

one of key design factors affecting the turn-on uniformity of SCR devices with multiple fingers, 

however, few discussion is available in previous literature. 
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In this work, two two-finger SCRs with different combinations of anode/cathode regions 

are considered, and their finger turn-on uniformities are analyzed based on the I-V characteristics 

obtained from the transmission line pulsing (TLP) tester. The effects of different pulse rise times 

on the finger turn-on behavior of the SCRs are also investigated. The devices were fabricated in 

a 0.6-μm BiCMOS process with LOCOS (Local Oxidation of Silicon) oxide isolation between 

the highly doped N+ and P+ diffusion regions. In the ESD testing, the cathode of SCR is 

grounded and the anode is subject to the ESD stress.  

5.2 Device structures 

Figure 5.1 shows the cross-section views of two two-finger SCR structures. The first, 

called the anode-cathode-anode SCR (ACASCR), has one cathode region in the middle and two 

anode regions on the right-hand and left-hand sides of the cathode region. The other, called the 

cathode-anode-cathode SCR (CACSCR), has one anode region in the middle and two cathode 

regions on the right-hand and left-hand sides of the anode region. The ACASCR and CACSCR 

have the same dimensions, including identical N+, P+, and oxide lengths, layout, and metal 

connections. But the paths of current flow in the devices are different. Figure 5.2 shows the 

current paths in each SCR structure. The purple color denotes the level-1 metal placed on top of 

the N+ and P+ diffusion regions, and the green color denotes the level-2 metal connected to 

level-1 metal through multiple vias. ACASCR has metal lines 1 and 3 connected to the two 

anode regions and metal lines 2 and 4 connected to the single cathode region. When subjecting to 

the ESD stress, the current flows into the ACASCR through metal lines 1 and 3 from the left, 

enters the two anode regions, transports to the cathode region, and finally flows out of the device 
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to the right via metal lines 2 and 4. The same description applies to the CACSCR, but the current 

in the device flows from the right-hand side to the left-hand side. 
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Figure 5.1: Schematics of the cross-section of the ACASCR and CACSCR structures 
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Figure 5.2: Schematics illustrating the current flow paths in the ACASCR and CACSCR 
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5.3 TLP results and analysis 

Figure 5.3 shows the measured current-voltage (I-V) characteristics of the ACASCR and 

CACSCR stressed with the human body model (HBM) equivalent pulses having a 100 ns width 

and 10 ns rise time generated from the transmission line pulsing (TLP) tester. Also included in 

the figure is the TLP I-V curve of an SCR having one finger but otherwise identical structure as 

the ACASCR and CACSCR (i.e., half of the ACASCR or CACSCR).  

Note that the failure current It2 (the current at which the leakage current increases 

suddenly from its normal value) of the ACASCR is half of that of the CACSCR (2.35 A vs. 4.79 

A). As will be discussed below, this stems from the fact that only one of the two fingers in the 

ACASCR is turned on. Both the ACASCR and CACSCR have the same on-state resistance (3.43 

Ω) when the current is lower than 0.8 A. Beyond this current level, the on-state resistance of the 

CACSCR is cut in half (i.e., 1.79 Ω) and the on-state resistance of the ACASCR remains the 

same. Figure 5.3 also shows that the ACASCR has almost identical I-V curve as the one-finger 

SCR, suggesting that only one of the two fingers in the ACASCR is turned on under all the 

current levels whereas both fingers in the CACSCR are turned on when the current is sufficiently 

high (i.e., above 0.8 A). Thus, the CACSCR exhibits improved turn-on effectiveness and is more 

robust than the ACASCR counterpart for ESD protection applications.  
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Figure 5.3: I-V characteristics of the ACASCR and CACSCR stressed with 100-ns width and 10-ns rise 

time pulses generated using the transmission line pulsing tester  

The equivalent circuits of the ACASCR and CACSCR structures shown in Figure 5.4 can 

be used to explain the finger turn-on mechanism in these devices. Let us first focus on the 

ACASCR, which consists of two separated anode regions and one cathode region sharing the P-

well region. In other words, the ACASCR has two parasitic PNP bipolar transistors and two 

NPN transistors sharing the same P-type base region. Under the ESD stress, the high voltage at 

the anode first causes avalanche breakdown in one of the two reverse-biased N+/P-well junctions. 

Holes are generated by impact ionization and flow into the P-well region. Such a hole injection 

gives rise to a potential increase in the P-well region, which forward biases the P-well/N+ 

junction and triggers the NPN bipolar transistor. The collect current of NPN transistor flowing in 

the N-well region reduces the N-well potential, forward biases the P+/N-well junction, and 

triggers the parasitic PNP bipolar transistor. Subsequently, the finger associated with this PNP 

bipolar transistor in the ACASCR is turned in the post-snapback mode. As will be explained later, 
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this process does not trigger the other parasitic PNP bipolar transistor, and the second finger 

remains off.  

On the other hand, the CACSCR has two cathode regions and one anode region sharing 

the N-well region, or the two parasitic PNP bipolar transistors share the same N-type base region. 

Similar to the ACASCR, one finger of CACSCR is turned on due to the triggering of a parasitic 

PNP bipolar transistor at relatively low current levels. However, since the two fingers share the 

same N-well region, after one of fingers is triggered and carrying the current, a large amount of 

electrons and holes are generated in the shared N-well region. The holes then flow to the P-well 

region associated with the other finger because of the increasing electrical field and potential. As 

such a hole current becomes sufficiently large, it forward biases the P-well/N+ junction, triggers 

the parasitic NPN bipolar transistor, turns on the second finger in the CACSCR, and reduces the 

on-resistance to half of its original value when the current is increased beyond 0.8 A (see in 

Figure 5.3). 

Let us revisit the ACASCR. After triggering one of the two fingers in the ACASCR, like 

the CACSCR, the avalanche generated electrons in the shared P-well can also flow to the N-well 

region associated with the other finger. However, the parasitic PNP transistor is much harder to 

turn on than the parasitic NPN transistor due to the fact that the current gain of the PNP transistor 

is an order of magnitude lower than that of the NPN transistor [32]. As a result, only one finger 

is turned on in the ACASCR under all the current conditions. 
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Figure 5.4: Equivalent circuits of the ACASCR and CACSCR structures 

5.4 dV/dt effect 

Figure 5.5 shows the I-V characteristics of the ACASCR and CACSCR structures 

stressed with TLP pulses having a 100 ns pulse width and 2 ns rise time (top figure) and 200 ps 

rise time (bottom figure). These pulses have the same duration but much shorter rise time than 

the pulses used in Figure 5.3. Unlike the case in Figure 5.3, both fingers in the CACSCR subject 

to the 2-ns and 200-ps rise time pulses are turned on as soon as the device enters the snapback 

mode. This is due to the dV/dt effect [80] associated with the fast pulse which generates a 

substantial displacement current through the depletion capacitance of the N-well/P-well junction 

and this extra current facilitates the triggering of both parasitic NPN bipolar transistors and thus 

both fingers as soon as the CACSCR enters the snapback mode. As the effect of dV/dt is less 

prominent for the slower 2-ns rise time pulse, in this case both fingers in the ACASCR are not 

turned on until the current reaches 2 A.  
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Figure 5.5: I-V characteristics of the ACASCR and CACSCR stressed with 2-ns rise time (top) and 200-

ps rise time (bottom) pulses generated by the TLP 
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5.5 Summary 

Multiple-finger turn-on uniformity and mechanism of two different two-finger silicon-

controlled rectifier (SCR) structures, CACSCR and ACASCR, were investigated based on the 

current-voltage characteristics measured using the transmission line pulsing tester. The CACSCR 

structure having two cathode regions and one anode region showed better finger turn-on 

effectiveness than the ACASCR structure having two anode regions and one cathode region. The 

turn-on behavior of the SCR structures was also improved when subjecting to pulses with a 

faster rise time due to the enhanced displacement current effect.  
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CHAPTER 6.   CONCLUSIONS 

ESD related failure is always a major concern for IC reliability and results in a loss of 

millions dollars to the semiconductor industry each year. To avoid or reduce the IC’s failures due 

to ESD, dedicated on-chip ESD protection structures and schemes are commonly used to 

discharge the ESD current and clamp overstress voltage under different ESD events. The 

dissertation starts with the fundamentals of ESD phenomena and existing ESD stress models. 

The main contributions of this dissertation are having investigated the effect of various design 

parameters on the overall ESD protection performance of diodes with different anode/cathode 

isolation technologies and having designed the optimal ESD diode structures achieving both low 

parasitic capacitance and fast turn-on speed for low-voltage ESD protection applications.  

The ESD performance of LOCOS-bound diode with different diffusion layouts, metal 

connection patterns, dimensions, geometries and junction configurations were first investigated 

experimentally using pulses generated from the Barth 4002 transmission line pulsing tester. For 

LOCOS-bound diodes with the parallel metal connection, a smaller diode width and larger 

number of fingers give rise to higher failure current It2 and lower on-state resistance Ron. On the 

other hand, diodes with the crossing metal connection would work more effectively when a 

multiple-finger and/or multiple-metal line structure was used. To account for both the ESD 

robustness and the parasitic effect, the diode having a stripe structure, crossing metal pattern, 

large device width, and lowly doped well layer yields the best overall ESD protection 

performance and lowest parasitic capacitance. The results provide useful insights into optimizing 

the LOCOS-bound diode for robust HBM ESD protection applications. 
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Polysilicon-bound diodes were then compared with LOCOS-bound diodes based on 

TCAD simulation and experimental measurement results. The better performed polysilicon-

bound diode was investigated in more details in order to come up with an optimal diode structure 

for robust ESD protection applications. Specially, the effects of the diode width, cathode length, 

finger number, polysilicon gate length, terminal connection, and metal topology on the diode’s 

failure current and on-state resistance were considered. Two figures of merit were also developed 

to better judge the effects of these parameters on the diode’s overall ESD performance. Our 

study suggested that a polysilicon-bound diode with a relatively large cathode length, relatively 

large diode width, relatively large number of fingers, relatively small polysilicon gate length, 

poly-to-anode terminal connection, and metal topology having 2 or 3 anode/cathode metal lines 

would be an excellent candidate for constructing effective HBM ESD protection solutions for 

low-voltage integrated circuits. 

Transient characteristics of polysilicon-bound diodes under fast ESD events, such as the 

charged device model (CDM), were also investigated using pulses generated from the Barth 

4012 very-fast transmission line pulsing tester. In particular, the effects of polysilicon-bound 

diode’s dimension parameters on two ESD figures of merit, namely the overshoot voltage and 

turn-on time, extracted from the transient waveforms were studied and discussed. It was found 

that among the 4 different dimension parameters considered (i.e., diode width, diffusion length, 

poly-gate length, and finger number), the poly-gate length plays the most dominant role in 

affecting the diode’s fast transient behavior. This is because such a behavior is governed mainly 

by the minority carrier transport between the anode and cathode regions separated by the 

polysilicon gate. Specifically, a smaller poly-gate length gives rise to a smaller overshoot voltage 

and shorter turn-on time, making the diode more suitable for fast ESD protection applications. 
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The correlation between the polysilicon-bound diode failure and poly-gate configuration under 

the fast transient stress were also addressed, and the results suggested that diodes having the gate 

floating configuration and a relatively small gate length are less likely to suffer damages induced 

by fast ESD events. 

In the end, the multiple-finger turn-on uniformity and mechanism of two different two-

finger silicon-controlled rectifier (SCR) structures, CACSCR and ACASCR, were investigated 

based on the current-voltage characteristics measured using the transmission line pulsing tester. 

The CACSCR structure having two cathode regions and one anode region showed better finger 

turn-on effectiveness than the ACASCR structure having two anode regions and one cathode 

region. The turn-on behavior of the SCR structures was also improved when subjecting to pulses 

with a faster rise time due to the enhanced displacement current effect.  
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