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ABSTRACT 

The area of wireless transceiver design is becoming increasingly important due to 

the rapid growth of wireless communications market as well as diversified design 

specifications. Research efforts in this area concentrates on schemes that are capable of 

increasing the system capacity, providing reconfigurability/reprogrammability and 

reducing the hardware complexity. Emerging topics related to these goals include 

Software Defined Radio, Multiple-Input-Multiple-Output (MIMO) Systems, Code 

Division Multiple Access, Ultra-Wideband Systems, etc.  

This research adopts space diversity and statistical signal processing for digital 

interference suppression in wireless receivers. The technique simplifies the analog front-

end by eliminating the anti-aliasing filters and relaxing the requirements for IF bandpass 

filters and A/D converters. Like MIMO systems, multiple antenna elements are used for 

increased frequency reuse. The suppression of both image signal and Co-Channel 

Interference (CCI) are performed in DSP simultaneously.  

The signal-processing algorithm used is Independent Component Analysis (ICA). 

Specifically, the fixed-point Fast-ICA is adopted in the case of static or slow time varying 

channel conditions. In highly dynamic environment that is typically encountered in 

cellular mobile communications, a novel ICA algorithm, OBAI-ICA, is developed, which 

outperforms Fast-ICA for both linear and abrupt time variations.  

Several practical implementation issues are also considered, such as the effect of 

finite arithmetic and the possibility of reducing the number of antennas.  
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CHAPTER ONE: INTRODUCTION 

 The wireless communications market has been growing rapidly world wide since 

1990’s. The growth is even stronger since we enter the 21st century, especially in Asian 

countries such as China and India. 

 Being the largest consumer product industry in history, the wireless/mobile 

industry attracted huge amount of research efforts that significantly reduced the system 

cost, which in turn fueled further demand [1]. As a result, the technology had to evolve 

constantly to keep up with such demand.  

Many concepts have been proposed to enable higher transmission rates, better 

bandwidth usage efficiency, and service provision diversity. Also, reducing the size and 

cost of the handheld devices and improve the Quality of Service (QoS) are major 

challenges.  

  

Software Defined Radio 

 The term software radio implies radio functionalities defined by software. This 

requests the use of DSPs to replace dedicated hardware to execute the necessary software 

(SW) [2].  

Software radio has many desirable features. In software radio, SW controls and 

programs transceiver architecture. Therefore, flexibility is provided to achieve the 

capability of reconfiguration. Also, software radio supports multiple modes and multiple 

standards. 

At both the receiver and transmitter side, most functions should be defined by 

SW. These include the selection and identification of frequency band and bandwidth, 
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modulation and coding schemes, as well as definition and implementation of user 

application.  

 SW radio is compatible with any other radio mobile. Also, DSP implementations 

are in real time.  

 In order to achieve SW radio, two primary tasks have to be accomplished. First, 

the ADC (at the receiver side) and DAC (at the transmitter side) have to be moved near 

the antenna, thus signal processing tasks can be performed in digital domain. Second, 

dedicated hardware needs to be replaced by DSPs.  

 

MIMO Systems 

The third generation (3G) systems are being deployed throughout the world. 

Currently, 3G has two principal standards, namely, Wideband Code Division Multiple 

Access and 1XRTT [3]. Yet, the increase in the demand for higher data rate and better 

QoS, together with the scarcity of the Radio Frequency (RF) spectrum, make it necessary 

to adopt novel techniques.  

The use of multiple antennas, known as space diversity, at the transceiver is 

proved to be a feasible technique for better performance. The technique is named 

Multiple-Input-Multiple-Output (MIMO). In particular, space diversity at the receiver 

side effectively exploits multipath fading, originally a drawback, for the separability of 

fading channels [4]. Also, many applications of adaptive signal processing at the receiver 

side for interference reduction have been introduced, which prove to be promising.  

There are several different ways to exploiting MIMO structure [3].  
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The first one is Array Gain. By combining the signals received via multiple 

antennas, the Signal to Noise Ratio (SNR) can be substantially improved at the receiver 

side.  

The second one is Spatial Multiplexing (SM). Without increasing the power 

consumption, using multiple antennas provides a linear increase in the system capacity 

for a fixed amount of bandwidth. Only MIMO channels make SM possible.  

Finally, Co-Channel Interference (CCI) suppression can be achieved by 

exploiting independence between the spatial signatures of the desired signal and CCI’s. 

This is extremely important for frequency reuse systems.  

 

Spread Spectrum Technology 

Spread spectrum modulation uses a transmission bandwidth many times greater 

than the information bandwidth or data rate of any user. Spread spectrum applications fall 

into several broad categories [5]: 

• High capability to tolerate interference (both intentional and unintentional); 

• More accurate position location and velocity estimation; 

• Much lower detectability by an unintended receiver; 

• Multiple access communication: a large number of typically uncoordinated users 

can share a common spectral allocation. 

 

CDMA is such a technique that transmits signals that appear noiselike and 

random. This is achieved by coding the input symbols by pseudorandom sequence. The 

same pseudorandom sequence is used at the receiver to decode the transmitted symbols.  
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Adopting Direct-Sequence (DS) or Frequency Hopping (FH) technique, CDMA 

accesses the local exchange carrier through wireless terminals. The frequency reuse 

problem is avoided because the users are separated by orthogonal codes. Each CDMA 

cell occupies the same 1.25 MHz band simultaneously. In this respect, frequency 

planning is substantially simplified. Also, the capacity of CDMA is significantly 

increased.  

In CDMA scheme, accurate power control is essential in limiting interference. 

Every user is in effect a noise to all the other users sharing the same channel. Also, the 

noise from every user is accumulated. This represents a soft limit to the number of users a 

system can accommodate. Therefore, the power control scheme should be able to 

maintain each mobile’s power consumption at the smallest possible level and ensure QoS 

at the same time.  

Another important scheme in this category is Ultra-Wide Band (UWB). The 

UWB signals span over an extremely wide frequency range. Therefore, they are very 

hard to detect. Typically, a UWB signal occupies 1/4 of the center frequency or more.  

A very popular UWB scheme is to use non-sinusoidal pulses with widths smaller 

than one nanosecond.  

Although UWB promises low power, low cost, high data rates and precise 

positioning capability, it is widely believed that it will not be fully implemented unless an 

additional interference suppression mechanism is introduced.     
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Motivation and Scope of the Research 

 The suppression of interfering signals is becoming critically important for modern 

communication systems.  

If the network loading is very low, incorporating interference measurements in 

resource management helps to provide interference avoidance. However, if the network 

loading is high, avoidance technique is no longer effective, so it is incapable of 

preventing the degradation of Quality of Service (QoS). Therefore, it is necessary to 

reduce interference after it has already occurred. 

     In this research, the suppression of two important types of interfering signals is 

discussed, namely, the image signal and the Co-Channel Interference (CCI).  

The image problem arises from out-of-band users due to the adoption of IF stage 

[6-7]. Traditionally, image rejection is performed by BandPass Filters (BPFs) at the RF 

stage. The stringent requirement for these filters adds to the front-end’s complexity and 

makes the receiver costly. As receivers are required to work at newly allocated high RF 

band, this problem is becoming more serious.  

On the other hand, CCI occurs when different users are occupying the same 

frequency band. The suppression of CCI is a critical issue, for it determines the system 

capacity. It is not possible to attenuate CCI by analog filters.  

     Interference suppression in the digital domain is highly desirable, because it can 

reduce the complexity of the front-end, which makes the receiver easier to be integrated 

and less costly. Moreover, it is an important step towards the long-term objective of 

transceiver design: Software-Defined Radio. As the computational power of Digital 
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Signal Processor (DSP) is increasing rapidly, implementing radio functionalities digitally 

is becoming more and more feasible.   

     Diversity reception with Independent Component Analysis (ICA) stands out as a 

strong candidate for digital interference suppression [8-9].  

Adopted in MIMO systems, the use of multiple antennas effectively exploits 

multipath fading. In ICA, statistical independence between signal components is 

exploited for separation of the interfering signals from the desired signal.  

ICA’s ability of suppressing strong interferers helps to solve the near-far 

problem, because ICA has no requirement for the components’ relative strength. This is 

especially beneficial for high data rates applications [10]. As long as the resulting mixing 

matrix is not singular, the performance is unaffected if the power of the interference 

sources is changed. Moreover, ICA is robust against erroneous estimation of system 

parameters, since it is based purely on high-order statistics.   

In this research, we propose using this technique for interference suppression in 

wireless receivers operating in fading conditions [11-14]. It provides simultaneous 

rejection for image signal and Co-Channel Interferer (CCI). The order ambiguity inherent 

to ICA is addressed, and an efficient solution is presented [15].  

Further, to make the proposed technique feasible in highly dynamic environment, 

a novel ICA algorithm is proposed based on block adaptive signal processing and Taylor 

series expansion [16]. Simulation results confirm that the presented algorithm has much 

superior performance to the Fast-ICA algorithm, which has been dominant in various 

applications of ICA. It is well known that Fast-ICA cannot operate well in rapid time-
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varying conditions. Also, it is worth mentioning that the new algorithm represents a new 

family of ICA algorithms that are also applicable in other areas.  

Besides, brief study has been carried out regarding practical implementation 

issues. First, the effect of finite arithmetic is studied by computer simulations [17]. 

Second, we prove that in the case of Binary Phase Shift Keying (BPSK) receivers with 

one interferer present, the number of antenna can be reduced to one without any 

performance degradation by a simple operation in the digital domain [18]. Therefore, the 

hardware complexity can be reduced by half with negligible increase in computational 

complexity. Finally, it is shown that the proposed technique should be disabled when the 

received signal already has a large signal to interference ratio, i.e., the desired signal is 

much stronger than the interference. In such a scenario, additional suppression is not 

needed.  

 

Organization of the Document 

The document is organized as follows.  

Chapter 2 gives a brief overview of the statistical technique used in this research, 

namely, ICA.  

Chapter 3 presents the novel ICA algorithm that has superior performance for 

highly dynamic environment.  

Chapter 4 introduced the proposed interference suppression technique for 

diversity wireless receivers, where the Fast-ICA algorithm is applied assuming the 

channel is quasi-stationary.  
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Chapter 5 applies the new ICA algorithm to the same scheme assuming rapid 

time-varying channel conditions. It is also shown that Fast-ICA cannot work properly in 

this scenario.  

Chapter 6 discusses practical implementation issues of the proposed technique.  

Finally, Chapter 7 summarizes the research work and suggests possible direction 

for future research.  
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CHAPTER TWO: INDEPENDENT COMPONENT ANALYSIS 

Independent Component Analysis (ICA) is a statistical signal processing 

technique that utilizes the statistical independence of signals hidden in sets of 

measurements.  

In a typical ICA model, the variables, also known as the observations, are linear 

or nonlinear combinations of certain source signals of interest. These signals are 

statistically independent and nongaussian. It is the ICA algorithms’ goal to recover the 

source signals. Although the criterion adopted in the ICA processing varies, almost all 

ICA algorithms share the same characteristic in that they take advantage of higher-order 

statistics.   

While most classic statistical processing techniques utilize only second order 

statistics, ICA is a more powerful method because it relies on more stringent assumption. 

Fortunately, in practice most source signals underlying the observations do satisfy the 

independence (not only uncorrelated) assumption.   

ICA is capable of processing data in many areas, such as Feature Extraction [19], 

Telecommunications [20-21], Financial Engineering [22], Brain Imaging [23] and Text 

Document Analysis [24].  

 

General Background 

 In the area of adaptive filtering, supervised learning refers to the design of filters 

assuming that a training sequence is available with specification of the desired response 

of the filter. The other class, known as unsupervised learning, does not need the 

specification of such response. Instead, unsupervised learning algorithms adjust the free 

 9



parameters of adaptive filters according to certain desired properties of input-output 

mapping.  

 ICA is such an unsupervised learning technique that specifies the mutual 

independence of the output signals. Of course, the validity of ICA processing lies in the 

assumption that the observations are indeed generated by independent sources that have 

physical meanings [25].  

 The problem ICA processing attempts to solve is also known as Blind Source 

Separation (BSS). Some examples of BSS problems include different speech signals 

detected by a set of microphones at different locations, multiple signals received by a 

mobile handset, or several time series generated during certain financial process. 

 

Basic ICA Model 

The linear ICA model is: X=AS. Here, X is the given observation matrix, and 

each row of X is one observation; A is a square mixing matrix whose dimensionality is 

the same as the number of rows in X; S is the source signal matrix, and each row of S is 

one independent component. Typically, the number of observations is the same as the 

number of independent components.  

The goal of ICA procedures is to obtain S from X when A is unknown. As 

mentioned in the previous sections, ICA algorithms are based on high order statistics, so 

they need the assumption of statistical independence between the source signals. Also, at 

most, one source signal can be gaussian. 

The objective of ICA is to find a separation matrix W, such that S can be 

recovered when the observation matrix X is multiplied by W. This is achieved by making 
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each component in WX as independent as possible. Each row in W is a demixing vector 

that is able to extract one component when applied to X.   

 

Principles of ICA 

Maximization of Nongaussianity  

The simplest principle of ICA is Maximization of Nongaussianity, which is 

adopted in this research.  

Nongaussianity is fundamental in ICA estimation. The central limit theorem 

states that, if the source signals are nongaussian, their sum is more gaussian than any one 

of them individually. Thus, a linear combination of the observations will be maximally 

nongaussian if it equals one of the independent components up to a multiplicative 

constant.  

 

Maximum Likelihood Estimation 

 Maximum Likelihood (ML) Estimation is the fundamental method of statistical 

estimation. In ML estimation, values that give the highest probability for the observations 

are taken as the estimation of the parameters. 

 The key to ML estimation is the probability densities of the independent 

components, since the likelihood is a function of these densities. If this information is 

available, a very simple gradient algorithm can be derived. Otherwise, the problem is 

much more complicated, because the estimation of densities is a nonparametric problem, 

which means the problem cannot be reduced to the estimation of a finite number of 

parameters. A common way to solve this problem is to approximate the densities of the 
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independent components by a family of densities that are specified by a limited number 

of parameters.  

 The well-known Bell-Sejnowski algorithm and Natural gradient algorithm belong 

to this category. 

 

Minimization of Mutual Information 

 Minimization of Mutual Information is inspired by information theory. 

 The motivation of this approach is that it may not be very realistic in many cases 

to assume that the data follows the basic ICA model. Therefore, a general-purpose 

measure of dependence is more useful. The classic information-theoretic measure of 

statistical independence, Mutual information, is desirable in these scenarios.  

 However, minimization of mutual information actually leads to similar algorithms 

as maximization of nongaussianity. Thus, the main utility of mutual information is 

theoretical, and it provides a unifying framework for other estimation principles, 

especially ML estimation and maximization of nongaussianity.  

 

Tensorial Methods 

 Tensorial Methods use higher-order cumulant tensor. Tensors are generalizations 

of matrices, or linear operators. Cumulant tensors are generalizations of covariance 

matrix. The covariance matrix is the second-order cumulant tensor. 

 The rationale behind tensorial methods is, if we make the fourth-order cumulants 

zero, a higher-order decorrelation is achieved. This gives one class of methods for ICA 

estimation.  
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 The tensorial methods typically involve the eigenvalue decomposition operation, 

which is computationally inefficient if the dimensions of the data are high. Therefore, 

they are becoming less popular.  

  

Measure of Independence  

Since ICA relies on statistical independence to perform signal separation, a 

quantitative measure of independence is needed. The most important measure of 

independence is nongaussianity.  

In general, the negentropy is the optimal measure of nongaussianity. For a random 

variable y with probability density function p(y), its entropy is defined as: 

2( ) ( ) log ( )H y p y p y dy
∞

−∞

= − ∫        (2.1) 

The entropy represents the level of uncertainty within the random variable. 

Among all the random variables with equal variance, the gaussian distribution has the 

largest entropy.  

In practice, it is desirable to have a measure that is zero for gaussian distribution 

and nonnegative for all others. Thus, the negentropy is defined: 

 G y                 (2.2) ( ) ( ) ( )gaussianH y H y= −

where ygaussian  is a gaussian variable with equal variance as y. 

 To use negentropy, the density function has to be known. Otherwise, estimation 

has to be used. This task makes the negentropy based method computationally highly 

demanding.  
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The simplest quantitative measure of nongaussianity is kurtosis, whose absolute 

value measures the departure of a random vector from a gaussian random vector. The 

kurtosis of a zero-mean random variable ξ  is defined as a fourth order cumulant:  

                                                                            (2.3)   ( ) { } { }( 224 3kurt ξξξ EE −= )

A distribution with a negative kurtosis is called subgaussian, while a distribution 

with a positive kurtosis is called supergaussian.  Subgaussian probability density 

functions (pdf) are flatter than the gaussian pdf. On the other hand, a supergaussian pdf 

has a sharper peak and/or longer tails than the gaussian pdf.  

The main reason for kurtosis being widely used a measure of non-gaussianity is 

its computational simplicity, because it can be easily computed from the moments of the 

sampled data. However, due to the same reason, kurtosis is sensitive to outliers.  

 

Fast-ICA Algorithm for Extraction of One Component 

A natural choice for maximizing the absolute value of kurtosis is the gradient 

algorithm. However, the convergence of such algorithm is slow, and depends on a proper 

choice of the learning rate sequence. The fast fixed-point algorithm is a promising 

alternative that makes learning considerably faster and more reliable. 

Fast-ICA is a very simple and efficient method that has been shown to have 

excellent convergence properties [26-27]. It is dominant in various application areas.  
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A straightforward way to understand this Newton based method is based on the 

observation that, at the convergence point, the demixing vector w should point to the 

same direction as the gradient vector. Therefore, if the measure of non-gaussianity is 

kurtosis, w is updated at each iteration to be the gradient of the absolute value of kurtosis 

at the previous iteration.  

Since the expectation operator in the gradient vector has to be estimated, the 

algorithm should be operated on a block of data, usually referred to as a “frame”, so the 

sample means can be used as the estimation. Thus, the algorithm operates in batch mode.   

Below is a description of Fast-ICA based on kurtosis. As a convention, the 

variance of the data is assumed to be unity, so the definition of kurtosis (2.3) can be 

simplified. In the description, X is a N by Nf  data matrix, where N is the number of 

observations, which is also the number of independent components; and Nf is length of 

the processing frame.  

 

Step 1. Get the whitened data X1 by decomposing X’s covariance matrix. Set the 

counter p = 1; 

Step 2. Initialize the pth row of the separation matrix wp to a random vector of unity 

length; 

Step 3. Set wp = ∑
=

fN

nfN 1
p1

3
1p  ;3w -(n)}X(n)]X{[w1  

Step 4. Make the estimate of wp orthogonal to the subspace spanned by the already 

extracted rows of W using  
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wp = wp - ; ∑
−

=

1

1

T w)ww(
p

v
vvp

Step 5. Normalize wp to unity length; 

Step 6. Check the convergence of wp. If it is not reached, go back to Step 3, otherwise 

proceed; 

Step 7. Set p = p + 1. If p ≤ N, go back to step 2. 

 

In step 6, the convergence means that the old and new values of wp point in 

almost the same direction, i.e., the difference between their dot-product and 1 is less than 

a predefined threshold value. In our simulations, it is found that a threshold value of 10-6 

is appropriate to achieve satisfying performance while maintaining fast convergence.   

In Step 1, the whitening is performed by Eigenvalue decomposition (EVD). For 

noisy ICA model, i.e., if there exists significant Gaussian noise, the whitening should be 

replaced by quasiwhitening, where the covariance matrix of the noise-free data should be 

used instead of the covariance matrix of the noisy data.   

The above parallel algorithm is computationally simple. It eliminates the choice 

of a learning rate sequence, and the estimate of the probability density function is not 

needed. The convergence is globally cubic. Moreover, it is proved that the algorithm is 

locally consistent, which means we don’t need to distinguish between maximization and 

minimization of the kurtosis based on whether the signals are supergaussian or 

subgaussian.  
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The frame length Nf is an important parameter to be chosen. Ideally, all the 

available data to be processed needs to be used to have a good estimate of the expectation 

operation. However, the computational complexity in terms of multiplications and 

divisions per iteration is of O(Nf), so the computations may become too demanding if the 

sample size is very large. Thus, there is a tradeoff between the performance and the 

computational complexity.  

 

Complex-valued Fast-ICA 

Separation of complex valued signals is a frequently arising problem in many 

situations, such as frequency-domain applications and communication systems. For 

example, in separation of convolutive mixtures, the data is usually transformed into 

Fourier domain before being processed.   

The distributions for the complex variables are often spherically symmetric. Thus, 

only the modulus is of interest.  

     The kurtosis for a complex random variable can be defined as:  

     kurt(y) = E{|y|4} – 2(E{|y|2})2 - |E{y2}|2 = E{|y|4} – 2   (2.4) 

where y is white, i.e., the real and imaginary parts of y are uncorrelated and their 

variances are equal. Using this definition, a fixed-point complex-valued Fast-ICA 

algorithm based on deflationary separation can be developed.  

     Let X and Nf denote the observation matrix and the processing frame length, 

respectively, and N is the number of components. Also, the source signals are assumed to 

have zero mean and uncorrelated real and imaginary parts of equal variance. The Fast-
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ICA algorithm for complex-valued signals [28] is described below, where the contrast 

function is chosen according to kurtosis.  

 

Step 1. Get the whitened data X1 by decomposing X’s covariance matrix. Set the 

counter p = 1; 

Step 2. Initialize wp to a random vector of unity length; 

Step 3. Set wp = ∑
=

fN

n
p

fN 1

2
1

H
p

*
1

H
p1  ;|(n)Xw|}2w-(n)]X(n)[w{X2  

Step 4. Make the estimate of wp orthogonal to the subspace spanned by the already 

extracted rows of W using wp = wp - ∑
−

=

1

1

H w)ww(
p

v
vvp ; 

Step 5. Normalize wp to unity length; 

Step 6. Check the convergence of wp. If the convergence is not reached, go back to 

Step 3, otherwise proceed; 

Step 7. Set p = p + 1. If p ≤ N, go back to step 2.  

It is easily seen that the algorithm is a straightforward extension of real-valued 

Fast-ICA algorithm, thus it exhibits the same advantages. In the complex case, the 

transpose operation should be replaced by the Hermitian operation.  
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Estimating Multiple Components 

To extract n independent components, the previous mentioned one-unit ICA 

algorithm needs to be run n times. In addition, the orthogonalization operation is also 

required to ensure uncorrelatedness of all the extracted components.  

A simple way is deflationary orthogonalization using the Gram-Schmidt method, 

in which the components are estimated one by one. The basic idea is that after one 

demixing vector wp is found, it should be projected on the space that is orthogonal to the 

subspace spanned by columns of W previously found. This procedure is already 

incorporated into the above outlined Fast-ICA algorithms.  

The deflationary orthogonalization has the drawback of error accumulation. The 

error made in the estimation of first several components is accumulated and it contributes 

to the error in the estimation of later extracted components during the orthogonalization 

operation. As a solution, a symmetric orthogonalization can be used.   

In symmetric orthogonalization, all extracted components of the demixing matrix 

are treated as equal. The orthogonalization is performed as a linear transformation:  

WSW 2/1−=          (2.5) 

where W is the demixing matrix whose rows need to be orthogonalized and S-1/2 is the 

transformation matrix from the Singular Value Decomposition (SVD) of WWT. 
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Ambiguities in ICA 

When applying an ICA algorithm, three ambiguities should be resolved.  

     The first is amplitude ambiguity, which means the amplitudes of the separated 

signals are obtained within arbitrary multiplicative constants. In practice, it is assumed 

that the source signals have unit variance during ICA processing, so the amplitude of the 

extracted signals has to be scaled by a gain corresponding to the variance of the signals.    

 The second is the sign ambiguity, which is a special case of the amplitude 

ambiguity for a scalar constant of –1.  
     The third is the order ambiguity, which means the order of the extracted 

components cannot be identified by ICA processing. Although in deflationary separation, 

the components tend to separate in the order of decreasing non-Gaussianity, this is not 

guaranteed.   

 The second and third ambiguities are typically resolved via certain prior 

information already available, such as a training sequence.   

 

Drawbacks of Fast-ICA Algorithm 

Unlike gradient-based online learning algorithms, Fast-ICA cannot adapt to fast 

variations in the mixing matrix in a nonstationary environment. It needs the assumption 

that within one processing frame, the mixing matrix should stay approximately constant.  

Therefore, in applications that require real-time adaptation, Fast-ICA exhibits 

performance degradation if the mixing matrix changes significantly over one processing 

frame.  
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In this scenario, the ICA algorithm faces two opposing requirements regarding the 

choice of the frame size Nf. On one hand, to establish sufficient statistical independence, 

a large number of symbols should be used to obtain an accurate estimate of the 

expectation operation. This implies that Nf needs to be large. On the other hand, 

increasing Nf violates the quasi-stationarity requirement for A if A is fast time-varying. 

Therefore, new algorithms that combine the advantages of both online learning 

and fixed-point ICA are needed. The algorithm should converge fast and able to track fast 

time variations. In the next chapter, such an algorithm will be developed.   

 

Conclusions 

In this chapter, Independent Component Analysis technique is briefly introduced. 

Different principles of ICA are overviewed, and the most important one, i.e., 

Maximization of Nongaussianity, is presented.  

The basic ICA operations include prewhitening, extracting one component, 

orthogonalization and techniques solving the inherent amplitude and order ambiguity.  

The most popular ICA algorithm, Fast-ICA, is described. Both real-valued and 

complex-valued versions of Fast-ICA are included. Also, the drawbacks of Fast-ICA are 

discussed.  

 

 

 

 

 

 21



CHAPTER THREE: ICA WITH OPTIMUM BLOCK ADAPTATION 

WITH INDIVIDUAL ADAPTATION PARAMETERS (OBAI) 

As described in the previous chapter, the Newton-based Fast fixed-point ICA 

algorithm has been dominant in most applications. This is because it converges very fast, 

and in most cases the choice of learning rate is avoided.  

However, in the case that the mixing matrix is highly dynamic, Fast-ICA cannot 

successfully track the time variation. Thus, a gradient-based algorithm is more desirable 

in this scenario.  

The disadvantages of the online gradient-based algorithm are slow convergence 

and difficulty in the choice of learning rate. An improper choice of learning rate can 

destroy convergence. 

In this chapter, a new adaptive algorithm named ICA with Optimum Block 

Adaptation with Individual adaptation parameters (OBAI) [29] is developed, which 

combines the advantages of the gradient-based online learning and Fast-ICA. From 

OBAI-ICA, a family of gradient ICA algorithms are derived: Individual Adaptation (IA) 

ICA, Homogeneous Adaptation (HA) ICA [30], Optimum Block Adaptation (OBA) ICA 

[31], and Block-ICA. Moreover, it is also shown that the online gradient ICA algorithms 

can be obtained from OBAI-ICA.   

 

Background and Motivation 

The Fast-ICA algorithm is a block algorithm. It uses a block of data to establish 

statistical properties. Specifically, the “expectation” operator is estimated by the average 
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over L data points, where L is the frame size. The performance is better when the 

estimation is more accurate, i.e., L is larger.  

However, it is very important that the mixing matrix stays approximately constant 

within one processing block, i.e., quasi-stationary. Thus, the problem arises when the 

mixing matrix is rapidly time varying, in which case a large L violates the assumption of 

quasi-stationarity.  

On the other hand, the online gradient-based algorithm, which updates the 

separation matrix once for every received symbol, can better track the time variation of 

the mixing matrix. But it directly drops the “expectation” operator, which results in 

unstable convergence and worse performance than a block algorithm.  

Therefore, a block algorithm is needed that can better accommodate time 

variations within one processing frame. 

Our idea is to tailor the learning rates in a gradient-based block algorithm to each 

iteration and every coefficient in the separation matrix, in order to optimize a cost 

function that corresponds to a measure of independence. In [29], Mikhael and Wu used a 

similar idea to develop a fast block-LMS adaptive algorithm for FIR filters, which 

yielded useful results, especially when adapting to time-varying systems.  

The algorithms developed in subsequent sections are used for estimating one row 

of the demixing matrix W. Other ICA related operations, such as whitening, 

orthogonalization and solving ambiguities, are identical as the procedures mentioned in 

the previous chapter.  
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Formulation of OBAI-ICA 

     First, the following parameters are defined:  

 j: iteration index. 

 M: number of observations. 

 L: length of the processing frame. 

w(j) = [w1(j) w2(j) …… wM(j)]T: the current row of the separation matrix for the 

jth iteration. (i = 1, 2, …, M) 

xl,i(j): the ith signal in the lth observation data vector for the jth iteration. (l = 1, 2, 

…, L) 

Xl(j) = [xl,1(j) xl,2(j) …… xl,M(j)]T: lth signal observation for the jth iteration.  

[ ]TLj jXjXjXG )(.....)()(][ 21= : Observation matrix for the jth iteration 

     The lth kurtosis value for the jth iteration. 

kurtl(j) = E{[wT(j) Xl(j)]4}- 3       (3.1) 

where it is assumed that the signals and w(j) both have been normalized to unit variance. 

     Then, the kurtosis vector for the jth iteration is: 

 kurt(j) = [kurt1(j) kurt2(j)…… kurtL(j)]T     (3.2) 

Now we can write the updating formula in a matrix-vector form as: 

)(][)()1( jMUjwjw Bj ∇+=+       (3.3) 

where  

1

{ ( ) ( )} { ( ) ( )} { ( ) ( )}1( ) [ ... ]
( ) ( ) ( )

T T T
T

B
M

kurt j kurt j kurt j kurt j kurt j kurt j
j

w j L w j w j
∂ ∂ ∂

∇ = =
∂ ∂ ∂

 (3.4) 

and 
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1( ) ..... 0
[ ] ..... ..... .....

0 ..... ( )

B

j

BM

j
MU

j

µ

µ

 
= 
  


        (3.5)  

Note that in (3.3), a “+” sign is used instead of “-” as in the steepest descent 

algorithm. Because our cost function is kurtosis rather than error signal, we wish to 

maximize the cost function to achieve maximal nongaussianity.   

     To evaluate (3.4), we have:  

4 2
3

,
1 1

[ {[ ( ) ( )] } 3]{ ( ) ( )}
8 [ ( ) ( )] ( ) ( )

( ) ( )

TT L L
l T

l l l
l li i

E w j X jkurt j kurt j
w j X j kurt j x j

w j w j= =

∂ −∂
= =

∂ ∂∑ ∑ i  

           (3.6) 

In derivation of (3.6), the expectation operator was dropped.  

So the block gradient vector can be written as:  

3 3
,1 ,

1 1

8( ) [ [ ( ) ( )] ( ) ( ) ... [ ( ) ( )] ( ) ( )]
L L

T T
B l l l l l

l l

T
l Mj w j X j kurt j x j w j X j kurt j x j

L = =

∇ = ∑ ∑  

           38 [ ] [ ] ( )T
j jG C kurt j

L
=         (3.7) 

Where 

 
















=
)()(.....0

...............
0.....)()(

][
1

jXjw

jXjw
C

L
T

T

j      (3.8) 

is a diagonal matrix.  

From (3.7), the updating formula (3.3) becomes 

38( 1) ( ) [ ] [ ] [ ] (T
j j jw j w j MU G C kurt j

L
+ = + )      (3.9) 
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     Now, the primary task is to identify the matrix [ ] jMU in an optimal sense, so that 

the total squared kurtosis ( ) ( )Tkurt j kurt j  is maximized. In order to do that, we express 

the lth kurtosis value in the (j+1)th iteration by Taylor’s series expansion.    

...)()(
)(

)(
!2

1)(
)(
)()()1(

1 11

+∆∆+∆
∂

∂
+=+ ∑∑∑

= ==

M

m

M

n
nm

n

l
i

M

i i

l
ll jwjw

jw
jjw

jw
jkurtjkurtjkurt

)(

2

∂∂
∂

m jw
kurt  

                                l = 1, 2, …, L (3.10) 

where  

             i = 1, 2, …, M (3.11) )()1()( jwjwjw iii −+=∆

            The high order derivative terms in (3.10) are complicated and requires large 

amount of computation. However, if )( jwi∆  is small enough, they can be omitted. In our 

experimentation, it is found that this is indeed the case.  

            Based on (3.1), if the expectation operator is dropped, we have: 

    3
, ])()()[(4

)(
)( jXjwjx

jw
jkurt

l
T

il
i

l =
∂

∂
      (3.12) 

            Then, (3.10) becomes: 

    ∑
=

∆+=+
M

i
iill

T
ll jwjxjXjwjkurtjkurt

1
,

3 )()(])()([4)()1(  

                       ])()([])()([4)( 3 jwjXjXjwjkurt T
ll

T
l ∆+=     (3.13) 

            Write (3.13) for every l, the matrix-vector form of the Taylor expansion becomes: 

    )(][][4)()1( 3 jwGCjkurtjkurt jj ∆+=+       (3.14) 

            From (3.9), 

    )(][][][8)( 3 jkurtCGMU
L

jw j
T
jj=∆       (3.15) 
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            Substitute (3.15) into (3.14), 

    )(][][][][][32)()1( 33 jkurtCGMUGC
L

jkurtjkurt j
T
jjjj+=+       (3.16) 

            Define  

    T
Mj

T
j jqjqjkurtCGjq )]()...([)(][][)( 1

3 ==       (3.17) 

        1 ≤ m, n ≤ N  (3.18) )]([][][][][ 6 jRGCGR mnjj
T
jj ==

the total squared kurtosis for the (j+1)th iteration can be written as: 

    321)1()1( SSSjkurtjkurtT ++=++       (3.19a) 

where  

    )()(1 jkurtjkurtS T=         (3.19b) 

    ∑
=

=
M

i
Bii jjq

L
S

1

2
2 )()(64 µ         (3.19c) 

    )(][][][)(1024
23 jqMURMUjq

L
S jjj

T=       (3.19d) 

            In order to identify optimal [MU]j, the following condition must be met: 

    0
)(

})1()1({
=

∂

++∂
∇

j
jkurtjkurt

Bi

T

µ
    i = 1,2,…, M  (3.20) 

           Combine (3.19a) and (3.20), we have: 

    0
)()()(

321 =
∂

∂
+

∂
∂

+
∂

∂
j

S
j

S
j

S

BiBiBi µµµ
       (3.21) 

            Substitute (3.19b), (3.19c) and (3.19d) into (3.21), and use the symmetry property 

of the matrix [R]j given in (3.18), the following is obtained: 

    )(
32

)]()()([
1

* jqLjrjjq i

M

k
kiBKk −=∑

=

µ       (3.22) 
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where * denotes the optimal value.  

            Write (3.22) for every i, the following matrix-vector equation is obtained: 

    )(
32

)(][][ * jqLjqMUR jj −=        (3.23) 

            From (3.23), we have: 

    )(][
32

)(][ 1* jqRLjqMU jj
−−=        (3.24) 

            From (3.17), (3.24) and (3.9), the OBAI-ICA algorithm is obtained:  

    )(][25.0)()(])[
32

(8)()1( 11 jqRjwjqRL
L

jwjw jj
−− −=−+=+    (3.25) 

where [R]j and )( jq  are given by (3.17) and (3.18).  

             

Obtain Online Gradient ICA from OBAI-ICA 

            Now we show that online gradient ICA can be obtained from the general 

formulation presented above. Let L = 1 and  

)()(...)()( 21 jjjj BBMBB µµµµ ====       (3.26) 

OBAI-ICA (3.25) simplifies to:  

    )(])()([)()(25.0)()1( 3* jkurtjXjwjXjjwjw T
Bµ−=+     (3.27) 

where 

    
])()([])()([

1)( 6
*

jXjXjXjw
j TTB =µ       (3.28) 

    If we let , the following online gradient ICA equation is 

obtained [25, pp177]: 

|)(|)(25.0 * jkurtjBµµ =
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    )])()([)()]([()()1( 3jXjwjXjkurtsignjwjw Tµ−=+     (3.29) 

 

ICA with IA, HA, OBA and BLOCK ICA 

The Block ICA 

            In (3.9), the diagonal elements in the matrix [  are set equal and time 

invariant, i.e., 

jMU ]

    BBMBB jjj µµµµ ==== )(...)()( 21       (3.30)      

            Then, the weight update equation becomes: 

    38( 1) ( ) [ ] [ ] (T
B j jw j w j G C kurt j

L
µ+ = + )        (3.31) 

            This is the block ICA algorithm. 

 
 
The OBA-ICA algorithm  

            In order to derive OBA-ICA, it is assumed that the time varying convergence 

factor is the same for all the coefficients of )( jw , i.e., equation (3.26) holds. So equation 

(3.16) becomes: 

    )(][][][][)(32)()1( 33 jkurtCGGC
L

jjkurtjkurt j
T
jjj

Bµ
+=+    (3.32) 

            Then, the total squared kurtosis for the (j+1)th iteration (3.19) is modified as 

follows: 

   321)1()1( SSSjkurtjkurtT ++=++       (3.33a) 

where  
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    )()(1 jkurtjkurtS T=         (3.33b) 

    ∑
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=
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i
i

B jq
L

jS
1

2
2 )()(64µ         (3.33c) 

    )(][)()(1024
2

2

3 jqRjq
L

jS j
TBµ

=        (3.33d) 

where [R]j and )( jq  are given by (3.17) and (3.18). 

            Taking the derivative with respect to )( jBµ , and set it to zero: 

    0)(][)()(2048)()(64 *
2 =+ jqRjqj

L
jqjq

L j
TT

B
µ      (3.34) 

            So the optimum convergence factor is: 

    
)(][)(

)()(
32

)(*

jqRjq
jqjqLj

j
T

T

B
−=µ        (3.35) 

            In this scenario, the weight update equation (3.9) simplifies to: 

    )()(8)()1( jqj
L

jwjw Bµ+=+        (3.36) 

     Using the optimum convergence factor (3.35), OBA-ICA is obtained: 

    )(
)(][)(

)()(
25.0)()1( jq

jqRjq
jqjq

jwjw
j

T

T

−=+      (3.37) 

     Note that unlike OBAI-ICA (3.25), OBA-ICA (3.37) does not require matrix 

inversion, which is more computationally efficient. Due to the same reason, OBA-ICA is 

applicable in cases where the length of the processing block is less than the order of the 

system, i.e., L<N. In this scenario, OBAI-ICA does not work, because it involves the 

inverse of matrix R, which is N by N.  
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The IA-ICA algorithm 

     If the block size L=1, a blockwise process reduces to a sequential one. In this 

case, [R]j and )( jq  defined in (3.17) and (3.18) becomes: 

    )(])()([)(][ 6 jXjXjwjXR TT
j =        (3.38) 

    )(])()([)()( 3 jkurtjXjwjXjq T=        (3.39) 

Note that in (3.39), the kurtosis vector has degenerated to a scalar.  

     From (3.38) 

    6

1
1

])()([
])()([

][
jXjw
jXjX

R T

T

j

−
− =         (3.40) 

     Substitute (3.39) and (3.40) into OBAI-ICA (3.25), the IA-ICA is obtained: 

    3

1

])()([
)(])()([

)(25.0)()1(
jXjw

jXjXjX
jkurtjwjw T

T −

−=+     (3.41) 

 

The HA-ICA algorithm  

     HA-ICA is the sequential version of OBA-ICA. Substitute (3.38) and (3.39) into 

OBA-ICA (3.37), the following weight update equation is obtained after straightforward 

derivation:  

    
])()([])()([

)()(
25.0)()1( 3 jXjXjXjw

jXjkurt
jwjw TT−=+     (3.42) 

 

Implementation Issues of OBAI-ICA 

Elimination of the matrix inversion operation   

 31



     OBAI-ICA algorithm (3.25) gives the optimal updating formula to extract one 

row of the separation matrix W. The update equation involves the inversion of the [R] 

matrix, whose dimensionality is equal to the order of the system N. This operation could 

be inefficient in the case of high order system, because the computational complexity is 

O(N3).  

When the order of the system is large, an estimate of [R] can be used. The method 

proposed here is to use a diagonal matrix [R]D which contains only the diagonal elements 

of [R]. Thus, the complexity of the inverse operation becomes O(N). The adaptive system 

can repair itself from this approximation and converge to the right solution. The only 

price is that the number of iterations required for convergence is increased.  

 

Computational complexity 

     Having eliminated the inversion problem, the dominant factor determining the 

computational complexity is the block size L for most applications of ICA, because it is 

typically larger than the order of the system N. It is easily seen that the number of 

multiplication and divisions of OBAI-ICA is O(L) per iteration, which is equivalent to 

Fast-ICA. 

 

An additional scaling factor 

     In practice, it is desirable to introduce one additional adaptation parameter for the 

equation, based on two considerations.  

First, since the high order derivative terms in (3.10) are dropped in our 

formulation, an additional adaptation parameter can help to ensure reliable convergence.  
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Second, according to the speed of the time variation, a mechanism should be 

available to adjust )( jw∆ , so that the algorithm can track the time variation no matter 

how fast the mixing matrix is changing.  

     Therefore, the following updating formula is obtained based on (3.25): 

     )(][25.0)()1( 1 jqRjwjw j
−−=+ µ      (3.43) 

     The choice of µ should be made according to the convergence property and the 

speed of mixing matrix’s time variation. It is found in our simulation that the optimal 

value of µ varies according to the speed at which the mixing matrix coefficients vary. On 

the other hand, Fast-ICA does not have the capability to adapt to time variation even if an 

additional scaling factor is introduced.  

 

Two versions of OBAI-ICA 

     Now two versions of OBAI-ICA are introduced depending on whether the same 

block of data are used from one iteration to another.  

In OBAI-ICA1, the data observation matrix [  stays the same for every 

iteration, until the algorithm converges. For this case, dependency on iteration index j can 

be dropped.  

]G

In OBAI-ICA2, a completely new block of data is used for every iteration. Upon 

convergence, the converged demixing vector processes all the data that have been used.  
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An Alternative for OBAI 

The OBAI-ICA algorithm (3.25) requires that the block size L is larger than the 

order of the system N, because it involves the inverse of the matrix [R] defined in (3.18).  

This condition is satisfied in most applications, such as the wireless communications 

application considered in this dissertation.  

 However, in the case of high order systems, L<N might arise in certain 

applications. Although OBA-ICA (3.37) is applicable for L<N, the performance of OBA-

ICA is worse than OBAI-ICA.  

 In this section, we propose an alternative algorithm for OBAI-ICA, assuming that 

the original distribution of the signal components is known. The algorithm is named 

General Optimum Block Adaptation ICA (GOBA-ICA). It is general in the sense that it 

does not impose any constraint on L and N.  

 From Taylor series expansion (3.14), we have the relationship between the 

kurtosis vectors in the jth and (j+1)th iteration. Our purpose is to choose )( jw∆  such 

that finally the kurtosis vector consists of the kurtosis values of individual components.  

 Assume the independent components are binary signals taking values of either  

-1 and 1. The kurtosis of the discrete uniform distribution is -2. Therefore, if we achieve 

convergence in the (j+1)th iteration, the kurtosis vector should become a vector of length 

L in which every element is -2. 

 Based on the above argument, we can let )1( +jkurt  in (3.14) to be 

           (3.44) ...ku j + = − −( 1) [ 2 2 2]Trt K− = −

 Let  

3[ ] 4[ ] [ ]j jR C G= j
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           (3.45) 

Then, according to (3.14), the change in the weight vector becomes 

     (3.46) ∆ = #( ) [ ] ( ( ) )jw j R K u rt j K− +

where  

    (3.47) 
1

#
1

[ ] ([ ] [ ] )
[ ]

([ ] [ ] ) [ ]

T T
j j j

j T T
j j j

R R R L N
R

R R R L

−

−

<
=  ≥ N 

is the pseudo-inverse of the matrix [R]j defined in (3.45).  

 The weight update equation for GOBA-ICA (3.46) is the Least Square (LS) 

solution for (3.14) assuming (3.44).  

 Note that GOBA-ICA implies the convergence is achieved in one iteration. Thus 

it is a Newton-based approach. OBAI-ICA falls into the same category in the sense that 

by finding the optimum values of convergence factor, we are maximizing the energy of 

the kurtosis vector in one iteration, equivalently.  

 As with OBAI-ICA, an additional scaling factor can be introduced for GOBA-

ICA. So (3.46) becomes 

     (3.48) ∆ = #( ) [ ] ( ( ) )jw j R Kurt j Kµ− +

 The evaluation of pseudo-inverse in GOBA-ICA also involves the matrix 

inversion operation. The dimensionality of the matrix requiring inversion is the smaller 

one of L and N. As with OBAI-ICA, it is sometimes desirable to approximate the matrix 

in order to simplify the inversion operation.   
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Conclusions 

 This chapter develops the Optimum Block Adaptation with Individual adaptation 

parameters ICA algorithm (OBAI-ICA). The idea is to tailor the learning rates in a 

gradient-based block algorithm to each iteration and every coefficient in the separation 

matrix, in order to optimize a cost function that corresponds to a measure of 

independence. Taylor series expansion is used in conjunction with gradient based block 

adaptation equation to identify the optimal set of individual convergence factors.  

 Since OBAI-ICA involves matrix inversion, a simplification of the inversion 

operation is proposed by approximate the matrix to be inverted using only its diagonal 

elements. Also, an additional scaling factor is introduced for practical implantation of 

OBAI-ICA to provide a mechanism for adjusting to different speed of time variation.  

 The computational complexity of OBAI-ICA per iteration in terms of the block 

size L is equivalent to Fast-ICA, which is very efficient.  

 From OBAI-ICA, a family of ICA algorithm can be derived. They are: IA-ICA, 

HA-ICA, OBA-ICA and Block-ICA. Moreover, the existing online gradient ICA 

algorithm can be obtained as a simplification of the more general OBAI-ICA algorithm.  

 To have an individualized block adaptation ICA algorithm that works for the case 

of L<N, an alternative algorithm named GOBA-ICA is also developed. It utilizes the 

pseudo-inverse of an L by N matrix. The assumption needed in GOBA-ICA is that the 

distribution of the independent components is known.  

 Both OBAI-ICA and GOBA-ICA are Newton-based methods, as Fast-ICA. 

However, because they are adaptive techniques, they possess the capability of tracking 

time variations in the mixing matrix’s coefficients.    
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CHAPTER FOUR: A GENERAL INTERFERENCE SUPPRESSION 

TECHNIQUE FOR DIVERSITY WIRELESS RECEIVERS 

ADOPTING ICA 

 In Chapter two, Independent Component Analysis technique is summarized and 

Fast-ICA algorithm is described. In Chapter three, a new ICA algorithm OBAI-ICA and 

its branches are developed.  

In this chapter, an application of ICA is considered based on Fast-ICA, and 

computer simulation results are presented to confirm the advantages of ICA. In the next 

chapter, OBAI-ICA is adopted for the same application in a highly dynamic environment, 

and its performance is compared with Fast-ICA.    

For an overview of the cellular communication and smart antenna systems, see 

[86].   

 

Introduction 

    As mentioned in the introduction part, digital interference suppression is 

becoming increasingly important, because the computation power of modern DSPs has 

developed substantially, and digital implementation of radio functionalities is consistent 

with the ultimate goal of telecommunication transceiver design: Software Defined Radio.  

Recently, diversity receiver structures have been proposed which utilizes ICA to 

suppress CCI [8-9]. In this chapter, a more general scheme is presented that is able to 

reject simultaneously CCI and image interference. Then a technique solving the order 

ambiguity inherent to ICA is introduced, which performs the signal selection while 
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extracting components. By exploiting the training sequence embedded into the air 

interface frame, the method achieves higher computational efficiency. Also, the selection 

of the related threshold value is convenient.   

 

Wireless Communications in Fading Channels 

 For most practical wireless communication channels, signal propagation takes 

place in the atmosphere and near the ground. A signal can travel from transmitter to 

receiver over multiple reflective paths, which causes fluctuations in the received signal’s 

amplitude, phase, and angle of arrival [32]. This phenomenon, known as multipath 

fading, should be taken into consideration to describe the channel behavior and predict 

the system performance.  

     There are two types of fading characterizing mobile communications: large-scale 

fading and small-scale fading.  

Large-scale fading represents the average signal power attenuation or the path 

loss due to motion over large areas. It is often described in terms of a mean-path loss and 

a log-normally distributed variation about the mean.  

Small-scale fading occurs when there are small changes between a receiver and 

transmitter, which cause dramatic changes in signal amplitude and phase. 

     Since the signals travel along random paths, they have random phases. Even small 

differences in the length of the radio path result in large carrier phase shifts. As a result, 

the phase response of the wireless channels, for mobile systems operating at frequencies 

higher than 800MHz, can be modeled as uniformly distributed over the interval [0, 2π). 
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     Regarding the amplitude response, when there is no direct line-of-sight between 

the transmitter and the receiver, the signal arrives at the receiver as a superposition of 

many components from a wide range of incident angles. The envelope of such a received 

signal is statistically described by a Rayleigh probability density function (pdf). 

Consequently, this type of fading is called Rayleigh fading. In cellular systems, this 

occurs if the height of the cellular tower is small. On the other hand, in the presence of a 

dominant nonfading signal component that is propagating along a line-of-sight path, the 

fading is called Rician fading [33].  

     

Receiver Structure 

     Figure 1 shows the diversity receiver architecture. 
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Figure 1. Proposed diversity wireless receiver structure 
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Three antennas are used, because it is assumed that there are only one principal 

CCI signal and one principal image signal. Extension to multiple CCI signals and image 

signals is straightforward and is achieved by addition of antenna elements.  

It is required that there is a separation of at least 0.5 wavelengths between each 

pair of two antennas in order to obtain signals that fade independently. 

     In Fig.1, the three RF signals received through three antennas are denoted by rk(t), 

where k=1, 2 or 3 is the antenna index. ω0  and ωI denote the frequencies of the first and 

second local oscillators. The IF signals are expressed as rIF, k(t). Three baseband complex-

valued observations are denoted by Xk(n), where n is the discrete time index.  

Note that for IF-baseband downconversion, the IF signals are multiplied by 

cos(ωIn) and -sin(ωIn). Since the desired signal is situated at positive IF, the IF signal 

needs to be multiplied by nj Ie ω−
. The inputs to DSP are obtained by combining the 

baseband signal components from both inphase and quadrature branches.  

Non-coherent detection is used, thus no phase synchronization is needed in the 

front-end, and the phase difference of the incoming signal and Local Oscillator (LO) 

signals are introduced as β1, β2 and β3, respectively. They are all assumed to be uniform 

over [0, 2π).  

It is worth mentioning that the downconversion from IF to baseband is performed 

in the digital domain quadraturely in Fig. 1. This is only necessary if the source signals 

are QAM signals. Otherwise, the downconversion can be performed in the analog domain 

with single LO signal. In that case, the A/D converters can be place after LPF at 

baseband, and the signal observations becomes real-valued.  
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Signal Model 

         The channel’s fading coefficients are defined as: 

        fsk = αsk skje ψ          (4.1) 

        fck = αck ckje ψ          (4.2)  

        fik = αik ikje ψ          (4.3) 

where  fsk,  fck, fik are fading coefficients for the desired, CCI, and image signals, 

respectively; αsk, αck, αik and ψsk, ψck, ψik are the channel’s amplitude and phase 

responses, respectively.  

αsk, αck, αik are determined by the type of the fading channel. The distribution of 

them can be Rayleigh, Rician, or Nakagami. Since the signals travel along random paths, 

they have random phases. So ψsk, ψck, ψik are modeled as uniformly distributed over the 

interval [0, 2π). 

     In (4.1) ~ (4.3), the time dependency of the fading coefficients is dropped because 

it is assumed that the wireless channel is quasi-stationary. Thus, the algorithm is 

applicable to slow time-varying channels. Also, frequency-flat fading is assumed. 

     Let s(t), c(t) and i(t) denote the complex envelopes of the desired, CCI and image 

signals, respectively. Thus, the received signal of the kth antenna rk(t)  could be expressed 

as:  

     rk(t) = 2Re{(s(t)fsk + c(t-τ1)fck
10 )( τωω Ije +− ) tj Ie )( 0 ωω +  + i(t-τ2)fik

20 )( τωω Ije −− tj Ie )( 0 ωω − }  

           (4.4a) 

where Re{.} denotes the real part of a signal. The multiplication by 2 is introduced for 

convenience. τ1 and τ2 are the timing delays of c(t) and i(t) relative to the symbol timing 
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reference of s(t). In general, they are independent of each other and can be assumed 

uniform over the interval [0, T], where T is the symbol interval.  

     Equation (4.4a) can be rewritten as: 

     rk(t) = (s(t)fsk + c(t-τ1)fck
10 )( τωω Ije +− ) e  tj I )( 0 ωω +

            + (s*(t)f*
sk + c*(t-τ1)f*

ck
10 )( τωω Ije + )   tj Ie )( 0 ωω +−

            + i(t-τ2)fik
20 )( τωω Ije −− tj Ie )( 0 ωω − + i*(t-τ2)f*

ik
20 )( τωω Ije − tj Ie )( 0 ωω −−   (4.4b) 

where * denotes complex conjugate. 

     After the first mixer, the signals are downconverted to IF stage. Then BPFs with a 

center frequency of ωI are employed to select the channel and suppress the high 

frequency components. The output signal of the BPF rIF, k(t) is given by:  

      rIF, k(t)  = (s(t)fsk + c(t-τ1)fck
10 )( τωω Ije +− )   kje β− tj Ie ω

                  + (s*(t)f*
sk + c*(t-τ1)f*

ck
10 )( τωω Ije + )  kje β tj Ie ω−

                  + i(t-τ2)fik
20 )( τωω Ije −− tj Ie ω− kje β− + i*(t-τ2)f*

ik
20 )( τωω Ije − tj Ie ω kje β  (4.5) 

     At this point, A/D conversion is performed. Finally, the IF signals are processed 

by quadrature downconverters, followed by lowpass filters. After straightforward 

manipulations, the signal observation corresponding to the kth antenna Xk(n) is given by:  

        Xk(n) = s(n)fsk e + c(n) fkjβ−
ck

])[( 0 kIje βτωω ++− + i*(n)f*
ik

])[( 0 kIje βτωω +−
  (4.6) 

     Thus, the following signal model is obtained:  

X(n)=AS(n)          (4.7) 

Where, X(n) = ;        (4.8) 
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A = ;           (4.9) 
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     The signal model (4.7) can be identified by ICA algorithm as long as the mixing 

matrix A is nonsingular, and all signal components are statistically independent.  

     Since there is no need for analog image rejection, the IF can be chosen to be low. 

This relaxes the requirements for A/D converters’ speed and BPFs’ selectivity at the IF 

stage. In addition, because the interference suppression is performed at baseband, the 

processing speed required for DSP is lower than techniques that process signals at the IF 

stage.  

     This model does not include thermal noise, because in most cases we are dealing 

with interference-limited conditions. However, even if the strength of the thermal noise is 

comparable to that of the interferers, the proposed technique is still applicable with a 

slight change in the algorithm’s whitening procedure.    

     The model developed here adopts complex notation. However, this is optional. 

Even if the signals are QAM, it is still possible to use real-valued processing algorithms 

in the DSP, as long as the real and imaginary parts of the baseband observation are not 

combined. This way, the dimensionality of the signal model is doubled, but the 

computational complexity stays the same.  
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Solving the Order Ambiguity  

     Order ambiguity is inherent to ICA algorithms. Therefore, additional information 

is needed to identify which one of the extracted components is the desired signal. In 

deflationary separation, the components tend to separate in the order of decreasing non-

Gaussianity. However, this property is not guaranteed. For instance, if BPSK signals amd 

16QAM signals are mixed together, in which case they have different non-Gaussianity, it 

is found in our experiment that one third of the time 16QAM signal will be extracted 

first. But 16QAM is more Gaussian than BPSK. Even if the property holds anytime, it is 

still not quite useful in wireless communications scenario. In practice, the signals from 

different users often adopt the same modulation scheme, which leads to identical non-

Gaussianity.  

     Fortunately, in most digital cellular and Personal Communication Systems (PCS) 

standards, training sequences are included in the frame structure. For example, within 

each IS-54/IS-136 burst and GSM’s normal burst, there are 28 symbols and 26 symbols 

that are arranged into eight possible training sequences, respectively. They allow the 

adaptive equalizer in the mobile or base station receiver to analyze the radio channel 

characteristics before decoding the user data.  

Figures 2 shows the structure of IS-54/IS-136 burst and GSM normal burst, 

respectively.  
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Figure 2. Frame structure of IS-54/IS-136 burst and GSM normal burst 

     

Assuming that s(t), i(t), and c(t) have different training sequences, the ICA 

receiver can use this information to perform signal selection. In the process of network 

frequency planning for cellular systems, special attention is paid to avoidance of the use 

of the same training sequence between two calls.   

     When all the components have been extracted, the desired signal can be identified 

based on the minimization of Euclidian distance: 

            (4.11) ∑
=

−=
TSN

i
ii bbd

1

2
0 |ˆ|

where NTS is the length of the training sequence,  is the estimate and is the known 

value of the training sequence symbol.  

ib̂ ib0

     However, it is obvious that there is a significant amount of computations 

performed to separate the interfering signals. A practical technique is proposed where the 

signal selection and ICA separation are performed simultaneously. Thus, the algorithm 

can be stopped once it is determined that the desired signal has been extracted.  
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Each time a component is separated, the Euclidian distance d between the training 

sequences of the extracted component and the desired signal is computed. If d is less than 

a predefined threshold value, it is concluded that the desired signal is obtained, and there 

is no need to continue the ICA processing.   

 

Separation using Kurtosis based Fast-ICA  

     The separation process is implemented employing the complex-valued 

deflationary Fast-ICA algorithm. The contrast function is chosen according to the 

measure of kurtosis because of its simplicity, superior performance for subgaussian 

signals and robustness against thermal noise.  

     The procedures of the algorithm have been described in Chapter 2. However, an 

additional step is needed to solve the order ambiguity. The following eight steps describe 

the kurtosis-based fast-ICA algorithm, where a signal selection procedure is incorporated 

in Step 7. This procedure provides a mechanism to stop the algorithm once the desired 

signal has been extracted. As before, N source signals are assumed; W denotes the 

separation matrix; X represents the observation matrix, which is defined in (4.8). Nf is the 

processing frame length, and ε is the predefined threshold value. xp denotes the pth 

extracted signal.  

 

Step 1. Get the whitened data X1 by decomposing X’s covariance matrix. Set the 

counter p = 1; 

Step 2. Initialize wp to a random vector of unity length; 
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Step 3. Set wp = ∑
=

fN

n
p

fN 1
p

2
1

H*
1

H
p1  };-2w|(n)Xw|(n)]X(n)[w{X2  

Step 4. Make the estimate of wp orthogonal to the subspace spanned by the already 

extracted rows of W using wp = wp - ∑
−

=

1

1

H w)ww(
p

v
vvp ; 

Step 5. Normalize wp to unity length; 

Step 6. Check the convergence of wp. If the convergence is not reached, go back to 

Step 3, otherwise proceed; 

Step 7. Compute the extracted component xp using wp, and then compute the 

corresponding Euclidian distance d defined in (4.11). If d < ε, terminate the 

program and return xp as the desired signal, otherwise proceed;  

Step 8. Set p = p + 1. If p ≤ N, go back to step 2.  

 

  The signal selection is performed in Step 7. xp is obtained differentially in step 7, 

because the phase of the source signals cannot be preserved due to an arbitrary complex-

valued multiplicative constant.  Moreover, because there is also sign ambiguity 

associated with ICA processing, the Euclidian distance d should be computed for both xp 

and - xp. If it is found that xp is the negative of the desired signal, - xp should be returned.  

 This ICA algorithm takes advantage of the fact that there is no need to estimate 

the mixing matrix A for this particular application. Also, only one of the components is 

of interest. Therefore, it is possible to reduce the amount of computation by deflationary 

separation.  
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If the training sequences of interfering signals are also known, a more reliable 

signal selection scheme can be obtained. First, the Euclidian distances between xp’s 

training sequence and the known training sequences of all signal components are 

computed. Then, the minimum of the distances is determined. If the minimum 

corresponds to the known training sequence of the desired signal, it is concluded that xp, 

or possibly - xp, is the desired signal. Thus, the choice of a threshold value ε is avoided. 

 

Simulation Results 

The presented technique is evaluated via extensive Monte Carlo simulations in 

Matlab for QPSK receivers. Sample representative results are presented here for Rayleigh 

fading and signal components of equal strength.  

However, it is found that the result remains unchanged if the relative signal 

strengths are varied or different fading conditions are assumed. This is because the basic 

requirement for successful ICA separation is that the mixing matrix should be 

nonsingular. Typically, the source signals are all normalized to unit variance and their 

relative powers are included in the mixing matrix. Therefore, the only parameters 

affecting the performance of the proposed technique are the length of the processing 

frame (Nf) and the number of interfering signals (N). Note that the number of source 

signals is N+1.  

     The performance is measured by the Signal-to-Interference Ratio (SIR) defined 

as: 

SIR = 10 log10 { ∑
= −

fN

kf kyks
ks

N 1
22

2

|]|)(||)([||
|)(|1

}    (4.16) 
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where s(k) is the kth sample of the desired signal, y(k) is the estimate of the s(k) obtained 

at the output of the ICA processing unit. The SIR represents the average ratio of the 

desired signal power to the power of estimation error signal.  

     First, it is assumed that the training sequence is known for all signal components. 

Thus, no threshold value is needed. Nf is varied from 100 to 1000 symbols with step size 

50. For each Nf, simulation is performed 100 times to get the average performance. N=2, 

3, and 4 are used. The resulted average SIR is shown in Fig. 3.  

 

Figure 3. Performance of ICA processing in the presence of N interferers 
 

Convergence speed is shown in Figs. 4 - 6 in terms of the number of iterations 

required. For comparison, the convergence speed for conventional ICA, where all the 

components are extracted before signal selection, is also plotted. This corresponds to the 

case where Step 7 in the procedures described in the previous section is omitted.  
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Figure 4. Convergence speed for two interfering signals (N=2) 

 

Figure 5. Convergence speed for three interfering signals (N=3) 
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Figure 6. Convergence speed for four interfering signals (N=4) 
 

     It is observed from Fig. 3 that an average SIR of 16dB to 26dB is achievable. The 

performance generally improves as Nf increases, because the statistical independence is 

easier to establish for longer frames.  

     In Figs. 4 - 6, it is obvious that the improved version of ICA achieves faster 

convergence than the conventional ICA, and the improvement becomes more significant 

as N increases. The percentage saving in computations is 22.9% to 35.2% for N=2, 25.6% 

to 36.6% for N=3, and 26.8% to 41.9% for N=4.  

     Now we make a brief comment regarding the selection of the threshold value ε in 

the case that only the training sequence of the desired signal is known.  

GSM burst is used as an example. Each time slot has 156.25 bits, 26 of which are 

training bits. Therefore, the length of the training sequence is 26/156.25 = 16.64% of the 

processing frame length.  
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     Through simulations for different frame lengths, it is found as the length of the 

training sequence increases, the allowable range of ε also increases. Consequently, the 

selection of ε becomes easier.  

However, even for relative short frame lengths such as 300 symbols, which means 

the training sequence has 50 symbols, any value of ε between 1 and 7 is allowable. This 

is a large enough range for ε to be easily identified.  

            Here we provide a comparison of the kurtosis-based Fast-ICA with the 

Equivariant Adaptive Separation via Independence (EASI) algorithm presented in [34]. 

For this purpose, one interferer is used and the performance measure Signal-to-

Interference-Rejection-Ratio (SIRR) is redefined by elements of the matrix H=WA as: 

    SIRR = 
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    (4.17) 

            The resulting performance obtained by kurtosis-based Fast-ICA is plotted in Fig. 

7.  
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Figure 7. ICA performance using the alternative performance measure (N=1) 
 

            It is clear that an SIR of 30 to 50 dB for frame lengths of 50 to 1000 symbols is 

achieved. According to Fig. 9 in [34], the achievable SIR of EASI is around 33dB. Our 

simulation also shows that kurtosis-based Fast-ICA achieves convergence in 5 iterations, 

where the EASI algorithm converges after 200 iterations, according to Fig. 10 in [34]. 

This is not surprising, because Fast-ICA is essentially Newton’s method, and EASI is a 

sequential algorithm. Therefore, for quasi-stationary channel conditions, Fast-ICA is 

preferable to EASI.  

 

Fast-ICA with Overlapping Blocks for Rapidly Time-varying Channels 

The above-presented technique assumes that the wireless channel is quasi-

stationary, which means the channel response stays approximately constant within one 

processing frame.  
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For the case of highly dynamic environment, the performance of the proposed 

method will degrade. In this section, a straightforward modification is introduced to deal 

with this situation.  

 Figure 8 shows the architecture of data reusing ICA processor adopting shifting 

technique.  

In this scheme, the processing block is shifted right one symbol at a time, with the 

oldest symbol dropped and a new symbol incorporated. We can have two choices as to 

how to generate the symbol estimation. First, take only the first symbol in each estimated 

block; second, average over Nf consecutive block estimations to generate the estimated 

symbol.  

     It should be noted that the variations of the mixing matrix should be slow in the 

sense that its time scale is much larger than the sampling interval. In practical 

communication systems, this is a reasonable assumption. 
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Figure 8. ICA processing with overlapping blocks   

Received Signal 

… x(k), x(k+N+1),  … x(k+1),  x(k+2),  …  ,  x(k+N), 

  Extracted Signal 
… … …    …       
s(k)  s(k+1)  s(k+2) … s(k+N-1) 

        s(k+1)  s(k+2) … s(k+N-1)  s(k+N) 

                     s(k+2) … s(k+N-1)  s(k+N)  s(k+N+1)

ICA Separation 

Estimated Source Signal   …   s(k), s(k+1), s(k+2) … s(k+N-1)  … 

 

The ICA processor described here is a special case of the overlapping technique, 

where K oldest symbols are dropped and K new symbols are incorporated. In our case, 

K=1. It is always possible to vary the value of K to provide tradeoff between the 

computational complexity and the resulting separation performance. In practice, as 

computational power of DSP hardware is continuously becoming cheaper and more 

widely available, it is preferable to shift only one symbol at a time.  

 To evaluate the effectiveness of the modified processing technique, time-

variations are simulated as a changing mixing matrix: 

A = 
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Where T=10,000. The selection of the time-varying parameter is arbitrary, but it should 

ensure that the time constant of the variation is much larger than the sampling period.  

 To compare the performance of overlapping ICA with conventional ICA, the 

average SIR defined in (4.16) obtained by both algorithms in the presence of three 

interferers is plotted in Fig. 9.  

The simulation set up is identical as before.  

For overlapping ICA, we experimented taking the average of Nf consecutive 

estimations for each symbol, as well as taking the first component directly.  

It is clearly seen that overlapping ICA achieves better results for frame lengths 

less than 200 symbols. Smaller Nf  achieves better performance because longer frames 

violates the quasi-stationarity requirement of the mixing matrix. Also, taking the first 

component is superior to averaging over Nf estimations. This is probably due to the fact 

that averaging over non-stationary channel parameters will deteriorate the performance.  
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Figure 9. Performance comparison of overlapping and conventional ICA in the 

presence of three interferers 

 

If for some reason, e.g. the available input buffer is small, we have to use a small 

Nf, adopting overlapping ICA is beneficial even if the channel is quasi-stationary, 

because it can help solving the problem of insufficient independence.  

           Although it is shown that the overlapping technique can help to deal with a rapidly 

time-varying mixing matrix, it has two significant drawbacks. First, the frame needs to be 

very small, i.e., less than 250 symbols. This is a disadvantage if longer frames are 

desirable because of the data rate requirement. Second, the overlapping incurs a 

significant amount of increase in the computational complexity.  
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 Therefore, a better solution is needed. In the next chapter, OBAI-ICA developed 

in Chapter three is applied. It will illustrate that OBAI-ICA is a superior algorithm that 

has attractive features in dealing with time-varying environment.   

 

Conclusions 

     In this chapter, the Fast-ICA algorithm is utilized to perform image signal and 

CCI suppression simultaneously in diversity wireless receivers. The advantages of the 

technique include: there is no need for phase synchronization and image rejection filters 

[35]; IF can be chosen low, so that requirements for BPFs’ selectivity and A/D 

converters’ speed are relaxed; the processing speed is low because of baseband 

processing. Also, no training stage is required [36-37]. 

 Simulation results indicates that, the performance of the presented method is 

robust to input Signal to Interference Ratios, which means it provides a solution to the 

near-far problem. Also, it is robust to the type of fading channels, and the performance 

does not degrade for large number of interferers.  

            The presented technique exploits the fact that there is no need to estimate the 

mixing matrix, and only the desired signal is of interest. Hence, the amount of 

computations can be reduced if signal selection utilizing training sequences is 

implemented simultaneously with signal separation. Computer simulations show that 

compared with conventional ICA, a saving of 23% to 42% in computations is achievable 

for QPSK receivers with 2 to 4 interfering signals. This represents considerable 

computational saving and significantly faster detection. Also, the threshold value 

associated with the improved method is easy to be identified.  
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 The last section also presents a data-reusing version of the proposed technique to 

deal with fast time-varying channel conditions. Simulation results confirm its 

effectiveness.    
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CHAPTER FIVE: APPLICATION OF OBAI-ICA IN HIGHLY 

DYNAMIC ENVIRONMENT  

 In Chapter four, a general interference suppression technique is proposed for 

diversity wireless receivers. Fast-ICA algorithm is utilized to perform the separation of 

the desired signal from image signal and co-channel interference. Computer simulations 

confirm the effectiveness and advantages of the technique. 

However, it is assumed in Chapter four that the parameters of the wireless channel 

remain unchanged over the period of the processing frame, i.e., the channel is quasi-

stationary. This assumption is no longer valid when the channel is rapidly time varying. 

For cellular communications, this could arise from very high user mobility or handover 

between two base stations.  

In this scenario, if Fast-ICA is still to be used, there is a dilemma in choosing the 

processing frame length, as mentioned in Chapter three. The performance will deteriorate 

significantly. In fact, the convergence of Fast-ICA may be problematic.  

 In this chapter, OBAI-ICA is used in comparison with Fast-ICA. Rapid time 

variation is simulated and the performance of OBAI-ICA and Fast-ICA is studied by 

Matlab simulation. 

 

Receiver Structure and Formulation of the Signal Model 

Figure 10 shows the architecture of a dual-antenna BPSK receiver. It is assumed 

that there is only one interferer, which can be either image signal or CCI. Note that the 
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highly selective image rejection at the RF stage, which is usually required for signal 

branch receiver, is eliminated.  

First the received signal rk(t) is downconverted from RF to IF (k = 1 or 2 is the 

antenna index), followed by a bandpass filter to perform adjacent channel suppression. 

Then, the IF signal rIF,k(t) is downconverted to baseband and lowpass filtered. The 

baseband signal rBB,k(t) is digitized to obtain signal observation Xk(n), which is fed into 

DSP for further processing.  

ω0 and ωI are the frequencies of the first and second LO signals, α1 and α2 are 

phase differences between the LO signals and the received signals. X1(n) and X2(n) are 

two baseband signal observations. 
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Figure 10. The structure of a dual-antenna BPSK receiver 

  

Note that the only difference between the structure presented here and the one in 

Chapter four is that, the downconversion from IF to baseband is no longer quadrature 

since the signals are BPSK modulated. Therefore, both the mixing matrix coefficients and 

the source signals are real valued.  
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After similar derivation as in Chapter four, the following signal model is obtained 

assuming the interferer is an image signal: 

 X(n) = =AS(n).    (5.1) 
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where, ak = Re{fs,k kje α− } and bk = Re{fi,k
0( )Ije ω ω τ− − kje α− }. fs,k and fi,k are the fading 

coefficients for the desired and interfering signals, respectively. τ is the timing delay of 

the image signal with respect to the symbol timing reference of the desired signal.  

 In our simulations, the mixing matrix coefficients ak and bk will be varied with 

time over each processing frame. Both OBAI-ICA and Fast-ICA are applied to signal 

model (5.1) to separate the two source signals.  

As mentioned in Chapter three, OBAI-ICA has two versions, i.e., OBAI-ICA1 

and OBAI-ICA2, depending on whether the same block of data are used from one 

iteration to another. Obviously, OBAI-ICA1 is more similar and comparable with Fast-

ICA, because they both process the same block of data until convergence.  

 

Types of Time Variation 

There are two types of time variation that can arise in cellular mobile 

communications.  

If the mobile user is moving at a high speed, it is more appropriate to model the 

channel change as continuous linear time variation in mixing matrix’s coefficients. In this 

case, the ICA algorithm will seek a compromising separation matrix that could recover 

the source signals with minimum error.  
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If the user is experiencing handover between two service towers, an abrupt 

change in mixing matrix’s coefficients is suitable. In this scenario, the ICA algorithm will 

seek to converge to the new demixing matrix as soon as possible. Note that the ICA 

processing will only be affected when the abrupt change occurs within one processing 

block. This is the case studied in our simulation. It is expected that the separation 

performance will degrade for the frame in which the abrupt change occurs, but we are 

interested in how fast the system can track the variation and adjust itself to a new 

demixing matrix. In practice, it is desirable to identify the exact location of the abrupt 

change within the processing block. In the next section, such a technique is introduced.  

 It is worth mentioning that in practice, it is quite possible that both types of time 

variation are present.  

 

A Binary Search Technique for Locating the Position of Abrupt Changes 

 When an abrupt change occurs within a processing block, the performance for the 

block degrades significantly, especially when the block size is large. This is because the 

converged demixing vector is a compromise between two completely different channel 

parameters. In order to deal with this situation, we propose to locate the position of 

abrupt changes within the block. This technique will improve the performance if the 

performance degradation is indeed due to a sudden change in the channel condition.  

 In the search procedure, we utilize the demixing matrices obtained through the 

previous block, W1, and the subsequent block W2.  

 First, the block is evenly divided into two sub-blocks. W1 is used to process the 

first sub-block, while W2 is used to process the second sub-block.  
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If the separation performance for the second sub-block is better, we may conclude 

that the abrupt change occurs within the first sub-block. Otherwise, we conclude that the 

abrupt change occurs within the second sub-block.  

Thus, after the above procedure, the location of the abrupt change is narrowed 

down to a sub-block. The search process can be continued by dividing that sub-block 

evenly and using W1 and W2 to process the two sub-blocks, respectively. This procedure 

can be repeated until the location of the abrupt change is narrowed down to a very small 

range.  

Once the location is identified, the symbols before the abrupt change are 

processed by W1, and the symbols after the abrupt change are processed by W2. 

 

Simulation Results 

The performance measure is Signal to Interference Ratio (SIR) defined as:  

            SIR = 10 log10 ( ∑
= −

fN

kf kyks
ks

N 1
2

2

)]()([
)(1

)     (5.2) 

where s(k) is the kth sample of the desired signal, y(k) is the estimate of the s(k) obtained 

at the output of the ICA processing unit. SIR represents the average ratio of the desired 

signal power to the power of the estimation error. 

As mentioned earlier, the relative strength of s(t) and i(t) and the type of fading 

channel does not affect the performance. This is because ICA algorithms only require the 

mixing matrix to be non-singular. As long as that requirement is met, the exact values of 

coefficients do not affect the separation performance.  

For continuous linear time variation, the mixing matrix simulated is chosen as:  
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Where l = 1, 2, … , Nf, and ∆ is parameter reflecting the speed of channel variation. Here, 

it is assumed that the channel’s transfer function is frequency-flat over the signal band. 

Also, the sampling interval of the receiver’s A/D converter is much smaller than the scale 

of the channel’s time variation.   

            In our simulation, the block size Nf is varied from 50 symbols to 1000 symbols, 

with a step size of 50. For each block size, the calculation of performance is averaged 

over 100 simulation runs. The total number of symbols estimated is 1000.  

 Figure 11 shows the performance of OBAI-ICA1 and Fast-ICA under stationary 

conditions. It is clearly seen that their performance is equivalent.  

 

Figure 11. Performance of Fast-ICA and OBAI-ICA under stationary channel 

conditions             
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 Figures 12 and 13 show the performance and convergence speed of OBAI-ICA1 

and Fast-ICA for ∆ = 0.01. The additional step size µ in OBAI used is 0.5.  

 

 

Figure 12. Performance of Fast-ICA and OBAI-ICA1 for slow linear time variation 
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Figure 13. Convergence of Fast-ICA and OBAI-ICA1 for slow linear time variation 

 

            These two figures show the performance of OBAI-ICA1 and Fast-ICA under slow 

linear time variation conditions.  

            It is seen that the two algorithms have similar performance except for longer 

blocks, in which case OBAI has better performance. This indicates OBAI has better 

capability in dealing with time variation within one processing block. Also, Fast-ICA 

converges very slowly for long blocks, while OBAI-ICA1 always converges within 20 

iterations regardless of the block size.  

            For faster time-variation, i.e., ∆ = 0.1, 0.5, 1, Fast-ICA fails to converge within 

several hundred iterations, so only OBAI-ICA is used. The performance and convergence 

speed for OBAI-ICA1 are given in Figs. 14 and 15. The optimal µ values are given for 

every ∆.  
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            Again, it is seen that OBAI-ICA1 always converges within 20 iterations. It is 

observed that a larger µ should be used for faster time variation, as expected.  

 

Figure 14. Performance of OBAI-ICA1 under various linear time varying conditions  
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Figure 15. Convergence of OBAI-ICA1 under various linear time varying conditions 

          Next, the tracking capability of Fast-ICA and OBAI-ICA1 is compared under 

abrupt changing channel condition. To simulate this condition, an abrupt change of 

mixing matrix is introduced in the middle of each processing block.  

          Figures 16 and 17 show their performance and convergence speed. As expected, 

the performance of both algorithms degrades compared with the case of continuous time 

variation. However, OBAI-ICA1 converges much faster than Fast-ICA. This means 

OBAI-ICA1 has much superior tracking capability to abrupt time variation.  
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Figure 16. Performance of OBAI-ICA1 and Fast-ICA for abruptly time variation 

 

Figure 17. Convergence of OBAI-ICA1 and Fast ICA for abruptly time variation 
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            Following the detection of an abrupt change within a certain block, the binary 

search technique introduced in the previous section is simulated to detect the location of 

the abrupt change. In Figs. 18 and 19, the performance for three consecutive blocks is 

shown, when an abrupt change in the middle block is simulated. Figure 18 shows the 

performance without binary search, while Fig. 19 plots the performance after applying 

the technique.  

     As seen, the performance for the block in which the abrupt time change occurs is 

substantially improved when the binary search is employed to locate the position of the 

channel change within the block.  

 

 

Figure 18. Performance for abrupt time variation without binary search  
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Figure 19. Performance for abrupt time variation after locating the position of the 

sudden change 

 

 OBAI-ICA2 is also simulated in our experimentation. It is found that OBAI-ICA2 

converges slowly for abrupt time variation.  

            For continuous linearly time varying channels, however, it is advantageous over 

OBAI-ICA1, because the choice of the additional adaptation size µ is robust to the speed 

of channel’s time variation. Figure 20 shows the performance of OBAI-ICA2. For ∆ = 

0.1, 0.5, 1, the optimal µ is fixed at 0.1. One more advantage of OBAI-ICA2 is that, all 

1000 symbols can be extracted every time the algorithm converges, while for OBAI-

ICA1, only the data in the processing block can be obtained.  
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Figure 20. Performance of OBAI-ICA2 under linearly time varying conditions 

 

 In addition, the GOBA-ICA algorithm, as defined in (3.48), is also simulated 

under the same simulation conditions. The results are plotted in Figs. 21-25. It is 

observed that GOBA-ICA performs similarly as OBAI-ICA, but its convergence property 

is slightly worse.  
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Figure 21. Performance of GOBA-ICA and Fast-ICA in stationary channels 

 

Figure 22. Performance of GOBA-ICA with linear time variation 
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Figure 23. Convergence of GOBA-ICA with linear time variation 

 
Figure 24. Performance of GOBA-ICA with abrupt time variation 
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Figure 25. Convergence of GOBA-ICA with abrupt time variation 
 

As a comment about the application of OBAI-ICA, it is worth mentioning that 

SIR used above is not the only index of performance. As a part of our experiment, the 

residue error of ICA separation is also studied. The residue error is defined as the 

difference between the kurtosis value of the extracted component and that of the original 

signal source. Thus, it reflects how the extracted component deviates from the true value.  

In our simulations, it is found that the residue error increases with the frame length. 

Therefore, though OBAI-ICA always converges very fast regardless of the choice of 

frame length, it is desirable to use smaller frame lengths. This is understandable, since 

more compromise is made when ICA tries to converge to a single demixing matrix for 

longer frames. 

 

 76



Conclusions 

 In this chapter, the performance of OBAI-ICA is studied via computer simulations 

and compared with Fast-ICA, under various time-varying conditions. OBAI tailors the 

learning rate for each coefficient in the separation vector and updates those rates at each 

block iteration. Thus, OBAI-ICA is much superior to Fast-ICA in terms of separation 

performance and convergence speed in highly dynamic environment. Two versions of 

OBAI-ICA are both simulated. OBAI-ICA1 is preferable for abrupt time-variation, while 

OBAI-ICA2 is desirable in continuous linear time varying conditions. If both types of 

time variation are present, OBAI-ICA1 needs to be used.  

 For the case of abrupt time varying channels, as encountered by mobile users 

experiencing handover between two service towers, a binary search technique is proposed 

to prevent performance degradation for the block in which the abrupt change occurs. 

Simulation results verify the effectiveness of the technique.  

 Also, the GOBA-ICA algorithm is simulated with the same conditions. It yields 

equivalent performance as OBAI-ICA.  
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CHAPTER SIX: PRACTICAL IMPLEMENTATION ISSUES FOR 

WIRELESS RECEIVERS EMPLOYING ICA 

 In Chapters four and five, wireless receivers employing ICA for interference 

suppression are introduced. Simulation results show that the technique can substantially 

improve the receiver’s performance without additional cost of spectrum.  

This chapter deals with practical implementation issues of such receivers, i.e., the 

effect of finite arithmetic and the possibility of reducing the front-end hardware 

complexity. In addition, it is illustrated that the proposed algorithm is robust to additive 

thermal noise, but it needs to be disabled in the case of large SIR, i.e., the desired signal 

is much stronger than the interference.  

  

Effect of Finite Arithmetic 

 As mentioned in Chapter one, software radio requires the implementation of most 

radio functionalities in digital hardware.  

In general, DSP data representation can be categorized into two types. The first 

type, floating-point data, has a larger dynamic range and higher precision of processing. 

However, the second type, fixed-point data, is of interest because of two reasons [38]. 

First, its required hardware is less costly, especially in massive production products. 

Second, the logic circuits of fixed-point hardware have reduced complexity. This leads to 

smaller chip size and less power consumption comparing with floating-point hardware.  

The binary fixed-point numbers are represented in three different ways: 

Sign/magnitude, One’s complement, or Two’s complement [39]. The most commonly 
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used representation is Two’s complement. The word length is usually in the form of (WL, 

FP), where WL stands for Word Length, and FP stands for Fraction Part. The word 

length often takes values such as 8, 16, or 32, etc.  

 Now the simulation results for the fixed-point implementation are presented. 

QPSK receivers as introduced in Chapter four are used, and the performance measure 

SIRR as defined in (4.17) is adopted. Fast-ICA is simulated with finite arithmetic.  

 Extensive simulations are performed for different word lengths. For illustration, 

performance of the Finite-Precision ICA (FPICA) algorithm for finite word lengths of 

(32, 26) and (16, 10) are given. The results are compared with those for ICA 

implemented using double precision in Matlab.  

In addition, the FPICA with mixed word lengths is also simulated, where the 

word length of the signal observations is (16, 10), and the word length adopted within the 

DSP hardware is (32, 26) [40]. The reason is that, in order to reduce the hardware 

complexity and cost, it is highly desirable to reduce the requirement for the number of 

bits in the A/D converters, and consequently the word length for the signal observations.  

 Ten simulations are performed for each frame length, and the averages of SIRR 

are plotted in Fig. 26. It is seen that, FPICA (32, 26) and FPICA with mixed word lengths 

are able to achieve equivalent average SIRR as floating-point ICA, and there is 

performance degradation when FPICA (16, 10) is employed. This can be easily 

explained, since as the word length becomes larger, the quantization noise is lowered. 

However, as the word length increases, the hardware cost also becomes higher. 
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It is useful to note that, the performance of FPICA with mixed word lengths is as 

good as FPICA (32, 26). This implies that the requirement for A/D converters can be 

relaxed without performance degradation.    

     Referring to Fig. 26, it is worth mentioning that, when the frame length is less 

than 250 symbols, there is no significant performance difference between the four 

implementations. This is because the independence between the source signals for a short 

frame length is not well established. As a result, the effect of finite word length is not the 

only dominant source of performance degradation. This leads to an important conclusion: 

if small frame length is used, there is no need to employ large word length.   

 

Figure 26. Average SIRR of ICA and Finite-Precision ICA (FPICA) algorithms    
 

     Figure 27 shows the convergence speed in terms of the number of iterations 

required for convergence. It is clear that FPICA (16, 10) converges faster than the other 
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three cases. This suggests that smaller word length has faster convergence, which means 

it is preferable if the resulting performance is acceptable. 

 

Figure 27.  Convergence Speed of ICA and FPICA algorithms 
  

 In conclusion, Finite-Precision ICA algorithm with word lengths (16, 10) for the 

signal observations and (32, 26) in DSP are able to achieve equivalent performance as 

floating-point ICA. Meanwhile, it is also shown that shorter word length such as (16, 10) 

for DSP is preferable in some cases because it has lower hardware cost and faster 

convergence without degrading the performance when small Nf is adopted.  

 

Reduced Hardware Complexity for BPSK receivers with One Interferer 

 An obvious drawback of the proposed wireless receiver technique is that one 

antenna is required for an additional interferer. This increases the receiver’s front-end 
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hardware complexity. Therefore, it is highly desirable to have reduced number of antenna 

and/or downconversion paths. In this section, it is shown that for BPSK receivers, it is 

possible to use only one antenna to reject one interferer without any performance 

degradation. Thus, the complexity of the front-end is reduced by half.  

 Figure 28 is a single branch BPSK receiver. It is similar to the receiver structure 

in Chapter five, except that only one antenna and downconversion path is used. ω0 and ωI 

denote the frequencies of the first and second local oscillators. α is the phase difference 

between the received signal and the first local oscillator.  

 Akin to the derivation in Chapter five, the baseband signal observation can be 

expressed as: 

X(n) = as(n)+ bi(n)         (6.1)     

Where a = Re{fs
je α− } , and b = Re{fi

0( )Ije ω ω τ− − je α− }. As before, fs and fi are the fading 

coefficients for the desired and interfering signals, respectively. τ is the timing delay of 

the interferer with respect to the symbol timing reference of the desired signal.  
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Figure 28. A single branch BPSK receiver 
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X(n), given by (6.1), is a linear combination of two independent signals, s(n) and 

i(n). In principle, two independent observations are needed to recover the two signals. 

The problem of fewer antennas than signals is generally known as ICA with 

overcompletes bases. 

 Since one antenna is employed, only one observation X(n) is available. A second 

linearly independent observation Y(n) is artificially generated from X(n). Then two 

signals s(n) and i(n) can be separated based on X(n) and Y(n). The requirement is that, 

Y(n) should be linearly independent of X(n). 

     Actually, Y(n) can be obtained by raising X(n) to the pth power, where p is an odd 

number and p ≥ 3. The reason is described as follows, assuming p = 3.  

     Since s(n) and i(n) are both binary numbers taking values of either +1 or -1, s2(n) 

= 1 and i2(n) = 1. Thus,   

     Y(n) = [as(n) + bi(n)]3 = a3s(n) + b3i(n) + 3a2bi(n) + 3ab2s(n)  

        = (a3 + 3ab2)s(n) + (b3 + 3a2b)i(n)     (6.2) 

     When Y(n) is appended to X(n), the signal observation becomes: 

    X(n)= 
 =AS(n)     (6.3) 
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     If the determinant of the mixing matrix A is nonzero, S(n) can be recovered from 

the observation X(n).  

     det (A) = ab(b2 +3a2) – ab(a2 +3b2) = 2ab(a2 – b2)    (6.4) 

     Therefore, as long as 2ab(a2 – b2) ≠ 0, s(n) and i(n) can be successfully recovered.  

     The above argument can be easily extended to the case when p > 3. In fact, Y(n) 

can also be obtained by applying an odd function to X(n).  
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 Computer simulations are carried out to examine the performance of the proposed 

technique. Fast-ICA is adopted to separate the desired signal from the interferer. The 

simulation set up is identical to Chapter five. The resulting average SIR is plotted in Fig. 

29. The performance of quadrature or dual-antenna receivers, where two observations are 

directly available, is also plotted for comparison.  

     It is clearly seen from Fig. 29 that the proposed technique achieves equivalent 

performance as quadrature or dual-antenna receivers. This means that the hardware 

complexity of the receiver can be substantially simplified without affecting the 

performance.  

 

Figure 29. Performance comparison of the proposed technique and quadrature or 

dual-antenna receivers 
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Effect of Thermal Noise 

 In Chapter four, kurtosis is chosen as the measure of independence because of its 

robustness against thermal noise. Also, it is mentioned that the performance of ICA 

processing is not affected by the relative strength of the desired signal and the 

interference, but rather how well the statistical properties of the signals are established. 

Here, these properties are verified by simulation results.  

  Figure 30 plots the average SIR after ICA processing versus the input SIR in the 

case of one interferer. The frame length is fixed at 200 symbols. In addition, the 

processing gain, which is the improvement in SIR by ICA processing, is also plotted. 

Moreover, an additive Gaussian thermal noise of 20 dB below the desired signal level is 

added to the signal observations to study its effect. 

 

Figure 30.  Average SIR and processing gain for varied input SIR’s 
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As seen, the performance is not significantly affected by the thermal noise, and it 

is robust against input SIR’s. 

For the scheme proposed in the previous section, the BPSK receiver with single 

downconversion path is also simulated with an additive Gaussian thermal noise of 20 dB 

below the desired signal level added. The average SIR achieved is compared with the 

performance obtained by quadrature or dual-antenna receivers, where two observations 

are directly available. Figure 31 plots the results.   

 

Figure 31. The performance of ICA processing in the presence of thermal noise 
 

From Fig. 31, it is obvious that the scheme with reduced hardware complexity is 

less robust against thermal noise than quadrature or dual-antenna receivers. This is due to 

the fact that the noise part of the artificially generated observation is correlated with the 
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noise of the available observation. Also, the cubing operation introduces multiplicative 

noises in the second signal.  

Also, finite arithmetic may have a larger effect to this technique because of 

propagation of quantization error when generating the second observation. Figure 32 

illustrates this phenomenon.  

 

 

Figure 32. The performance of fixed-point ICA for BPSK receivers 

 

The Case of Large Input SIR 

From Fig. 30, it is also observed that in the case of small input SIR, the 

processing gain is significant. However, when the input SIR exceeds 25dB, the 
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processing gain drops below zero dB. This implies that the algorithm actually deteriorates 

SIR.  

A natural solution to this problem is to disable the algorithm in this scenario. 

Fortunately, additional interference suppression is not needed in this case, because 

typically the desired signal is already strong enough. Of course, a power estimation 

mechanism should be introduced in the receiver to estimate the input SIR.  

 

Conclusions and Discussions 

 In this chapter, two implementations issues are discussed for the general 

interference suppression scheme proposed in Chapter Four.  

The first one is the effect of finite arithmetic. It is shown that better performance 

can be achieved as the word length is increased, which indicates that the quantization 

error is directly associated with the word length. A useful result is that each signal can be 

quantized in a different way to get an optimum result with reduced hardware complexity.  

In reality, cost, power dissipation of hardware and performance of the systems are 

highly dependent on the bit resolution [41]. An additional important consideration is that, 

the word lengths should be carefully selected to preserve the algorithm stability [42]. For 

this purpose, the automatic word length determination methods were recently proposed 

[43]. For example, finding the minimum word length by computing dissimilarities 

between fixed-point and floating-point results can help to achieve optimal word length 

[44]. More detailed studies in the area of finding the optimum word length automatically 

can be found in [45-46].  
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Second, in the special case of BPSK receivers with one interferer, it is shown that 

one antenna and single downconversion path is enough to achieve interference 

suppression. A second observation can be artificially generated from the available 

observation that is linearly independent. Without performance degradation in the 

noiseless case, the technique achieves significantly hardware simplification with 

negligible computational cost.   

 Finally, it is illustrated that the proposed algorithm is indeed robust to thermal 

noise, but it needs to be disabled in the case of large input SIR. This implies power 

estimation is needed at the receiver side.  
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

 Our research involves the application of Independent Component Analysis for 

interference suppression in diversity wireless receivers. In particular, in the case of highly 

dynamic channel conditions, a novel ICA algorithm, OBAI-ICA, is proposed for fast 

adaptation, because the classic fixed-point ICA fails to track fast time variation. This is of 

particular interest to mobile communications where the user is moving at a high speed or 

experiencing handover between two service towers. Important implementation issues, 

such as the effect of finite arithmetic and thermal noise, are also addressed.   

 This chapter summarizes the contributions of the research and concludes with 

suggestions for future research.  

 

Importance of the Contributions 

 The methodology adopted in our research work is consistent with current trend in 

the area of wireless transceiver design. In Chapter one, it is shown that the proposed 

scheme is helpful towards the realization of Software Defined Radio, and space diversity 

at the receiver side is compatible with space-time communications, i.e., MIMO systems.  

 As the frequency spectrum is becoming more and more expensive, interference 

suppression for frequency-reuse systems is becoming critical. Our proposed method 

utilizes purely statistical properties to provide interference rejection. Thus, no additional 

spectrum or hardware is required. This is attractive because it may lead to more intensive 

frequency reuse and more integrated systems. Also, it provides additional interference 

suppression capability that might help newly emerging schemes such as CDMA and 

UWB.  
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 It is worth mentioning that the proposed technique does not distinguish between 

image and co-channel interference. Thus, the scheme not only increases the degree of 

frequency reuse, but also eliminates the need for a highly selective anti-aliasing bandpass 

filter at the RF stage, which could be extremely costly.  

The idea of avoiding the use of an analog image rejection filter has attracted huge 

amount of research efforts [7, 34-37, 47-51]. Ideally, quadrature downconversion can 

solve the image problem, but the mismatch between the Inphase and Quadrature phase 

local oscillator signals always necessitates additional analog circuitry or digital algorithm 

for compensation. Moreover, a lot of technique requires a test tone and separate training 

stage for calibration, which impairs their efficiency.  

On the other hand, our method does not need to deal with the I/Q mismatch 

problem and it does not require a test stage.  

 Although various ICA algorithms have been reported [52-70], the novel ICA 

algorithm proposed in this dissertation, OBAI-ICA, is especially useful in the case of 

highly dynamic environment. In particular, it is shown that for time-varying systems, 

OBAI-ICA is superior to Fast-ICA, which has been dominant in various applications. 

OBAI-ICA is based on similar techniques originally designed for updating FIR filter 

coefficients [71-78]. OBAI-ICA has the capability of tracking rapid time variation in the 

mixing matrix coefficients. This makes OBAI-ICA an attractive alternative in the cases 

where real-time adaptation is important.  

 

Key Contributions 

 The research presented contains the following contributions: 
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• The gradient-based OBAI-ICA is derived in Chapter three based on block 

adaptation and Taylor series expansion. From OBAI-ICA, a family of gradient-

based algorithm is developed. OBAI-ICA can be simplified to obtain online 

gradient ICA already existing in literature. Also, the computational complexity 

and the estimation of matrix inversion are addressed [16, 80].  

• Chapter four presents the proposed diversity receiver with ICA-based interference 

rejection. An efficient way of solving the inherent order ambiguity is introduced. 

Simulation results confirm the advantages of the scheme, and a performance 

comparison is provided between Fast-ICA and EASI. The results are reported in 

[11-15, 51, 81]. Further, in the case of rapid changing channel conditions, a data-

reusing technique is adopted for better performance [82].  

• Chapter five investigates the application of OBAI-ICA to the proposed scheme in 

Chapter four in a highly dynamic environment. It is demonstrated that OBAI-ICA 

outperforms Fast-ICA in both linear and abrupt time varying channels conditions, 

especially in terms of convergence speed. Especially for abrupt time variation, a 

binary search technique is proposed to identify the location of the change within 

the block to prevent performance degradation for that specific block. The results 

are reported in [16, 79, 80]. 

• Chapter six discusses several implementation issues of the proposed scheme. 

First, the effect of finite arithmetic is studied. It is shown that the hardware 

complexity can be significantly reduced without performance degradation by 

carefully selecting the word lengths for each quantity. The results are reported in 

[17, 83]. Second, it is shown that it is possible to use only one antenna and single 
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downconversion path to rejection one interferer in BPSK receivers. With 

negligible increase in computation, the hardware complexity is reduced by half 

without any performance degradation in the noiseless case. The results are 

reported in [18, 84, 85]. Third, it is illustrated that our proposed scheme is robust 

to thermal noise, but it should be disabled in the case of large input SIR, in which 

case additional interference suppression is not necessary.  

 

Areas of Future Research 

The presented research work can be extended in many directions.  

The most important extension will be reducing the number of antennas and/or 

downconversion paths. Since one additional antenna is required for one interferer, the 

proposed scheme is more feasible to be adopted at base station. However, on the mobile 

side, it is not practical in the case of many interferers, because the cost might be too high, 

and installing multiple antenna elements to mobile units is difficult because of their 

limited size. Also, sometimes it is impossible to know before ahead the exact number of 

interferers, and the number may not be fixed. Therefore, it is highly desirable to use 

fewer antennas than the number of signal components. Chapter six illustrates that, in the 

case of BPSK with one interferer, it is possible to use only one antenna to achieve 

interference suppression. In general, the problem is known as Underdetermined ICA [87, 

88]. 

When some interferers are absent, the number of antennas is effectively larger 

than the number of independent components. We found that the performance in this 

scenario degrades substantially. The problem is commonly known as Overdetermined 
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ICA. Some techniques have been proposed in the literature to deal with this situation [89, 

90]. 

It is assumed in this document that the fading channels are frequency-flat for the 

signal band of interest, and no Inter-Symbol Interference (ISI) is present. In reality, 

frequency-selective fading is often present for wide-band signals. Thus, convolutive 

mixtures are obtained at the receiver and blind deconvolution is needed. One possible 

solution is frequency domain ICA, which performs ICA processing to the Fourier 

transformed data. This operation has an additional advantage of saving computations, 

because fast transform method is applicable in this scenario [36].  

It is mentioned in Chapter six that the algorithm should be disabled in the case of 

large input SIR. Under certain circumstances, there is no prior knowledge regarding the 

input SIR. Therefore, a blind estimation of input SIR will be very useful.  

Also, in order to increase the data rate, the adoption of higher-order QAM signals 

has to be studied. Because of the relatively small distance between adjacent symbols in 

the signal constellation, additional performance enhancement is needed if the technique 

presented in this dissertation does not provide enough interference suppression.  
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APPENDIX  

MATLAB CODE FOR COMPUTER SIMULATIONS  
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1. Fast-ICA for real valued sources: ficai.m  

 

% The function accepts observation matrix r and accuracy epsilon, and outputs source  

% signals and demixing matrix, as well as estimation of mixing matrix 

function [Shat, W, A, all_iter] = ficai (r, epsilon); 

 

% Determine the dimensionality of the data 

[m,n] = size(r); 

 

% mean center the data 

M = mean(r'); 

for i = 1:m 

    r(i,:) = r(i,:)-M(i); 

end 

 

% Whiten the data by eigenvalue decomposition 

Rrr = zeros(m,m); 

for i = 1:n 

    Rrr = Rrr+1/n*r(:,i)*r(:,i)'; 

end 

 

[E,D] = eig(Rrr); 

V = diag(diag(D).^(-1/2))*E'; 
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x = V*r; 

 

% Extract the components by fixed-point ICA, measure of independence is kurtosis 

W = zeros(m,m); 

all_iter = 0;     % Total number of iteration 

for p = 1:m 

     W(p,:) = 0.01*randn(1,m);  % Initialization  

     W(p,:) = W(p,:)/norm(W(p,:)); % Normalization 

     delta = 1;    % For convergence 

     iter = 0; 

 

% Iterate for one row of demixing matrix 

  while delta > epsilon & iter < 1000 ;  

          iter = iter+1; 

          wnew = zeros(m,1); 

       % Adapt according to fixed-point algorithm 

       for i = 1:n  

             wnew = wnew + 1/n*(W(p,:)*x(:,i))^3*x(:,i); 

       end 

        wnew = wnew-3*W(p,:)'; 

          % Orthogonalization with respect to already extracted rows 

          if p > 1   

              for j = 1:p-1 
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                  wnew = wnew-wnew'*W(j,:)'*W(j,:)'; 

              end 

          end 

          wnew = wnew/norm(wnew); % Renormalization 

          delta = abs(abs(W(p,:)*wnew)-1); % Convergence criterion 

          W(p,:) = wnew'; 

end 

     all_iter = all_iter+iter; 

end 

 

% Add back the mean 

for i = 1:m  

    r(i,:) = r(i,:)+M(i);  

end 

 

W = W*V; % Demixing matrix 

Shat = W*r; % Estimation of the sources 

A = inv(W); % Estimation of the mixing matrix 
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2. Fast-ICA for complex-valued sources: ficaic.m 

 

% The file is similar to ficai.m, excepted that the adaptation equation is complex-valued  

function [Shat, Ahat, What, all_iter] = ficaic(r,epsilon); 

 

[m,n] = size(r); 

M = mean(r,2); 

for i = 1:m 

    r(i,:) = r(i,:)-M(i); 

end 

 

Rrr = 1/n*r*r'; 

[E,D] = eig(Rrr); 

V = diag(diag(D).^(-1/2))*E';  

x = V*r;    

 

W = zeros(m,m);                                                     

all_iter = 0; 

for p = 1:m                                                      

    W(:,p) = randn(m,1);                                         

    W(:,p) = W(:,p)/norm(W(:,p));                                

    delta = 1;               

    iter = 0; 
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    while delta > epsilon & iter < 1000 ;                        

        iter = iter+1; 

        wnew = zeros(m,1);                                       

        % Update the current row with complex-valued fixed-point ICA (kurtosis based) 

        for i = 1:n 

            wnew = wnew + 2/n*(x(:,i)*conj(W(:,p)'*x(:,i))-2*W(:,p))*abs(W(:,p)'*x(:,i))^2;      

        end         

        if p > 1                                                 

            for j = 1:p-1 

                wnew = wnew-W(:,j)*W(:,j)'*wnew;   

            end 

        end 

        wnew = wnew/norm(wnew);                                  

        delta = abs(abs(W(:,p)'*wnew)-1);                        

        W(:,p) = wnew;                                           

    end 

    all_iter=all_iter+iter;  

end 

 

for i = 1:m 

    r(i,:) = r(i,:)+M(i); 

end 
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What = W'*V; 

Shat = What*r; 

Ahat = inv(What'); 
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3. OBAI-ICA algorithm: ficai_obai.m 

 

% The file is similar to ficai.m, except that the adaptation rule for each row is OBAI-ICA 

% The additional input parameter miu can be adjusted according to the time-variation 

function [Shat, W, A, all_iter] = ficai_obai (r,epsilon,miu); 

 

[m,n] = size(r); 

M = mean(r'); 

for i = 1:m 

    r(i,:) = r(i,:)-M(i); 

end 

 

Rrr = zeros(m,m); 

for i = 1:n 

    Rrr = Rrr+1/n*r(:,i)*r(:,i)'; 

end 

[E,D] = eig(Rrr); 

V = diag(diag(D).^(-1/2))*E'; 

x = V*r; 

W = zeros(m,m); 

all_iter = 0; 

for p = 1:m 

   W(:,p) = 0.01*randn(m,1);                                         
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   W(:,p) = W(:,p)/norm(W(:,p));                                

    delta = 1; 

    iter = 0; 

    while delta > epsilon & iter < 1000; 

        iter = iter+1; 

        G = x';  % Define observation matrix G for OBAI-ICA 

        temp=[];  

        kurt=[]; 

        for j=1:n 

         temp=[temp (W(:,p)'*x(:,j))^3]; % For matrix C in OBAI-ICA 

         kurt=[kurt (W(:,p)'*x(:,j))^4-3]; % Kurtosis vector 

        end 

        C = diag(temp); 

        kurt = kurt'; 

        q=G'*C*kurt; % Define q vector for OBAI-ICA 

        R=G'*C*C*G; % Define matrix R for OBAI-ICA 

        invR=inv(R);  % For high order systems, this line should be: invR=diag(1./diag(R)); 

        wnew = zeros(m,1); 

        wnew = W(:,p) - 0.25*miu*invR*q; % OBAI-ICA adaptation 

        if p > 1 

            for j = 1:p-1 

                 wnew = wnew-W(:,j)*W(:,j)'*wnew; 

             end 
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        end 

        wnew = wnew/norm(wnew); 

        delta = abs(abs(W(:,p)'*wnew)-1); 

        W(:,p) = wnew; 

    end 

    all_iter=all_iter+iter; 

end 

 

for i = 1:m 

    r(i,:) = r(i,:)+M(i); 

end 

 

W = W'*V; 

Shat = W*r; 

A = inv(W); 
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4. GOBA algorithm: ficai_goba.m 

 

% The file is similar to ficai_obai, but the adaptation rule for each row is GOBA-ICA 

function [Shat, W, A, all_iter] = ficai1(r,epsilon,miu); 

 

[m,n] = size(r); 

M = mean(r'); 

for i = 1:m 

    r(i,:) = r(i,:)-M(i); 

end 

 

Rrr = zeros(m,m); 

for i = 1:n 

    Rrr = Rrr+1/n*r(:,i)*r(:,i)'; 

end 

[E,D] = eig(Rrr); 

V = diag(diag(D).^(-1/2))*E'; 

x = V*r; 

 

W = zeros(m,m); 

all_iter = 0; 

for p = 1:m 

   W(:,p) = 0.01*randn(m,1);                                         
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   W(:,p) = W(:,p)/norm(W(:,p));                                

   delta = 1; 

    iter = 0; 

    while delta > epsilon & iter < 1000; 

        iter = iter+1; 

        G = x'; 

        temp=[]; 

        kurt=[]; 

        for j=1:n 

         temp=[temp (W(:,p)'*x(:,j))^3]; 

         kurt=[kurt (W(:,p)'*x(:,j))^4-3]; 

        end 

        kurt = kurt'; 

        C = diag(temp); 

        R=4*C*G;  % Define R matrix for GOBA-ICA 

        R_star=inv(R'*R)*R'; % Define pseudo inverse of R for GOBA-ICA  

        twos=2*ones(n,1); 

        wnew = zeros(m,1); 

        wnew = W(:,p)-miu*R_star*(kurt+twos); % Adaptation for GOBA-ICA 

        if p > 1 

            for j = 1:p-1 

                 wnew = wnew-W(:,j)*W(:,j)'*wnew; 

            end 
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        end 

        wnew = wnew/norm(wnew); 

        delta = abs(abs(W(:,p)'*wnew)-1); 

        W(:,p) = wnew; 

    end 

    all_iter = all_iter+iter; 

end 

 

for i = 1:m 

    r(i,:) = r(i,:)+M(i); 

end 

 

W = W'*V; 

Shat = W*r; 

A = inv(W); 
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5. Generation of BPSK source signals, processing with ICA and calculation of SIR: 

main.m 

 

% Generate channel parameters, assuming Rayleigh fading and one interferer  

as1=raylrnd(1/sqrt(2),[1 1]); % Amplitude of the response to the desired signal 

ai1=raylrnd(1/sqrt(2),[1 1]); % Amplitude of the response to the interfering signal 

fais1=2*pi*rand(1); 

faii1=2*pi*rand(1); 

fs1=as1*exp(j*fais1); 

fi1=ai1*exp(j*faii1); 

alpha=2*pi*rand(1); 

as1=real(fs1*exp(-j*alpha)); % The first channel response to the desired signal 

ai1=real(fi1*exp(-j*alpha)); % The first channel response to the interfering signal 

 

as2=raylrnd(1/sqrt(2),[1 1]);  

ai2=raylrnd(1/sqrt(2),[1 1]);  

fais2=2*pi*rand(1); 

faii2=2*pi*rand(1); 

fs2=as2*exp(j*fais2); 

fi2=ai2*exp(j*faii2); 

alpha=2*pi*rand(1); 

as2=real(fs2*exp(-j*alpha)); % The second channel response to the desired signal 

ai2=real(fi2*exp(-j*alpha)); % The second channel response to the interfering signal 
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% Generate the BPSK source signals of block size N 

de = floor(rand(N,1)*2); % The desired signal   

in = floor(rand(N,1)*2); % The interferer 

de = 2*de-1; 

in = 2*in-1; 

 

% Define mixing matrix, source signal matrix and observation matrix 

Am = [as1 as2; ai1 ai2]; 

D = [de'; in']; 

y = Am*D; 

 

% If desired, add thermal noise  

yn = y +randn(2,N)*0.1; % Add Gaussian noise of 20 dB below the signal level 

 

% Perform the ICA separation 

[Shat, What, A, all_iter] = ficai(y,1e-6); % use yn for the noisy case 

 

% Decide the sign and the order of the extracted signals 

S = zeros(size(Shat)); 

for i = 1:2 

    d1 = norm(Shat(i,:)-de');  

    d2 = norm(Shat(i,:)+de');  

    d3 = norm(Shat(i,:)-in'); 
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    d4 = norm(Shat(i,:)+in'); 

    d = [d1 d2 d3 d4]; 

    [m,I] = min(d); 

    switch I 

    case 1 

        S(1,:) = Shat(i,:); 

    case 2 

        S(1,:) = -Shat(i,:); 

    case 3 

        S(2,:) = Shat(i,:); 

    case 4 

        S(2,:) = -Shat(i,:); 

    end 

end 

 

% Determine the SIR 

sum=0; 

for k=1:N 

    sum=sum+de(k)^2/(de(k)-S(1,k))^2; 

end 

sir=1/N*sum; 

sir=10*log10(sir); 
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6. Generation of QPSK source signals, processing with ICA and calculation of SIR: 

main1.m 

 

% This is similar to main.m, except that the processing is complex-valued 

% Generate channel parameters 

as1=raylrnd(1/sqrt(2),[1 1]); 

as2=raylrnd(1/sqrt(2),[1 1]); 

ac1=raylrnd(1/sqrt(2),[1 1]); 

ac2=raylrnd(1/sqrt(2),[1 1]); 

 

fais1=2*pi*rand(1); 

fais2=2*pi*rand(1); 

faic1=2*pi*rand(1); 

faic2=2*pi*rand(1); 

 

fs1=as1*exp(j*fais1); 

fs2=as2*exp(j*fais2); 

fc1=ac1*exp(j*faic1); 

fc2=ac2*exp(j*faic2); 

 

% Generate QPSK source signals 

sr=floor(rand(N,1)*2); 

sr=2*sr-1; 
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si=floor(rand(N,1)*2); 

si=2*si-1; 

de=sr+j*si; 

de=de/sqrt(2);   % Desired signal 

 

cr=floor(rand(N,1)*2); 

cr=2*cr-1; 

ci=floor(rand(N,1)*2); 

ci=2*ci-1; 

in=cr+j*ci; 

in=in/sqrt(2);   % Interferer 

 

Am=[fs1 fc1; fs2 fc2]; 

D=[de'; in']; 

y = Am*D; 

 

% If desired, add thermal noise 

yn = y +randn(2,N)*0.1; 

 

% Perform the ICA separation 

[Shat, Ahat, What, W, all_iter] = ficaic(y,1e-6); % use yn in the noisy case 

 

Ihat=abs(What*Am);  % The product of demixing matrix and mixing matrix 
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Shat1=Ihat*D; 

 

% If higher order QAM signals, scale with the energy of the constallation   

% Shat = Shat*2.2361; % For 16-QAM 

 

% Select the desired signal and its sign 

S = zeros(size(Shat)); 

for i = 1:2 

    d1 = norm(abs(Shat1(i,:)-de')); 

    d2 = norm(abs(Shat1(i,:)+de'));  

    d3 = norm(abs(Shat1(i,:)-in')); 

    d4 = norm(abs(Shat1(i,:)+in')); 

    d = [d1 d2 d3 d4]; 

    [m,I] = min(d); 

    switch I 

    case 1 

        S(1,:) = Shat(i,:); 

    case 2 

        S(1,:) = -Shat(i,:); 

    case 3 

        S(2,:) = Shat(i,:); 

    case 4 

        S(2,:) = -Shat(i,:); 
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    end 

end 

 

% Determine the SIR 

sum=0; 

soriginal=de'; 

for k=1:N 

    sum=sum+(abs(soriginal(k)))^2/abs((abs(soriginal(k)))^2-(abs(S(1,k)))^2); 

end 

sir=1/N*sum; 

sir=10*log10(sir); 

 

% The performance measure can also be defined by SIRR in terms of H=What*Am 

%H = What*Am; 

%SIRR = 

%(abs(20*log10(abs(H(1,1))/abs(H(1,2))))+abs(20*log10(abs(H(2,1))/abs(H(2,2)))))/2; 
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7. ICA with overlapping blocks: main2.m 

 

% QPSK source signals 

close all; 

sr=floor(rand(1000,1)*2);  % the total number of symbols is one thousand 

sr=2*sr-1; 

si=floor(rand(1000,1)*2); 

si=2*si-1; 

signal=sr+j*si; 

signal=signal/sqrt(2);   % Desired signal 

 

imager=floor(rand(1000,1)*2); 

imager=2*imager-1; 

imagei=floor(rand(1000,1)*2); 

imagei=2*imagei-1; 

image=imager-j*imagei; 

image=image/sqrt(2);   % Interfering signal 

 

T=10000; 

for t=1:1000 

  A(:,:,t)=[1+j*exp(-t/T) 0.5;  % Exponentially varying channel parameters 

        0.7 2-j*exp(t/(2*T))];  

end 
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D=[signal';image']; 

 

for t=1:1000 

y(:,:,t)=A(:,:,t)*D(:,t);  

end 

 

ym=y(:,:,1); 

for t=2:1000 

    ym=[ym y(:,:,t)];  % Signal observation matrix 

end 

 

Dhat=zeros([1 N]); 

Destimate=zeros([1 1000]); % Estimation of overlapping ICA 

x=zeros([2 N]); 

for t=1:(1000-N+1)  % shift one symbol at a time 

  x=ym(:,t:t+N-1);  % The current block of observations 

  % perform ICA processing for the current block 

  [Dhat, all_iter]=ficaic(x,D(1,t:t+N-1),D(2,t:t+N-1),A(:,:,t),D(:,t:t+N-1),1e-6); 

  Destimate(t)=Dhat(1); % Take the first estimate as our estimation 

end 

 

sum=0; 
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for k=N:1000-N+1 

    sum=sum+(abs(D(1,k)))^2/abs(((abs(D(1,k)))^2-abs(Destimate(k))^2)); 

end 

sir=1/N*sum; 

sir=10*log10(sir); 
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8. OBAI-ICA (or GOBA-ICA) for linear time-varying channels: main3.m 

 

delta=0.1; % delta determines the speed of channel’s time variation 

for t=1:N 

 A(:,:,t)=[1+delta*t 0.5; 

       0.7 2+delta*t]; 

end 

 

de = floor(rand(N,1)*2); 

in = floor(rand(N,1)*2); 

de = 2*de-1; % The desired signal  

in = 2*in-1; % The interferer 

 

D=[de'; in']; 

for t=1:N 

    y(:,t)=A(:,:,t)*D(:,t); % Construct the observation matrix 

end 

 

% Perform the ICA separation, the additional scaling factor needs to be adjusted 

% If GOBA-ICA is to be used, the function ficai_goba should be called instead 

[Shat, What, all_iter] = ficai_obai (y,1e-6, 0.5);  

 

% Solving the order ambiguity 
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S = zeros(size(Shat)); 

for i = 1:2 

    d1 = norm(Shat(i,:)-de'); 

    d2 = norm(Shat(i,:)+de');  

    d3 = norm(Shat(i,:)-in'); 

    d4 = norm(Shat(i,:)+in'); 

    d = [d1 d2 d3 d4]; 

    [m,I] = min(d); 

    switch I 

    case 1 

        S(1,:) = Shat(i,:); 

    case 2 

        S(1,:) = -Shat(i,:); 

    case 3 

        S(2,:) = Shat(i,:); 

    case 4 

        S(2,:) = -Shat(i,:); 

    end 

end 

 

sum=0; 

for k=1:N 

    sum=sum+de(k)^2/(de(k)-S(1,k))^2; 
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end 

sir=1/N*sum; 

sir=10*log10(sir); 
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9. A binary search technique for abrupt changing channels: main4.m 

 

% Once performance degradation indicates a sudden change, the algorithm searches for 

% the exact location of the change within the processing block.  

  

% The channel response before the change occurs 

as1=raylrnd(1/sqrt(2),[1 1]); 

as2=raylrnd(1/sqrt(2),[1 1]); 

ai1=raylrnd(1/sqrt(2),[1 1]); 

ai2=raylrnd(1/sqrt(2),[1 1]); 

 

% The channel response after the change occurs 

aq1=raylrnd(1/sqrt(2),[1 1]); 

aq2=raylrnd(1/sqrt(2),[1 1]); 

at1=raylrnd(1/sqrt(2),[1 1]); 

at2=raylrnd(1/sqrt(2),[1 1]); 

 

% Generating the data block in which a sudden change occurs 

de = floor(rand(N,1)*2); 

in = floor(rand(N,1)*2); 

de = 2*de-1; 

in = 2*in-1; 
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% Generating the previous and next data blocks 

previous1 = floor(rand(1,N)*2);  

next1 = floor(rand(1,N)*2); 

previous1 = 2*previous1-1; 

next1 = 2*next1-1; 

previous2 = floor(rand(1,N)*2); 

next2 = floor(rand(1,N)*2); 

previous2 = 2*previous2-1; 

next2 = 2*next2-1; 

 

previous=[previous1;previous2]; 

next=[next1;next2]; 

 

Am = [as1 as2; ai1 ai2]; 

D1 = [Amc(1:N/2)'; Ams(1:N/2)'];  % The source data before the abrupt change 

Am1 = [aq1 aq2; at1 at2]; 

D2= [Amc(N/2+1:N)'; Ams(N/2+1:N)']; % The source data after the abrupt change 

D=[Amc';Ams'];    % The whole source data block 

y1 = Am*D1;      

y2 = Am1*D2; 

y=[y1 y2];    % The observation block containing sudden change 
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y_previous=Am*previous; 

y_next=Am1*next; 

% Obtain the demixing matrix before the change occurs 

[Shat_previous, W_previous, all_iter1] = ficai(y_previous,1e-6);  

 

% Solving the order ambiguity 

H_previous=W_previous*Am; 

if abs(H_previous(1,1))<abs(H_previous(1,2)) 

    temp=W_previous(1,:); 

    W_previous(1,:)=W_previous(2,:); 

    W_previous(2,:)=temp; 

end 

 

% Solving the sign ambiguity 

H_previous=W_previous*Am; 

for i=1:2 

    if H_previous(i,i)<0 

        W_previous(i,:)=-W_previous(i,:); 

    end 

end 

 

% Obtain the demixing matrix after the change occurs 

[Shat_next, W_next, all_iter2] = ficai(y_next,1e-6); 

 123



H_next=W_next*Am1; 

if abs(H_next(1,1))<abs(H_next(1,2)) 

    temp=W_next(1,:); 

    W_next(1,:)=W_next(2,:); 

    W_next(2,:)=temp; 

end 

H_next=W_next*Am1; 

for i=1:2 

    if H_next(i,i)<0 

        W_next(i,:)=-W_next(i,:); 

    end 

end 

 

before=[]; % For storing the data before the change occurs 

after=[]; % For storing the data after the change occurs 

start=0; % Starting index of the current sub-block under search 

t=N/2;  % Length of the sub-blocks under search 

all_iter=0; 

while t>=2 

 test1=W_previous*y(:,start+1:start+t);   % use W_previous process the first sub-block 

 sum1=0; 

 for k1=start+1:start+t 

    sum1=sum1+D(1,k1)^2/(D(1,k1)-test1(1,k1-start))^2; 
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 end 

 sir1=1/t*sum1; 

 sir1=10*log10(sir1);  % Calculate the performance for the first sub-block 

  test2=W_next*y(:,start+t+1:start+2*t);  % use W_next process the second sub-block  

 sum2=0; 

 for k2=start+t+1:start+2*t 

    sum2=sum2+D(1,k2)^2/(D(1,k2)-test2(1,k2-start-t))^2; 

 end 

 sir2=1/t*sum2; 

 sir2=10*log10(sir2);   % Calculate the performance for the second sub-block 

  

 if sir1>sir2 

     % If the performance for the first sub-block is better, it does not contain the change 

     before=[before y(:,start+1:start+t)];  

     start=start+t; % Reset start to be the beginning of the second sub-block 

 else 

     % If the performance for the second sub-block is better, it does not contain the change 

     after=[y(:,start+t+1:start+2*t) after]; 

 end 

 t=floor(t/2);  % Reset the length of the sub-blocks to be searched 

all_iter=all_iter+1; 

end 
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before=[before y(:,start+1)];   

after=[y(:,start+2) after];  

before=W_previous*before; % Obtain the estimation for symbols before the change 

after=W_next*after;  % Obtain the estimation for symbols after the change 

est=[before after];  % Estimation for the whole block 

 

% Calculate the performance of the estimation est 

sum1=0; 

 [m1, n1]=size(before); 

  for k=1:n1 

     sum1=sum1+1/((D(1,k)-est(1,k))^2); 

  end 

  sir1=1/n1*sum1; 

  sir1=10*log10(sir1);  % Average performance for samples before the change 

 

sum2=0; 

  [m2,n2]=size(after); 

  for k=n1+1:N 

     sum2=sum2+1/((D(1,k)-est(1,k))^2); 

  end 

  sir2=1/n2*sum2; 

  sir2=10*log10(sir2);  % Average performance for samples after the change 

 

 126



10. The effect of finite arithmetic: finitelength.m, ficaic_finite.m, main5.m 

 

% finitelength.m: generate the fixed-point data. Note that the matlab filter design toolbox 

% is needed  

function [x_fixed]=finitelength(x); % accept double precision, output fixed-point data 

 

q=quantizer('fixed', [32 26]); % The word length [16, 10] is also used 

[m n]=size(x); 

x_fixed = zeros(m,n);  

for k=1:m 

    for l=1:n 

        x_real=real(x(k,l)); 

        x_imag=imag(x(k,l)); 

        x_r_bin=num2bin(q,x_real); % conversion to binary representation 

        x_r_fixed=bin2num(q,x_r_bin);  % conversion to fixed-point representation 

        x_i_bin=num2bin(q,x_imag); 

        x_i_fixed=bin2num(q,x_i_bin); 

        x_fixed(k,l)=x_r_fixed+i*x_i_fixed;  

    end 

end 
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% ficaic_finite.m: the finite precision Fast-ICA algorithm 

function [Shat, Ahat, What, W, all_iter] = ficaic_finite(r,epsilon); 

 

if nargin < 2 

    epsilon = 1e-6; 

end 

 

[m,n] = size(r); 

M = mean(r,2); 

for i = 1:m 

    r(i,:) = r(i,:)-M(i); 

end 

 

Rrr = finitelength(1/n*r*r'); % convert the current parameter into fixed-point data 

[E,D] = eig(Rrr); 

E=finitelength(E); 

D=finitelength(D); 

V = finitelength(diag(diag(D).^(-1/2))*E');  

x = finitelength(V*r);    

 

W = zeros(m,m);                                                  

all_iter = 0; 
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for p = 1:m                                                      

    W(:,p) = randn(m,1);                                         

W(:,p) = finitelength(W(:,p)/norm(W(:,p)));                  

delta = 1;               

    iter = 0; 

    while delta > epsilon & iter < 1000 ;                        

        iter = iter+1; 

        wnew = zeros(m,1);                                       

        for i = 1:n 

wnew = wnew + 

2/n*finitelength((finitelength(x(:,i)*conj(finitelength(W(:,p)'*x(:,i))))-

2*W(:,p))*finitelength(abs(W(:,p)'*x(:,i))^2));      

        end         

        if p > 1                                                % Deflation algorithm 

            for j = 1:p-1 

                wnew = wnew-finitelength(W(:,j)*W(:,j)'*wnew);   

            end 

        end 

        wnew = finitelength(wnew/norm(wnew));                                  

        delta = abs(abs(finitelength(W(:,p)'*wnew))-1);           

        W(:,p) = wnew;                                           

    end 

    all_iter=all_iter+iter; 
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end 

for i = 1:m 

    r(i,:) = r(i,:)+M(i); 

end 

 

What = finitelength(W'*V); 

Shat = finitelength(What*r); 

Ahat = finitelength(inv(What')); 

 
% main5.m: generating fixed-point observations, and call ficaic_finite.m  

close all; 

as1=raylrnd(1/sqrt(2),[1 1]); 

as2=raylrnd(1/sqrt(2),[1 1]); 

ai1=raylrnd(1/sqrt(2),[1 1]); 

ai2=raylrnd(1/sqrt(2),[1 1]); 

 

fais1=2*pi*rand(1); 

fais2=2*pi*rand(1); 

faii1=2*pi*rand(1); 

faii2=2*pi*rand(1); 

 

fs1=as1*exp(j*fais1); 

fs2=as2*exp(j*fais2); 
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fi1=ai1*exp(j*faii1); 

fi2=ai2*exp(j*faii2); 

 

sr=floor(rand(N,1)*2); 

sr=2*sr-1; 

si=floor(rand(N,1)*2); 

si=2*si-1; 

de=sr+j*si; 

de=de/sqrt(2); 

 

imager=floor(rand(N,1)*2); 

imager=2*imager-1; 

imagei=floor(rand(N,1)*2); 

imagei=2*imagei-1; 

in=imager-j*imagei; 

in=in/sqrt(2); 

 

Am=[fs1 fi1; fs2 fi2]; 

D=[de';in']; 

y = finitelength(Am*D); % fixed-point observation  

 

[Shat, Ahat, What, W, all_iter] = ficaic_finite (y,1e-6);   % call finite precision Fast-ICA 

S = zeros(size(Shat)); 
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for i = 1:2 

    d1 = norm(abs(Shat(i,:)-de')); 

    d2 = norm(abs(Shat(i,:)+de'));  

    d3 = norm(abs(Shat(i,:)-in')); 

    d4 = norm(abs(Shat(i,:)+in')); 

    d = [d1 d2 d3 d4]; 

    [m,I] = min(d); 

    switch I 

    case 1 

        S(1,:) = Shat(i,:); 

    case 2 

        S(1,:) = -Shat(i,:); 

    case 3 

        S(2,:) = Shat(i,:); 

    case 4 

        S(2,:) = -Shat(i,:); 

    end 

end 

 

H = What*Am; 

SIRR = 

(abs(20*log10(abs(H(1,1))/abs(H(1,2))))+abs(20*log10(abs(H(2,1))/abs(H(2,2)))))/2 
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11. Simplified BPSK with single antenna and one downconversion path: main6.m 

 

close all; 

as1=raylrnd(1/sqrt(2),[1 1]); 

ai1=raylrnd(1/sqrt(2),[1 1]); 

fais1=2*pi*rand(1); 

faii1=2*pi*rand(1); 

fs1=as1*exp(j*fais1); 

fi1=ai1*exp(j*faii1); 

alpha=2*pi*rand(1); 

a=real(fs1*exp(-j*alpha)); 

b=real(fi1*exp(-j*alpha)); 

 

de = floor(rand(N,1)*2); 

in = floor(rand(N,1)*2); 

de = 2*de-1; 

in = 2*in-1; 

 

Am=[a b];  

D=[de';in']; 

y = Am*D; % The available observation 
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% If necessary, add thermal noise 

%sigma = 1/10; 

%yn = y +randn(1,N)*sigma; 

 

temp=y.^3; % Obtain the second signal from the available observation 

y1 =[y;temp]; % Append the second signal to the available observation 

[Shat, W, all_iter] = ficai(y1,1e-6); % Separation based on the two signals  

 

S = zeros(size(Shat)); 

for i = 1:2 

    d1 = norm(abs(Shat(i,:)-de')); 

    d2 = norm(abs(Shat(i,:)+de'));  

    d3 = norm(abs(Shat(i,:)-in')); 

    d4 = norm(abs(Shat(i,:)+in')); 

    d = [d1 d2 d3 d4]; 

    [m,I] = min(d); 

    switch I 

    case 1 

        S(1,:) = Shat(i,:); 

    case 2 

        S(1,:) = -Shat(i,:); 

    case 3 

        S(2,:) = Shat(i,:); 
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    case 4 

        S(2,:) = -Shat(i,:); 

    end 

end 

 

sum=0; 

for k=1:N 

        sum=sum+de(k)^2/(de(k)-S(1,k))^2; 

end 

sir=1/N*sum; 

sir=10*log10(sir); 
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12. The Monte-Carlo simulation for average performance: run.m  

 

% The file specifies the number of simulations runs, the block size to be used, and 

% call one of the main functions to execute experiments.  Results are stored.  

 

clear all; 

clc; 

 

Nruns = 100;                            % Specify the number of simulation runs    

Nf = 100:50:1000;                    % Specify the length of the processing frame 

ResSir = zeros(length(Nf), 1);  % Storing the average signal to interference ratio 

ResIter=zeros(length(Nf),1);   % Storing the average number of iterations to convergence 

 

for i = 1:length(Nf)                   % Simulate for every frame length 

    for iter = 1:Nruns   % Iterate for Nruns times 

        N = Nf(ii);                       % Extract the frame length  

        main                                % Call one of the main functions  

        Rs(iter) = sir;                  % Store the SIR value for each run 

        Ri(iter)=all_iter;     % Store the number of iterations for each run 

    end 

ResSir(ii) = mean(Rs); % Compute the average SIR value 

ResIter(ii)=mean(Ri);  % Computer the average convergence speed 

end 
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