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ABSTRACT 
 

Laser beams can be manipulated by volume diffractive elements in addition to 

conventional optical elements like mirrors, lenses, and beam splitters. Conventional optical 

elements can be described by applying the basic laws of reflection and refraction at the surfaces 

of the elements. Even diffraction by surface gratings utilizes relatively simple mathematics. This 

is to be contrasted with the volume diffraction, which requires coupled wave theory in the slowly 

varying envelope approximation (SVEA) to obtain accurate results. Efficient spatially distributed 

diffraction of laser beams is possible due to the high coherence of laser light, and it occurs at 

specific resonant Bragg conditions. 

This research work is inspired and driven by the successful development of recording 

technology for robust, high-efficiency volume Bragg gratings (VBGs) in photo-thermo-refractive 

(PTR) glass. Mostly VBGs of the reflective type are discussed in this dissertation. Starting with 

an analysis of electro-magnetic wave propagation in layered media, we have reformulated 

Fresnel and volume reflection phenomena in terms of a convenient parameter – strength of 

reflection. The influence that the different non-uniformities inside a VBG have on its spectral 

properties has been examined. One important result of this work is the proposal of moiré VBG 

and the derivation of an analytical expression for its bandwidth. A multiplexed VBG used as a 

coherent combiner is discussed as well. Beam distortion via transmission through and/or 

reflection by a heated VBG due to residual absorption is analyzed. 
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CHAPTER ONE: INTRODUCTION 
 

Optics is one of the oldest parts of physics and its establishment was strongly connected 

with the development of methods of transformation of light beams and the theoretical analysis of 

these methods. Starting from the basic reflection and refraction laws of geometrical optics, 

people came to create lenses first, and then to create telescopes, which has lead to the creation of 

modern physics. The methods of geometrical optics faithfully described the propagation of light 

at that time and the usefulness of these methods only grew with time; now, they are fundamental 

tools for any optical engineer around the world. 

Recognition of the wave nature of light has lead to the analysis of interference and 

diffraction phenomena in optics. Scalar wave theory is usually sufficient for the description of 

such phenomena. However, in some cases, like refraction of light at relatively large incidence 

angles, the methods of full-vectorial electromagnetic theory are required. The spectral properties 

of light waves usually become apparent through the material dispersion of optical elements or the 

angular dispersion of surface diffractive gratings. Modern branches of optics, such as quantum 

information, require new quantum theoretical methods which will not be discussed in this 

dissertation. 

During the last fifty years new light sources and lasers of different types were proposed 

and built. Light beams produced by lasers are characterized by high coherence and directionality 

and, thanks to these properties, lasers find many applications in science and industry. These 

properties of laser beams allow one to manipulate them by a new method – volume diffraction. 

One of the most impressive realizations of volume diffraction is volume holography. 
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This dissertation is devoted mostly to the general theoretical problems of the coherent 

propagation and interaction of light with optical media and analytical and numerical calculations 

of some particular applications with strong emphasis on the calculation of diffraction efficiencies 

of different VBGs by coupled wave theory methods. The recording material used for VBGs in 

this dissertation is photo-thermo-refractive (PTR) glass. It has advantages in comparison with 

other materials; those advantages being high uniformity, low losses and high thermal stability. 

The topics covered in this dissertation are actually wider than just the calculation of the 

reflection properties of particular holograms made in PTR glass. The dissertation is based on up-

to-date published papers [1-5] and conference presentation abstracts [6-27] done by author in co-

authorship with his advisor Prof. B. Zeldovich and members of Prof. L. Glebov’s research group. 

Before starting an overview of the approaches and results in volume diffraction theory, 

we consider first a broader class of problems. One of the most fundamental topics in 

electrodynamics is the propagation of electromagnetic (EM) waves in layered media. The term 

“layered” means that all properties of the media depend on one Cartesian coordinate only; for 

definiteness, on z. Almost any textbook on electrodynamics devotes considerable space to this 

problem, see e.g. [28-Born 99, 29-Landau 84, 30-Haus 84]. The natural starting point in the 

study of this subject is the consideration of reflection and refraction of an EM wave (of TE or 

TM polarization) at a sharp plane boundary between two homogeneous media. These phenomena 

are quantitatively described by well-known Fresnel formulae. The phenomena of propagation in 

layered media are discussed in specialized books [31-Brekhovskikh 80, 32-Yeh 88]. The matrix 

approach was used, for example, in [28-Born 99, 30-Haus 84, 32-Yeh 88]. Detailed 

consideration of boundary refraction and reflection of EM wave suffers from the absence of 
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generalization and often leads to recursive computational schemes for even simple layered 

systems. For example, the reflectance of a plate is calculated in [31-Brekhovskikh 80, 33-

Hecht 01] through the summation of a geometrical progression of powers of the reflection 

coefficient with a phase factor accounting for the thickness of the plate. 

The importance of fundamental research in EM wave propagation has increased in recent 

years, due to active research in fabrication and analysis of metamaterials, which have a negative 

refractive index [34-Veselago 68, 35-Pendry 03]. There are no known natural materials with 

such an unusual property. However, negative refraction was observed in a special artificially 

created materials in the radio frequency range first [36-Shelby 01, 37-Parazzoli 03, 38-

Houck 03], and then in the optical spectrum [39-Shalaev 05, 40-Sarychev 07, 41-Dolling 07]. 

Another wide class of layered media with propagation parameters dependent upon one 

coordinate consists of distributed feedback systems. Kogelnik and Shank first proposed them for 

integrated optics applications [42-Kogelnik 72]. Distributed feedback structures couple counter-

propagating waves with opposite phase velocities in the body of the medium. This is to be 

contrasted with the feedback due to reflection at the boundaries. Modulation of distributed 

parameters leads to specific transmission and reflection properties of such systems. As a result, 

they can be used as mirrors and filters, and the most important of their characteristics is the 

narrow spectral band width of their action [43-Schmidt 74]. One fundamental realization of a 

system with distributed parameters is a Bragg mirror, which has a small sinusoidal modulation of 

the material parameters; usually this is a sinusoidal modulation of the real dielectric permittivity. 

When the propagation wavelength of incident wave in this media is equal to the round-trip 

distance along one period of modulation, the weak reflected waves from all periods interfere 
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constructively, and strong reflection occurs at that wavelength. If the input wavelength is tuned 

away from this resonant Bragg condition, the reflection rapidly drops. The reflection coefficient 

of more than 99% at the resonance frequency can be (and actually has been) achieved for a large 

enough thickness of such a filter. The functional dependence of this resonance reflection in the 

reflection band is mostly flat. The full spectral width of reflection of such a strong filter may be 

kept to less than 200 picometers for optical wavelengths. For example, such filters, being 

recorded in fibers [44-Othonos 97], may be used for the separation of wavelength channels in 

communications. In practice the signal filtering is usually realized with the use of thin, multilayer 

dielectric films [45-Kazovsky 96, 46-Madsen 99], similar to antireflection coatings. The 

properties of such a commonly used periodic, multilayer stack may be obtained from the 

consideration of this stack as a consecutive set of uniform layers. Such a stack is equivalent also 

to a Bragg grating with the relevant Fourier component of the refractive index modulation 

corresponding to the actual step-index modulation of the multilayer filter. 

In the case of two combined distributed feedback systems, the interference of their 

reflection processes may be constructive or destructive, depending on the relative phase factor 

between their complex reflection coefficients. If two identical successive reflective VBGs are 

separated by small distance, which corresponds to a π-shift between their sinusoidal modulations 

of refractive index, then the narrow transmission peak will be observed at the mutual resonance 

frequency. This fundamental fact was experimentally observed for different types of distributed 

feedback systems. In particular, early experiments were done for planar slab dielectric gratings 

[47-Norton 97]; a few years ago this transmission peak was observed for coupled chiral fibers 

[48-Kopp 03]. Finally, a Fabry-Perot spectral filter was implemented with use of two compound 
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VBG mirrors. The author of this dissertation participated in the theoretical study of this 

implementation of a VBG filter [2-Glebov 08]. The narrow transmission peak of such a filter can 

be linearly tunable, if a mechanism for the linear change of the phase gap in the vicinity of π is 

implemented. 

Recent achievements in the fabrication of high quality VBGs in PTR glass [49-

Efimov 04] promise to make a strong influence on laser design. Their stability with respect to 

high power radiation makes VBG-PTR devices especially attractive. The high spectral selectivity 

of these gratings was mentioned above. They also have strong angular selectivity; as a result they 

can select one of several transversal modes in cavity, so that their natural application is for 

narrowing emission spectra of different types of semiconductor [50-Volodin 04] and solid-state 

[51-Chung 06] lasers. If a VBG is longitudinally chirped or, in other words, if it has a gradually 

changing period, then this grating will reflect different wavelengths from different parts inside its 

volume. It was shown [52-Liao 07] that femtosecond pulses can be stretched and then 

compressed by such a grating with an efficiency of about 95%. VBG has very good tolerance to 

high power laser beams. Real fabricated surface diffractive gratings may contain small defects, 

which are sources of potential damage. Due to its narrow reflection bandwidth, a given VBG 

may serve as an almost totally reflective mirror for a laser beam with the resonant wavelength 

and, at the same time, may serve as a transparent element for another beam; the resonant 

wavelength must be separated from second by a mere few hundred picometers [53-

Andrusyak 07]. As a result, these two high power beams can be combined while preserving the 

diffraction divergence. The power of a combined beam is increased without an increase in the 

product of (Area)×(Solid Angle). Remarkably, this fact does not contradict the theorem of 
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brightness conservation, compare to [54-Leger 93], because the final beam consists of two of 

several close, but different, wavelengths. Other schemes for beam combining are discussed in 

[55-Fan 05]. 

Historically, the optical coupled-wave theory of volume gratings had its predecessors in 

the research on the diffraction of X-rays in crystals. The theoretical approach of the so-called 

“kinematic theory” was equivalent to the 1st-order Born approximation in scattering theory, 

which can be applied for relatively weak scattering processes. Subsequent theoretical 

formulation included the interaction between propagating waves; it was called the “dynamical 

theory” [56-Pinsker 78, 57-Cowley 95] and it gives correct the “pendulum solution” for the 

transmission problem. Namely, energy is first transferred from incident wave A into scattered 

wave B, however the wave B may, in its turn, transfer its energy back into the wave A. Finally, 

Kogelnik formulated a general coupled-wave theory for a thick volume hologram with sinusoidal 

modulation of the refractive index [42-Kogelnik 69]. The consideration by Kogelnik allowed for 

accounting for the so-called “slanted” gratings, i.e. those in which the Bragg planes were neither 

parallel, nor perpendicular to the input plane of the specimen. 

Rigorous vectorial computational algorithms for the investigation of light propagation in 

arbitrary layered media were developed with good success many years ago; see e.g. the work of 

Prof. Moharam [58-Moharam 82] and also [59-Sharlandjiev 85]. Prohibitively long 

computational time and potentially poor convergence may be considered as disadvantages of 

these methods. Usually people work with homogeneous distributed feedback systems, and the 

analytical results are known for them. The numerical approach is sometimes necessary for the 

analysis of chirped systems, for example, such chirping may arise due to temperature [60-
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Lauzon 94] or strain [61-Hill 94EL] gradients. The properties of the system can also be changed 

by external high power laser illumination through nonlinear processes. As a result, a guided-

mode resonance filter was demonstrated to be optically tunable in [62-Dobbs 06]. Artificially 

implemented controlled chirp, in particular in fibers, can be used for the compensation of 

dispersion [63-Komukai 98, 64-Hill 94OL]. Usually the chirp of the grating is considered to be 

in the form of a quadratic spatial dependence of phase. Then, the spectral behavior of the 

reflectance is still symmetric around the resonant frequency; however, zeros of the reflectance 

between the lobes are “washed out”. In some cases, it is also important to consider another type 

of the chirp, the cubic term in spatial dependence of the phase. That leads to an asymmetry in the 

sizes of the secondary lobes of the reflectance; this asymmetry was observed in fibers [65-

Mizrahi 93]. The simplest way of numerically analyzing an arbitrary nonuniform distributed 

feedback system is the so-called “staircase” approximation; the validity of such a numerical 

approach is discussed in [66-Popov 02]. 

The media for the propagation of light discussed above were characterized by a scalar 

permittivity ε and a scalar permeability μ with a dependence on one spatial coordinate z. In the 

case of uniaxial or biaxial media the electric permittivity ε is a tensor. The propagation of light in 

anisotropic crystals and in complex-structured periodic media is discussed in [67-Belyakov 92]. 

Many optical applications are based on liquid crystals, which also exhibit optical anisotropy. 

Reflection of light by cholesteric liquid crystals is very strong and spectrally selective. This 

quality may be used in the liquid-crystal display industry, see the monographs [68-Khoo 93, 69-

de Gennes 93]. The planar nematic liquid-crystal structure with the director twisted in the light 
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propagation direction was studied in the research group of Prof. Zeldovich [70-Sarkissian 06]. In 

the present work, we will consider beam propagation only in isotropic media. 

The classical phenomena of light propagation are formulated mathematically by the 

equations of mathematical physics. Generally, these equations are partial differential equations 

of the second order [71-Morse 53]. In the monochromatic case the problems for layered media 

are described in a one-dimensional way with boundary conditions at the planes z = z1 and z = z2, 

defined for values of one spatial variable z only. Many fundamental analytical results and 

conclusions based on numerical calculations are obtained for one-dimensional problems; that is 

why we paid so much attention to them. Generalization of layered media problems is necessary 

in order to investigate a slab of media with varying parameters along one direction when that 

direction is not normal to the boundary planes. Another important type of such objects are 

slanted VBGs, which have fringes that are not parallel to boundary planes. Widely used 

examples of such gratings are transmission holograms with fringes perpendicular to the 

boundaries. The diffraction of light by a slanted VBG is formulated as a one-dimensional 

problem and it has been solved analytically [42-Kogelnik 69] using the correct phase-matching 

of two propagating wave vectors with the grating wave vector at the boundaries. If the thickness 

is small enough, then the slanted grating becomes a planar grating, so that the inclusion of higher 

orders of diffraction becomes necessary for accurate results [72-Moharam 81]. 

Beside the ordinary practical purposes of manipulating light propagation in applied optics 

like steering or reflecting of beams by VBGs, some new specific applications could be found by 

recording more than one grating in the sample. The early work [73-Alferness 75] explored the 

angular selectivity of a transmission hologram made with two crossed holographic gratings 
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recorded in one volume specimen. If the coupling strength of the two gratings is not uniform, but 

adiabatically changed between two gratings from one side to other, then this grating coupling 

three waves demonstrates large efficiency. What is remarkable is that this high efficiency of 

transmission VBG may be achieved with almost no dependence on the grating strength and on 

the polarization [74-Tsai 06OL]. A reflecting hologram with two recorded gratings crossed at a 

right angle offers high angular and spectral selectivity [75-Tsai 06OE]. Some results for beam 

propagation inside the transmission hologram of a doubly recorded grating are presented in [76-

Zhao 00]; that work has also a good list of references. 

Despite the continuous growth of the storage capacity of standard electronic memory, 

there is still a strong interest in realizing holographic optical storage, which promises fast data 

access [77-Hong 96]. Unfortunately, no materials for fast writing and reading have been found at 

the present. Almost all volume holographic elements are operated in a scheme in which the 

incident and diffracted waves contact the specimen through parallel boundary planes in 

transmission or reflection. Analytical solutions are significantly more difficult for holograms 

with a 90-degree geometry, where two coupled waves enter and exit the specimen on crossed 

boundary planes. This corner geometry allows one to potentially design compact architectures 

for holographic memory modules [78-Psaltis 97]. A comparison of transmission and the 90-

degree holographic recording geometry is performed in [79-Psaltis 03]. The importance of 

mathematical methods for the analysis of holographic data was shown in experiments with 

holographic recording of ultrafast fs-laser pulses [80-Centurion 06]. Standard system of coupled 

equations for propagating waves in volume diffractive element was first formulated in X-ray 

crystallography [81-Takagi 69]. 
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The present research work is devoted mostly to volume diffraction theory, but PTR glass 

technology used in related experiments is applicable also for fabricating ordinary phase plates by 

creating of permanent refractive index change across the aperture of a PTR glass plate. The 

author has participated in this research connected to phase plates. Several optical applications are 

to be mentioned, based on phase plates and done by different groups around the world. A non-

exhaustive list is: the correction of the wave front distortions of propagating optical beams [82-

Baker 09], shaping the wavefront for laser material processing [83-Sueda 04], creating optical 

vortices for enhanced astronomical observations [84-Swartzlander 08], for optical testing of 

random media [85-Popoff 10], dynamic optical trapping [86-Curtis 02], quantum cryptography 

[87-Merolla 99], quantum entanglement [88-Oemrawsingh 06], generation of Airy beams [89-

Siviloglou 07,90-Polynkin 09], focusing of light for nonlinear optics applications [91-Sola 08], 

and pulse shaping by phase modulation of spatially resolved spectral components [92-

Meshulach 98]. 



11 
 

CHAPTER TWO: STRENGTH OF REFLECTION 
 

Parameterization of the transfer matrix by strength of reflection 
 

Reflection of light by a layered media is the subject of an enormous number of works, 

including numerous monographs [28-Born 99, 29-Landau 84, 30-Haus 84, 31-Brekhovskikh 80, 

32-Yeh 88, 93-Azzam 87]. In particular, the reflection of light by Volume Bragg Gratings 

(VBGs) is usually studied in the Slowly Varying Envelope Approximation (SVEA) [42-

Kogelnik 69, 93-Collier 71, 94-Zeldovich 92]. This chapter is devoted to the theoretical study of 

the general properties of reflecting elements. We allow for the modulation of both the dielectric 

permittivity, ε(z), and the magnetic permeability, μ(z). The latter is especially important in 

connection with the new types of materials, including the ones with ε < 0, μ < 0; see the review 

[35-Pendry 03]. 

For a better perspective, let us first consider the transmission VBG which couples two 

plane waves, A and B, both having positive z-components of the Poynting vector: Pz = |A|2 + |B|2. 

Here, the  z-axis is normal to the boundaries of the VBG. The absence of absorption results in the 

conservation law: Pz =const. Writing the matrix relationship for wave coupling in linear media, 

A(z) = NAA⋅A(0) + NAB⋅B(0), B(z) = NBA⋅A(0) + NBB⋅B(0), one comes to the conclusion that the 

matrix )(ˆ zN  must be unitary; i.e. it belongs to the elements of the unitary group U(2).  

Consider now a reflecting device, where the waves A and B propagate in opposite 

directions with respect to z-axis, so that Pz = |A|2 − |B|2. The absence of absorption results in the 

conservation law: |A|2 − |B|2 = const. Writing the matrix relationship for wave coupling in linear 

media, 
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)0()0()(),0()0()( BMAMzBBMAMzA BBBAABAA ⋅+⋅=⋅+⋅= , (2.1) 

one can deduce from the assumption of energy conservation that the matrix )(ˆ zM  satisfies the 

conditions: 
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The determinant of such a matrix equals exp(2iψ), so the modulus of that determinant is equal to 

one. Such matrices constitute a U(1,1) group: their multiplication and inversion leaves them 

within the same set. One can see an analogy between our transformation of the wave amplitudes 

(2.1)−(2.3) and the Lorentz transformation if |A|2 plays the role of c2t2, |B|2 the role of x2 and the 

quantity tanh S corresponds to the velocity parameter β = V/c, where V is the relative velocity of 

the two coordinate frames. 

The physical addition of two sequential elements with the parameters S1, ψ1, ζ1, η1 and 

S2, ψ2, ζ2, η2, respectively, yields the element described by the matrix 123 ˆˆˆ MMM = , i.e. the 

matrix of the same type (2.3). Here is the expression for the resultant strength parameter S3: 

21
2

21
22

21
2

3 ,sin)(sinhcos)(sinharcsinh ηςτττ −=−++= SSSSS ,  (2.4) 
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which can vary due to mutual phase difference between the reflective elements. Equation (2.4) is 

probably known to mathematicians who have worked with the group U(1,1). However, in the 

physical context of reflection it was first derived in our work [1-Mokhov 08]. 

Knowing of the matrix )(ˆ zM  allows one to find the amplitudes of the reflection and 

transmission coefficients. For example, to solve the problem with the wave A incident on the 

layer at the front surface , z = 0, and with no wave B incident on the back surface, z = L, one 

substitutes the boundary conditions A(0) = 1, B(L) = 0 into (2.1), to get 

.tanh)(

,tanh
)(
)()()()(0

22

2

SABrR

Se
LM
LMABrrrLMLM i

BB

BA
BBBA

=←=

−=−=←=⇒⋅+= − η

,  (2.5) 

With the same boundary conditions we can also calculate the amplitude transmission 

coefficient and the intensity transmittance 

.1
cosh

1
)(

1)(

,
)(

11ˆdet)()(

22
2 R

SLM
AAtT

LM
M

M
MMMMrMMLAAAt

BB

BBBB

BAABBBAA
ABAA

−===←=

===
−

=⋅+==←

. (2.6) 

We have used the property that 1ˆdet =M  for lossless media. 

The presence of the hyperbolic tangent function in the reflection coefficient is very 

satisfying: when the strength S goes to infinity, the reflection goes to 1 asymptotically. 

Kogelnik’s theory of reflection by VBGs predicts the following value of the resultant strength 

[42-Kogelnik 69]: 

   LQ
c
nXLS

XS

XS
SSSR 






 −==















−

−
==

2
cos,,

sinh
arcsinh,tanh inside022

0

22
0

0
2

VBG θωκ . (2.7) 
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Here, S0 is the strength of the VBG at the perfect Bragg matching condition when detuning 

parameter is X = 0, the coupling parameter |κ| = ½(n1ω/c)/cosθinside⋅|cos(EA,EB)| corresponds to a 

modulation of the refractive index δn(z) = n1cos(Qz). The angle θinside is the propagation angle of 

the waves A and B inside the material of the VBG. Note that our formula (2.7) is mathematically 

identical to the result found by [42-Kogelnik 69], but it is written in a somewhat different form. 

If a reflective VBG slab has certain residual reflection from the boundaries, R1 = |r1|2 and 

R2 = |r2|2, then one must consider the possibility of coherent interference between the main VBG 

refection from (2.7) and these two extra contributions. Consideration of the result in (2.4) allows 

one to predict that at any particular wavelength and/or angle of the incident wave, the strength 

Stot of the total element will be within the limits 

2,12,121VBGtot21VBG arctanh, rSSSSSSSS −=++≤≤−− . (2.8) 

Consider a particular example of the grating strength SVBG = 3.0 at resonance, so that 

RVBG = 0.99. Even if one has to deal with Fresnel reflections, R1 = R2 = 0.04 for n0 = 1.5, the 

modified reflection at the exact Bragg condition is within the bounds 0.978 ≤ Rtot ≤ 0.996. On the 

contrary, in the spectral points of exactly zero RVBG, the residual reflection varies within the 

interval 

( ) ( )21
2

21
2 tanhtanh SSRSS +≤≤− .    (2.9) 

In particular, if R1 = R2 = 0.04, then 0 ≤ R ≤ 0.148. Another example is if R1 = R2 = 0.003, then 

0 ≤ R ≤ 0.012. Formula (2.9) allows one also to estimate the maximum and minimum reflection 

of a Fabry-Perot interferometer with lossless mirrors of un-equal reflectivities R1 and R2. 
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Decomposition of Fresnel reflection in terms of strength of reflection 
 

Consider now a fundamental problem of electrodynamics: the reflection of light by the 

sharp boundary between two media at the incidence angle θ1, so that the refraction angle is θ2. 

We denote by ε1, µ1, ε2, µ2 the values of the dielectric permittivity and the magnetic permeability 

in these two media, so that the phase propagation speeds v1,2 and impedances Z1,2 are 

2,1,,,1v
vacvacvacvac

===== jZnc
n
c

j

j
j

jj
j

j
j ε

µ
µε
µε

µε
.  (2.10) 

The angles θ1 and θ2 are related by the Snell’s law, which is governed by the propagation speed 

ratio, i.e. by the ratio of refractive indices n1 and n2, namely n1sinθ1 = n2sinθ2. Cases of total 

internal reflection (TIR) and/or an absorbing second medium require definition 

( ) 0,sin1cos 2221
22

212 >″″+′=−= CiCCnn θθ .   (2.11) 

The condition 02 >″C  guarantees that exponential decrease of the transmitted wave into the 

depth of the second medium. The amplitudes of reflection for TE and TM polarizations are well 

known: 

   
2211

2211
TM

2211

2211
TE coscos

coscos)(,
coscos
coscos)(

θθ
θθ

θθ
θθ

ZZ
ZZEErr

ZZ
ZZEErr xxyy +

−
−=←≡

+
−

=←≡ . (2.12) 

These expressions have two very instructive limiting cases. The first one is the case of two 

media, which have the same phase speeds v1 = v2 (and thus refractive indices), so that θ1 = θ2. In 

a surprising manner, the reflection coefficients for such a problem do not depend on the angle 

and are equal to each other: 
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12

12
TMTE ZZ

ZZrrr Z +
−

=≡= ∆ .     (2.13) 

The other case corresponds to media 1 and 2 having exactly the same impedances, Z1 = Z2, but 

different propagation speeds, n1 ≠ n2. In that case, the reflection coefficients are equal (up to the 

sign): 

21

21
1vTMTE coscos

coscos)(
θθ
θθθ

+
−

=≡−= ∆rrr .    (2.14) 

In particular there is no reflection at normal incidence for the pair of impedance-matched media 

(stealth technology). Reflection strength values S = –arctanh r for these two limiting cases are 









=








= ∆∆

1

2
1v

2

1
cos
cosln

2
1)(,ln

2
1

θ
θθS

Z
ZS Z .    (2.15) 

Here is truly remarkable relationship, which we have found. One can produce the reflection 

strengths STE(θ1) and STM(θ1) by simple addition (for TE) or subtraction (for TM) of the speed-

governed and impedance-governed contributions from (2.15): 

)()(,)()( 1v1TM1v1TE θθθθ ∆∆∆∆ −=+= SSSSSS ZZ ,  (2.16) 

and according to (2.6), r = –tanh S. One can easily verify that the expressions (2.15) and (2.16) 

reproduce the standard formulae (2.12) identically. 

 

Propagation of electro-magnetic waves in layered media 
 

We have actually found (2.16) for ourselves not empirically but have derived the result of 

additivity for reflection strength S directly from Maxwell’s equations. Starting from here, we 

proceed with the tedious work of deriving the relevant formulae. The idea is to formulate the 
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exact Maxwell equations for the layered medium in terms of two coupled amplitudes A and B 

propagating with Pz > 0 and Pz < 0 respectively. We consider the incidence plane to be the xz 

plane, for a monochromatic wave ∝ exp(−iωt) incident upon a layered medium with the 

properties being z-dependent only. By θair we denote the incidence angle of the wave in air, so 

that 

airairair,airairair,air cos,sin,ˆˆ θωθω n
c

kn
c

kkk zxzx ==+= zxk .  (2.17) 

The waves in a layered medium are naturally separated into transverse electric (TE) and 

transverse magnetic (TM) parts. We will write the electric and magnetic vectors of the two 

polarizations using the appropriately normalized components ux, uy, uz and wx, wy, wz, 

respectively: 

    [ ] )(/)(ˆ)(ˆ),(,)()(ˆ),(:TE zZezwzwtzZezut tixik
zx

tixik
y

xx ωω −− +=−= zxrHyrE , (2.18) 

    [ ] )(/)(ˆ),(,)()(ˆ)(ˆ),(:TM zZezwtzZezuzut tixik
y

tixik
zx

xx ωω −− =+= yrHzxrE . (2.19) 

Here and below we use the quantities k(z), p(z), g(z), f(z) defined by  

)(cos)()()(,)()( 22 zzkkzkzp
c

znzk x θω
=−== ,   (2.20) 

)(cosln
2
1

)(
)(ln

2
1)(,

)(
1ln

2
1)( z

dz
d

zk
zp

dz
dzf

zZdz
dzg θ≡== .   (2.21) 

Maxwell’s equations for the amplitudes of the TE polarization are 

yxzyyzxxzxxzy uikikwguuikwgwwikwiku =−+−∂=−+−∂= ,, ,  (2.22) 

they may be rewritten as 

xyxzxyyz gwukpiwikwguu −=∂+=∂ 2, .   (2.23) 
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It is convenient to introduce the amplitudes A(z) and B(z) for TE polarization by the 

definitions, see Figure 1: 

.)()(
8

1)(

,)()(
8

1)(

,air

,air

TE

TE
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xy
zik
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    (2.24) 

 

 

Figure 1. Notations for the incident A(z) and reflected B(z) waves in the approximation of infinitely wide plane 

beams with account of the reflections from both boundaries, z = 0 and z = L, as well as the reflection by the VBG. 

 

The value of the z-component of the Poynting vector for any incidence angle at any point 

z is 

( ) 22** )()(..
4
1)( zBzAccHEHEzP xyyxz −=+−= .    (2.25) 

θair 

 A(z)exp(ikair,zz) 

B(z)exp(–ikair,zz) 

 z = L z = 0 

z 

 x 
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It should be emphasized that we have deliberately chosen to normalize the amplitudes A(z) and 

B(z) such that the relationship (2.25) is valid at any point z. One may further consider the 

transformation (2.24) as a transition to “Slowly Varying Envelopes” (SVE) A(z) and B(z). It is 

important to emphasize, however, that no approximations were made up to this point. Indeed, the 

exact Maxwell equations for TE polarization are reduced by the coupled pair: 
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. (2.26) 

A similar set of transformations may be done for TM polarization: 
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guuuikikwwikikugwwiku

−=∂+=∂⇔
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  (2.27) 

with the same parameters k(z), g(z), p(z). The amplitudes of coupled TM waves are 
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    (2.28) 

Finally, the exact Maxwell equations for TM polarization are 
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with the same parameters f(z), g(z) as in (2.21). The gradient functions f(z) (related to 

propagation speed) and g(z) (related to impedance) enter as a sum (for TE polarization) or as a 

difference (for TM one) into our coupled equations. Sharp steps of n(z) and Z(z) yield our result, 

equations (2.16). 
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The notion of reflection strength was originally introduced by us for non-absorbing 

media. It is remarkable, that the reflection by a sharp step with an absorbing second medium, or 

in the case of TIR, are both described by S = –arctanh(r) and equations (2.15) and (2.16) are still 

valid. In particular, the TIR regime corresponds to 

( ) 





 −+=






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= ∆∆ 11
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211v
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1 cos1sinln
2
1

4
)(,ln

2
1 θθπθ nniS

Z
ZS Z .  (2.30) 

As expected, |r| = |tanh(iπ/4 + Re S)| = 1 for the case of TIR. 

 

Formalism of strength of reflection in other branches of physics 
 

It is interesting to consider the reflection of longitudinal acoustic waves from the 

boundary between two liquids, which have densities ρ1 and ρ2, propagation speeds c1 and c2 and, 

therefore, acoustic impedances Z1 = ρ1c1 and Z2 = ρ2c2, respectively. A well-known expression 

for the reflection coefficient for the wave’s pressure [31-Brekhovskikh 80, 96-Landau 87] is 

2211

2211
longitud coscos

coscos)(
ZZ
ZZpprr

θθ
θθ

+
−

=←≡ .   (2.31) 

For this acoustic case we see again that the reflection strength is given by the sum of two 

contributions, 

)()()],(tanh[ 111longitud θθθ cZpp SSSSr ∆∆ +=−= .   (2.32) 

The Schrödinger equation for the motion of an electron in a given Bloch band should 

generally account for two kinds of spatial inhomogeneity, see e.g. [97-Nelin 07]. One of them is 

U(r) [Joule], i.e. the spatial profile of the bottom of the Brillouin zone. The other one must 

describe m(r) [kg], i.e. the inhomogeneity of the coefficient 1/(2m) in the parabolic 
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approximation E(p) = p2/(2m) of the dependence of electron energy in the vicinity of the bottom 

of Brillouin zone on the momentum p. The corresponding hermitian Hamiltonian is 

)(ˆ
)(2

1ˆˆ rp
r

p U
m

H += ;     (2.33) 

which acts upon the wavefunction ψ. Consider now the motion of the electron with fixed energy 

E, i.e. ψ(r,t) = ψ(r)exp(–iEt/ħ). Then the stationary Schrödinger equation takes the form 
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.    (2.34) 

If m(r) = const, then equation (2.34) is reduced to the conventional Schrödinger equation. It is 

convenient to introduce two quantities: a “kinematic parameter” k(r) in m, i.e. the wavenumber, 

and a “dynamical parameter” Z(r) in s/m, the analog of impedance by definitions 
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.   (2.35) 

Numerically, the parameter Z(r) coincides with the local value of the inverse group velocity. 

With these notations equation (2.34) takes the form 

0)(
)()(

1)()( 2 =+







∇∇ ψψ r

rr
rr k

kZ
kZ .    (2.36) 

Equation (2.36) has two interesting limiting cases. One of them is (2.36) with 

Z = Z0 = const, 

0)(
)(

1)( 2 =+







∇∇ ψψ r

r
r k

k
k .    (2.37) 
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and we may call it the Z-Helmholtz equation to emphasize the condition Z = Z0 = const. This Z-

Helmholtz equation was first introduced in the talk by Prof. Zeldovich and Dr. Tsai [98-Tsai 06] 

in 2006. 

The other limiting case is when k = k0 = const, but the impedance is coordinate-

dependent: 

0
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1)( 2
0 =+
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∇∇ ψψ k

Z
Z

r
r .    (2.38) 

and for similar reasons (2.38) may be labeled as the k-Helmholtz equation. Finally, when both 

Z = Z0 = const and k = k0 = const, we come to standard Helmholtz equation, 02
0

2 =+∇ ψψ k . The 

usual stationary Schrödinger equation 0)(22 =+∇ ψψ rk  (i.e. with ħkZ = m0 = const) is a certain 

intermediate case between the Z-Helmholtz and the k-Helmholtz equations. 

The flux J [particles/(m2s)] for a plane mono-energetic wave ψ =  exp(–ikr) in a 

homogeneous part of the medium equals Zkk 22 )/(v)/( ψψ kkJ == . The conservation law, 

which is valid as a consequence of the mono-energetic Schrödinger equation (2.36), is  

( )ψψψψ ∇−∇== **
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m
itt  .   (2.39) 

The problem of reflection for a one-dimensional stationary Schrödinger equation, 

( ))(2)(,0)()( 2
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ψψ ,   (2.40) 

may also be solved by the coupled wave approach. Namely, we will assume for definiteness that 

k2(z) > 0, and introduce local amplitudes A(z) and B(z) by 
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The advantage of the amplitudes A(z) and B(z) is that the flux Jz(z) is expressed very simply: 
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This flux is conserved, J(z) = const, as a consequence of (2.34) with a real mass and potential. 

The uniqueness of the representation (2.41) is guaranteed, if one requires it, by the fact that in the 

homogenous part of the medium our waves A and B do not interact with each other. It is 

important, to note that (2.40) is exactly equivalent to the system of coupled first order equations: 
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A numerical (or analytical, whenever possible) solution of this exact system in the form of an 

M̂ -matrix allows one to find the amplitudes of reflection and transmission. It should be 

emphasized that the boundary conditions for system (2.43) are applied only at one end, e.g. at 

z = –∞, so that one should solve the Cauchy problem for which any standard code of integration 

of ODEs works very well. Figure 2 shows the example of the profiles of |A(z)|2 and |B(z)|2 

normalized to P(z) = 1 for the problem with 

)(cosh)1()( 222
0

2 zsskzk αα ++= ,     (2.44) 

at particular “non-reflective” value s = 1 at k0 /α = 0.3 (see Landau & Lifshitz 1981).  
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Figure 2. Solid lines: potential well k0
2–k2(z) = –2/cosh2z yielding non-reflection and incident beam energy 

k0
2 = 0.09. Dashed lines: fluxes |A(z)|2 and |B(z)|2 of counter-propagating wave function components. 

 

Solving for the reflection of waves for tilted incidence by a sharp boundary between two 

media with different values (k1, Z1) and (k2, Z2) requires the analog of Snell’s law: 

2211 sinsin θθ kk = . Here θ1 and θ2 are the angles of the momentum normal to the boundary in 

the respective media. The boundary conditions of continuity of wave-function ψ  and of the 

)()( Zkz∂∂ψ  yield the following expression for the reflection coefficient: 
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similar to expression (2.16) which we have for TE electromagnetic wave. 
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CHAPTER THREE: PROPERTIES OF UNIFORM VBG AND 
 FRESNEL CORRECTIONS 

 

SVEA equations for reflection by VBG 
 

Consider now a non-magnetic (i.e. optical) medium with a volume Bragg grating (VBG) 

of refractive index n(z): 
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Here real n1(z) and γ(z) are slow varying zero-to-top amplitude and phase of the “refractive” 

component of the VBG and n2(z) is small local correction to constant real refractive index n0; 

that correction n2(z) includes possible loss iIm[n2(z)], so that the spatially-averaged power 

attenuation coefficient of the material is αloss[1/meter] = 2ωn2''/c. 

We can calculate our coupling functions f(z) and g(z) according to (2.21) by approximate 

differentiation of fast oscillating terms of n(z) only: 
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Effective interaction between waves a and b occurs at the Bragg condition, when  

2
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−=≈ .   (3.3) 

Here θin is the angle between the z-axis and the propagation direction of light inside the VBG. 

Thus, Eq. (3.2) with account of the Bragg condition leads to coupling functions for TE and TM 

polarizations 
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We see a natural result: the coupling coefficient (which in optics is due to modulation of ε(z) 

only) is smaller by factor ρ = (pa·pb) = cos2θin for TM polarization in comparison with the 

coupling for TE polarization, where that factor equals 1. Here pa and pb are unit polarization 

vectors of the electric field for waves a and b. The function sin(Qz+γ(z)) is equal to 

( ) ( ))()(
2
1)(sin ziiQzziiQz
i eezQz γγγ −−+ −=+ ,    (3.5) 

and a similar expression for the function sin(Qz+δ(z)). The slowly varying envelope 

approximation, which we will use later, corresponds to keeping only one of the two exponential 

terms from (3.5) in the coupling terms from Eqs. (2.26) and (2.29); namely, the terms which will 

effect z-accumulated coupling. As a result, we get the equation for matrix )(ˆ zM  expressing 

values a(z) and b(z) through a(0) and b(0): 
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The interaction coefficients +κ  and −κ  have indexes (+) or (−), denoting the ± z-direction, in 

which the result of the corresponding scattering propagates. These coefficients for TM 

polarization are smaller by the polarization factor in2cos θρ = . As written in Eq. (3.6), the 
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interaction matrix still contains fast-oscillating phase factors. However, choosing a “central” 

value of the real parameter p0 = Q/2, one can present the matrix )(ˆ zM  in the form 

( ) )(ˆ)2(ˆ)(ˆ ,air zPzkQKzM z−= ,    (3.8) 

so that the equation for the P̂ -matrix becomes “slow varying” indeed: 
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Then the Bragg condition is satisfied when p(z) = Q/2. 

As we already discussed, a numerical (or analytic) solution of the Cauchy problem for 

this system placed between z1 = 0 and z2 = L yields the matrix )(ˆ LP , and thus )(ˆ LM . If our glass 

plate with a VBG is placed at an arbitrary z1, then, according to the definition of the amplitudes 

a(z) and b(z), the matrix ),(ˆ 12 zzM  will equal 

( ) ( ) ( )1,air1,air112 ˆ)(ˆˆ,ˆ zkKLMzkKzLzzM zz−=+= .   (3.10) 

The value of the matrix ),(ˆ
12 zzM  at z2 = z1 + L, i.e. at the end of VBG, allows one to find the 

reflection and transmission coefficients. 

 

Kogelnik’s analytical solution for a uniform VBG 
 

Consider a VBG medium placed between z1 and z2 = z1+L with the previously considered 

above refractive index profile n(z–z1) with homogeneous (constant) parameters n1, γ, δ, 2n′ , 2ni ′′ , 

and αloss[1/meter] = 2ωn2''/c being the spatially-averaged attenuation coefficient for power. For 
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definiteness we consider here only the TE polarization. The function p(z) from (2.21) in this case 

will be assumed constant with a small positive imaginary part: 
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After that, the Ŵ -matrix from (3.9) becomes z-independent, and Eq. (3.9) has the explicit 

solution: 
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The dimension of ∆ is [1/meter]. In this manner, the matrix )(ˆ LP  becomes 
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Going back to Eqs. (3.10) and (3.8), we obtain the expression for the matrix ),(ˆ
12 zzM : 
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As a result, the reflection coefficient for a VBG becomes 
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Formulae (3.1)-(3.6) of this Section 3 allow one to find the reflection coefficient even in the 

presence of loss or gain. Equivalent results in different notation were first derived in the 
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fundamental work of H. Kogelnik [42-Kogelnik 69]. We have re-derived them in our notation, 

which facilitate the subsequent account of Fresnel reflections.  

Imaginary detuning may be expressed via intensity an attenuation coefficient αloss:  

in

loss
cos2 θ
α LYX =≡′′ .     (3.17) 

The relatively difficult part is to express the dimensionless quantity Re(X) via observables; this 

parameter signifies the detuning from the Bragg condition. Suppose that the Bragg condition is 

satisfied exactly at certain values of the incident angle θair,0 at the wavelength λvac,0 for definite 

values of Q and n2.  Then, in the case of relatively small (but homogeneous) deviations from the 

Bragg condition one gets 
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While the appearance of expressions (3.11)-(3.18) is rather heavy, their calculation by any 

computer is quite straightforward. Moreover, accuracy of modern computers allows one to use 

the procedure, which is morally reprehensible, but numerically admissible: calculate 

p(detuned) – p(Bc) as a small difference of two large quantities. Such a procedure reduces the 

risk of making a typo in Eq. (3.18). 

In the absence of loss or gain and with the modulation of real Re(n1'), one gets  

S+=(S–)*=S0eiγ and Im(X) = 0, so that one can use the notion of reflection strength S, and then the 

reflection coefficient RVBG = R+ = R− = R becomes 
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Finally, at the exact Bragg condition, X = 0, and without loss, the reflection strength S in (3.19) is  

invac

1
0 cosθλ

π LnSS == ,     (3.20) 

which constitutes the most important and most simple formula of Kogelnik’s VBG theory. 

 

Influence of Fresnel reflections 
 

For a sharp boundary positioned at zb, the process of Fresnel reflection of the waves with 

TE and TM polarizations is described, according to (2.12) and (3.10), by the matrix M̂ : 
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At normal incidence to the boundary between two optical media with n1 and n2, the reflection 

strength is the same for both polarizations: S = ½ln(n2/n1), since Z = Zvac/n. For the particular 

case n2/n1 = 1.5, one gets S = 0.2027. 

Now consider the case of a VBG positioned between z1 and z2 = z1+L with a background 

refractive index n0; this VBG is surrounded by air, and nair = 1. For a VBG with boundaries, the 

transformation matrix M̂  given by Eq. (3.15) will be surrounded by two boundary matrices of 

the type (3.21): 
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   )(ˆ)(ˆ)(ˆ),(ˆ)(ˆ)(ˆ)(ˆ)0,0(ˆ 1air,11air,12VBG2air,22air,12 zkKSzkKzzMzkKSzkKzzM zzzz Σ−Σ−=−+ . (3.23) 

Here S1 and S2 are the strengths of reflections at the corresponding boundaries, and the matrix 

),(ˆ
12VBG zzM  is given by Eq. (3.15). While the analytical expressions look quite heavy, one has to 

multiply the matrices given by explicit expressions only; such a procedure is very simple for a 

computer. 

In case of a perfectly lossless VBG one has to take into account the phase relationships 

between contributions of the first boundary, the VBG and the second boundary. After a 

summation of the arguments in the corresponding K̂ -matrices, the total matrix of VBG with 

boundaries given by (3.23) will be 
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with S0 and X defined in (3.13) and (3.19). We see that the character of the curve of reflectance 

versus detuning depends on two phases: γ and QL, both related to the properties of the specimen, 

which contains the grating. Their values fluctuate from one specimen to the other as a result of 

manufacturing of VBG. Quite often the specimens are coated with antireflection layers. 

Far from resonance, when X>>S0, the matrix XSP ,0
ˆ  will transform into a diagonal phase 

matrix )(ˆ XK . Then, after summation of the phases between the boundaries, we simplify the 

matrix (3.24) to 

in01air,122air, cos),(ˆ)(ˆ)(ˆ)(ˆ)(ˆˆ θωϕϕ Ln
c

pLzkKSKSzkKM zz ==ΣΣ−= , (3.26) 
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which describes an ordinary glass plate with interferometric properties defined by the phase 

difference pL. When this relative boundary phase is equal to an integer number m of π, typically 

large, then the matrix )(ˆ ϕK  is proportional to the unit matrix, and the total reflection strength is 

S = S1+S2 = 0. This corresponds to perfectly resonant transmission in a Fabry-Perot 

interferometer based on reflections by the two boundaries. If at some particular frequency or 

angle point our VBG has zero strength, e.g. if G = imπ, with m being integer non-zero number, 

then XSP ,0
ˆ  is proportional to the unit matrix and the boundary strength matrices Σ̂  are separated 

by the phase matrix so that the total reflectance will be defined only by the boundaries. 

Let us return to the VBG without background loss or gain and with boundaries of 

different reflectances R1 and R2 in general case, so that their reflection strengths are 

2,12,1 arctanh RS = , respectively. Multiplication of the corresponding matrices of the first and 

of second boundaries of the VBG yielded the resulting matrix (3.24). The maximum and 

minimum values of the total resultant strength are realized when the boundary terms are added or 

subtracted from the VBG term, 

( )21VBGmin21VBGmax
2tanh SSSS,SSSSS,R +−=++== ,  (3.27) 

due to appropriate intermediate phases. We consider formula (3.27) to be one of the important 

results of the present work. 

Figure 3 was obtained by direct multiplication of the relevant matrices and then by 

depicting all possible values of |Rtotal|2 at various combinations of the phases. 
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Figure 3. Reflectivity R of a VBG with account of the interference of reflection from the VBG alone with two extra 

contributions: from the two boundaries of the specimen, for all possible phase combinations. Values of R are 

between the dashed curves for Fresnel 4% reflections from bare boundaries, and are between dotted curves for anti-

reflection coatings (ARC) at 0.3% each. 

 

We see that in the region of perfect Bragg condition, X = 0, the reflectivity is not affected 

strongly by the boundaries. Even if one has to deal with Fresnel reflections, R1 = R2 = 0.04 (for 

n0 = 1.5), the modified reflection at the exact Bragg condition is within the boundaries 

0.9779 ≤ Rtotal ≤ 0.9956 for RVBG = 0.9900 (S = 2.993). On the contrary, in the spectral points of 

exactly zero RVBG, where in (3.19) X2 = S0
2+m2π2 with integer nonzero m, the residual reflection 

varies within the interval 

( ) ( ) ii RSSSRSS arctan,tanhtanh 21
2

21
2 =+≤≤− .  (3.28) 
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In particular, if R1 = R2 = 0.0400, then there is a 0 ≤ R ≤ 0.1479. Another example is if 

R1 = R2 = 0.0030; then 0 ≤ R ≤ 0.0119. It means that there is a considerable advantage of the 

coating the VBG with an anti-reflection coating. 
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CHAPTER FOUR: NON-UNIFORM VBGS 
 

Propagation of EM waves in a non-uniform VBG 
 

The requirements for angular and spectral selectivities of VBGs define their necessary 

physical parameters such as thickness, depth of modulation of refractive index etc. The 

properties uniformly modulated VBGs are well known from Kogelnik’s theory. Standard 

deliberately introduced non-uniformities are the apodization of refractive index modulation for 

reducing secondary lobes in the reflectance spectrum and chirping the grating period to compress 

short pulses. Parameters of real fabricated gratings can vary from the required ones and can 

significantly affect final properties. The influence of undesirable non-uniformities was studied 

for fiber gratings: the presence of a spatial quadratic term in the background refractive index and 

the observed asymmetries transmission spectrum of a fiber grating [65-Mizrahi 93] were 

discussed. An analysis of VBGs is more complicated because of the additional parameter, the 

angle of incidence. 

The propagation of electromagnetic waves in layered media can be formulated in terms 

of counter-propagating waves A(z)exp(–iωt +ikz z) and B(z)exp(–iωt –ikz z) with a convenient 

normalization of Poynting vector: Pz = |A|2 – |B|2, (2.25). The matrix relationship for wave 

coupling in linear media is  A(z) = MAA·A(0) + MAB·B(0),  B(z) = MBA·A(0) + MBB·B(0). In the 

absence of losses, the matrix M̂  belongs to the group SL(1,1) and the amplitude reflection 

coefficient for an element of length L is equal to r = r(A←B) = –MBA(L)/MBB(L) = –e–2iηtanhS, 

where η is a phase parameter and S is the strength of reflection. Matrix )(ˆ zM can be found from 

equation 
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)(ˆ)(ˆˆ zMzVdzMd =       (4.1) 

and the Maxwell equations for a TE wave inside a reflective VBG with 

n(z) = n0 + n1(z)cos[Qz+γ(z)] + n2(z), which lead to matrix V̂ : 
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And, after certain phase transformations, V̂ goes to Ŵ : 
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The Bragg condition 02cos in0 =−Qcn θω is affected by the term dzdczn γθω 2
1

in2 )cos()( − , 

which is angular-dependent for VBGs. 

Figure 4 represents an experimental transmission spectra from a  fabricated, narrow-band 

reflective VBG fitted with a theoretical curve of a uniform grating with only a small additional 

quadratic term in n2(z) of the refractive index n(z). 
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Figure 4. Asymmetry in transmission spectra. Solid line, our experiment; dotted line, our model. 
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The properties of a non-uniform VBG can be successfully simulated with a 

corresponding step-matrix algorithm. 

 

Theory of light reflection from a chirped VBG 
 

A chirped Bragg grating (CBG) allows for the stretching and subsequent compression of 

a short laser pulse, see experiments in [52-Liao 07]. Such a grating may be characterized by two 

parameters: z-dependence of resonant vacuum wavelength of reflection, dλres/dz, and coupling 

coefficient κ, of dimension m–1. The profile of refractive index in such a CBG may be taken in 

the form n(z) = n0 + n1(z)cos[Qz+γ(z)]. At a given point z of the CBG, the local Bragg condition 

corresponds to a certain vacuum wavelength λres(z), which may be found from the equation 

dzdQzn γλπ +=)(4 res0 .    (4.4) 

In the approximation of relatively small deviations of λres(z) from some central reflection 

wavelength λ0 = 4πn0/Q, the parameter dλres/dz is related to the phase profile γ(z) according to 

(4.4) by 
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Coupled equations in slowly varying envelope approximation (SVEA) for a 

monochromatic wave [ ])exp()()exp()()exp(),( ikzzBikzzAtitzE −+−= ω  with wavelength λ0 have 

the form 
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Is it possible to find an analytic solution of these equations in the approximation that 

κ(z) = const and γ(z) = β(z–z0)2, which corresponds to a homogeneously strong grating with 

constant chirp )2( 0
2
0res ndzd πβλλ −= . 

The reflection coefficient r for a monochromatic wave may be found by analytical 

continuation of the coupled wave equations (4.6) into the complex plane of coordinate z. The 

result for reflectance is as follows 

( )βπκ 22 exp1 −−== rR .    (4.7) 

Figure 5 represents the numerical simulation of reflection by a CBG with constant chirp 

in the range 10 nm on grating length 30 mm at λ0 = 1μm so that β = 3.14 mm–2 (n0 = 1.5) and 

uniform coupling strength κ = 1.57 mm–1 by n1 = 5·10–4. Weak oscillations of the reflection 

spectrum are connected with the influence of the un-apodized boundaries. The reflection value R 

obtained by these numerical simulations based on the transfer-matrix approach for chirped 

gratings [2-Glebov 08, 99-Ennser 97] coincides with our analytic result R = 0.915 given by (4.7). 
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Figure 5. Reflection spectra of a uniformly chirped Bragg grating. 
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Figure 6 shows the intensity distributions inside the CBG. 
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Figure 6. Intensity profiles |A|2 and |B|2 inside a chirped VBG for the central resonant wavelength. 

 

Thus, the main result Eq. (4), which was actually obtained in [100-Belai 06], allows one 

to predict the parameters of CBG design for pulse stretching and pulse compression. 
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CHAPTER FIVE: RESONANT CAVITIES IN VBGS 
 

Fabry-Perot resonator based on uniform VBGs 
 

Consider a VBG made of two equally strong parts with each of them having the same 

values SVBG. Then the reflection action of the compound VBG depends on the mutual phases of 

these two gratings. If there is no phase shift Δγ between cosinusoidal modulations of refractive 

index inside these two gratings, then the combined VBG just acquires double the strength of each 

grating, Stot = 2SVBG. However, any intermediate shift, 0<Δγ<2π, yields a narrow spectral 

transmission peak (or reflection dip) to T = 1 (R = 0). The physical sense of this 100% 

transmission peak is similar to the 100% transmission peak of a Fabry-Perot resonator with flat 

mirrors when the resonant condition is satisfied. 

In order to describe such a configuration of two VBGs, we have to multiply consequently 

matrices of elements with corresponding phases. The experimental study was actually performed 

with two uncoated identical reflective VBGs placed very close to each other with a small gap l 

between them filled by an immersion liquid with the same background refractive index n0 as the 

VBG. The coordinates of first grating’s boundaries are z0 = 0 and z1 = L, and second grating is 

positioned between z2 = L+l and z3 = 2L+l. Spectral parameters X and strengths S0 are the same 

for both gratings, but the initial phases γ1 and γ2 are different. The boundary reflection strength 

from air to glass is Sb and the one from glass to air is –Sb. The transformation matrix determining 

waves a and b after this compound system, z > z3, through values of a and b before it, z < 0, is a 

product of matrices of two types: (3.21) and (3.15) with )2/(ˆˆ)2/(ˆ)(ˆ ,0
γγ −= KPKLP XS , see also 

(3.25). After simplifying the phase arguments, it becomes 
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For small size l of the gap the phase pl (or kl at normal incidence) is approximately the same for 

all wavelengths in question. We see that the reflection characteristics of this compound system 

depend on three intermediate phases: the phase shift Δγ between two cosinusoidal modulations in 

VBGs contacted via immersion layer and two outside boundary phases β1 and β2. 

Our experimental collaborators from Prof. L. Glebov’s group have presented an 

experimental demonstration of the coherent combination of two π-shifted VBGs in air. The VBG 

used for this demonstration were recorded inside PTR glass [2-Glebov 08]. They have their 

central wavelengths at 1063.4 nm, thicknesses of 2.76 mm and refractive index modulation of 

154 ppm, middle-to-top. They were recorded inside PTR glass without slant, and the diffraction 

efficiency was equal to 72%, so S0 = 1.25. The two VBGs were fixed on mirror holders, and one 

holder was motorized with a piezo-electric transducer that allowed fine translation and fine angle 

tuning. The setup is shown in Figure 7 for the measurement of the spectral response using a 

tunable laser having a 1 pm spectral resolution. 
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Figure 7. Experimental setup for the coherent combination of two VBGs in PTR glass. 
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Details of the experiment are described in our paper [2-Glebov 08]. 

The typical spectral dependence of the transmission filter is shown in Figure 8. 

Oscillations in transmission outside the resonance are due to the phase interplay between 

uncovered Fresnel reflections and the secondary evanescent lobes of gratings. This filter presents 

a transmission higher than 90%, with a bandwidth approximately equal to 25 pm (FWHM) and a 

rejection width equal to 200 pm. Rejection outside the resonance was better than 10 dB and can 

be improved by combining it with an additional VBG or using VBGs with higher diffraction 

efficiencies [101-Lumeau 06]. 
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Figure 8. Experimental transmission of two π-shifted VBGs. 

 

To illustrate the principle of phase matching between the two VBG, the distance between 

them was changed and the transmission for each distance was recorded in Figure 9a,b,c. One can 

see that depending on the distance between the two VBG, the resonance moved inside the main 
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lobe of the diffraction efficiency of the VBG. When distance was optimized and the phase shift 

Δγ set equal to π, the resonance was centered in the middle of this lobe. When this phase was 

different from π, resonance was shifted to the edge of the lobe. 

The solid curves at Figure 9 correspond to experimental data, while dashed curves are 

theoretical fits with optimized Δγ for these actual gratings. 
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Figure 9. Spectral shift of resonant transmission due to phase shift Δγ between two grating modulations. 

 

We see reasonable agreement of the theory with experiment. 
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Resonant cavity in moiré VBG 
 

The spectral profile of a reflective VBG strongly depends on the actual profile of its 

refractive index modulation. By reducing the modulation amplitude at the ends of the grating, the 

secondary lobes of the reflection spectra are suppressed. This apodization can be realized in 

different ways. One of them is based on the moiré effect which occurs at imposing two periodic 

oscillations with slightly different periods in media. As a result, the total recorded pattern has 

carrier average spatial frequency, while amplitude envelope varies slowly with spatial frequency 

equal to half of the difference of the two partial frequencies, namely 

2)(,2)(),cos()cos(2)cos()cos( 212121 QQqQQQqzQzzQzQ −=+==+ . (5.2) 

Such slow periodic variation of refractive index modulation has been implemented for fiber 

Bragg gratings [102-Legoubin 91]. The properties of moiré fiber Bragg gratings were studied 

before [103-Campbell 91, 104-Everall 97]. 

Here, we discuss moiré structure recorded in bulk material. Consider two uniform 

gratings with equal amplitude, slightly different vacuum resonant frequencies λ1 and λ2, and 

wave vectors along z-axis recorded in the same medium. Then, total modulation of refractive 

index is 
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here, n0 is the background refractive index of material, λ0 is the vacuum Bragg resonant 

wavelength of the moiré grating, and n1(z) is the slowly varying envelope of modulation 

amplitude with constant N1 and spatial semi-period tπ. 

Propagation of electromagnetic waves inside VBG may be formulated in terms of 

counter-propagating waves A(z)exp(–iωt+ikzz) and B(z)exp(–iωt–ikzz) with kz = n0cosθinω/c, 

where θin is the angle of propagation inside a VBG in the case of tilted incidence. Coupled 

equations for slowly varying envelopes A(z) and B(z) are the following: 
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(5.4) 

where κ(z) is the coupling parameter and D is a z-independent parameter of detuning from the 

Bragg condition, D = 0. This condition is angular dependent, so at skew propagation the resonant 

wavelength is shifted to λres = λ0cosθin. 

The solution of the system (5.4) for linear media can be represented in matrix form by 

)0()()0()()(),0()()0()()( BzMAzMzBBzMAzMzA BBBAABAA +=+= . (5.5) 

In the absence of loss, the matrix M̂  belongs to the group SL(1,1) and, with account of 

boundary condition  B(L) = 0,  the amplitude reflection coefficient for an element of length L 

equals 

SRSeLMLMBArr i
BBBA

22 tanh,tanh)()()( =−=−=←= − η ,  (5.6) 

where η is a phase parameter, S is the strength of reflection, and R is the reflectance. 

The solution of (5.4) for a uniform grating is given by the well-known result of Kogelnik. 

Propagation of electromagnetic waves in non-uniform VBG in the general case with z-dependent 

n0(z), n1(z) and Q(z) may be studied numerically only. 
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If the coupling κ(z)e–2iDz is a real function, e.g. at κ = κ*, D = 0, then the matrix M(z) for 

system (5.4) can be found in simple way and we get the reflection coefficient r: 
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We see that gratings with slow varying envelopes n1(z) with zero integral values, S0 = 0 

(5.7), demonstrate 100% theoretical transmittance at Bragg resonance, Tres = 1 – R0 = 1. We have 

such a situation for n1(z) from (5.3) with L = 2tπ. This result can be interpreted as perfect 

transmission through a Fabry-Perot filter of two identical reflective elements. Figure 10 

illustrates a moiré filter with one sinusoidal period of n1(z) and its spectral transmittance. 
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Figure 10. Sketch of the envelope and simulated transmittance of a moiré filter. 

 

The first moiré VBG filter was fabricated in photo-thermo-refractive (PTR) glass by 

sequentially recording two gratings with close resonance wavelengths near 1550 nm in the same 

wafer. Figure 11 presents experimental transmission spectrum of this coated sample with two 

semi-periods of the moiré pattern. The bandwidth was 50 pm with 95% maximum transmittance. 



47 
 

The estimated modulation of the recorded gratings is 120 ppm, which is not high for PTR glass. 

Our simulations show that with higher modulation amplitudes it is possible to obtain bandwidths 

of less than 10 pm. 
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Figure 11. Experimental spectral selectivity of a moiré VBG filter. 

 

The presence of transverse degrees of freedom in a VBG gives new possibilities for 

operations with laser beams. First of all, a small rotation of the grating at an angle θair shifts the 

spectral profile to a new Bragg wavelength according to 

])(1[cos 2
air

2
0air2

1
0in0res θλθλλ nn−≈= .   (5.8) 

Even more attractive is the possibility to create VBG filters with non-trivial transverse profiles 

when the vectors of the moiré pattern q and the Bragg reflection Q are not co-linear. Shifting the 

grating perpendicularly within a laser beam or cavity will provide different filtering spectral 

properties of such VBGs. Consider a one-full-period moiré VBG, L = 2tπ, with an envelope 

n1(z,x) that changes linearly from sin(z) to cos(z) when the VBG shifts in the x-direction from Lx 
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to 0, see Figure 12. An important feature of a VBG with such a moiré pattern is the zero 

resonance strength at any illuminated x-position according to (5.7), S0(x) = 0. As a result, this 

grating will have a narrow transmission peak at the same frequency λres, but with a tunable 

bandwidth and peak top flatness in the vicinity of resonance. In the case of a cos(z) profile, we 

have a coherently doubled Fabry-Perot filter with a fourth-power detuning dependence in the 

vicinity of the peak top, while a single Fabry-Perot filter yields a quadratic dependence. The plot 

on the right side of Figure 12 presents the transmittances at the corresponding illumination 

points. 
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Figure 12. Transmission spectra of a tunable moiré VBG filter at different illumination points. 

 

To conclude, robust solid-state high-aperture moiré VBG filters tolerant to high-power 

laser irradiation with tunable filtering characteristics are suggested as optical elements for laser 

design and for significantly narrowing the emission spectra of lasers of different types. They also 

can be used in high-resolution spectroscopy applications. 
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Bandwidth of resonant cavities in terms of strength of reflection 
 

The most important characteristic of any spectral filter is its transmission spectral 

bandwidth. In the case of a symmetric cavity formed by two identical elements, the transmission 

peak profile has a Lorentzian form [105-Lipson 95] 
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where X is the dimensionless detuning (3.13) from resonant wavelength λ0 at which transmission 

is 100%, and F is a dimensionless parameter, called “finesse”, characterizing the narrowness of 

the transmission peak. 

Let us first re-derive an expression for the finesse of an ordinary Fabry-Perot filter in 

terms of the reflection strength concept which we introduced earlier. Suppose that we have two 

surfaces with sharp reflection strengths ±Sh (subscript “h” stands for “half”), placed at z = 0 and 

z = L; we have chosen strengths with opposite signs in order the reflection goes to zero when 

these surfaces coincide, that is, when the separation L goes to zero. A typical example of such a 

filter is a glass plate with surface Fresnel reflection strength Sh = ½lnn0 (2.15) for propagation 

from air to glass with refractive index n0. If a transverse electric field, propagating normally to 

the reflective surface, is represented in terms of counter-propagating waves 
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then the wave amplitudes just after this surface at z = 0 will be expressed through a simple 

propagation matrix  
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An identical expression for another wave representation of the same electric field can be written 

for the second reflective surface at z = L with strength −Sh in a coordinate system shifted along 

the z-axis: 
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Comparing of the two different representations of the same electric field (5.10) and (5.12), we 

can find a relation between two sets of counter-propagating waves 
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And, finally, we can write the propagation matrix for the total process of coherent reflection 

from two surfaces of dielectric plate (dp): 
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Suppose at wavelength λ = 2πc/ω equal to some particular resonant value λ0 there is no reflection 

at all which means that the total propagation matrix is a trivial unity-matrix, 1̂ . This is possible 

when the K-matrix is proportional to the unity-matrix itself: 
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We have got a well-known result that 100% transmission of transparent dielectric plate occurs 

when its thickness equals to an integer number of light half-waves in this medium. 
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The reflective surfaces of a dielectric plate have strengths of opposite signs. If we have 

resonant cavity formed by identical non-absorbing reflective surfaces (rs) with the same 

strengths Sh of the same sign separated by distance d, then the total propagation matrix 
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will be a unity matrix when 
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Therefore in the case of two identical reflectors, the resonant transmission condition occurs when 

the separation between them equals an integer number plus one half wavelength. 

Let us consider the propagation of a wave with a wavelength slightly different from the 

resonant transmission wavelength, λ = λ0 + ∆λ. Then, the propagation phase between the two 

surfaces of a dielectric plate will be equal to α = πm + X, where X is the detuning defined before 

(5.9), and the total propagation matrix will be equal to 
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It is easy to check that the expression for the propagation matrix for two identical reflective 

surfaces will be the same, ),(ˆ),(ˆ
hdphrs XSMXSM = , in the vicinity of resonant transmission with 

the corresponding propagation phase β = π(m + ½) + X with the same X but with separation d 

(5.17) instead of thickness L (5.15). 
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Knowing the propagation matrix we can find amplitude transmission coefficient as the 

ratio of the transmitted amplitude Az = L+0 to the incident amplitude Az = 0− with the condition that 

there is no incident of B-wave, Bz = L+0 = 0, from (5.14) 
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Finally, the intensity transmission coefficient will equal 
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In the literature [33-Hecht 01] we can find following expression for the finesse based on 

the reflectivity R of one reflective surface element with an additional expression for the 

maximum reflectivity of two coherently combined elements: 

2max2 )1(
4,

)1(
4

R
RR

R
RF

+
=

−
= ,    (5.21) 

It is easy to check that we got the same expression (5.16) if we take into account that the 

reflectivity of one reflective element is equal to R = tanh2Sh. Also, when we substitute this 

expression into the expression for Rmax we get natural result that the maximum reflectivity 

corresponds to 2Sh, double the strength of one element, as it has to be according to the addition 

law for reflection strength (2.4), which states that the maximum strength is equal to the sum of 

moduli of two particular strengths 
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Thus, we have presented expressions for the finesse F and the maximum reflectivity Rmax of a 

Fabry-Perot filter formed by two thin reflective elements in new way through reflection strength 

of each element Sh. 

In case of large finesse, F >>1, in the vicinity of a transmission peak where the 

transmission T is not much smaller than 1, in expression (5.20) we can substitute X for sinX. 

Finally, from the value of dimensionless detuning at which transmission intensity equals its half 

maximum (HM), 
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we will find the full width at half maximum (FWHM) of the transmission peak intensity in terms 

of wavelength units 
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In the case of resonant cavity (C) formed by two surfaces with the same reflective strength Sh, 

the finesse is defined by (5.20) and, therefore, the width of the transmission peak is equal to 
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Now, let us calculate the bandwidth based on the corresponding finesse of a resonant 

cavity based on two identical uniform VBGs with a mutual π-shift between their refractive index 

modulations. The results of experiments performed in Prof. Glebov’s group for this compound 

VBG system were discussed in the beginning of this chapter. We presented the propagation 

matrix for this cavity in (5.1). If we consider two strong VBGs with antireflection coating, then 

we do not need to complicate our consideration by additional boundary Fresnel reflections, 
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Sb = 0. And, then, according to (5.1) the propagation matrix for two VBGs of thickness L, each 

with particular reflective strength Sh and with phase modulation separation between them γ 

(γ1 = 0, γ2 = γ), will equal 
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If the phase mismatch between the modulations of the two gratings is equal to γ = 2πm, then the 

phase matrix between the two gratings will be equal to the unity matrix multiplied by a factor ±1, 

namely 1̂)1()2(ˆ mK −=γ , and we will obtain the expected propagation matrix of a uniform VBG 

of thickness 2L with total strength 2Sh. On the contrary, with phase mismatch equal 

γ = 2π(m + ½), we will get 100% transmission at the exact Bragg condition, X = 0, and, the 

corresponding propagation matrix, with omitting trivial first phase matrix factor )2(ˆ XK − , will 

have the form 
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As we mentioned before, the transmission of a lossless optical system is defined by its 

propagation matrix element as 1/|m22|2; see, for example, (5.20). In our case the matrix element 

of interest is equal to 
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Here we keep terms up to the second order of detuning in order to be able reproduce the 

Lorentzian shape of transmission peak 
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According to (5.24), the bandwidth of a resonant cavity formed by two uniform VBGs with 

mutual modulation π-shift will equal 
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In the experiment discussed before, see Figure 8, the measured bandwidth was 

∆λ = 25pm. Let us compare this value with the theoretical one using the following data 

mentioned before: resonant wavelength λ0 = 1063.4 nm, corresponding refractive index of PTR 

glass n0 = 1.485, thickness of each VBG L = 2.76 mm, and strength Sh = 1.25 according to the 

reflectivity R = tanh2Sh = 72% of each VBG. Substitution of this data into (5.30) gives theoretical 

value ∆λ = 21pm. A small experimental widening of the bandwidth and a reduction of the peak 

from 100% transparency can be naturally explained by small inhomogeneities inside the VBG 

which results some blurring of transmission peak with corresponding spreading out of its width 

and washing out perfect 100% resonant transmission in measured transmittance across aperture. 

The experimental results presented in Figure 9 show the wavelength shift of the 

transmission peak with change of shift γ between the refractive index modulations of two 

gratings in the vicinity of π-value. For considered symmetric case γ = π, the transmission peak 

occurs at exact Bragg resonance with zero detuning X = 0. Now, with arbitrary modulation 

mismatch γ = π + δ, we determine the wavelength detuning Xδ at which 100% transmission will 
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occur. For these purposes let us expand matrix coupling waves inside VBG XSP ,h
ˆ  (5.26) up to 

the first order of detuning X 
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As a result, using the definition γ = π + δ and the additivity of arguments of phase matrices, the 

propagation matrix (5.26) will equal 

  















+

+
−








+

+
−−≈

h

h
0,

h

h
0,

h

h

2
tanhˆˆtanh

2
ˆˆ

2
tanh

2
ˆ)2(ˆˆ

hh S
SXKP

S
SXKP

S
SXKXKM SS

δπδπ . (5.32) 

As we saw before in (5.26), 100% transmission occurred when the argument of the phase matrix 

)2(ˆ γ−K  between matrices 0,hŜP  with zero detuning was equal to −π/2, which leads to the 100% 

transmission condition in the case of Equation (5.32) with γ shifted from π: 
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So, we get a first order dependence of the dimensionless detuning shift of the transmission peak 

when γ varies from π by δ. And, according to the conversion factor from (5.24), the wavelength 

shift of the transmission peak will equal 

δ
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Substitution of the parameters of the VBGs specified after Equation (5.30) into (5.34) gives the 

same value of the peak position shift with mutual grating modulation mismatch 

∆λδ/δ = 32 pm/rad which was experimentally observed and presented in Figure 9. 

 

Bandwidth of a tunable moiré filter 
 

The main feature of a VBG is its high spectral selectivity, or, in other words small 

rejection bandwidth. This property together with its large operation aperture makes a VBG 

recorded in PTR glass a unique, robust, spectral selective element for high power laser 

applications. As we discussed before, spectral selectivity of a VBG-based element can be 

improved by more than an order of magnitude by creating a resonant cavity with two uniform 

VBGs with a mutual π-shift between their modulations. Unfortunately, this compound structure 

is very sensitive to alignment, which makes its implementation problematic for many practical 

applications. On the other hand, the proposed moiré filter is characterized by similarly improved 

spectral selectivity, but it is mechanically as robust as one uniform VBG, because it is recorded 

in one piece of glass. As a result, there are no problems with mutual alignment of both cavity 

reflectors. But, in the case of the moiré filter, the precision required to record holographic 

gratings is quite high, because both gratings; recorded in the same glass sample with a precise, 

small difference between their periods; have to be uniform enough to produce a high quality 

resonator. Any non-uniformity, like a small drift of the grating periods across the aperture, which 

is an undesirable small chirp, will lead to "washing out" of the narrow transmission peak. 
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Now, let us derive an expression for the transmission peak bandwidth of a tunable moiré 

Bragg filter with a full envelope period of length 2Lπ. The corresponding coupled wave 

equations are: 
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For convenience, we will adjust the wave amplitudes with appropriate detuning phase 

dependence in order to have differential equations, which are linear in terms of the detuning ∆: 
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We will also rewrite the coupled equations in terms of a dimensionless variable ζ, instead of the 

z-coordinate 
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In order to determine the width of the Lorentzian peak, we have to solve equation (5.37) 

by sequential approximations up to the second order of detuning X; in other words, we have to 

find the elements of the propagation matrix m̂  at ς = 2π in quadratic form of X 
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For this purpose, we represent the propagation matrix power series with respect to the detuning X 
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After substitution of this expansion into the matrix differential equation (5.38), we will get series 

of matrix differential equations for each power of the detuning X 
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The solution of the differential equation for the propagation matrix at zero detuning is the 

result already discussed; it has the form equivalent to (5.7): 
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We see that the propagation matrix for a full 2π moiré period length is a unity matrix, as it should 

be for 100% resonant transmission. But we also will need its ς-dependent expression in order to 

calculate the higher order terms on detuning, which will then be used to calculate the matrix 

element m22(2π) which defines transmission as T = 1/|m22|2 according to (2.6) 
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For the next first order term we will have 
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where I0(Sh) is a zero-order modified Bessel function. 

Moreover, for the approximation term proportional to X2 we have 
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As a result, we get the matrix element of interest from (5.43-44) 
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which defines Lorentzian shape of the moiré filter transmission peak with a finesse parameter FM 
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According to (5.24), the bandwidth of the moiré filter is equal to 
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The phase shift ϕ = π/2 in the moiré 2π-period corresponds to the cosine-profile of the 

moiré modulation envelope, as opposed to the initial sine-profile with ϕ = 0. And, in this case of 

a cosine-profile, the parameter FM is going to zero (5.46) with ϕ = 0, which leads to an infinite 
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bandwidth according to (5.47). In order to have a physically reasonable value of the bandwidth, 

we have to take into account next non-zero power term on detuning X4 in (5.46). 

Let us calculate the approximation up to fourth power for a particular cosine profile: 
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Similar to (5.43) in the first order we have the following: 
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Expressions for second order are 
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The diagonal matrix elements of the second order matrix term are easy to calculate 
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but calculation of the off-diagonal matrix elements is much more challenging. We present here 

final the result from the detailed derivation, which can be done by the approach, based on 

differentiation parameter under the integral sign: 
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The third and fourth order approximation terms are expressed as 
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Now we can write the total expression for the propagation matrix of a moiré filter with a 

cosine profile up to the fourth power of detuning 
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The square of the diagonal matrix element |m22(2π)|2, which defines the transmission peak 

shape, up to the fourth power of detuning, is equal to 
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On the other hand, the determinant of the propagation matrix for an arbitrary lossless 

element has to be equal unity according to (2.3) with ψ = 0. So the calculation of the determinant 

of the current propagation matrix (5.54) up to fourth power of detuning X4 gives an expression 

which has to be equal one without any functional dependence on the parameters, such as 

detuning, which means that the coefficients at detuning powers have to be identically zero 
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The last relation in (5.56) significantly simplifies expression (5.55). As a result, with account of 

the value of the off-diagonal elements (5.52), we get an analytical expression for the 

transmission peak profile of a cosine moiré filter 
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Such detuning dependence of the transmission peak profile has a much more flat-topped peak 

shape than a regular Lorentzian peak profile. It can be explained as the equivalence of a cosine 

moiré filter to a new physical transmission element – the double coherent cavity. 

Finally, the wavelength full width at half maximum (FWHM) of this doubly coherent 

moiré (DCM) cavity transmission peak can expressed using the half width (HW) detuning 

parameter according to (5.57) 
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To the best of my knowledge, the theory of doubly coherent cavities is not well-

researched. We think such cavities could be useful for some quantum optics or quantum 

information applications. While regular Fabry-Perot cavities are widely available, the fabrication 

of double cavity looks to be challenging. The realization of such cavities based on a particular 

moiré cosine profile in principle can be a realistic way to implement a doubly coherent cavity. 
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CHAPTER SIX: MULTIPLEXED VBGS IN PTR GLASS 
 

Properties of PTR glass 
 

Photo-thermo-refractive glass is a photosensitive material developed [106-Glebov 02] for 

the recording of volume holographic elements such as high-efficiency volume Bragg gratings 

[49-Efimov 04]. UV laser radiation causes a chemical recombination processes in the 

compounds of this glass; after subsequent thermal developing the permanent change of refractive 

index of the glass matrix can be achieved up to δn ≈ 10–3 ≡ 103ppm. Robust optical elements 

made of this glass are characterized by low absorption and scattering in the visible and IR 

spectral ranges and a high tolerance to operating laser irradiation. VBGs recorded in PTR glass 

are widely used for spectral narrowing of radiation from laser cavities; they are promising 

candidates for the implementation of spectral beam combining (SBC). In particular, we discuss 

in this chapter PTR glass for recording transmitting, non-diffractive phase elements. 

PTR glass is a unique photosensitive material for recording optical phase plates. 

Homogeneous optical flats with apertures as large as 100×100 mm2 and fluctuation of the 

refractive index of a few ppm across the aperture can be fabricated in PTR glasses. The change 

of the average refractive index across the PTR glass aperture (x,y) allows one to change the 

optical path length along z-coordinate. As a result, different phase shifts φ(x,y) can be achieved, 

and the phase of the transmitted beam can be modulated across its aperture. In addition, PTR 

glass has a broad transmission spectral range, high mechanical, chemical and thermal stability, 

and good tolerance to high power radiation. 
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Let us consider a PTR glass window of constant thickness L. This plate will be used for 

recording a phase plate operating at wavelength λ. Suppose that we want a relative phase shift of 

Δφ = 2π between the different aperture points. It can be achieved with relative variation Δn(x,y) 

of the refractive index of the glass in these aperture points. If the refractive index depends also 

on coordinate z, then Δn(x,y) is the average value along the thickness, so 

,22 22 L
nnLkL λ

λ
ππϕ ππ =∆→∆=∆==∆     (6.1) 

Thus, the variation of the recorded refractive index change across the aperture for a plate 

of thickness L = 3mm and operating wavelength λ = 1.06μm has to be Δn2π = λ/L = 355ppm. 

This value is within the range of the linear photosensitivity of PTR glass, see Figure 13. 

Researchers in the glass fabrication laboratory of Prof. L. Glebov’s group have measured this 

experimental curve. 
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Figure 13. Photosensitivity curve of PTR glass depending on the exposure dosage. 
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The process of creating local refractive index change in PTR glass is described in detail 

in [107-Efimov 03]. It consists of two major steps: first, a PTR glass sample is exposed to 

radiation using, for example, a He-Cd laser, and then the sample is thermally developed at a 

temperature above the glass transition temperature for several hours. 

The change of the local refractive index of the recorded phase plate is determined by the 

UV dosage at this aperture point. Therefore, in order to create a desirable distribution of the 

phase variation  φ(x,y)  across aperture, it is necessary to control the spatial distribution of the 

UV dosage according to the curve of Figure 13. 

 

Probabilistic amplitude masks for phase plates in PTR glass 
 

In general, an amplitude mask with a gradually varying transmittance is required for 

recording an arbitrary phase plate. During the digital generation and printing process, amplitude 

masks often have small regular structural elements, “dots”, with sizes larger than the wavelength 

of UV exposure. In this case, laser radiation transmitted through such an amplitude mask has an 

additional, undesirable diffraction pattern from those structural elements. For example, ordinary 

lithographic methods allow one to create amplitude masks with only binary 

transparent/nontransparent areas. Gradual variation of the transmittance across the mask aperture 

can be achieved by creating small areas with a corresponding probabilistic distribution of their 

binary transmittance. Figure 14 demonstrates an amplitude mask of such a probabilistic type. 
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Figure 14. The central area of a probabilistic amplitude mask for recording vortex phase plate (left) and the local 

area with a filling factor 0.25 (right). 

 

If the size of small micro-areas is larger than the wavelength, then the final recorded 

coherent intensity radiation pattern inside the PTR blank will demonstrate a parasitic, highly 

divergent diffraction structure at the operating wavelength of the fabricated phase plate. There 

are several approaches to eliminate this parasitic diffraction pattern from microstructures. First, 

when contact recording is used, an incoherent source, e.g. a lamp, can be used as the source of 

recording radiation instead of a UV laser. The spectral filter can be used to eliminate the 

unnecessary part of the spectrum, restricting it to the spectral range in which the PTR glass is 

photosensitive, and, thus, reducing heating. An alternative method consists in using recording 

UV laser with small translational or angular relative shifts, varying with time, between the 

master amplitude mask and the PTR blank in order to average the coherent intensity distribution 

during the contact recording process. 

Besides the contact recording process, imaging systems can be applied. In this scheme 

the amplitude mask intensity distribution is imaged on a PTR glass blank, while high-angular 

diffraction frequencies, caused by the small structural elements, are eliminated using a spatial 

filter. As a result, the PTR glass blank is illuminated by a cleaned-up, smooth intensity 
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distribution. One optical setup of such type is a classical 4f-system. This system consists of two 

lenses separated by a distance equal to the sum of the two focal lengths, different in general case. 

A pinhole is added in the beam path between the two lenses (i.e. at the image focal plane of the 

first lens, or the object focal plane of the second lens, which overlap). The amplitude mask is 

located in the object focal plane of the 1st lens while the recording material is placed in the image 

focal plane of the 2nd lens, see Figure 15. Finally, this optical system is illuminated by a 

collimated uniform beam. In this setup, the mask is imaged using the two lenses in the PTR glass 

window and the aperture “filters out” the high angular diffraction frequencies from small 

printing “dots” on the amplitude mask. 

 

 

Figure 15. 4f optical system for spatial filtering. 

 

The method of spatial filtering was applied to record a phase mask with an azimuthally 

increasing phase shift. The experimental part of this work was done in the holography laboratory 

of Prof. L. Glebov’s group and it is not discussed in this dissertation. 

To conclude, the refractive index change across the aperture can be controlled using two 

parameters: the dosage of UV exposure and the thermal treatment duration/temperature. Thus, 

after recording the phase plate, the only controlling parameter is the thermal duration. It is 

f f f f 

Amplitude mask Lens1 
Stop 

aperture Lens2 PTR glass plate 
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possible to develop the sample at a given temperature and for a given time and to control this 

phase plate after such a heat-treatment. If the local refractive index change of the exposed area is 

less than the required change, and the phase change is also less than the required change, then the 

phase plate can be additionally thermally developed in order to make the local phase shift larger. 

To the contrary, if the refractive index change that was achieved is larger than the required one, 

and therefore the phase change is larger than the required one, it is possible to decrease the phase 

change to the required one by finely polishing the phase plate. Finally, for phase plates that are 

developed for specific operational wavelengths, after fabrication their surfaces can be anti-

reflection coated to reduce Fresnel reflection losses. 

 

Slanted reflective and transmissive VBGs 
 

We have previously discussed VBGs of the reflective type, which can be described by 

one-dimensional coupled equations for counter-propagating waves. The same theoretical results 

are applicable for fiber Bragg gratings (FBGs). The main advantage of reflective VBGs in 

comparison with FBG used for high-power lasers is that their large aperture and, as a result, the 

couplers are unnecessary, that reducing coupling losses. Another additional, important feature of 

VBGs is the possibility of tuning the Bragg condition by changing the angle of incidence upon 

the grating. Another possibility for tuning is the moiré filter in VBG with the recorded pattern 

shown in Figure 12, which conserves the resonant wavelength of the transmission peak with a 

transverse shift of the illumination point along the aperture while still allowing for a change in 

the shape and width of the transmission peak. 
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The next step is to consider volume Bragg grating geometries, which cannot be realized 

in the case of FBG. They are transmissive gratings, characterized by high angular selectivity, and 

volume elements with multiple gratings recorded simultaneously, mostly reflective VBGs with 

different slanted angles between Bragg wave vectors and normals to grating surfaces. The Bragg 

diffraction processes again can be efficiently described by coupled wave theory – actually with 

equations of the same type and with slightly different, more generalized boundary conditions. 

Previously, we used coupled wave equations derived for layered media with only z-

dependent properties. Now, consider a VBG with its refractive index uniformly modulated along 

the grating vector Q for an arbitrary orientation 

)cos(2)(:),cos()( 10
2
0

2
0110 QrrQrr nnnnnnnnn +≈<<+= .  (6.2) 

We can rederive the coupled equations from the Helmholtz wave equation for the electric 

field presented as a superposition of two waves, A(r) and B(r), with different polarizations and 

wave vectors approximately satisfying the Bragg condition 
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With the standard assumption of slow variance for A and B, the second derivatives can be 

neglected, so 
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According to the Bragg condition from (6.2), we keep only two corresponding terms after 

expanding the brackets in (6.4) and, finally, we will get two separate, coupled equations with 

slow, spatially oscillating factors 
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The polarization factor p is equal to one for TE polarization, and for TM polarization coupling is 

reduced by the cosine of the mutual angle between the wave vectors. In particular, for TM waves 

propagating in orthogonal directions there will be no coupling. 

Now, consider a reflective VBG of thickness L with vector Q in xz-plane with an angle γ 

relative to the normal of the front face of the VBG plate, see Figure 16. For definiteness, 

consider only TE incident and reflected plane waves, which, in particular, means that the 

amplitudes A and B are constant outside the VBG and at the boundaries of the VBG. 

      

Figure 16. Beam geometries of slanted reflective and transmissive VBGs. 

 

If the boundary conditions for the amplitudes do not depend on coordinate x, then it is 

natural to look for only z-dependent solutions, A(z) and B(z), of the coupled equations (6.5). 

After that, the only explicit functional dependence on the x-coordinate will remain in the 

oscillating factor, and, in order to eliminate it, the phase-matching condition Dx = 0 must be 

satisfied. It means that for a certain incident angle θA, the direction of the reflected wave will be 
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determined from this phase-matching boundary condition. Finally, we come to the following 

system of equations for the amplitudes of the incident and reflected waves 

       
( ) .0coscos

),coscoscos(,

,cos

,cos

),sinarcsin(sin0)sinsinsin(

),cos,0,(sin,
2

),cos,0,(sin),cos,0,(sin

22

2
11

2

2

2
1

,

=−→

−+==









=−

=

−=→=−−=

=<−==

−

BA
dz
d

QkkDn

Aei
dz
dB

Bei
dz
dA

kQQkkD

BA

BAz

ziD
B

ziD
A

ABBAx

BABBBAAA

z

z

θθ

γθθ
λ
πκ

κθ

κθ

γθθγθθ

γγπθθθθθ Qkk

. (6.6) 

All of the angles θA, θB, γ are defined inside the VBG glass plate, while outside the VBG 

the propagation angles of the waves in air can be recalculated according to Snell’s law. In order 

to avoid consideration of this trivial extra step, we can assume that the grating is surrounded by a 

refractive-index-matched liquid, for example. 

The coupled wave equations (6.6) can be easily transformed to linear equations with 

constant coefficients by the following substitution for wave amplitudes. After that, we can write 

a solution very similar to the already discussed one, and with the boundary condition of  

no-incoming wave B into the VBG we can get expression for the diffraction efficiency: 
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Such a reflection spectrum was discussed before, see the solid line (no additional Fresnel 

corrections from boundaries) in Figure 3. 
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A typical value of the reflective strength of a VBG is S = 3, which corresponds to a 

reflectivity of R = 0.99 at the exact Bragg resonance. The numerical value of detuning 

corresponding to half of this maximal reflectivity is 
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Then, the spectral bandwidth of a non-slanted, reflective VBG, γ = 0, can be estimated as 
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For example, for numerical values λ0 = 1.06 μm, n0 = 1.5, L = 3 mm and S = 3, the 

spectral bandwidth is equal to ΔλFWHM = 300 pm. 

Now, let us discuss a transmissive grating in similar way. The main difference between a 

transmissive VBG and a reflective one is that the wave B generated by volume diffraction is not 

reflected back in the negative z-direction, opposite to the incident wave A, but, in this case, the 

wave B leaves VBG in the same direction as wave A, see Figure 16. Such a diffraction process 

can be realized when the Bragg wave vector Q is directed mostly along the surface of the 

grating, so that it changes the transverse x-component of incident wave vector kA, while the  

z-components of both waves have the same sign. The power of incident wave A will be 

redistributed between two coupled, co-propagating waves A and B along the thickness of the 

grating. Because this redistribution process is oscillating, we obtain a so-called “pendulum” 

solution. 

With the following notation for the (x, y, z)-components of the wave vectors we will 

derive a system of coupled equations. Again, if we assume that the wave amplitudes are constant 
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outside of the VBG and at its boundaries, then the phase-matching boundary condition Dx = 0 

must be satisfied, and the angle of diffraction θB will be determined from it. 
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A transmissive VBG will be called non-slanted if γ = 0. 

The system of differential equations from (6.10) also can be transformed to a linear 

systemwith constant coefficients by the same substitutions as in (6.7), and, after that, the solution 

can be written down analytically 
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Power flows in the positive z-direction for both waves A and B. This is manifested in the 

trigonometric functions in matrix M̂ , instead of the hyperbolic functions seen in the case of a 

reflective grating (6.7). 

In order to find the diffraction efficiency η we have to apply the boundary condition of 

zero amplitude to the incoming wave B, which, in the case of a transmissive grating, is defined at 

the same grating surface z = 0 for incoming wave A: 
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We see that at the exact Bragg resonance, X = 0, the diffraction efficiency is equal to η = sin2S, 

where the coupling strength parameter is proportional to the thickness, so that at certain periodic 

values of the thickness, corresponding to S = ½π + πm, we will have 100% diffraction efficiency 

in theory. This is what is meant by the “pendulum” nature of the oscillating solution of coupled 

equations for co-propagating waves. 

The functional dependence of the diffraction efficiency η on the detuning Dz for the same 

coupling constant κ can be demonstrated in the following way. For illustration purposes, 

consider three values of the coupling strength Sm = m½π = κLm , m =1,2,3, corresponding to three 

different lengths of a VBG Lm = mL1. Let us plot the diffraction efficiency η which depends upon 

the dimensionless parameter X1 = DzL1, ½ππproportional to varying detuning Dz. If we want to 

have values on argument axis corresponding to the same Dz, or for convenience dimensionless 

parameter X1, then for two other cases of other thicknesses the corresponding dimensionless 

parameters used in (6.12) should be normalized Xm = DzLm = X1Lm/L1 = mX1 in order to keep 

dimensionless coordinate of argument axis proportional to the same detuning constant Dz for 

different gratings. These dependences are presented on Figure 17. 

 

 

Figure 17. Diffraction efficiency of transmissive VBG depending on detuning for different coupling strengths. 

S1 = ½π 

S2 = π 

S3 = 3/2 π 

η 

X1 ~ Dz 
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The detuning half width at half maximum of the diffraction efficiency of a transmissive 

grating with coupling strength ½π can be found numerically in terms of the dimensionless 

detuning parameter 
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This detuning value can be converted to a spectral width or an angular width for some 

particular grating. For clarity, consider a non-slanted transmissive VBG, γ = 0, with its 

corresponding approximate Bragg condition, 2k·sinθA ≈ Q. The boundary phase-matching 

condition (6.10) defines the angle of the diffracted wave 
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After that, the small detuning parameter X can be calculated as 

( )

).sin2(tan)sin2(
cos

sin2)sin2(
cos

11cos

)sin(1cos)cos(cos

2
1

2
1

2
1

222
1

2
2
1

2
1

AAA
A

AA
A

A

AABAz

kQLkQ
k

QL

QkQk
k

QLk

kQLkLkLDX

θθθ
θ

θθ
θ

θ

θθθθ

−≈−≈

≈≈≈







−+−=

=−−−=−==

.  (6.15) 

Suppose that the exact Bragg condition occurs at a certain wavelength λ0 and angle θA0 of 

wave A, so that Q = 2k0·sinθA0 and k0 = 2πn0/λ0, then with angular or/and spectral deviation we 

get an expression for detuning 
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Then, the full width at half maximum in terms of wavelength detuning or in terms of angle 

deviation in air, θair ≈ n0θA, is equal to 
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For example, the corresponding full widths for a transmissive grating with coupling 

strength ½π and parameters λ0 = 1.06 μm, n0 = 1.5, θair = 5°, and L = 3 mm will be equal to 

Δλ ≈ 29 nm and Δθair ≈ 0.14°. We see that the spectral width of a transmissive grating is much 

higher than the width of a reflective grating because of the inverse square dependence on the 

incident angle. 

The foregoing mathematical approach to the problems of coupled waves in VBG of 

reflective or transmissive type is a basic tool in theory of volume refraction. Now, consider one 

possible application of a highly multiplexed, efficient holographic element. 

 

Multiplexed reflective VBG for coherent beam combining 
 

The need for compact, high-power laser sources stimulates active research in fiber lasers 

because these lasers can produce high-power beams due to their effective thermal management. 

However, the ultimate output power is restrained by thermal and nonlinear optical effects in 

fibers. Therefore, coherent beam combining (CBC) of the radiation from separate lasers is of 

strong interest; the output power can be scaled up by subsequent SBC [108-Andrusyak 09]. 

Several approaches for passively coherent-locking fiber lasers have been proposed and 

realized with some success. One of the common approaches to CBC is based on using fiber 

couplers, but in such schemes the power limit of a single fiber remains and the number of lasers 

is limited because of the large super-mode spacing [109-Chang 10]. Fiber laser arrays placed in a 

self-Fourier cavity can also be coherently combined, but the far-field pattern side lobes will carry 
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out significant power due to the limited fill-factor [110-Corcoran 08]. One of the most powerful 

realizations is a two-dimensional array of lasers coupled in a ring with small, spatially  

cleaned-up power feedback reflected by a tilted aperture [111-Rothenberg 08], but one of the 

limitations of this approach again is the actual fill factor of the fiber array. 

Prof. L. Glebov has proposed a Multiplexed Volume Bragg Grating (MVBG) for 

coherent combining because laser beams can be reflected in the same aperture spot and direction 

simultaneously by partial volume gratings. As a result, one can avoid intrinsic problems 

connected with the limited aperture fill factor of fiber arrays. The background of this approach 

consists of a well-developed technology for recording volume Bragg gratings in photo-thermo-

refractive glass for different high power laser applications. 

The problem of reflection of a beam by N gratings recorded in the same volume, when all 

of them satisfy the exact Bragg resonance condition simultaneously, was discussed before [112-

Solymar 77]. Here, we reformulate this problem in terms of a convenient parameter for reflection 

problems – S , the strength of reflection, which, for a single reflective VBG of thickness L with 

refractive index profile n(z) = n0 + n1cos(4πn0/λ0⋅z), equals 

011 , λπκκ nLS =⋅= .     (6.18) 

Suppose that each of N waves A, B, …, D is coupled with just one common wave F in the 

case of MVBG, so for their slowly varying envelopes we have coupled equations at the exact 

Bragg resonance: 
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To simplify the notation, we have assumed all coupling coefficients κ to be real, positive 

numbers. Then, an explicit solution of this equation at z = L can be represented in the form of a 

transfer matrix: 
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Here 1SNS =  is the effective strength of a MVBG with N gratings of identical strengths S1. 

Appropriate boundary conditions allow one to find all the necessary reflection and 

transmission coefficients. For example, if only the F-wave is incident, so that the corresponding 

boundary conditions are F(0) = 1, A, B, …, D(L) = 0, then the power PF is diffracted in equal 

portions into reflected powers PA, PB, …, PD: 
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If only the A-wave is incident upon the MVBG with interaction of all N + 1 waves, then 

the boundary conditions are A(L) = 1, B,…,D(L) = 0, F(0) = 0, and the efficiencies of diffraction 

and transmission are 
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The sum of all of those η and transmission τ is equal to 1 for both the exact expressions and for 

the approximate ones, if S ≥ 3. 
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MVBG, which was experimentally studied by Dr. O. Andrusyak, consists of two gratings 

symmetrically recorded at ±3.3o inside PTR glass, each with a separate diffraction efficiency of 

99% at resonance, with FWHM spectral bandwidth about 210 pm, see Figure 18a. The 

corresponding three-wave (A, B, F) coherent spectral profiles are present on Figure 18b,c , which 

are in good agreement with theoretical predictions for N + 1 = 2 + 1: b) for incident wave F we 

have η(A,B←F) = ½; c) for incident one-channel wave A we have η(F←A) = ½, η(B←A) = ¼, 

τ(A←A) = ¼. 
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Figure 18. Spectral properties of a double MVBG with three-wave coherent coupling: a) notation of waves; b) 

incident wave F; c) incident wave A. 

 

The diffraction efficiencies of several waves incident upon a MVBG simultaneously can 

be calculated as well using the transfer matrix M̂  and the results will strongly depend on their 

mutual phases at the boundaries. 

In conclusion, we would like to emphasize that the coherent operation of a MVBG cannot 

be represented by a sequence of regular beam splitters; therefore, this optical element offers new 

possibilities for laser system design. 

F 

B 

A 
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CHAPTER SEVEN: HIGH-POWER SPECTRAL BEAM COMBINING 
WITH VBGS UNDER THERMAL DISTORTIONS 

 

Beam quality parameter based on second moments 
 

Due to the wave nature of light, optical beams diverge with propagation in free space. In 

the far-field zone, the angular amplitude profile of a particular beam can be calculated by the 

Huygens integral, which is actually the Fourier transform of the amplitude profile at a certain 

initial propagation plane. With free space propagation, the angular content of beam is conserved 

and, as result, the beam size grows linearly in the far-field zone. For example, the linear 

divergence of a beam diffracted by an aperture is determined by the angle, which is proportional 

to the ratio of the wavelength to the aperture size. Analogously, one can characterize the process 

of free propagation of a beam by the product of the minimal observed beam size multiplied by 

the divergence angle and divided by the wavelength [113-Siegman 93]. By eliminating the scale 

factors of the governing linear diffraction equation, this dimensionless propagation parameter 

should depend only on the inner structure of the beam profile. 

To derive a rigorous expression for such a propagation invariant, people usually start 

their consideration with the parabolic wave equation (PWE) for a slowly z-varying amplitude 

),( zrA 
 of the electric field amplitude ),( zrE 

: 
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   (7.1) 

Here r  denotes the two transverse coordinates x and y, and k is the wave vector in a linear 

lossless medium. If the transverse profile of the complex amplitude A is known at some 

propagation point z = z1, then this boundary condition determines solution of (7.1) at any z. As a 
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result, the final expression for propagation invariant discussed above can be expressed only 

through known ),( 1zrA  . 

For further analysis of how the coordinate and angular content of a beam are redistributed 

with free propagation, it is convenient to introduce the Wigner function, see e.g. [114-

Zeldovich 85], 
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which satisfies the propagation equation (7.2) derived from PWEs for amplitudes ),( 1
* zrA   and 

),( 2 zrA  . 

The Fourier transform of a Wigner function performed with respect to the relative 

transverse coordinates is 
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The Wigner function also satisfies the first-order propagation equation given by (7.2) with a 

corresponding solution 
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The moments of the spatial and angular coordinates can be calculated as 
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Here, the normalization value P is proportional to the total beam power. Spatial moments have 

simple expressions with clear physical interpretation and pure moments of the angle variables 

can be derived from (7.5, 7.3) as 
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where 
2

),( zC θ


 is the intensity distribution in angular space. The interpretation of arbitrary 

moments of both coordinates and angles is less obvious, but some of them are important for the 

calculation of others because, due to (7.4), there is a propagation equation for moments: 
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For the x-related second moments, the positive, dimensionless propagation invariant can 

be obtained, which is usually noted as Mx
2, and it was proposed as parameter characterizing 

beam duality some time ago [113-Siegman 93] 
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In the last formula and below we will assume that first order moments are equal to zero 

0==== vyux ; these conditions can be easily realized by an appropriate linear 

transformation of the coordinate frame. 
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It can be shown that the minimal value Mx
2 = 1 and, therefore, the smallest divergence 

and best beam quality is achieved only by Gaussian beams [115-Bastiaans 79]. Any phase 

distortion of a Gaussian beam leads to increasing Mx
2. This parameter has well-studied analytical 

properties. It is widely used for characterizing beam quality in experiments, and corresponding 

measurement devices are commercially available. 

The work [116-Serna 91] has introduced a parameter based on both the coordinates x and 

y, which is invariant to transverse rotation. It has following explicit form: 

yuxvuvxyyvvyxuux 22222222 −+−+− .
  (7.9) 

The main advantage of this generalized propagation invariant introduced for two-dimensional 

transverse space is that it is conserved after any astigmatic quadratic phase distortion 

)( 22 xyyxie γβα ++ , but notion of this parameter is less established. In practice, astigmatic beams are 

usually characterized just by two separate values, Mx
2 and My

2. 

All information about beam propagation is defined by a particular profile cross-section 

),( 1zrA  , as we mentioned before. An arbitrary moment (7.5) at this particular z1 can be 

calculated through corresponding amplitude profile in explicit form 
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The formula (7.10) with propagation equation (7.7) allows one to find the value of an 

arbitrary moment at any propagation coordinate z. 
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Hermite-Gaussian and Laguerre-Gaussian modes 
 

An important example of self-similar solutions of the parabolic wave equation are 

orthogonal Gaussian mode sets with two indices corresponding to mode excitations in the 

transverse plane. Depending on which coordinate system is used, Cartesian or cylindrical, these 

mode sets are Hermite-Gaussian ψnx,ny(x,y) or Laguerre-Gaussian ψn,m(r,φ). These basic functions 

are used in different areas of physics. In optics they have following definitions with 

corresponding normalization [117-Siegman 86] 
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These notations do not contain phase factors corresponding to wave front curvature in the z-

direction, so these formulae describe mode profiles at the beam waist. 

With propagation along the z-direction, the mutual orthogonality of these modes will be 

preserved because the conservation of the scalar product of two different solutions of the PWE 

for slowly varying amplitudes (7.1) is an intrinsic property of the PWE. 
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Explicit expressions of Gaussian modes for arbitrary propagation distance z from the 

beam waist are presented in a very limited number of textbooks [30-Haus 84], and we would like 

to present rigorous derivation of them here. 

The solution of the PWE for a slowly varying amplitude A(x,y,z) with the boundary 

condition A(x,y,0) is actually the Huygens integral [117-Siegman 86] 
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For simplicity, let us use the generating function of the Hermite-Gaussian basis [118-

Bateman 1953] 
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This function Φ consists whole set of orthonormal functions ψnx,ny(x,y) which are linearly 

independent coefficients at corresponding powers of the generating parameters X and Y. The 

normalization of these mode functions can be checked through the calculation of overlap 

integrals of two generating functions with different generating parameters: 
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Now, in order to find each Hermite-Gaussian mode expression at z ≠ 0, the Huygens 

integral (7.13) should be applied to the generating function: 
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Each separate function ),( zrG
yxnn
  satisfies the PWE separately due to the linear 

independence of the powers of generating parameters and, according to (7.14), we see that 

functions ),( zrG
yxnn
  are propagating Hermite-Gaussian modes, which we were looking for. By 

comparing (7.16) with (7.14) we can write down explicit expression for Hermite-Gaussian mode 

at arbitrary z: 
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In a similar manner, we can rederive expressions for orthonormal Laguerre-Gaussian 

modes in a cylindrical coordinate system: 
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Sometimes explicit expressions of propagating Gaussian modes at an arbitrary z can be 

useful in propagation problems. For example, if the initial wave amplitude A can be represented 

as a sum of several transverse Gaussian modes, then it can be easily found at an arbitrary 

propagation distance z as a sum of propagating Gaussian modes with the corresponding complex 

weight coefficients found at initial plane. 

 

Variation of losses with detuning in reflective VBG 
 

Bragg gratings are used in many applications. The key characteristics of these optical 

elements are the absorption coefficient and the scattering coefficient, which together define the 

total optical losses. In high-power laser applications, such as spectral beam combining realized 

with volume Bragg gratings (VBGs), the heating due to absorption is the main limiting factor of 

the whole system’s performance. The amount of power lost per unit length is proportional to the 

loss coefficient and the local intensity. Depending on the resonant conditions, the intensity 

profile along distributed feedback systems, such as Bragg gratings, changes dramatically. 

Therefore, the absorption heating of a grating operated at some power level will be different 

depending on the wavelength detuning from Bragg resonance. In other words, the effective 

absorption length for a Bragg grating depends on wavelength detuning and, therefore, at the 
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same incident power the amount of absorbed power varies correspondingly with the effective 

length. 

In this part of work, we study this detuning dependence of losses inside reflective Bragg 

gratings. Our results and conclusions are based on an analytical approach to the problem of a 

uniform Bragg grating. Additionally, the fabrication of Bragg gratings is usually based on the 

creation of refractive index modulation through photo-induced processes. Photo-induced 

refractive index change is often accompanied by change in the losses, usually increasing one. As 

a result, the optical loss coefficient in fabricated Bragg gratings will also be modulated with the 

Bragg period which leads to additional non-trivial detuning dependence of the losses. 

If we consider the case with a relatively small loss coefficient α[m-1], so that αL«1, where 

L is the length of the grating, we can use the following approach. First, we find the intensity 

profile I(z) along the grating length without any losses. Then we calculate intensity lost due to 

losses as a product of α times the integrated I(z) over the length of the grating. For constant α0, 

an incident beam with intensity I0, and with a wavelength far from Bragg resonance, this integral 

yields a simple product α0LI0. So, α0L is the fraction of intensity lost in grating. Then we 

investigate the relative variation of this fraction in the vicinity of the Bragg resonance in a 

uniform grating with a modulated refractive index profile n0 + n1cos(Qz), Q = 4πn0/λ0, where λ0 

is the resonant Bragg wavelength. 

The propagation of electromagnetic waves inside Bragg gratings may be formulated in 

terms of counter-propagating waves A(z)exp(–iωt + ikz) and B(z)exp(–iωt – ikz) with 

k = n0ω/c = 2πn0/λ. Coupled equations for slowly varying envelopes A(ζ) and B(ζ), where we 

have introduced the normalized dimensionless coordinate ζ = z/L , are the following: 
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Here, the dimensionless S is the called strength of reflection and X is the dimensionless 

wavelength detuning, these both parameters were used before. Because we are interested in the 

detuning dependence of relative values, assume for convenience that the amplitude of the 

incident beam A(0) = 1. Another standard boundary condition for the reflection problem: 

B(ζ=1) = 0. 

According to the above mentioned boundary conditions and based on the well-known 

analytical solution of the system (7.19) for uniform Bragg gratings, we can write down 

expressions for the wave amplitudes along the ζ-coordinate inside the grating in the following 

form: 
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   (7.20) 

It is easy to check that the second expression in (7.20) agrees with the well-known 

formula for spectral reflectivity of a uniform Bragg grating, 

R = |B(0)|2 = sinh2G/(cosh2G − X2/S2), which gives R0 = tanh2S at the exact Bragg resonance. 

This theoretical spectral behavior of reflectivity is shown on Figure 19 together with an  

experimental spectrum of an actual VBG recorded for 99% resonant reflectivity in photo-thermo-

refractive glass with the following parameters: L = 3.6 mm, λ0 = 1066.14 nm, n0 = 1.49, 

n1 = 265⋅10−6. The corresponding reflection strength is S = 2.81. The asymmetry of the 
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experimental reflection profile and the washing out of its zeros can be explained by longitudinal 

non-uniformities within the fabricated VBG. 
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Figure 19. Experimental spectral reflection profile of a VBG compared with simulation (thin line). 

 

The next step is the calculation of the intensity profile, I(ζ), inside the Bragg grating with 

the use of (7.20) and integrating this profile along whole length of the grating: 
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Since we are using normalized incident intensity |A(0)|2 = 1, the last integral gives us the 

necessary relative function  f (S,X) of the fraction of total losses in the Bragg grating with 

wavelength detuning. Far from resonance, f |X→∞ = 1. 

The lowest value of this function is fmin = f (S,0) = sinh(2S)/[2S⋅cosh2S] ≈ 1/S ≈ 0.35 at 

the exact Bragg resonance for the parameters of grating mentioned before. The lower losses in 

this case can be explained by the exponential decrease of the reflected and transmitted power 

inside the grating. The highest value, fmax ≈ 1.91, occurs near the first zero of the reflection 

spectrum due to the increased resonant capacity of the grating, similar to a Fabry-Perot resonator. 
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We see that relative variation of loses can differ up to a factor of 6 for the same grating with 

resonant reflectivity about 99%. 

Figure 20 illustrates the experimental relative variation of losses versus wavelength 

detuning from Bragg resonance and the corresponding numerical simulation of this loss ratio 

variation (7.21). Despite some systematic errors of measurement and previously mentioned in-

homogeneities inside the VBG, both curves from Figure 20 clearly demonstrate similar spectral 

behavior. This variation of losses was measured in a VBG at a small incidence angle, and in this 

case can resolve the incident and reflected beams while precisely measuring the power balance in 

the experimental setup using beam sampler to calibrate the incident power. The absolute value of 

losses was less than 10−2. 
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Figure 20. Experimental variation of the absorption ratio versus the detuning and the analytical expression (thin 

line). 

 

Experimental measurements presented on both pictures were done in laser laboratory of 

Prof. L. Glebov’s group. 
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Now let’s consider the modulation of the loss coefficient with Bragg period 

α(z) = α0[1− ε⋅cos(Qz)], where α0 is the average loss coefficient and 0 ≤ ε ≤ 1 is the depth of 

modulation. We have chosen a minus sign because our recording material has negative 

photosensitivity and with increase of the absolute value of the refractive index change, the losses 

are increasing, so the minima of the refractive index modulation correspond to the maxima of 

losses. 

In order to get the correct value of losses we have to calculate the corresponding integral 

along the grating length ∫α(z)/α0⋅|A(z)eikz
 + B(z)e–ikz|2dz, which will give us an additional odd-

functional term ε⋅g(S,X) for the relative variation of losses with detuning: 
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The odd function g(S,X) is positive for positive X and goes to zero at large detuning. This 

means that for Bragg gratings recorded in our material, the losses for wavelengths smaller than 

λ0, X > 0 (7.19), are higher than the losses for correspondingly longer wavelengths. At the 

maximum modulation depth of ε = 1, the maxima of the relative losses fmax is increased up to 

2.61. 

 

Heat transfer in a VBG plate under laser beam exposure 
 

The problem under consideration was as follows: to calculate the heating of a volume 

Bragg grating (VBG) by the transmitted or reflected beam of a given power Ptot [Watt], given the 

transverse radius w0 of Gaussian profile of intensity w0 [meter] = ∆x[HWe−2IM] =∆y[HWe−2IM], 

and given the heat removal coefficient h [Watt/(m2K)] from the surface. 
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In the case of CW laser operation, the process of heating is described by the stationary 

thermal conductivity equation 

),,()( zyxQT =∇⋅∇Λ− .     (7.23) 

Here T denotes the local increase of temperature in comparison with the temperature of the 

surrounding air Troom or the temperature of a cooling gas, and Λ = 1.05 Joule/(m·K) is thermal 

conductivity coefficient of glass. 

The power deposited Q(r) [W/m3] in the VBG by the beam being transmitted through the 

VBG at a wavelength out of resonance equals 
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Here I(r) [W/m2] is the transverse distribution of intensity with maximum value I0 at the center 

and relative transverse profile ρ(r). 

The VBG plate has the following physical dimensions: aperture d by d and thickness l, 

and we use the coordinate system with its center in the center of this rectangular plate. The 

boundary conditions are assumed for convectional heat removal from surfaces in the form [119-

Lienhard 08]: 
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We establish that for typical values of the heat removal coefficient: h = 100 W/(m2K) through 

h = 800 W/(m2K); the value of h = 250 W/(m2K) corresponds to the cooling gas velocity 

v = 80 m/s. 
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For a laser beam with Ptot and w0, and reflected by the VBG at exact Bragg resonance, the 

corresponding power deposition will be additionally z-dependent: 

.
cosh

)](2[cosh)(),()(3.2)( 2
2
12

010 S
lzSzzrIrQ −

=⋅⋅⋅⋅= σσρα    (7.26) 

According to transverse symmetry of problem, the even eigenfunctions depending on x 

and y and satisfying (7.25) will be used: 
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Meanwhile, the z-dependent even eigenfunctions of the Laplace operator and the 

additional odd eigenfunctions necessary for reflective beam problem are 
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Here pn, qm and mq~  are the solutions of the corresponding transcendental equations. 

With the definition of the basis of functions satisfying the boundary conditions, the 

solution of second-order PDE (7.23) can be represented as a sum of the basis functions. For the 

problem with the transmitted beam out of resonance the representation of solution is 
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After substituting (7.29) into (7.23) we will get the coefficients 
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So, we have presented a solution of (7.23) for a transmitted beam in analytical form. 
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The temperature distribution inside the VBG with a laser beam reflected at Bragg 

resonance can be found in a similar manner. Below, we will discuss mostly the problem of 

heating in transmissive VBG because it is more important for realization of SBC. 

In foregoing simulations, we used the parameters l = 2.5 mm, absorption 

α = ln10⋅α10 = 2.3⋅10−2 m−1, total power P0 = 100 kW and various values of the heat removal 

coefficient, h = 100 W/(m2K) through h = 800 W/(m2K). The error of our approximation is found 

to be less than 15% even for the worst case considered with h = 100 W/(m2K). 

Simulated temperature distributions inside thin glass plate heated by a wide laser beam 

and intensively cooled from surfaces are presented in Figure 21 in normalized form. The 

normalized forms show the common behavior of the intensity and temperature profiles. The 

actual increase of temperature at the center of aperture typically is about 15°C. 
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Figure 21. Normalized temperature profiles T(r) inside a VBG across aperture for two different values of heat 

removal coefficient: the upper line corresponds to h = 100 W/(m2K), the curve below corresponds to 

h = 800 W/(m2K) and it is closer to the normalized profile intensity, which is depicted by the thin black line. 
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These results show that the heat transfer problem can be efficiently reduced to a one-

dimensional approximation along the z-direction of the grating thickness, because of the 

relatively small heat flow in the radial direction. The input data for new ordinary differential 

equation is the heat deposition rate, which varies across the aperture according to a Gaussian 

intensity distribution proportional to ρ(r). 

This one-dimensional approximation for the problem (7.23) means that transverse 

coordinate r may be considered as external parameter without differentiation with it. Thus we 

came to ODE with corresponding boundary condition, which describes z-dependence of the 

temperature profile in the center of the aperture at x = y = 0, and Tc(z): 
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The solution of (7.30) is easy to find. The average temperature T0 in the center of VBG 

aperture is the following 
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As we have mentioned before, the radial coordinate r is an external parameter, which is 

only presented as a factor ρ(r) in the power deposition and temperature distributions, has the 

same parametric dependence on r, so the z-averaged temperature profile across aperture is equal 

to ‹T(r)›z = T0·ρ(r). 

To summarize, problem of heating of a VBG glass plate by a transmitted and/or reflected 

laser beam can be efficiently treated by the classical methods of mathematical physics without 

involving resource-consuming numerical simulations due to the simple geometry of the 
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boundary conditions. First, the temperature distribution inside grating can be found. Then, for 

VBG thickness l much less than the laser beam width w0, the temperature distribution across 

aperture can be converted into a corresponding thickness expansion so-called “sag” across the 

aperture. 

 

Non-uniform heat transfer problem for a VBG plate with thermally stabilized edges 
 

In this section, analytical and numerical solutions are presented for the problem of the 

temperature profile in VBG used in the experimental implementation of SBC up to kilo-Watt 

level. New conditions considered were as follows. The coefficient h [W/(m2K)] of heat removal 

from the faces z = ±l/2 of a VBG is assumed to be moderate, h ~ 15 W/(m2K), in contrast with 

the previously considered high h for forced cooling of a VBG operating at the hundred kilo-Watt 

level. As a result, the parameter of depth of the heat profile along z, denoted as δ [m] = Λ/h, turns 

out to be much larger than the thickness ∆z = l of the VBG. For the thermal conductivity 

coefficient of PTR glass Λ ≈ 1.05 W/(m⋅K) there is δ ≈ 70 mm, while l ≈ 4.7mm for the actual 

VBG used in current experiments. As a result, the heat flow to the edges at x = ±d/2 and y = ±d/2 

may be important for the temperature profile formation. We consider the beams with relatively 

large diameter 2w0 = 6 mm (FWe-2IM), so that the transverse size d = 21 mm of the square VBG 

is about a factor of 3.5 larger than the beam diameter. 

The stationary equation of thermal conductivity is the same (7.23). The non-trivial part of 

the problem is due to the boundary conditions: they are radically different at the input and output 

faces of the VBG and at the edges of the VBG. We assume that the temperature at the edges is 

sustained at a fixed level of Tedge = 55°C at x = ±d/2 or y = ±d/2. On the other hand, heat transfer 
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from faces of the VBG moves the temperature towards Troom = 21°C, but only to the extent to 

which the transfer coefficient allows this: 
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The main technical difficulty of solving the problem is in the different values of Tedge and Troom 

for the given of heat deposition Q(r) = α[m-1]⋅P[W/m2]. To overcome this difficulty, we search 

for the solution in the form 

)()()( 21 rrr TTT += .      (7.34) 

Here function T1(r) satisfies 
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Eigenfunctions depending on the x and y coordinates for the problem with fixed value 

boundary conditions are: 
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And the even z-dependent functions fm(z) are the same as used before. 

We have found a solution of problem (7.36) in the following form 
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Numerical results for the temperature profiles of a VBG, averaged in the direction of 

beam propagation, with thermally fixed edges at Troom = 21°C, an absorption coefficient 

α = ln10⋅0.14 m-1, and a surface heat removal coefficient h = 16.4 W/(m2K) are shown  

in Figure 22. 

 

 

Figure 22. Temperature profiles ‹T(y=0)›z of a VBG with edges fixed at Tedge = 55°C: a) no beam; b) reflection of 

160 W Gaussian beam; c) transmission of 160 W Gaussian beam. 

 

In this section, we solved a problem, which arises in a real experiment carried out by 

Prof. L. Glebov’s group. Preheating the edges allows one to maintain the alignment of each VBG 

participating in a spectral beam combining at the same resonant Bragg wavelength. This 

eliminates the need for angular adjustment of the VBG initially aligned at small operating power.  
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Deterioration of beam quality under operation by heated VBG 
 

Let us continue the study of a possible realization of a hundred-kilowatt level SBC with 

the use of large-aperture thin reflective VBGs. 

In order to remove deposited heat from a VBG plate, we assume the forced air flow or 

flow of He gas along its surfaces, which leads to increase of surface heat removal coefficient to 

reasonably large values, h ≥ 200 W/(m2⋅K). 

The foregoing numerical solution of the thermal conductivity equation with a high rate of 

h for a glass plate, which has a thickness l much smaller than the radius of the heating beam w0, 

allowed us to come to following statement. The resulting profile of a temperature change δT(r) 

across the aperture follows the profile of the incident intensity distribution p(r). In this case the 

one-dimensional approximation of heat transport problem in the z-direction is valid; it gives a 

simple analytical estimate for δT(r) = T0·p(r). This temperature change profile for a thin glass 

plate leads to a linear expansion of the thickness across aperture, sag(r) = b[m]·p(r), which 

causes a corresponding phase distortion with the profile φ(r) = φ0·p(r), 
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Here βT = 0.85·10−6 K−1 is thermal expansion coefficient of glass and n0 = 1.49 is the refractive 

index of glass. 

As an example for the numerical values,  α10 = 0.01 m−1,  w0 = 3 cm,  h = 280 W/(m2⋅K),  

l = 3 mm, and Ptot = 100 kW, we get the following values in the center of a Gaussian profile: 

T0 = 14.8 K,  b = 0.378 μm,  φ0 = 1.09 radian. 
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Free space propagation of a beam is characterized by the quality parameter Mx
2, which 

describes the divergence of the beam in one transverse direction. In the plane of the beam waist 

the quality parameter is defined as 222 2 xx xkM θ= , where k = 2π/λ is the wave vector in free 

space. 

The second moments necessary for calculating Mx
2 for a radial beam amplitude profile 

can be expressed in a cylindrical coordinate system by 
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Now, let us consider the propagation of a Gaussian beam of an initial profile 
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0in )( wreArA −⋅=  in a medium with an intensity dependent self-modulation; for example, 

through the change of refractive index 2
20 Annn += . We are interested in calculating the small 

increasing parasitic deterioration of Mx
2 from unity. If the propagation path inside the medium ∆z 

is much smaller than the beam divergence Rayleigh length 2
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medium’s nonlinearity is expressed as the phase distortion with a profile proportional to intensity 
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where φ0 is the maximum phase distortion value at the center of the beam. This phase distortion 

φ0 is the main parameter in our problem. 
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Due to circular symmetry, each of the second moments, 22 ,, uxux , will be equal to 

half of the corresponding moment calculated along the radial coordinate 22 yxr += ; this is 

the same situation found in classical mechanics with the calculation of the moment of inertia of a 

thin body of rotation (for example, a disc or circle) along the axis perpendicular to the axis of 

rotation. 
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As we should expect, the obtained result does not depend on beam size w0. 

In the case of thermal distortion of a VBG glass plate with decimal absorption coefficient 

α10 by a transmitted Gaussian beam of power Ptot, the central phase of the distortion profile 

according to (7.24) and (7.39) will be equal to 
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This simple analytical expression allows us to analyze the complex problem of beam 

distortions in a high-power SBC scheme in closed analytical form. 
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Spectral beam combining with thermally distorted VBGs 

 

High aperture VBGs in PTR glass are promising candidates for future spectral beam 

combining systems up to hundreds of kilowatts. At 100kW laser power operation, each grating 

must be actively cooled by gas flow in order to manage the heat load. As a result, the radial 

profile of the VBG heating follows the profile of the beam intensity, which is usually Gaussian. 

The thermal expansion of the grating’s thickness plate leads to a corresponding Gaussian phase 

distortion in the transmitted or reflected beam that affects the beam quality. 

The analysis of beam distortions by individual VBG under high-power heating has been 

performed analytically earlier in this chapter. We came to the following qualitative conclusion. 

The crucial source of the deterioration in performance of the whole system is due to the phase 

distortion of transmitted beams. Meanwhile, the distortions and diminished diffraction efficiency 

of reflected beams may be neglected, if the conditions for moderate distortions in the transmitted 

beams are imposed. 

Unfortunately, individual fiber laser cannot deliver all the power in one beam needed for 

certain applications, e.g. Ptot = 100 kW, and SBC is motivated by this problem. Denoting the 

power of an individual fiber laser as P, one comes to the necessity to combine N = Ptot/P 

individual beams via N − 1 elementary VBGs. In process of spectral combining of N laser beams 

by sequential N−1 VBGs, N >> 1, the main distortions of combined beams arise due to 

transmission through thermally distorted VBGs. The latter elements are considered as glass 

plates with inhomogeneous thickness due to heating caused by material absorption. Before 

calculating the distortions of serially-combined, mutually incoherent beams due to transmission 
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through different numbers of VBGs, one must make the following observation. The change of 

the thickness l of a VBG by sag(r) due to thermal expansion results in slight change of  

1) the diffraction efficiency η and 2) the transverse-dependent change of the phase φ of reflected 

beam, i.e. the distortion. 

Taking typical value η = 99%, so S ≈ 3, and sag at the center b = 0.378 μm, we see that 

the decrease of η is 0.8%, but the deterioration of Mx
2 is considerable, about 10%, to 

Mx
2 = 1.115. Moreover, distortions from reflection affect each individual beam only once 

(reflection from only one particular VBG), while the distortions from transmission through about 

N/2 individual VBGs are accumulated. We can ignore the thermal deterioration of diffraction 

efficiency and thermally-induced distortions of the beam in the reflection process, but we must 

take into account the phase distortions due to transmission of the N − 1 beams through the 

sequence of VBGs. 

Now, we consider spectral beam combining of N >> 1 beams of equal power Ptot/N via 

N−1 VBGs, with the scheme depicted on Figure 23. 
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Figure 23. Scheme for spectral combining of N beams with the use of N−1 VBGs. 

 

Here Ptot is the total power to be produced in the form of combined beam. 
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We have established, that the distortions due to the process of VBG reflection are much 

smaller than the distortions due to multiple transmissions of a beam through the remaining 

VBGs. We will characterize the distorted VBG by the distorting phase φVBG induced at the center 

of the aperture. We will assume that this phase is proportional to the total power PVBG, by which 

each given individual VBG is illuminated. In this assumption we can write that 

tot

VBG
0VBG P

Pϕϕ = ,     (7.44) 

were φ0 is the phase distortion, calculated for the illumination of a VBG by the total power Ptot, 

which is to be produced at the combining output, see the expression for φ0 in (7.43). 

The grating number j transmits the power NjPP j ⋅= tot#VBG , accumulated from all the 

previous j beams. Then, the VBG number j introduces a phase distortion into each of previous 

beams 
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The next important assumption in our calculations is based on the numerical values of the 

beam radii in question. We assume that the radius w0[HWe−2IM] of the beam is 

w0 = 30 mm ≡ 0.03 m. Then, the Rayleigh parameter z0 , beam waist length z0 = ∆z(HWHIM) of 

the Gaussian beam, is  z0 = πw0
2/λ ≈ 2700 m  at  λ = 1.064 μm. The large value of z0 relative to 

the size of the apparatus means that one can completely ignore diffraction of the beams within 

the combiner. For these conditions, the output phase distortion of beam number m is just the sum 

of phase distortions of identical shape, accumulated from VBG number m to VBG number N−1 
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The next step is the calculation of the M 2-parameter for the total (combined) beam. Since 

those N beams are assumed to be incoherent and of equal power Ptot/N,  
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Here we assumed that the last beam number N is subject to reflection only, but not to 

transmission, and, hence, may be considered as undistorted, so that for the last beam Mx
2 = 1. 

For small values of φ, which are required for creating a total beam with Mx
2 ≤ 1.5, one 

can approximate 

22
distortion 1 βϕ+=x,M .     (7.48) 

We have calculated analytically, that β = 7/72 for a Gaussian beam from (7.42). We also make a 

very important assumption that the spherical part of distortion has been pre-compensated by an 

appropriate spherical lens. Then, we come to the expression for  
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It is not difficult to calculate the sum in the equation (7.49) analytically without approximations. 

We will present here the result for important case in which N >> 1: 

[ ] 22)0(2
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21 NM x, ϕβ+≈ .    (7.50) 

Let us remind that φ0 is thermal distortion of one beam transmitted through the VBG, which has 

been (in theory) exposed by the total transmitted power Ptot of the combined radiation, see (7.43). 

To conclude, the results of those analytic calculations allow for instant re-scaling of all 

parameters of the system: Ptot, necessary number of channels N = Ptot/Pone laser, absorption 
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coefficient α10, thickness l of individual VBG, beam radius w0, heat removal coefficient h due to 

air flow, etc. 

 

Higher tolerance of Super-Gaussian beams to thermal distortions 
 

Previously, the beam quality parameter Mx
2 has been calculated for a self-phase 

modulated Gaussian beam analytically. We can repeat the same calculation procedure for a 

super-Gaussian beam profile distorted after propagation through a self-phase modulated medium, 
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The resulting values of Mx
2 for both Gaussian and super-Gaussian beam profiles depend 

on the central phases being proportional to the central intensities, which depend on the 

corresponding beam sizes w0 and s0. So, in order to compare sensitivities to self-phase 

modulation we have to use certain criterion for the beam size ratio. For the 1%-residual power 

criterion, which means that both beams outside the same radius rc have the same amount of 

power 0.01⋅P, the beam size ratio is equal to s0/w0 = 1.337, which defines the phase ratio 

446.0)(2 2
0000 == swπϕφ . In this case, according to (7.42, 7.51), a super-Gaussian beam 

demonstrates considerably smaller beam quality deterioration than a Gaussian one, despite 

slightly higher initial 128.122 == πxM . 

Corresponding beam profiles of the same power are presented on Figure 24. 
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Figure 24. Intensity profiles of Gaussian and super-Gaussian beams with the same power and widths corresponding 

to the criterion of 0.01 of the residual power outside the circle with the same radius. 

 

Dependences of beam qualities on phase distortion expressed in terms of central phase 

for a Gaussian beam are presented in Figure 25. 

 

 

Figure 25. Mx
2 of Gaussian and super-Gaussian beams propagated through a heated glass plate as a function of the 

absorbed power C⋅α10⋅Ptot. 
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For example, for the limitation Mx
2 = 1.5, a super-Gaussian beam provides more than 

three times better tolerance to the product of power times the absorption coefficient.  Higher-

order super-Gaussian beams with significantly higher initial Mx
2, e.g. ])(exp[ 6

0qr−∝ , do not give 

such an advantage. 

We have also calculated analytically the deterioration of Mx
2 of Gaussian and super-

Gaussian profiles by higher-order localized radial phase distortion modes. It is important that 

obtained results cannot be efficiently reproduced by the traditional approach based on 

polynomial representation of aberrations. This failure is due to the poor convergence of power 

series representations for Gaussian profiles. These results can be applied to a wide range of 

problems from nonlinear optics to the analysis of beam propagation through optical elements that 

are thermally distorted because of material absorption. 

 



112 
 

CHAPTER EIGHT: CONCLUSION AND SUMMARY OF 
CONTRIBUTIONS 

 

The present work is devoted to the theoretical study of beam diffraction by high-

efficiency volume Bragg gratings (VBGs). Calculations of diffracted and transmitted beam 

profiles are based on solving coupled wave equations in the slowly varying envelope 

approximation. 

Several original results were obtained. The parameter, called strength of reflection, was 

proposed for parameterization of the propagation matrix for layered media. It obeys a simple 

addition law. In the case of the phenomenon of general physical importance, namely of Fresnel 

reflection, the strength of reflection consists of two separate contributions. One is due to the step 

of impedance and another is due to the step of the propagation speed. The influence of surface 

Fresnel reflection on the spectral reflectivity of VBG was also analyzed. 

The properties of non-uniform reflective VBGs were numerically modeled. The 

similarities and differences between variations of the background refractive index and the Bragg 

period were studied. 

A Moiré resonant transmission filter was proposed. Its bandwidth has been found 

analytically and compared with bandwidths of a regular Fabry-Perot filter and a filter based on 

uniform VBGs. 

Probabilistic amplitude masks were proposed and generated for recording phase plates in 

photo-thermo refractive glass with additional spatial filtering. 

The spectral properties of coherent reflection by multiplexed VBGs were simulated and 

an analytical expression for propagation matrix was found for the exact Bragg condition. 
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The solution of the thermal distribution problem for a VBG heated by transmitted beams, 

reflected beams or both was solved analytically. Formulas for the variation of relative losses 

inside a Bragg grating with spectral detuning was found analytically. For thin gratings with 

enforced surface cooling, the approximation that the temperature distribution profile is 

coincident with the intensity profile of incident beam was formulated. By this approximation, the 

central distortion phase of the transmitted beam was obtained in terms of beam and grating 

parameters. The use of super-Gaussian beams for combining was proposed. The deterioration of 

the beam quality parameters of Gaussian and super-Gaussian beams due to self-phase distortion 

and higher-order radial-mode phase distortions was found analytically. Approximate analytical 

formulas for the estimation of the beam quality of a beam combining scheme was derived. 
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