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ABSTRACT

A reinforcement-learning technique for enhancing human behavior models in a 

context-based  learning  architecture  is  presented.  Prior  to  the  introduction  of  this 

technique, human models built and developed in a Context-Based reasoning framework 

lacked learning  capabilities.  As  such,  their  performance  and  quality  of  behavior  was 

always limited by what the subject matter expert whose knowledge is modeled was able 

to  articulate  or  demonstrate.  Results  from experiments  performed  show  that  subject 

matter experts are prone to making errors and at times they lack information on situations 

that are inherently necessary for the human models to behave appropriately and optimally 

in those situations. The benefits of the technique presented is two fold; 1) It shows how 

human models built in a context-based framework can be modified to correctly reflect the 

knowledge learnt in a simulator; and 2) It presents a way for subject matter experts to 

verify and validate the knowledge they share.  The results obtained from this research 

show that  behavior  models  built  in  a  context-based  framework  can  be  enhanced  by 

learning and reflecting the constraints in the environment. From the results obtained, it 

was shown that after the models are enhanced, the agents performed better based on the 

metrics  evaluated.  Furthermore,  after  learning,  the  agent  was  shown  to  recognize 

unknown  situations  and  behave  appropriately  in  previously  unknown  situations.  The 

overall performance and quality of behavior of the agent improved significantly.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Overview

Human  behaviour  can  be  said  to  be  largely  dictated  by  decision-making  and  their 

resulting actions. These decision making processes determine how a person behaves in 

any given  situation.  Henninger  [125]  defines  behaviour  as  “any observable  action  or 

reaction of a living organism.” She notes that some psychologists extend this definition to 

“include conscious phenomena like perception, cognition,  and judgements” [125]. The 

Oxford dictionary [1], defines “behaviour” as “the actions or reactions of a person or 

animal in response to external or internal stimuli”. The external stimuli include touch, 

smell, sight, as well as others. How a person reacts to these stimuli dictates his or her 

actions at that point in time. Consider a driver faced with a choice of driving beyond the 

speed  limit  on  a  freeway  and  eventually  arriving  at  his/her  destination  on  time,  or 

obeying  the  speed  limit  and  arriving  at  his/her  destination  late.  The  decision  and 

subsequent actions  made by this  driver  ultimately constitute  his/her  behaviour  on the 

freeway.

In some domains, for example aviation and military operations, the behaviour of a 

person is divided into tactical and strategic behaviours. Schutte [194] states that “tactical  

behaviours are generally considered to be near-term, dynamic activities” while strategic  

behaviours usually involve the decision-making process based on the overall mission of 

the person in the long run [194]. Tactical  behaviours involve the immediate decision-

making process of an individual, whereas strategic behaviours involve a planned out set 

of  decisions  by  an  individual.  Latorella  &  Chamberlain  [195]  explain  that  the  time 
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pressure in any given situation  differentiates  whether  the individual  will  operate  in  a 

tactical  mode or a strategic mode. They [195] go further to present an example using 

pilots. When pilots attempt to solve known and anticipated tasks, they usually exhibit 

strategic behaviours, whereas when they are under a time-constraint, they act or react to 

the situation presented based on some predefined mental list, i.e., they exhibit tactical 

behaviours [195]. 

Modelling strategic behaviours are usually straight forward because they involve 

known and anticipated tasks. On the other hand, modelling tactical  behaviours can be 

cumbersome. This is because the steps involved in solving tactical problems are usually 

dependent  on the actions taken at  any given moment.  Modelling the decision-making 

process has been studied by several investigators [12, 14] among many others. A few 

human behaviour modelling and representation techniques  exist.  These techniques  are 

discussed in detail in later sections of this chapter. After modelling the human behaviour, 

the task of representing the model in an efficient computational paradigm is not a trivial 

one. 

The  representation  of  human  behaviour  has  been  investigated  by  many 

researchers including [6, 36, 44, 4, 7, 9, 10, 2, 34, 87, 90, 40, 83, 88, 82, 84, 85], amongst 

many others. How to efficiently and effectively model and represent the way a person 

acts  or reacts  in a  given situation has no definitive  solution.  Some human behaviour 

modelling and representation paradigms [2, 3, 4, 5] suggest ways to do this. However, 

these  techniques  all  have  the  same  deficiency;  -  the  human  expert  is  the  source  of 

knowledge for these models.  Eliciting knowledge from experts has several limitations. 

These limitations include the lack of acquisition of implicit knowledge from experts and 
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the  reliance  on expert  interpretation  of  the real  world,  which is  not  always  accurate. 

These limitations are discussed in subsequent sections of this chapter. Based on these 

limitations  on  the  acquisition  of  knowledge,  some  modeling  and  representation 

techniques are either over-simplified by having too many assumptions (for example a 

person not being able to learn based on his / her experience or experiences of others), or 

only provide  a  limited  view of  a  person’s  tactical  behavior  in  a  given  situation  (for 

example constraining the actions available to an agent in the model in tactical situations 

based on the actions known to only one expert). Furthermore, some of these methods do 

not  address  the  ever-changing behaviour  of  humans  in  a  given situation or in  a  new 

situation  or  during  a  change  in  situations,  because  they  were  designed  for  modeling 

strategic behaviors.

Many factors affect the way a human behaves in a given situation. For example, 

one would expect a person being held at gunpoint to cooperate with his or her captors. 

However,  could  this  behavior  in  all  certainty,  represent  every  person?  What  about  a 

martial  arts  expert  who has  an  opportunity  to  overcome his/her  captors?  Would  this 

person  react  similarly?  This  suggests  that  there  may  be  multiple  ways  humans  may 

behave  in  a  particular  situation.  There  are  many  variables  involved  in  modeling  the 

behavior of a person in any given tactical situation. Trying to address these variables by 

explicitly  relying  on the knowledge acquired  from an  expert  may lead to  unsolvable 

problems or representations that don’t adequately fit the situation. For example, if the 

knowledge used in building the model of a soccer player is acquired from an expert who 

believes in only passing the ball to a teammate in front, when the model is placed in 

situations that necessitate otherwise, the behavior exhibited might not be optimal.  With 

3



this in mind, several researchers [6, 7, 33, 101] have proposed representations to address 

some tactical situations. 

Gonzalez & Ahlers [7] describe and implement a methodology called  Context-

Based Reasoning (CxBR) that models a humans’ expected behavior in specific particular 

situations.  CxBR is a paradigm that models human behaviors in terms of contexts.  This 

method seeks to limit and reduce the complexity inherent in human decision-making by 

limiting the number of events available for the agent to think about in any given situation. 

Several successes have been achieved using this method, for example [4, 127]. While a 

generally  effective method however,  reliance on  Subject  Matter  Experts  (SME)  1from 

whom knowledge is obtained can limit its effectiveness. 

This research describes a method that eliminates one major limitation introduced 

to most human behavior modeling techniques during the knowledge acquisition process, 

i.e., the limitations of relying on SME knowledge. Like other paradigms, Context-Based 

Reasoning also suffers from this problem. The elimination of these limitations would lead 

to  a  more  robust  methodology  that  can  be  extendable  to  most  human  behavior 

representation techniques and most domains. Furthermore, apart from augmenting SME 

knowledge, it would minimize or eliminate other errors built into the system during the 

acquisition of knowledge such as the introduction of conflicting knowledge to a model. 

To  achieve  this,  we incorporate  Reinforcement  learning (RL)  within  Context-

Based Reasoning.  Reinforcement  learning  is  a  machine  learning  strategy that  assigns 

rewards  (positive  or  negative)  as  an  agent  (simulated  or  live)  interacts  with  its 

1 Subject Matter Experts (SME) are people with experience in the domain being simulated. They typically 
provide knowledge that is used in the knowledge base of the simulation.
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environment (immediate or distant). The synergistic combination of these methodologies 

promises to significantly enhance CxBR’s ability to represent human tactical behavior.

1.2 Human Behavior Representation

As was previously defined, “human behaviours are the actions or reactions of a human in 

response to some external or internal stimuli” [1]. Some researchers have attempted to 

represent  this  response,  for  example  [4,  5,  6,  52].  Pew & Mavor  [52]  note  that  the 

military simulation community defines human behaviour representation as “models of 

human behaviour  or performance utilized in military simulations”.  Researchers in the 

field of human behavioural representation are faced with at least three issues [24].

• To efficiently and effectively represent the behaviour of a human

• To efficiently acquire these behaviours

• To validate the acquired behaviours

To efficiently and effectively represent human behaviour, the five components of human 

behaviour stated by Flournoy [108] must be taken into consideration. These components 

are: sensing and perception, working memory, cognition, motor behaviour and long-term 

memory.

Sensory and perception refer to the inputs received from the environment. These 

inputs  can  include  rewards,  punishments  or  some  other  form  of  response  from  the 

environment on an action or group of actions performed by the human. 

Working memory refers to the part of memory reserved for processing these inputs 

alongside other variables. The dictionary [1] defines Cognition as “The mental process of 
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knowing, including aspects  such as awareness,  perception,  reasoning,  and judgment  - 

That  which  comes  to  be  known,  as  through  perception,  reasoning,  or  intuition; 

knowledge.” The way a human recognizes events, i.e. the humans’ level of awareness, 

perception,  reasoning and judgement  of  his environment should be represented.  Some 

people have a high level of situational awareness and perception whereas others do not. 

Yet others learn about their environments and become fully aware over a period of time. 

Motor behaviour refers to the learning and control of human movement. Gonzalez 

and Dankel [197] note that motor skill (behaviour) “…is physical rather than cognitive-

oriented”  [197].  They give  examples  of  driving  an automobile,  riding  a  bicycle,  etc. 

Knowing  how  to  effectively  represent  a  person’s  motor  behaviour  is  important  in 

obtaining a good model of human behaviour, for example how many times will a person 

attempt to balance a bicycle before becoming successful? 

Long term memory refers to the stored memory that can be retrieved anytime. As 

a person performs an activity, he/she learns from that activity. Some time in future, the 

person might need to retrieve information on some past event. The ability to represent 

this process is important for a robust model. 

There are many ways to model and represent human behaviour. Researchers have 

postulated  many  paradigms  and  architectures  that  address  aspects  of  this  problem. 

Flournoy [108] groups these architectures into three classes:

1. Finite-state machines

2. Task network models

3. Pure cognitive models

6



Paw & Mavor  [52]  note  that  the  finite-state  machines  paradigm is  the  most  utilized 

behavioural representation used for military simulations. Inasmuch as there are a number 

of models that address human behaviour, some constraints to modelling human behaviour 

exist. Giordano [50] explores some of these constraints to modelling human behaviour 

and concludes that most times the requirements for HBR systems exceed the capabilities 

of technologies currently in use. He suggests that unless the emergence of ‘disruptive 

technologies’ [50] occur, certain HBR characteristics will continue to remain beyond our 

reach. 

Most  of  the  existing  models  focus  on  specific  areas  of  human  cognition  and 

behaviour [12]. This is in line with Brooks’ [84] argument that it is better to build simple 

creatures in complex worlds and then gradually increase their complexity than to build 

creatures in simple worlds and then gradually increase the complexity of the worlds. He 

asserts  that  “human  behaviour  is  the  external  expression  of  a  mass  of  independent 

behaviours  that  don’t  have any central  control  or  representations  of  the  world”  [84]. 

Some researchers have tried to create more complex behaviours by combining existing 

models. This allows a more robust and flexible architecture for any given simulation. For 

example, Van Lent et al. [12] achieve a more realistic view of the situation in an urban 

combat  mission  by  integrating  three  human  behaviour  representations  (PMFServ, 

AI.Implant and Soar to be described later) into a single virtual environment. These three 

paradigms  are  necessary  to  achieve  a  realistic  view because  during  a  modern  urban 

combat mission, in the context of counter insurgency, there are potentially three ‘types’ 

or groups of behaviours exhibited by humans: An attacking army (a group of humans), 

usually has combat doctrine and rules of engagement to which they adhere during these 
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types of missions. The second group of humans are an opposing militia that fights the 

attacking army through unorthodox means. This militia have no combat doctrines or rules 

of engagement to uphold. The third group of people includes civilians caught in the cross 

fire. These civilians have only one goal when caught in this situation - to survive.

Behavioural  variability which  is  defined  by  Wray  and  Laird  [14]  as  the 

“differences  in  observed behaviour  when entities  (human  or  otherwise)  are  placed  in 

essentially  the  same  situations”  [14]  is  typically  overlooked  by  most  modelling  and 

representation paradigms. This variability exists when a persons’ or agents’ subsequent 

action cannot be completely predictable in the same situation. The context of situation is 

defined  by  [14]  as  “both  the  physical  environment  (e.g.  buildings,  terrains)  and  the 

strategic/tactical environment (e.g. mission rules of engagement, command structure)”. 

According to Wray & Laird [14], it is wrong for researchers to assume that variability 

implies simple dichotomies as correct/incorrect or expert/novice. They list the sources of 

variability  in  human  behaviour  as  mental  and  physical  differences.  The  types  of 

variability in human behaviour include within-subject and across-subject. Wray & Laird 

[14] define across-subject variability as when two different people act differently when 

faced with the same situation. Within-subject variability is a situation where the same 

person acts differently at different times when faced with the same situation. Sukthankar, 

et  al.  [13]  describe  a  method  for  modelling  physical  variability  in  MOUT (military 

operations in urban terrain) soldiers. They note that the lack of variability in agents make 

them predictable and ineffective in a simulation with their human trainees. Sukthankar, et 

al. [13] acknowledge that both physical and cognitive differences contribute towards the 

overall behaviour of a person. Hence, both should be taken into account when modelling 
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the behaviour of a human. An example is that during a combat mission, it will be easier 

for a person with small stature (shorter, smaller) to successfully hide in a small chamber 

than a person with big stature (big, fat or tall). Consequently, a persons’ stature should be 

taken into consideration when modelling how the person would behave. Likewise, when 

being attacked by gunfire, it is easier for a sharpshooter to hit a bigger person than a 

smaller person. Sukthankar, et al. [13] showed how incorporating physical variability can 

induce different behaviours from agents. 

Another factor commonly overlooked in HBR modelling is the stress levels of 

humans. How do you represent a human’s ‘stress level’ in an agent’s behaviour? Mental 

workload has been shown to affect the performance of individuals [15]. The effect  of 

stress in modelling human behaviour isn’t relevant to this research because the effects of 

stress are negligible in the cause of breaking the limitations of SME knowledge. As such 

no further discussions are made on this subject in this dissertation.  

Another  aspect  of HBR is  emotions.  How does one represent  emotions? How 

does  one  represent  when  a  person  is  sad,  happy,  etc?  Some  agents  can  recognize 

emotions. These agents can interact with humans in question and answer sessions [31]. 

Davis [46, 47] analyses the relationship between emotions in agent systems and 

their  computational  requirements,  and notes that  ‘emotion-like’ states could cause the 

system to be dysfunctional. On the other hand, computational agents can identify these 

states and utilize them before the system becomes dysfunctional. He also suggests that 

such analysis be carried out during the development of a complex system.  McCauley 

[48]  proposes  a  way  to  have  an  internal  emotional  judge  in  agents  that  enable 

representation  of  a  broad range of  emotions.  Kort  and Reilly [49]  propose analytical 
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models that incorporate emotions into the design of cognitive machines. This is also not 

relevant to this research for the reasons given above.

Computer Generated Forces (CGF) are defined as “automated or semi-automated 

entities  (such  as  tanks,  aircrafts)  in  a  battlefield  simulation  that  are  generated  and 

controlled by a computer system perhaps assisted by a human operator” [196].  There are 

some drawbacks to using CGF’s. Archer & Lavine [32] point out that “using CGF in 

training and operations planning can be compromised when the CGF do not behave as 

realistically as actual soldiers”. They described work done in improving the realism of 

CGF  entities  in  constructive  simulations.  One  of  the  drawbacks  of  current  CGF 

technology includes the predictability and relatively unrealistic nature of the CGF “with 

respect to the natural variability of human performance”[32]. This variability results from 

different levels of training, aptitude, fatigue and other environmental stressors to which 

humans are usually exposed in a battlefield. [32]

Although the work of Archer & Lavine [32] is a definite advancement in the study 

of CGF’s, it is limited in scope because it can only be used in the military domain. The 

authors didn’t offer ways of generalizing their method to other domains. 

Another  problem with  CGF is  the  coordination  of  collaborative  works  among 

agents.  Easterbrook [29] identified shared understanding and conflict as two key factors 

that affect collaboration. Easterbrook’s [29] work on developing a model of collaborative 

behavior  based  on  the  concepts  of  shared  understanding,  breakdown  and  conflict  is 

relevant in the field of CGF. 

Gore  [30]  notes  the  importance  of  considering  the  physical  as  well  as  the 

cognitive aspects of behavior on performance when investigating human errors.  He notes 
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that identifying the factors that lead of human performance errors will provide a better 

understanding of performance. According to Gore [30], “researchers in HOOTL2 have 

not paid much attention to the impact the environment has on the behavioral predictions 

generated by the cognitive models and the link between the cognitive processes in any 

situation and the behaviors of the model.”  Gore [30] discusses the contextual  control 

model  (CoCoM)3 developed  by  Hollnagel  [122,  123],  that  addresses  this  issue  by 

providing  the  link through its  cognitive  process  module.  The  underlying  principle  of 

CoCoM is that it “believes that a person’s comprehension and action depends on how 

context is perceived and interpreted” Gore [30]. 

While considering emotion, variability, stress, physical factors, collaborative tasks 

and other such factors that affect human behavior, the work described in this dissertation 

subsumes these factors and only treats them implicitly in some cases and neglects them in 

others. That is, only their effect on the actions is evaluated through the actions alone.

1.3 Acquisition of Knowledge for Modelling Human Behaviour

As  noted  previously,  acquisition  of  knowledge  is  an  important  aspect  of  human 

behavioural representation. Gonzalez & Dankel [197] note that knowledge acquisition is 

composed of knowledge elicitation and knowledge representation within a tool. How and 

where does one obtain relevant knowledge for modelling human behaviour? Researchers 

have  postulated  various  ways  to  do  this.  Knowledge  acquisition  techniques  can  be 

grouped in three categories: Manual, Automated and Learning techniques.  

Schreiber et al. [109] lists five types of knowledge acquisition techniques:

2 HOOTL is human-out-of-the-loop simulation. It is a type of CGF that utilizes computer models of human 
performance to create virtual human agents.
3 CoCoM is discussed later.
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• Interviewing: unstructured, semi-structured and structured

• Protocol analysis:  an analysis  of the expert  is carried out while he/she is  actually 

solving the problem. An observation of what the expert does is noted either by video, 

audiotape, etc. The modelling engineer then extracts meaningful structures and rules 

from the transcripts of these records

• Laddering: Graphical representations are made in terms of the relationships between 

the problem being solved and the domain. The expert and modelling engineer jointly 

construct these graphs.

• Concept sorting: “a useful technique used to uncover the different ways an expert 

sees relationships between a fixed set of concepts” [109]

• Repertory  grids:  experts  are  presented  with  samples  of  the  problem domain.  The 

experts are then asked to choose a pair that is similar and one that is different. The 

reasons given by the expert for the difference between the three chosen samples are 

noted and become known as a construct. An example [109] is when attempting to 

know an astronomer’s understanding of the planets, “if we present him with a set of 

planets, and he chooses Mercury and Venus as the similar pair, and Jupiter as the 

different planet. We would ask the expert (astronomer) for his reason for choosing 

Jupiter  as  different  from  the  other  two  planets.  We  would  use  his  answer  as  a 

construct.  In  this  example  ‘size’  would  be  a  suitable  construct.  The  remaining 

elements in the domain are rated on this construct.” [109]

According  to  Gonzalez  and  Dankel  [197],  manual  techniques  usually  involve 

interview sessions (question and answer) between an expert and the knowledge engineer 

(KE),  studying  instruction  manuals  and  books,  observing  the  expert.  Gonzalez  and 
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Dankel [197] list different approaches to interview sessions and observational techniques 

used during knowledge elicitation.

Automated techniques present a method where the experts’ knowledge is captured 

automatically.  These techniques could range from a simple query session between and 

expert and an intelligent system to a more complex system that captures knowledge by 

observing the expert  perform actions in his domain [198]. Some automated tools and 

techniques are presented below. 

CITKA [16, 17, 21], developed for acquiring knowledge about military tactics, 

involves a query session between a subject matter expert and the CITKA system. The 

main advantage of this approach is in the reduced need for human effort in the acquisition 

of knowledge and implementation of the acquired tactical knowledge.

Kim  and  Gil  [19]  show  how  to  use  existing  knowledge  acquisition  methods 

towards building human behaviour models. They also show how these models can be 

improved with the development of an acquisition dialogue tool.

Chen  and  Chan  [111]  use  the  inferential  modelling  technique  (IMT)  for 

knowledge analysis during the process of knowledge acquisition. IMT is a template that 

organizes  the chunks of  knowledge usually  embedded in  data  obtained  from experts. 

Simon  [112]  presents  an  acquisition  method  composed  of  three  steps.  The  first  step 

involves exploiting the structure of existing documents within the organization. The last 

two steps  of  their  method  are  cyclic,  and  include  interviews  with  experts,  prototype 

creation and tests. 

ATTack  (Acquisition  Tool  for  Tactical  Knowledge)  developed  by  Henninger 

[126] based on the knowledge requirements of context-based reasoning, had a primary 
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objective of reducing the time and decreasing the need for an expert in the acquisition of 

a  knowledge  base  for  CxBR  representation  [126].  ATTack  made  use  of  the  Visual 

Interactive  System for  Task  Analysis  (VISTA)  4 to  collect  knowledge  on  objects  of 

interest  to  the  agent.  ATTack  is  a  pre-cursor  of  CITKA,  having  the  same  overall 

objectives.

Learning techniques  are those that  deduce knowledge for a  given task from a 

variety  of  knowledge  sources.  Gonzalez  and  Dankel  [197]  define  learning  as  “the 

improvement in the performance of a specific task (intellectual or physical) after previous 

exposure to that task or a related one” [97]. Typically, knowledge acquisition techniques 

involving  learning  usually  come  from  examples  (historical  cases  or  hypothetical 

examples  from experts).  An example  of  a  knowledge acquisition  technique involving 

learning  is  Redux.  Redux  [18]  is  another  automated  approach  for  acquiring  HBR 

knowledge.  Its  main  focus  is  in  the  reduction  of  acquisition  cost,  validating  and 

maintaining the knowledge used in HBR systems. This was achieved by allowing SMEs 

to use diagrams to specify behaviours in abstract scenarios [18]. The system analyzes and 

automatically generalizes from the scenarios presented by the expert. 

Researchers  at  MIT  [105]  have  developed  a  wearable  platform  that  captures 

regular patterns in a persons’ behaviour and forms a predictive model of his activities 

with them.

Sidani [58] captures expert behaviour by observing expert actions in a simulation. 

Sidani’s method has the advantage of capturing both implicit  and explicit  knowledge. 

Gonzalez et al.  [110] present a model called Template-based Interpretation (TBI) that 

4 VISTA was developed by Ahlers & Schnitzius and is a graphical tool to acquire knowledge for a CxBR 
system.
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captures human behaviour by observing human actions in a simulation for the purpose of 

interpreting the person’s intentions. Fernlund & Gonzalez [10, 138] also acquired expert 

knowledge by observation and were able to create tactical agents semi-automatically5.

Fernandez-Breis, et al. [106] implement an approach combining natural language 

recognition  techniques  and  knowledge  acquisition  that  can  extract  knowledge  from 

natural language texts. Kass & Finin [107] suggest techniques for implicitly acquiring 

knowledge about a user during a system’s interaction with its user. They go further to 

postulate some rules governing the acquisition of this knowledge. 

There are many more knowledge acquisition tools, for example,  Induction tool, 

PLANET, ETS, and many others [197]. An underlying shortcoming of all these tools and 

techniques is their total dependence on expert knowledge. For manual approaches, the 

drawback is that the information presented by the expert or read in instruction manuals 

and books written by experts are thought to be excellent sources of knowledge. There are 

no known methods used in filling the ‘gaps’ left by experts or books and as such tactical 

models  built  from these acquired knowledge are  always  lacking.  The same drawback 

applies to automated techniques. The SMEs’ are limited in what they know and what they 

can do. Thus these automated techniques and tools have the same shortcomings. On the 

other hand some acquisition techniques that utilize learning attempt to break the SME 

knowledge limitation. Currently though, the learning techniques used always involve the 

presentation of examples. The same problem applies in cases where no examples exist or 

where the examples presented by the expert are faulty.

5 Fernlund & Gonzalez achieved this by the use of a new methodology called GenCL which makes use of 
CxBR. 
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 This  research  presents  a  method  that  attempts  to  eliminate  the  errors  and 

inconsistencies that could exist in the knowledge acquired from SME. The limitations in 

SME knowledge are made unnoticeable by designing a model that learns from its actinos 

and mistakes. This is achieved by having the agent learn and enhance its behavior in a 

simulator, based on its experience. This experience is gained when the agent learns from 

its mistakes and successes when attempting to achieve its goals in a simulator.   

1.4 A Brief Introduction to Agents

Models of human behaviors are best embodied in some form of simulated agents. These 

agents’ sense and act within the environments in which they are situated. Russell and 

Norvig [25] discuss how agents should act as well as the different types of agents.  Foner 

[26] describes an agent from the sociological point of view and introduces a prototype 

agent known as Julia that  attempts to appear human. Franklin & Graesser [27] try to 

differentiate between an agent and a program. They furthermore tried to classify agents 

according to their properties. According to Russell and Norvig [25], an agent should be 

rational. When an agent does the right thing, it is said to be rational. However, a new 

question arises with this definition of rational - what is the right thing for an agent to do? 

There  should  be  a  way  of  evaluating  an  agents’  performance  either  internally  or 

externally. An agent should have some form of autonomy. In summarizing the structure 

of  an  agent,  Russell  and  Norvig  [25]  note  that  an  agent  “is  equal  to  the  agents’ 

architecture in addition to its program.” A program is a “way of mapping the percepts of 

the agent to the actions it takes”. The way the program implements this mapping is what 

brings about the different types of agents. Based on this, Russel and Norvig suggest four 
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types of agent programs, namely:  Simple reflex agents, Agents that keep track of the 

world,  Goal-based  agents,  and  Utility-based  agents  [25].  These  are  further  described 

below.

1.4.1 Types of Agent Programs

1. A simple reflex agent is one that reacts to situations [25]. The program is written in a 

condition-action rule. The percepts are interpreted to represent the current state and a 

rule that matches this state is fired, thus producing some action associated with this 

rule. A CxBR agent can be said to at least have the qualities of a simple reflex agent. 

2. Agents that keep track of the world have an internal state that is updated with percepts 

from the environment in a regular manner [25]. This allows the agents to be aware of 

and survive their often unpredictable environment. CxBR agents also can be said to 

have this quality.

3. Goal-based agents have some sort of goal information within their program [25]. For 

example, an agent with information about the current state of the “world” can make 

decisions on what actions to take. However, if a goal is included, the agent’s decision 

could be based on how to reach that goal. In most cases the goal-based agent appears 

to be less efficient, but it is far more flexible.  The competing context concept6 (CCC) 

developed by Saeki  & Gonzalez  [28] and other  CxBR models  require  goal-based 

agents [7].

4. The  utility-based agents try to perform actions based on the value of that action in 

that state, towards the end goal. There is a direct mapping of a state to a number, and 

6 The competing context technique is an attempt to eliminate the need for hard-coding information in the 
contexts for the CxBR architecture. This technique is explained in section 1.4.5.5
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this number describes how good or bad that state is.  The value of a state relative to 

the goal is usually calculated based on some predefined functions.  

In this section, an introduction to agents has been presented. As stated, most HBR agents, 

including  CxBR’s  agents,  have  the  qualities  of  all  types  of  agents  described  above. 

Methods that utilize machine learning in the acquisition of knowledge also possess these 

qualities with the exception of the qualities of a utility-based agent. Lacking a utility-

based attitude means that there are no mappings between ‘rewards’ or ‘punishments’ to 

actions  in  each  state  and  thus  no  mappings  between  a  goal  state  and  rewards  or 

punishments for being in that state. Agents that seek and acquire knowledge based on the 

utility of each state, including the goal state, are most desirable. This research seeks to 

establish a knowledge acquisition technique based on agents that include the properties of 

a utility-based agent using a CxBR framework. This would be achieved by the synergistic 

combination of CxBR with RL through the enhancement of a predefined human behavior 

model. 

1.5 Introduction to Some Human Behavior Representation Paradigms

As  noted  in  the  previous  sections,  many  modelling  paradigms  exist  that  attempt  to 

optimally represent human behaviour. Each of these paradigms has its advantages and 

disadvantages. So far, there is no modelling paradigm that addresses all aspects of human 

behaviour. Some modelling paradigms are domain specific; for example, a paradigm that 

only models a soldier’s behaviour in a battlefield situation, a captains’ behaviour in a 

submarine, an automobile driver’s behaviour on a freeway, and many others. In general, 

the modelling paradigms typically meet most of the requirements of a HBR model. Some 
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researchers  have  defined  models  that  combine  existing  modelling  techniques  to 

synergistically combine their strengths.  Below is an introduction to the most common 

modelling techniques used in modelling human behaviour.

1.5.1 Cognitive Network of Tasks (COGNET)

COGNET is  a  framework  developed  by  Zachary  et  al.  [5,  113]  that  models  human 

cognition  and  decision-making.  COGNET  meets  the  requirements  of  the  cognitive 

analysis process as defined by [113].  According to Zachary et al. [113], the cognitive 

analysis  process  should  represent  the  four  main  aspects  of  tactical  decision  making. 

These  include,  1)  real-time,  2)  opportunistic,  3)  multi-tasking  and  4)  situated  in 

computer-based  and  verbal  interactions.  “It  provides  an  integrated  representation  of 

knowledge,  strategies,  behavioural  actions and problem solving skills  that  are used in 

specific  domains  to  produce  a  powerful  cognitive  tool.”  [114].  The  “COGNET 

framework  is  composed  of  a  theoretical  basis,  its  description  language7,  its  data 

collection, knowledge elicitation, analysis and the representation methods” [113].

COGNET is  composed  of  a  cognitive  architecture  and  an  internal  knowledge 

base, (see Fig.1.1). The cognitive architecture has a specific structure with standardized 

operational principles. The internal knowledge is “a set of symbols on which it operates” 

and  is  organized  in  specific  representational  schemes  [113].  Human  information 

processing is “broken down into three parallel mechanisms – perception, cognition and 

motor  activity”.  Perception  includes  sensation,  which  receives  information  from  the 

7 The knowledge is usually represented using the COGNET description language
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outside world and “stores it where it can be accessed by both the perceptual and cognitive 

mechanisms”. This store is known as the extended working memory. 

The  cognitive  process  manipulates  the  information  in  the  extended  working 

memory by using some previously-acquired knowledge. The cognitive process doesn’t 

operate directly on the perception of the outside world. It can modify the representation 

of the problem and also invoke actions via commands to the motor activity module. The 

motor activity module then manipulates the environment through physical  instruments 

embedded  in  the  system.  The COGNET framework  has  been  successfully  applied  to 

many domains including a vehicle tracking domain, here it was shown to have the ability 

to represent and predict attention-switching performance [113]. The framework was also 

applied  to  telephone  operator  services  [114]  and  other  complex  domains.  Fig.  1.1 

illustrates the COGNET framework.

Although COGNET has  been used to successfully  model  human behaviour,  it 

suffers  from  the  problem  earlier  identified  in  most  human  behaviour  representation 

techniques,  i.e.  the  over  dependence  on  expert  knowledge.  The  data  collection  and 

knowledge elicitation components of COGNET do not incorporate learning and as such 

the data collected is stale (not dynamic) in the sense that a model built with the COGNET 

framework, cannot be enhanced automatically. 
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Figure 1.1 Conceptual  View  of  COGNET  Cognitive  Architecture 

(Reproduced from Zachary et al. [113] without permission)

1.5.2 Atomic Components of Thought  or Adaptive Character of Thought (ACT-R)

ACT-R is an Adaptive Character of Thought – Rational theory conceived by Anderson 

[101].  This  theory  is  based  on the  premise  that  “complex  cognition  comes  from the 

interaction  of  procedural  and  declarative  knowledge”  [101].  Procedural  knowledge, 

represented by production rules, arise from the “simple encodings of transformations in 

the environment  [101]”.  On the other hand, “declarative knowledge is represented by 

units  called  chunks”  and  it  arises  from  “simple  encodings  of  objects  in  the 

environment” [101].

ACT-R bases its foundations on the workings of the human cognitive process. 

This process has a large database of knowledge units (chunks and productions rules). In 

any given context, “the appropriate units are selected by an activation process based on 

the statistical information gathered on the environment.” The ACT-R theory states that 
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“the power of human cognition depends on the amount of knowledge encoded and the 

effective deployment of the encoded knowledge” [101].

The  goal  of  the  ACT-R theory  is  to  provide  the  details  to  a  claim  made  by 

Anderson [101] on the formation of intelligence. Anderson claims that “all that there is to 

intelligence is the simple accrual and tuning of many small units of knowledge that in 

total produce complex cognition. The whole is no more that the sum of its parts, but it has 

a lot of parts.”

There are three questions that address how the details of the claim are provided: 

1) How do we represent the units of knowledge? 2) How do we acquire the units of 

knowledge? 3) And how do these units of knowledge get deployed in a cognitive system? 

Declarative  knowledge  is  represented  in  chunks.  Chunks  are  “schema-like 

structures” [101] that have pointers that specify their category and encode their contents. 

“Procedural  knowledge  is  represented  by  production  rules”.  These  production  rules 

usually  act  towards  achieving  a  goal  and  sometimes  create  sub-goals  in  the  process. 

These sub-goals establish “an abstract hierarchical structure on behavior” [101]. 

The second question revolves around how the units of knowledge are acquired. 

We need to know the origin of both the chunks and the production rules. The actions of 

production  rules  usually  create  chunks.  The  encoding  of  chunks  are  the  origins  of 

production rules. Anderson [101] notes that these definitions of the origins would cause 

circularity  in  the  theory.  Thus,  he  also  suggests  the  creation  of  chunks  from  an 

independent  source.  The  independent  source  is  the  encoding  from  the  environment. 

During knowledge acquisition in ACT-R, chunks from the environment are encoded and 
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inferences about the rules for their transformation involving examples of the problem are 

made. 

The final question is, how do these knowledge units organize themselves in such a 

way that the right unit is chosen in a particular context? How do you identify the relevant 

knowledge for a particular situation quickly? Anderson [101] notes that this is a major 

problem that  has  dogged artificial  intelligence  (AI)  systems,  and in  particular,  expert 

systems. He notes that the power of expert systems lies in their knowledge base, i.e. the 

more  knowledge available  to  an expert  system,  the  more  power  it  should  have.  The 

problem, however,  is  that  with the growth of an expert  systems knowledge base,  the 

slower it executes, up to a point that it is no longer effective to use.

Anderson [101] developed a solution for this problem using his rational analysis 

method8.  There  are  two  parts  to  this  solution.  The  first  is  an  identification  of  the 

knowledge structures (chunks and productions) that most likely fit the current context. 

According to Anderson [101], there is a track record of general usefulness maintained by 

the  mind  and this  is  combined  with  “contextual  appropriateness”  for  some inference 

about  the  knowledge to  use  in  the  current  context.  The  second part  is  the  identified 

knowledge structures determining the performance.

In  summary,  Anderson  [101]  states  that  “ACT-R  implies  that  declarative 

knowledge  is  a  direct  mapping  of  things  in  our  environment”  while  procedural 

knowledge is the direct  mapping of the observed transformations.  These two types of 

knowledge  are  combined  and  applied  based  on  the  statistical  knowledge  of  the 

environment. 

8 According to Anderson [101], rational analysis theory states that “knowledge is made available according 
to its odds of being used in a particular context.” These odds are calculated by an implicit performance of a 
Bayesian inference during the activation process.
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There are many versions of the ACT theory as well as implementation of them. 

Lebiere [130] provides a tutorial  on ACT-R version 5.0 and provides a history of the 

ACT theory.

Anderson  et  al.  [102]  present  some  additions  to  the  ACT-R  architecture  to 

enhance  the integration  of  various  modules  into a  single  problem solving unit.  They 

showed how this integration performed better than previously.

1.5.3 State Operator And Result (SOAR)

In SOAR, goals and sub-goals are generated and plans are created and implemented on 

how to reach these goals. SOAR was developed by Laird et al. [33]. Until the goals are 

attained, the plans for achieving those goals remain active. When a new situation arises, 

new goals are generated and new plans on achieving these new goals are created and 

implemented. The cycle continues until there are no more goals to achieve. The goals and 

plans are implemented using the rule-based paradigm. According to Laird et al. [103] 

“the design of soar is based on the hypothesis that all deliberate goal-oriented behavior 

can be cast as the selection and application of operators to a state”. 

There are two types of memories available in SOAR, the working memory that 

holds the current situation, the results from intermediate inference, active goals and active 

operators,  and  the  long-term  memory  that  describes  how  to  respond  to  the  various 

situations in the working memory [103]. In solving a problem, the steps involved include: 

proposal of candidate operators, the comparison of candidate operators, the selection of a 

single operator from the list of proposed candidate operators, and the application of the 
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selected candidate operator. This is shown in Figure 1.2. Figure 1.3 shows the SOAR 

architecture.

Figure 1.2 SOAR Decision Cycle, (Reproduced from [166] without permission)

 In SOAR, learning  is  achieved through a mechanism known as  chunking.  Chunking 

occurs when an operator impasse is resolved and SOAR summarizes and generalizes the 

processing that led to that sub-state. According to Ritter et al. [115], the development of 

SOAR  was  based  on  the  combination  of  three  main  elements,  “the  heuristic  search 

approach of knowledge-lean and difficult tasks”, “the procedural view of routine problem 

solving”, and “a symbolic theory of bottom-up learning designed to produce the power 

law of learning.”  Ritter  et  al.  [115] compare  the similarities  and differences  between 

SOAR and ACT-R architectures for modeling behavior. They note that the “limitations 

on  SOAR’s  theoretical  assumptions  originate  from  the  general  characteristics  of 

intelligent agents, rather than from a detailed behavioral representation”[115]. Therefore, 

“SOAR is more biased towards performance than ACT-R because its background is AI-

based, while ACT-R is based upon cognitive psychology”[115].

Young and Lewis [116] examine the contributions made by SOAR’s approach to 

the issues pertinent with the working memory.  They show how a cognitive system can 

handle complex tasks that require large quantities of information by utilizing long-term 

Propose Operators
(i-supported)

Apply Operator
(o-support)

Select Operator OutputInput
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memory in conjunction with the external environment if there is some constraint on the 

capacity of the working memory. 

Several researchers have successfully combined the SOAR approach with other 

cognitive models or other learning paradigms amongst which include the EPIC-SOAR 

model for a simplified enroute air traffic control task [117] and SOAR-RL [118]. SOAR-

RL [118] is a modification to the SOAR architecture that provides learning opportunities 

for an agent from statistics of its successes and failures in the selection of an operator. It 

is reinforcement learning (RL) embedded in the SOAR architecture.

Figure 1.3 SOAR  Architecture  (Nason  and  Laird  [118]  reprinted 

without permission)

1.6 Organization of Dissertation

This dissertation is organized in the following order. Chapter 1 provides a summary of 

the  research  done  and  the  background  information  of  some  human  behavior 

representation  paradigms.  Chapter  2  describes  some  techniques  that  use  contexts  to 

represent  human  behavior.  Chapter  3  clearly  defines  the  problem  being  addressed. 
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Chapter 4 contains some machine learning techniques that could be used in solving the 

problem. In Chapter 5, the conceptual approach to a new methodology is described that 

integrates CxBR and RL. Chapter 6 describes the design of a prototype and the various 

experiments  while  chapter  7  contains  the  results  from  the  experiments  and  a 

comprehensive evaluation of these results. Chapter 8 is a conclusion of the research work 

with a summary of the work, recommendations and future research work that could be an 

offspring from this work.

1.7 Summary

This  chapter  introduces  the  reader  to  the  problem  being  investigated.  Background 

information  on  various  human  behavioral  modeling  techniques  is  presented.  Also 

presented in this chapter are the ways in which knowledge is acquired and represented by 

the  various  modeling  techniques.  The  limitations  of  the  various  techniques  used  to 

represent  human  behavior  are  highlighted  with  an  emphasis  on  the  most  prevalent 

limitation,  i.e.,  the  total  dependence  on  SME knowledge.  Finally  the  outline  of  the 

dissertation and chapter summary were presented.
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CHAPTER 2: HUMAN BEHAVIOR REPRESENTATION THROUGH CONTEXTS

2.1 Contexts

Humans employ contextual reasoning in everyday decision-making. However, one may 

wonder what exactly is a context? In simple terms it means, “That which surrounds, and 

gives meaning to, something else” [1]. Nevertheless, many researchers in the field of 

contexts have different ideas and meanings of what contexts are. Sowa [37] states that 

“the word context has been used with a variety of conflicting meanings in linguistics”, 

Sowa [37] goes on to list two major perceptions of the word contexts as derived from the 

dictionary. There are:

• The basic meaning of Context is some text that surrounds a word being used in a 

sentence or some phrase of interest. Sowa suggests this to be a section of linguistic 

text.

• The derived meaning of Context is in a non-linguistic situation, it includes some topic 

of interest.

Sowa, goes on to say “Context may refer to the text, to the information contained in the 

text,  to the thing that the information is about or to the possible uses of the text, the 

information, or the thing itself” Sowa [37].

Kokinov [34] states that contexts can be viewed as “a set of internal or mental 

representations and operations” or “a set of environmental elements”. Kokinov [93] goes 

on  further  to  define  context  as  “… the  set  of  all  entities  that  influence  human  (or 

system’s) cognitive behavior on a particular occasion”. According to Kokinov [34], the 

way AI researchers’ model contexts are different from the way contexts are modeled and 
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viewed by researchers in psychology. Usually, “the AI approach to contextual reasoning 

can  be  viewed  as  navigation  between  and within  context  boxes”[34].  The  boxes  are 

predefined and the only issues for the AI developer are how to represent the individual 

box, how to recognize that the box has to be changed and how a new box is chosen 

amongst the various boxes [34]. Kokinov [34] states that the issue of constructing a new 

context on the fly is never addressed in AI researches. One of the focuses of this research 

is to address this limitation – creation of context on the fly. 

On the other hand, according to Kokinov [34], “when psychologists study context 

effects, they do not think of changing the goals or beliefs of the subject”. Kokinov [34] 

mentions intentionality, controllability, awareness and efficiency as independent aspects 

of the automaticity of any cognitive process. What Kokinov concluded from the “review 

of the psychological studies on context is that context usually has an unconscious and 

unintended  influence  on  people’s  behavior  and  that  this  happens  all  the  time  and is 

triggered by all sorts of incidental elements of the environment but also by the previous 

memory states”[34]. Kokinov notes that “it is very important that the previous memory 

state  produce context  effects,  since the context  effect  maintains  the continuity  of  the 

cognitive  processes  and  prevents  human  thoughts  from  continuously  running  in 

leaps”[34]. The previous memory states also ensure efficiency because “they restrict the 

set  of  all  possible  interpretations,  inferences,  searches,  etc.,  to  the  set  of  relevant 

ones” [34]. Kokinov & Yoveva [87] note the effects  of contexts on problem solving. 

They show the effect of ‘near’ and ‘far’ contexts in experiments that contain illustrations 

of the problem being solved, illustrations relating to the problem being solved and also 

illustrations not relating to the problem being solved. Kokinov [2, 34, 90, 91, 93] went on 
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further to suggest a way of dynamically changing contexts. Kokinov proposes in [93] “a 

dynamic theory of context that considers contexts as the complete set of entities that can 

influence  a  human’s  cognitive  behavior  in  any  given  occasion”[93].  Contexts  are 

“thought  of  as  the  dynamic  fuzzy  set  of  all  associatively  relevant  memory  elements 

(mental representations or mental operations) at a particular instant of time” [93]. The 

main principles of Kokinovs’ dynamic theory of contexts are [34]:

• “Context only refers to the state of mind of an entity and not to the environment in 

which that entity exists”

• At  any  given  time,  the  specific  distributions  of  priorities  of  all  mental 

representations and operations correspond to the context

• The associative relevance of mental elements measure the priorities

• “associative relevance is graded and computed automatically and in parallel to the 

reasoning process”

• “There are no clear cut boundaries between the set of priority elements because 

context is dynamic”

Kokinov [34, 90, 93] presents the DUAL9 architecture that utilizes the dynamic theory of 

contexts. 

Zibetti  [35]  discusses  the  role  of  contexts  in  interpreting  and  understanding 

perceived events as actions carried out by other people. A definition of context is based 

on the state of the system at the processed time and also the temporal definition. Some 

interesting  examples  where  given  by  Zibetti  [35]  to  portray  what  action  is  being 

perceived  by  onlookers  in  different  scenarios  and  finally  suggests  a  method  called 

9 The DUAL architecture is described in detail in section 2.
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C.A.D.S  [96] (Categorization et Assignation Dynamique de Signification) [96]. C.A.D.S 

is a model that attributes meaning to situations through the process of categorization.

As stated earlier, there are many definitions of contexts. Brezillon [40, 83] defines 

contexts “as a collection of relevant conditions and surrounding influences that make a 

situation unique and comprehensible”. Three types of contexts as proposed by Brezillon 

and Pomerol, are enumerated in [83] as external knowledge, contextual knowledge and 

proceduralized context. The external knowledge is the part of context that isn’t relevant 

to a step in the decision-making process of a task. The “contextual knowledge is the part 

of the context that is directly relevant to the step of the decision making process in the 

task”[83]. Brezillon [40] breaks the contextual knowledge further into the proceduralized 

context, which is prevalent at any given step of the decision-making process of a task. 

Based  on  his  definition  of  a  context,  Brezillon  conceived  the  notion  of  Contextual 

Graphs, “that  allow any given problem for operational  processes to be represented in 

contexts by taking into account the working environment” [83].10

Turner  defines  contexts  as  “any  identifiable  configuration  of  environmental, 

mission-related, and agent-related features that has predictive power for behavior” [36]. 

Turner [36] conceived the Context-mediated behavior (CMB) paradigm which ensures an 

agent behaves appropriately in any given context. More on this later.

2.2 Representing Human Behavior through Contexts

Successful  attempts  have been made to  model  tactical  behaviours  through the use of 

contexts  [7,  36].  Based on the flexibility of contexts,  and the many definitions  of it, 

several researchers [36, 38, 39, 40] have proposed methods that rely on contexts to build 

10 A more detailed explanation on contextual graphs can be found on section 1.5.4.3 & in [83]
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agents that  exhibit  tactical  behaviours.  Although there is  no universally-accepted best 

“modelling  paradigm”,  each modelling  paradigm proposed by the  various researchers 

have advantages and disadvantages. These are briefly described below.

2.2.1 Context-Mediated Behavior

Context-mediated behavior for intelligent agents was conceived by Turner [36, 44]. It is 

based on the premise that an intelligent agent should effortlessly recognize the contexts in 

which it is in and act appropriately in accordance to the explicit knowledge about the 

context available to it. He notes that there is “no such thing as context-free appropriate 

behavior” and that an intelligent agent should take context into account automatically as 

humans and animals do. 

Turner  [36] lists  four desirable  properties  to his  approach on context-sensitive 

behavior,  the  first  is  to  make  sure  it  is  efficient,  a  change  in  context  should  be 

immediately recognized and the appropriate context for the new situation immediately 

activated. Secondly, it should be automatic, i.e. after the new situation is recognized, the 

change  in  context  should  occur  automatically.  Thirdly,  CMB  helps  in  the  agents’ 

perception  and  understanding  of  the  environment.  Finally,  explicitly  representing 

contexts provide an opening for the contextual knowledge of agents to be adjusted from 

their experience.

Turner [36] identifies the aspects of an agent’s behavior that can be affected by 

context as:

1. Understanding the situation: before any decision is made by the agent on how to 

behave, it should understand the current context. Its knowledge about its current 
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context  would  aid  in  answering  some  questions  pertinent  to  the  behavior  it 

exhibits when in that context. These questions include

a. What  predicted  features  of  the  context  that  are  not  yet  visible  in  the 

current situation?

b. What are the unusual features of the current situation?

c. Are there multiple meanings to known concepts in the current context?

d. How would the interpretation of sensor data be achieved in this context?

2. The behavior  should be automatically modulated to fit  the context:  This is  an 

operation that is implicit in humans; an example provided by Turner [36] is that 

when a person enters a library, the person automatically reduces the tone of his / 

her voice; when a movie ends a person automatically starts leaving the theater, 

this  becomes  his  immediate  goal.  Turner  [36]  states  that  once  a  context  is 

recognized, an appropriate behavior for that context should be exhibited by the 

agent without any reasoning effort on the agents’ part.

3. Handling  of  unanticipated  events:  the  handling  of  unanticipated  vents  should 

occur effortlessly as soon as the context is recognized. Knowledge about how to 

handle events should be available, as this knowledge would help the agent:

a. Detect the event

b. Evaluate the event

c. Respond to the event

4. Deciding on what to focus attention: the decision on the goal to focus attention is 

context-dependent.  Attention  should  be  focused  on  the  goals  of  the  current 

context,  for  example  if  a  person  is  hungry  and  going  to  buy some  food,  his 
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attention should be on purchasing the food and eating. However, if on his way to 

the food store his car experiences a flat tire; his immediate goal would change to 

address this context. The focus of attention would switch to fixing the car. 

5. Selection of actions for achieving goals: as soon as a decision is made about what 

goal to focus attention,  the actions to achieve this goal must be selected.  This 

selection process is context-dependent, for example if a person remembers that a 

bill is due immediately and has to pay that bill immediately, knowing (s)he could 

pay by phone or the internet, if the person is driving, (s)he would select the action 

to call and pay by phone, if (s)he is at home, (s)he could choose to either pay over 

the internet or pay by phone. Turner [36] states that the knowledge of the current 

context available to the agent should allow an effortless selection of the actions 

based on the context. 

6. Selection of strategies for problem-solving: various strategies exist for solving the 

same problem, depending on the context. An example provided by Turner [36] is 

the difference in the way a medical student and an experienced doctor perform 

physical  examinations on a patient.  A medical student would follow a step by 

step, pre-set procedure, whereas an experienced physician can skip parts of the 

process he knows from his experience are not necessary for the particular case. 

With context having an effect on these aspects of behavior, Turner postulated a Context-

mediated  behavior  (CMB)  as  “a  mechanism  for  ensuring  that  an  agent  behaves 

appropriately for its context.” There is an explicit representation of an agent’s knowledge 

for each context and CMB makes sure for each context, the right knowledge is provided. 

Figure 2.1 illustrates the Context-Mediated Behavior process.
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Figure 2.1 The  Context-Mediated  Behavior  process  (reprinted  without 

permission from [36])

The  CMB  process  is  made  up  of  interactions  between  ECHO  (embedded  context-

handling object) and other modules. The long-term memory is searched for contextual 

schemas (c-schemas) that could potentially identify the new situation. Turner [36, 44] 

calls this “evocation”. This process of evocation identifies a few candidate c-schemas. A 

diagnosis of the situation as a representation of one or more contexts is carried out by 

ECHO, resulting in the creation of a “context structure”. This context structure represents 

the current context.  In some situations,  multiple  c-schemas are needed to identify the 

situation correctly. These c-schemas are merged and the knowledge in them is sent to the 

reasoning modules of the agent.

In CMB, contextual knowledge is stored in c-schemas. The knowledge acquisition 

process is achieved by interactions with domain experts. This interaction could follow 

any of the methods described in the section on knowledge acquisition. Turner [36] hoped 

that the agent would eventually learn c-schemas from its experience but this was never 

35



implemented.  Contexts  are  identified  through  diagnosis,  the  attributes  of  the  current 

situation,  knowledge  about  known  situation  and  relationships  between  them.  These 

provide the information for diagnosing the current situation as represented by one context 

or a combination of contexts. Each c-schema contains the contextual knowledge about 

the situation as well as the relationship between it and other c-schema. When a situation 

that has never been experienced before occurs, “a c-schema representing a similar context 

would be merged to form a correct representation of the new context” [36]. 

The approach used by Turner [36] in transitioning between contexts, is to provide 

information that would trigger a context change within the context definition. Turner [36] 

notes that learning the events that trigger a context change may be difficult. He suggests 

it as a future research topic.

Some successful applications  of the CMB technique include the control  of an 

autonomous underwater vehicle (AUV). Although not related to Turner’s [36] CMB, a 

pedestrian  flow  model  (PEDFLOW)  has  been  developed  using  a  context-mediated 

behavior technique by Kukla, et al. [131]

A drawback of the CMB technique is the lack of agent learning. A model built 

with the CMB technique cannot be enhanced automatically during the models interaction 

with  its  environment.  This  is  because  the  knowledge acquired  is  ‘static’.  Knowledge 

acquired for a CMB model is totally dependent on a SME.

2.2.2 Contextual Graphs

Brezillon [83, 132] describes a contextual graph (CxG) as “an acyclic graph with a single 

source, a single output (sink), and a serial-parallel organization of nodes connected by 
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oriented  arcs”.  The  nodes  in  the  graph  represent  the  actions,  the  “contextual  and 

recombination nodes”, the sub-graphs (activities) and a parallel grouping. There is always 

an end to the algorithm in a contextual graph. Contextual graphs present the reasoning 

process  understood by  operators  because  the  modeling  of  the  operators’  activities  is 

possible through the sub-graphs. “An action is an executable method;  an activity is a 

complex action with different elements.” [83] An ordered sequence of the elements of a 

contextual  graph from the  input  to  the  output  is  known as  a  path.  A practice  is  the 

sequence of actions in a path.

Brezillon [132] notes that “a proceduralized context is an ordered sequence of 

contextual-knowledge pieces and their values.” From this definition, the context of any 

action is defined by its proceduralized context and the contextual knowledge. 

A  great  attribute  of  CxGs’  is  the  ease  of  introducing  new  practices.  The 

generation of a new practice consists of the application of a few changes to an existing 

practice or contextual nodes. The knowledge of an existing practice used by an operator 

and the possibility of acquiring it when needed are attributes of CxG systems.

The building of the proceduralized context from contextual knowledge is usually 

based on communication between members in a community of practice, irrespective of 

their domain of origin. Usually when people interact, a piece of knowledge, i.e. the focus 

of attention of each person, is combined to create an interaction context. The piece of 

knowledge  provided  by  each  person  is  taken  from  their  contextual  knowledge.  The 

people  combine  and  structure  this  knowledge  into  a  shared  segment  of  knowledge. 

Additions to this shared knowledge are possible based on the request of other(s) in the 

group.  The  addition  of  knowledge  to  this  shared  knowledge  is  refered  to  as  the 

37



progressive  building  of  proceduralized  context.  If  this  shared  knowledge  is  finally 

accepted by all parties interacting, it is integrated into a knowledge structure agreed upon 

by all parties (proceduralized context). This proceduralized context is then moved to the 

shared contextual knowledge of everyone when it  is no longer the focus of attention. 

“The proceduralized context, therefore, contains all the pieces of knowledge assembled 

and accepted by all persons that interacted”[132].  It represents a “functional knowledge 

or  causal  and  consequential  reasoning.  This  newly-created  contextual  knowledge 

(previously proceduralized knowledge) can be utilized later as either a whole or part of 

another contextual knowledge to be integrated into a new proceduralized context”[132].  

Brezillon [132] argues that this is why the more experience a person has, the more 

structured the knowledge available to the person is. 

Each action in a CxG is usually associated with some fixed and static context. The 

dynamic  nature  of  context  is  achieved  at  the  practice  level.  The  evolution  of  the 

contextual  knowledge  and procedural  knowledge during  the  application  of  a  practice 

account for the dynamic nature of contexts.

There are some successful applications of CxGs, among which include an incident 

management for a subway line Brezillon et al. [133]. A prototype software that exploits 

the concepts of a CxG has also been developed [83].

Although Brezillon claims CxGs can learn, it is the opinion of this author that the 

‘learning’  mechanism  in  CxGs  is  not  fully  developed  and  as  such  learning  doesn’t 

actually occur. The lack of learning is a short coming of CxGs. A model built using CxG 

cannot be enhanced automatically during the models interaction with its environment. 

The knowledge used in building CxG models is also totally dependent on an expert.
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2.2.3 Context-Based Reasoning

Context-Based Reasoning (CxBR) by Gonzalez and Ahlers [7, 39], provides intelligence 

to an agent by controlling its actions in a real or simulated environment. It is based on 

some guiding principles that pertain to the way humans think in their everyday activities. 

The basic ideas from which CxBR was created are [41]:

• “In any given situation,  tactical  experts are proficient at  a task by identifying and 

dealing with only the key features of that situation.” [41] An example would be if an 

automobile  is  taken to  an auto mechanic  with water  leaking  from underneath the 

radiator, an expert auto mechanic wouldn’t bother examining its battery or ignition 

system.  He/she  automatically  recognises  the  key  feature  of  the  situation  -  water 

leaking from the radiator and proceeds directly to the radiator.

• “The  numbers  of  things  that  can  realistically  happen  in  any  given  situation  are 

limited”  [9].   A popular  example  given by Gonzalez  et  al  [9] is  that  it  is  highly 

unlikely for a tire blow-out to occur while a car is waiting in a traffic light. As such, 

an agent wouldn’t consider a tire blow out event when in a traffic light situation. 

• “When faced with a  new situation,  the present  course of action would be altered 

accordingly  to  deal  with  the  present  situation”  [9].  An  example  would  be  when 

driving  to  work from home;  the  usual  plan  of  action  could  be  to  go  from ones’ 

driveway to a suburban street, to a freeway to a city street and then to the parking lot 

of ones’ office. If a new situation occurs, for example a tire blow out or if the road is 

blocked by construction or an accident, a new course of action would be taken to 

achieve the overall goal of getting to the office.
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CxBR is composed of a hierarchy of contexts. At the top level is the mission context that 

defines the overall goals and mission of the agent. Then there are one or more  major 

contexts,  and below that,  sub-contexts, sub-sub-contexts,  etc.  Controlling the agent  to 

achieve its goals is the main objective of CxBR. Figure 2.2 shows a block diagram of a 

context.

CxBR is action-based rather than goal-based, sub-goals are considered within a context 

but only implicitly. 

Figure 2.2 Block Diagram of a Context (Reprinted without permission from Stensrud 

et al. [89])

The mission context defines the objectives and the constraints of the agent. The goals the 

agent  has  to  achieve  are  listed,  as  are  the  constraints  imposed  on  the  mission.  For 

example,  in a mission to drive to work, a goal can be getting to work on time and a 

constraint on this mission could be to avoid getting a speeding ticket, hitting a pedestrian, 

Fact Base

 Inference Engine

    Context Logic

Context

   Inputs to Inputs to 
systemsystem

Action taken by agentAction taken by agent

40



etc. At times, the constraints placed on a mission call for the agent to act intelligently and 

smartly to circumvent or satisfy the constraints. In the example given, if the agent has to 

get to work on time, and it leaves home late and goes through a freeway, because it has a 

constraint of not getting speeding tickets, it has to maintain the speed limit specified for 

that freeway and as such might not achieve its goal. The agent must then intelligently 

manoeuvre its way across different available shorter routes, taking into consideration its 

overall goal of getting to work on time. 

Beneath the mission context level is the major context. A major context contains 

actions  performed by the agent while in that  context.  These actions are based on the 

feedback received from the environment as to the agents position in the “world” (it’s 

environment).  An example  of a  major  context  could be driving on a freeway.  While 

driving on a freeway, the actions performed by an agent would be different from those 

performed by the same agent when driving in a city context. At any point in time, there 

must be one and only one major context in control of the agent. This major context is 

referred to as the  active major context. Major contexts are mutually exclusive of each 

other.  Sub-Contexts are  used  to  represent  actions  not  directly  critical  to  reaching  the 

mission’s objectives; “they are usually of short durations and are called by one or more 

major contexts”[41]. Figure 2.3 shows the hierarchical structure of CxBR. 
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Figure 2.3 Hierarchical Structure of CxBR

As the agent performs actions on the environment, the environment changes and a search 

through the transition rules within contexts is done to recognise any evolving situation. 

Once  a  situation  change  is  recognised,  the  context  that  addresses  the  new  situation 

becomes the active context  and takes  control  of the agent  until  a  change in  situation 

occurs  again.  This  process  of  situational  awareness,  action  on  the  environment  and 

context transition occurs continually until the agent achieves its goal or fails to do so. 

Figure 2.4 shows the diagram of a CxBR model.
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Figure 2.4 Diagram of  a  CxBR model.  The  dashed  lines  represent  valid  context-

transition pairs while the solid lines indicate either inputs or commands. C2 is currently 

the active Major Context (Reprinted without permission from Stensrud et al. [89])

Before using the CxBR paradigm, a detailed knowledge of the environment must 

be available. Also, there must be subject matter experts (SME) in the domain of interest 

before model development can be done. The knowledge provided by the SME is acquired 

by some means and modelled appropriately for the problem at hand. The modelling of the 

problem usually involves defining and creating context boundaries11. After the definition 

and creation of the context boundaries, the actions prescribed by the SME are hard-coded 

to each context. The manner in which the context transition should occur is also hard-

coded within a context when a new situation arises. Norlander [124] built a framework 

for implementing CxBR agents in simulations.  

11 Context boundaries are the definitions of the identification of a situation and all allowable actions in that 
situation. 
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The contexts are “hard-coded” based on the knowledge supplied by an expert. 

This leaves little room for flexibility and learning. As such, the agent may act irrationally 

when faced with unknown situations. In general, the agents’ actions or knowledge are 

constrained by those expert that provide the knowledge for the contexts, and the agent 

doesn’t learn. 

Attempts  have been made to introduce flexibility  to  the CxBR paradigm with 

respect to the context transition process. Gonzalez and Saeki [42, 43, 28] introduced the 

competing context concept in which the context transitions defined in the contexts are not 

hard-coded, but rather  allow eligible  contexts to compete amongst  themselves for the 

right to become activated. A time-warp simulation is carried out to determine the context 

to make active. It selects a context at random when no clear ‘winner’ exists between the 

competing contexts. While the competing context achieved its purpose, it doesn’t learn. If 

a wrong context or action is chosen, the agent doesn’t learn to not choose it again.  

Recently, Fernlund and Gonzalez [10] developed an approach that automatically 

builds  contexts  by  observing  human  actions.  Although  their  approach  achieved  its 

purpose of learning through observation, it lacks the capabilities of experiential learning. 

If the observed expert behaves badly, so will the agent, and this might affect achieving 

the agents’ goal. Learning from observation improves knowledge acquisition, but does 

not break the SME limitations, as one must still be observed.

The Context-Mediated Behaviour paradigm described in the previous section is 

conceptually similar to CxBR with some differences: 1) Instead of having the compatible 

contexts listed within a context and competing amongst contexts listed as compatible12, in 

Context-Mediated Behaviour (CMB), a diagnosis is carried out on the contexts. 2) CMB 
12 This occurs in the competing context concept extension of CxBR
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centralizes the management of contexts whereas CxBR distributes the management to the 

various contexts. 3) In CMB, contexts are merged to form new contexts, a feature that 

isn’t available in CxBR. 4) CMB does not use a fact base, whereas CxBR uses the global 

fact base and the local fact base as working memories.

A comparison of Contextual Graphs and CxBR was carried out by Lorins et al. 

[92] to highlight  the similarities  and differences  between both paradigms in terms of 

context representation,  contextual  change / movement,  knowledge acquisition,  etc.  He 

concludes that more exploration on the advancements and their implementation is needed 

to have a complete comparison based on the above metrics. 

2.2.3.1 Components of CxBR

The following components are an integral part of the CxBR architecture:

1. Contexts

2. Sentinel / Transition rules

3. Local fact base

4. Global fact base

5. Environment

6. Inference Engine

7. Agents

I Contexts 

Contexts can direct  the actions of the agent. The required responses to environmental 

stimuli are stored in contexts. They hold the transition rules as well as all actions to be 
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undertaken  by  the  agent.  A  typical  mission  would  contain  many  contexts.  The 

relationship between a context and the actions of a context is one-to-many, meaning one 

context can contain many actions. In the current CxBR architecture, the actions defined 

in a context are pre-programmed.

Another part of the context is the transition rules. The transition rules contain all 

transition definitions between the existing context and other compatible contexts. In the 

current CxBR architecture these rules are neither learnt nor updated during the course of 

the simulation as new information is introduced to the agent. The coding of the transition 

rules is pre-programmed. 

II Sentinel or Transition Rules

This is the part of the system that alerts the agent when a change in situation occurs. It 

also initiates a transition to a new context based on the defined rules. The sentinel or 

transition  rules  are  embedded  in  a  context  and  are  activated  periodically  or  every 

simulation cycle. As these rules fire (are activated), information about the current state of 

the agent is obtained from the calculations, inferences and deductions that occur within 

the inference engine.

III Local Fact Base

The  local  fact  base  is  part  of  the  agent  architecture.  It  stores  information  about  the 

immediate environment, actions available to the agent (as defined in contexts). The local 

fact base acts as a working memory. This information isn’t shared, and as such can be 

accessed only by the agent. Typically, after the inference engine identifies the appropriate 
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context for the current situation, it passes this information to the agent, and this is stored 

in the local fact base. The local fact base reflects things about the environment that are 

known only by that agent.

IV Global Fact Base

The global fact base contains all information on the environment that is known to all 

agents in the environment, for example time of day, weather, etc. It can also be said to be 

working memory to all agents. The global fact base has a direct link with the environment 

and the agent.  Norlander  [124]  places  the global  fact  base in  the agent  (autonomous 

intelligent platform). For purposes of this research, the global fact base was an entity of 

its own, detached from the agent. As soon as the state of the environment changes, it is 

reported to the global fact base along with related information on why a change occurred 

(i.e. what caused the change – the action executed). Information from the agents’ action 

is passed on to the global fact base.

V Environment

The environment  is  a  representation  of  the  world and all  that  will  affect  the agents’ 

behavior in that world. The agents’ actions in the environment influence the events that 

occur in the world. Some events in the environment occur irrespective of the action taken 

by the agent, for example a traffic light turning red or an antelope running across the 

road. As most events occur  13it is the duty of the agent to learn how to identify these 

events and their characteristics. For each event, the agent has a choice of carrying out an 

13 Events that occur randomly to some people might be argued to occur at a particular frequency by others. 
Finding the frequency of occurrence or patterns / characteristics of these events or states preceding them is 
usually difficult. 
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action  or  not.   Information  on  the  various  states  of  the  agent  and  events  in  the 

environment are constantly being updated in the global fact base. Events that are related 

to the simulation environment of the agent are updated in the global fact base. Some of 

these events might not be visible to the agent at all times. 

VI Inference Engine

The inference engine as defined by Norlander [124] is used for pattern matching – to 

match patterns with facts in the various fact-bases. It is also used to assert and retract 

facts  as  the  simulation  progresses.  During  the  course  of  a  typical  simulation,  the 

environment sends information to the global fact base, patterns within this information 

are processed (matched) with the transition rules in the defined contexts by the inference 

engine. As soon as a match is found, the actions within the context are performed by the 

agent and these are asserted in the fact bases. This cycle continues until the mission goal 

is achieved or it  is otherwise determined that it  cannot be achieved (agent killed,  for 

example).

VII Agent

The  agents  in  a  CxBR  model  are  usually  unintelligent  because  they  possess  no 

knowledge  of  what  to  do  in  their  environment  without  the  direction  and  control  of 

contexts. The contexts make the agents intelligent. They are the object of attention in a 

CxBR simulation, because they perform actions, effect a change of state and are dynamic. 

The agent contains the local fact base, the mission goal, an inference engine, a clock and 

default context. The local fact base contains the information essential to the agent as it 
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tries to achieve its goal. It is akin to the working memory of the agent. Information is 

constantly being updated when something new about the environment is perceived by the 

agent.

2.3.2.1 Formalization of CxBR

Stensrud et. al. [89] formalized CxBR. This is reproduced verbatim and presented below 

without permission:

The mission goal is a Boolean function  g of a set of environmental  E and physical  P 

conditions at any given instant.

Goal = g(E(t0), P(t0)) (i)

Constraints  on  a  mission  M,  is  the  union  of  the  set  of  physical,  environmental  and 

scenario-specific constraints (cop, coe, cos) placed on the agent. 

Constraints = {cop, coe, cos} (ii)

The mission assigns a set of contexts  C and  context-transition pairs that pick specific 

context switches allowed during the scenario. This combination, defines the high-level 

behavior of the agent.  An example presented by [89] is to consider the set of contexts:

C = {C1, C2, C3, ……., Cn} (iii)

if the Mission M, has a context-transition pair  <C1,  C4>  assigned to the Agent  A,  it 

means it is possible to transition to context  C4 from context  C1   at a given time-step  tk, 

when the agent is operating in context C1

The context topology of mission M is made up of the set of contexts C, the set of 

context-transition pairs T the Default Major Context (DMC) and the Universal Sentinel  

Rules for the scenario [89]. 
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Context-Topology = <C, T, DMC, Universal-sentinel-rules> (iv)

Combining equations i – iv, the definition of a mission is:

M = <Goal M, Constraints M, Context-Topology M> (v)

The  context  logic  for  a  major  context  is  made  up  of  the  control  functions  (cf’s), 

knowledge and action rules [89]. The set of functions that control an agent in any given 

context CFMC is defined as follows [89]: 

CFMC = {cf1, cf2, …., cfn} (vi)

The set of action rules (ar’s) for any given context is ARMC. Typically, action rules can 

activate Sub-Contexts, can utilize facts in the fact bases to carry out actions, etc.  ARMC 

are defined as follows:

ARMC = {ar1, ar2, ar3, …….,ark} (vii)

“The knowledge in a Major Context is the set of frames or classes whose attributes and 

methods  are  essential  elements  of  the  tactical  knowledge  required  to  successfully 

navigate  the  current  situation”[89].  Stensrud  et.  al.  [89]  refers  to  this  as  Knowledge 

Frames (KFMC)

The context-logic that controls the actions of an agent in any given context is:

Context-logic = < CFMC, ARMC, KFMC> (viii)

Sub-Contexts are called upon by Major Contexts. They are activated when the calling 

action  rule  ar is  fired.  Their  inputs  are  the  action  rules,  and  their  output  is  the 

achievement of their sub-goal. Control mustn’t be returned to the calling Major Context 

and any Major Context can call any sub-context.

(sub-goal)SubContextm = f0 (ARMCi)
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Transition  Sentinel  Rules  are  defined  as  “the  rules  that  contain  the  conditions  under 

which a Major Context transition is required” [89]. For example, according to [89], if a 

mission has a context-transition pair of Major Context  Ck to  Cn,  Ck will have a sentinel 

rule that constantly monitors the environment for the satisfaction of conditions needed to 

transition to  Cn.  Each Context  Ci has a set  S of transition criteria. For a given context 

pair, there can be multiple transition rules, let  Sij represent the set of sentinel rules for 

transitioning from Major Context i to Major Context j. The set of sentinel rules for any 

given Context Ci is Si which is the combination of all Sij where <i, j> is a valid transition 

within mission M. 


Mjij

iji SS
> ∈<

=
,:

 (ix)

The actions of an agent when operating under the control of a Major Context  Ci, are 

determined by the Major Context Ci

Ci = < Si, FBi, Context-logici> (x)

Where FBi is the local fact base.

2.2.4 Competing Context Paradigm

In some complex tactical situations, a CxBR agent might be faced with more that one 

choice of contexts  to transition to.  The current  CxBR architecture does not explicitly 

address this issue. The competing context approach was conceived by Saeki & Gonzalez 

[28, 42, 43] to address such situations. An example given by Saeki & Gonzalez [43] is an 

agent that seeks to reach a meeting at an appointed time. If this agent encounters a tire 

blowout while en route, it is faced with making a decision on whether to fix the tire and 

continue with the car, or abandon the car and walk to the meeting. The decision on what 
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to do is based on the agent’s most important goal as well as its current location relative to 

the meeting. If the agent is close enough to the meeting location, and its most important 

goal is to get to the meeting on time, the agents’ best decision would be to abandon the 

car because it would take longer to fix the tire. However, if its most important goal is to 

get to the meeting with the car, the agent must fix the tire. Saeki & Gonzalez [43] note 

that in such cases, “it is beneficial to define the current situation as a set of needs to be 

addressed by the agent in order to accomplish its mission.” The eligible contexts to which 

the agent can potentially transition should meet some or all of these needs. The contexts 

then ‘compete’ with each other for control of the agent. 

To  accomplish  context  competition,  Saeki  &  Gonzalez  [43]  implemented  a 

constraint-based  system that  integrates  the  ability  of  an  opportunistic  agent  with  the 

matching  of  these  constraints.  There  are  four  processes  to  their  approach.  1)  The 

generation of situation interpretation metrics (SIMs); 2) The selection of the contexts that 

satisfy the generated metrics; 3) The matching of the attributes of the various contexts in 

the selected context group; and 4) The time-warp simulation. The last is optional, based 

on whether the outcome of the third step is ambiguous.

• The situation interpretation metrics (SIM) is the relevant information about the 

current situation as it relates to the most important goal. An example of the SIM 

for the example presented earlier is the distance between the meeting place and 

where the flat tire occurs is generated. The time it would take to fix the tire is 

computed, as is, the time it would take to walk to the meeting based on the current 

location. 
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• The  relevant  context  group  selection  is  the  process  where  a  set  of  potential 

contexts are selected based on the currently active context and the most important 

goal.  As soon as a decision is made on the most  important  goal,  some of the 

attributes on all contexts are compared against this goal. The contexts with those 

attributes matching the goal are selected as  candidate contexts, while the others 

will no longer be considered. Saeki & Gonzalez [43] note that “this has an effect 

of reducing the search space of potential best contexts”.

• The context  attributes  matching “is  the process where contexts match all  their 

attributes to SIMs.” At this stage, the contexts that have less attributes matched to 

the SIMs are  eliminated.  If  more  that  one context  is  picked at  this  stage,  the 

process moves on to the time-warp simulation.

• The  time-warp  simulation  is  the  “process  that  executes  a  super  real-time 

simulation until the ‘best’ context is identified while the current simulation time is 

stopped” [43]. “This process starts with the current context and current SIM and 

alternately  simulates  the  transition  to  each  candidate  context”[43].  Temporal 

SIMs are generated for each context transitioned to in order to ascertain whether 

the current goal is achieved by the transition. Saeki & Gonzalez [43] note that the 

transition  that  “best  projects  the  satisfaction  of  the  current  immediate  goal  is 

selected as the winner” and this context is then activated in the ‘real’ simulation. 

If  a context  competition is  required within the time-warp simulation,  Saeki & 

Gonzalez [43] calls this nesting. They note that the active context would now be 

randomly selected.
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The authors [28] showed an agent utilizing this approach to act appropriately in a simple 

driving  scenario  based  on  its  most  important  goal  and  the  attributes  of  the  various 

contexts.  They furthermore suggest ways to improve the competing context approach. 

Among the ways suggested are: making the selection of candidate contexts a dynamic 

and  continuous  process  by  anticipating  future  events,  making  the  context  matching 

dynamic and continuous and the elimination of the time-warp simulation in some cases in 

favor of a thorough evaluation of the situation. 

In  either  approach,  the  agent  lacks  the  capability  to  learn.  The  experiments 

conducted  by  Saeki  & Gonzalez  [28]  in  modeling  the  agent  driver  do  not  take  into 

consideration the effect of stress, emotions, and other factors that affect human behavior. 

Based on their [28] experiments, when the agent is faced with the options of walking to 

its  destination versus fixing the car tire,  the effects  of fatigue and weather should be 

considered. It would be unexpected for some humans / agent to walk beyond a certain 

limit, say - 2 miles to a meeting under very high temperatures just because walking is 

calculated as being the best option. Whereas, the agent could as well fix the flat tire and 

increase its speed to meet it’s most pressing need of getting to the meeting on-time and 

reducing the effect of fatigue. In essence, the agent should be intelligent enough to know 

how to adjust its speed to catch up for lost time spent in fixing the tire.

2.2.5 The DUAL Architecture

DUAL is a context-sensitive cognitive architecture conceived by Kokinov [90]. It is an 

implementation of Kokinov’s dynamic theory of context [34]. It is made up of “a unified 

description of mental  representation,  memory structures, and processing mechanisms.” 
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One of the major principles of DUAL is that the interaction of smaller structures form a 

larger one. DUAL-based models can be analyzed at three different levels of granularity:

• Microlevel: this is the smallest granule of an agent. The internal structure of the 

agent,  the  information  processing  capabilities  of  the  agent  and  differences 

amongst agent types are analyzed at this level.

• Mesolevel: this is a coalition of DUAL agents. Kokinov [90] defines a coalition as 

“a set of agents and a pattern of interactions among them”. There are two distinct 

properties of a coalition; emergent and dynamic.  At this level,  the interactions 

between agents, the “emergence of non-local phenomena out of local activities” 

and the dynamics behind the organizational structures of the DUAL agents in a 

coalition, are considered.

• Macrolevel: this level deals with the formations created by DUAL agents and the 

models. Kokinov [90] describe formations as a big population of agents. “At this 

level, concepts like working memory, mapping and analogy are taken into effect 

during analysis”[90].

Kokinov [90] notes that these three levels are interdependent and that it is difficult to 

distinguish one from the other because an analysis of a coalition would depend on the 

individual properties of the members of the coalition. If a change is made at a level, it 

affects the other levels.

A cognitive system developed with the DUAL architecture is usually made up of 

multiple  simple  agents  that  are  highly interconnected  with  each  other.  Each of  these 

agents  contains  a  specific  knowledge  for  the  performance  of  a  specific  task.  The 

interconnections between agents could be permanent links, or created dynamically during 
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the course of achieving a goal. Exchange of information is only possible between agents 

that are close and have direct links with each other. The behavior produced for any given 

situation is a combination of the parallel actions of all active DUAL agents in the system. 

The  action  of  individual  agents  is  dependent  on  their  activation  level.  At  different 

occasions,  the  activation  level  of  the  agents  in  different  groups  would  dictate  the 

computation necessary for that situation, and thereby produce a certain behavior. In the 

DUAL architecture,  there is no distinction between external and internal context.  The 

activation level amongst the agents, help in explaining the various contexts and priming 

effects14.

The architecture of DUAL agents is a hybrid one, meaning there are two parts to 

an agent. Kokinov [90] calls these parts the “L-Brain and R-Brain” with no relationships 

to  the  human  brain  structures.  The  L-Brain  is  designed  according  to  the  symbolic 

paradigm while the R-Brain is designed according to the connectionist paradigm. In any 

given context,  the L-Brain  represents a  piece  of knowledge while  the R-Brain  is  the 

relevance of this knowledge to the context. R-Brains operate in a parallel manner.

Kokinov [90] utilizes a frame-like representation scheme for representing agents 

from  the  symbolic  point  of  view  and  the  connectionist  perspective  is  used  in  the 

representation of contexts. The relevance of each agent in any given situation helps in the 

representation of contexts in a distributed way. The measure of relevance is the degree of 

connectivity that exists between an agent and other agents. 

Kokinov  notes  that  the  “R-Brains  are  processors  that  calculate  the  activation 

values and outputs of the nodes on the basis of their input values and current activity.” He 

14 Priming effect according to Kokinov [90] “is the change in human response to a target task caused by 
changes in the subject’s preliminary setting” while Context effect “is the change in human response caused 
by changes in the environment of the target stimulus.”
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states  that  “it  is  important  that  the  activation  of  a  node  is  a  function  of  both  the 

environment  and  the  currently  received  activation  from  the  net,  and  the  previous 

activation level of the node.” 

A few successful applications and models  have been developed on the DUAL 

architecture, e.g. AMBR [91, 94] (Associative Memory-Based Reasoning) 15

2.3 Contextual Learning

Most studies on context claim to have some form of learning capabilities. Turner [36] 

states that the agent used to control the autonomous underwater vehicle (AUV) learns by 

merging c-schema objects to form new c-schema’s that define the current situation. The 

problem with this is that the agent would always behave the same way under the same 

conditions even if its behaviour were bad. This doesn’t result in true learning. 

Bonzon [129] developed a contextual learning model that stores “sequences of 

inference steps that lead to discovery of object-level concepts to be used later”[129]. He 

tries to achieve generality in learning with this approach. 

Kokinov [34] dynamic theory of context in which context is defined as a dynamic 

state of the human mind has potentials of incorporating learning. He attempts to show the 

difference between AI approach to contexts and psychological approach. He states that 

AI’s approach to contexts “may be characterized as navigating between and within the 

context boxes” [34]. Kokinov acknowledged the lack of learning in his DUAL cognitive 

architecture [90]. 

15 AMBR adopts “an interactionist approach that identifies analog access, mapping, transfer, etc as parallel 
subprocesses  rather  than the conventional  serial  stages”  in  analogy-making [91].  More  information on 
AMBR can be obtained from the works of Kokinov [91, 94]
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Balkenius  &  Moren  [119]  notes  that  “context  learning  is  an  entirely  passive 

process” that doesn’t depend on actions of an agent. They showed how stable context 

representations are learnt from “a dynamic sequence of attentional shifts between various 

environmental stimuli”.

In this dissertation, it is asserted that:

True learning  of  contexts  exists  when a learning  agent  is  able  to  adjust  and 

modify its beliefs on its actions in that context. In other words, true learning is  

said to occur when a learning agent understands the attributes of  the current  

situation  (context)  and thereby modifies  its  actions  when in  that  context  as  a  

result of its interaction with its environment.

A method that implements a learning agent modifying its actions and understanding of 

any situation by interacting with its environment is presented in this dissertation.

2.4 Others

There  are  many  other  modeling  techniques  that  represent  human  behavior.  The 

Contextual  Control  Model  (CoCoM)  of  Hollnagel  [122,  123]  attempts  to  take  the 

contextual effect of the environment on the performance of the operator. It is based on 

three concepts: competence, control and constructs. Competence is the set of actions that 

are possible in any given situation based on the needs of that situation as recognized by 

an operator; Control defines the way competence is applied.  There are four modes of 

control:  scrambled,  opportunistic,  tactical  and  strategic.  These  modes  range  from no 

control at all (scrambled) to a completely deterministic control policy (strategic). Finally, 
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construct is the known information about the current situation. It is the basis on which 

actions are selected by the system. 

EPIC (Executive-Process/Interactive Control) has a goal of accurately accounting 

for  the  timing  of  human  perceptual,  cognitive  and  motor  activities.  It  provides  a 

framework that allows for the easy construction of human-system interaction models that 

are accurate with detailed information processing units for practical problems. 

Rational  Behavior  Model  (RBM)  developed  by  Byrnes  [135]  is  a  three-level 

intelligent  control  architecture  for  autonomous  agents.  The  three levels  are:  strategic, 

tactical  and  execution.  At  the  execution  level,  the  emphasis  is  on the  control  of  the 

hardware,  at  the  tactical  level,  the  emphasis  is  on  the  selection  of  the  appropriate 

sequence of behavior for the agent and the strategic level deals with the plan and mission 

logic.  Some  successful  applications  of  RBM  include  the  control  of  autonomous 

underwater vehicles (AUV) Holden [136].

The modeling paradigms described in this dissertation are the important models 

relevant  to  this  research.  There  are  other  modeling  paradigms  not  described  in  this 

dissertation  because  they  are  not  relevant  to  this  research.  The  described  modeling 

paradigms show that many techniques exist for modeling human behavior and it is left for 

the modeler to decide what modeling technique best fits the aspect of human behavior 

(s)he  intends  to  model.  By and  large  all  the  modeling  paradigms  mentioned  in  this 

research  all  suffer  from the  same  problem,  i.e.  the  lack  of  a  robust,  self-enhancing, 

learning mechanism for the acquisition of knowledge used in modeling. The models built 

with  these  techniques  are  overly-dependent  on  expert  knowledge  for  their  successful 

implementation and functionality. Thus models built for tactical situations might fail to 
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achieve their mission objectives. This research produces a method that seeks to eliminate 

these issues. 

2.5 Comparison of HBR Models

With  so  many modelling  techniques  available  for  representing  human  behaviour,  the 

question of which technique is best unavoidably arises. With this in mind, some have 

attempted to compare some modelling paradigms against some benchmarks. Bolton et al. 

[20] compares  three HBR modelling techniques  as to how they generate  instructional 

materials for Navy training. The results show that the modelling techniques compared led 

the  participants  of  the  training  exercises  to  performance  improvements  that  were 

equivalent from a statistical perspective.

The US Air Force Research Laboratory has recognized that although there has 

been progress in the HBR research arena, the academic and commercial sectors aren’t 

producing  human  behavioural  representation  methodologies  /  technologies  that 

sufficiently meet all the requirements of the Air Force’s modelling and simulation needs. 

Investments in this  area were undertaken by the Air Force through a program named 

Agent-based  Modelling  and  Behaviour  Representation  (AMBR)  [11,  51].  A  primary 

objective of the AMBR project was to improve the developments made in the cognitive 

and behavioural modelling of military applications. The AMBR project compared various 

HBR modelling approaches. One of the modelling goals was multi-tasking, done in a an 

enroute air traffic control domain. The HBR modelling paradigms compared where the 

ACT-R,  D-COG,  EPIC-Soar,  and  iGen16.  It  was  noticed  that  all  models  built  by the 

various techniques successfully approximated trends and central tendencies of the data 

16 iGen is based on the COGNET model
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used by behaving  similarly,  but  the  way the  various  models  implemented  the  multi-

tasking capability of human behaviour differed across the four models.

Kokinov [90]  compares  his  DUAL architecture  to  that  of  Anderson’s  ACT-R 

[101]; he notes the similarities between both approaches but asserts that the declarative 

knowledge is separated from the procedural knowledge and different mechanisms control 

each one in ACT-R and as such, the priming effects cannot be explained.  His DUAL 

architecture  has  this  ability.  Furthermore,  ACT-R considers  only static  environments, 

whereas his DUAL takes note of the dynamic nature of the environment. Kokinov [90] 

concedes that ACT-R is superior to DUAL because of its learning capabilities.

Nason [118] notes some differences between the implementation of their Soar-RL 

architecture and ACT-R. These include: 1) soar can allow the encoding of information for 

the preference of a particular  rule  over another  whereas  ACT-R can’t;  2)  in soar,  an 

operator  can have many rules that  depend on different  goals,  whereas  in  ACT-R the 

mechanisms relate to only a single goal.

A combination of different modelling techniques have been developed over the 

years  to  account  for  the  shortfalls  of  the  individual  techniques,  for  example  the 

integration  of  the  Soar  modelling  technique  with  Reinforcement  learning  [118],  the 

integration of EPIC modelling technique to Soar [117].

Brown [137] compared CxBR with other traditional rule-based reasoning systems 

and found that CxBR performed better and was more concise in the representation of 

knowledge. Gonzalez et al. [4] compared CxBR in the control of an autonomous vehicle 

with other  traffic  generating  methods  with emphasis  on car-following algorithms  and 

found that expanding a system developed from CxBR is considerably easier. They further 
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noted that in comparing the size of the program based on number of lines of code, and in 

terms  of  the  designed  behavior,  CxBR  had  slightly  more  lines  of  code  with  more 

behaviors  compared  to  the  car-following  algorithm which  had  fewer  behaviors.  This 

represents  the  concise  nature  of  representing  knowledge  in  CxBR  architecture.  The 

execution rate for the CxBR model was the same.  Lorins et al. [92] also compared the 

CxBR modeling technique to that of the CxG modeling technique in decision making and 

concluded  that  more  exploration  on  the  advancements  of  both  techniques  and  their 

implementation is needed to have a complete comparison based on the way context is 

represented, the transitioning between contexts and the way knowledge is acquired.  

Although there are no known direct comparisons on the CxBR technique to ACT-

R, Soar or DUAL, we can intuitively determine what the outcome of one would be, based 

on the underlying principles for the creation of models using each technique. DUAL and 

ACT-R are based on the generation of a particular “behavior” from the formation of a 

smaller “behaviors”. The question that isn’t answered is what level of granularity would 

determine  a  small  “chunk”  of  knowledge?  These  architectures  are  also  designed  for 

general problem solving and as such are structured around that. ACT-R is designed as 

being cognitively correct. That is, it represents the human cognitive process. On the other 

hand,  CxBR  was  designed  specifically  for  its  efficiency,  effectiveness  and  ease  of 

modeling  human  behavior  in  tactical  situations.  The  ease  at  which  an  agent  being 

controlled with CxBR identifies and transitions between contexts is inherent in its design. 

CMB closely resembles  CxBR, but its  concepts  are  yet  to  be fully  implemented  and 

tested as has CxBR. COGNET does not take the context of the situation into its model as 

intuitively as CxBR. It also lacks an inherent learning mechanism. CxBR also lacks a 

62



learning mechanism. However, it  has been shown that it  facilitates learning and some 

techniques have been developed that take advantage of its contextual decomposition. Its 

hierarchical  structure  allows  a  learning  problem  to  be  broken  down  into  smaller 

problems. Learning these smaller problems could be facilitated. There are many other 

advantages CxBR has over the other behavioral modeling techniques. This is why this 

research was carried out using the CxBR model. 

An  addition  of  a  learning  mechanism  to  the  CxBR  architecture  would  be 

implemented  using  a  reinforcement  learning  algorithm  to  allow  for  the  effortless 

augmentation of the SME’s knowledge based on the goals. More about this later.

2.6 Summary

An introduction to context as it relates to modeling human behavior was presented. Some 

modeling techniques that utilize contexts in modeling human behavior were discussed. 

Learning in contexts was summarized and a comparison between some human behavior 

modeling techniques was carried out,  during the comparison and analysis,  CxBR was 

determined to be the technique of choice for this research because of its intuitive nature 

in the modeling of tactical behavior

63



CHAPTER 3: PROBLEM DEFINITION

3.1 Problem Statement

The first step in the resolution of any problem is to identify the essence of the problem. In 

this  research  the  problem being  addressed  is  a  subset  of  the  overall  problems  being 

studied in the Human Behavioral Representation (HBR) area. That is, to model an agent 

that would act the way a human acts when faced with different scenarios. In general, for 

an agent to behave like a human in tactical decision-making, at least four problems have 

to be overcome, these are:

 To efficiently represent the behavior of the human

 To effectively represent the behavior of the human

 To acquire these behavior in an efficient and effective way

 To validate the acquired behavior

This dissertation addresses the last two problems. As has been described in Chapter 1, the 

major  modeling  techniques  do  not  address  all  four  problems  simultaneously.  Most 

investigations  have  focused  on  how to  efficiently  represent  the  behavior  of  humans. 

However, the acquisition of these behaviors has been mostly achieved through question 

and answer sessions with subject matter experts or through observing the performance of 

a subject matter  expert.  This limits the process to incorporating what a subject matter 

expert knows and is able to articulate or demonstrate. This knowledge is often incomplete 

and/or flawed.

A combination of methods is usually needed to tackle all four problems listed 

above. Context-Based reasoning (CxBR), because of its modular design and ability to 
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prune  the  search  space,  has  the  capabilities  of  encompassing  solutions  to  all  four 

problems. Therefore,  this research was based upon CxBR as the underlying modeling 

paradigm. This research also improves the CxBR technique by using RL.  

Traditionally,  to limit  the ambiguities  and errors introduced during knowledge 

acquisition  (KA),  multiple  domain  experts  are  needed  to  provide  different  and 

complimentary viewpoints on a simple problem. This was done either by question and 

answer sessions or observing the expert performing the task. The need for domain experts 

could become heavily dependent on each other, because when one expert reaches his/her 

knowledge threshold, he/she calls upon another domain expert, and the team of experts 

continues to grow until the minutest ambiguity is resolved. The question of when to stop 

bringing specific subject matter experts could arise because the cycle of an expert having 

only specific  knowledge of  certain  aspects  of  his  or  her  domain  would always  exist. 

Therefore, several subject matter experts would be needed to totally cover a domain. This 

could lead to the developed system being inefficient in carrying out the tasks assigned to 

it because of the retrieval of information needed to resolve the simple problem.

Some of  the issues  highlighted  above are  partially  resolved by Context-Based 

Reasoning (CxBR). CxBR, as described in the previous chapter conforms to a  Markov 

process, “in which the next state of a system is determined by the current state of that 

system and not by the previous states” [8]. The dictionary [1] defines a markov process as 

“a simple stochastic process in which the distribution of future states depends only on the 

present state and not on how it arrived in the present state”. For example, as stated by 

Gonzalez et al [9], it is highly unlikely for a tire blowout event to occur while a car is 
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waiting at a traffic light. This is because the current event is the car waiting at a traffic 

light and all events that occur next would be based on this fact. 

Although there are many successful applications of various HBR techniques, as 

noted in Chapter 1, they all suffer from the same fate; i.e. they suffer from the limitations 

inherent  in  the  way  knowledge  is  acquired  -  the  total  dependence  of  knowledge 

acquisition and representation on subject matter experts. Usually, the experts determine 

what actions to perform in a given situation (context) and how the agent should behave in 

all  situations  as perceived by the expert.  Ranges of valid  values are provided by the 

experts for a given context and as such, all actions by the agent are predefined based on 

these  ranges.  The  question  of  what  happens  when  the  SME lacks  knowledge  for  a 

specific context or provides the wrong knowledge for that context arises.  Also, how do 

you reconcile differences in expert opinion for the same context? Usually, the knowledge 

engineers start as novices in the domain being modelled. Would the KE rate one expert 

highly over another without any basis? The fact that the SME provide the knowledge and 

thus determine the behaviour of an agent isn’t wrong. What is wrong is the inability for 

these models to be improved beyond the SME’s level of competence. The enhancement 

of  the  agent  model  should  be  geared  towards  achieving  the  overall  mission  goal.  A 

system where the acquired knowledge - the actions and thus the behaviour of the agent 

can  be  enhanced  based  on  the  mission  goal,  irrespective  of  the  SME’s  imparted 

knowledge is most desirable. Conceptually, this can be achieved by placing the model 

developed from SME’s knowledge in a simulator and exposing the model to situations 

not imagined by the SME. The model is run multiple times until the knowledge acquired 
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from the SME is modified to address these new situations. The model is thus enhanced to 

perform better, based on the mission goal. 

Enhancing  the  behavior  of  HBR models  is  the  goal  of  this  research.  This  is 

achieved  by  breaking  the  barrier  of  dependence  on  SME  for  the  knowledge.  This 

dissertation investigates the feasibility of using experiential knowledge from an agents 

experience in a simulator to enhance the agents’ behavior. 

A few attempts  have  been  made  towards  filling  the  voids  left  by incomplete 

knowledge in a HBR model; In particular, knowledge acquisition methods that involve 

observing expert actions are an attempt to eliminate some problems introduced during 

SME introspective sessions. One of these is the lack of explanation of implicit actions 

performed by the expert. Fernlund [10, 138] developed the GenCL model that captures 

expert knowledge through observation. This captured knowledge is then transformed into 

contexts that control an agent that behaves like the expert. Fernlund’s [10, 138] method 

eliminates  some of  the  errors  that  exist  during the  acquisition  of  the knowledge and 

representation; it also eliminates occasional ambiguity caused by the experts language 

and the difficulty  in  explaining  implicit  knowledge.  Although the goal  of  Fernlund’s 

research [138] was to automatically create agents by observing expert actions, it would be 

interesting to make these agents perform better by learning through their experiences in a 

simulator. In an example in his work [138], an agent that was created by observing a 

‘reckless’ driver who ran through a red light, behaved exactly like the driver by running 

through the red light in a simulator. Although Fernlund achieved his goal, the method 

presented in this research goes a step further and refines (enhances) the agents behaviour 

by making the agent learn that running through a red light represents a failure. The agent 
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learns  this  through the experience  it  gained in the simulator.  In essence,  it  would be 

advantageous for an agent to learn good from bad, relative to a goal even after observing 

an expert execute a mission. 

With  the  existing  limitations  of  knowledge  acquisition  techniques  for  human 

behaviour  representation,  this  research  produces  a  method  that  enhances  a  model  by 

subjecting a learning agent to situations not experienced by the SME, yet realistic in the 

execution of a mission.  Furthermore,  the new methodology also addresses the lack of 

expert  explanation  of  implicit  knowledge  which  could  be  a  cause  of  incomplete 

knowledge in the model. 

3.2 Hypothesis

 This research proposes the following hypothesis:

Reinforcement learning can be used to automatically and efficiently enhance a 

tactical agent’s behaviour from the experience gained by the interaction of the  

agent with its environment. Additionally, based on the mission goals, these agents  

will  perform better  than the  agents  developed  from knowledge  acquired  from 

experts.

The learning process of the agent is based on the predefined knowledge acquired from the 

SME. The model built upon this knowledge is then refined (enhanced) in a simulation 

based on the experience gained by the agent during its interaction with the environment. 

Learning by the agent is non-monotonic, in that it can retract previously learnt actions 

during its interaction with the environment when a new action is found to contradict an 

existing one.
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3.3 Contributions

The contributions of this research are:

• Providing  a  technique  that  breaks  through  the  barrier  of  SME  knowledge 

limitations.

• Show  that  a  human  behaviour  model,  in  particular  a  CxBR  model,  can  be 

automatically  enhanced  from  the  experience  gained  by  the  agent  during  its 

interaction with the environment without human intervention.

• Providing an algorithm for the model enhancement process that can be applied in 

other domains.

• The modified contexts would provide a more robust knowledge base that include 

behaviours missed by the SME. 

• Provide an analytical basis for knowing a fully enhanced model

• Provide a prototypical framework for the enhancement of models

• A  by-product  of  the  experiential  learning  technique  is  the  provision  of  an 

unbiased validation method for human behavioural representation systems.

The following are advantages of this research:

• The synergistic combination of CxBR and Reinforcement Learning would be the 

foundation for achieving the automatic enhancement and creation of the human 

behaviour models.

• The synergistic combination of CxBR and RL can aid in the acquisition of the 

behaviour of experts via simulated agents in an efficient and effective way for 
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them to be correctly represented in a CxBR system thus eliminating the errors 

that exist when this process is done manually.

• The  elimination  of  the  common  criticism  against  artificial  intelligence 

researchers creating contexts as a movement between fixed boxes, by providing a 

mechanism that automatically creates a context (behaviour) on the fly.

• Providing a HBR methodology where the knowledge acquisition  methods  are 

goal oriented and thus an agent would identify and fix any lapses in the acquired 

knowledge based on the predefined goal.
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CHAPTER 4: RELEVANT MACHINE LEARNING TECHNIQUES

We  propose  to  break  the  SME  knowledge  barrier  by  applying  machine  learning 

techniques  that  enable  experiential  learning.  In  this  chapter,  some  machine  learning 

strategies  are  described  and a  strategy that  best  achieves  the  goal  of  the  research  is 

selected.  This  chapter  is  divided  as  follows:  section  4.1  provides  an  introduction  to 

machine learning; section 4.2 describes supervised learning and includes some examples; 

section  4.3 describes  unsupervised learning while  section  4.4 describes  reinforcement 

learning. Section 4.5 compares these machine learning groups and makes the case for the 

learning strategy of choice for this research.  

4.1 Introduction

The oxford dictionary defines learning as “Behavioural modification especially through 

experience  or conditioning”  [1].  Mitchell  [53] states  that  “learning is  improving with 

experience at some task”. Dietterich [54] states that “machine learning is the study of 

methods for programming computers to learn”. Dietterich goes on to argue that although 

it is relatively easy to develop applications that can be applied to solving a wide variety 

of tasks, there are generally some tasks for which it is difficult or impossible to do this. 

He groups such tasks into four categories:

• Problems were no human experts exist.

• Problems were human experts exist but cannot explain their expertise because 

of the implicit nature of what they do.
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• Problems where the underlying parameters / attributes change rapidly, e.g. the 

stock market.

• Problems that are user specific in a large domain, e.g. a mail filtering system 

for an organization, each user would have different criteria for filtering junk 

mails; “self customizing programs” Mitchell [53].

Dietterich [54] believes that machine learning addresses most of the same issues 

that statisticians, data miners and psychologist address, but the major difference lies on 

the emphasis placed on the issues. While statisticians want to know and understand how 

the  data  has  been  generated,  data  miners  look  for  patterns  in  these  sets  of  data. 

Psychologists on the other hand try to understand why different people exhibit various 

learning behaviours. Machine learning, on the other hand, is concerned mostly about the 

accuracy and effectiveness of the resulting computer system.

Dietterich  [54]  states  that  a  learning  task  can  be  classified  along  many 

dimensions, but believes that an important dimension in which all learning tasks should 

be  classified  is  the  distinction  between  empirical  and  analytical  learning.  Dietterich 

defines  empirical  learning  as  one  that  relies  on  some  external  experience  whereas 

analytical learning requires no external inputs. 

Dietterich  [56]  draws  the  relationship  between  learning  and  reasoning.  He 

attempts to show the ways in which machine learning research has either incorporated 

reasoning or left out reasoning.

Machine  learning  could  be  divided  into  three  types;  Supervised  Learning, 

Unsupervised  Learning  and  Reinforcement  Learning.  Supervised  learning  is  when  a 

“teacher”  is  present,  i.e.  the  agent  learns  from  training  samples  available  to  it. 
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Unsupervised  learning  is  when  there  is  no  teacher;  there  are  no  training  examples 

available to it. Reinforcement learning is when there is no teacher, there are no training 

examples; the agent is rewarded either positively or negatively for being in certain states. 

Over time the agent identifies what states are best to be in and what states to avoid. 

Reinforcement learning agents can be said to start with no training examples and build 

approximate training examples from their environment. 17There is some controversy as to 

whether  RL  can  be  classified  as  a  supervised  learning  technique.  Some  researchers 

believe  it  falls  under  supervised  learning  while  some  others  believe  it  falls  under 

unsupervised learning. Yet another group of researchers believe RL is the third group of 

machine learning strategies/techniques and falls under its own group. There are major 

differences between supervised learning techniques and RL. These include the absence of 

a teacher vis-a-vis explicit training samples [176]. In RL, the rewards received do not tell 

if an action is good or bad - it is left for the agent to make that judgment based on the 

results  of  its  decisions  /  actions.   There  are  also  major  differences  between  RL and 

unsupervised learning.  For example,  most  unsupervised learning techniques  are based 

upon  classifying  the  training  samples  based  on  “some  distance”  or  “closeness”  to  a 

particular property.  Bartow and Dietterich [176] state that a supervised learning problem 

can be converted to a RL problem, with the resulting problem becoming more difficult. A 

RL problem however, cannot be converted to a supervised learning problem. With these 

differences between RL and other learning techniques, we assert that RL be classified as 

being in its own group.

17 The different types of machine learning are described in detail in later sections
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4.2 Supervised Learning

Supervised learning is when a teacher is present during training. It is akin to a student 

going to school everyday and being taught by a teacher. Christodoulou et al. [57] state 

that an essential ingredient of this type of learning is the presence of an external teacher. 

Usually the learner is given training sets that contain input-output pairs.  For each input 

shown to the learning agent, there is a corresponding output assigned to it. Nilsson [174] 

states that finding a hypothesis that closely agrees with the mapping of a function to the 

training samples is an objective of this type of learning. Dietterich [54] notes that a key 

challenge for this type of learning is generalization. After a few training input–output 

samples are presented to the agent, the learning agent is expected to learn some function 

that correctly identifies or predicts what the output of a new input set would be. Usually, 

the input–output pairs used during training are thought to be independent of each other 

for proper training to occur. An example of a supervised learning implementation is a 

simple  feed-forward Artificial  Neural  Network.  An example  of  a  supervised  learning 

concept is observational learning.

4.2.1 Observational Learning

Observational learning is also known as learning by doing nothing. It can be considered a 

supervised learning technique. Bandura, as narrated by [60], has demonstrated that the 

“application of consequence” is not necessary for learning to take place. He also suggests 

that  learning  can  occur  through  the  process  of  observing  another  person’s  activity. 

Bandura, as narrated by [60], states a four-step pattern for learning. 
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• Attention – this is the step in which the individual notices something in the 

environment

• Retention – this is the step were the individual remembers what was noticed

• Reproduction – this is the step where the individual produces a copy of an 

action that was noticed

• Motivation – a consequence is delivered by the environment that changes the 

probability of the behavior being carried out again. 

Another definition of observational learning is that an observer’s behavior changes after 

viewing the behavior of a model [59]. Consequences can affect an observer’s behavior; 

these  consequences  could  be  some  form  of  reinforcement  in  the  case  of  positive 

consequence and some form of punishment  in the case of negative consequence.  The 

guiding principles behind observational learning are as follows [177]:

a. The observer will ‘imitate’ the behavior of the human that it finds attractive or 

desirable. An example of this is when a child imitates the behavior of a cartoon 

character he admires, say ‘Spiderman’. This child most likely would attempt some 

of the actions he observes Spiderman perform, he may or may not be successful in 

attempting these actions but he does attempt them. 

b. The observer reacts to the way his ‘idol’ is treated and mimics the idol’s behavior. 

When there is a reward given to his idol for behaving a certain way, the observer 

will attempt to copy the behavior but if there is a punishment, the observer would 

avoid trying out that behavior. An example is a person learning how to drive by 

observing his trainers behavior, if the trainer goes above the speed limit and gets a 
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speeding ticket  from the police,  the observer will not attempt to go above the 

speeding limit, because he knows he could get punished for that.

c. There is a distinction between acquiring a behavior and performing a behavior. 

By observing an idol, an observer can acquire the behavior without attempting to 

perform them. But the observer can attempt to perform the acquired behavior at a 

later  time  when  the  need  arises.  An example  would  be  an  automobile  owner 

watching  a  repairman  change  his  tire.  The  owner  of  the  car  (observer)  has 

acquired  the  skills  of  changing  a  car  tire  but  didn’t  necessarily  perform  the 

acquired knowledge because the need didn’t arise, however if he gets a flat tire 

some days  later,  he could apply the acquired  knowledge and change the tires 

without the need for the auto repairman.

One  of  the  most  popular  methods  of  knowledge  acquisition  is  by  observing  expert 

actions. This is so because it has an added advantage of acquiring implicit knowledge of 

the expert. A disadvantage though, is that if the expert performs badly, so will the model 

built from the acquired knowledge. Furthermore, the built model is limited to what the 

expert knows. 

4.2.2 Artificial Neural Networks

A neural network as defined by Christodoulou & Georgiopoulos [57] is a “network of 

many simple processors (units, nodes and neurons) each of which has a small amount of 

local  memory”.  These  processors  are  interconnected  and  they  carry  data  between 

processors. Gurney [61] states that a “Neural Network is an interconnected assembly of 

simple processing elements, units or nodes, whose functionality is loosely based on the 

animal neuron. The processing ability of the network is stored in the inter-unit connection 
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strengths, or weights, obtained by a process of adaptation to, or learning from, a set of 

training patterns”. Artificial neural networks are computational models that can learn to 

generalize data [62]. Figure 4.1 shows a neuron.

w1

w2

wk

Y

.
..

∑

Figure 4.1 A Neuron

A  simple  feed  forward  neural  network  works  as  follows:  training  data  is  provided 

consisting of several input sets and each with a corresponding output. These training data 

are presented to the system and the weights of the system are adjusted appropriately to 

reflect the training. Figure 4.2 shows a neural network with multiple layers. After training 

the network, a sample data is passed through the system to predict what category a new 

dataset belongs (in classification problems).

Artificial neural networks are of different types. Some are classified as supervised 

while others are said to be unsupervised learners.18

18 The discussion about artificial neural networks classified as supervised learning is the feed forward 
networks and the back propagation algorithm. Discussions about the self-organizing map which is a non-
supervised learning network is discussed under unsupervised learning.
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Figure 4.2 k-layer  Network  (Reproduced  from  Nilsson  [174]  without 

permission)

4.3 Unsupervised Learning

This is a scenario where the learning agent is not exposed to an external teacher or critic. 

The training inputs do not have a corresponding output. The outputs of the system are 

unknown.  Because  of  the  absence  of  an  external  teacher,  Christodoulou  et  al.  [57] 

suggests that a provision be made to identify the quality of the representation that the 

learning agent is required to learn. The parameters of the agent are then optimized with 

respect to this measure. Dayan [181] defines unsupervised learning as techniques that 

“study how systems can learn to represent particular input patterns in a way that reflects 

the statistical  structure of the overall  collection  of input patterns”.  The input  sets  are 

analyzed for similarities between any features. “Procedures that attempt to find natural 
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partitions of patterns within sets are utilized” [174]. After the training is over, the inputs 

introduced  to  the  agent  are  grouped based  on  the  similarity  measure  defined  on  the 

learning agent. Unsupervised learning techniques are usually used in classification and 

data compression problems amongst others.

4.3.1 Self-Organizing Networks

This is a group of neurons where the weights are adjusted to match the input vectors in a 

given training set. Competitive learning, which is a learning methodology that divides a 

set  of  input  data  into  clusters  that  represent  the  input  data,  is  used  as  the  learning 

mechanism in these types of networks. 

When input  data  is  presented  to  the  network,  only one output  (known as  the 

winner) is selected. Euclidean distance19 is utilized in the selection of the winner.

A  self-organizing  network  has  two  stages  of  operation,  the  first  stage  is  the 

training  of the network,  in  this  phase,  the network organizes  itself  by the use of  the 

competitive learning process. The second phase is the mapping phase where a new input 

is passed through the network for classification or categorization. This new input is given 

a location on the network, and the winning neuron whose weight is closest to the input 

data determines how the new data is classified.

4.4 Reinforcement Learning

Imagine you are sailing in the ocean and suddenly there is a great storm. In this storm all 

your  crew  members  suddenly  disappear,  making  you  the  only  survivor.   Your 

19 The Euclidean distance measure utilized in the selection of the winner is as follows: 
k: || wk –x || ≤ || wo – x || o∀
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navigational system was destroyed in the storm, but you are lucky to have a large food 

supply. You also have fuel and your boat engine is in excellent working condition. After 

the  storm,  you  find  yourself  in  an  unfamiliar  place.  This  is  the  first  time  you  are 

experiencing  this  situation  and you have to  get  back home (to  shore).   How do you 

achieve this goal? The only way to achieve this goal is to try to sail randomly towards 

shore; you utilize the actions available to you which are moving in any direction with the 

hope that you are moving in the right direction towards shore. When you successfully get 

to shore, if rescuers want to go back to where the storm occurred to attempt a rescue 

mission, all you need to know and tell them are the successive directions / steps you took 

to get you to your present location.

This same problem can be extended by noting that you have a limited supply of 

food and drinks to survive on and as such have to achieve the goal of getting to shore 

under a timed constraint. This in a nutshell is reinforcement learning, where you have a 

goal  and  attempt  to  achieve  the  goal  through  interacting  with  the  environment  and 

making decisions based on the experiences gained from the rewards and punishments 

during these interactions. Another example of reinforcement learning is deciding on the 

best route to a place you go to frequently, for example, your office. You might be faced 

with many routes from your house to your office. In the early stages of trying out these 

routes,  you will  have no opinion on the fastest  route  between your  home and office. 

Eventually after you have attempted each of the routes multiple times, your opinion on 

the various routes would have been made in terms of shortest time, shortest distance, 

fastest routes, and best time of the day to take a route, and much more. 
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4.4.1 Overview

Since the advent of modern computers, it has always been the wishes of man to have his 

computer learn like he does, by learning through mistakes it makes.  Barto [162] states 

that the term reinforcement emanates from experimental psychology and animal studies. 

It refers to the strengthening or the weakening of the probability of the response as a 

result of the occurrence of an event [162]. Barto [162] emphasizes this point by noting 

that  in  its  simplest  form,  reinforcement  learning  utilizes  a  commonsense  approach to 

events, in that, if an action produces good results or responses, that action is reinforced. 

Generally, in humans, the consequences of our actions always influence our behavior or 

the behavior of others [163]. These consequences  are based on three principles [163] 

which  are;  “Consequences  that  give  rewards  increase  a  behavior,  those  that  give 

punishments decrease a behavior and those that produce neither rewards nor punishments 

tend to extinguish a behavior.” An example to illustrate these principles is a child that 

touches a hot stove. The consequence of the child’s action is pain and this punishes the 

child, thus the child would avoid touching a hot stove in the future. If this same child 

performs a task for which she is rewarded with candy (say, cleaning her room) she would 

opt to clean her room regularly.

Gosavi  [78]  calls  RL “an offshoot  of  dynamic  programming;  a  way of  doing 

dynamic programming within a simulator”. A feature of Reinforcement learning is that it 

is primarily learning from experience i.e. learning from one’s mistakes. It can be argued 

that RL also encompasses learning from the mistakes of others, which is a key feature of 

observational  learning.  As  noted  by  Barto,  the  modern  interest  and  development  of 

reinforcement learning is driven by the need for “autonomous agents that  can operate 
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under  uncertainty  in  complex  dynamic  environments  and  also  the  need  for  finding 

approximate solutions to large scale dynamic decision making problems” [162].

RL is  well  suited  for  control  and  optimization  problems  in  Markov  Decision 

Problems (MDP) [63, 162, 178, 180]. Recent investigations have indicated successes in 

using  RL  techniques  for  Semi-Markov  Decision  Processes  (SMDPs) and  Partially  

Observable  Markov  Decision  Processes  (POMDPs) [169,  180,  182].   POMDPs  are 

situations  where  an  agent  cannot  see  the  world  outside  its  immediate  environment. 

POMDPs are usually modeled by defining a mapping function between the hidden states 

and what it observes. Finding an appropriate mapping between what it observes and the 

actions that produces it, serves as the goal of a POMDP agent. 

 In general, the RL problem can be shown to involve the following steps:

• The execution of an action by the agent on the environment during the agents’ 

interaction with it from a set of possible actions )( tt sAa ∈ . This leads the agent to 

a new state.

• The receipt of a reward rt+1 from the environment when in the new state st+1

A note should be made that the reward or punishment received and the new state are 

dependent upon the action executed by the agent as well as the state in which the action 

was executed.  Figure 4.3 shows a typical  Reinforcement  Learning agents’  interaction 

cycle  with  its  environment,  while  Figure  4.4  shows  the  reinforcement  learning 

architecture.

In  figure  4.3,  it  can  be  seen  that  as  the  agent  performs  an  action  on  the 

environment,  the  state  of  the  environment  changes,  this  in  turn  triggers  a  reward  or 

punishment to the agent and the agent is then in a new state.
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Figure 4.3 A Typical Agent Interaction Cycle

In figure 4.4, the agent performs an action ai, the state of the environment changes from 

si to si+1, the agent then receives a reward or punishment from the environment. 

EnvironmentAgent

State
Reward

action ai

si+1

ri+1

Figure 4.4 Reinforcement Learning Architecture

Barto [162] observes that a typical RL problem includes uncertainty because the agents’ 

behavior and its environment are subject to some form of randomness. In some cases, an 

approximate model representing these uncertainties may be available for use in resolving 

the RL problem. An important part of the RL problem is the reward input. This is the 

The state of the 
environment 

changes

The agent 
receives a 

reward and also 
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new state

Agent performs 
an action on the 

environment

83



aspect of the RL problem that indirectly controls20 the behavior of the agent. The reward 

received by the agent in a given state after many trials, points it in the right direction. 

According to Sutton and Barto [63], there are four elements of RL:

• A policy:  “…. defines  the way the  agent  behaves  at  any time,  i.e.  a  mapping of 

perceived states to actions”. It is denoted byπ . For example, if an agent is perceived 

to be x miles from a traffic light, perform an action to slow down

• A reward  function:  “….  defines  what  goals  the  agent  has  to  achieve  in  the  RL 

problem in an immediate sense”. For example, the reward of running through a red 

light could be negative in the immediate sense.

• A value function: defines what goals the agent has to achieve in the long run. For 

example the reward of running through a red light could be negative in the immediate 

sense, but the value of that action may lead the agent to achieve its overall goal of 

arriving at its destination on time.

• And sometimes, a model of the environment could be an element of the RL problem

The  main  goal  of  a  reinforcement  learning  agent  is  to  “maximize  the  total  returns 

(rewards) it receives over time”[63]. The description and definition of returns (rewards) 

vary. In some RL algorithms, discounted returns21 are utilized e.g. [74] whereas in others 

average returns are used [78, 141]. Gloennec [175] defines “the return function R(t) as a 

long-term measure of the rewards.” Gloennec [175] describes three expressions used in 

calculating  returns.  Generally,  to  maximize  the  total  returns,  the  agent  has  to  “look 

ahead” at the available returns. The discounted return helps in finding out the current 

20 When the agent receives a reward or punishment, based on this, it adjusts its behavior per the driving RL 
algorithm; hence the reward input indirectly controls the agents’ behavior.  
21 Discounted returns are when the impact of future rewards are taken into consideration now. 

84



value  (weight)  of  future  rewards.  At  any given  time  t,  the  discounted  return  for  an 

infinite-horizon model22 [175] is given as:

nt
n

n rtR +

∞

=

−∑=
1

1)( γ 4.4.1.1

where γ  the discount factor23 is between 10 ≤≤ γ

When γ  is 0, the agent doesn’t bother about future rewards, it only concerns itself 

with the immediate  rewards it  receives.  As  γ  approaches 1, more weight is given to 

future rewards in making a decision. 

For a finite-horizon model24, a terminal state and a period exists i.e. sequence of 

actions between the initial state and the terminal state. The return is given as [175]:

11 .....)( −++ +++= nttt rrrtR 4.4.1.2

“n is the number of steps before the terminal state” [175].

For an average-reward model, the average of future reinforcements is calculated using:

∑
=

+∞→
=

n

n
ntn

r
n

tR
0

1lim)( 4.4.1.3

4.4.2 Markov Decision Process

The  modeling  of  Reinforcement  Learning  problems  are  typically  based  on  Markov 

Decision Processes (MDPs) [63, 162, 178, 180]. A Markov Decision Process satisfies the 

Markov property. The Markov property simply means that the state of the environment at 

any given time contains a summary of all states and actions the agent has encountered up 

to that time and this state is the only required information used in determining the agents’ 

22 An infinite-horizon model is one where the sequence of actions is infinite [63, 175]
23 The discount factor γ  is used to give more weight to future rewards, the closer it is to 1, the greater the 
weights given to future rewards.
24 A finite-horizon model is one where the sequence of actions is finite [175]
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next actions [164]. A system is said to possess the Markov property if the present state 

can comparatively predict the future states as well as the history of all past and present 

states. This is known as a memoryless process. 

Some researchers e.g., [162, 178] note a fundamental difference between MDPs 

and RL; usually in MDPs, the complete descriptions would have the probability metrics 

between state transitions, actions and rewards and how these parts affect each other. Also 

the main “objective of a MDP is to compute an optimal policy”. In constrast, RL deals 

more  with  approximating  an  optimal  policy  during  on-line25 behavior  instead  of 

computing optimal policies off-line based on the known probability transition models. 

Also the objective of RL is to maximize the total rewards received and not to compute an 

optimal policy26. 

Ratitch and Precup [164] suggest some attributes that can be used to characterize 

MDPs, amongst which are state transition entropy and controllability.  The effect these 

attributes have on the performance of RL algorithms that use function approximation was 

shown, especially on the quality of the learnt policies.  These attributes were also shown 

to affect the speed of learning. 

4.4.3 Value Functions

This  is  the “heart”  of reinforcement  learning.  The majority  of reinforcement  learning 

algorithms strive to improve or calculate the value function of states. The value function 

defines the goals the agent has to achieve; it is literally how good a state is or how good a 

given action is in a state [63].
25 A detailed description of On-line and off-line behaviors is presented later in this chapter
26 As noted by Barto [162], maximizing the received rewards doesn’t always require the computation of an 
optimal policy for all states because the agent may not visit all the possible states during its interaction with 
the environment. 
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As stated earlier, a policy, ∏  defines the way the agent behaves at any time in the 

environment. It is a mapping of actions to states. “The value of a state under a given 

policy is the expected return when the agent starts in that state and follows the given 

policy”[63]. 

Given a set of states  S = (s1, s2, s3,…, sn)  and a set of actions available in each 

state: A = (a1, a2, a3,..., an)

The value of a state s∈ S,  

{ }






 ==== ∑

∞

=

++∏∏
Π

0

1 ||)(
k

tkt
k

tt ssrEssREsV γ 3.4.3.1

Where ∏E {} is the expected value when the agent follows policy ∏ , t is the time step, r 

is the expected reward, s is the state and γ  is the discount factor between 0 and 1.

4.4.4 On-line and Off-line

RL algorithms are described as either on-line or off-line [63, 78], based on the qualifier 

used.  These  qualifiers  are  1)  when  the  algorithm  is  being  implemented  and  2)  the 

mechanism used for updating the internal learning structures of the algorithm [78]. These 

two qualifiers are elaborated on below.

An RL algorithm is off-line when it is run and tested in a simulator before it is 

implemented in the real world. An on-line implementation means that the algorithm runs 

on the actual system in real-time. That is, the learning agent improves its performance as 

it experiences the environment.   

During the on-line updating of the internal learning structure of the algorithm, the 

values of the mechanisms that keep track of learning are updated immediately the agent 
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tries out an action. For example, with Q-factor  27, the state-action pair is immediately 

updated  after  each  trial.  An off-line  update  is  when these  values  are  updated  after  a 

certain number of trials, for example the TD(λ) algorithms28.

4.4.5 Exploration Vs Exploitation

Exploration is a systematic search in a search space whereas exploitation is the utilization 

of available knowledge about a given situation to the greatest possible advantage. The 

success of a RL algorithm is based on how good the agent balances its choice of actions 

between  exploring  and  exploiting.  Researchers  [63,  78,  162  and  many  others],  have 

postulated  some  action  selection  strategies  for  agents  to  utilize  when  solving  a  RL 

problem. There is neither a good nor bad strategy for choosing whether to explore or 

exploit  existing  knowledge during  an  agent’s  interaction  with  the  environment.  If  an 

agent chooses to exploit  its knowledge about its environment  in the early stages of a 

simulation, it risks not getting the potential maximum rewards available.  A good strategy 

is for the agent to explore at a faster rate during the initial stages of the simulation and 

then exploit the knowledge gained towards the end of the simulation. When an agent tries 

(explores) a vast range of actions, the agent will be better equipped to make decisions that 

would maximize its rewards for any given task. Exploration and exploitation are also 

referred to as non-greedy and greedy strategies.

Some of the most commonly used exploration strategies are as follows:

a) The P-greedy policy (Pseudo-stochastic Method) [175] 

),(maxarg * bxQa
XAb∈

= 4.4.5.1

27 Q-factors are based on state-action pairs, it is an algorithm of RL based on the work of Watkins [74]
28 TD(λ) is the temporal difference algorithm, the values are updated after a finite number of steps 
represented by λ. Sutton [72]
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Here the action that produces the maximum return can be chosen with a high 

probability  P else an action is randomly chosen. The maximum Q value29 for a 

state-action pair produces the maximum return.

b) Pseudo-exhaustive Method: the action that produces the maximum return can be 

chosen with a high probability P, else the action that has the lowest probability of 

being chosen is utilized.

c) Boltzmann Distribution: The action in any given state is chosen with probability:

∑
=

b
bxQ

T

axQ
TxaP

)),(1exp(

)),(1exp(
)/( 4.4.5.2

T is a positive parameter known as the temperature [63]. According to [63], low 

temperatures  cause  the  probability  of  selecting  actions  with  different  value 

estimates to be different, whereas “high temperatures cause the selection of all 

actions to be nearly equi-probable” [63].

A reinforcement-learning agent has to explore new options and also exploit options that it 

knows to best suit the current situation. One of the issues with reinforcement learning is 

having the agent balance its choice between exploring new options and exploiting options 

it knows would give the greatest rewards for the current situation. 

4.4.6 RL General Problems

Assigning credit to the correct decision-making process in a RL problem is one difficulty 

faced in RL. Credit-assignment can be either of two types; “temporal credit-assignment 

problem and structural credit assignment problems” [165]. Temporal credit-assignment is 

29 Q values are discussed later in this chapter.
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when an agent cannot determine a particular actions contribution(s) to the overall quality 

of the full sequence of actions to solving the RL problem. Structural credit-assignment 

deals  with multi-agent  systems in which determining the contributions  of a particular 

agent to a common task in a RL problem are difficult.  Some researchers have postulated 

some solutions to the credit-assignment problems, Agogino & Tumer [165] show how the 

temporal  and  structural  credit-assignment  problems  are  the  same.   Mahadevan  [179] 

compared four machine learning techniques along temporal,  structural and tasks credit 

assignment problems and found differences in the way they handle them. Sutton [72] 

conceived the temporal difference algorithm to address the temporal credit assignment 

problem.

RL  problems  can  be  of  two  types,  they  can  be  discrete  or  continuous.  An 

algorithm that generates adaptive controls for continuous processes was formulated by 

Munos [156]. This is achieved by using finite-element methods to approximate the value 

function. The learning dynamics as well as the structure dynamics are integral parts of 

this algorithm [156]. The learning dynamics, known as “Finite-Element Reinforcement  

Learning, estimates the value functions at the vertices of some triangulation defined in 

the state space, while the structural dynamics defines these triangulations in regions that 

have an irregular value function” [156].

Kimura & Kobayashi [170] present the stochastic gradient ascent algorithm that 

deals with problems where the action space is continuous and rewards are delayed. Their 

method doesn’t require a model of the environment and doesn’t need to approximate the 

value function explicitly. They showed that their method learned a policy with less cost 

when compared with the actor/critic algorithms described in Konda & Tsitsiklis [183]. 
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Smart & Kaelbling [171] introduce an algorithm HEDGER that approximates the value 

function for continuous state control problems. “HEDGER is based on locally weighted 

regression where training points close to the query point have more influence over the 

fitted regression surface” [171] . Their algorithm has an advantage of learning quickly 

with a small amount of data. 

Dayan & Hinton [147] propose the feudal reinforcement learning algorithm that 

aims to speed up the learning process. This is achieved by breaking the problem into 

smaller tasks where the high level tasks learn how to set tasks for the lower level tasks. 

The lower level tasks learn how to maximize the reinforcement received based on the set 

tasks. 

Kretchmar  [184] proposes the  parallel  reinforcement  learning  algorithm where 

multiple RL agents interact and learn from the same environment in parallel. Because RL 

environments are usually stochastic, the agents’ experiences would differ and eventually 

converge on the same value function. By sharing information at intervals, the learning 

process is accelerated.

Shapiro  et  al  [185]  describe  “an  agent  architecture  Icarus that  embeds  a 

hierarchical RL algorithm in a language for specifying agent behavior”[185]. They show 

an increase in “the learning rate and asymptotic performance and decrease in plan size 

when background knowledge was introduced” [186]. 

Baird and Moore [186] derived the  Value and Policy Search (VAPS)  algorithm 

that can generate new RL algorithms. These newly generated algorithms all guarantee 

convergence  to  simple  MDPs  and  POMDPs.  They  also  include  modifications  to  Q-

learning, SARSA and advantage learning.
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Dietterich and Flann [187], synergistically combine explanation-based learning30 

and  RL to  produce  Explanation-Based  Reinforcement  learning  (EBRL) because  both 

learning  methods  propagate  information  backward  from  the  goal  state  towards  the 

starting state. In experiments they performed – comparing batch and online versions of 

the new algorithm with versions of RL and EBL, they showed EBRL outperformed both. 

They  also  believe  one  of  the  outcomes  of  their  algorithm  (Region-based  dynamic 

programming) provides a possible solution to a major limitation of RL which is, lack of 

scaling up to large state space problems.  

4.4.7 RL Techniques

There have been many notable RL algorithms developed. Amongst the most widely used 

are  Dynamic  Programming  (DP),  Monte  Carlo  Methods  (MC),  Linear  Programming 

(LP), Q-learning, TD-learning and Hierarchical Reinforcement learning. Sutton & Barto 

[63]  discuss  three  broad classes  of  algorithms:  Dynamic  Programming,  Monte  Carlo 

methods and the Temporal Difference algorithms.  

4.4.7.1 Dynamic Programming

In dynamic  programming,  a model  of the world is  present and the agent  attempts  to 

maximize its rewards. The model includes the transition probabilities between all states. 

A major limitation of dynamic programming for solving RL problems is its requirements 

for a model  of the environment.  Also,  for large state-space problems,  using dynamic 

programming would be impractical because of the amount of computations and memory 

30 Explanation-based learning “computes the weakest preconditions of operators and hence propagates 
information backward from the goal on a region-by-region basis” [187]

92

daihe
Underline



needed.  Sutton  &  Barto  [63]  note  that  this  situation  was  termed  the  curse  of 

dimensionality by Bellman.  Although Gosavi  [78]  calls  RL “an  offshoot  of  dynamic 

programming and a way of doing dynamic programming within a simulator”,  he [78] 

illustrates  the  differences  between  RL  and  classical  DP  by  noting  that  DP  always 

produces an optimal solution to control and prediction problems whereas RL produces 

near-optimal solutions. In using DP to solve RL problems, based on the available model 

of the environment, the transition probability and reward matrices can be generated in a 

simulator  and  then  dynamic  programming  algorithm  applied  to  these  transition 

probabilities. This produces an optimal solution to the RL problem. In the case of RL, the 

reinforcement  learning  algorithm is  applied  in  a  simulator  without  the  model  of  the 

environment and this produces the near-optimal solutions.

4.4.7.2 Monte Carlo Methods

Monte Carlo (MC) methods solve the RL problem by averaging the rewards (returns) 

received over a period of time. Multiple trials which result in experiences generated by 

the online or offline interaction of an agent with its environment are required for MC 

methods. It is assumed in MC methods that these experiences are divided into episodes. 

After the end of an episode, the estimates of the values are then changed. MC methods 

are based on averaging the complete returns (rewards) received by an agent. The Monte 

Carlo methods have features of dynamic programming, with the exception that a model 

of  the environment  need not  be available.  A pseudo code for first-visit  Monte Carlo 

methods for estimating the value of a state is presented:

Initialize:
π policy to be evaluated
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V an arbitrary state-value function
Returns(s) an empty list, for all s Є S

Repeat forever:
(a) Generate an episode using π
(b) For each state s appearing in the episode:

R return following the first occurrence of s
Append R to Returns(s)
V(s)average(Returns(s))

(Reproduced from Sutton and Barto [63] without permission).

While  implementing  the first-visit  Monte Carlo method,  you first  of  all  initialize  the 

policy  to  be evaluated,  i.e.,  you  map  available  actions  to  the  perceived  states  in  the 

environment.  You  initialize  the  value  of  a  state  chosen  at  random to  some  random 

number. For all states of the environment, you initialize the returns received by the agent 

in each state to zero.  You start the simulation, for each state visited by the agent, you 

note the reward received at that state. At the end of a simulation cycle, the value of  a 

state is determined by the average rewards received in that state, i.e. the total rewards 

received by the agent while in that state, divided by the number of visits made to that 

state.

4.4.7.3 Temporal Difference Learning (TD-Learning)

Temporal difference learning (TD-learning) is a combination of the ideas introduced in 

the Monte Carlo and dynamic programming methods [63]. This method learns from the 

experience achieved through the agents’ interaction with the environment and this learnt 

knowledge can be updated based on the estimates  of other  learned estimates  without 

waiting for the final outcome of the reward. It is based on the principle that one does not 

have  to  wait  until  the end of  a  task to  provide  an initial  estimate  for  that  task.  The 
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example  provided  by  Sutton  and  Barto [63]  explains  the  basis  of  td-learning  as  an 

example. Each day driving home from work, we inherently think of how long the journey 

will take and thus provide an estimate. While on the journey, if it rains, we immediately 

adjust our estimates to reflect  the fact that  we drive slowly when it rains. If we find 

ourselves stuck in traffic, we keep readjusting our estimates based on the current situation 

and the completed leg of journey until we complete the journey [63]. In other words, we 

learn of a new estimate immediately, based on the previous estimate. 

Tesauro [64] made the temporal difference learning algorithm famous with his td-

gammon learning system. From the work of Tesauro [64], RL was shown to achieve 

results that other learning methods have not achieved. Tesauro [64] showed that using the 

TD method of Sutton [72, 73] to solve the RL problem, the game of backgammon could 

achieve masters’ level. This was achieved by the game playing about 1.5 million games 

against  itself  and learning from the rewards and mistakes in those 1.5 million games. 

With this much success of the application of the TD method towards the RL problem in a 

practical scenario, researchers have high hopes for RL techniques and also believe that 

RL techniques have great potentials. 

There are some skeptics to the work of Tesauro however,  Pollack & Blair [66] in 

their work, try to attribute the success of the temporal difference methodology with the 

game of backgammon by Tesauro [64] to the domain in which the TD method was used 

i.e. because of the inherent nature of the game of backgammon. Pollack and Blair [66] 

carry out a simple hill climbing algorithm in a relative fitness environment on the game 

of backgammon and claim that any learning method can achieve what Tesauro [64] did. 
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However,  they failed to  achieve  the same results  as Tesauro [64].  A pseudocode for 

TD(0) for estimating the value of a state is presented: 

Reproduced from Sutton and Barto [63] without permission

Initialize  arbitrarily,  to the policy to be evaluated
Repeat (for each episode):
   Initialize s
   Repeat (for each step of episode):

      
      Take action a; observe reward, r, and next state, 

      
         until s is terminal

SARSA, which is an on-policy TD31 control algorithm is presented: 

Reproduced from Sutton and Barto [63] without permission

Initialize  arbitrarily
Repeat (for each episode):
   Initialize s
   Choose a from s using policy derived from Q
         (e.g., -greedy)
   Repeat (for each step of episode):
      Take action a, observe r, 
      Choose  from  using policy derived from Q
         (e.g., -greedy)

      
      ; ;
   until s is terminal

4.4.7.4       Q-Learning

Q-learning is an off-policy TD control algorithm created by Watkins [74]. It is based on 

the selection of actions in states based on their Q-values. Q-values are a collection of 

rewards for each state-action pair for each state. The state-action pair that produces the 

31 On-policy is the same as online RL and off-policy is offline RL
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greatest reward in each state is chosen32. Humphrys [173] notes that the actions available 

to the agent in each state could be different. In the paper on Q-learning by Cybenko [79], 

an agent in an unknown environment seeks to maximize the total reward it achieves when 

starting from any state by choosing actions that would maximize its total rewards in that 

state. The problem is that the agent doesn’t know what actions would maximize its total 

rewards because if it did, the problem being solved would turn out to be a supervised 

learning problem [173]. Through trial and error, the agent has to learn to choose actions 

in  each state  that  would bring about  a total  maximum reward.  A pseudocode for Q-

learning is presented: (Reproduced from Sutton and Barto [63] without permission)

Initialize  arbitrarily
Repeat (for each episode):
   Initialize s
   Repeat (for each step of episode):
      Choose a from s using policy derived from Q
         (e.g., -greedy)
      Take action a, observe r, 

      
      ;
   until s is terminal

According to Gosavi [78], the fundamental concepts of RL are based on the Q-factors (Q-

values) and the Robbins-Monro Algorithm. The value function, which is the bedrock of 

RL algorithms  are  stored in  Q-factors.   The value  function  is  based on the  Bellman 

optimality equations as shown below [78]:
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32 The choice of actions in each state is based on the Q-values as well as the defined policy
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• )(* iJ  is the ith element of the value function vector associated with the optimal 

policy

• A(i) denotes the allowed actions when in state i

• p(i,a,j) is the transition probability of going from state i to state j when action a is 

performed

• ∑ =
= ||

1
),,(),,(),( s

j
jairjaipair  is  the  immediate  reward  expected  in  state  i,  if 

action a is selected in that state, r(i,a,j) is the immediate reward when action a is 

selected and the system transitions from state i to j because of the selected action.

• S is the set of states in the system

• γ  is the discount factor that gives some weight to future rewards

An element of the Q-factor is usually associated with a state-action pair.  For any given 

state-action pair (i,a), the Q-factor is:
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Combining  the  Bellman  optimality  equation  with  the  Q-factor  equation,  we  get  the 

relationship between the value function of that state and the associated Q-factors:
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For all state-action pairs (i,a), the Q-factors equation can be written as:
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The above equation is known as the Q-factor version of the Bellman optimality equation 

for all discounted reward MDPs [78].

The  Robbins-Monro  algorithm  provides  estimates  of  the  mean  of  a  random 

variable from samples of it [78]. By averaging the samples, we can get the mean of the 

random variable. According to [78], “let the ith independent sample of a random variable 

X be si  and the expected value (mean) by )(XΕ , with probability 1, the estimate of the 

mean is:”

n

n

i
iS∑ = 1 4.4.7.4.5

This estimate of the mean, tends to the real value as  ∞→n  “according to the laws of 

large numbers” [78]
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These samples are usually generated in a simulator. From the averaging process shown 

above, [78] derived the Robbins-Monro algorithm. If  Xn denotes the estimate of X after 

obtaining n samples:
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This  is  known as  the  Robbins-Monro algorithm.  When )1(
11

+=+

n
nα ,  the algorithm 

becomes direct averaging. The Robbins-Monro proof shown above, was reproduced from 

[78]  without  permission.  α  is  known as  either  the  step  size  or  the  learning  rate,  it 

guarantees convergence to an optimal solution.

Combining  the  Robbins-Monro  Algorithm  with  the  Estimates  of  Q-factors 

produces the optimal Q-factors without knowing the model of the environment. It has 

been shown that every Q-factor can be expressed as an average of a random variable [78]. 

Recalling the Q-factor in Bellman’s equation:
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According  to  [78],  E  is  the  expectation  operator  of  the  random variable  in  equation 

3.4.7.4.8.1. Robbins-Monro algorithm can be used to estimate the Q-factors if samples of 

random variable are generated in a simulator. If the Robbin-Monro algorithm is used, the 

Q-factor equation for each state-action (i,a) pair becomes:
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The above equation does not include transition probabilities.  With this  algorithm, the 

optimal Q-factors can be generated in a simulator without knowing the probability matrix 

of the underlying Markov chain [78].

There have been many attempts  to refine the Q-learning algorithm to produce 

better performing algorithms. Guo et. al. [188] produces an algorithm, SA-Q-learning that 

converges  faster  than  Q-learning.  Their  algorithm  also  balances  the  exploration  and 

exploitation choices made by the agents, and its performance isn’t degraded because of 

excessive exploration.

Wiering [189] developed the fast online Q(λ) algorithm based on the fact that the 

updates to Q-values can be postponed until  needed. In this algorithm, TD(λ) methods 

were  used  to  accelerate  Q-learning.  The  fast  online  Q(λ)  learning  algorithm  has  a 

complexity of O(|A|) per update. 

Peng  [190]  combine  Q-learning  with  TD(λ)-learning  algorithms  to  produce  a 

faster algorithm. The new algorithm also eliminates the non-markovian effect of coarse 

state-space quantization. 
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Dearden  et.  al.  [191]  produces  the  Bayesian  Q-learning  algorithm  where  a 

Bayesian approach is used to maintain the agents’ value estimates of states. Probability 

distributions of the Q-values are used to compute these value estimates of actions that 

provide the best balance between exploration and exploitation.

4.4.7.5 Hierarchical Reinforcement Learning (HRL)

Hierarchical  Reinforcement  learning  (HRL)  reduces  the  complexities  of  a  decision 

making process by breaking down a large problem into a hierarchy of smaller problems. 

Parr & Russell [139] note that these complexities could be reduced from an exponential 

size to a linear size of the problem. In HRL, high-level activities are usually decomposed 

into  lower-level  activities.  As  noted  by  Dietterich  [140],  “the  aim  of  hierarchical 

reinforcement learning is to discover and exploit hierarchical structures within a markov 

decision problem.” Parr & Russell [139] describe a learning technique that utilizes prior 

knowledge in finding solutions. They use hierarchical abstract machines (HAMs) in their 

solutions. Constraints are placed on the policies available to the learning agent by the 

HAMs. At each state of the learning process, a HAM - a program, restricts the actions 

available to the learning agent. A HAM is akin to one of the tenets of the Context-based 

Reasoning technique created by Gonzalez & Ahlers [7]. An example of a HAM would be 

the classical example provided by Gonzalez et al. [9], that is, it is not possible for a tire 

blow out to occur when a car is waiting in a traffic light and as such an agent wouldn’t 

consider a tire blow out event when in a traffic light scenario. As such, the HAM for this 

scenario would constrain the actions available to the agent by excluding an action for the 

tire blowout event. Parr & Russell [139] note that “machines for HAMs are defined by a 
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set of states, a transition function, and a start function that specifies the initial starting 

state of the machine.” There are four types of machine states in a HAM: the action states, 

where actions are executed in the environment; the call state, where the execution of a 

subroutine is initiated; the choice state, where the stochastic selection of the next machine 

state is carried out; and finally the stop state, where the execution of subroutine is halted 

and control is returned to the calling state. Figure 4.5 shows these states.

Action State

Call State -
Subroutine
Initiation

Choice
State

Stop State

Figure 4.5 Showing the Four Machine states for HAMs. The dashed line shows calls 

to a subroutine.

The transition function determines what the next machine state should be. It is 

based on the current state of the agent and some features of the agents’ environment. The 

start function defines a HAM, i.e. the initial machine where execution begins and the 

closure of all machines that can be reached from this initial machine [139]. 

In RL, the constraints placed by HAMs, can narrow the focus of exploration of 

the state space. This technique reduces the exploration phase of the learning agent and 

thus provides faster learning for the agent because the state space is reduced. Parr and 
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Russell [139] introduce the HAMQ-learning algorithm, which is a variation of Q-learning 

[74, 79]. According to them [139], “the current environment state, t; the current machine 

state, n; the environment state at the preceding choice point, sc; the machine state at the 

preceding choice point,  mc;  the choice made at the previous choice point,  a;  the total 

accumulated  reward  and discount  rate  since  the  previous  choice  point,  rc and  βc;  an 

extended Q-table, Q([s,m],a) indexed by an environment-state/machine-state pair and by 

an action taken at a choice point” are all kept track by a HAMQ-learning agent. 

For every action in the environment, a transition from state  s to state  t is made. 

For each transition,  the observed rewards r  and discount factor  β and updated by the 

HAMQ-learning agent as follows:

ccccc andrrr β βββ ←+← 4.4.7.5.1

“Thus for each transition to a choice point, the agent does:”

)]],,([]),([[)],,([)],,([ amsQntVramsQamsQ cccccccc −++← βα ,   4.4.7.5.2

1,0 ←← ccr β

Dietterich [140] presents a learning algorithm which is an extension to Q-learning known 

as Hierarchical Semi-Markov Q (HSMQ). He showed that a task using this algorithm can 

converge to a recursively optimal policy. HSMQ has a goal of finding a recursive optimal 

policy.  Dietterich  [140]  states  that  a  recursively  optimal  policy  is  an  assignment  of 

policies to each subtask in such a way that the policy is optimal for all policies assigned 

to all of its dependents. It is “a kind of local optimality that has no guarantees on the 

quality of the overall policy.”[140] The idea for the HSMQ algorithm is that for each 

subtask p, the Q function Q (p,s,a) is learnt, this Q function is the expected total reward 
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of performing the subtask p starting in state s, executing an action a and following the 

optimal policy. 

Dietterich [140] describes the algorithm for each subtask as:

function HSMQ(state s, subtask p) returns float

let TotalReward = 0

while p is not terminated do

choose action a= )(sxπ  according to exploration policy xπ

execute a.

if a is primitive, observe one-step reward r

else r := HSMQ(s,a), which invokes subroutine a and 

returns the total reward received while a executed.

TotalReward := TotalReward + r

Observe resulting state s’

Update Q(p,s,a) := (1 - )α Q(p,s,a) + α )]',',(max[
'

aspQr
a

+

end //while

return TotalReward

end

Dietterich [140] notes that the HMSQ learning algorithm solves the hierarchical 

reinforcement  learning  problem  by  treating  it  as  “a  collection  of  simultaneous, 

independent  Q  learning  problems”.  This  doesn’t  provide  a  representational 

decomposition of the value function, and as such, the value function of each subtask is 

represented  and learned  independently.  This  is  not  good,  it  would  be  better  if  some 

“sharing and compactness” in the representation of the value function exists. Dietterich 

developed the MAXQ value function which does this [140, 145].  

Dietterich [140] notes that the value function of many subtasks don’t depend on 

all  the  state  variables  in  the  original  MDP  and  thus,  there  are  three  forms  of  state 
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abstraction that can be applied within the MAXQ value function decomposition. These 

are: irrelevant variables, funnel abstractions and structural constraints. These abstractions 

are necessary for the reduction of the memory needed to store the value function as well 

as the amount of experience needed to learn the value function. 

“A state variable is irrelevant for a subtask if the value of that state variable never affects 

either the values of the relevant state variables or the reward function.

A funnel action is an action that causes a larger number of initial states to be mapped into 

a small number of resulting states.

Structural  constraints  concerns  implication  relationships  between  a  child  task  and its 

parent task.” [140]

In analyzing the design tradeoffs in hierarchical reinforcement learning, Dietterich 

[140] notes that a “recursively optimal policy can be far from being optimal”; the HAMQ 

algorithm by Parr & Russell [139] learns a hierarchical optimal policy33 and as noted by 

Dietterich [140], for an agent to learn a hierarchical optimal policy, information sharing 

between subtasks must exist. Although, more state abstraction and reuse of subtasks can 

be achieved through a recursively optimal  policy than through a  hierarchical  optimal 

policy, hierarchical optimality is usually better.

Hierarchical Suffix Memory (HSM) Reinforcement Learning was developed by 

Hernandez-Gardiol & Mahadevan [148]. They note that perceptual aliasing, a situation 

where the same observations are generated by different real-world states, is a problem in 

the solution of RL tasks [148]. They suggest the addition of memory about past events to 

address this. They show that when past experience is considered at some task-appropriate 

33 “A hierarchical optimal policy is the best possible policy for the constraints on an imposed hierarchy” 
Dietterich [140]. The policies used by the subtask might not be optimal.
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variable resolution under perceptual aliasing, the speed of learning can be increased for 

problems with long sequences of decision making. A limitation to their method is that the 

past experience used is limited to the histories for each level of abstraction. 

There are many other hierarchical reinforcement learning algorithms, for example 

the hierarchical distance to goal (HDG) method by Kaelbling [146], where an agent acts 

upon a  partitioned  environment with centers known as ‘landmarks’. Low level actions 

are utilized to move towards the goal if an agent is sensed to be in the same partition as 

the goal; otherwise high level actions are used to determine the landmark closest to the 

goal. 

Lane & Kaebling [149] propose a method were partial plans are developed over a 

hierarchical  region  where  each  plan  is  a  representation  of  some  knowledge  on  the 

achievement of a sub-goal within its region.

Bakker  &  Schmidhuber  propose  the  HASSLE  (Hierarchical  Assignment  of  

Subgoals  to  Subpolicies  LEarning) algorithm  where  sub-goals  are  automatically 

discovered through high-level policies and learning to specialize on these sub-goals is 

achieved through low-level policies [150]. In deterministic and stochastic large MDPs, 

the HASSLE algorithm performed better than some other RL algorithms [150]. 

Bernhard  [151]  proposes  the  CQ algorithm  that  automatically  generates  a 

hierarchy of sub MDPs using state variables to decompose the MDP. Bernhard [152] 

proposes  the  HEXQ  algorithm  to  solve  multi-dimensional  MDPs  by  constructing  a 

multilevel  hierarchy  of  interlinked  subtasks.  This  is  done  without  having  apriori 

knowledge  of  the  model.  The  MDP  is  automatically  decomposed.  The  choice  of 

representation of variables, the temporal relationship between the variables and the type 
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of  constraint  placed  on  the  stochasticity  of  the  problem all  affect  the  efficiency  and 

effectiveness of HEXQ decomposition [152].  Bernhard [153] tries varying degrees of 

model resolution in approximating hierarchical decomposed MDP that are already state 

abstracted. 

McGovern  &  Sutton  [154]  analyze  the  advantages  of  macro-actions  in 

reinforcement learning as it relates to an agents’ exploratory behavior and speed that the 

propagation of value information is  carried out by the learning  process.  Their  results 

show the effects of both to be significant with a much larger effect of value propagation.

McGovern et. al. [155] in their approach, present ‘options’ where both high and 

low-level decisions are treated the same way during problem solving. Traditionally, while 

solving SMDPs, the sub-SMDPs are solved in parallel and their solutions merged without 

taking  into  account  the  effect  of  actions  available  and  transition  probabilities  of  the 

neighboring sub-SMDPs. Gang & Mahadevan [157] present an approach that resolves 

this. With their approach of solving SMDPs, the sub-SMDP takes the different modes of 

interaction  between them and their  neighbors  into  account.  After  the  sub-SMDPs are 

solved,  the resulting policies  are  combined using a greedy algorithm for the problem 

[157]. They show that their method outperforms traditional ‘flat’34 RL algorithms in a 12-

machine manufacturing transfer line,  in terms of speed.  Their  method also performed 

better than some heuristics currently being used in manufacturing transfer lines. 

Singh  [158]  presents  a  hierarchical  DYNA (H-DYNA) algorithm  which  is  an 

extension of Suttons [63] DYNA architecture. H-DYNA learns the hierarchy of temporal 

34 A ‘flat’ RL algorithm is an algorithm that seeks to solve the RL problem without decomposing the 
problem into sub-problems and without any special refinement of the function approximation method used 
for the value function. A simple Q-learning algorithm can be considered a flat RL algorithm. 
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abstract  models  of  the  environment  that  can  be  used  in  solving  stochastic  control 

problems and can also transfer learnt knowledge across different tasks. 

Thrun & Schwatz [159] propose the SKILLS algorithm. The main idea behind the 

SKILLS algorithm is the reduction of all possible actions an agent can take in any given 

situation. This is done by giving the agent high-level skills that can be applied in many 

situations.  The  skills  are  represented  by  subpolicies  the  agent  can  follow  for  many 

timesteps. 

Wiering  & Schmidhuber  [160] propose the  HQ-learning algorithm which is  a 

hierarchical extension of the Q-learning algorithm. “It is based on an ordered sequence of 

subagents that learn to identify and solve the markov subtask of the overall task.” They 

show  that  the  HQ-learning  algorithm  can  solve  complex  tasks  that  Q-learning  is 

incapable of solving [160]. 

Goel & Huber [161] propose a technique where a RL agent discovers subgoals by 

searching a learned policy model for states exhibiting some types of structural properties. 

Barto & Mahadevan [141] discuss some hierarchical reinforcement algorithms and the 

limitations of these methods. They [141] propose ways of extending these algorithms to 

address  multiagent  coordination,  concurrent  activities,  etc.  and  list  existing  huddles 

facing hierarchical reinforcement learning.  

From the  above  literature,  it  can  be  seen  that  there  are  many  algorithms  for 

hierarchical reinforcement learning currently in use. These algorithms tend to address one 

or  more  aspects  of  the  shortfalls  of  hierarchical  reinforcement  learning.  However 

different these algorithms look, they all share the fundamental structure of hierarchical 

reinforcement  learning,  which  says  that  for  any given  complex  task,  the  task can  be 
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decomposed  into  subtask  that  would  reduce  the  complexity  of  the  problems.  Stated 

differently,  they all  share the goal of hierarchical reinforcement learning which is the 

discovery and exploitation of hierarchical structures within a complex markov decision 

problem.

As noted earlier, on first look at hierarchical reinforcement learning, one would 

assume it is a paradigm that models tactical behavior like CxBR, with learning included 

in  it.  In  reality,  the  only  similarity  between  hierarchical  reinforcement  learning  and 

context-based reasoning techniques is in the decomposition of complex tasks into smaller 

subtasks; in CxBR, a complex task is thought of in terms of contexts and the appropriate 

actions an agent would exhibit in each context is addressed in it. In HRL, the complex 

task is decomposed into a hierarchy of abstract machines. Each abstract machine calls the 

subtasks (subroutines) and the subtasks can all operate in parallel towards a solution. On 

closer  look,  the  dissimilarities  between  both  techniques  abound.  In  HRL,  the  lower 

hierarchy must return control back to the calling function whereas in CxBR as soon as a 

change in situation is noticed, control can be transferred to a new context that correctly 

identifies the new situation, it doesn’t matter if control comes from a major-context, a 

sub-context or a sub-sub-context. In CxBR, the flow of control of an agent’s action is 

intuitive; meaning as soon as there is a recognized change in situation, much work isn’t 

required to identify the new context. In HRL however, the flow of control of an agent’s 

action  is  based  on  the  observed or  sensed  rewards  from the  environment.  In  CxBR, 

localized  optimality35 is  directly  proportional  to  global  optimality36 whereas  in  HRL, 

localized  optimality  is  not  always  directly  proportional  to  global  optimality.  Another 
35 Localized optimality is the optimal value of an attribute or action in a given context, sub-context or sub-
procedure towards the goal of the context, sub-context or sub-procedure. 
36 Global optimality is the optimal value of an attribute or action in a given context, sub-context or sub-
procedure towards the overall goal.
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distinguishing feature between CxBR and HRL is the fact that contexts can be refined in 

terms of their attribute values, transition criteria between contexts, etc. whereas in HRL, 

once a hierarchy is discovered, the boundaries are fixed. 

4.4.8 RL Applications

There is a significant body of literature on reinforcement learning. The existence of these 

publications is fueled by the need to make the reinforcement learning algorithms perform 

better. Reinforcement learning algorithms are said to perform better if they find a solution 

to  the  reinforcement  learning  problem  faster  by  converging  to  an  optimal  solution 

quicker.  Most  researches  are  focused  on  achieving  faster  algorithms  for  control  and 

predictions tasks for example [188, 190]. In most cases, a RL algorithm is said to perform 

better if it converges to a solution in the shortest possible time with the smallest amount 

of computation steps.  Overall, most investigations in reinforcement learning are focused 

on making the learning agent learn some value function or utility of a state or an action 

faster.   There are some criticisms to the study of RL, amongst  which are the lack of 

practical applications of RL. Most works on RL are theoretical, and most examples are 

simulated. Unfortunately, in terms of real world applications of reinforcement learning, 

only a few successful applications have been developed, amongst which include [67, 68, 

69, 64, 70, 71, 167, 168]. As pointed out by Pratt [81], RL may not be a good framework 

for describing animal intelligence, most works carried out in RL are on grid worlds with 

the learning agent moving in a north, south, east, west fashion. Pratt [81] also points out 

the  technical  hurdles  in  RL,  which  include  “Curse  of  Dimensionality  and  the  slow 
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learning with Primitive Actions” [81]. In most RL algorithms, the learning agent doesn’t 

take into account behavioral variances caused by emotions, contexts, etc. 

There are many papers on the future of RL,  Sutton [65] talks about the current 

state  of  RL  and  also  about  the  future,  stating  that  researchers  should  focus  on  the 

structures  that  enable  value  function  estimation  and  the  possibility  of  a  machine 

constructing the features that affect learning and other structures automatically, instead of 

people doing them [65]. Sutton [65] also talks about the idea of a developing mind as 

currently being studied in psychology, called constructivism being part of the future. 

Although there are some limitations to what reinforcement learning algorithms 

can do, it proffers the best solution to the problem described in chapter 2 when compared 

with the other two classes of machine learning algorithms. In the next section, a brief 

comparison  between all  three  classes  of  machine  learning  algorithms  is  made with  a 

focus on our defined problem. 

4.5 Comparison of the Three Machine Learning Groups Towards the Enhancement of 
Tactical Models

It has been established that machine learning techniques are used to acquire knowledge 

for modeling tactical decisions. Usually,  this knowledge is transformed from their raw 

states to a form that can be understood by the modeler. In most cases, supervised learning 

techniques are used to acquire expert knowledge. Based on some presented examples and 

the conclusions arrived at with these examples, a learning technique would acquire this 

knowledge and model the decision making process of an expert. According to Henninger 

[126] inductive, connectionist, case-based and analytical methods, SOAR chunking and 

interactive machine learning techniques can be used to accomplish the acquisition and 
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transformation  of raw knowledge.  Inductive techniques  can be supervised learning or 

unsupervised learning [126]. Connectionist techniques involve neural networks which are 

usually  supervised  learning,  pattern  recognition  and  Hopfield  networks  which  are 

unsupervised learning [126]. Case-based and analytical methods usually keep cases that 

identify  problems  and  their  solutions  based  on  the  similarities  between  the  current 

problem and past cases in the case library.

Unsupervised learning  techniques  are  typically  used  in  classification  problems 

where no goals exist. In the refinement of a human behavior model, the goals of the agent 

exist and based on this goal, the refinement process occurs. The singular reason of the 

existence of a goal precludes the use of unsupervised learning techniques in this research. 

Observational learning,  also a supervised learning technique is used to acquire 

implicit knowledge from expert. When combined with CxBR, observational learning in 

CxBR captures  expert  knowledge and can  automatically  build  contexts  based  on the 

captured  knowledge  [138].  In  the  work  by  Fernlund  et  al  [10,  138],  building  agent 

behaviors automatically was discussed. This involved building the transition from one 

context to another through observation. The underlying motivations for human behavior 

modelers to use observational learning in acquiring knowledge from a SME are exactly 

the same motivations for this research with an additional motivation here of expanding 

the  acquired  knowledge  beyond  the  knowledge  of  the  expert.  For  example,  lack  of 

explanation for experts’ implicit actions and many others. There are limitations to the use 

of  observational  learning  and  thus,  supervised  learning  techniques  to  refining  and 

enhancing knowledge. This is because the acquired raw knowledge and the final model 

are based on input/output pairs from the expert actions and the results of these actions. 
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The goal is always the result of the action which is obtained directly from the expert 

which is limited to a particular action. 

There  are  major  differences  to  the  approaches  and  expected  results  when 

knowledge is acquired through observation in a CxBR model and when this knowledge is 

refined through RL.

While  the  work  on  observational  learning  suggests  ‘watching’  the  expert  or 

“manned vehicle as it performs that behavior in battlefield situations similar to that to be 

seen by the model” [10], the agents in this research interact with the environment.  In this 

research, the agent is an actor in the environment; it performs actions on the environment 

that  causes  a  state  change  in  the  environment.  Whereas  in  observational  learning  in 

CxBR, the agent is not an actor, it doesn’t perform any action in the environment and 

cannot effect any state change in the environment. In reinforcement learning in CxBR, 

the  agent  learns  from the  reinforcements  or  punishments  it  receives  as  a  result  f  its 

actions;  whereas  in  observational  learning  in  CxBR,  the  agent  learns  from  the 

reinforcement or punishment received the actions of others. The latter limits the range of 

experiences that the agent can experience.  

Another issue with observational learning is the same one associated with expert 

questions  and answers  sessions.  The  expert  performing  an  observable  ‘act’  will  only 

perform what it knows. This is a great limitation to the agent learning by observing this 

expert. Reviewing the work by Sidani [58], an agent tries to learn implicit knowledge by 

observing an expert perform actions. The work failed to address the situation when the 

agent watches two or more experts react differently to the same scenario! In a driving 

scenario, if a pedestrian suddenly crosses a roadway, expert driver #1 might immediately 
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hit  the  brakes,  while  expert  driver  #2 might  swerve  to  the  right  to  avoid  hitting  the 

pedestrian, likewise expert driver #3 might swerve to the left. If an agent is learning by 

observing these expert actions, which does the agent retain and apply when faced with a 

similar situation? 37

In summary, the relationship between this research and that of most researches in 

observational  learning  in  CxBR  is  minimal  only  in  the  sense  that  they  both  don’t 

advocate  the  ‘hard-coding’  of  transition  rules  between  contexts  based  on  knowledge 

acquired through question and answer sessions. Observational learning in CxBR acquires 

the knowledge required for modeling and thus generates its actions and transition rules by 

observing the expert operate and transition between contexts, alternatively, this research 

builds on the knowledge acquired through Q&A sessions and / or observation. The model 

built is then refined by the agents’ constant interaction with a simulated environment. 

This enables the agent to learn from its own experience and apply what is learnt to the 

model  –  thus  refining  it  to  perform  better.  While  observational  learning  has  a 

disadvantage  of  having the agent  learn only what  it  observes,  reinforcement  learning 

allows the agent to explore different actions and transitions between and within contexts 

thereby allowing for flexibility for events that where never planned to occur or never 

thought  of by the expert.  This is  the reason why this  research was carried out using 

Reinforcement Learning techniques.

4.6 Chapter Summary

In  this  chapter,  the  three  classes  of  machine  learning  techniques  were  presented. 

Examples of the various machine learning techniques were also presented. Emphasis was 

37 It can also be argued here that the agent would generalize, but there is always going to be an optimal 
action to take, and generalization might not take this into effect.
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placed  on  reinforcement  learning  and  the  techniques  used  in  solving  reinforcement 

learning problems. A comparison on the three classes on machine learning techniques 

was done based on the problem being researched and a justification was made as to why 

reinforcement learning techniques were used in this research.
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CHAPTER 5: CONCEPTUAL APPROACH

5.1      Introduction

The approach used to address the problems inherent in the knowledge acquisition process 

utilizes experiential learning (reinforcement learning). The approach used in this research 

is based on the popular sayings “hindsight is clearer than foresight”. Our approach to 

breaking the SME knowledge barrier is to refine / enhance conventionally-built models 

through reinforcement learning. This process consists of subjecting a model developed 

with  the  help  of  a  SME to  several  different  scenarios  in  a  simulator.  If  the  model 

embodied in an agent successfully completes the mission, decisions made are reinforced 

and subsequently subjected to a new scenario that is a modified version of the last one. If 

the agent fails,  changes are made to the model  and the same scenario is re-run. This 

continues  until  the  model  successfully  accomplishes  the  mission.  Context-based 

reasoning is used as the basis of the model. 

This research is not the first attempt at synergistically combining reinforcement 

learning  and  contexts.  Wan  &  Braspenning [192]  propose  an  extension  to  the  RL 

framework  to  incorporate  the  role  of  contexts  in  solving  RL  problems.  They  had 

encouraging results in an experiment where the agent had to learn to intercept a moving 

target from any position in a path-finding problem. The difference between their work 

and this investigation is that this investigation focuses on enhancing the overall model of 

the agent through refining the individual contexts the agent encounters.
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Bridle & McCreath [144, 193] propose a method for learning transition models in 

a RL agent. This reduced the number of trials required by the agent in finding an optimal 

policy. This was done by taking the agents’ context into consideration. 

Balkenius & Moren [119] present a computational model for context processing 

that  learns  context  representations  from  the  sequence  of  attentional  shifts  between 

environmental stimuli.

Balkenius  &  Winberg  [121]  note  that  in  RL,  policies  for  states  are  learnt 

individually without taking into consideration the similarities  between different  states. 

They state that it would be good if actions learnt could be generalized amongst states and 

that the generalization could be introduced in the RL algorithm in many ways. One way 

they suggest is to divide the input from the state into two parts – one part for the situation 

(context) and the other part to control the actions. They believe this would cause learning 

to generalize for similar states as well as similar contexts. This will cause the roles of 

state  and  context  to  be  symmetric  [121].  They  formulate  Contextual  Reinforcement  

Learning that achieves this in some experiments carried out. They note the limitations of 

their method to include further investigations on the “relationship between stimulus and 

context  generalization  –  how a  context  influences  the  generalization  of  an  action  to 

similar states and also how the learning history influences it” [121]. A major limitation to 

their approach is the lack of relationship between “the concepts of a context to that of a 

goal”. This research touches on the latter and enhances a context definition based on the 

mission goal.
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5.2       RL-CxBR Integration

Recalling the components of CxBR in Chapter 2 and those of RL in Chapter 4, it can be 

seen that the components common to both architectures are the agent, the environment 

and the model as shown in Figure 5.1. The model in CxBR are the predefined contexts 

and their transitions therein. Enhancing this model to address the shortcomings of the 

knowledge  acquisition  process  is  what  this  research  is  about.  Other  components  are 

necessary  for  the  enhancement  process  to  occur.  Modifications  to  some  existing 

components would also facilitate the enhancement process. Before the components of the 

RL-CxBR architecture are described, some questions must be answered to illustrate the 

functionality of these components in the enhancement process.

Figure 5.1 RL-CxBR Block Diagram 

The answers to these questions are needed to define a conceptual approach to the problem 

and  thus  provide  a  formalized  algorithm and  flow of  activities.  These  questions  are 

presented below:

1. How does one implement the enhancement process – does one seek to learn contexts

Agent

CxBR RL

Environment
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with a reinforcement learning agent or seek to incorporate a reinforcement learning 

algorithm within the CxBR agent?

2. How are the rewards presented to the agent?

2.1. Who  sets  these  rewards?  If  the  expert  sets  them,  why  will  there  be  any 

improvements  on the agents’  behavior  based on the rewards  set  by the same 

expert?  In  other  words,  what  effect  would  the  reward  have  on  the  overall 

performance of the model if it is defined by the same expert whose limitations 

we are trying to break through? 

3. Can an active context be enhanced during the enhancement process in realtime?

3.1. If an active context is enhanced, how would the enhancement occur, would the 

agent know of the enhanced or refined attributes / values immediately?

4. What are the criteria for stopping the enhancement process?

4.1. Are these criteria valid for the enhancement process of the whole model or only 

for one Context within the model?  

5. How does the agent know the correct results from actions it performs as defined by

the  environment?  Note  that  if  the  outputs  for  a  given  action  are  given,  it  is 

reduced to a supervised learning problem.

6. What actions are available to the agent at any given time?

7. Should the entire environment be visible to the agent at all times?

8. Reinforcement learning seeks to learn the behavior of an agent in different states of 

its environment. CxBR addresses the behavior of an agent in an environment based 

on the context. How should the concepts of states and contexts be represented? Does 

one represent a context as a state or a context as a group of states?
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9. How should generalization be incorporated into the enhancement process? For large 

state-space  models,  would  each  action  be  executed  /  attempted  to  properly 

enhance/refine the model? Or will a generalized enhancement approach be sufficient? 

10. Because contexts in a CxBR control an agents’ behavior based on a predefined model 

of the environment, how would the agent explore and exploit this model? Would the 

agent  start  the  enhancement  process  by  exploiting  the  knowledge  it  has  of  the 

environment even though this knowledge might be wrong or incomplete? Or would it 

forget  all  knowledge it  has about  the environment  (all  information  defined in  the 

context) and start exploring the model?

11. Would the enhancement process deal with the issue of dynamic goals in the agents’ 

environment? If so, how?

12. How would the learning mechanism address any conflicting knowledge present in the 

system?

Answers to the above questions are presented in the following sections.

5.2.1 Representation of the Enhancement Process

In our approach to breaking the SME knowledge barrier, it should be noted that the 

knowledge to be enhanced is already defined and organized into contexts. Therefore, 

creating a model from scratch through reinforcement learning is not relevant. This is 

because it is the authors’ opinion that attempting to learn contexts from scratch in a 

reinforcement learning problem would produce a method for organizing the expert 

knowledge – which isn’t the objective of this research. Also, by organizing expert 
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knowledge irrespective of the quality of the knowledge will assist the reinforcement 

learning algorithm to converge faster. This should be another topic for investigation. 

Incorporating  a  reinforcement  learning  algorithm within  the  CxBR architecture  is 

most appropriate for the problem at hand. This is because having the agent explore 

new actions  within  a  context  and  its  transitions  between contexts  can  enable  the 

enhancement of the model. By having the agent perform actions within a context in a 

simulator and learn from the rewards and punishments it receives, the agent would 

know the best action to perform when put in the same situation in the simulator (or 

real  world).  Knowing  the  best  action  in  any  context  (situation)  will  enable  the 

enhancement of the context.

Mathematically, an enhanced Context '
iC is represented as:

ii CC  R←' 5.2.1.1

Where R is the reinforcement learning algorithm applied to the context.

5.2.2 The Reward Function

The design of the reward function is essential for true and efficient learning to occur. 

The  reward  function  essentially  directs  the  learning  agent  on  what  behavior  to 

reinforce and which to discard. It does not, however, tell the agent what is right or 

wrong. For the enhancement process, the reward function directs the agent on the 

contexts to enhance and the optimal values and attributes within these contexts. In a 

typical mission, the reward function will be defined by the achievement of the goal 

and  sub-goals  of  the  mission.  Rewards  will  be  attached  to  the  constraints  of  the 
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mission.  For  example,  if  an agent  completes  a  task successfully  and on time38,  a 

positive  reward  could  be  attached  to  the  achievement  of  this  goal.  If  the  agent 

completes  the  task  successfully  but  late,  no  reward  is  given.  If  the  agent  is 

unsuccessful at the task, a negative reward39 is given. 

The reward function will  be defined by the SME, the knowledge engineer  or the 

application  system  developer.  Allowing  the  SME  set  the  reward  might  appear 

counterintuitive at first because breaking the SMEs knowledge barrier is what this 

research is all about. However, on a closer look, having the SME define the reward 

function  will  highlight  problems  with  the  model  to  him or  her.  Furthermore,  the 

reward function neither  contains  the details  of the actions  nor the transition rules 

within the model. For example, assuming a SME defines a maximum speed limit of 

30 mph in a context and wants an agent to drive to a meeting 50 miles away. If this 

SME defines a reward function that rewards the agent for arriving at  the meeting 

within an hour, the enhancement process identifies this error because the agent would 

never achieve its goal. Another attribute of the reward function that is evident in the 

enhancement process, is the identification of expert implicit knowledge, also, the lack 

of SME knowledge in any given mission will be exposed. 

Mathematically, the reward function  ℜ  is a function of the goal, the sub-goals and 

the constraints of the mission, i.e.:

),,( oCsGG=ℜ 5.2.2.1

From equation 5.2.2.1, the reward an agent receives is constrained by the mission goal, 

the immediate  sub-goals of the agent as well  as the overall  constraints  placed on the 

38 On time means within the allowed timeframe
39 The concept of negative reward is utilized in the reinforcement learning community. it means punishment
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mission. Placing a reward on a mission without taking the constraints of the mission into 

account will be counter productive as the rewards received by the agent will not be a true 

representation of the overall mission. For example, if  a constraint exists that an agent 

driver must arrive at its destination with its car at a given time and the agent arrives at the 

destination  at  the given time without the car,  the agent  should not receive  a positive 

reward. 

5.2.3 Enhancing/Refining an Active Context

The enhancement/refinement of an active context is possible in real-time in a simulator. 

A copy of the active context will be created and placed in a repository known as the 

Enhanced / Refined Context Repository. The function of this repository is to hold copies 

of all  contexts that have undergone some form of modification.  As soon as a context 

becomes active, a copy is created in this repository. As the agent explores with different 

values and settings within a context,  these are reflected in the copy in the repository 

alongside the rewards received for each setting. 

Mathematically, for an active Context ACi that exists in the context library, a copy 

CCi exists  in  the  repository.  The  copy  CCi  contains  the  various  values  and  settings 

explored and the corresponding rewards.

{ }),......,,(|),),.....(,(),,( njinnjiii rrrasasasCCi ⇐  5.2.3.1

Where  si is the state,  ai are the actions and  ri are the rewards obtained for performing 

action ai in state si.

5.2.4 Enhancement Process Stopping Criteria

The  criteria  for  ending  the  enhancement  process  involve  the  agent  receiving  the 

maximum reward available and the mission goal being achieved. The actual value of the 
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maximum reward is not known to the agent. The agent has to determine this through its 

interaction with the environment. The enhancement process is two-fold: the enhancement 

of a given active context when the context is isolated and the enhancement of the entire 

model. The former can lead to the agent performing better when run in the simulator with 

the individual contexts active, whereas the later would have the agent perform better as a 

complete model40. A criterion for determining this involves when the change in reward 

received  ε  is zero or is negligible after a given number of time steps in the simulator. 

Another criterion is when the total reward received begins to decrease. 

In some cases, these two criteria can lead to early stoppage of the enhancement 

process.  This will  produce a model  that  is not completely enhanced.  This problem is 

alleviated by introducing a function that compares the current calculated reward ℜ  with 

that of the generalized reward ℜg .  

Mathematically, the criteria for stopping the enhancement process are:

1) Change in reward ε  is zero:













→−

→=ℜ−ℜ

0ji

jiji

εε
εε

 for ℜg < ℜ 5.2.4.1

2) Total rewards received Tℜ  begin to decrease:

0→ℜ T , for ℜg < ℜ 5.2.4.2

5.2.5 Available Actions

CxBR was designed to limit the actions available to an agent in any situation. This is one 

of its many advantages. This makes CxBR an intuitive and efficient modeling tool. This 

40 The effects of both methods are investigated further in different scenarios and their results presented in 
chapter 6.  

125

daihe
Underline



also places a constraint on the learning capabilities of CxBR. In this investigation, the 

constraints placed on limiting the actions available to an agent in any context will be 

softened during the learning phase of the algorithm. This is needed to enable the agent to 

explore its  environment  completely and choose actions  that  would maximize  its  total 

reward. To make this happen, an additional module is added to the environment. This 

module  is  known  as  the  action-base module  and  its  sole  purpose  is  to  store  all 

perceivable actions needed in the environment of the agent. This is analogous to real life 

situations where a person can attempt any action in his/her environment although most 

actions  will  yield  nothing  because  they  can’t  be  performed  in  a  given  context.  For 

example, an automobile driver should be able to turn into a one-way road in the wrong 

direction even though this action will probably lead to a negative reward. In a few cases, 

however,  it  may be the  only option  available  to  succeed (e.g.,  escaping  a  dangerous 

situation).

5.2.6 Environment Visibility and Accuracy of Actions

The portions  of  the environment  necessary for  the  agent  to  make a  decision  will  be 

visible to the agent at all times. In this dissertation, visibility is defined as “the greatest 

distance a person or an agent can see under normal conditions without the use of any 

instrumental assistants or the knowledge of distant events available to the agent at any 

given time” [unknown]. Invisibility is defined as “the distance beyond which a person or 

an agent  can see clearly  or  lack  of  knowledge of an event  not  available  to  an agent 

irrespective of the distance” [unknown]. Ideally, an agent is expected to make decisions 

on its actions based on the visible part of the environment and projections on what it 
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expects to exist in the invisible parts of the environment. This scenario is typical for all 

learning  beings.  In  any  mission,  humans  typically  are  not  immediately  aware  of  all 

elements of their environment.  After they’ve interacted with their environment over a 

period of time and gained enough experience, they might think they are fully aware and 

make some projections on future states of their environment. Take, for instance, a person 

driving home from work. This person becomes familiar with this route and can project 

how long it  would take to get to different landmarks  on that route.  Occasionally,  the 

person  might  be  wrong  in  his/her  projections  because  of  rain,  accidents,  and  other 

environmental  factors,  but  with considerable  experience,  he/she can make projections 

with some degree of accuracy. 

Occasionally, knowledge about the invisible parts of the environment is presented 

to the agent through remote sensors or communications. For example, the agent driver 

hears on the radio about an accident and subsequent high traffic on a particular route it 

wanted to take. How would this issue be tackled in the enhancement process? Does the 

agent automatically consider the new knowledge as visible even though it cannot see it? 

Situations like this – provision of real-time knowledge would be handled by the simulator 

and would occur randomly during the course of the simulation. The enhancement process 

would handle this knowledge the way it handles all other knowledge – i.e. it can exploit it 

or keep on exploring. At the time the knowledge is provided, it is considered visible to 

the agent. It is left for the learning agent to decide whether to exploit its knowledge of the 

situation  ahead  or  to  explore  it.  This  happens  in  real  life  when  we  hear  radio 

announcements of traffic jams on a particular route, but as we approach that route, the 

traffic jam is cleared. The agent doesn’t know whether actions it performs are right or 
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wrong  because  there  isn’t  a  “teacher”  in  its  environment.  It  can  only  learn  how  to 

maximize  its  rewards  and  adjust  its  knowledge,  based  on  actions  that  provide  high 

rewards. 

The visibility of the environment in a mission gradually increases as the mission 

evolves.  The  environment  is  a  union  of  its  visible  and invisible  parts.  As  the  agent 

approaches its sphere of visibility41 it takes actions and makes projections based on this. 

The question of what level of visibility 42 would the agent have arises. It is assumed the 

agent would initially have a 20/20 vision of events ahead and behind it. 


∞

=
kt

ivvE 5.2.6.1

∞→→ viv ,0

Where E is the environment, v is the part of the environment visible to the agent at time tk 

and i v  is the part of the environment invisible to the agent at the same time step. 

Actions rules ARMC and projection capabilities available to the agent at any time step tk 

are directly proportional to the state in the visible portion of the environment vsi

ARMC ∝  { vs1 , vs2 , …., vsi } 5.2.6.2

As the visibility of an agent increases, the agent is expected to perform better and make 

future decisions better.

5.2.7 States Vs Contexts

The definition of a context was presented in Chapter 2, as was that of a state. The CxBR 

technique is flexible enough to allow a context to span multiple states or allow a context 

41 Sphere of visibility relates to the radius of the environment visible to the agent.
42 Experiments on various levels of visibility were conducted and the results presented in chapter 6.  
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to represent a single state.  Models built  with the CxBR technique allow a context to 

represent  multiple  states  of  the  environment.  For  example,  an  UrbanDriving  Context 

could be argued as having a single state – driving in an urban setting with a set of fixed 

actions. It could also be argued as having multiple states – driving in an urban setting 

with different variables to contend with, e.g. Pedestrians, slow traffic, etc. 

In this investigation, a context is a grouping of similar states that dictate how an 

agent  acts  or  reacts  in  a  given  situation.  For  example,  in  an  UrbanDriving context 

between points A and B, between these points there can exist many states. These states 

share common characteristics of specified or defined behaviors expected from an agent 

when being controlled by the context, for example the maximum speed limit. 

For contexts equal to a state:

Ci = vs1 5.2.7.1

For contexts equal to a group of states:

Ci = { vs1 , vs2 , …., vsi } 5.2.7.2

5.2.8 Generalization of Actions

Generalization  of  actions  during  the  enhancement  process  is  an  integral  part  of  the 

learning architecture. This is so because in large state problems, executing (exploring) 

every action in every state is impossible (the Bellman’s curse of dimensionality43). The 

question on how to generalize a reinforcement agent arises. Previous works depended on 

function approximation – neural networks, etc.  The issue of generalization does not arise 

in  CxBR,  because  actions  and  reactions  to  anticipated  pre-determined  events  in  the 

agents’ environment are presented prior to the start of the simulation. 
43 Bellman’s curse of dimensionality was presented in Chapter 3
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For the enhancement process, the agent generalizes its actions over some states 

and  then  observes  the  effect  these  have  on  its  total  rewards.  A  feed-forward  neural 

network or variations of it, is used to generalize.  Typically,  when generalizing with a 

feed-forward neural network, input-output pairs exist and finding a ‘weight’ that can be 

applied to new inputs to produce the desired outputs is a goal of this network.

)(xfd = 5.2.8.1

where d is the dependent variable and x is the independent variable. Usually, the input – 

output pairs are denoted as: (x1,d1), (x2, d2), ….., (xj, dj). 

)1( jixi ≤≤  are the inputs to the neural network and )1( jid i ≤≤  are the desired outputs. 

During  the  training  phase,  these  outputs  are  known,  but  during  the  implementation 

(performance) phase these outputs are not known. 

∑
=

=
k

k
kik xwd

0
5.2.8.2

where d is the desired output and wi is the calculated weight and xk is the input. The above 

equation is from Christodoulou & Georgiopoulos [57].

According  to  Sutton  and  Barto  [63],  most  function  approximation  methods 

assume the training sets  to  be static  over  multiple  training passes.  However,  in most 

reinforcement learning algorithms, it is desirable for learning to occur online, during the 

agents’ interaction with the environment or with a simulated model of the environment. 

For  this  to  occur,  the  function  approximation  method  utilized  must  be  able  to  learn 

efficiently  from  data  acquired  incrementally  at  various  intervals.  Also,  function 

approximators  used  in  RL  should  be  able  to  handle  non-static  target  functions  (i.e. 

functions that change over time) [63]. 
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Another  issue  usually  addressed  when  generalizing  in  RL is  the  performance 

measure  utilized  in  evaluating  the  chosen  function  approximation  method.  Generally, 

most supervised-learning techniques attempt to minimize the mean squared error over a 

distribution, D,  of  the  inputs.  In  some  RL  techniques,  the  inputs  to  the  function 

approximator are states and the target function is the true value function πV , hence, from 

[63], the mean squared error (MSE) for an approximation tV , using parameter tθ , is 

 
2))()()(()( sVsVsDMSE t

Ss
t −= ∑

∈

πθ 5.2.8.3

where  D is  a  distribution  weighting  the errors of different  states.  This  distribution  is 

important because it is usually not possible to reduce the error to zero at all states.

In the enhancement  process, the inputs are the states within a context and the 

desired outputs are the values of these states based on the rewards received during the 

agents’ interaction with its environment. 

The generalization module and its algorithm are included in the architecture of the 

enhancement process; but for the purpose of this dissertation, they are not implemented 

because of the small state size for the chosen prototype. Look up tables are used and 

direct calculations of all state values is carried out.

5.2.9 Exploring and Exploiting Contextual Knowledge

The knowledge in contexts would be initially exploited to get a baseline of anticipated 

rewards in each state and anticipated values of states for the model. Thereafter, the agent 

would continually explore its environment by attempting various actions in each state in 

each context. The rate, at which the agent explores a given state in any context, would 

decrease  exponentially  with  the  number  of  visits  to  that  states.  As  the  simulation 
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progresses and a state becomes visited many times, if an action stands out as being the 

most desirable in that state, this information would be exploited.  The agent is said to 

perform better if the explored actions lead to state values that are better than the baseline.

 

5.2.10 Dynamic Goals

The issue of dynamic goals isn’t addressed much in most human behavior models. CxBR 

does address it, however. An example of a typical human behavior that involves dynamic 

goals is a police officer rushing to attend to a distress call. On his way, he witnesses a 

separate life threatening accident. Does he then continue with his goal of attending to the 

distress call or is the accident severe enough for his immediate goals to change? CxBR 

addresses this issue by listing contexts for each situation and providing transition rules 

that would enable the activation of the listed contexts. In most cases, the SME omits or 

never envisions a situation where an agent’s goal would change when in a given context 

and thus doesn’t provide transition rules between the contexts. 

This  problem  is  addressed  by  having  the  agent  determine  what  contexts  to 

transition to in any given situation based on the knowledge it has learnt. In the example 

provided, the police officer would act appropriately based on what he has learnt on the 

situation, i.e., is the reward of attending to the distress call greater than that of attending 

to the accident victims? In other words is the value of proceeding to the distress call from 

the current  state  greater  than the value of  attending  to the  accident  victims  from the 

current  state?  This  can  be  determined  by  trial  and  error  in  an  experiential  learning 

environment.
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5.2.11 Conflicting Knowledge

It is expected that the SME would have some knowledge in a context that conflicts with 

either a sub-goal of the mission or the mission goal itself.  Likewise, some knowledge in 

a  context  can  also  conflict  with  knowledge  in  another  context.  Knowledge  in  the 

enhancement process is non-monotonic. Knowledge can be retracted and added during 

the enhancement process. The enhancement process itself is based on these additions and 

removal of knowledge from the agent model. An example of a conflict in knowledge is a 

context that limits the maximum speed of an automobile to 30 mph and a sub-context 

within  this  context  having  a  minimum speed of  40  mph.   How will  this  conflicting 

information be used?

The defined rewards of the system identify this and a  conflict resolver module 

addresses  the  situation.  The  conflict  resolver  module  is  based  on  some  hierarchical 

principles in which the mission goal takes precedence over sub-goals and sub-goals take 

precedence over contextual information. 

5.3 Flow of Events

The  flow of  events  for  the  enhancement  process  is  presented  below.  The  details  on 

achieving this are explained in the high level design section of this Chapter.

I. The Reinforced values (Rx) for each context, state and action tuple 

are all initialized to zero

II. The default context is activated and controls the agent initially in a 

simulation exercise.
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III. An action in the active context is carried out taking the agent to a new 

state

IV. The  value  of  that  action  in  that  state  in  the  current  context  is 

calculated and the Rx values are updated based on the rewards for 

the mission goal - ]max[.),,(),,( ascascascRx jiiiiiii γ+= R  

V. The sentinel  rules  are  checked to  see whether  the  current  active 

context needs to be deactivated (and another activated).

a. If a new context is called for, a new context is activated and 

control returns to step III

b. The  context  selector module  is  activated.  The  context 

selector module searches through all defined contexts to see 

whether any match the current situation.

i. If  there  is  a  match,  this  context  is  activated  and a 

copy of the previously active context is made in the 

context repository. This copy is refined/enhanced by 

calling  the  context  modifier module;  the  context 

modifier  does  this  by  adding  the  active  context 

amongst the list of compatible contexts.

ii. Control is returned to step III

c. If none of the predefined context match the current situation 

the context creator module is called. This module creates a 

new  context  based  on  a  predefined  context  template  by 

adding the various parameters of the current situation to this 
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template as obtained from the global fact  base. Control  is 

then returned to step III.

VI. If the mission goal is achieved, this marks the end of an episode44. A 

new  episode  is  then  started  until  the  change  in  Rx values  are 

negligible or zero, i.e. the values converge.

VII. Based on the  Rx values, choose the action that produces the most 

reward for  each state in a given context  by choosing the max  Rx 

value  for  each  context-state-action  combination.  Compare  the 

original predefined actions and attributes in a state in a context with 

the newly learned actions (actions calculated) and attributes for the 

same state in the same context

a. If  the newly-learnt  action (calculated action) and attributes 

are different from the original action, create a copy of the 

context in the context repository and call the context modifier 

to refine / enhance the context with the newly learnt action 

and attributes for that state in the context.

b. If the original predefined action and attributes are the same 

as the calculated action, do nothing

The flow of events detailed above can enhance actions and attributes within a context and 

context transitions as well as create new contexts based on a predefined context template. 

44 An episode is the beginning to end of an agents’ interaction with its environment. It is essentially a run of 
the agents’ activities from start to finish in the simulator. Many episodes need to be run in the simulator 
when training the agent. 
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5.4 Components of the Enhancement Process

For a CxBR model of human tactical behavior to be enhanced, the enhancement process 

utilizes new components in addition to the existing components of CxBR and RL. These 

components are described below. Figure 5.2 shows the architecture of the enhancement 

process.
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Figure 5.2 Enhancement Process Architecture
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The labels shown in figure 5.2 are explained in the following subsections. 
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5.4.1 Action-Base (A)

The action-base is a component of the environment that contains all available actions in 

that environment. The actions in the action-base are not restricted to any state or contexts; 

they are available for the agent to explore in any state of the environment. Because the 

agent possesses the ability to execute any action in any state doesn’t necessarily make the 

action appropriate for the state. Through experience, the agent would learn what actions 

are appropriate and those to avoid when in certain states and thus enable the enhancement 

process. The availability of an action-base relaxes the CxBR principle that only a few 

things can realistically occur in any context.  Although it  relaxes this principle for the 

purpose of learning, the principle still holds true in reality. Therefore, after the model is 

enhanced, the contexts eventually restrict the actions of the agent in any given state based 

on what is learnt. The reasoning behind relaxing the principle is for the agent to be able to 

explore actions not thought of by the SME when in a given context. The exploration only 

occurs when the agent is learning or if it perceives a change in its environment. A direct 

negative impact this would have on the overall learning process is an increase in the time 

it takes to train the agent because of an increased number of actions the agent will need to 

explore / perform in every explored state of its environment.

The action-base has an input of the state of the environment and has an output of 

an action. As the agent learns the best action in a state, this information is sent to the 

modifier module through I from fig. 5.2, likewise to the global fact-base through H.

139

daihe
Underline



5.4.2 Environmental States / Contexts (B)

States are components of the environment. An environment consists of many states. A 

context is a group of states where similar actions can be performed. Typically when an 

agent performs an action in the environment from a state, the action leads the agent to a 

new state. The new state can be in the same context as the previous state or it can be in a 

different context. Based on the state of the environment, the agent performs an action or a 

group of  actions  and gets  to  a  new state  or  remains  in  the  same  state.  The  process 

continues until the mission goal is accomplished. The current state of the environment is 

processed and analyzed by the inference engine through F, the result enables the picking 

of a context.

5.4.3 Context Library (C)

The context library is a collection of all predefined contexts for the model. The definition 

and descriptions of contexts have been presented in Chapter 1. Only one context in the 

context library can be active at any given time. The contexts in the context library take 

the states of the environment as inputs, thus the only allowed input to the library is a 

‘state’ signal. The outputs of a context are the actions the agent can execute from any 

given state, thus an output of the context library is the prescribed action for the agent. 

Another output of the context library is the active context with all its attributes. A copy of 

an active context is automatically copied to the context repository in preparation for its 

refinement.  The link L in figure 5.2 shows the active context being copied over to the 

context repository. 
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5.4.4 Context Repository (D)

This component is also known as the enhanced / refined context repository. It is labeled 

as D in Figure 5.2. A formal description along with the mathematical formalization was 

presented in section 5.2.4.   Copies of all  modified  contexts  are  stored in  the context 

repository.  The functions of this repository are to provide an efficient backup mechanism 

for  the  learning  process.  The  repository  enables  the  addition  and  retraction  of  new 

knowledge by keeping track of all changes made to a context and at what “state” in the 

world the changes occurred. 

Figure 5.3 Context Repository

This repository will take contexts as inputs. The outputs are the actions in the refined 

contexts. A call to the context repository module immediately creates a copy of the active 

context. Control is automatically transferred from the active context to the copy created 

in the repository. Actions are explored in this context and the values of these actions in 

the states of the context are stored in the Rx table.  
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CCi ←   ACi 5.4.4.1

{ }),......,,(|),),.....(,(),,( njinnjiii rrrasasasCCi ⇐  5.4.4.2

The algorithm for the context repository module is as follows.

Upon activation of a new context

Create a copy of the active context in the context repository

Automatically transfer control of the agent to the newly created copy of the 

active context

For the current state si, do until context Ci becomes inactive

attempt action ai  and note the resulting reward obtained

update the Rx values according to the equation 

]max[.),,(),,( ascascascRx jiiiiiii γ+= R

explore or exploit an action in the new resulting state

5.4.5 Context Selector

When called, the context selector module chooses the appropriate predefined context for 

any  given  situation.  Typically,  in  a  CxBR  model,  the  list  of  contexts  that  can  be 

transitioned from any given context is predefined within the context. This list is based on 

expert knowledge about the given situation and the characteristics that would necessitate 

a  transition  from  the  active  context.  Most  times,  this  list  is  mostly  correct,  but 

occasionally the list is incomplete or wrong. For example an UrbanDriving context that 

has a list  of compatible contexts that excludes a  Freeway context or  Ramp context is 

incomplete. There are no mechanisms to prevent having a wrong or incomplete list of 

compatible  contexts.  Therefore,  a CxBR simulation  ends (fails)  when faced with this 
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situation because there is no valid defined context to transition to, based on the list of 

compatible  contexts.  Likewise,  when faced  in  situations  of  incomplete  knowledge  or 

wrong knowledge, most human behavior modeling systems fail or act abnormally.  The 

enhancement process attempts to eliminate this by first searching through all predefined 

contexts to see whether the attributes of any context match the current situation. If the 

attributes of a given context match the current situation, the context is selected as the new 

active context and the previously active context is sent to the modifier as represented by 

J in figure 5.2. The modifier then modifies and enhances the context by adding the newly 

active context amongst the list of compatible context. 

In some cases, the attributes of the predefined context do not explicitly match the 

current situation. The contexts that match the current situation are then selected and sent 

to the modifier where some of their attributes are modified and tested to see whether they 

match the current situation and still maintain their previous attributes. A comparison of 

the contexts modified to address the current situation is carried out as depicted in figure 

5.2 by  K.  Changes  to  the  context  that  provides  the  highest  Rx values  are  kept.  This 

context is sent to the enhanced / refined context repository.  

This module takes as input all predefined and enhanced contexts and the output is 

one or more contexts that appropriately address the current situation. The way the context 

selector module works is almost  akin to the competing context concept conceived by 

Saeki & Gonzalez [28]. The major difference is in the way contexts are selected. While 

the competing context concept eventually chooses a context at random during the hyper 

simulation, the context selector module makes it choice based on the calculated Rx value. 
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5.4.6 Context Modifier

The context modifier module enhances predefined contexts by modifying the attribute 

values available to the agent in a given state in the context, for example, actions. After a 

context or group of contexts have been selected by the context selector module to match 

the current situation, the contexts are passed through the modifier module where various 

actions defined within them are attempted as well as actions defined in the action-base. 

After these actions are executed, the action that produces the maximum Rx value for that 

state is chosen as the most appropriate and the context is modified to reflect this. In cases 

where only one context is selected by the context selector to appropriately address the 

current  situation,  the previously active context  is  sent to  the modifier  and the list  of 

compatible contexts modified to reflect the newly active context. The modification of the 

previously active context also occurs in cases where many contexts are chosen by the 

context selector and an appropriate context is chosen based on the highest Rx value.  

For a context to be modified, the predefined actions as well as actions from the 

action-base are performed at random and the rewards from these actions are tabulated in 

local memory base available only to the context modifier module. These rewards are back 

Figure 5.4 Context Selection Process
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propagated from the goal  of the agent.  After  these actions  are executed  and their  Rx 

values known, a choice is made on the action and context that best address the current 

situation relative to the goal of the agent. 

From figure  5.2,  the  modifier  takes  as  inputs  the  contexts  through  J and  the 

actions from the action-base through I. the output is either a list of modified contexts with 

their Rx values which is depicted by K. 

Formally, the copy of a selected context going through the modifier is as follows:

For a given state in context i, different actions are attempted.

{ }),......,,(|),),.....(,(),,( njinijiii rrrasasasCCi ⇐

5.4.6.1

The state/action combination that produces the maximum reward is chosen

)max(),( iii ras ⇔ 5.4.6.2

The  previously  active  context  is  then  modified  to  highlight  the  new  context  as  a 

compatible context.

The flow of events for the modification of a context is as follows:

• Upon a change in situation

• Search  through  the  list  of  compatible  context  for  a  context  that  best  

addresses the current situation

• If no context addresses the current situation

o Search through the list of all contexts (predefined, enhanced and 

newly created) to determine the context that most nearly matches 

current situation. (Determination of a context that nearly matches  

the current situation is done by directly comparing the attributes of  
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the  current  situation  as  retrieved from the  global  fact  base  and  

those of all contexts as defined by the action-rules, sentinel-rules,  

etc. that are  needed for the context to be activated).  

o A score is  provided to  each context  as it  relates to  the  current  

situation  and  the  context  with  the  highest  score  is  selected  for  

modification. The way the score is obtained is by calculating the  

total  number  of  attributes  that  match  the  current  situation  as  a  

function of the total number of attributes of the current situation. For  

e.g., if 10 attributes are listed by the global fact base for the current  

situation,  a  context  that  satisfies 8  of  those attributes is  said  to  

have a score of 80%.

• If more than one context address the current situation

o Rank the contexts by their scores

o Modify each ranked context by performing the predefined actions 

and actions defined in the action-base randomly

o Note the Rx value as calculated from

]max[.),,(),,( ascascascRx jiiiiiii γ+= R 5.4.6.3

• The action that produces the highest Rx value for the given state – action  

combination is chosen

• The context is modified to reflect this

• The previously active context is also modified to reflect the addition of the 

newly modified context among the list compatible next contexts
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5.4.7 Context Creator

The context creator module creates a new context on demand. When the enhancement of 

a  context  yields  suboptimal45 values,  the  enhanced  context  is  reinstated  back  to  its 

previous form from the context repository and a new context is created. The new context 

is created from a predefined context template. This template contains sections for action-

rules, sentinel-rules, compatible contexts, and others. It primarily contains sections for all 

the definitions of a typical context. 

As soon as a decision is  made to abandon all  pending changes  to an existing 

context (enhancement) based on the Rx values being received for the enhanced context or 

the system has determined that the number of attributes of existing context that match the 

current situation is low (less than 40%) a call is made to the context creator module.

Upon calling the context creator module, a copy of the context template is made. 

The attributes of the current situation are filtered from the global fact  base and these 

attributes are inserted to the context template copy. From the attributes, the title (name) of 

the newly created context  is generated.  The newly created context is then sent to the 

context repository where different actions from the action-base are attempted and their 

Rx values noted. The actions and transition rules that produce the maximum Rx values 

for each state in the context are noted.  The constraints  of the context  are part  of the 

attributes. 

The algorithm for the creation of a new context is as follows:

Upon a change in situation

45 Suboptimal values of a refined context are Rx values that are extremely low for the given state-action and 
the Rx values of previously calculated context-state-actions are reduced. For example, a context-state-
action that previously produced the maximum Rx value and thus maximum rewards, if after being refined 
this same context-state-action produces a lower Rx value, the Refined context is said to be suboptimal. 
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Upon searching through all existing contexts and finding no matching context or  

upon finding a context with a low score46 (<40%)

Call the context creator module.

While the simulation is paused temporarily

Make a copy of the context template and place it in the context repository

Get all the attributes of the current situation from the global fact base

Filter these attributes according to various parameters, for e.g., location,  

constraints, type of road, etc. (based on the system being modeled)

Continue simulation by making calls to the actions in the action-base

As each action is executed, a note is made on the Rx value obtained for that  

action-state combination.

The action that produces the highest Rx value for each state-action combination 

is chosen as the appropriate action

Update the context with the newly gathered information about its action-rules and 

transition rules

 

46 A score is defined as the total number of attributes of a context that match the current situation divided by 
the total number of attributes of the current situation. 40 % was chosen because it was intuitively 
determined that more time will be spent modifying a context with more than 40% matched attributes than 
creating a new context. 
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5.5 Enhancement Process Flow Chart

Figure 5.5 below presents the enhancement process flow chart. 
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5.6 Formal Representation

In this section, formal formalizations are provided for the enhancement process as well as 

the context creation process. 

For  the  enhancement  process,  an  existing  context  is  refined  to  appropriately 

address the current situation. 

For any given context  Ci, there exists a set of predefined actions for the set of 

states in the context. 

Ci = {(si, ai), (si, aj), (si, an);(sj, ai), (sj, aj), (sj, an);………} 5.6.1

There also exists a set of predefined actions in the action-base which is available to all 

states in all contexts.

a-b={a1,a2,a3,a4,…….an} 5.6.2

For the given context Ci and state sj, a comparison of Rx values is carried out.

Rx (context, state, action1) = Reward (context, state, action1) + γ .Max [Rx (same 

context, next state, all actions]

)]([.)()( 111 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.3

)]([.)()( 122 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.4

)]([.)()( 133 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.5

.

.

.

)]([.)()( 1aSCRMaxaSCRaSCR jiXnjinjiX ++= γ 5.6.6

From equations 4.6.3 to 4.6.6, the context is constant, except in cases where the next state 

falls within a new context. Taking Ci out of the equations, you have:
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)]([.)()( 1aSRMaxaSRaSR jXijijX ++= γ 5.6.7

The appropriate action for each state in the context is thus:

Max {Rx} 5.6.8

The formalization of the context creation process follows the same principle as that of the 

enhancement  process with only one exception,  i.e.  the only actions  attempted are the 

actions defined in the action-base.

5.7 High Level Design of Architecture

There  are  five  sub-systems  that  interact  together  to  perform  the  model  refinement 

(enhancement). The sub-systems have been described in previous sections and include 

the context creator, context modifier, action-base, context selector and context repository. 

Figure 5.6 shows the inputs and outputs from these sub-systems.  At the center  of all 

activities  is  the  CxBR  core,  i.e.,  all  existing  components  of  CxBR  architecture  as 

described in Chapter 2 e.g. the global fact base, the inference engine, amongst others. The 

CxBR core,  communicates  directly  with the context  repository.  It  also communicates 

directly with the context creation module by sending filtered 47attributes about a situation 

to  it.  The  context  creator,  context  repository  and  action-base  are  the  next  layer  and 

communications  between these sub-systems  are  as shown in figure 5.6.   The context 

selector and context modifier sub-systems communicate with other sub-systems as shown 

in the diagram. 

47 Filtered attributes refer to the attributes of a situation that correspond with the attributes required in the 
context creation template
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Figure 5.6 High-level Design Showing Inputs and Outputs between Sub-systems

5.8 Preview of Prototype

The prototype used for this research is in the automobile driving arena. An agent driver is 

expected to behave optimally on a driving mission when faced with various scenarios. 

The choice of an automobile driver prototype is supported by the existence of results 
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from some automobile  driver prototypes  using the CxBR architecture.  An automobile 

agent driver is given a mission goal of going from home to work with some constraints 

like arriving on time by choosing the fastest route, choosing the shortest route and many 

others. There exist different routes from home to work, and each route comes with its 

unique  features,  e.g.  raining,  potholes,  intersections  and  many  others.  The  prototype 

consists  of  a  hand-built  CxBR  model  with  purposely  incomplete  knowledge.  The 

prototype should enhance the model to enable the agent achieve its mission goal.   

5.9 Chapter Summary

In this chapter, the conceptual approach to resolving the problem defined in Chapter 3 

was presented. The definition of new modules that would help in achieving this is carried 

out as well  as a full description of these modules in the overall  flow structure of the 

enhancement process. An algorithm and the formalization of the enhancement process 

were  presented.  The  high  level  design  of  the  enhancement  process  architecture  was 

presented as well as a sneak preview of the prototype. 
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CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF THE MODEL 
ENHANCEMENT PROCESS

6.1 Introduction

Two  prototypes  implementing  the  technique  for  breaking  the  limitations  on  SME 

knowledge  in  HBR  systems  and  thus  improving  the  performance  of  the  agent  are 

described in this chapter. The prototypes are built and tested in the automobile driving 

domain and in the submarine warfare domain. The automobile driving domain consists of 

the agent driver; the environment which is composed of the different routes; the context 

base; and the enabling functions for the simulation. In this dissertation, some pertinent 

facts and attributes that are typical in automobile driving and submarine warfare domains 

are neglected as they add little value to prove or disprove the hypothesis  set forth in 

Chapter 3. These attributes include the pressure on the acceleration pedal, wind velocity, 

gravitational  forces and others for the automobile  driving domain.  For the submarine 

warfare domain, the size of the submarine, the functioning of the periscope, flood-tubes, 

and others are also neglected.  All aspects of a typical automobile driving domain and 

submarine warfare domain that are not explicitly mentioned and used in the design and 

implementation of this prototype are neglected. 

A model of an agent driver and submarine is built a priori from the knowledge 

acquired  from  a  subject  matter  expert  (SME)  through  various  methods  that  include 

observation, question and answer sessions, and others. How the pre-existing model was 

built is likewise irrelevant to this research.
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6.2    Prototype Descriptions

The underlying techniques for building the automobile driver prototype and submarine 

warfare prototype are the same. The only differences are the context definitions and the 

environment in which the agent operates. I will provide a description of the automobile 

driver prototype in subsequent sections of this chapter and only discuss the submarine 

warfare prototype in the section describing the environment and building the contexts.

The prototype used to implement and evaluate the model enhancement process 

consists  of  an  agent  driver,  the  context-bases,  context-base  functions,  functions  that 

enable the enhancement process and an environment in which the agent operates (the 

world). The prototype was developed using Oracles’ PLSQL programming language and 

an Oracle database. The prototype consists of the various modules described in section 

5.4 of this dissertation. Database tables are created in an Oracle database. These tables 

are used to store various data on the enhancement process as well as the entire simulation. 

Among  the  information  and data  stored  are  the  log  of  the  entire  simulation,  context 

definitions, context actions, context attributes, global facts and rewards.  

The original CxBR Framework developed by Norlander [124] is not utilized in 

the design and implementation of the prototype because the Framework does not support 

the learning mechanism needed by the enhancement algorithm to enhance CxBR models. 

In the prototype, contexts are defined and created in a context table. More on this in the 

design section of this chapter. 

The first step in the operation of the prototype is to create the underlying database 

structures that store information on the agent, the context-bases, the world and the entire 

simulation. This is known as the back-end of the application. After the creation of the 
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underlying database structures, the various modules that control the workings of the agent 

are implemented. 

The prototype operates in two phases. The first phase is the training of the agent, 

(the learning of contextual and environmental attributes and actions; the learning of new 

contexts)  while  the  second phase  is  the  execution  of  the  enhanced  agent.  The  agent 

recognizes whether it has been previously trained by searching through the rewards table 

and global fact base table. If rewards exist and the entries in the global fact base point to 

a  successful  completion48 of  learning,  it  is  assumed  that  training  has  occurred.  The 

prototype  then  provides  the  option  of  either  retraining  the  agent  or  using  its  current 

knowledge. If a context definition or world definition has been changed since the last 

time  the  agent  was  trained,  for  example,  if  the  maximum  speed  defined  for  a  road 

segment has been increased, or the allowed depth49 of the submarine has been increased, 

then the prototype automatically retrains the agent. 

The training of the agent for the automobile driving domain consists of the agent 

learning the optimum maximum speed defined for the different contexts it  encounters 

during its interaction with the world; and consists of learning the appropriate depth for 

the submarine warfare domain.

6.3   Prototype Requirement Specifications

The function of the model enhancement prototype is two-fold. 1) To provide a test bed 

for evaluating the context-based human behavior model enhancement technique. 2) To 

show  that  the  enhancement  technique  enhances  an  agents  behavior  by  breaking  the 
48 Successful completion of learning is when the agent has successfully enhanced the contexts in the context 
bases or learnt a new context. The function that identifies this is shown in a subsequent section in this 
chapter
49 The depth of the ocean which the submarine must not go beyond, to be discussed later.
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barrier of SME knowledge limitations and the limitations inherent in most knowledge 

acquisition techniques currently in use. The prototype utilizes a pre-built  CxBR agent 

driver model. This model is executed in a simulator and subjected to the enhancement 

technique.  After  the  model  is  enhanced,  the  agent  is  expected  to  perform better  by 

achieving  its  goals  within  the  defined  constraints.  Furthermore,  this  enhanced  model 

highlights any inconsistencies in the knowledge acquired from an SME. 

To efficiently design, implement and understand the prototype, references must be 

made to the preceding chapters. A few standards to which the design and implementation 

of the prototype must adhere include:

a. The coding standards for this prototype include:

 Each context will be represented by a record (row) in the context table.

 Sub-contexts can be reused by all major contexts

 The design of a context shall exclude the definition of more than one situation. 

The definition of a situation is… “One or more states with similar properties 

closely  located  to  one  another”  ….  “A  set  of  similar  states  or 

circumstances”[1].  By limiting  the  design of  a  context  to  one  situation,  it 

prevents ambiguities that could arise from having multiple situations defined 

in a given context, for example having a traffic light situation defined in the 

same context as city driving or freeway driving situations. 

 The use of goto statements is not allowed

 The names of all modules / functions / classes should reflect the activities of 

the module or function or class

 Code should be commented adequately for readability
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 Context depth level shall be restricted to 2 for the purpose of this prototype, 

i.e.,  you can have a context  and a sub-context.  No definitions  of sub-sub-

contexts, or below shall exist. 

6.3.1                        Assumptions  

The following assumptions were made with respect to this prototype: 

 Other agent drivers do not exist on the road. Hence, there are no contexts defined 

for “following other cars”, “overtaking other cars” and such other contexts that 

interact with other cars.

 The agent knows of an event in the global fact base as soon as it occurs, hence no 

delay in the transfer of knowledge

 Agent has no knowledge of the environment or segments of it, meaning the agent 

cannot see farther than the information provided in the global fact base on the 

environment. The environment is predefined and knowledge about agents’ current 

location is passed through the global fact base (GFB) to the agent.  

 The  dynamics  of  the  environment  and  the  car  are  neglected.  These  include 

frictional  forces,  wind  force,  driving  at  night  vs.  day,  gravitational  forces, 

acceleration,  car  design,  car  size,  angular  velocities  as  well  as  angular 

representations of routes (hilly routes, valleys) and other such issues.

 The width and elevation of the road isn’t taken into consideration.

6.3.2                      Stakeholders of the Model Enhancement Methodology  

The model enhancement technique has several potential and required stakeholders. 

a. Required stakeholders include:
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 Human  Behavior  Representation  Research  Community  –  HBR researchers 

need a tool that can validate and enhance models designed from knowledge 

acquired from SMEs.  This tool can be used in the enhancement as well as the 

validation of SME knowledge. 

 Model Engineer - The model engineer / knowledge engineer can utilize this 

prototype to learn more on a subject being modeled and focus their questions 

to SME’s on the enhanced aspects of the model.

b. Potential stakeholders include: 

 SME – the SME can use this  methodology /  prototype  to expand his/  her 

knowledge on a subject. After a model of the knowledge provided by the SME 

has been built,  the SME can use the enhancement technique to learn about 

information they provided to determine which is wrong and safeguard against 

this in the future. 

6.3.3                       Sequence of Events   

The sequence of events during the agents’ simulation is described in Table 6.1 below. 

The prototype operates a two-phase process. The first phase is when the training of the 

agent occurs and the second phase is the execution of the enhanced agent. Most events 

that occur during both phases of the simulation trigger an external stimulus as well as 

some manipulation of the internal  data and the state of some parts of the simulation. 

Table 6.1 analyzes what these events are, the external stimuli that triggers the events, the 

external responses and internal data changes and state of agent during and after the event.
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Table 6.1 Event Table for Automobile Driving Prototype

Event Name External Stimuli External Responses Internal Data and State

Start Simulation None None 1.  A determination is made by the agent if 
training  is  complete  or  if  training  is 
needed.
2.  Variables  are  initialized,  simulation 
time  is  initialized,  log  table  is  truncated 
(cleared) and rewards table is truncated. 

Parking  Lot 
Driving  –  Default 
Context

None None 1.  The default context is activated and 
the agents’ behavior is controlled by 
it  (the  parking  lot  context).  This 
context  sets  the  max  speed  and 
actions available to the agent. When 
the situation changes, it is no longer 
active. 

City Driving None None 1.  Agents’  behavior  is  controlled  by 
context  –  maximum  speed  and  action 
available to the agent.

Dirt Driving None None 1.      Agent’s behavior is controlled by 
context  –  maximum  speed  and  action 
available to the agent

Freeway Driving None None 1.  Agents’  behavior  is  controlled  by 
context  –  maximum  speed  and  action 
available to the agent.

Ramp Driving None None 1.  Agents’  behavior  is  controlled  by 
context  –  maximum  speed  and  action 
available to the agent.

Traffic  Light 
Driving

None Light  is  red,  yellow 
or green

1.    Agent responds to the color of light 
by stopping, slowing down or continuing 
at current speed. This is a sub-context.

Intersection 
Driving

None Stop Sign Present 1.   Agent responds by slowing down and 
subsequently stopping at  the intersection. 
This is a sub-context.

End Simulation None None 1.  Simulation  cycle  ends.  In  training 
phase,  the  agent  receives  a  reward. 
Reward received is used to train agent on 
learning maximum speed and appropriate 
actions in the context being enhanced. 
In execution phase, agent either achieves 
its mission goal or does not achieve it. 

Modify Context None None 1.  Attributes  of  an  existing  context  are 
modified after the agent has been trained. 
This enhances the context. 

Create  New 
Context

None None 1.  Attributes  of  current  situation  are 
copied and a new context is created.
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6.3.4                       Use Case Diagram  

Figure  6.1  shows  the  use  case  diagram  of  the  prototype.  There  is  one  actor  in  the 

environment, the agent. The use case diagram  shows how the agent interacts with the 

CxBR system. The actions performed by the agent as well as the appropriate responses 

received by events in the environment.  

6.3.4.1  Use Case Descriptions

a. Appropriate Response to Situations (Perform Action)

 Description: Pre-defined contexts are used to control the agents’ actions / 

responses  to  situations  in  the  agents’  environment.  Contexts  contain 

information on the agents’  actions and responses to various events and 

situations  in  the  agent’s  environment,  for  example,  increasing  or 

decreasing its  current speed,  knowing the pre-defined speed limits  in a 

context  and  many  more.  The  knowledge  included  in  this  information 

allows the context to control the agent during the simulation.

Appropriate Response 
to Situations 

Receive Reward

Enhance Contexts

CxBR System

Agent

Figure 6.1 Use Case Diagram
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 Exceptions: These arise when there are no predefined contexts to address 

current  situation.  The  context  creation  module  is  activated  when  this 

exception arises.   The function that does this will be described later in this 

chapter.

b. Receive Rewards  

 Description: As the agent encounters new states during its interaction with 

the environment, it performs actions in these states. Feedback is received 

from the environment  in form of rewards. These rewards describe how 

good or bad the action performed is, but doesn’t say whether the action is 

right or wrong. Rewards are given via a predefined reward function that 

places  rewards  on  the  agent  achieving  its  mission  goal.  The  reward 

function is described in a later subsection in this chapter.

 Exceptions: none. 

c. Enhance Contexts 

 Description:  Based  on  the  rewards  received,  the  agent’s  actions  and 

responses to situations are refined and enhanced. This refinement leads to 

the enhancement of the agents’ overall behavior.  

 Exceptions: Attributes and actions in contexts are not refined if deemed 

the best for the state.  

6.3.5                       Specific Requirements  

This section describes the specific requirements for this prototype.
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6.3.5.1 FUNCTIONAL REQUIREMENTS

1.  The  system shall  allow users  to  define  the  agents’  environment  according  to  the 

provided   guidelines and format

2. The system shall identify if training is complete and thus use existing learnt knowledge 

or if further training is needed. 

3. The system shall enhance an agents’ behavior by modifying actions and attributes in a 

context, based on a predefined mission goal

4.  The  system  shall  create  contexts  that  represent  agents’  behaviors  in  unknown 

situations. These contexts shall be created from information received from the global fact 

base as well as rewards received from the environment.

Evaluation Method: Test Plan 

6.3.5.2 INTERFACE REQUIREMENTS

1. The system shall not interface with any other application

2. There shall be a front end client application where the main function of the application 

will be initiated. 

Evaluation Method: N/A

6.3.5.3 PHYSICAL ENVIRONMENT REQUIREMENTS

1.  The  system shall  operate  on  Microsoft  Windows© 95/98/2000/XP  or  Linux/Unix 

operating systems or other systems that have PLSQL programming language with Oracle 

database.
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Evaluation Method: Test Plan 

6.3.5.4 USERS AND HUMAN FACTORS REQUIREMENTS

1. The system shall support modelers, SME’s and knowledge engineers. 

Evaluation Method: Test Plan

6.3.5.5 DATA REQUIREMENTS

1. The system shall take as input the entry to execute the main function of the application. 

2.  The data for creating the original model shall be obtained through any method from a 

SME. The system is required to then enhance this model as represented in contexts. 

Evaluation Method: Test Plan 

6.3.5.6 RESOURCE REQUIREMENTS

1. The space required is dependent on the model being designed, likewise the memory 

requirements.

Evaluation Method: Test Plan

6.3.5.7 SECURITY REQUIREMENTS

1. The system shall not require any security settings at this time

Evaluation Method: N/A
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6.3.5.8 QUALITY ASSURANCE REQUIREMENTS

1. The agents behavior in the simulation shall be controlled by a context designed for that 

particular situation in the simulation. 

2.  The  system  shall  use  a  "reasonable"  amount  of  system  memory  during  normal 

operation. Memory and CPU utilized are directly proportional to the size of model being 

enhanced.

3. The system reliability shall be 100% when operating under normal conditions

4. The time used to learn & enhance a model shall be reasonable and acceptable

Evaluation Method: Test Plan 

6.3.5.9 PERFORMANCE REQUIREMENT

1. The agent shall achieve realistic50 mission goals

Evaluation Method: Test Plan 

6.4 Prototype Design (Experimental Test-bed Design)

A description of the initial,  hand-built model of the agent is presented. The prototype 

consists  of  many  parts  and  these  parts  all  work  cohesively  to  provide  the  learning 

required to enhance the model. The designs of the different parts of the prototype are 

described below.  

50 Realistic mission goals are those that are achievable within the context of known scientific researches (as 
of today). An example of an unrealistic mission goal is having an agent arrive at a destination 100 miles 
away in 1min while driving a car having a maximum speed of 60 m/h!
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6.4.1        The Environment  

The  automobile  driving  environment  consists  of  three  unique  routes  composed  of 

different  road  segments.  These  routes  are  used  in  the  execution  phase51 of  the 

experiments. Among the road segments in the routes are a parking lot - which acts as the 

default starting point for some routes; a city road segment, a freeway road segment, a dirt 

road segment, a ramp road segment, a traffic light, and an intersection segment as shown 

in Tables 6.2, 6.3, 6.4, figures 6.2, 6.3 and 6.4. 

Table 6.2 Route A

ROUTE_ID 1 1 1 1 1
ROAD_ID 1 2 3 4 5
ROAD_NAME PARKING_LOT CITY FREEWAY CITY PARKING_LOT

DESCRIPTION
PARKING LOT 

Driving 
CITY 

driving 
FREEWAY 

driving
CITY 

driving
PARKING_LOT 

driving
ROAD_LENGTH 0.2 2 6 3 0.15
ANGLE 80 15 35 18 60
ROAD_TYPE PARKING_LOT CITY FREEWAY CITY PARKING_LOT
TRAFFIC 0 1 0 0 0
INTERSECTION 1 0 0 0 0
MAXSPEED 15 50 75 50 15

51 There are two phases of the experiments, the training and execution phases. More on the training phase in 
chapter 7. 
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Figure 6.2 Pictorial Representation of Route A

 

Table 6.3 Route B

ROUTE_ID 2 2 2 2
ROAD_ID 1 2 3 4
ROAD_NAME CITY CITY FREEWAY RAMP

DESCRIPTION CITY driving CITY driving
FREEWAY 

driving RAMP driving
ROAD_LENGTH 2.5 3.5 5 0.5
ANGLE 30 65 15 45
ROAD_TYPE CITY CITY FREEWAY RAMP
TRAFFIC 1 1 0 0
INTERSECTION 1 0 0 1
MAXSPEED 50 50 75 35
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Figure 6.3 Pictorial Representation of Route B

Table 6.4 Route C

ROUTE_ID 3 3 3 3 3
ROAD_ID 1 2 3 4 5

ROAD_NAME FREEWAY CITY FREEWAY FREEWAY CITY

DESCRIPTION
FREEWAY 

driving
CITY 

driving
FREEWAY 

driving
FREEWAY 

driving CITY driving
ROAD_LENGTH 4 2.8 4.2 2.5 3
ANGLE 5 85 45 26 2

ROAD_TYPE FREEWAY CITY FREEWAY FREEWAY CITY
TRAFFIC 0 0 0 0 0
INTERSECTION 0 0 0 0 0
MAXSPEED 75 50 75 75 50
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Figure 6.4 Pictorial Representation of Route C

The attributes that describe a given route were presented in Tables 6.2, 6.3 and 6.4. The 

description  of  these  attributes  is  presented  in  Table  6.5.  These  attributes  are  in  the 

environment (world) table in the database.
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Table 6.5 Environment Attributes

ATTRIBUTE NAME DESCRIPTION EXAMPLE
ROUTE_ID The  value  of  this  attribute 

distinguishes  the  various 
routes  in  the  environment. 
This  attribute  is  unique 
amongst all routes

A  ROUTE_ID  of  1,  2  or  3  is 
defined in the prototype because we 
have 3 distinct routes.

ROAD_ID This  attribute  distinguishes 
the  various  road  segments 
available in a route

ROAD_ID = 1, 2….n
The  total  number  of  ROAD_ID’s 
available in a route is dependent on 
the number of road segments in that 
route

ROAD_NAME The  name  of  the  road 
segment

ROAD_NAME  = 
“PARKING_LOT”,  “RAMP”, 
“CITY”, “FREEWAY”…..

ROAD_LENGTH The  length  of  a  road 
segment. 

ROAD_LENGTH  =  4,  means  the 
road segment is 4 miles long

ANGLE The  angle  of  the  road 
segment  when  placed  in  an 
X-Y Cartesian plane

ANGLE  =  30  means  the   road 
segment  is  30  degrees  in  an  X-Y 
plane

ROAD_TYPE The type of road segment. ROAD_TYPE  =  “CITY  ROAD”, 
“FREEWAY”

TRAFFIC If  a  traffic  light  exists  in  a 
road segment

This is a Boolean variable,  with a 
value of true or false. If the value is 
true,  records  in  the 
TLIGHT_POSITION  table  exist 
with positions of the traffic light set 
to different values, for example 0.3, 
1.5   means  the  distance  of  the 
traffic  light  signal  from  the 
beginning  of  the  road  segment  is 
0.3 miles and 1.5 miles

INTERSECTION If an intersection exists in a 
road segment

This is a Boolean variable,  with a 
value of true or false. If the value is 
true,  records  in  the 
INTERSECTION_POSITION table 
exist  with  positions  of  the 
intersection set to different values, 
for  example   INTERSECTION  = 
0.6  means  the  distance  of  the 
intersection from the  beginning of 
the road segment is 0.6 miles

MAX_SPEED The  maximum  speed  a  car 
should  attain  in  a  road 
segment

MAX_SPEED  =  75  means  an 
automobile  driver  can  attain  a 
maximum  speed  of  75  miles  per 
hour in the road segment
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The relationship between the tables that form the environment is presented in figure 6.5. 

From figure 6.5, the prototype environment consists of 5 tables:

World: This  table  stores  information  about  the  route,  for  example  road_id,  route_id, 

road_name, and others as shown in figure 6.5.

Intersection_Position: This table stores information about the intersections on the route, 

for  example,  the  road  segment  the  intersection  occurs  and  the  position  on  the  road 

segment.

Tlight_Position: This table stores information about the traffic lights on the route, for 

example, the road segment the traffic light occurs and the position(s) of the traffic light 

on the road segment.

 Gfb: This table is the global_fact_base that stores information on all activities of the 

agent in the environment, for example, the location of the agent on the route at a given 

time, the action performed by the agent, etc.

 Simulation_log:  This  table  stores  information  on  the  entire  simulation  process,  for 

example, the procedures & functions called, the date and time the procedure is run, the 

procedure message or error message if there is an error, etc. 
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Figure 6.5 Entity Relationship (ER) Diagram of Environment Tables

6.4.2        Context Infrastructure  

The context infrastructure required by the model enhancement prototype consists of the 

context library and all modules / functions that enable the control of the agents’ actions 

and behavior by the contexts. The context library as described in the previous chapter 

consists of the context definitions, the actions defined in a context as well as the attributes 

for activating and deactivating a context. These are all defined in database tables. The 

choice of database table is to allow for the efficient modification of existing contexts as 

well as the introduction of new contexts.  There are three tables in the context library, the 
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CTX,  CTX_ACTIONS  and  CTX_ATTRIBUTRES  tables.  The  relationship  between 

these tables as well as the attributes of the tables are shown in figure 6.6

Figure 6.6 Relationships Between Tables in Context Library and Their Attributes

Table 6.6 Context Definitions

CTX_NAME DESCRIPTION SUB_CTX_PRESENT
PARKING_LOT PARKING LOT CONTEXT 1
CITY CITY DRIVING CONTEXT 1
TRAFFIC_LIGHT TRAFFIC LIGHT CONTEXT 0
INTERSECTION INTERSECTION CONTEXT 0
FREEWAY FREEWAY DRIVING 0
RAMP RAMP TO FREEWAY 0
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Table 6.7 Context Attributes

CTX_NAME ATTRIBUTE VALUE
PARKING_LOT MAXSPEED 10
PARKING_LOT COMPATIBLE CITY
PARKING_LOT COMPATIBLE INTERSECTION

CITY MAXSPEED 35
CITY COMPATIBLE TRAFFIC_LIGHT
CITY COMPATIBLE INTERSECTION
CITY COMPATIBLE RAMP
CITY COMPATIBLE PEDESTRIAN

TRAFFIC_LIGHT MAXSPEED 0
INTERSECTION MAXSPEED 0

RAMP MAXSPEED 20
FREEWAY MAXSPEED 55

Table 6.8 Context Actions

CTX_NAME ACTION_NAME VALUE
INTERSECTION INCREASE_SPEED_1 5
INTERSECTION INCREASE_SPEED_2 10
INTERSECTION INCREASE_SPEED_3 15
INTERSECTION INCREASE_SPEED_4 20
INTERSECTION INCREASE_SPEED_ADD_1 1
INTERSECTION MAINTAIN_SPEED 0.000001
INTERSECTION REDUCE_SPEED_1 -5
INTERSECTION REDUCE_SPEED_2 -10
INTERSECTION REDUCE_SPEED_3 -15
INTERSECTION REDUCE_SPEED_4 -20
INTERSECTION REDUCE_SPEED_MINUS_1 -1
INTERSECTION STOP 0
CITY INCREASE_SPEED_ADD_1 1
CITY INCREASE_SPEED_1 5
CITY INCREASE_SPEED_2 10
CITY INCREASE_SPEED_3 15
CITY INCREASE_SPEED_4 20
CITY MAINTAIN_SPEED 0.000001
CITY REDUCE_SPEED_MINUS_1 -1
CITY REDUCE_SPEED_1 -5
CITY REDUCE_SPEED_2 -10
CITY REDUCE_SPEED_3 -15
CITY REDUCE_SPEED_4 -20
CITY STOP 0
FREEWAY INCREASE_SPEED_ADD_1 1
FREEWAY INCREASE_SPEED_1 5
FREEWAY INCREASE_SPEED_2 10
FREEWAY INCREASE_SPEED_3 15
FREEWAY INCREASE_SPEED_4 20
FREEWAY MAINTAIN_SPEED 0.000001
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CTX_NAME ACTION_NAME VALUE
FREEWAY REDUCE_SPEED_MINUS_1 -1
FREEWAY REDUCE_SPEED_1 -5
FREEWAY REDUCE_SPEED_2 -10
FREEWAY REDUCE_SPEED_3 -15
FREEWAY REDUCE_SPEED_4 -20
FREEWAY STOP 0
PARKING_LOT INCREASE_SPEED_ADD_1 1
PARKING_LOT INCREASE_SPEED_1 5
PARKING_LOT INCREASE_SPEED_2 10
PARKING_LOT INCREASE_SPEED_3 15
PARKING_LOT INCREASE_SPEED_4 20
PARKING_LOT MAINTAIN_SPEED 0.000001
PARKING_LOT REDUCE_SPEED_MINUS_1 -1
PARKING_LOT REDUCE_SPEED_1 -5
PARKING_LOT REDUCE_SPEED_2 -10
PARKING_LOT REDUCE_SPEED_3 -15
PARKING_LOT REDUCE_SPEED_4 -20
PARKING_LOT STOP 0
RAMP INCREASE_SPEED_ADD_1 1
RAMP INCREASE_SPEED_1 5
RAMP INCREASE_SPEED_2 10
RAMP INCREASE_SPEED_3 15
RAMP INCREASE_SPEED_4 20
RAMP MAINTAIN_SPEED 0.000001
RAMP REDUCE_SPEED_MINUS_1 -1
RAMP REDUCE_SPEED_1 -5
RAMP REDUCE_SPEED_2 -10
RAMP REDUCE_SPEED_3 -15
RAMP REDUCE_SPEED_4 -20
RAMP STOP 0
TRAFFIC_LIGHT INCREASE_SPEED_ADD_1 1
TRAFFIC_LIGHT INCREASE_SPEED_1 5
TRAFFIC_LIGHT INCREASE_SPEED_2 10
TRAFFIC_LIGHT INCREASE_SPEED_3 15
TRAFFIC_LIGHT INCREASE_SPEED_4 20
TRAFFIC_LIGHT MAINTAIN_SPEED 0.000001
TRAFFIC_LIGHT REDUCE_SPEED_MINUS_1 -1
TRAFFIC_LIGHT REDUCE_SPEED_1 -5
TRAFFIC_LIGHT REDUCE_SPEED_2 -10
TRAFFIC_LIGHT REDUCE_SPEED_3 -15
TRAFFIC_LIGHT REDUCE_SPEED_4 -20
TRAFFIC_LIGHT STOP 0

The defined contexts required for building the prototype are shown in Table 6.6, their 

attributes are shown in Table 6.7 and their actions in Table 6.8. These contexts include: 

FREEWAY-DRIVING,  CITY-DRIVING,  DIRT-DRIVING,  RAMP-DRIVING,  and 
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PARKING-LOT.  Sub-contexts  required  include:  INTERSECTION  and  TRAFFIC-

LIGHT. DIRT-DRIVING isn’t  included in  the hand-built  original  model  because the 

agent is expected to learn about it.

A design decision was made to represent ‘RAMP’, ‘DIRT’ and ‘PARKING-LOT’ 

as major contexts. This decision is based on the previously-mentioned coding standard 

that limits the context depth to 2.  Arguments can be made against making these three 

contexts major contexts.  Figures 6.7 and 6.8 show the context topology of the prototype 

with ‘DIRT-DRIVING’ and ‘RAMP-DRIVING’ as major context and as sub-contexts 

respectively. 

The creation of DIRT-DRIVING context was omitted to prove the agent can learn 

to create contexts after learning from its interactions with the environment.

Figure 6.7 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as Major 

Contexts

MISSION 
GOAL

CITY-DRIVING FREEWAY-
DRIVING DIRT-DRIVING

TRAFFIC-LIGHT

RAMP-
DRIVING PARKING-LOT

INTERSECTION TRAFFIC-LIGHT TRAFFIC-
LIGHT INTERSECTIONINTERSECTION

177



Figure 6.8 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as Sub-

Contexts

The other parts of the context infrastructure are the modules / functions that tie these 

tables together as well as the context logic. These functions are described in subsequent 

sub-sections of this  chapter.  First,  a description of the redesign of contexts to enable 

learning is presented.

6.4.2.1 Base Hand-Built Model

A hand-built model of a person driving from home to work was implemented as the base 

model prior to the learning process. This hand-built model is what is enhanced by the 

enhancement  technique  to improve  its  overall  performance  and behavior  of the agent 

while it achieves its mission goal. The performance improved is the total time used to 

arrive at the destination and the arrival of the agent at the destination when no context is 

defined.  The  improved  behaviors  are  the  agents’  behaviors  at  a  traffic  light  and 

intersection.  The context  topology of  the  base model  is  as  shown in figure 6.7.  The 

MISSION GOAL

CITY-DRIVING FREEWAY-
DRIVING PARKING-LOT

TRAFFIC-LIGHT INTERSECTION DIRT-DRIVING RAMP-DRIVING

TRAFFIC-LIGHT

INTERSECTION
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contexts are unique records in the context database table. The context definitions are as 

shown in tables 6.6, 6.7 & 6.8.

6.4.2.2 Redesigning a Context to Enable Learning

As  stated  earlier,  a  redesign  of  the  context  architecture  is  necessary  to  allow  the 

modification of contexts and creation of new contexts during the agents’ interaction with 

its environment. This is achieved by replacing hard-coded constants with variables. The 

replacement of the constants with variables allow for the seamless modification of the 

variables during the course of the agents’ interaction with its environment in a simulator. 

These variables are stored within tables in a database. As the agent undergoes training, 

these variables are modified until a value equal to or close to the value in the environment 

(based on the  mission  goal)  is  achieved.  This  value henceforth  be referred  to  as  the 

optimal  value within the context  of  this  dissertation.  An optimal  value is  determined 

when the value of a variable converges to a single value and/or the change in the value of 

that variable becomes negligibly small after multiple simulation cycles. 

The question of what part of the context to replace with variables arises. Does one 

replace the action rules, transition rules, contextual values (e.g. maximum speed limit) – 

attributes with variables? If these are all replaced with variables there is a tendency for 

the agent to primarily learn everything from the beginning because these values may not 

reflect  what  is  in  the  environment.  Learning  from the beginning  is  acceptable,  but  a 

balanced solution will be to provide the context with values of some or all attributes that 

can  be  modified.  For  example,  providing  a  maximum speed limit  as  a  variable  in  a 

database table, and also providing actions in the model that will enable the agent to learn 
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what the true maximum speed limit of a road segment is.  In this prototype, all constants 

were  replaced  with  variables  but  the  learning  mechanism  is  designed  to  learn  the 

maximum speed variable. Tables 6.6, 6.7 & 6.8 show the attributes and actions with their 

values replaced with variables 

6.4.3        Sentinel Logic  

The sentinel module searches to see whether the context attributes no longer match the 

current situation and whether the end of a simulation cycle has been reached. It achieves 

this by calculating the position of the agent and the defined location of the current road 

segment relative to the start of journey. If the current position of the agent falls outside 

the defined range of the context, the sentinel module attempt to sense the road type/road 

segment on which the agent is currently, and then it activates the context that is defined 

for that road segment, if one exists. If no context matches the definition of the current 

road type, it calls the context modifier which searches through the contexts to see if any 

context  can  be modified  to  meet  the  definition  of  the  current  position  (based on the 

number of attributes in the context that match the attributes of the current position). If no 

context can be modified, the context creation module is called which creates a context 

from the context template. 

The sentinel module also identifies the end of a simulation cycle and calls the 

reward function to reward the agent appropriately.  The pseudo code is shown below:

• note the total length of the current road segment

• check the current position of the agent, if the agents’ current position is  

outside the range defined for the road segment
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o deactivate the current active context 

o sense the road type and other information of the road segment  

on which the agent currently is

o search through the context library to identify a context whose 

attributes match the attributes of the current position

o if context is found

 activate the context and let the control of the agent be  

guided  by  the  defined  actions  and  attributes  of  the 

context

o if no context is found

 activate  context  modifier  and  then  context  creation  

modules

o if the simulation cycle is complete

 call the reward function to assign an appropriate reward 

to the agent

The sentinel_rule procedure takes as input the current position of the agent and outputs 

the current context, the traffic light position if any exists on the current road segment, the 

intersection position if any exists in the current road segment, the road id of the current 

road segment and the run id of the current simulation run.

PROCEDURE "SENTINEL_RULES"
INPUTS Agents current position Run ID
OUTPUTS Active 

Context 
Traffic  light  and 
position  on  road 
segment

Intersection & position 
on road segment

Road 
ID

DATATYPE Variable 
Character 

Float Float Integer
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6.4.4        Context Modifier  

The  context  modifier  module  modifies  existing  attributes  and actions  in  a  context  to 

enhance  them.  In  the  prototype,  the  modifier  module  serves  two purposes,  one  is  to 

modify the contextual attribute of maximum speed during training to enhance the agents 

performance, and the second is to modify a context whose attributes closely match the 

attributes of the agents’ current position (environment) to enable the creation of a new 

context or modification of an existing context to include the current situation where one 

is not defined. 

The modifier module is activated every time the agent is undergoing training. The 

values  of  the  maximum  speed  in  the  context_attribute  table  containing  the  context 

attributes are modified randomly in the beginning and then after 20 simulation cycles, the 

value of the maximum speed attribute is modified based on the values learned during the 

first 20 simulation cycles, i.e. the value with the most reward. The pseudo code below 

shows the design of the modifier.

• Upon activation of the modifier for this simulation cycle, note the 

context undergoing training

• Get the current value of the attribute(s) being modified – based on the 

mission goal. In the prototype, the maximum speed value is being 

modified.

• CASE A: training context has  gone  between  0 and 20 training cycles,  

then

o Randomly select new values for the attribute(s) from the action 

base
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o Apply the selected values from the action base to the existing 

values to come up with new values for the (maximum speed)  

attribute(s)

o Use the newly calculated values to update the context attributes 

table for the maximum speed attributes identified

• CASE B: context has gone between 21 and 40 simulation cycles, then

o Modify the maximum speed attribute with the value that appears 

to generate more rewards from the environment.

• CASE C: context has gone between 41 and 50 simulation cycles, then

o Randomly  modify the maximum speed value 

• CASE D: context has gone between 51 and 60, then

o Modify the maximum speed attribute based on the value that 

has generated the most rewards in previous simulation cycles,  

taking note of the current maximum_speed value and the 

previous simulation run maximum_speed value.

• Deactivate the modifier, passing out the newly updated values of the 

attributes

Note that the values of “0 to 20”, “21 to 40”, etc. in cases A through D above 

where chosen after initial test runs to see how the maximum speed attribute 

converges with different reward values.  

PROCEDURE "CTX_MODIFIER"
INPUTS Learning CTX Run ID
OUTPUTS New  CTX  attribute 

(maximum speed)
DATATYPE Variable Character Float Integer
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6.4.5        Context Creator  

The context creator module creates new contexts that attempt to address situations not 

defined by the SME. It achieves this by randomly copying an existing context and then 

modifies the copied context to address the unknown situation. Typically,  when human 

behavioral agents encounter unknown situations in a simulated environment, they either 

raise an exception or fail. In the prototype, when the CxBR agent encounters unknown 

situations, a search through the context library is carried out to identify a context that can 

be modified to fit the current situation. A context that can be modified to fit the current 

situation is determined as described in Chapter 5. 

If  no  context  can  be  modified  to  fit  the  current  situation,  the  context  creator 

module is activated. This module randomly copies an existing context from the context 

library and sets the name to the name of the event. The modifier  is then activated to 

modify the attributes and actions of the newly copied context to fit the current situation. 

The pseudo code for achieving this is described below:

• Upon  activation  of  the  context  creator  module,  randomly  copy  an  

existing  context  from the  context  table  as  well  as  the  actions  and 

attributes of this context from the context action and context attribute  

tables respectively

• Set the name of the newly copied context to match the event of the  

environment without a context

• Activate  the  context  modifier  module  to  modifier  the  attributes  and 

actions of this context to their optimal values
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6.4.6 Designing the Reward Function  

The reward function drives (controls)  the agents’  learning process. The design of the 

reward function is based on the mission goal. There are some rules that govern the design 

of reward functions:

a) The reward function should not contain a reward or punishment for an action. In 

other words, the system should not reward or punish the agent for performing a 

particular action or group of actions. This is so because the agent is not supposed 

to  know the  best  action  in  any  given  state.  If  it  did,  the  problem would  be 

minimized  to  a  supervised  learning  problem  where  the  agent  is  rewarded  or 

punished if its actions are right or wrong.

b)  The reward function should contain only definitions of states, i.e. the agent is 

rewarded for being in a given state. This state could be the goal state or states 

leading to it. The actions that lead to these states are unknown to the agent and the 

agent is expected to learn them. An example of a reward function in the model 

enhancement prototype is rewarding the agent for arriving at a state where the 

maximum speed for the context being trained is equal to the maximum speed of 

the road segment that the context represents in the world.  Another example of a 

reward function when the mission goal is to choose the shortest distance from 

point A to point B amongst various routes available. This would mean designing 

the reward function in such a way that the agent is rewarded positively for being 

at the state where the total distance at the end of the simulation cycle is less than 

the  previous  total  distance  when  the  agent  used  another  route;  the  agent  is 
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punished at the end of the simulation cycle for being in a state where the current 

total distance is greater than the previous total distance. 

The overall design of the reward function for the model enhancement prototype is based 

on the stated mission goals of the prototype which are: 1) to improve the performance of 

the agent in terms of arrival time at destination; 2) find the fastest route between the start 

and end positions;  3) Learn the attributes of an undefined / missing road segment.  In 

order to achieve either of these goals, the agent encounters situations when one or more 

segments  in  a route are unknown or undefined and also when the defined maximum 

speed limits in contexts are different from what actually prevails in the environment. 

The agent is rewarded for being in the goal state, i.e. at the end of each simulation 

cycle  the  distance  traveled  or  the  total  time  between  the  previous  simulation  run  is 

compared to the distance traveled or the total time of the current simulation run. If the 

distance traveled or the total time traveled is less for this simulation run and the routes are 

different, the agent is rewarded positively. If the routes are the same between the current 

simulation run and the previous simulation run, the agent doesn’t receive any reward. If 

the  previous  simulation  run  produces  a  shorter  time,  the  current  simulation  run  is 

rewarded negatively. 

To arrive at the choice of route, the individual contexts in a sample route must be 

trained to learn the actual maximum speed defined in the environment. By learning the 

maximum speed, the overall performance of the agent is improved. 

Some questions that might arise are: how to choose the value for the reward the 

agent receives – will there be a difference in the learning process if a reward of 100 

points is given to the agent versus a reward of 10 points? What about if the signs of the 
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reward change (a positive reward is changed to a punishment) or if no reward is issued. 

These questions are answered in the next chapter during the evaluation of the results. 

Reward function pseudo code: A note should be made that the simulation runs for 

each mission goal is different. The reward presented below is generic and applies to the 

mission goals of identifying the shortest time.

• At the end of the simulation cycle, check to see the total time traveled from the 

beginning of the simulation cycle to the end of the simulation cycle.

• If this value is greater than the value for the previous run stored in the rewards 

table, and the route for the previous run and the current run are different, punish 

the agent  (give the agent  a negative reward)  and store this  information  in the 

rewards table. If the routes for the previous run and current run are the same, do 

not punish or reward the agent, i.e. give the agent a reward of 0.

• If this value is less than the previous run, and the route between both simulation 

cycles  runs  are  different,  reward  the  agent  and  store  this  information  in  the 

rewards table. If the routes are the same, give the agent a reward of 0.

PROCEDURE "REWARD"
INPUTS Learning CTX Run ID
OUTPUTS Reward 
DATATYPE Variable Character Integer Integer

The pseudo code for the reward function used in training the agent to learn the maximum 

speed is presented below:  

• Compare the maximum speed of the context  being trained with the maximum 

speed defined in the environment
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• If the context maximum speed is greater than the maximum speed defined for the 

road segment in the environment, then  assign a reward of -20 (assign a negative 

reward)

• If the context maximum speed is equal to the maximum speed defined for the road 

segment in the environment, then assign a reward of +50 (assign a large positive 

reward)

• If the context maximum speed is less than the maximum speed defined for the 

road segment minus 5, then assign a reward of -10

• If the context maximum speed is less than or equal to the previous maximum 

speed learnt for that training context, then assign a reward of -1

• If  the context  maximum speed is  greater  than the  previously learnt  maximum 

speed for the context, then assign a reward of +1

• Insert what has just been learnt into the reward table.

The reward table stores all information about the rewards received by the agent and 

the context that caused the reward along with the maximum speed of the context and 

the run time of the simulation cycle. Figure 6.9 shows the relationship between the 

reward table, context table and global fact base table. The definitions of the columns 

in the reward table are also shown.
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Figure 6.9 Reward table definition and relationships.

6.5 Main Function

PROCEDURE "RUN_RCXBR"
INPUTS Learning CTX
OUTPUTS
DATATYPE Variable Character 

The main function calls all procedures and functions that enable the simulation of the 

agents’ behavior. The pseudo code is presented below:

• Define all appropriate variables

• Get  the count  of  rewards for  the context  being trained to  determine if  

training should continue or not

• If training should continue
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o Call the context modifier module

• Generate a distinct run id for this simulation cycle

• While the end of simulation has been reached, loop through

o Randomly generate a traffic light color

o Call the sentinel rule procedure to sense the current situation

o Based  on  the  situation  identified,   perform  the  actions  of  the  

controlling context

o Insert the event id, run id, ctx and other values in the global fact  

base

o Set the current distance to the new position

o Set the current speed to the new speed

o Set the previous time to the current time

o Calculate the elapsed time

• End loop

• Call  the  reward  function  to  assign  an  appropriate  reward  for  this  

simulation cycle.

The relationship between all the tables in the simulation is presented below in figure 6.10.
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Figure 6.10 Relationship between tables in the simulation

6.6 Training the Agent

Three smaller routes were used to train the agent. These routes consisted of all road types 

available in the three actual routes traversed by the agent. The description of the agent 

training is presented in the next chapter. As a primer, there were two learning strategies 

utilized  in  training  the agent.  In  the first  learning  strategy,  during training,  the agent 

randomly  picks  a  route  or  maximum speed  value  as  the  ideal  value  all  through  the 

training simulation. That is, in all simulation cycles, the agent chooses the attribute being 
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learnt randomly. In the second learning strategy, some learning guidance is provided to 

the  agent  based  on  its  previous  choices.  In  this  learning  strategy,  the  agent  initially 

chooses the attribute being learnt at random. After a certain number of simulation cycles, 

the agent evaluates what it has learnt so far and then chooses the attribute value that has 

given it the most reward thus far. It then randomly chooses a value again for a few more 

simulation cycles before utilizing the value with the most reward in all simulation cycles. 

That is, the agent learns randomly up to a point, then applies what it has learnt so far for a 

few simulation cycles,  then learns in a random fashion again before eventually using 

what it learnt in all simulation cycles.

6.7 Chapter Summary

In  this  chapter  a  description  of  the  prototype  implementing  the  model  enhancement 

technique  was  presented.  The  requirements  and  specifications  of  the  prototype  was 

outlined as well as assumptions made in the design and implementation of the prototype 

used in the evaluation of the model enhancement technique. The detailed design of the 

various  modules  /  functions  of the prototype  were also presented.  The tables  used in 

storing the data used in the simulations are described along with their relationships. The 

training of the agent towards learning the optimal maximum speed for all contexts was 

also presented along with graphs showing the training process.
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CHAPTER 7 EXPERIMENTS AND EVALUATION OF RESULTS

The experiments performed with the prototype were used to evaluate the concept set forth 

in  Chapter  3.  The  overall  goals  of  the  agent  in  the  prototype  are  to  enhance  the 

knowledge in the contexts acquired from SMEs’ and correct any errors therein. Errors 

made by SMEs’ can limit agents’ behavior and/or performance. The kinds of errors an 

SME can make are grouped into three classes:

1) The SME can provide wrong information, for example, the SME can provide 

an incorrect speed limit for an automobile driver. 

2) The SME can provide an incorrect process or incorrect procedures in a tactical 

situation. For example, the SME will not tell an automobile driver to stop at 

intersections with stop signs or to stop at red traffic lights.

3) The SME can omit a task in process and thus provide incomplete processes or 

procedures  that  are  necessary to  achieve  a  mission  goal.  For example,  the 

SME can omit providing information on a road type in an automobile driving 

domain, and an agent may not know what to do upon encountering that road 

type.

The experiments performed in this chapter address the three classes of errors described 

above.  A total of five experiments were performed. The goal of the first experiment is to 

show the dangers of using incorrect knowledge in decision making. In this experiment, 

the goal of the agent’s mission is to find the tactically optimal route to its destination, i.e. 

the  fastest  possible  time  to  its  destination  while  adhering  to  all  traffic  rules  and 

constraints.  Note that  the goal of the agent is different from the goal (the reason) for 
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performing the experiment, that is, what the results of the experiment are supposed to 

show and the usefulness of the experiment. In performing the first experiment to find the 

tactically  optimal  route,  a  readers’  initial  thought  on  this  experiment  (finding  the 

tactically  optimal  route  to  a  destination)  suggests  it’s  a  trivial  problem easily  solved 

through  an  optimization  search.  However,  finding  the  tactically  optimal  route  while 

working with incomplete or incorrect knowledge can lead to making the wrong decision. 

The  investigation  carried  out  in  this  dissertation  does  not  simply  find  the  tactically 

optimal  route,  it  fills  in  the  missing  information  and corrects  the  wrong information 

obtained from the SME; in other words, it breaks the SME knowledge barrier and thus 

leads to finding the correct tactically optimal route.

The goal of the second experiment is to resolve situations when the SME provides 

incorrect information, and show the impact this can have on the performance of an agent. 

For example, in an automobile driving domain, where the mission goal is to arrive at a 

destination as quickly as possible, the SME can provide an incorrect speed limit for an 

automobile driver. If the speed limit provided by the SME is less than what exists in the 

world, if the agent drives using the speed limit provided by the SME, the time it takes the 

agent to arrive at its destination will be longer than what it would have been if the agent 

were to drive with the actual speed limit that exists in the world. Conversely, if the speed 

limit provided by the SME is higher than what really exists in the world and if the agent 

uses the SME-provided speed limit, the time it takes the agent to arrive at its destination 

will also be longer because the agent driver can be stopped and delayed by police for 

driving above the speed limit on the road. Note that like the first experiment, the goal of 

the experiment differs from the mission goal of the agent in the experiment. This is true 
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for  all  five experiments,  i.e.  the goal  of performing the experiments  differs  from the 

mission  goal of the agent  in the experiment  and the seeming triviality of the agents’ 

mission goal is eclipsed by the underlying goal of performing the experiment.   

The goal of the third experiment is to resolve situations when the SME provides 

incorrect processes or procedures in a tactical situation, and shows the impact this can 

have on the behavior of an agent. For example, using an automobile driving domain and 

the  same  example  as  in  the  second  experiment  where  the  agent  has  to  arrive  at  its 

destination on time, the SME does not tell an automobile driver to stop at intersections 

with stop signs or to stop at red traffic lights. Not stopping at an intersection or at a red 

traffic light could have devastating effects, such as accidents or being ticketed by the 

police.  The behavior of the agent at intersections and at traffic lights are monitored in 

this experiment. 

The goal of the fourth experiment is to resolve situations when the SME omits 

information about a task in a process or the process itself, and thus provides incomplete 

processes or procedures that are necessary to achieve a mission goal. For example, in an 

automobile driving domain where the agent has a mission goal to arrive at its destination, 

the SME can omit providing information about a road type, thus an agent will not know 

what to do upon encountering that road type.

The  goal  of  the  fifth  experiment  is  to  show  the  technique  developed  in  this 

investigation  can  be  generalized  to  other  domains  other  than  the  automobile  driving 

domain.  The  experiment  was  performed  in  a  tactical  submarine  warfare  mission  as 

described by Gonzalez and Ahlers [200]. In achieving this, the agent contends with and 

195



resolves the incorrect information about a submarines depth provided by the SME. More 

on this later.

There are two phases of the experiments.  There is the training phase, were the agent 

learns the appropriate contextual attributes, thus becoming an enhanced agent and there is 

the execution phase, where the enhanced agent attempts to achieve its mission goal with 

the  correct  knowledge.   A  smaller  dataset  with  shorter  routes  and  different  route 

compositions are used in the training phase. More on this later. 

Note that the comparison in all experiments is performed between the enhanced 

agent and the base agent. That is, the already trained agent is compared to the untrained 

agent,  which has no capabilities  for learning in real  time during the execution phase. 

More on this later.

7.1 Evaluation Criteria

A measure of the success of a new approach is achieved by evaluating the new approach 

in a controlled environment. A comparison of the new approach is carried out against 

previously established approaches (where they exist) on known or unknown problems. In 

this  investigation,  a  CxBR agent  enhanced  by  using  the  new  approach  is  compared 

against  the base CxBR agent. Several criteria are used in evaluating the enhancement 

technique. Recalling from Chapter 3, the overall goal of the enhancement technique is to 

enhance  existing  human  behavior  representation  models  created  from  knowledge 

collected from SME’s. This knowledge could contain errors or be missing some relevant 

information  as  explained  earlier  in  this  chapter.  The  enhancement  process  creates  an 

avenue for implicit  knowledge to be included in the final  enhanced model as well  as 

196



creating new knowledge within the model. The enhanced model should not only behave 

as  well  as  the  original  model,  it  should  behave  better  than  the  original  model.  The 

evaluation of the enhancement approach is based on the following criteria:

 Performance of the agent in known and unknown situations

 Quality & reliability of the agents behavior

These are described below:

Performance  of  the  agent  in  known  and  unknown  situations: Performance 

experiments measure whether the agent achieves its mission goal in the environments 

provided and the duration it took the agent to achieve the mission goal. Performance in 

the context of this dissertation is measured using the elapsed time from start to finish of a 

mission. The actions taken by the agent in its environment determine whether the mission 

goals  are  achieved  or  not.  A  comparison  is  carried  out  between  the  base  agent’s 

performance, i.e. elapsed time for the base agent to achieve its mission goal versus the 

elapsed time of the enhanced agent to achieve the same mission goal. A comparison is 

also carried out on both agents to see whether the mission goal is achieved or not in 

known and unknown situations. 

Quality & reliability of agents’ behavior: Experiments that measure the quality 

and reliability of the agents’ behavior in the simulated environment are carried out. As 

previously  defined,  the  qualities  of  the  agents’  behavior  are  the  attributes  and 

characteristics  of  the  actions  taken  at  every  state  of  the  environment.  The  quality  is 

measured by noting whether the correct behavior is exhibited at every state of the agents’ 

environment. For example, does the agent come to a complete stop at a road intersection 
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with stop signs? A comparison  of  the base agents’  behavior  to  the  enhanced agents’ 

behavior is carried out when both agents attempt to achieve the mission goal. 

Reliability of the agent’s behavior is defined in terms of the change in the agents 

exhibited behavior at a given state during the execution52 of the model in a simulator. For 

example, does the agent change its behavior at an intersection on a different simulation 

run for the same mission after learning (training) is complete? That is, after noting the 

agent’s behavior at an intersection or a red traffic light during the first simulation cycle, is 

there a change in the agent’s behavior at the same intersection or red light during the 

second simulation cycle under the same conditions? A note should be made that quality 

and  reliability  of  the  agents’  behavior  are  measured  after  the  agents’  enhancement 

(learning). A comparison between the base agent and the enhanced agent is carried out to 

measure the long term reliability of behavior. 

7.2 Experiments

This section outlines the experiments performed for the model enhancement technique. 

There are three environments in the automobile driving domain used in the experiments, 

two environments contain three routes and one environment contains four routes. The 

first  environment  is  the training environment  that  contains  shorter  routes and will  be 

described later  in  this  chapter.  The second environment  is  the execution environment 

used in  the execution  of  the  already trained  agent  (the enhanced agent).  The second 

environment is used in evaluating the enhancement technique by comparing the enhanced 

agent with the base agent. The third environment which contains four routes, is used in 

the first experiment to show how using incorrect knowledge to make decisions leads to 

making  wrong  decisions  as  shown  in  the  agent  determining  the  fastest  route  to  a 

destination.  All  three  environments  are  described  later  in  this  chapter.  In  all 

52 The execution of the model is done after the agent is trained. More on this in the section with the detailed 
description of the experiments.
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environments, the same environmental conditions exist on each route with differences on 

the  defined  maximum  speed  limits53 on  the  road  segments  in  the  routes  and  the 

arrangement of the road segments in each route. The overall objective of the testing effort 

is  to  evaluate  the enhancement  technique  based on the  criteria  listed  in  the  previous 

section. 

7.2.1  Description of Test Environment

The hardware and software required to run the model enhancement technique includes 

the following: 

• CPU processor of 1000 MHz or greater 

• Approximately 500 MB of available disk space 

• Windows 95/98/2000/XP  or LINUX operating system 

• Oracle PL/SQL 

• Oracle Database

The enhancement  technique was tested for completeness  with the experiments 

described in the next section. 

7.2.2 Experiment Descriptions

There  are  five  experiments  carried  out  to  test  the  performance  and  behavior  of  the 

enhanced  agent.  The  goal  and  reasons  for  performing  each  experiment  has  been 

explained  earlier  in  this  chapter.  Before  the  experiments  are  performed,  the  agent  is 

trained to learn the contextual attributes of its environment, that is, the agent is enhanced. 

53 The defined maximum speed limit for a given road type is the same in all environments, for example, the 
maximum speed for ‘CITY’ road type is the same in all three environments. The differences in maximum 
speed limit is between road types.
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7.2.3 Enhancing the Agent

As stated earlier, the first environment consisting of three shorter routes was used to train 

the agent. The reasons for using a different route to train the agent are twofold; 1) to be 

sure the enhanced agent can generalize its actions and behavior in similar situations and 

2) because of the speed in which the agent can traverse the shorter routes, that is, using 

the shorter routes enabled faster training.  The training routes consist of all road types 

available in the three routes used in the execution phase. 

The training of the agent consists of training the agent to achieve the mission 

goals of all experiments performed in the automobile driving domain. This consisted of 

training the agent to learn the maximum speed attribute of the various road segments 

(context) when a context was defined for the road segment, while attempting to achieve 

its mission goal of arriving at  its destination as fast as possible without violating any 

traffic  laws.  By  learning  the  maximum  speed  attribute  of  each  road  segment,  the 

enhanced agent is expected to outperform the base agent and also behave better at red 

traffic lights and intersections. On the other hand, if there are no contexts defined for the 

road  segment,  the  enhanced  agent  is  expected  to  learn  new contexts  that  accurately 

represent the road segment. Tables 7.1, 7.2 & 7.3 show the definitions of the routes used 

to train the agent. Figures 7.1, 7.2 and 7.3 show the pictorial representation of the training 

routes. Note that the training routes shown in tables 7.1, 7.2 and 7.3 are different from the 

routes used in the execution phase of the experiments. 
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Table 7.1 Training Route A

ROUTE_ID 1 1 1 1 1
ROAD_ID 1 2 3 4 5
ROAD_NAME FREEWAY CITY FREEWAY FREEWAY CITY

DESCRIPTION
FREEWAY 

driving CITY driving
FREEWAY 

driving
FREEWAY 

driving
CITY 

driving
ROAD_LENGTH 1.5 0.6 1.2 1.5 1
ANGLE 5 85 45 26 2
ROAD_TYPE FREEWAY CITY FREEWAY FREEWAY CITY
TRAFFIC 0 0 0 0 0
INTERSECTION 0 0 0 0 0
MAXSPEED 75 50 75 75 50

Figure 7.1 Pictorial representation of training route A.
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Table 7.2 Training Route B

ROUTE_ID 2 2 2
ROAD_ID 1 2 3
ROAD_NAME PARKING_LOT CITY RAMP

DESCRIPTION
PARKING_LOT 

driving CITY driving RAMP driving
ROAD_LENGTH 0.2 0.4 0.5
ANGLE 5 85 26
ROAD_TYPE PARKING_LOT CITY RAMP
TRAFFIC 0 0 0
INTERSECTION 0 0 0
MAXSPEED 15 50 35

Figure 7.2 Pictorial representation of training route B.

202



Table 7.3 Training Route C

ROUTE_ID 3 3 3
ROAD_ID 1 2 3
ROAD_NAME PARKING_LOT CITY DIRT

DESCRIPTION
PARKING_LOT 

driving CITY driving DIRT driving
ROAD_LENGTH 0.2 0.4 0.5
ANGLE 5 85 26
ROAD_TYPE PARKING_LOT CITY DIRT
TRAFFIC 0 1 0
INTERSECTION 1 0 0
MAXSPEED 15 50 30

Figure 7.3 Pictorial representation of training route C.

Training route A was used in training the agent to learn the appropriate maximum speed 

attributes for the FREEWAY and CITY driving. Training route B was used in training 

the agent to learn the appropriate maximum speed attributes for the PARKING_LOT and 

RAMP driving. Training route C was used in training the agent to learn the appropriate 
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maximum speed attributes for INTERSECTION and TRAFFIC_LIGHT driving as well 

as learning and creating the appropriate context with appropriate actions and attributes for 

DIRT driving.

Training  the  agent  to  learn  the  maximum  speed  attribute  in  the  contexts 

commences as the simulation begins. The training algorithm described in the previous 

chapter is used.

Figure 7.4 Training Maximum Speed Attribute for City Driving

Figure  7.4  shows  the  different  maximum speed  values  used  by  the  agent  in  all  the 

simulation  cycles.  The  figure  shows  how  the  training  of  maximum  speed  attribute 

progresses through all the simulation cycles. From figure 7.4 above, it is seen that the 

agent starts off the simulation with the maximum speed attribute for the CITY driving 

context defined as 35 m/h. The SME defined the maximum speed attribute as 35 m/h for 
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the  city  driving  context.  After  91  simulation  cycles,  the  agent  learnt  the  appropriate 

maximum  speed  attribute  for  city  driving  context  to  be  50  m/h.  The  value  of  the 

maximum  speed  attribute  for  the  city  driving  context  during  training  and  at  each 

simulation cycle can be seen in figure 7.4. The fluctuation in maximum speed values for 

different simulation cycles is based on the maximum speed value being chosen at random 

using the learning strategy described in Chapter 6 (the random learning strategy). The 

maximum  speed  attribute  eventually  converges  to  the  maximum  speed  value  of  the 

environment. The convergence occurs when there is no change in the maximum speed 

value between simulation cycles. Figure 7.5 is an enlarged version of portions of figure 

7.4 showing when convergence occurs.

Figure 7.5 Training  Maximum  Speed  Attribute  for  City  Driving  showing  when  

Convergence Occurs (Enlarged Figure)
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Figure 7.6 shows the reward received by the agent while learning the maximum speed 

attribute. It shows how the agent is rewarded in each simulation cycle for choosing the 

correct maximum speed value. The value of the reward assigned to the agent for being in 

a given state was discussed in chapter 6. It can be seen that the agent receives the highest 

reward of 50 points whenever the maximum speed of 50 m/h is chosen.

Figure 7.6 City Driving Maximum Speed vs Reward

Figure 7.7 shows the reward received by the agent in each simulation cycle. From the 

figure, it can be seen that the agent is punished in most simulation cycles. If figures 7.4, 

7.6  and  7.7  are  visually  combined  as  a  single  figure,  one  can  see  that  the  agent  is 

consistently punished for choosing the wrong maximum speed value, the agent eventually 

gets rewarded when it makes the correct choice.
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Figure 7.7 City Driving Rewards vs Simulation Cycles

In training the agent to learn the appropriate maximum speed attribute for the freeway 

driving context, the agent starts with the maximum speed value provided by the SME, i.e. 

50m/h as shown in figure 7.8. A total of 71 simulation cycles were used in training the 

agent  to  learn  the  correct  maximum speed  value  in  the  freeway context.  It  uses  the 

learning  strategy described  in  chapter  6,  i.e.,  the  agent  randomly selects  a  maximum 

speed value during the first 20 simulation cycle, during the next 20 simulation cycles, i.e. 

from 21 to 40, it uses the value that provided the most reward or based on the reward the 

agent received in the previous simulation cycle, it directs the learning efforts of the agent. 

The agent randomly chooses the maximum speed value between 41 and 60 simulation 

cycles and from the 61st simulation cycle, the agent settles for the maximum speed value 

that produced the most reward in all 60 simulation cycles. As stated in Chapter 6, the 
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choice of training  the agent  this  way is  to  incorporate  some form of direction in the 

agents learning.  A random approach in training the agent will  eventually converge as 

used in learning the city driving context. The choice of 0 to 20, 21 to 40, etc were chosen 

at random in even units, a choice of 0 to 10, 11 to 50, etc. could have been chosen as 

well. 

The SME defined the maximum speed attribute as 50 miles/hr for the freeway 

driving context. After 71 simulation cycles, the agent learnt the appropriate maximum 

speed attribute for freeway driving context to be 75 miles/hr. As can be seen from figure 

7.8,  the  maximum speed attribute  converges  to  the  correct  value  after  60  simulation 

cycles.

Figure 7.8 Training Maximum Speed Attribute for Freeway Driving
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Figure 7.9 Freeway Driving Maximum Speed vs Reward

Figure 7.9 shows the reward received by the agent at a given maximum speed. From the 

figure, it can be seen that the agent received the maximum reward when the maximum 

speed value was 75 m/h. In figure 7.10, we can see the rewards received by the agent in 

each simulation cycle. The same analysis and description carried out on the city driving 

figures apply to the freeway driving figures too.
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Figure 7.10 Freeway Driving Rewards vs Simulation Cycles

Figures showing the training outcomes for the other contexts – parking_lot driving, dirt 

driving,  intersection  driving,  traffic_light  driving,  ramp  driving  and  submarine  target 

track are shown in Appendix A. The explanations provided for the training figures for 

city and freeway driving also applies to the other contexts.

7.3 Experiment Descriptions and Results

Experiment 1.0

One of the environments is used in this experiment. Four routes are traversed and the 

mission goal is for the agent to make an intelligent decision on the tactically optimal 

route  to  its  destination  when being  controlled  by  the  base  contexts  or  the  enhanced 

contexts. 
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The  objective  of  this  experiment  is  to  show  the  dangers  of  using  incorrect 

knowledge in decision making. The base and enhanced agents have a mission goal of 

finding the tactically optimal route to their destination, although a trivial mission goal 

that  can be achieved using simple  search algorithms,  the objective  of the experiment 

emphasizes  the  overall  importance  of  the  new  technique  in  decision  making.  The 

destination on each route is different. The mission goal of both agents can be translated to 

finding the tactically optimal route to an emergency hospital54. The base agent uses the 

knowledge provided by the SME in determining the fastest route, whereas the enhanced 

agent uses the knowledge learnt during its training to find the fastest route.

The environment, the agents reward table, the global and local fact bases are all 

initialized.  The  experiment  is  performed  on  each  agent  at  different  times  with  the 

environmental  conditions remaining the same.  Upon starting the simulation,  the agent 

randomly chooses a route to traverse. In this experiment, the agents are trained to learn 

the tactically optimal route. Recall that the base agent was previously trained to learn the 

actual maximum speed attribute on each route, thus making it an enhanced agent. With 

the knowledge of the actual maximum speed on any given route in its environment, the 

enhanced agent traverses the routes noting the time it takes to get to the destination (end 

of  the route).  This  simulation  cycle  is  repeated  multiple  times  for both the base and 

enhanced agent. The elapsed times to their destinations are noted. The learning strategy 

defined in the previous chapter is used, i.e. both agents initially chooses a route randomly 

and then based on the rewards they receive, they adjust their route choices in subsequent 

simulation  cycles.   When  the  agents  choice  of  route  converges,  i.e.  a  given  route 
54 Note that there can be different emergency hospitals in a vicinity and finding the fastest route to one of 
them can help save a life. Also note that both agent drivers are akin to regular citizens that are expected to 
obey all traffic laws irrespective of the emergency situation  and are different from a fire truck or other 
official cars that may not obey traffic laws in emergency situations. 
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consistently produces  the most  reward when chosen as the tactically  optimal  route,  a 

decision is made. A comparison is then carried out on the fastest route chosen by both 

agents.  

The definition of all routes traversed in this experiment is presented in Table 7.4 

and figure 7.11

Table 7.4 Definition of Routes 1 through 4

ROUTE_ID 1 1 1 2 2
ROAD_ID 1 2 3 1 2
ROAD_NAME PARKING_LOT CITY DIRT CITY FREEWAY

DESCRIPTION PARKING_LOT CITY DESC
DIRT 
DESC

CITY 
DESC

FREEWAY 
DRIVING

ROAD_LENGTH 0.2 0.4 0.5 0.35 0.75
ANGLE 5 85 26 30 15
ROAD_TYPE PARKING_LOT CITY DIRT CITY FREEWAY
TRAFFIC 0 1 0 1 0
INTERSECTION 1 0 0 1 0
MAXSPEED 15 50 30 50 75

ROUTE_ID 3 3 4 4
ROAD_ID 1 2 1 2
ROAD_NAME CITY FREEWAY FREEWAY CITY

DESCRIPTION CITY DESC
FREEWAY 

DESC FREEWAY
CITY 
DESC

ROAD_LENGTH 0.7 0.1 1 0.8
ANGLE 15 35 5 85
ROAD_TYPE CITY FREEWAY FREEWAY CITY
TRAFFIC 1 0 0 0
INTERSECTION 0 0 0 0
MAXSPEED 50 75 75 50
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Figure 7.11 Pictorial Representations of Routes 1 through 4

In this experiment, the agent randomly selected a route and traversed that route until it 

arrived  at  its  destination.  Upon  arrival,  the  time  it  took  the  agent  to  arrive  at  its 

destination is recorded in the reward table and a reward assigned to the agent based on 

the current elapsed time and the previous elapsed time. If the agent elapsed time of the 

agent on the current route is more than the elapsed time on the previous route, the agent is 

punished for taking the current route, on the other hand if the elapsed time on the current 

route is less than that of the previous route, the agent is rewarded and the route is noted. 

If there is no change in elapsed time between the previous and current routes, the agent is 

neither punished nor rewarded.  A snippet of the reward procedure is shown in figure 

7.12
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PROCEDURE "REWARD"
   ( run_id IN pls_integer, TRAINING_MODE IN VARCHAR2, curr_rte_id IN pls_integer)
   IS
   rwd_cnt           pls_integer; 
   prev_sessionid    pls_integer;
   prev_time         float := 0.0;
   ctx_reward        pls_integer;
   curr_time         float := 0.0;
   prev_rte_id       pls_integer;

BEGIN
    
Get the maximum session id in the reward table
 
    select max(session_id) into prev_sessionid
    from rwd
    where description = TRAINING_MODE;  
  
-- Get the run_time and route id from reward table for the previous session
  
    select run_time, route_id into prev_time, prev_rte_id
    from rwd where session_id = (select max(session_id)
                        from rwd
                        where description = TRAINING_MODE);
   
 -- Get the total number of records in the reward table for the current training mode 
    
   select count(*) into rwd_cnt 
    from rwd a
    where a.description = TRAINING_MODE;
    
    --  Get the total elapsed time it took for the agent to arrive at its destination for the current 
simulation run

    SELECT SUM(G.ELAPSED_TIME) INTO curr_time 
    FROM GFB G WHERE G.SESSION_ID = RUN_ID;
    
    if rwd_cnt < 20 then   -- if the total number of simulation runs is less than 20, 
        if prev_rte_id = curr_rte_id then   -- if the previous route id is the same as the current route 
id randomly chosen
           ctx_reward := 0;  -- set the reward to 0
        else
            if prev_time > curr_time then   -- if the previous elapsed time is greater than the current 
elapsed time
               ctx_reward := 10;   -- set the reward for using this route to 10
            else 
               ctx_reward := -10;  -- else set the reward for using this route to - 10
            end if;
         end if;
    else
         if prev_rte_id = curr_rte_id then
           ctx_reward := 1;
         else
            if prev_time > curr_time then
               ctx_reward := 10;
            else 
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               ctx_reward := -10;
            end if;
         end if;
     end if;
             
  
    insert into rwd ( session_id, description, run_time,  route_id, reward)
        values (run_id, TRAINING_MODE, curr_time, curr_rte_id,ctx_reward);
    
    COMMIT;
EXCEPTION
    WHEN OTHERS THEN
    ----DBMS_OUTPUT.PUT_LINE(dbms_utility.format_error_backtrace);
    SIMULATION_RUNS( Run_ID, 'REWARD', 'Fail','Error=>'||
substr(dbms_utility.format_error_backtrace,1,200)  );
    RAISE;
    
END;

Figure 7.12 Procedure for rewarding the agent for choosing a faster route

Table 7.5 shows a snippet of the rewards table

Table 7.5 Snippet of Reward Table

SESSION_ID DESCRIPTION RUN_TIME ROUTE_ID REWARD
853 TIME 75.35 2 10
854 TIME 74.95 2 0
855 TIME 75.09 2 0
856 TIME 176.24 1 -10
857 TIME 177.75 1 0
858 TIME 74.66 2 10
859 TIME 79.71 3 -10
860 TIME 79.67 3 0
861 TIME 80.66 3 0
862 TIME 79.81 3 0

Table 7.6a Sum of Rewards when using the Original and Enhanced Contexts

ROUTE_ID
SUM of REWARDs using Original 
Contexts

SUM of REWARDs using Enhanced 
Contexts

1 -68 -60
2 185 16
3 -9 173
4 -59 -100
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Table 7.6a shows how the agent decides what route is the tactically optimal route. Figure 

7.13 is a pictorial representation of Table 7.6a. Both agents make their decisions based on 

the sum of the rewards they receive during the simulation. As can be seen from Table 

7.6a and figure 7.13, the sum of the rewards for the base and enhanced agents differ on 

all routes.  The base agent was consistently rewarded during the simulation for choosing 

route 2 because the elapsed time to the destination in route 2 was the smallest. At the end 

of the simulation the agent received a total of 185 points when it chose route 2, hence the 

base agent made the decision that route 2 was the tactical optimal route.  On the other 

hand, the enhanced agent chose route 3 as the tactical optimal route. 

Figure 7.13 Sum of Rewards
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Table 7.6b Average Run Time on Each Route

Route ID Average Run Time (secs) using 
Original Contexts

Average Run Time (secs) using 
Enhanced Contexts

1 164.35 145.98
2 75.3 63.41
3 80.31 57.35
4 130.6 106.72

In the route selection experiment, the agent chooses route 2 as the tactically optimal route 

to its destination when it is controlled by the base CxBR as shown in figure 7.13. On the 

other hand when the agent is controlled by the enhanced CxBR, the agent chooses route 3 

as  being  the  tactically  optimal  route  to  its  destination.  This  experiment  shows  that 

incomplete knowledge or misrepresentations about a situation in a context could lead to 

the agent making wrong choices.  A note should be made that in this experiment,  the 

maximum speed value for the same contexts in the enhanced and original CxBR model 

had the same values,  with the exception of the CITY driving context.  The maximum 

speed value for the CITY driving context of the original CxBR model was reverted back 

to 35 m/h whereas the enhanced model remained at 50 miles per hour.  Both agents made 

intelligent  decisions  on  the  tactically  optimal  route  to  their  destination  based  on  the 

information available in their contexts. 

Table  7.6b  shows  the  average  run  times  of  the  agent  on  each  route  when 

controlled by the original and enhanced contexts. From the average run times, it can be 

seen that the tactically optimal route is actually route 3 as determined by the enhanced 

CxBR agent. The base agent made an incorrect choice.  In reality the tactically optimal 

route is route 3.

217



Experiment 2.0

The  objective  of  this  experiment  is  to  show the  effects  of  using  incorrect  or  wrong 

information on an agent’s performance in a given task. A comparison of the performance 

of  the  enhanced  CxBR  agent  to  that  of  the  base  CxBR  agent  is  carried  out.  The 

performance is compared in terms of the elapsed time to arrive at their destinations while 

traversing the same routes. The shorter the elapsed time to the agent’s destination, the 

better  the  agent’s  performance.  Both  agents  traverse  the  three  routes  separately.  The 

agents  traverse each route five times,  traversing each route  five times was chosen to 

present enough data for analyzing the results55, the agents could have also traversed each 

route 7 times or 28 times,  etc.  with no significant  difference in the final  results.  The 

agents encounter different road segments in each route as described earlier in the chapter. 

The time it takes the agent to arrive at the destination for each simulation run before and 

after  the agent’s  enhancement  is  presented below. Note that  the agent had previously 

been trained. The actual comparison in all experiments is between the already enhanced 

agent and the base agent.

55 There was no difference in the overall result when the results of 1 or 2 or 3 simulation cycles were used
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Table 7.7 Elapsed Time of Original CxBR agent and the Enhanced CxBR agent.

ROUTE_ID ELAPSED_TIME (Original  CxBR)56 ELAPSED_TIME (Enhanced CxBR)
1 1197.44 940.23
1 1197.92 938.83
1 1198.45 938.8
1 1198.17 939.09
1 1197.33 938.33

2 1040.25 790.53
2 1036.34 788.83
2 1033.3 792.2
2 1033.33 792.98
2 1034.42 788.65

3 1270.17 762.64
3 1273.1 766.58
3 1006.95 767.09
3 1011.79 765.47
3 1006.51 763.44

 

56 For experiment 1, the behavior of the original CxBR was modified to observe all environmental / 
simulation constraints such as stopping at intersections, stopping at red traffic light, etc. This was done to 
present a uniform test bed for both the original CxBR agent and its enhanced counterpart.
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Figure 7.14 Elapsed Time to Destination on Route 1
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Figure 7.15 Elapsed Time to Destination on Route 2
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Figure 7.16 Elapsed Time to Destination on Route 3

Figures 7.14 to 7.16 show the elapsed time to destinations of the base CxBR agent and its 

enhanced counterpart on all three routes for the five simulation runs. The fluctuations in 

elapsed time on each route for each agent is due to the various events in the environment, 

for example, the traffic light color being different on each simulation run, hence the agent 

might stop at a red light on one simulation run and maintain its current speed past a green 

light on another simulation run.  

Recall the hypotheses stated in Chapter 3, (3.2):

Reinforcement learning can be used to automatically and efficiently enhance a 

tactical agent’s behaviour from the experience gained by the interaction of the  

agent with its environment. Additionally, based on the mission goals, these agents  
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will  perform better  than the  agents  developed  from knowledge  acquired  from 

experts.

The enhanced agent was enhanced using reinforcement learning, proving this hypothesis.

We show this quantitatively as follows:

From table 7.4, according to Mason, et. al. [199] the difference d is:

d = Elapsed Time for Enhanced Agent (x) – Elapsed Time for Original Agent (y)

The null  hypothesis is the original CxBR agent will  perform as well as the enhanced 

CxBR agent at the minimum. 

0:
0:0

<
≥

da

d

H
H

µ
µ

Where  dµ is  the mean of the differences  between the enhanced CxBR agent  and the 

original CxBR agent, 0H is the null hypothesis and aH  is the alternate hypothesis. 
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Table 7.8 Differences in Elapsed Time

ROUTE_ID

ELAPSED_TIME 
(Original  CxBR) (y)

ELAPSED_TIME 
(Enhanced CxBR)(x) d = x-y d2

1 1197.44 940.23 -257.21 66156.9841
1 1197.92 938.83 -259.09 67127.6281
1 1198.45 938.8 -259.65 67418.1225
1 1198.17 939.09 -259.08 67122.4464
1 1197.33 938.33 -259 67081

2 1040.25 790.53 -249.72 62360.0784
2 1036.34 788.83 -247.51 61261.2001
2 1033.3 792.2 -241.1 58129.21
2 1033.33 792.98 -240.35 57768.1225
2 1034.42 788.65 -245.77 60402.8929

3 1270.17 762.64 -507.53 257586.7009
3 1273.1 766.58 -506.52 256562.5104
3 1006.95 767.09 -239.86 57532.8196
3 1011.79 765.47 -246.32 60673.5424
3 1006.51 763.44 -243.07 59083.0249

Sum -4261.78 1326266.283

To get the average difference in elapsed time we use the formula below [199], where n is 

the total number of simulation runs.

n
d

d ∑=  = 
15

4261.78-
= -284.1186667

Therefore, the average reduction in elapsed time is 284.1186667seconds

The standard deviation [199] is : 

( )

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
( )

115
15

4261.78- - 31326266.28
2

−
 = 90.79609493

Using the t-test, 

n
s

dt
d

=  = 
15

390.7960949
7284.118666-

 = -12.11931929

E
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The results  of the t-test  above give a probability (p-value) of 0.0, thus there is a 0% 

probability that the null hypothesis is rejected in error.  The null hypothesis is rejected, 

since the mean of the differences is less than 0 and the results show a 100% confidence 

that  the  enhanced CxBR agent  will  out-perform the  base CxBR agent  when there  is 

incomplete and/or incorrect knowledge acquired from a subject matter expert.

An argument can be made against the validity of the results and conclusion of 

experiment 2. The argument will be that in this experiment, the enhanced agent learnt a 

maximum speed for each route that is higher than what the SME provided, and as such 

the enhanced agent is expected to move faster and thus have a shorter elapsed time on 

each route. For example, the maximum speed value for city driving provided by the SME 

is 35m/h whereas the agent learnt the correct value was 50m/h; Driving at 50m/h rather 

than 35m/h will definitely provide a shorter elapsed time on any route. The question is 

what will be the impact in the performance of the agent, if the SME had provided 50m/h 

and the agent learnt the actual speed was 35m/h? The argument can be made that the base 

agent driving at 50m/h will have a shorter elapsed time to destination than the enhanced 

agent driving at 35m/h. This argument is incorrect as the base agent moving at a faster 

speed will  be stopped multiple  times by the police and thus there will  be delays  and 

punishments for the base agent. These delays will lead to a larger elapsed time for the 

base agent.

Experiment 3.0

The objective of this experiment is to compare the behavior of the enhanced CxBR agent 

and  that  of  the  base  CxBR  agent.  This  experiment  shows  the  effects  of  the  SME 

providing an incorrect process or omitting a process on a given task. In this experiment, 
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the process omitted by the SME is the process of stopping at a red traffic light or at an 

intersection with a stop sign and also the process of decelerating when the traffic light 

color is yellow and the agent is approaching the traffic light; in other words, the SME 

omits some of the core behavioral attributes of a typical car driver. Recall that there is a 

base agent and an enhanced agent. The behavior of both agents is compared in terms of 

the agents’ actions and speed at intersections and traffic lights while both agents traverse 

the same routes. Both agents traverse three routes separately. The agents traverse each 

route five times as in experiment 2. The agents encounter different road segments in each 

route as described earlier. The driving speed of both agents at intersections, red and green 

traffic lights are presented. 

Table 7.9 and figure 7.17 show a typical pattern of the enhanced and base agents’ 

speed when approaching a traffic light. Table 7.9 and figure 7.17 contain information for 

only one traffic light. It can be seen that the enhanced CxBR agent starts to reduce its 

speed when the traffic light color changes from green to yellow and subsequently to red. 

On the other hand, the base CxBR agents’ speed remained constant; it was utilizing the 

speed defined for the major context, CITY driving, even though it was being controlled 

by the TRAFFIC_LIGHT context. The pattern in table 7.9 and figure 7.17 was consistent 

in all simulation runs to test the behavior of the base and enhanced agents in all traffic 

lights. 
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Table 7.9 The Pattern of Enhanced CxBR Speed vs Original CxBR Speed

AgentsPosition LIGHT_COLOR Enhanced CxBR Speed Original CxBR Speed
Before Traffic 
Light GREEN 49.00 34.00

GREEN 49.00 34.00
YELLOW 29.00 34.00
YELLOW 9.00 34.00
YELLOW 4.00 34.00
YELLOW 3.00 34.00
RED 2.00 34.00
RED 1.00 34.00

At Traffic Light RED 0 34.00
After Traffic 
Light GREEN 20.00 34.00

Figure 7.17 Enhanced CxBR agent vs Base CxBR agent Speed at a Traffic Light
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In analyzing  and computing the differences  in behavior  between the enhanced CxBR 

agent and the base CxBR agent, a snapshot of the agents’ speed at the traffic light and at 

intersections was carried out. This is shown in Tables 7.10 and 7.11

In Table 7.10, the route_id shows the route number, intersection_position is the 

position  where  the  intersection  occurs  on  the  route.  Five  records  are  shown,  each 

representing a run through the simulation for route_ids  2 and 3. Note that there are no 

intersections on route 1.

 Table 7.10 Agents’ Speed at Intersection

ROUTE_ID INTERSECTION POSITION

SPEED at 
INTERSECTION 
(Base Agent)

SPEED at 
INTERSECTION 
(Enhanced Agent)

2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0

3 0.2 10 0
3 0.2 10 0
3 0.2 10 0
3 0.2 10 0
3 0.2 10 0

In Table 7.11, note that there are no traffic lights on route 1 and there are two traffic 

lights on route 2, hence the denotation 2A and 2B to differentiate between both traffic 

lights on route 2. T.L Position denotes the position the traffic light on the route and T.L. 

Color denotes the color of the traffic light when both agents pass it. The behavior of the 

agent at the traffic light for each simulation run can be seen from table 7.11 by the speed 

at which it passes the traffic light based on the traffic light color, for example, on the first 

simulation run, 2A, when the traffic light color was yellow, the base agent went through 

at a speed of 34 m/h, its maximum speed, whereas the enhanced agent went through the 
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same traffic light at a speed of 29 m/h because it had already started applying the brakes. 

On the second run through the first traffic light of route 2, i.e. 2A, the traffic light color is 

green and both agents pass through the traffic light at their maximum speed. On the third 

run, the traffic light color is red; the base agent cruises pass the light at its maximum 

speed whereas the enhanced agent stopped at the traffic light.

Table 7.11 Agents’ Speed at Traffic Light

ROUTE_ID57 T.L POSITION T.L COLOR
SPEED at T.L. 
(Base Agent)

SPEED at T.L. 
(Enhanced Agent)

2A 1.5 YELLOW 34.00 29.00
2A 1.5 GREEN 34.00 49.00
2A 1.5 RED 34.00 0
2A 1.5 RED 34.00 0
2A 1.5 RED 34.00 0

2B 4 GREEN 34.00 49.00
2B 4 GREEN 34.00 49.00
2B 4 RED 34.00 0
2B 4 RED 34.00 0
2B 4 RED 34.00 0

3 0.9 YELLOW 34.00 4.00
3 0.9 RED 34.00 0
3 0.9 RED 34.00 0
3 0.9 RED 34.00 0
3 0.9 GREEN 34.00 49.00

Recalling the hypothesis and steps utilized in analyzing the performance from experiment 

1, it is hypothesized that the enhanced agent will behave better than the original CxBR 

agent. The measurement of behavior in this dissertation is restricted to the speed both 

agents exhibit at and near intersections and traffic lights. 

From tables 7.7 and 7.8, according to Mason, et. al. [199] the difference d58 is:

d = Speed for Enhanced Agent (x) – speed for Original Agent (y)
57 In route 2, there are two traffic light positions, hence the connotation 2A & 2B
58 d is the difference in speed between both agents at the traffic_light or intersection
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The null hypothesis is the base CxBR agent will behave as well as the enhanced CxBR 

agent at the minimum. 

0:
0:0

<
≥

da

d

H
H

µ
µ

Where dµ is the mean of the differences between the enhanced CxBR agent and the base 

CxBR agent, 0H is the null hypothesis and aH  is the alternate hypothesis. 

Table 7.12 Differences in Speed at Intersections for all Routes

ROUTE_ID
INTERSECTION 
POSITION

SPEED m/h at 
INTERSECTION 
(Base Agent)(y)

SPEED m/h at 
INTERSECTION 
(Enhanced 
Agent)(x) d = x - y d2

2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0

3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100

su
m -220.00 6280.00

To get the average difference in the agents’ speed at the intersection we use the formula 

below [199], where n is the total number of simulation runs.

n
d

d ∑=  = 
10

220.003-
= -22.0003

Therefore, the average difference in speed between the enhanced and base agents at 

intersections is 22.0003

The standard deviation [199] is : 
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( )

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
( )

110
10

220.003- - 6280.19
2

−
 = 12.64937

Using the t-test, 

n
s

dt
d

=  = 
10

12.64937
22.0003-

 = -5.49996

The results of the t-test above give a probability (p-value) of 0.0 from p-value tables, thus 

there is a 0% probability that the null hypothesis is rejected in error.  The null hypothesis 

is rejected since the mean of the differences is less than 0 and the results show a 100% 

confidence that the enhanced CxBR agent behaves better than the base CxBR agent at 

intersections   when  the  SME  provides  incomplete  or  incorrect  knowledge  or  the 

knowledge represented by the knowledge engineer  in the model  is  incomplete  and/or 

incorrect. 
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Table 7.13 Differences in Speed at Traffic Lights on all Routes

ROUTE_ID
T.L 
POSITION

T.L 
COLOR

SPEED at 
T.L. 
(Original 
CxBR)(y)

SPEED at 
T.L. 
(Enhanced 
CxBR)(x) d = x - y d2

2A 1.5 YELLOW 34.00 29.00 -5.00 25.00
2A 1.5 GREEN 34.00 49.00 15.00 225.00
2A 1.5 RED 34.00 0 -34.00 1156.04
2A 1.5 RED 34.00 0 -34.00 1156.04
2A 1.5 RED 34.00 0 -34.00 1156.04

2B 4 GREEN 34.00 49.00 15.00 225.00
2B 4 GREEN 34.00 49.00 15.00 225.00
2B 4 RED 34.00 0 -34.00 1156.04
2B 4 RED 34.00 0 -34.00 1156.04
2B 4 RED 34.00 0 -34.00 1156.04

3 0.9 YELLOW 34.00 4.00 -30.00 900.01
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 GREEN 34.00 49.00 15.00 225.00

su
m -281.00 12229.37

To get the average difference in the agents’ speed at traffic lights we use the formula 

below [199], where n is the total number of simulation runs.

n
d

d ∑=  = 
15

281.0048-
= -18.733653

Therefore, the average difference in speed between the enhanced and original agents at 

traffic lights is 18.733653

The standard deviation [199] is : 

( )

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
( )

115
15

281.0048- - 212229.3719
2

−
 = 22.30491

Using the t-test, 
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n
s

dt
d

=  = 
15

22.30491
18.733653-

 = -3.25288

The results  of the t-test  above give a probability (p-value) of 0.0, thus there is a 0% 

probability that the null hypothesis is rejected in error.  The null hypothesis is rejected 

because the mean of the differences is less than 0 and the results show a 100% confidence 

that the enhanced CxBR agent behaves better  than the original  CxBR agent at  traffic 

lights and intersections when there are mistakes in the knowledge acquired from a subject 

matter expert.

Experiment 4.0

The objective of this experiment is to test the agent’s performance when the SME omits a 

task in a process, or the entire process itself during the knowledge acquisition process. In 

this experiment, the SME omitted describing a route; thus during the execution of the 

experiments, the agents encounter an unknown route. The performance of the agent is 

compared when it is controlled by the base CxBR contexts versus when it is controlled by 

the  enhanced  CxBR  contexts.  The  same  environmental  conditions  from  previous 

experiments apply in this experiment. The agent traverses the same routes under the same 

conditions when controlled by either contexts (base and enhanced). The performance of 

the agent is measured in terms of achieving the mission goal and the elapsed time to 

arrive at its destinations. This experiment is carried out when one of the road segments in 

a route is unknown to the agents.
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The CxBR agent and the enhanced CxBR agent move from the starting point of 

each route to the end point. There are three routes which the agents must traverse. The 

objective  of  this  experiment  is  for  the  agent  when  controlled  by  either  the  base  or 

enhanced contexts to merely arrive at the final destination when a road segment in one of 

the routes is unknown.

Table 7.14 below shows the elapsed time to arrive at  the destination when an 

unknown road segment is introduced. 

Table 7.14 Elapsed time to destination with introduction of an unknown road segment

ROUTE_ID ELAPSED_TIME (Original  CxBR) ELAPSED_TIME (Enhanced CxBR)
4 Unmatched Context 644.88
4 Unmatched Context 645.46
4 Unmatched Context 644.75
4 Unmatched Context 644.29
4 Unmatched Context 644.77

As can be seen from table 7.14, the agent was unsuccessful in its mission when it was 

controlled by the base CxBR contexts. The reason is, it  encountered an unknown and 

undefined situation which didn’t have a context defined and as such the mission goal was 

not accomplished because an exception was raised and the base agent remained in the 

same position (road segment) endlessly hence it couldn’t arrive at its destination. On the 

other hand, when the agent was controlled by the enhanced agent, the mission goal was 

accomplished, this is because during the training phase, the agent learnt of the new road 

segment and learnt the appropriate actions and attributes of this road segment. Based on 

the information learnt during training the agent was successful in its mission. 

Because the agent was successful in its mission when controlled by the enhanced 

contexts  and  unsuccessful  in  its  mission  goals  when  controlled  by  the  base  CxBR 

contexts,  we  could  conclude  that  the  agent  when  controlled  by  the  enhanced  CxBR 
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contexts out-performed the agent when controlled by the base CxBR contexts because of 

its successful completion of its mission goals. 

Experiment 5.0

This experiment is a modification of the experiment performed by Gonzalez & Ahlers 

[200] in the submarine warfare domain. Detailed description of the contexts, etc. can be 

read from [200]. In [200], Gonzalez and Ahlers stated that the submarines had “…static 

slots (defined as those whose values will not change during the simulation)…., examples 

are maximum speed, quite speed, maximum depth, …..”. Note that some aspects of the 

description of this experiment will not suffice in reality, for example, the angle of dive of 

the submarine being greater than -10 degrees may not be feasible in reality. Irrespective 

of the accuracy of the description of a submarine mission portrayed in this experiment, 

the  concept  nevertheless  is  valid.  This  experiment  only  shows  the  extension  of  the 

enhancement technique to other domains.  

In this experiment, it is assumed that the maximum depth provided by the SME is 

2376 ft (0.45 miles59), meaning the maximum depth of the body of water in which the 

submarine can descend to. Note that it is assumed that there are no constraints on the 

maximum depth of water the submarine is designed to descend to.  The mission goal is 

for the submarine to track an enemy’s submarine and return to sector. 

Four  simulation  runs  are  carried  out  to  compare  whether  the  mission  goal  is 

accomplished by the base agent  and the enhanced agent.  The choice of running four 

59 Depth is not typically measured in miles. In the graphs of experiment 5, it is the authors preference to 
measure depth in miles 
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simulations  was  taken  to  have  enough  data  to  analyze  the  results.  The  static  enemy 

submarine60 will be referred to as the target. 

Table 7.15 describes the simulation parameters;  the angle of dive refers to the 

angle which the base agent and enhanced agent dive into the water. Xtarget and Ytarget 

are the x-y coordinates of the stationary enemy submarine. The maximum speed for base 

agent  and  enhanced  agent  submarines  is  11.5  m/h  (10  knots).  It  is  assumed  both 

submarines  will  attain  this  speed within  seconds of starting the simulation  and when 

being controlled by the contexts used in this  example.  The context  hierarchy and the 

transitions of the contexts are shown in figures 7.18 and 7.19. 

Table 7.15 Location of Target on X-Y Plane

SIMULATION 
RUN ANGLE of DIVE XTARGET YTARGET

1 -89 0.387580639 -0.379818702
2 -77 0.375877751 -0.704649047
3 -45 0.508713655 -0.739862961
4 -83 0.110872406 -0.47510347

Figure 7.18 Search and Track Mission Context Topology [200]

60 Enemy submarines are not static in reality, they move around.

SEARCH-AND-TRACK

SECTOR-SEARCH TRANSIT-TO-SECTOR

MANEUVER-INTO-POSITION TARGET-TRACK

TRANSIT-HOME
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The flow of events for the search-and-track mission is as follows: The flow of events 

starts from the default context (transit-to-sector). The flow is clockwise.

Figure 7.19 Context Transition

sector-search 

maneuver-
into-position 

transit-to-
sector 
(Default 
Context)

target-track 

transit-home
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Table 7.16 Comparison of Base Agent and Enhanced Agent Mission Success

Simulation Run Maximum Depth 
defined by SME

Base Agent 
(Successful  or Not)

Enhanced Agent 
(Successful or Not)

1 -0.45 miles (2376 ft) Success Success
2 -0.45 miles (2376 ft) Unmatched Context Success
3 -0.45 miles (2376 ft) Unmatched Context Success
4 -0.45 miles (2376 ft) Unmatched Context Success

Table  7.16  shows  the  result  of  the  base  agent  and  enhanced  agent  in  achieving  the 

mission goal. In the first simulation run, it can be seen that both agents are successful in 

achieving the mission goal; this is because the target (enemy submarine) is higher than 

the maximum depth defined by the SME. The base agent couldn’t achieve the mission 

goal in simulation runs 2 through 4 because the target was below the maximum depth 

defined by the SME. On the other hand, because the enhanced agent was trained to learn 

the actual maximum depth of the body of water, it was able to achieve its mission goal. 

The path of both agents in simulation runs 1 through 4 is shown in figures 7.20 to 7.23. 

Figure 7.20 highlights the contexts on the graph and figures 7.21 to 7.23 shows 

the direction of the agents motion.
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Figure 7.20 Base Agent vs Enhanced Agent both are successful in their mission goal
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Figure 7.21 Base  Agent  vs  Enhanced  Agent  with  base  agent  unsuccessful  and 

enhanced agent successful in their mission goal
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Figure 7.22 Base  Agent  vs  Enhanced  Agent  with  base  agent  unsuccessful  and 

enhanced agent successful in their mission goal
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Figure 7.23 Base  Agent  vs  Enhanced  Agent  with  base  agent  unsuccessful  and 

enhanced agent successful in their mission goal

7.4 Summary of Results

In this section, a summary of the results of all experiments performed is presented. Recall 

the objectives for performing the experiments highlighted at the beginning of the chapter.

Experiments 1 and 2 highlighted scenarios where the SME provided wrong information 

and as such the agent was destined to make wrong decisions and perform poorly on a 

given task. In Experiment 1, the agent was supposed to complete a simple mission of 

choosing  the  fastest  route  to  a  destination.  When  the  agent  utilized  the  information 

provided by the agent (base contexts), it incorrectly chose the wrong route as being the 

fastest  to  the  destination.  On  the  other  hand,  when  the  agent  utilized  the  enhanced 
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contexts,  it  made the correct  choice.  Thus,  experiment  1 shows that  the enhancement 

technique  leads to an agent making the right choices in a tactical situation. In experiment 

2,  the  performance  of  the  agent  was  put  to  test  on  a  mission  goal  of  arriving  at  a 

destination with a minimum elapsed time. In experiment 2, the maximum speed value 

provided by the SME on the various road segments in a route were incorrect. When the 

agent used the information provided by the SME (base contexts), the elapsed time to its 

destination was larger than when the agent used the enhanced information. In experiment 

2, the SME provided a smaller maximum speed value for the various road segments; the 

agent learnt that the actual maximum speed values for the road segments were larger. It 

was noted in experiment 2 that the outcome of the result will remain the same even if the 

SME had provided a larger maximum speed value and the agent learnt that the correct 

maximum  speed  value  was  smaller,  because  the  agent  using  the  SME  provided 

information (base agent) will be stopped by police and delayed continuously throughout 

the  journey.  Experiment  2  thus  shows  that  the  performance  of  the  agent  using  the 

enhanced information is better than the agent using the base information.  

Experiment 3 shows when the SME provided an incorrect process; the SME failed 

to  tell  the agent  to  stop at  red traffic  lights  and  intersections.  It  was  shown that  the 

enhanced agent behaved better than the base agent at intersections and red traffic lights. 

Experiment  4 showed when the SME omitted information about a road segment  in a 

route. The enhanced agent had previously learnt the attributes of the road segment and 

thus when it encountered it during the execution phase, it was able to achieve the mission 

goal. On the other hand, the base agent was unable to achieve the mission goal because it 

lacks  learning  capabilities.  Experiment  5  showed the  application  of  the  enhancement 
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technique  on  a  different  domain.  A  submarine  warfare  domain  was  used.  In  this 

experiment, the submarine was supposed to track an enemy’s submarine that was stuck at 

a given depth, i.e. the submarine was stationary. The SME provided the depth of water at 

which the submarine could not go any deeper. When the enemy submarine was at a lower 

depth than that provided by the SME, the base agent was unable to achieve its mission 

goal, on the other hand, the enhanced agent achieved its mission goal.

7.5 Chapter Summary

In this chapter, the experiments and their results were described. Also, conclusions were 

made  on the  effectiveness  of  the  enhancement  technique  based  on the  results  of  the 

experiments.  The  results  of  the  experiments  show that  the  agent  when controlled  by 

enhanced contexts out-performs an agent controlled by the original contexts in known 

and unknown situations. The quality of the agents’ behavior was also shown to be better 

after  the  contexts  were  enhanced.  On  the  other  hand,  the  reliability  of  the  agents’ 

behavior  was unchanged between the enhanced contexts  and base contexts.  This was 

because of the consistency in decision making of the CxBR technique, hence the behavior 

of  the  agent  will  always  be  consistent  in  the  same  situation.  The  usefulness  of  the 

enhancement technique was also shown in a decision making situation, where the agent 

had to choose the fastest route to its destination,  the enhanced agent chose the fastest 

route based on the enhanced attributes of the contexts whereas the original agent choose 

the fastest route based on the context attributes. In tactical situations, making the right 

decisions at every point, could lead to a successful mission.

Tables 7.17 & 7.18 summarizes the results from all experiments.
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Table 7.17 Quantitative Summary of Results 

Exp. 
No. Exp. Description 

Original CxBR 
Ratio (O) 

Enhanced CxBR 
Ratio (E) 

Difference in 
Ratios (E-O) 

1 Find Tactical Optimal Route 0 1 1
2 Agent Performance 0 1 1

3.1 
Agent Behavior at 
Intersection 0 1 1

3.2 Agent Behavior at T.L 0.4 1 0.6
4 Agent in Unknown Situation 0 1 1
5 Submarine Agent 0.25 1 0.75

 
Ratios = Number of Successful Runs / Total Number of Runs 
In Experiment 1, Original CxBR Ratios = 0 /1 = 0; Enhanced CxBR Ratios = 1/1 =1; 
Experiment 2, Original CxBR Ratios = 0 /15 = 0; Enhanced CxBR Ratios = 15/15 =1; 
Experiment 3a, Original CxBR Ratios = 0 /10 = 0; Enhanced CxBR Ratios = 10/10 =1; 
Experiment 3b, Original CxBR Ratios = 6 /15 = 0.4; Enhanced CxBR Ratios = 15/15 =1; 
Experiment 4, Original CxBR Ratios = 0 /5 = 0; Enhanced CxBR Ratios = 5/5 =1; 
Experiment 5, Original CxBR Ratios = 1 /4 = 0.25; Enhanced CxBR Ratios = 4/4 =1; 

Table 7.17 shows the number of successes for each experiment for the original CxBR and 

enhanced CxBR agent. The table provides a quantitative view of the success rate of an 

experiment for both agents. The ratio has been defined as the number of successful runs 

of a given experiment versus the total number of runs, for example, in experiment one, 

where the agent’s goal is to find the tactically optimal route, the original CxBR agent 

didn’t have a successful run, whereas the enhanced agent was successful; the total 

number of independent experiment runs made in making the decision was 1. On the other 

hand, in experiment two, there were 15 independent runs; the original CxBR agent was 

unsuccessful in each run, whereas the enhanced CxBR agent was successful in all 15 

runs.  

 The results shown in Table 7.17 above clearly indicate that the enhanced agent 

performed in a superior manner to the original agent in each of the tests.  This is further 

explained in Table 7.18 below. 
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Table 7.18 Summary of Results 

Experiment 
Number 

Mission Goal Purpose of 
Experiment 

Outcome of 
Experiment 

1 Find the tactically 
optimal route. 
There were four 
routes with 
different 
destinations, akin to 
finding the 
tactically optimal 
route to an 
emergency hospital.

To show the 
effects of using 
incorrect 
knowledge in 
decision making.  

The experiment was 
successful. When the agent 
used the incorrect 
knowledge provided by the 
SME, it chose a wrong route 
as the tactically optimal 
route. After the SME 
knowledge was enhanced, 
the agent chose the actual 
tactically optimal route. 
This is shown in Table 7.17 

2 Arrive at the 
destination on the 
various routes in 
the fastest time. 

To compare the 
performance of the 
enhanced agent 
and base agent 
when the SME 
provides incorrect 
knowledge 

The experiment was 
successful. The enhanced 
agent outperformed the base 
agent. This is shown in 
Table 7.17 

3 Arrive at the 
destination on the 
various routes in 
the fastest time. 

To compare the 
behavior of the 
enhanced agent 
and base agent 
when procedural 
knowledge 
provided by the 
SME is incorrect. 

The experiment was 
successful.  The enhanced 
agent behaved appropriately 
at intersections and traffic 
lights. This is shown in 
Table 7.17 

4 Arrive at the 
destination on the 
various routes. 

To compare the 
performance of the 
enhanced agent 
and base agent 
when the SME 
omits a process 
needed to achieve 
its mission goal. 

The experiment was 
successful. The enhanced 
agent was successful in its 
mission goal while the base 
agent failed to achieve its 
mission goal. This is shown 
in Table 7.17 

5 Track an enemy 
submarine and 
return to sector 

To show the 
enhancement 
technique can be 
used in other 
domains 

The experiment was 
successful. The enhanced 
agent was able to track the 
enemy submarine and return 
to sector, as shown in Table 
7.17 

 



CHAPTER 8 SUMMARY, CONCLUSIONS AND FUTURE WORKS

In this chapter, a summary of what this research was all about is provided as well as 

conclusions on the results obtained, reasons for the choices made, layouts and strategies 

for future works with this research as the foundation are provided. 

8.1 Summary

In this section, four questions pertinent to this investigation are addressed. These are: 

1) What was this investigation all about? 

2) What was done during the investigation?

3) How was it done?

4) Why was it done (the various choices)?

8.1.1 What Was Investigated

This research investigated some techniques used in representing human behavior models 

as described in Chapters 1 and 2. During the investigation, it was noted that most HBR 

techniques suffer from the limitations inherent in the way knowledge is acquired i.e. the 

total dependence of knowledge acquisition and representation on subject matter experts. 

Usually, the experts determine what actions to perform in a given situation and how the 

agent  should  behave  in  all  situations  as  perceived  by the  expert.  In  some situations, 

however, the SME might not know the optimal actions to perform, or might not know 

how to describe an implicit action, hence that situation may not be properly represented. 

In other situations, the interpretation of the SME actions by a knowledge engineer may be 

incorrect  or  there  may  be  some  mistakes  in  the  way  a  given  action  or  attribute  is 

represented from the way it was intended. Additionally, how do you reconcile differences 
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in different expert opinions for the same situation under the same circumstances? In other 

words, the information represented in the HBR application is incorrect. 

 It was noted that the fact that the SME provides the knowledge that determine the 

behaviors of an agent isn’t wrong. What was wrong is the inability of these models to be 

improved beyond the SME’s level of competence or for these models to be improved 

beyond  the  mistakes  or  omissions  in  the  way  knowledge  for  a  given  situation  is 

represented. An investigation into creating a technique that enhances a HBR model based 

on the agent achieving the overall mission goal was carried out. 

A system where the acquired knowledge - the actions and thus the behavior of the 

agent can be enhanced based on the mission goal, irrespective of the SME’s imparted 

knowledge was developed. This was achieved by placing the model developed with the 

SME’s knowledge in a simulator and exposing the model to situations imagined and not 

imagined by the SME. The model was run multiple times until the knowledge acquired 

from  the  SME  was  modified  to  address  these  new  situations.  The  model  was  thus 

enhanced to perform better, based on the mission goal. Furthermore, this research showed 

that the CxBR technique can be greatly improved by incorporating the RL technique in it.

8.1.2 What Was Done During the Investigation

After it was determined that most HBR models lacked a mechanism for enhancing the 

knowledge  being  represented,  a  technique  utilizing  reinforcement  learning  was 

hypothesized  to  do  this.  Reinforcement  learning  is  a  machine  learning  strategy  that 

assigns rewards (positive or negative) as an agent (simulated or live) interacts with its 

environment (immediate or distant). Context-Based Reasoning was the HBR technique of 
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choice  used  in  this  investigation  and  Reinforcement  Learning  was  synergistically 

incorporated within CxBR.  To prove the hypothesis, experiments where performed with 

the agent placed in different situations and a comparison between the original agent and 

the enhanced agent towards a mission goal was carried out.

8.1.3 How The Investigation Was Done

The  experiments  to  test  the  hypothesis  was  carried  out  in  an  automobile  driving 

simulation test bed. Some of the constraints on using the CxBR technique were relaxed, 

for  example  ‘hard-coding’  the  relationship  between contexts  (which  is  the  traditional 

method for representing knowledge using the Context-Based Reasoning technique) in the 

compatible  context  segment.  Moreover,  the  context-based  reasoning  framework 

developed by Norlander [124] and previously used by others in CxBR simulations was 

replaced  by  database  table  structures  in  the  definition  of  contexts.  Nevertheless,  the 

context  hierarchy of having a major context,  sub-context,  etc.  was still  maintained in 

these table structures. The context definitions, context attributes, and context actions were 

all placed in different database tables with identifiers relating a given context definition 

to its attributes and actions. Contexts representing the different road types encountered to 

the best knowledge of the SME were hand-created. The attributes of the various road 

segments and actions available in the road segments were defined. The maximum speed 

attribute  was  of  particular  interest  in  this  investigation  as  most  of  the  experiments 

performed were based on this attribute. The sentinel rules, inference engine, etc. of the 

CxBR  model  were  developed.  The  new  technique  that  incorporates  reinforcement 

learning within CxBR and code to implement the new technique were also developed. 

249



The rewards associated with the new technique were defined and the agent was placed in 

a simulator. 

The  agent  went  through a  training  phase and an  execution  phase.  During  the 

training phase, the maximum speed attribute was trained to reflect the actual maximum 

speed value of the environment in each road segment. Upon completion of the training 

phase,  the  optimal  maximum  speed  for  each  road  segment  was  learnt.  The  learnt 

maximum speed attribute was a correct representation of what was in the environment 

during training. Also during training, the agent encountered a situation (road segment) 

which had no context defined for it. The agent was able to learn the attributes of the new 

road  segment,  create  a  context  to  represent  this  road  segment  and learn  the  optimal 

maximum speed for this road segment.

After the training phase was complete, the agents’ performance and behavior were 

compared when it was controlled by the enhanced contexts versus when it was controlled 

by the original contexts.

8.1.4 Why Various Choices Were Made

Various  choices  pertinent  to  this  investigation  were  made  for  different  reasons.  For 

example,  why was  the  CxBR technique  selected  as  the  HBR paradigm of  choice  in 

performing the experiments? Why was an automobile driving simulation test bed used 

and not a flight simulation test bed? Why was the maximum speed attribute the attribute 

of choice for training? There are so many questions that could arise from the choices 

made in this investigation, an attempt will be made to answer most of them.
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The choice of CxBR as the modeling technique of choice is based on its modular 

design and its ability to prune down the search space of the agents’ actions to only the 

relevant  actions  for  any  given  situation.  The  ease  of  use  of  CxBR  has  also  been 

established and its flexibility towards modeling any situation has also been established. 

The  choice  of  an  automobile  driving  simulation  test  bed  and  the  subsequent 

choice of learning the appropriate maximum speed for the road segments in a route is 

based on an assumption by the author that most people can easily relate to driving and 

modifying their speed to obey the maximum speed signs as they approach different road 

segments.  The  example  of  learning  the  appropriate  maximum  speed  can  be  easily 

understood by researchers in different domains and the technique presented can thus be 

utilized in the domain of choice of the readers. Some examples of application of this 

technique in other domains is presented in the future works section of this chapter. 

8.2 Conclusions

In comparing the performance and behavior of the agent when it was controlled by the 

enhanced CxBR contexts versus when it was controlled with the original CxBR contexts, 

the agent when controlled by the enhanced CxBR contexts outperformed the agent when 

it  was controlled by the original  CxBR contexts  based on the SME definition  of the 

original  CxBR contexts.  The snapshot measurements  of  behavior  of  both agents  also 

show the enhanced agent behaving better than the base CxBR agent at traffic lights and 

intersections.  A  conclusion  can  be  made  that  the  CxBR  enhancement  technique 

introduced in this research enhances contexts that  make an agent perform and behave 

better than when the same agent is being controlled by the original CxBR contexts. 
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Some  observations  were  made  during  the  course  of  this  investigation.  It  was 

noticed that while training the agent, the rate of learning is directly proportional to the 

value of reward chosen for the test domain. It was noticed that if the difference in value 

between reinforcing a positive behavior and a negative behavior is small, it takes a longer 

time for the agent to learn. For example, if one assigned a reward value of ‘+1’ to the 

agent for choosing the correct maximum speed value in a given context and assigned the 

value of ‘-1’ for choosing a maximum speed value that exceeds that of the environment, 

it took a much longer time for the learning process to converge to the correct maximum 

speed value.  Whereas  if  one  had provided a  reward value  of  ‘+50’  for  choosing  the 

correct maximum speed value in a given context and assigned a reward value of ‘-50’ for 

choosing  a  maximum speed value  that  exceeds  that  of  the  environment,  after  a  few 

iterations of the agent in its environment, it became apparent what the correct maximum 

speed value should be.

Also noted  was the  confidence  level  in  determining  that  the  performance  and 

behavior of the enhanced agent is better than the base agent. This can be attributed to the 

knowledge acquired in the base CxBR contexts. Conversely, if the knowledge acquired 

from a SME is absolutely correct and matches all expectations in the environment, there 

will  probably be no difference in the performance of the agent that  goes through the 

enhancement  process  and  that  of  the  original  agent.  In  other  words,  assuming  the 

maximum speed value in the enhanced contexts were the original values provided by a 

SME, if these contexts were to go through the enhancement process, there will be nothing 

to enhance because the maximum speed values already represent what is optimal in the 

real world. In cases like this, the enhancement process will not show any improvement in 
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performance  or  behavior  but  rather,  act  as  a  validation  mechanism  to  validate  the 

knowledge from the SME. This point was observed because as a side experiment,  an 

attempt was made to enhance the already enhanced CxBR agent. A conclusion could be 

made that at a minimum the enhancement technique will produce contexts (agents) that 

are exactly like the original contexts (agents), hence there are no known disadvantages to 

using the enhancement technique to attempt to enhance HBR models, other than the time 

it takes the model to go through the enhancement process.

8.3 Future Research

Although the results  obtained from experiments  in  the automobile  driving and in the 

submarine warfare domains were positive, it would be desirable to more extensively test 

the application of this technique in other domains. As earlier described, the choice of 

applying  this  technique in  determining  the optimal  maximum speed for  a  given road 

segment  is  to  provide  an  example  to  which  most  people  could  relate.  A  conceptual 

approach to applying this technique in other domains is presented here and it is the hope 

of  the  author  that  other  researchers  will  test  the  technique  in  different  domains.  Of 

particular interest is using this technique in correctly identifying purchasing patterns of 

people or correctly identifying an online search based on the search keyword and the 

context in which that keyword is used.  

Bookstores or movie rental stores typically like to suggest accompanying books 

or movies after a book purchase or movie rental has been made. To determine this, books 

are  categorized  and  based  on  historical  data,  the  pattern  of  relationships  between 

different  categories  and different  books  are  presented  to  buyers.  The  mechanism for 
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relating the different categories is still a topic that needs further investigations because in 

some cases, customers don’t like the books or movies that were recommended to them. It 

will be nice to present the enhancement technique to determine the relationships between 

the various categories (contexts).  The enhancement technique can modify and learn new 

relationships  between  the  various  contexts  and  will  eventually  provide  optimal  and 

accurate  book/movie  suggestions  to  potential  buyers  who  might  want  to  purchase  a 

related book. The mission goal in this type of experiment will be to minimize the root 

square error associated with recommending the wrong book or movie to a customer.

It  would  also  be  desirable  to  provide  an  online  training  mechanism  to  this 

technique.  Currently  the  contexts  are  trained  offline  and then  modified  based on the 

optimal value of a variable learnt during training. What if after training a new optimal 

value emerges, i.e., a new maximum speed value for a road segment is put in place by 

law? The technique should be able to recognize this and learn in real time what the new 

value is. 

Although  the  CxBR  technique  was  used  as  the  HBR  paradigm  of  choice  in 

evaluating  the  enhancement  technique,  it  will  be  good to  see  how implementing  the 

enhancement  technique  with  other  HBR  paradigms  will  be.  Will  the  results  be  as 

encouraging if the enhancement technique is used with other HBR paradigms?

It  is  also  of  interest  that  this  technique  be  embedded  in  a  robot  to  test  its 

effectiveness. Tests in simulations have shown positive encouragements, but it will be 

good to test it in the real world using robots to evaluate its ease of use in the real world. 
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Table A.1 City Driving Context Training

SESSION_ID
CTX_NAM
E RUN_TIME MAX_SPEED REWARD

101 CITY 1196.71 35 -10
102 CITY 1045.69 88 -10
104 CITY 309.53 78 -10
105 CITY 318.56 70 -10
106 CITY 414.95 32 -10
107 CITY 474.24 24 -10
108 CITY 354.75 49 1
109 CITY 1348.39 5 -10
110 CITY 358.81 47 1
111 CITY 864 9 -10
112 CITY 339.59 56 -10
113 CITY 337.72 57 -10
114 CITY 456.11 26 -10
115 CITY 361.61 46 1
116 CITY 361.69 46 -1
117 CITY 613.35 15 -10
118 CITY 356.68 48 1
119 CITY 1627.7 4 -10
120 CITY 341.72 55 -10
121 CITY 323.61 66 -10
122 CITY 309.44 78 -10
123 CITY 327.43 65 -10
124 CITY 311.45 76 -10
125 CITY 299.61 91 -10
126 CITY 296.44 95 -10
127 CITY 672.1 13 -10
128 CITY 397.07 36 -10
129 CITY 552.51 18 -10
130 CITY 343.58 54 -10
131 CITY 464.47 25 -10
132 CITY 352.63 50 50
133 CITY 441.03 28 -10
134 CITY 343.67 54 -10
135 CITY 473.46 24 -10
141 CITY 3009.81 2 -10
142 CITY 306.54 82 -10
143 CITY 441.02 28 -10
144 CITY 379.8 40 -10
145 CITY 295.47 96 -10
146 CITY 299.36 91 -10
147 CITY 367.73 44 -10
148 CITY 294.47 98 -10
149 CITY 317.42 71 -10
150 CITY 300.4 90 -10
151 CITY 320.54 68 -10
152 CITY 341.75 55 -10
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153 CITY 474.15 24 -10
154 CITY 426.97 30 -10
155 CITY 326.85 65 -10
156 CITY 800.52 10 -10
157 CITY 296.44 95 -10
158 CITY 318.78 70 -10
159 CITY 350.53 51 -10
160 CITY 298.39 92 -10
161 CITY 315.5 73 -10
162 CITY 441.31 28 -10
163 CITY 307.64 80 -10
164 CITY 307.56 81 -10
165 CITY 351.89 50 50
166 CITY 341.9 55 -10
167 CITY 405.98 34 -10
168 CITY 294.33 99 -10
169 CITY 307.5 81 -10
170 CITY 320.59 68 -10
171 CITY 302.34 87 -10
172 CITY 410.18 33 -10
173 CITY 484.28 23 -10
174 CITY 345.54 53 -10
175 CITY 320.61 68 -10
176 CITY 361.59 46 -1
177 CITY 495.34 22 -10
178 CITY 320.51 68 -10
179 CITY 302.56 87 -10
180 CITY 295.55 96 -10
181 CITY 339.52 56 -10
182 CITY 301.48 88 -10
183 CITY 299.33 91 -10
184 CITY 330.64 62 -10
185 CITY 5764.8 1 -10
186 CITY 319.56 69 -10
187 CITY 5776.65 1 -10
188 CITY 434.32 29 -10
189 CITY 312.53 75 -10
190 CITY 298.55 92 -10
191 CITY 349.75 51 -10
192 CITY 464.33 25 -10
193 CITY 299.7 90 -10
195 CITY 354.21 50 50
196 CITY 351.84 50 50
197 CITY 351.6 50 50
198 CITY 352.12 50 50
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Table A.2 Freeway Driving Context Training

SESSION_ID
CTX_NAM
E RUN_TIME MAX_SPEED REWARD

200 FREEWAY 426.81 50 -10
201 FREEWAY 290.72 87 -20
202 FREEWAY 481.64 42 -10
203 FREEWAY 355.66 64 -10
204 FREEWAY 304.78 81 -20
205 FREEWAY 307.67 80 -20
206 FREEWAY 372.05 60 -10
207 FREEWAY 279.56 93 -20
208 FREEWAY 338.03 69 -10
209 FREEWAY 596.2 32 -10
210 FREEWAY 386.02 57 -10
211 FREEWAY 401.06 54 -10
212 FREEWAY 386.08 57 -10
213 FREEWAY 320.58 75 50
214 FREEWAY 457.27 45 -10
215 FREEWAY 976.84 18 -10
216 FREEWAY 301.52 82 -20
217 FREEWAY 311.66 78 -20
218 FREEWAY 341.7 68 -10
219 FREEWAY 279.41 93 -20
220 FREEWAY 427.06 50 -10
301 FREEWAY 320.16 75 50
302 FREEWAY 307.39 80 -20
303 FREEWAY 320.48 75 50
304 FREEWAY 335.58 70 -1
305 FREEWAY 320.53 75 50
306 FREEWAY 317.63 76 -20
307 FREEWAY 320.24 75 50
308 FREEWAY 334.73 70 -1
309 FREEWAY 320.58 75 50
310 FREEWAY 317.59 76 -20
311 FREEWAY 319.64 75 50
312 FREEWAY 334.87 70 -1
313 FREEWAY 320.56 75 50
314 FREEWAY 317.76 76 -20
315 FREEWAY 320.12 75 50
316 FREEWAY 334.74 70 -1
317 FREEWAY 320.51 75 50
318 FREEWAY 317.66 76 -20
319 FREEWAY 320.42 75 50
320 FREEWAY 1124.67 15 -10
321 FREEWAY 436.14 48 -10
322 FREEWAY 305.59 81 -20
323 FREEWAY 519.55 38 -10
324 FREEWAY 372.03 60 -10

258



325 FREEWAY 293.41 86 -20
326 FREEWAY 555.35 35 -10
327 FREEWAY 376.78 59 -10
328 FREEWAY 1084.08 16 -10
329 FREEWAY 1626.17 10 -10
330 FREEWAY 319.81 75 50
331 FREEWAY 306.83 80 -20
332 FREEWAY 320.61 75 50
333 FREEWAY 335.67 70 -1
334 FREEWAY 319.65 75 50
335 FREEWAY 316.69 76 -20
336 FREEWAY 320.5 75 50
337 FREEWAY 335.6 70 -1
338 FREEWAY 320.5 75 50
339 FREEWAY 317.54 76 -20
340 FREEWAY 320.61 75 50
341 FREEWAY 320.49 75 50
342 FREEWAY 320.5 75 50
343 FREEWAY 320.51 75 50
344 FREEWAY 319.69 75 50
345 FREEWAY 320.63 75 50
346 FREEWAY 320.49 75 50
347 FREEWAY 320.43 75 50
348 FREEWAY 319.72 75 50
349 FREEWAY 320.5 75 50
350 FREEWAY 319.68 75 50

Table A.3 Parking_Lot Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
425 PARKING_LOT 92.44 60 -20
426 PARKING_LOT 126.72 17 -20
427 PARKING_LOT 106.48 29 -20
428 PARKING_LOT 117.55 21 -20
429 PARKING_LOT 91.42 68 -20
430 PARKING_LOT 88.42 96 -20
431 PARKING_LOT 88.54 90 -20
432 PARKING_LOT 99.5 40 -20
433 PARKING_LOT 94.44 56 -20
434 PARKING_LOT 99.37 41 -20
435 PARKING_LOT 99.12 40 -20
436 PARKING_LOT 87.86 96 -20
437 PARKING_LOT 92.58 63 -20
438 PARKING_LOT 100.53 38 -20
439 PARKING_LOT 109.53 26 -20
440 PARKING_LOT 100.44 39 -20
441 PARKING_LOT 442.07 3 -10
442 PARKING_LOT 88.83 95 -20
443 PARKING_LOT 153.87 10 -1
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444 PARKING_LOT 88.41 95 -20
445 PARKING_LOT 111.5 25 -20
446 PARKING_LOT 153.89 10 -1
447 PARKING_LOT 226.03 5 -10
448 PARKING_LOT 153.66 10 1
449 PARKING_LOT 129.71 15 50
450 PARKING_LOT 129.59 16 -20
451 PARKING_LOT 129.58 15 50
452 PARKING_LOT 153.78 10 -1
453 PARKING_LOT 129.7 15 50
454 PARKING_LOT 129.6 16 -20
455 PARKING_LOT 129.67 15 50
456 PARKING_LOT 153.71 10 -1
457 PARKING_LOT 129.59 15 50
458 PARKING_LOT 129.75 16 -20
459 PARKING_LOT 129.57 15 50
460 PARKING_LOT 153.67 10 -1
461 PARKING_LOT 129.7 15 50
462 PARKING_LOT 129.59 16 -20
463 PARKING_LOT 129.57 15 50
464 PARKING_LOT 153.85 10 -1
465 PARKING_LOT 94.42 53 -20
466 PARKING_LOT 98.89 42 -20
467 PARKING_LOT 92.56 66 -20
468 PARKING_LOT 108.55 27 -20
469 PARKING_LOT 89.39 86 -20
470 PARKING_LOT 93.42 57 -20
471 PARKING_LOT 99.53 39 -20
472 PARKING_LOT 92.42 64 -20
473 PARKING_LOT 184.81 8 -10
474 PARKING_LOT 104.5 32 -20
475 PARKING_LOT 129.64 15 50
476 PARKING_LOT 153.88 10 -1
477 PARKING_LOT 129.81 15 50
478 PARKING_LOT 129.57 16 -20
479 PARKING_LOT 129.58 15 50
480 PARKING_LOT 153.87 10 -1
481 PARKING_LOT 129.59 15 50
482 PARKING_LOT 129.58 16 -20
483 PARKING_LOT 129.59 15 50
484 PARKING_LOT 153.82 10 -1
485 PARKING_LOT 129.56 15 50
486 PARKING_LOT 129.58 15 50
487 PARKING_LOT 129.67 15 50
488 PARKING_LOT 129.62 15 50
489 PARKING_LOT 129.67 15 50
490 PARKING_LOT 129.61 15 50
491 PARKING_LOT 129.61 15 50
492 PARKING_LOT 129.83 15 50
493 PARKING_LOT 129.63 15 50
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494 PARKING_LOT 129.47 15 50
Table A.4 Ramp Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
355 RAMP 145.94 42 -20
356 RAMP 147.07 40 -20
357 RAMP 180.41 23 -10
358 RAMP 180.66 23 -10
359 RAMP 976.94 2 -10
360 RAMP 124.61 83 -20
361 RAMP 127.78 75 -20
362 RAMP 128.71 72 -20
363 RAMP 147.14 41 -20
364 RAMP 148.75 39 -20
365 RAMP 229.17 14 -10
366 RAMP 123.66 91 -20
367 RAMP 153.72 35 50
368 RAMP 126.62 77 -20
369 RAMP 149.76 38 -20
370 RAMP 143.69 44 -20
371 RAMP 176.62 24 -10
372 RAMP 123.61 90 -20
373 RAMP 149.74 38 -20
374 RAMP 129.92 68 -20
375 RAMP 153.88 35 50
376 RAMP 161.86 30 -1
377 RAMP 153.75 35 50
378 RAMP 152.82 36 -20
379 RAMP 153.83 35 50
380 RAMP 161.8 30 -1
381 RAMP 154 35 50
382 RAMP 152.78 36 -20
383 RAMP 153.73 35 50
384 RAMP 162.75 30 -1
385 RAMP 153.83 35 50
386 RAMP 152.74 36 -20
387 RAMP 153.86 35 50
388 RAMP 162.77 30 -1
389 RAMP 153.74 35 50
390 RAMP 152.89 36 -20
391 RAMP 153.79 35 50
392 RAMP 161.8 30 -1
393 RAMP 153.92 35 50
394 RAMP 152.71 36 -20
395 RAMP 183.86 22 -10
396 RAMP 131.65 64 -20
397 RAMP 124.69 86 -20
398 RAMP 124.58 86 -20
399 RAMP 137.8 52 -20
400 RAMP 161.8 30 -1
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401 RAMP 121.61 99 -20
402 RAMP 171.06 26 -10
403 RAMP 183.9 22 -10
404 RAMP 169.6 27 -10
405 RAMP 153.71 35 50
406 RAMP 147.72 40 -20
407 RAMP 153.77 35 50
408 RAMP 161.87 30 -1
409 RAMP 153.74 35 50
410 RAMP 152.98 36 -20
411 RAMP 153.75 35 50
412 RAMP 162.77 30 -1
413 RAMP 153.77 35 50
414 RAMP 152.72 36 -20
415 RAMP 153.85 35 50
416 RAMP 153.78 35 50
417 RAMP 154.1 35 50
418 RAMP 153.63 35 50
419 RAMP 153.48 35 50
420 RAMP 153.91 35 50
421 RAMP 153.7 35 50
422 RAMP 153.78 35 50
423 RAMP 153.8 35 50
424 RAMP 153.83 35 50

Table A.5 Dirt Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
502 DIRT 126.03 96 -20
503 DIRT 131.98 72 -20
504 DIRT 171.78 27 -1
505 DIRT 145.31 44 -20
506 DIRT 975.76 2 -10
507 DIRT 124.28 77 -20
508 DIRT 126.99 81 -20
509 DIRT 125.89 87 -20
510 DIRT 146 41 -20
558 DIRT 329.94 8 -10
559 DIRT 135.81 63 -20
560 DIRT 133.11 68 -20
561 DIRT 126.82 72 -20
562 DIRT 123.73 90 -20
563 DIRT 125.26 90 -20
564 DIRT 174.8 25 -1
565 DIRT 130.03 61 -20
566 DIRT 126.52 89 -20
567 DIRT 136.97 63 -20
568 DIRT 126.28 90 -20
569 DIRT 168.14 27 -1
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570 DIRT 176.03 25 -1
571 DIRT 171.07 27 1
572 DIRT 167.31 28 1
573 DIRT 172.03 29 1
574 DIRT 162.22 30 50
575 DIRT 162.53 31 -20
576 DIRT 168 30 50
577 DIRT 179.53 25 -1
578 DIRT 166.27 30 50
579 DIRT 157.79 31 -20
580 DIRT 168.17 30 50
581 DIRT 176.27 25 -1
582 DIRT 169.16 30 50
583 DIRT 162.29 31 -20
584 DIRT 165.86 30 50
585 DIRT 177.94 25 -1
586 DIRT 166.47 30 50
587 DIRT 159.19 31 -20
588 DIRT 164.39 30 50
589 DIRT 137.06 67 -20
590 DIRT 130.03 66 -20
591 DIRT 142.01 53 -20
592 DIRT 131.02 76 -20
593 DIRT 173.05 25 -1
594 DIRT 1845.58 1 -10
595 DIRT 137.14 56 -20
596 DIRT 132.34 71 -20
597 DIRT 144.61 42 -20
598 DIRT 126.41 89 -20
599 DIRT 165.4 30 50
600 DIRT 178.68 25 -1
601 DIRT 162.39 30 50
602 DIRT 158.02 31 -20
603 DIRT 165.08 30 50
604 DIRT 174.13 25 -1
605 DIRT 164.48 30 50
606 DIRT 161.33 31 -20
607 DIRT 166.1 30 50
608 DIRT 179.25 25 -1
609 DIRT 169.34 30 50
610 DIRT 164.06 30 50
611 DIRT 165.02 30 50
612 DIRT 164.03 30 50
613 DIRT 162.16 30 50
614 DIRT 165.07 30 50
615 DIRT 162.04 30 50
616 DIRT 165.14 30 50
617 DIRT 166.28 30 50
618 DIRT 161.61 30 50
619 DIRT 167.27 30 50
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620 DIRT 165.85 30 50
621 DIRT 157.04 30 50
622 DIRT 162.17 30 50
623 DIRT 163.25 30 50
624 DIRT 169.5 30 50
625 DIRT 169.38 30 50
626 DIRT 161.99 30 50
627 DIRT 170.23 30 50
628 DIRT 161.1 30 50
629 DIRT 163.11 30 50
630 DIRT 164.05 30 50
631 DIRT 164.33 30 50
632 DIRT 163.61 30 50
633 DIRT 166.03 30 50
634 DIRT 164.22 30 50
635 DIRT 167.11 30 50
636 DIRT 164.24 30 50
637 DIRT 163.21 30 50
638 DIRT 163.08 30 50
639 DIRT 166.23 30 50
640 DIRT 162.1 30 50
641 DIRT 164.98 30 50
642 DIRT 169.08 30 50
643 DIRT 167.22 30 50
644 DIRT 166.28 30 50
645 DIRT 166.37 30 50
646 DIRT 164.55 30 50
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Figure B.1 Training Maximum Speed for Parking Lot Driving
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Figure B.2 Parking Lot Driving Maximum Speed Vs Reward
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Figure B.3 Training Maximum Speed for Ramp Driving
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Figure B.4 Ramp Driving Maximum Speed Vs Reward
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Figure B.5 Training Maximum Speed for Dirt Driving
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Figure B.6 Dirt Driving Maximum Speed Vs Reward
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