
University of Central Florida

Electronic Theses and Dissertations Doctoral Dissertation (Open Access)

A Reinforcement Learning Technique For
Enhancing Human Behavior Models In A Context-
based Architecture
2008

David Aihe
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Engineering Commons

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Aihe, David, "A Reinforcement Learning Technique For Enhancing Human Behavior Models In A Context-based Architecture"
(2008). Electronic Theses and Dissertations. 3500.
https://stars.library.ucf.edu/etd/3500

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/3500?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages

A REINFORCEMENT LEARNING TECHNIQUE FOR ENHANCING HUMAN
BEHAVIOR MODELS IN A CONTEXT-BASED ARCHITECTURE

by

DAVID O. I. AIHE
B.Eng University of Benin, 1996

B.A. Metropolitan State University, 1998
M.S.Cp.E. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2008

Major Professor: Avelino Gonzalez

© 2008 David Aihe

ii

ABSTRACT

A reinforcement-learning technique for enhancing human behavior models in a

context-based learning architecture is presented. Prior to the introduction of this

technique, human models built and developed in a Context-Based reasoning framework

lacked learning capabilities. As such, their performance and quality of behavior was

always limited by what the subject matter expert whose knowledge is modeled was able

to articulate or demonstrate. Results from experiments performed show that subject

matter experts are prone to making errors and at times they lack information on situations

that are inherently necessary for the human models to behave appropriately and optimally

in those situations. The benefits of the technique presented is two fold; 1) It shows how

human models built in a context-based framework can be modified to correctly reflect the

knowledge learnt in a simulator; and 2) It presents a way for subject matter experts to

verify and validate the knowledge they share. The results obtained from this research

show that behavior models built in a context-based framework can be enhanced by

learning and reflecting the constraints in the environment. From the results obtained, it

was shown that after the models are enhanced, the agents performed better based on the

metrics evaluated. Furthermore, after learning, the agent was shown to recognize

unknown situations and behave appropriately in previously unknown situations. The

overall performance and quality of behavior of the agent improved significantly.

iii

 iv

ACKNOWLEDGMENTS

First, I would like to thank the Almighty God for giving me the strength to accomplish

this research. I would like to thank my family for the wonderful support and

encouragement they provided during the course of writing this dissertation, my wife

Susan, our kids, my mom, and my dad, you are all wonderful. Special thanks go to my

advisor and committee chair Avelino J. Gonzalez for the support throughout the process

of this dissertation. I would also like to thank the rest of my committee for their support.

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF TABLES...xi

LIST OF ABBREVIATIONS...xiii

CHAPTER 1: INTRODUCTION AND BACKGROUND...1
1.1 Overview..1
1.2 Human Behavior Representation...5
1.3 Acquisition of Knowledge for modeling Human Behavior.............................11
1.4 A Brief Introduction to Agents..16

1.4.1 Types of Agent Programs...17
1.5 Introduction to Some Human Behavior Representation Paradigms................18

1.5.1 Cognitive Network of Tasks (COGNET)...19
1.5.2 Atomic Components of Thought or
 Adaptive Character of Thought (ACT-R)...21
..
1.5.3 State Operator and Result (SOAR)...24

1.6 Organization of Dissertation..26
1.7 Summary..27

CHAPTER 2: HUMAN BEHAVIOR REPRESENTATION THROUGH CONTEXTS
..28

2.1 Contexts...28
2.2 Representing Human Behavior through Contexts...31

2.2.1 Context-Mediated Behavior..32
2.2.2 Contextual Graphs..37
2.2.3 Context-Based Reasoning...39

2.2.3.1Components of CxBR..45
2.2.3.2 Formalization of CxBR...49

 2.2.4 Competing Context Paradigm...52
 2.2.5 The DUAL Architecture...55

2.3 Contextual Learning...57
2.4 Others...59
2.5 Comparison of HBR Models...60
2.6 Summary..64

CHAPTER 3: PROBLEM DEFINITION..65
3.1 Problem Statement...65
3.2 Hypothesis...69

v

3.3 Contributions...70

CHAPTER 4: RELEVANT MACHINE LEARNING TECHNIQUES............................72
4.1 Introduction..72
4.2 Supervised Learning..75

4.2.1 Observational Learning...75
 4.2.2 Artificial Neural Networks...77
4.3 Unsupervised Learning..79

4.3.1 Self-Organizing Networks..80
4.4 Reinforcement Learning..80

4.4.1 Overview...82
 4.4.2 Markov Decision Process...86
 4.4.3 Value Functions..87
 4.4.4 On-line and Off-line..88
 4.4.5 Exploration Vs Exploitation...89
 4.4.6 RL General Problems..90
 4.4.7 RL Techniques..93

4.4.7.1 Dynamic Programming...93
4.4.7.2 Monte Carlo Methods...94
4.4.7.3 Temporal Difference Learning (TD-Learning)...........................95
4.4.7.4 Q-Learning..98
4.4.7.5 Hierarchical Reinforcement Learning (HRL)...........................103

4.4.8 RL Applications..112
4.5 Comparison of the three machine learning groups towards
 the enhancement of tactical models...114
4.6 Chapter Summary..117

CHAPTER 5: CONCEPTUAL APPROACH..118
5.1 Introduction..118
5.2 RL-CxBR Integration...120

5.2.1 Representation of the Enhancement Process...122
5.2.2 The Reward Function..123
5.2.3 Enhancing/Refining an Active Context..125
5.2.4 Enhancement Process Stopping Criteria...125
5.2.5 Available Actions..126
5.2.6 Environment Visibility and Accuracy of Actions.................................127
5.2.7 States Vs Contexts..129
5.2.8 Generalization of actions..130
5.2.9 Exploring and Exploiting Contextual Knowledge................................132
5.2.10 Dynamic Goals..133
5.2.11 Conflicting Knowledge...134

5.3 Flow of Events...134
5.4 Components of the enhancement Process..137

5.4.1 Action-Base (A)..139
5.4.2 Environmental States / Contexts (B)...140

vi

5.4.3 Context Library (C)...140
5.4.4 Context Repository (D)...141
5.4.5 Context Selector..142
5.4.6 Context Modifier...144
5.4.7 Context Creator...147

5.5 Enhancement process flow chart...148
5.6 Formal Representation...150
5.7 High Level Design of Architecture..151
5.8 Preview of Prototype..152
5.9 Chapter Summary..153

CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF THE MODEL
ENHANCEMENT PROCESS IN AN APPLICATION.........................154

6.1 Introduction..154
 6.2 Prototype Descriptions...154
 6.3 Prototype Requirement Specifications...156

6.3.1 Assumptions..157
6.3.2 Stakeholders of the model enhancement methodology........................158
6.3.3 Sequence of Events ..159
6.3.4 Use Case Diagram...161

6.3.4.1 Use Case Descriptions..161
6.3.5 Specific Requirements..162

6.3.5.1 Functional Requirements..162
6.3.5.2 Interface Requirements...163
6.3.5.3 Physical Environment Requirements..163
6.3.5.4 Users and Human Factors Requirements..................................164
6.3.5.5 Data Requirements..164
6.3.5.6 Resource Requirements..165
6.3.5.7 Security Requirements..165
6.3.5.8 Quality Assurance Requirements..165
6.3.5.9 Performance Requirement..166

6.4 Prototype Design (Experimental Test-bed Design).......................................166
6.4.1 The Environment..166
6.4.2 Context Infrastructure...172

6.4.2.1 Hand-built model..177
6.4.2.2 Redesigning a context to enable learning.................................178

6.4.3 Sentinel Logic...179
6.4.4 Context Modifier...181
6.4.5 Context Creator..183
6.4.6 Designing the reward function..184

6.5 Main Function...192
6.6 Training the Agent...193
6.7 Chapter Summary..194

CHAPTER 7 EXPERIMENTS AND EVALUATION OF RESULTS...........................195
7.1 Evaluation Criteria..198

vii

7.2 Experiments.. 200
 7.2.1 Description of Test Environment... 201
 7.2.2 Experiment Descriptions.. 201
 7.2.3 Enhancing the Agent...202
7.3 Experiment Descriptions and Results..213
7.4 Summary of Results...245
7.5 Chapter Summary..247

CHAPTER 8 SUMMARY, CONCLUSIONS AND FUTURE WORKS......................249
8.1 Summary..249
 8.1.1 What was Investigated..249
 8.1.2 What was Done During the Investigation...250
 8.1.3 How the Investigation was Done... 251
 8.1.4 Why Various Choices Were Made...252
8.2 Conclusions..253
8.3 Future Research...255

APPENDIX A TRAINING RESULTS...257

APPENDIX B TRAINING GRAPHS...267

REFERENCES..273

viii

LIST OF FIGURES

Figure 1.1 Conceptual View of COGNET Cognitive Architecture............................21

Figure 1.2 SOAR Decision Cycle...25

Figure 1.3 SOAR Architecture..26

Figure 2.1 The Context-Mediated Behavior process...35

Figure 2.2 Block Diagram of a Context..40

Figure 2.3 Hierarchical Structure of CxBR...42

Figure 2.4 Diagram of a CxBR model..43

Figure 4.1 A Neuron..77

Figure 4.2 k-layer Network...78

Figure 4.3 A Typical Agent Interaction Cycle..83

Figure 4.4 Reinforcement Learning Architecture...83

Figure 4.5 Showing the Four Machine states for HAMs..103

Figure 5.1 RL-CxBR Block Diagram ...119

Figure 5.2 Enhancement Process Architecture..138

Figure 5.3 Context Repository..142

Figure 5.4 Context Selection Process..145

Figure 5.5 The enhancement process flow chart...151

Figure 5.6 High-level Design Showing Inputs and Outputs between Sub-systems..154

Figure 6.1 Use Case Diagram..163

Figure 6.2 Pictorial Representation of Route A..170

ix

Figure 6.3 Pictorial Representation of Route B..171

Figure 6.4 Pictorial Representation of Route C..172

Figure 6.5 Entity Relationship (ER) Diagram of Environment Tables.....................175

Figure 6.6 Relationships Between Tables in Context Library and Their Attributes.176

Figure 6.7 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as
Major Contexts...180

Figure 6.8 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as
Sub-Contexts..180

Figure 6.9 Reward table definition and relationships..191

Figure 6.10 Relationship between tables in the simulation...193

Figure 7.1 Pictorial representation of training route A...203

Figure 7.2 Pictorial representation of training route B..204

Figure 7.3 Pictorial representation of training route C..205

Figure 7.4 Training Maximum Speed Attribute for City Driving.............................206

Figure 7.5 Training Maximum Speed Attribute for City Driving showing when

 Convergence Occurs (Enlarged Figure)...207

Figure 7.6 City Driving Maximum Speed vs Reward...208

Figure 7.7 City Driving Rewards vs Simulation Cycles...209

Figure 7.8 Training Maximum Speed Attribute for Freeway Driving......................211

Figure 7.9 Freeway Driving Maximum Speed vs Reward..212

Figure 7.10 Freeway Driving Rewards vs Simulation Cycles....................................213

Figure 7.11 Pictorial Representations of Routes 1 through 4......................................217

Figure 7.12 Procedure for rewarding the agent for choosing a faster route................219

Figure 7.13 Sum of Rewards...220

x

Figure 7.14 Elapsed Time to Destination on Route 1...224

Figure 7.15 Elapsed Time to Destination on Route 2...225

Figure 7.16 Elapsed Time to Destination on Route 3...226

Figure 7.17 Enhanced CxBR agent vs Base CxBR agent Speed at a Traffic Light....231

Figure 7.18 Search and Track Mission Context Topology...240

Figure 7.19 Context Transition...241

Figure 7.20 Base Agent vs Enhanced Agent both are successful in

their mission goal ..242

Figure 7.21 Base Agent vs Enhanced Agent with base agent unsuccessful and

enhanced agent successful in their mission goal......................................243

Figure 7.22 Base Agent vs Enhanced Agent with base agent unsuccessful

and enhanced agent successful in their mission goal...............................244

Figure 7.23 Base Agent vs Enhanced Agent with base agent unsuccessful and

enhanced agent successful in their mission goal......................................245

xi

LIST OF TABLES

Table 6.1 Event Table for Automobile Driving Prototype.................................... 162

Table 6.2 Route A ..169

Table 6.3 Route B ..170

Table 6.4 Route C ..171

Table 6.5 Environment Attributes ..172

Table 6.6 Context Definitions ..176

Table 6.7 Context Attributes ...177

Table 6.8 Context Actions ...177

Table 7.1 Training Route A ..203

Table 7.2 Training Route B ...204

Table 7.3 Training Route C ..205

Table 7.4 Definition of Routes 1 through 4 ..216

Table 7.5 Snippet of Reward Table ...219

Table 7.6a Sum of Rewards when using the Original and Enhanced Contexts 219

Table 7.6b Average Run Time on Each Route ...221

Table 7.7 Elapsed Time of Original CxBR agent

and the Enhanced CxBR agent. .. 223

Table 7.8 Differences in Elapsed Time ...228

Table 7.9 The pattern of Enhanced CxBR speed vs Original CxBR speed 231

 Table 7.10 Agents’ speed at Intersection ..232

xii

Table 7.11 Agents’ speed at Traffic Light ...233

Table 7.12 Differences in speed at intersections for all routes 234

Table 7.13 Differences in speed at traffic lights on all routes 236

Table 7.14 Elapsed time to destination with introduction

of an unknown road segment ...238

Table 7.15 Location of Target on X-Y Plane ..240

Table 7.16 Comparison of Base Agent and Enhanced Agent Mission Success 241

Table 7.17 Quantitative Summary of Results ...247

Table 7.18 Summary of Results ..248

xiii

LIST OF ABREVIATIONS

Definitions, Acronyms, and Abbreviations

The following is a list of acronym definitions that will be used throughout this document

• CxBR – Context Based Reasoning

• RL – Reinforcement Learning

• SME – Subject Matter Expert

• GFB – Global Fact Base

• HBR – Human Behavior Representation

xiv

CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Overview

Human behaviour can be said to be largely dictated by decision-making and their

resulting actions. These decision making processes determine how a person behaves in

any given situation. Henninger [125] defines behaviour as “any observable action or

reaction of a living organism.” She notes that some psychologists extend this definition to

“include conscious phenomena like perception, cognition, and judgements” [125]. The

Oxford dictionary [1], defines “behaviour” as “the actions or reactions of a person or

animal in response to external or internal stimuli”. The external stimuli include touch,

smell, sight, as well as others. How a person reacts to these stimuli dictates his or her

actions at that point in time. Consider a driver faced with a choice of driving beyond the

speed limit on a freeway and eventually arriving at his/her destination on time, or

obeying the speed limit and arriving at his/her destination late. The decision and

subsequent actions made by this driver ultimately constitute his/her behaviour on the

freeway.

In some domains, for example aviation and military operations, the behaviour of a

person is divided into tactical and strategic behaviours. Schutte [194] states that “tactical

behaviours are generally considered to be near-term, dynamic activities” while strategic

behaviours usually involve the decision-making process based on the overall mission of

the person in the long run [194]. Tactical behaviours involve the immediate decision-

making process of an individual, whereas strategic behaviours involve a planned out set

of decisions by an individual. Latorella & Chamberlain [195] explain that the time

1

pressure in any given situation differentiates whether the individual will operate in a

tactical mode or a strategic mode. They [195] go further to present an example using

pilots. When pilots attempt to solve known and anticipated tasks, they usually exhibit

strategic behaviours, whereas when they are under a time-constraint, they act or react to

the situation presented based on some predefined mental list, i.e., they exhibit tactical

behaviours [195].

Modelling strategic behaviours are usually straight forward because they involve

known and anticipated tasks. On the other hand, modelling tactical behaviours can be

cumbersome. This is because the steps involved in solving tactical problems are usually

dependent on the actions taken at any given moment. Modelling the decision-making

process has been studied by several investigators [12, 14] among many others. A few

human behaviour modelling and representation techniques exist. These techniques are

discussed in detail in later sections of this chapter. After modelling the human behaviour,

the task of representing the model in an efficient computational paradigm is not a trivial

one.

The representation of human behaviour has been investigated by many

researchers including [6, 36, 44, 4, 7, 9, 10, 2, 34, 87, 90, 40, 83, 88, 82, 84, 85], amongst

many others. How to efficiently and effectively model and represent the way a person

acts or reacts in a given situation has no definitive solution. Some human behaviour

modelling and representation paradigms [2, 3, 4, 5] suggest ways to do this. However,

these techniques all have the same deficiency; - the human expert is the source of

knowledge for these models. Eliciting knowledge from experts has several limitations.

These limitations include the lack of acquisition of implicit knowledge from experts and

2

the reliance on expert interpretation of the real world, which is not always accurate.

These limitations are discussed in subsequent sections of this chapter. Based on these

limitations on the acquisition of knowledge, some modeling and representation

techniques are either over-simplified by having too many assumptions (for example a

person not being able to learn based on his / her experience or experiences of others), or

only provide a limited view of a person’s tactical behavior in a given situation (for

example constraining the actions available to an agent in the model in tactical situations

based on the actions known to only one expert). Furthermore, some of these methods do

not address the ever-changing behaviour of humans in a given situation or in a new

situation or during a change in situations, because they were designed for modeling

strategic behaviors.

Many factors affect the way a human behaves in a given situation. For example,

one would expect a person being held at gunpoint to cooperate with his or her captors.

However, could this behavior in all certainty, represent every person? What about a

martial arts expert who has an opportunity to overcome his/her captors? Would this

person react similarly? This suggests that there may be multiple ways humans may

behave in a particular situation. There are many variables involved in modeling the

behavior of a person in any given tactical situation. Trying to address these variables by

explicitly relying on the knowledge acquired from an expert may lead to unsolvable

problems or representations that don’t adequately fit the situation. For example, if the

knowledge used in building the model of a soccer player is acquired from an expert who

believes in only passing the ball to a teammate in front, when the model is placed in

situations that necessitate otherwise, the behavior exhibited might not be optimal. With

3

this in mind, several researchers [6, 7, 33, 101] have proposed representations to address

some tactical situations.

Gonzalez & Ahlers [7] describe and implement a methodology called Context-

Based Reasoning (CxBR) that models a humans’ expected behavior in specific particular

situations. CxBR is a paradigm that models human behaviors in terms of contexts. This

method seeks to limit and reduce the complexity inherent in human decision-making by

limiting the number of events available for the agent to think about in any given situation.

Several successes have been achieved using this method, for example [4, 127]. While a

generally effective method however, reliance on Subject Matter Experts (SME) 1from

whom knowledge is obtained can limit its effectiveness.

This research describes a method that eliminates one major limitation introduced

to most human behavior modeling techniques during the knowledge acquisition process,

i.e., the limitations of relying on SME knowledge. Like other paradigms, Context-Based

Reasoning also suffers from this problem. The elimination of these limitations would lead

to a more robust methodology that can be extendable to most human behavior

representation techniques and most domains. Furthermore, apart from augmenting SME

knowledge, it would minimize or eliminate other errors built into the system during the

acquisition of knowledge such as the introduction of conflicting knowledge to a model.

To achieve this, we incorporate Reinforcement learning (RL) within Context-

Based Reasoning. Reinforcement learning is a machine learning strategy that assigns

rewards (positive or negative) as an agent (simulated or live) interacts with its

1 Subject Matter Experts (SME) are people with experience in the domain being simulated. They typically
provide knowledge that is used in the knowledge base of the simulation.

4

environment (immediate or distant). The synergistic combination of these methodologies

promises to significantly enhance CxBR’s ability to represent human tactical behavior.

1.2 Human Behavior Representation

As was previously defined, “human behaviours are the actions or reactions of a human in

response to some external or internal stimuli” [1]. Some researchers have attempted to

represent this response, for example [4, 5, 6, 52]. Pew & Mavor [52] note that the

military simulation community defines human behaviour representation as “models of

human behaviour or performance utilized in military simulations”. Researchers in the

field of human behavioural representation are faced with at least three issues [24].

• To efficiently and effectively represent the behaviour of a human

• To efficiently acquire these behaviours

• To validate the acquired behaviours

To efficiently and effectively represent human behaviour, the five components of human

behaviour stated by Flournoy [108] must be taken into consideration. These components

are: sensing and perception, working memory, cognition, motor behaviour and long-term

memory.

Sensory and perception refer to the inputs received from the environment. These

inputs can include rewards, punishments or some other form of response from the

environment on an action or group of actions performed by the human.

Working memory refers to the part of memory reserved for processing these inputs

alongside other variables. The dictionary [1] defines Cognition as “The mental process of

5

knowing, including aspects such as awareness, perception, reasoning, and judgment -

That which comes to be known, as through perception, reasoning, or intuition;

knowledge.” The way a human recognizes events, i.e. the humans’ level of awareness,

perception, reasoning and judgement of his environment should be represented. Some

people have a high level of situational awareness and perception whereas others do not.

Yet others learn about their environments and become fully aware over a period of time.

Motor behaviour refers to the learning and control of human movement. Gonzalez

and Dankel [197] note that motor skill (behaviour) “…is physical rather than cognitive-

oriented” [197]. They give examples of driving an automobile, riding a bicycle, etc.

Knowing how to effectively represent a person’s motor behaviour is important in

obtaining a good model of human behaviour, for example how many times will a person

attempt to balance a bicycle before becoming successful?

Long term memory refers to the stored memory that can be retrieved anytime. As

a person performs an activity, he/she learns from that activity. Some time in future, the

person might need to retrieve information on some past event. The ability to represent

this process is important for a robust model.

There are many ways to model and represent human behaviour. Researchers have

postulated many paradigms and architectures that address aspects of this problem.

Flournoy [108] groups these architectures into three classes:

1. Finite-state machines

2. Task network models

3. Pure cognitive models

6

Paw & Mavor [52] note that the finite-state machines paradigm is the most utilized

behavioural representation used for military simulations. Inasmuch as there are a number

of models that address human behaviour, some constraints to modelling human behaviour

exist. Giordano [50] explores some of these constraints to modelling human behaviour

and concludes that most times the requirements for HBR systems exceed the capabilities

of technologies currently in use. He suggests that unless the emergence of ‘disruptive

technologies’ [50] occur, certain HBR characteristics will continue to remain beyond our

reach.

Most of the existing models focus on specific areas of human cognition and

behaviour [12]. This is in line with Brooks’ [84] argument that it is better to build simple

creatures in complex worlds and then gradually increase their complexity than to build

creatures in simple worlds and then gradually increase the complexity of the worlds. He

asserts that “human behaviour is the external expression of a mass of independent

behaviours that don’t have any central control or representations of the world” [84].

Some researchers have tried to create more complex behaviours by combining existing

models. This allows a more robust and flexible architecture for any given simulation. For

example, Van Lent et al. [12] achieve a more realistic view of the situation in an urban

combat mission by integrating three human behaviour representations (PMFServ,

AI.Implant and Soar to be described later) into a single virtual environment. These three

paradigms are necessary to achieve a realistic view because during a modern urban

combat mission, in the context of counter insurgency, there are potentially three ‘types’

or groups of behaviours exhibited by humans: An attacking army (a group of humans),

usually has combat doctrine and rules of engagement to which they adhere during these

7

types of missions. The second group of humans are an opposing militia that fights the

attacking army through unorthodox means. This militia have no combat doctrines or rules

of engagement to uphold. The third group of people includes civilians caught in the cross

fire. These civilians have only one goal when caught in this situation - to survive.

Behavioural variability which is defined by Wray and Laird [14] as the

“differences in observed behaviour when entities (human or otherwise) are placed in

essentially the same situations” [14] is typically overlooked by most modelling and

representation paradigms. This variability exists when a persons’ or agents’ subsequent

action cannot be completely predictable in the same situation. The context of situation is

defined by [14] as “both the physical environment (e.g. buildings, terrains) and the

strategic/tactical environment (e.g. mission rules of engagement, command structure)”.

According to Wray & Laird [14], it is wrong for researchers to assume that variability

implies simple dichotomies as correct/incorrect or expert/novice. They list the sources of

variability in human behaviour as mental and physical differences. The types of

variability in human behaviour include within-subject and across-subject. Wray & Laird

[14] define across-subject variability as when two different people act differently when

faced with the same situation. Within-subject variability is a situation where the same

person acts differently at different times when faced with the same situation. Sukthankar,

et al. [13] describe a method for modelling physical variability in MOUT (military

operations in urban terrain) soldiers. They note that the lack of variability in agents make

them predictable and ineffective in a simulation with their human trainees. Sukthankar, et

al. [13] acknowledge that both physical and cognitive differences contribute towards the

overall behaviour of a person. Hence, both should be taken into account when modelling

8

the behaviour of a human. An example is that during a combat mission, it will be easier

for a person with small stature (shorter, smaller) to successfully hide in a small chamber

than a person with big stature (big, fat or tall). Consequently, a persons’ stature should be

taken into consideration when modelling how the person would behave. Likewise, when

being attacked by gunfire, it is easier for a sharpshooter to hit a bigger person than a

smaller person. Sukthankar, et al. [13] showed how incorporating physical variability can

induce different behaviours from agents.

Another factor commonly overlooked in HBR modelling is the stress levels of

humans. How do you represent a human’s ‘stress level’ in an agent’s behaviour? Mental

workload has been shown to affect the performance of individuals [15]. The effect of

stress in modelling human behaviour isn’t relevant to this research because the effects of

stress are negligible in the cause of breaking the limitations of SME knowledge. As such

no further discussions are made on this subject in this dissertation.

Another aspect of HBR is emotions. How does one represent emotions? How

does one represent when a person is sad, happy, etc? Some agents can recognize

emotions. These agents can interact with humans in question and answer sessions [31].

Davis [46, 47] analyses the relationship between emotions in agent systems and

their computational requirements, and notes that ‘emotion-like’ states could cause the

system to be dysfunctional. On the other hand, computational agents can identify these

states and utilize them before the system becomes dysfunctional. He also suggests that

such analysis be carried out during the development of a complex system. McCauley

[48] proposes a way to have an internal emotional judge in agents that enable

representation of a broad range of emotions. Kort and Reilly [49] propose analytical

9

models that incorporate emotions into the design of cognitive machines. This is also not

relevant to this research for the reasons given above.

Computer Generated Forces (CGF) are defined as “automated or semi-automated

entities (such as tanks, aircrafts) in a battlefield simulation that are generated and

controlled by a computer system perhaps assisted by a human operator” [196]. There are

some drawbacks to using CGF’s. Archer & Lavine [32] point out that “using CGF in

training and operations planning can be compromised when the CGF do not behave as

realistically as actual soldiers”. They described work done in improving the realism of

CGF entities in constructive simulations. One of the drawbacks of current CGF

technology includes the predictability and relatively unrealistic nature of the CGF “with

respect to the natural variability of human performance”[32]. This variability results from

different levels of training, aptitude, fatigue and other environmental stressors to which

humans are usually exposed in a battlefield. [32]

Although the work of Archer & Lavine [32] is a definite advancement in the study

of CGF’s, it is limited in scope because it can only be used in the military domain. The

authors didn’t offer ways of generalizing their method to other domains.

Another problem with CGF is the coordination of collaborative works among

agents. Easterbrook [29] identified shared understanding and conflict as two key factors

that affect collaboration. Easterbrook’s [29] work on developing a model of collaborative

behavior based on the concepts of shared understanding, breakdown and conflict is

relevant in the field of CGF.

Gore [30] notes the importance of considering the physical as well as the

cognitive aspects of behavior on performance when investigating human errors. He notes

10

that identifying the factors that lead of human performance errors will provide a better

understanding of performance. According to Gore [30], “researchers in HOOTL2 have

not paid much attention to the impact the environment has on the behavioral predictions

generated by the cognitive models and the link between the cognitive processes in any

situation and the behaviors of the model.” Gore [30] discusses the contextual control

model (CoCoM)3 developed by Hollnagel [122, 123], that addresses this issue by

providing the link through its cognitive process module. The underlying principle of

CoCoM is that it “believes that a person’s comprehension and action depends on how

context is perceived and interpreted” Gore [30].

While considering emotion, variability, stress, physical factors, collaborative tasks

and other such factors that affect human behavior, the work described in this dissertation

subsumes these factors and only treats them implicitly in some cases and neglects them in

others. That is, only their effect on the actions is evaluated through the actions alone.

1.3 Acquisition of Knowledge for Modelling Human Behaviour

As noted previously, acquisition of knowledge is an important aspect of human

behavioural representation. Gonzalez & Dankel [197] note that knowledge acquisition is

composed of knowledge elicitation and knowledge representation within a tool. How and

where does one obtain relevant knowledge for modelling human behaviour? Researchers

have postulated various ways to do this. Knowledge acquisition techniques can be

grouped in three categories: Manual, Automated and Learning techniques.

Schreiber et al. [109] lists five types of knowledge acquisition techniques:

2 HOOTL is human-out-of-the-loop simulation. It is a type of CGF that utilizes computer models of human
performance to create virtual human agents.
3 CoCoM is discussed later.

11

• Interviewing: unstructured, semi-structured and structured

• Protocol analysis: an analysis of the expert is carried out while he/she is actually

solving the problem. An observation of what the expert does is noted either by video,

audiotape, etc. The modelling engineer then extracts meaningful structures and rules

from the transcripts of these records

• Laddering: Graphical representations are made in terms of the relationships between

the problem being solved and the domain. The expert and modelling engineer jointly

construct these graphs.

• Concept sorting: “a useful technique used to uncover the different ways an expert

sees relationships between a fixed set of concepts” [109]

• Repertory grids: experts are presented with samples of the problem domain. The

experts are then asked to choose a pair that is similar and one that is different. The

reasons given by the expert for the difference between the three chosen samples are

noted and become known as a construct. An example [109] is when attempting to

know an astronomer’s understanding of the planets, “if we present him with a set of

planets, and he chooses Mercury and Venus as the similar pair, and Jupiter as the

different planet. We would ask the expert (astronomer) for his reason for choosing

Jupiter as different from the other two planets. We would use his answer as a

construct. In this example ‘size’ would be a suitable construct. The remaining

elements in the domain are rated on this construct.” [109]

According to Gonzalez and Dankel [197], manual techniques usually involve

interview sessions (question and answer) between an expert and the knowledge engineer

(KE), studying instruction manuals and books, observing the expert. Gonzalez and

12

Dankel [197] list different approaches to interview sessions and observational techniques

used during knowledge elicitation.

Automated techniques present a method where the experts’ knowledge is captured

automatically. These techniques could range from a simple query session between and

expert and an intelligent system to a more complex system that captures knowledge by

observing the expert perform actions in his domain [198]. Some automated tools and

techniques are presented below.

CITKA [16, 17, 21], developed for acquiring knowledge about military tactics,

involves a query session between a subject matter expert and the CITKA system. The

main advantage of this approach is in the reduced need for human effort in the acquisition

of knowledge and implementation of the acquired tactical knowledge.

Kim and Gil [19] show how to use existing knowledge acquisition methods

towards building human behaviour models. They also show how these models can be

improved with the development of an acquisition dialogue tool.

Chen and Chan [111] use the inferential modelling technique (IMT) for

knowledge analysis during the process of knowledge acquisition. IMT is a template that

organizes the chunks of knowledge usually embedded in data obtained from experts.

Simon [112] presents an acquisition method composed of three steps. The first step

involves exploiting the structure of existing documents within the organization. The last

two steps of their method are cyclic, and include interviews with experts, prototype

creation and tests.

ATTack (Acquisition Tool for Tactical Knowledge) developed by Henninger

[126] based on the knowledge requirements of context-based reasoning, had a primary

13

objective of reducing the time and decreasing the need for an expert in the acquisition of

a knowledge base for CxBR representation [126]. ATTack made use of the Visual

Interactive System for Task Analysis (VISTA) 4 to collect knowledge on objects of

interest to the agent. ATTack is a pre-cursor of CITKA, having the same overall

objectives.

Learning techniques are those that deduce knowledge for a given task from a

variety of knowledge sources. Gonzalez and Dankel [197] define learning as “the

improvement in the performance of a specific task (intellectual or physical) after previous

exposure to that task or a related one” [97]. Typically, knowledge acquisition techniques

involving learning usually come from examples (historical cases or hypothetical

examples from experts). An example of a knowledge acquisition technique involving

learning is Redux. Redux [18] is another automated approach for acquiring HBR

knowledge. Its main focus is in the reduction of acquisition cost, validating and

maintaining the knowledge used in HBR systems. This was achieved by allowing SMEs

to use diagrams to specify behaviours in abstract scenarios [18]. The system analyzes and

automatically generalizes from the scenarios presented by the expert.

Researchers at MIT [105] have developed a wearable platform that captures

regular patterns in a persons’ behaviour and forms a predictive model of his activities

with them.

Sidani [58] captures expert behaviour by observing expert actions in a simulation.

Sidani’s method has the advantage of capturing both implicit and explicit knowledge.

Gonzalez et al. [110] present a model called Template-based Interpretation (TBI) that

4 VISTA was developed by Ahlers & Schnitzius and is a graphical tool to acquire knowledge for a CxBR
system.

14

captures human behaviour by observing human actions in a simulation for the purpose of

interpreting the person’s intentions. Fernlund & Gonzalez [10, 138] also acquired expert

knowledge by observation and were able to create tactical agents semi-automatically5.

Fernandez-Breis, et al. [106] implement an approach combining natural language

recognition techniques and knowledge acquisition that can extract knowledge from

natural language texts. Kass & Finin [107] suggest techniques for implicitly acquiring

knowledge about a user during a system’s interaction with its user. They go further to

postulate some rules governing the acquisition of this knowledge.

There are many more knowledge acquisition tools, for example, Induction tool,

PLANET, ETS, and many others [197]. An underlying shortcoming of all these tools and

techniques is their total dependence on expert knowledge. For manual approaches, the

drawback is that the information presented by the expert or read in instruction manuals

and books written by experts are thought to be excellent sources of knowledge. There are

no known methods used in filling the ‘gaps’ left by experts or books and as such tactical

models built from these acquired knowledge are always lacking. The same drawback

applies to automated techniques. The SMEs’ are limited in what they know and what they

can do. Thus these automated techniques and tools have the same shortcomings. On the

other hand some acquisition techniques that utilize learning attempt to break the SME

knowledge limitation. Currently though, the learning techniques used always involve the

presentation of examples. The same problem applies in cases where no examples exist or

where the examples presented by the expert are faulty.

5 Fernlund & Gonzalez achieved this by the use of a new methodology called GenCL which makes use of
CxBR.

15

 This research presents a method that attempts to eliminate the errors and

inconsistencies that could exist in the knowledge acquired from SME. The limitations in

SME knowledge are made unnoticeable by designing a model that learns from its actinos

and mistakes. This is achieved by having the agent learn and enhance its behavior in a

simulator, based on its experience. This experience is gained when the agent learns from

its mistakes and successes when attempting to achieve its goals in a simulator.

1.4 A Brief Introduction to Agents

Models of human behaviors are best embodied in some form of simulated agents. These

agents’ sense and act within the environments in which they are situated. Russell and

Norvig [25] discuss how agents should act as well as the different types of agents. Foner

[26] describes an agent from the sociological point of view and introduces a prototype

agent known as Julia that attempts to appear human. Franklin & Graesser [27] try to

differentiate between an agent and a program. They furthermore tried to classify agents

according to their properties. According to Russell and Norvig [25], an agent should be

rational. When an agent does the right thing, it is said to be rational. However, a new

question arises with this definition of rational - what is the right thing for an agent to do?

There should be a way of evaluating an agents’ performance either internally or

externally. An agent should have some form of autonomy. In summarizing the structure

of an agent, Russell and Norvig [25] note that an agent “is equal to the agents’

architecture in addition to its program.” A program is a “way of mapping the percepts of

the agent to the actions it takes”. The way the program implements this mapping is what

brings about the different types of agents. Based on this, Russel and Norvig suggest four

16

types of agent programs, namely: Simple reflex agents, Agents that keep track of the

world, Goal-based agents, and Utility-based agents [25]. These are further described

below.

1.4.1 Types of Agent Programs

1. A simple reflex agent is one that reacts to situations [25]. The program is written in a

condition-action rule. The percepts are interpreted to represent the current state and a

rule that matches this state is fired, thus producing some action associated with this

rule. A CxBR agent can be said to at least have the qualities of a simple reflex agent.

2. Agents that keep track of the world have an internal state that is updated with percepts

from the environment in a regular manner [25]. This allows the agents to be aware of

and survive their often unpredictable environment. CxBR agents also can be said to

have this quality.

3. Goal-based agents have some sort of goal information within their program [25]. For

example, an agent with information about the current state of the “world” can make

decisions on what actions to take. However, if a goal is included, the agent’s decision

could be based on how to reach that goal. In most cases the goal-based agent appears

to be less efficient, but it is far more flexible. The competing context concept6 (CCC)

developed by Saeki & Gonzalez [28] and other CxBR models require goal-based

agents [7].

4. The utility-based agents try to perform actions based on the value of that action in

that state, towards the end goal. There is a direct mapping of a state to a number, and

6 The competing context technique is an attempt to eliminate the need for hard-coding information in the
contexts for the CxBR architecture. This technique is explained in section 1.4.5.5

17

daihe
Underline

this number describes how good or bad that state is. The value of a state relative to

the goal is usually calculated based on some predefined functions.

In this section, an introduction to agents has been presented. As stated, most HBR agents,

including CxBR’s agents, have the qualities of all types of agents described above.

Methods that utilize machine learning in the acquisition of knowledge also possess these

qualities with the exception of the qualities of a utility-based agent. Lacking a utility-

based attitude means that there are no mappings between ‘rewards’ or ‘punishments’ to

actions in each state and thus no mappings between a goal state and rewards or

punishments for being in that state. Agents that seek and acquire knowledge based on the

utility of each state, including the goal state, are most desirable. This research seeks to

establish a knowledge acquisition technique based on agents that include the properties of

a utility-based agent using a CxBR framework. This would be achieved by the synergistic

combination of CxBR with RL through the enhancement of a predefined human behavior

model.

1.5 Introduction to Some Human Behavior Representation Paradigms

As noted in the previous sections, many modelling paradigms exist that attempt to

optimally represent human behaviour. Each of these paradigms has its advantages and

disadvantages. So far, there is no modelling paradigm that addresses all aspects of human

behaviour. Some modelling paradigms are domain specific; for example, a paradigm that

only models a soldier’s behaviour in a battlefield situation, a captains’ behaviour in a

submarine, an automobile driver’s behaviour on a freeway, and many others. In general,

the modelling paradigms typically meet most of the requirements of a HBR model. Some

18

researchers have defined models that combine existing modelling techniques to

synergistically combine their strengths. Below is an introduction to the most common

modelling techniques used in modelling human behaviour.

1.5.1 Cognitive Network of Tasks (COGNET)

COGNET is a framework developed by Zachary et al. [5, 113] that models human

cognition and decision-making. COGNET meets the requirements of the cognitive

analysis process as defined by [113]. According to Zachary et al. [113], the cognitive

analysis process should represent the four main aspects of tactical decision making.

These include, 1) real-time, 2) opportunistic, 3) multi-tasking and 4) situated in

computer-based and verbal interactions. “It provides an integrated representation of

knowledge, strategies, behavioural actions and problem solving skills that are used in

specific domains to produce a powerful cognitive tool.” [114]. The “COGNET

framework is composed of a theoretical basis, its description language7, its data

collection, knowledge elicitation, analysis and the representation methods” [113].

COGNET is composed of a cognitive architecture and an internal knowledge

base, (see Fig.1.1). The cognitive architecture has a specific structure with standardized

operational principles. The internal knowledge is “a set of symbols on which it operates”

and is organized in specific representational schemes [113]. Human information

processing is “broken down into three parallel mechanisms – perception, cognition and

motor activity”. Perception includes sensation, which receives information from the

7 The knowledge is usually represented using the COGNET description language

19

daihe
Underline

outside world and “stores it where it can be accessed by both the perceptual and cognitive

mechanisms”. This store is known as the extended working memory.

The cognitive process manipulates the information in the extended working

memory by using some previously-acquired knowledge. The cognitive process doesn’t

operate directly on the perception of the outside world. It can modify the representation

of the problem and also invoke actions via commands to the motor activity module. The

motor activity module then manipulates the environment through physical instruments

embedded in the system. The COGNET framework has been successfully applied to

many domains including a vehicle tracking domain, here it was shown to have the ability

to represent and predict attention-switching performance [113]. The framework was also

applied to telephone operator services [114] and other complex domains. Fig. 1.1

illustrates the COGNET framework.

Although COGNET has been used to successfully model human behaviour, it

suffers from the problem earlier identified in most human behaviour representation

techniques, i.e. the over dependence on expert knowledge. The data collection and

knowledge elicitation components of COGNET do not incorporate learning and as such

the data collected is stale (not dynamic) in the sense that a model built with the COGNET

framework, cannot be enhanced automatically.

20

Figure 1.1 Conceptual View of COGNET Cognitive Architecture

(Reproduced from Zachary et al. [113] without permission)

1.5.2 Atomic Components of Thought or Adaptive Character of Thought (ACT-R)

ACT-R is an Adaptive Character of Thought – Rational theory conceived by Anderson

[101]. This theory is based on the premise that “complex cognition comes from the

interaction of procedural and declarative knowledge” [101]. Procedural knowledge,

represented by production rules, arise from the “simple encodings of transformations in

the environment [101]”. On the other hand, “declarative knowledge is represented by

units called chunks” and it arises from “simple encodings of objects in the

environment” [101].

ACT-R bases its foundations on the workings of the human cognitive process.

This process has a large database of knowledge units (chunks and productions rules). In

any given context, “the appropriate units are selected by an activation process based on

the statistical information gathered on the environment.” The ACT-R theory states that

21

daihe
Underline

“the power of human cognition depends on the amount of knowledge encoded and the

effective deployment of the encoded knowledge” [101].

The goal of the ACT-R theory is to provide the details to a claim made by

Anderson [101] on the formation of intelligence. Anderson claims that “all that there is to

intelligence is the simple accrual and tuning of many small units of knowledge that in

total produce complex cognition. The whole is no more that the sum of its parts, but it has

a lot of parts.”

There are three questions that address how the details of the claim are provided:

1) How do we represent the units of knowledge? 2) How do we acquire the units of

knowledge? 3) And how do these units of knowledge get deployed in a cognitive system?

Declarative knowledge is represented in chunks. Chunks are “schema-like

structures” [101] that have pointers that specify their category and encode their contents.

“Procedural knowledge is represented by production rules”. These production rules

usually act towards achieving a goal and sometimes create sub-goals in the process.

These sub-goals establish “an abstract hierarchical structure on behavior” [101].

The second question revolves around how the units of knowledge are acquired.

We need to know the origin of both the chunks and the production rules. The actions of

production rules usually create chunks. The encoding of chunks are the origins of

production rules. Anderson [101] notes that these definitions of the origins would cause

circularity in the theory. Thus, he also suggests the creation of chunks from an

independent source. The independent source is the encoding from the environment.

During knowledge acquisition in ACT-R, chunks from the environment are encoded and

22

inferences about the rules for their transformation involving examples of the problem are

made.

The final question is, how do these knowledge units organize themselves in such a

way that the right unit is chosen in a particular context? How do you identify the relevant

knowledge for a particular situation quickly? Anderson [101] notes that this is a major

problem that has dogged artificial intelligence (AI) systems, and in particular, expert

systems. He notes that the power of expert systems lies in their knowledge base, i.e. the

more knowledge available to an expert system, the more power it should have. The

problem, however, is that with the growth of an expert systems knowledge base, the

slower it executes, up to a point that it is no longer effective to use.

Anderson [101] developed a solution for this problem using his rational analysis

method8. There are two parts to this solution. The first is an identification of the

knowledge structures (chunks and productions) that most likely fit the current context.

According to Anderson [101], there is a track record of general usefulness maintained by

the mind and this is combined with “contextual appropriateness” for some inference

about the knowledge to use in the current context. The second part is the identified

knowledge structures determining the performance.

In summary, Anderson [101] states that “ACT-R implies that declarative

knowledge is a direct mapping of things in our environment” while procedural

knowledge is the direct mapping of the observed transformations. These two types of

knowledge are combined and applied based on the statistical knowledge of the

environment.

8 According to Anderson [101], rational analysis theory states that “knowledge is made available according
to its odds of being used in a particular context.” These odds are calculated by an implicit performance of a
Bayesian inference during the activation process.

23

There are many versions of the ACT theory as well as implementation of them.

Lebiere [130] provides a tutorial on ACT-R version 5.0 and provides a history of the

ACT theory.

Anderson et al. [102] present some additions to the ACT-R architecture to

enhance the integration of various modules into a single problem solving unit. They

showed how this integration performed better than previously.

1.5.3 State Operator And Result (SOAR)

In SOAR, goals and sub-goals are generated and plans are created and implemented on

how to reach these goals. SOAR was developed by Laird et al. [33]. Until the goals are

attained, the plans for achieving those goals remain active. When a new situation arises,

new goals are generated and new plans on achieving these new goals are created and

implemented. The cycle continues until there are no more goals to achieve. The goals and

plans are implemented using the rule-based paradigm. According to Laird et al. [103]

“the design of soar is based on the hypothesis that all deliberate goal-oriented behavior

can be cast as the selection and application of operators to a state”.

There are two types of memories available in SOAR, the working memory that

holds the current situation, the results from intermediate inference, active goals and active

operators, and the long-term memory that describes how to respond to the various

situations in the working memory [103]. In solving a problem, the steps involved include:

proposal of candidate operators, the comparison of candidate operators, the selection of a

single operator from the list of proposed candidate operators, and the application of the

24

daihe
Underline

selected candidate operator. This is shown in Figure 1.2. Figure 1.3 shows the SOAR

architecture.

Figure 1.2 SOAR Decision Cycle, (Reproduced from [166] without permission)

 In SOAR, learning is achieved through a mechanism known as chunking. Chunking

occurs when an operator impasse is resolved and SOAR summarizes and generalizes the

processing that led to that sub-state. According to Ritter et al. [115], the development of

SOAR was based on the combination of three main elements, “the heuristic search

approach of knowledge-lean and difficult tasks”, “the procedural view of routine problem

solving”, and “a symbolic theory of bottom-up learning designed to produce the power

law of learning.” Ritter et al. [115] compare the similarities and differences between

SOAR and ACT-R architectures for modeling behavior. They note that the “limitations

on SOAR’s theoretical assumptions originate from the general characteristics of

intelligent agents, rather than from a detailed behavioral representation”[115]. Therefore,

“SOAR is more biased towards performance than ACT-R because its background is AI-

based, while ACT-R is based upon cognitive psychology”[115].

Young and Lewis [116] examine the contributions made by SOAR’s approach to

the issues pertinent with the working memory. They show how a cognitive system can

handle complex tasks that require large quantities of information by utilizing long-term

Propose Operators
(i-supported)

Apply Operator
(o-support)

Select Operator OutputInput

25

memory in conjunction with the external environment if there is some constraint on the

capacity of the working memory.

Several researchers have successfully combined the SOAR approach with other

cognitive models or other learning paradigms amongst which include the EPIC-SOAR

model for a simplified enroute air traffic control task [117] and SOAR-RL [118]. SOAR-

RL [118] is a modification to the SOAR architecture that provides learning opportunities

for an agent from statistics of its successes and failures in the selection of an operator. It

is reinforcement learning (RL) embedded in the SOAR architecture.

Figure 1.3 SOAR Architecture (Nason and Laird [118] reprinted

without permission)

1.6 Organization of Dissertation

This dissertation is organized in the following order. Chapter 1 provides a summary of

the research done and the background information of some human behavior

representation paradigms. Chapter 2 describes some techniques that use contexts to

represent human behavior. Chapter 3 clearly defines the problem being addressed.

26

Chapter 4 contains some machine learning techniques that could be used in solving the

problem. In Chapter 5, the conceptual approach to a new methodology is described that

integrates CxBR and RL. Chapter 6 describes the design of a prototype and the various

experiments while chapter 7 contains the results from the experiments and a

comprehensive evaluation of these results. Chapter 8 is a conclusion of the research work

with a summary of the work, recommendations and future research work that could be an

offspring from this work.

1.7 Summary

This chapter introduces the reader to the problem being investigated. Background

information on various human behavioral modeling techniques is presented. Also

presented in this chapter are the ways in which knowledge is acquired and represented by

the various modeling techniques. The limitations of the various techniques used to

represent human behavior are highlighted with an emphasis on the most prevalent

limitation, i.e., the total dependence on SME knowledge. Finally the outline of the

dissertation and chapter summary were presented.

27

CHAPTER 2: HUMAN BEHAVIOR REPRESENTATION THROUGH CONTEXTS

2.1 Contexts

Humans employ contextual reasoning in everyday decision-making. However, one may

wonder what exactly is a context? In simple terms it means, “That which surrounds, and

gives meaning to, something else” [1]. Nevertheless, many researchers in the field of

contexts have different ideas and meanings of what contexts are. Sowa [37] states that

“the word context has been used with a variety of conflicting meanings in linguistics”,

Sowa [37] goes on to list two major perceptions of the word contexts as derived from the

dictionary. There are:

• The basic meaning of Context is some text that surrounds a word being used in a

sentence or some phrase of interest. Sowa suggests this to be a section of linguistic

text.

• The derived meaning of Context is in a non-linguistic situation, it includes some topic

of interest.

Sowa, goes on to say “Context may refer to the text, to the information contained in the

text, to the thing that the information is about or to the possible uses of the text, the

information, or the thing itself” Sowa [37].

Kokinov [34] states that contexts can be viewed as “a set of internal or mental

representations and operations” or “a set of environmental elements”. Kokinov [93] goes

on further to define context as “… the set of all entities that influence human (or

system’s) cognitive behavior on a particular occasion”. According to Kokinov [34], the

way AI researchers’ model contexts are different from the way contexts are modeled and

28

viewed by researchers in psychology. Usually, “the AI approach to contextual reasoning

can be viewed as navigation between and within context boxes”[34]. The boxes are

predefined and the only issues for the AI developer are how to represent the individual

box, how to recognize that the box has to be changed and how a new box is chosen

amongst the various boxes [34]. Kokinov [34] states that the issue of constructing a new

context on the fly is never addressed in AI researches. One of the focuses of this research

is to address this limitation – creation of context on the fly.

On the other hand, according to Kokinov [34], “when psychologists study context

effects, they do not think of changing the goals or beliefs of the subject”. Kokinov [34]

mentions intentionality, controllability, awareness and efficiency as independent aspects

of the automaticity of any cognitive process. What Kokinov concluded from the “review

of the psychological studies on context is that context usually has an unconscious and

unintended influence on people’s behavior and that this happens all the time and is

triggered by all sorts of incidental elements of the environment but also by the previous

memory states”[34]. Kokinov notes that “it is very important that the previous memory

state produce context effects, since the context effect maintains the continuity of the

cognitive processes and prevents human thoughts from continuously running in

leaps”[34]. The previous memory states also ensure efficiency because “they restrict the

set of all possible interpretations, inferences, searches, etc., to the set of relevant

ones” [34]. Kokinov & Yoveva [87] note the effects of contexts on problem solving.

They show the effect of ‘near’ and ‘far’ contexts in experiments that contain illustrations

of the problem being solved, illustrations relating to the problem being solved and also

illustrations not relating to the problem being solved. Kokinov [2, 34, 90, 91, 93] went on

29

further to suggest a way of dynamically changing contexts. Kokinov proposes in [93] “a

dynamic theory of context that considers contexts as the complete set of entities that can

influence a human’s cognitive behavior in any given occasion”[93]. Contexts are

“thought of as the dynamic fuzzy set of all associatively relevant memory elements

(mental representations or mental operations) at a particular instant of time” [93]. The

main principles of Kokinovs’ dynamic theory of contexts are [34]:

• “Context only refers to the state of mind of an entity and not to the environment in

which that entity exists”

• At any given time, the specific distributions of priorities of all mental

representations and operations correspond to the context

• The associative relevance of mental elements measure the priorities

• “associative relevance is graded and computed automatically and in parallel to the

reasoning process”

• “There are no clear cut boundaries between the set of priority elements because

context is dynamic”

Kokinov [34, 90, 93] presents the DUAL9 architecture that utilizes the dynamic theory of

contexts.

Zibetti [35] discusses the role of contexts in interpreting and understanding

perceived events as actions carried out by other people. A definition of context is based

on the state of the system at the processed time and also the temporal definition. Some

interesting examples where given by Zibetti [35] to portray what action is being

perceived by onlookers in different scenarios and finally suggests a method called

9 The DUAL architecture is described in detail in section 2.

30

C.A.D.S [96] (Categorization et Assignation Dynamique de Signification) [96]. C.A.D.S

is a model that attributes meaning to situations through the process of categorization.

As stated earlier, there are many definitions of contexts. Brezillon [40, 83] defines

contexts “as a collection of relevant conditions and surrounding influences that make a

situation unique and comprehensible”. Three types of contexts as proposed by Brezillon

and Pomerol, are enumerated in [83] as external knowledge, contextual knowledge and

proceduralized context. The external knowledge is the part of context that isn’t relevant

to a step in the decision-making process of a task. The “contextual knowledge is the part

of the context that is directly relevant to the step of the decision making process in the

task”[83]. Brezillon [40] breaks the contextual knowledge further into the proceduralized

context, which is prevalent at any given step of the decision-making process of a task.

Based on his definition of a context, Brezillon conceived the notion of Contextual

Graphs, “that allow any given problem for operational processes to be represented in

contexts by taking into account the working environment” [83].10

Turner defines contexts as “any identifiable configuration of environmental,

mission-related, and agent-related features that has predictive power for behavior” [36].

Turner [36] conceived the Context-mediated behavior (CMB) paradigm which ensures an

agent behaves appropriately in any given context. More on this later.

2.2 Representing Human Behavior through Contexts

Successful attempts have been made to model tactical behaviours through the use of

contexts [7, 36]. Based on the flexibility of contexts, and the many definitions of it,

several researchers [36, 38, 39, 40] have proposed methods that rely on contexts to build

10 A more detailed explanation on contextual graphs can be found on section 1.5.4.3 & in [83]

31

agents that exhibit tactical behaviours. Although there is no universally-accepted best

“modelling paradigm”, each modelling paradigm proposed by the various researchers

have advantages and disadvantages. These are briefly described below.

2.2.1 Context-Mediated Behavior

Context-mediated behavior for intelligent agents was conceived by Turner [36, 44]. It is

based on the premise that an intelligent agent should effortlessly recognize the contexts in

which it is in and act appropriately in accordance to the explicit knowledge about the

context available to it. He notes that there is “no such thing as context-free appropriate

behavior” and that an intelligent agent should take context into account automatically as

humans and animals do.

Turner [36] lists four desirable properties to his approach on context-sensitive

behavior, the first is to make sure it is efficient, a change in context should be

immediately recognized and the appropriate context for the new situation immediately

activated. Secondly, it should be automatic, i.e. after the new situation is recognized, the

change in context should occur automatically. Thirdly, CMB helps in the agents’

perception and understanding of the environment. Finally, explicitly representing

contexts provide an opening for the contextual knowledge of agents to be adjusted from

their experience.

Turner [36] identifies the aspects of an agent’s behavior that can be affected by

context as:

1. Understanding the situation: before any decision is made by the agent on how to

behave, it should understand the current context. Its knowledge about its current

32

daihe
Underline

context would aid in answering some questions pertinent to the behavior it

exhibits when in that context. These questions include

a. What predicted features of the context that are not yet visible in the

current situation?

b. What are the unusual features of the current situation?

c. Are there multiple meanings to known concepts in the current context?

d. How would the interpretation of sensor data be achieved in this context?

2. The behavior should be automatically modulated to fit the context: This is an

operation that is implicit in humans; an example provided by Turner [36] is that

when a person enters a library, the person automatically reduces the tone of his /

her voice; when a movie ends a person automatically starts leaving the theater,

this becomes his immediate goal. Turner [36] states that once a context is

recognized, an appropriate behavior for that context should be exhibited by the

agent without any reasoning effort on the agents’ part.

3. Handling of unanticipated events: the handling of unanticipated vents should

occur effortlessly as soon as the context is recognized. Knowledge about how to

handle events should be available, as this knowledge would help the agent:

a. Detect the event

b. Evaluate the event

c. Respond to the event

4. Deciding on what to focus attention: the decision on the goal to focus attention is

context-dependent. Attention should be focused on the goals of the current

context, for example if a person is hungry and going to buy some food, his

33

attention should be on purchasing the food and eating. However, if on his way to

the food store his car experiences a flat tire; his immediate goal would change to

address this context. The focus of attention would switch to fixing the car.

5. Selection of actions for achieving goals: as soon as a decision is made about what

goal to focus attention, the actions to achieve this goal must be selected. This

selection process is context-dependent, for example if a person remembers that a

bill is due immediately and has to pay that bill immediately, knowing (s)he could

pay by phone or the internet, if the person is driving, (s)he would select the action

to call and pay by phone, if (s)he is at home, (s)he could choose to either pay over

the internet or pay by phone. Turner [36] states that the knowledge of the current

context available to the agent should allow an effortless selection of the actions

based on the context.

6. Selection of strategies for problem-solving: various strategies exist for solving the

same problem, depending on the context. An example provided by Turner [36] is

the difference in the way a medical student and an experienced doctor perform

physical examinations on a patient. A medical student would follow a step by

step, pre-set procedure, whereas an experienced physician can skip parts of the

process he knows from his experience are not necessary for the particular case.

With context having an effect on these aspects of behavior, Turner postulated a Context-

mediated behavior (CMB) as “a mechanism for ensuring that an agent behaves

appropriately for its context.” There is an explicit representation of an agent’s knowledge

for each context and CMB makes sure for each context, the right knowledge is provided.

Figure 2.1 illustrates the Context-Mediated Behavior process.

34

Figure 2.1 The Context-Mediated Behavior process (reprinted without

permission from [36])

The CMB process is made up of interactions between ECHO (embedded context-

handling object) and other modules. The long-term memory is searched for contextual

schemas (c-schemas) that could potentially identify the new situation. Turner [36, 44]

calls this “evocation”. This process of evocation identifies a few candidate c-schemas. A

diagnosis of the situation as a representation of one or more contexts is carried out by

ECHO, resulting in the creation of a “context structure”. This context structure represents

the current context. In some situations, multiple c-schemas are needed to identify the

situation correctly. These c-schemas are merged and the knowledge in them is sent to the

reasoning modules of the agent.

In CMB, contextual knowledge is stored in c-schemas. The knowledge acquisition

process is achieved by interactions with domain experts. This interaction could follow

any of the methods described in the section on knowledge acquisition. Turner [36] hoped

that the agent would eventually learn c-schemas from its experience but this was never

35

implemented. Contexts are identified through diagnosis, the attributes of the current

situation, knowledge about known situation and relationships between them. These

provide the information for diagnosing the current situation as represented by one context

or a combination of contexts. Each c-schema contains the contextual knowledge about

the situation as well as the relationship between it and other c-schema. When a situation

that has never been experienced before occurs, “a c-schema representing a similar context

would be merged to form a correct representation of the new context” [36].

The approach used by Turner [36] in transitioning between contexts, is to provide

information that would trigger a context change within the context definition. Turner [36]

notes that learning the events that trigger a context change may be difficult. He suggests

it as a future research topic.

Some successful applications of the CMB technique include the control of an

autonomous underwater vehicle (AUV). Although not related to Turner’s [36] CMB, a

pedestrian flow model (PEDFLOW) has been developed using a context-mediated

behavior technique by Kukla, et al. [131]

A drawback of the CMB technique is the lack of agent learning. A model built

with the CMB technique cannot be enhanced automatically during the models interaction

with its environment. This is because the knowledge acquired is ‘static’. Knowledge

acquired for a CMB model is totally dependent on a SME.

2.2.2 Contextual Graphs

Brezillon [83, 132] describes a contextual graph (CxG) as “an acyclic graph with a single

source, a single output (sink), and a serial-parallel organization of nodes connected by

36

daihe
Underline

oriented arcs”. The nodes in the graph represent the actions, the “contextual and

recombination nodes”, the sub-graphs (activities) and a parallel grouping. There is always

an end to the algorithm in a contextual graph. Contextual graphs present the reasoning

process understood by operators because the modeling of the operators’ activities is

possible through the sub-graphs. “An action is an executable method; an activity is a

complex action with different elements.” [83] An ordered sequence of the elements of a

contextual graph from the input to the output is known as a path. A practice is the

sequence of actions in a path.

Brezillon [132] notes that “a proceduralized context is an ordered sequence of

contextual-knowledge pieces and their values.” From this definition, the context of any

action is defined by its proceduralized context and the contextual knowledge.

A great attribute of CxGs’ is the ease of introducing new practices. The

generation of a new practice consists of the application of a few changes to an existing

practice or contextual nodes. The knowledge of an existing practice used by an operator

and the possibility of acquiring it when needed are attributes of CxG systems.

The building of the proceduralized context from contextual knowledge is usually

based on communication between members in a community of practice, irrespective of

their domain of origin. Usually when people interact, a piece of knowledge, i.e. the focus

of attention of each person, is combined to create an interaction context. The piece of

knowledge provided by each person is taken from their contextual knowledge. The

people combine and structure this knowledge into a shared segment of knowledge.

Additions to this shared knowledge are possible based on the request of other(s) in the

group. The addition of knowledge to this shared knowledge is refered to as the

37

progressive building of proceduralized context. If this shared knowledge is finally

accepted by all parties interacting, it is integrated into a knowledge structure agreed upon

by all parties (proceduralized context). This proceduralized context is then moved to the

shared contextual knowledge of everyone when it is no longer the focus of attention.

“The proceduralized context, therefore, contains all the pieces of knowledge assembled

and accepted by all persons that interacted”[132]. It represents a “functional knowledge

or causal and consequential reasoning. This newly-created contextual knowledge

(previously proceduralized knowledge) can be utilized later as either a whole or part of

another contextual knowledge to be integrated into a new proceduralized context”[132].

Brezillon [132] argues that this is why the more experience a person has, the more

structured the knowledge available to the person is.

Each action in a CxG is usually associated with some fixed and static context. The

dynamic nature of context is achieved at the practice level. The evolution of the

contextual knowledge and procedural knowledge during the application of a practice

account for the dynamic nature of contexts.

There are some successful applications of CxGs, among which include an incident

management for a subway line Brezillon et al. [133]. A prototype software that exploits

the concepts of a CxG has also been developed [83].

Although Brezillon claims CxGs can learn, it is the opinion of this author that the

‘learning’ mechanism in CxGs is not fully developed and as such learning doesn’t

actually occur. The lack of learning is a short coming of CxGs. A model built using CxG

cannot be enhanced automatically during the models interaction with its environment.

The knowledge used in building CxG models is also totally dependent on an expert.

38

2.2.3 Context-Based Reasoning

Context-Based Reasoning (CxBR) by Gonzalez and Ahlers [7, 39], provides intelligence

to an agent by controlling its actions in a real or simulated environment. It is based on

some guiding principles that pertain to the way humans think in their everyday activities.

The basic ideas from which CxBR was created are [41]:

• “In any given situation, tactical experts are proficient at a task by identifying and

dealing with only the key features of that situation.” [41] An example would be if an

automobile is taken to an auto mechanic with water leaking from underneath the

radiator, an expert auto mechanic wouldn’t bother examining its battery or ignition

system. He/she automatically recognises the key feature of the situation - water

leaking from the radiator and proceeds directly to the radiator.

• “The numbers of things that can realistically happen in any given situation are

limited” [9]. A popular example given by Gonzalez et al [9] is that it is highly

unlikely for a tire blow-out to occur while a car is waiting in a traffic light. As such,

an agent wouldn’t consider a tire blow out event when in a traffic light situation.

• “When faced with a new situation, the present course of action would be altered

accordingly to deal with the present situation” [9]. An example would be when

driving to work from home; the usual plan of action could be to go from ones’

driveway to a suburban street, to a freeway to a city street and then to the parking lot

of ones’ office. If a new situation occurs, for example a tire blow out or if the road is

blocked by construction or an accident, a new course of action would be taken to

achieve the overall goal of getting to the office.

39

daihe
Underline

CxBR is composed of a hierarchy of contexts. At the top level is the mission context that

defines the overall goals and mission of the agent. Then there are one or more major

contexts, and below that, sub-contexts, sub-sub-contexts, etc. Controlling the agent to

achieve its goals is the main objective of CxBR. Figure 2.2 shows a block diagram of a

context.

CxBR is action-based rather than goal-based, sub-goals are considered within a context

but only implicitly.

Figure 2.2 Block Diagram of a Context (Reprinted without permission from Stensrud

et al. [89])

The mission context defines the objectives and the constraints of the agent. The goals the

agent has to achieve are listed, as are the constraints imposed on the mission. For

example, in a mission to drive to work, a goal can be getting to work on time and a

constraint on this mission could be to avoid getting a speeding ticket, hitting a pedestrian,

Fact Base

 Inference Engine

 Context Logic

Context

 Inputs to Inputs to
systemsystem

Action taken by agentAction taken by agent

40

etc. At times, the constraints placed on a mission call for the agent to act intelligently and

smartly to circumvent or satisfy the constraints. In the example given, if the agent has to

get to work on time, and it leaves home late and goes through a freeway, because it has a

constraint of not getting speeding tickets, it has to maintain the speed limit specified for

that freeway and as such might not achieve its goal. The agent must then intelligently

manoeuvre its way across different available shorter routes, taking into consideration its

overall goal of getting to work on time.

Beneath the mission context level is the major context. A major context contains

actions performed by the agent while in that context. These actions are based on the

feedback received from the environment as to the agents position in the “world” (it’s

environment). An example of a major context could be driving on a freeway. While

driving on a freeway, the actions performed by an agent would be different from those

performed by the same agent when driving in a city context. At any point in time, there

must be one and only one major context in control of the agent. This major context is

referred to as the active major context. Major contexts are mutually exclusive of each

other. Sub-Contexts are used to represent actions not directly critical to reaching the

mission’s objectives; “they are usually of short durations and are called by one or more

major contexts”[41]. Figure 2.3 shows the hierarchical structure of CxBR.

41

Figure 2.3 Hierarchical Structure of CxBR

As the agent performs actions on the environment, the environment changes and a search

through the transition rules within contexts is done to recognise any evolving situation.

Once a situation change is recognised, the context that addresses the new situation

becomes the active context and takes control of the agent until a change in situation

occurs again. This process of situational awareness, action on the environment and

context transition occurs continually until the agent achieves its goal or fails to do so.

Figure 2.4 shows the diagram of a CxBR model.

Mission Context

Major Context1 Major Context2 Major Context3

Sub-Context1 Sub-Context2 Sub-Context3

Sub-Sub-Context1

Sub-Context4

42

Figure 2.4 Diagram of a CxBR model. The dashed lines represent valid context-

transition pairs while the solid lines indicate either inputs or commands. C2 is currently

the active Major Context (Reprinted without permission from Stensrud et al. [89])

Before using the CxBR paradigm, a detailed knowledge of the environment must

be available. Also, there must be subject matter experts (SME) in the domain of interest

before model development can be done. The knowledge provided by the SME is acquired

by some means and modelled appropriately for the problem at hand. The modelling of the

problem usually involves defining and creating context boundaries11. After the definition

and creation of the context boundaries, the actions prescribed by the SME are hard-coded

to each context. The manner in which the context transition should occur is also hard-

coded within a context when a new situation arises. Norlander [124] built a framework

for implementing CxBR agents in simulations.

11 Context boundaries are the definitions of the identification of a situation and all allowable actions in that
situation.

Mission M

Context c
0

Context c
2 Context c

1

Context c
3

Agent data to
 Fact-bases

 Agent

Context Topology

Agent Action
to perform

action

Inference engine

Stimuli from environment

43

The contexts are “hard-coded” based on the knowledge supplied by an expert.

This leaves little room for flexibility and learning. As such, the agent may act irrationally

when faced with unknown situations. In general, the agents’ actions or knowledge are

constrained by those expert that provide the knowledge for the contexts, and the agent

doesn’t learn.

Attempts have been made to introduce flexibility to the CxBR paradigm with

respect to the context transition process. Gonzalez and Saeki [42, 43, 28] introduced the

competing context concept in which the context transitions defined in the contexts are not

hard-coded, but rather allow eligible contexts to compete amongst themselves for the

right to become activated. A time-warp simulation is carried out to determine the context

to make active. It selects a context at random when no clear ‘winner’ exists between the

competing contexts. While the competing context achieved its purpose, it doesn’t learn. If

a wrong context or action is chosen, the agent doesn’t learn to not choose it again.

Recently, Fernlund and Gonzalez [10] developed an approach that automatically

builds contexts by observing human actions. Although their approach achieved its

purpose of learning through observation, it lacks the capabilities of experiential learning.

If the observed expert behaves badly, so will the agent, and this might affect achieving

the agents’ goal. Learning from observation improves knowledge acquisition, but does

not break the SME limitations, as one must still be observed.

The Context-Mediated Behaviour paradigm described in the previous section is

conceptually similar to CxBR with some differences: 1) Instead of having the compatible

contexts listed within a context and competing amongst contexts listed as compatible12, in

Context-Mediated Behaviour (CMB), a diagnosis is carried out on the contexts. 2) CMB
12 This occurs in the competing context concept extension of CxBR

44

centralizes the management of contexts whereas CxBR distributes the management to the

various contexts. 3) In CMB, contexts are merged to form new contexts, a feature that

isn’t available in CxBR. 4) CMB does not use a fact base, whereas CxBR uses the global

fact base and the local fact base as working memories.

A comparison of Contextual Graphs and CxBR was carried out by Lorins et al.

[92] to highlight the similarities and differences between both paradigms in terms of

context representation, contextual change / movement, knowledge acquisition, etc. He

concludes that more exploration on the advancements and their implementation is needed

to have a complete comparison based on the above metrics.

2.2.3.1 Components of CxBR

The following components are an integral part of the CxBR architecture:

1. Contexts

2. Sentinel / Transition rules

3. Local fact base

4. Global fact base

5. Environment

6. Inference Engine

7. Agents

I Contexts

Contexts can direct the actions of the agent. The required responses to environmental

stimuli are stored in contexts. They hold the transition rules as well as all actions to be

45

undertaken by the agent. A typical mission would contain many contexts. The

relationship between a context and the actions of a context is one-to-many, meaning one

context can contain many actions. In the current CxBR architecture, the actions defined

in a context are pre-programmed.

Another part of the context is the transition rules. The transition rules contain all

transition definitions between the existing context and other compatible contexts. In the

current CxBR architecture these rules are neither learnt nor updated during the course of

the simulation as new information is introduced to the agent. The coding of the transition

rules is pre-programmed.

II Sentinel or Transition Rules

This is the part of the system that alerts the agent when a change in situation occurs. It

also initiates a transition to a new context based on the defined rules. The sentinel or

transition rules are embedded in a context and are activated periodically or every

simulation cycle. As these rules fire (are activated), information about the current state of

the agent is obtained from the calculations, inferences and deductions that occur within

the inference engine.

III Local Fact Base

The local fact base is part of the agent architecture. It stores information about the

immediate environment, actions available to the agent (as defined in contexts). The local

fact base acts as a working memory. This information isn’t shared, and as such can be

accessed only by the agent. Typically, after the inference engine identifies the appropriate

46

context for the current situation, it passes this information to the agent, and this is stored

in the local fact base. The local fact base reflects things about the environment that are

known only by that agent.

IV Global Fact Base

The global fact base contains all information on the environment that is known to all

agents in the environment, for example time of day, weather, etc. It can also be said to be

working memory to all agents. The global fact base has a direct link with the environment

and the agent. Norlander [124] places the global fact base in the agent (autonomous

intelligent platform). For purposes of this research, the global fact base was an entity of

its own, detached from the agent. As soon as the state of the environment changes, it is

reported to the global fact base along with related information on why a change occurred

(i.e. what caused the change – the action executed). Information from the agents’ action

is passed on to the global fact base.

V Environment

The environment is a representation of the world and all that will affect the agents’

behavior in that world. The agents’ actions in the environment influence the events that

occur in the world. Some events in the environment occur irrespective of the action taken

by the agent, for example a traffic light turning red or an antelope running across the

road. As most events occur 13it is the duty of the agent to learn how to identify these

events and their characteristics. For each event, the agent has a choice of carrying out an

13 Events that occur randomly to some people might be argued to occur at a particular frequency by others.
Finding the frequency of occurrence or patterns / characteristics of these events or states preceding them is
usually difficult.

47

action or not. Information on the various states of the agent and events in the

environment are constantly being updated in the global fact base. Events that are related

to the simulation environment of the agent are updated in the global fact base. Some of

these events might not be visible to the agent at all times.

VI Inference Engine

The inference engine as defined by Norlander [124] is used for pattern matching – to

match patterns with facts in the various fact-bases. It is also used to assert and retract

facts as the simulation progresses. During the course of a typical simulation, the

environment sends information to the global fact base, patterns within this information

are processed (matched) with the transition rules in the defined contexts by the inference

engine. As soon as a match is found, the actions within the context are performed by the

agent and these are asserted in the fact bases. This cycle continues until the mission goal

is achieved or it is otherwise determined that it cannot be achieved (agent killed, for

example).

VII Agent

The agents in a CxBR model are usually unintelligent because they possess no

knowledge of what to do in their environment without the direction and control of

contexts. The contexts make the agents intelligent. They are the object of attention in a

CxBR simulation, because they perform actions, effect a change of state and are dynamic.

The agent contains the local fact base, the mission goal, an inference engine, a clock and

default context. The local fact base contains the information essential to the agent as it

48

tries to achieve its goal. It is akin to the working memory of the agent. Information is

constantly being updated when something new about the environment is perceived by the

agent.

2.3.2.1 Formalization of CxBR

Stensrud et. al. [89] formalized CxBR. This is reproduced verbatim and presented below

without permission:

The mission goal is a Boolean function g of a set of environmental E and physical P

conditions at any given instant.

Goal = g(E(t0), P(t0)) (i)

Constraints on a mission M, is the union of the set of physical, environmental and

scenario-specific constraints (cop, coe, cos) placed on the agent.

Constraints = {cop, coe, cos} (ii)

The mission assigns a set of contexts C and context-transition pairs that pick specific

context switches allowed during the scenario. This combination, defines the high-level

behavior of the agent. An example presented by [89] is to consider the set of contexts:

C = {C1, C2, C3, ……., Cn} (iii)

if the Mission M, has a context-transition pair <C1, C4> assigned to the Agent A, it

means it is possible to transition to context C4 from context C1 at a given time-step tk,

when the agent is operating in context C1

The context topology of mission M is made up of the set of contexts C, the set of

context-transition pairs T the Default Major Context (DMC) and the Universal Sentinel

Rules for the scenario [89].

49

Context-Topology = <C, T, DMC, Universal-sentinel-rules> (iv)

Combining equations i – iv, the definition of a mission is:

M = <Goal M, Constraints M, Context-Topology M> (v)

The context logic for a major context is made up of the control functions (cf’s),

knowledge and action rules [89]. The set of functions that control an agent in any given

context CFMC is defined as follows [89]:

CFMC = {cf1, cf2, …., cfn} (vi)

The set of action rules (ar’s) for any given context is ARMC. Typically, action rules can

activate Sub-Contexts, can utilize facts in the fact bases to carry out actions, etc. ARMC

are defined as follows:

ARMC = {ar1, ar2, ar3, …….,ark} (vii)

“The knowledge in a Major Context is the set of frames or classes whose attributes and

methods are essential elements of the tactical knowledge required to successfully

navigate the current situation”[89]. Stensrud et. al. [89] refers to this as Knowledge

Frames (KFMC)

The context-logic that controls the actions of an agent in any given context is:

Context-logic = < CFMC, ARMC, KFMC> (viii)

Sub-Contexts are called upon by Major Contexts. They are activated when the calling

action rule ar is fired. Their inputs are the action rules, and their output is the

achievement of their sub-goal. Control mustn’t be returned to the calling Major Context

and any Major Context can call any sub-context.

(sub-goal)SubContextm = f0 (ARMCi)

50

Transition Sentinel Rules are defined as “the rules that contain the conditions under

which a Major Context transition is required” [89]. For example, according to [89], if a

mission has a context-transition pair of Major Context Ck to Cn, Ck will have a sentinel

rule that constantly monitors the environment for the satisfaction of conditions needed to

transition to Cn. Each Context Ci has a set S of transition criteria. For a given context

pair, there can be multiple transition rules, let Sij represent the set of sentinel rules for

transitioning from Major Context i to Major Context j. The set of sentinel rules for any

given Context Ci is Si which is the combination of all Sij where <i, j> is a valid transition

within mission M.


Mjij

iji SS
> ∈<

=
,:

 (ix)

The actions of an agent when operating under the control of a Major Context Ci, are

determined by the Major Context Ci

Ci = < Si, FBi, Context-logici> (x)

Where FBi is the local fact base.

2.2.4 Competing Context Paradigm

In some complex tactical situations, a CxBR agent might be faced with more that one

choice of contexts to transition to. The current CxBR architecture does not explicitly

address this issue. The competing context approach was conceived by Saeki & Gonzalez

[28, 42, 43] to address such situations. An example given by Saeki & Gonzalez [43] is an

agent that seeks to reach a meeting at an appointed time. If this agent encounters a tire

blowout while en route, it is faced with making a decision on whether to fix the tire and

continue with the car, or abandon the car and walk to the meeting. The decision on what

51

daihe
Underline

to do is based on the agent’s most important goal as well as its current location relative to

the meeting. If the agent is close enough to the meeting location, and its most important

goal is to get to the meeting on time, the agents’ best decision would be to abandon the

car because it would take longer to fix the tire. However, if its most important goal is to

get to the meeting with the car, the agent must fix the tire. Saeki & Gonzalez [43] note

that in such cases, “it is beneficial to define the current situation as a set of needs to be

addressed by the agent in order to accomplish its mission.” The eligible contexts to which

the agent can potentially transition should meet some or all of these needs. The contexts

then ‘compete’ with each other for control of the agent.

To accomplish context competition, Saeki & Gonzalez [43] implemented a

constraint-based system that integrates the ability of an opportunistic agent with the

matching of these constraints. There are four processes to their approach. 1) The

generation of situation interpretation metrics (SIMs); 2) The selection of the contexts that

satisfy the generated metrics; 3) The matching of the attributes of the various contexts in

the selected context group; and 4) The time-warp simulation. The last is optional, based

on whether the outcome of the third step is ambiguous.

• The situation interpretation metrics (SIM) is the relevant information about the

current situation as it relates to the most important goal. An example of the SIM

for the example presented earlier is the distance between the meeting place and

where the flat tire occurs is generated. The time it would take to fix the tire is

computed, as is, the time it would take to walk to the meeting based on the current

location.

52

• The relevant context group selection is the process where a set of potential

contexts are selected based on the currently active context and the most important

goal. As soon as a decision is made on the most important goal, some of the

attributes on all contexts are compared against this goal. The contexts with those

attributes matching the goal are selected as candidate contexts, while the others

will no longer be considered. Saeki & Gonzalez [43] note that “this has an effect

of reducing the search space of potential best contexts”.

• The context attributes matching “is the process where contexts match all their

attributes to SIMs.” At this stage, the contexts that have less attributes matched to

the SIMs are eliminated. If more that one context is picked at this stage, the

process moves on to the time-warp simulation.

• The time-warp simulation is the “process that executes a super real-time

simulation until the ‘best’ context is identified while the current simulation time is

stopped” [43]. “This process starts with the current context and current SIM and

alternately simulates the transition to each candidate context”[43]. Temporal

SIMs are generated for each context transitioned to in order to ascertain whether

the current goal is achieved by the transition. Saeki & Gonzalez [43] note that the

transition that “best projects the satisfaction of the current immediate goal is

selected as the winner” and this context is then activated in the ‘real’ simulation.

If a context competition is required within the time-warp simulation, Saeki &

Gonzalez [43] calls this nesting. They note that the active context would now be

randomly selected.

53

The authors [28] showed an agent utilizing this approach to act appropriately in a simple

driving scenario based on its most important goal and the attributes of the various

contexts. They furthermore suggest ways to improve the competing context approach.

Among the ways suggested are: making the selection of candidate contexts a dynamic

and continuous process by anticipating future events, making the context matching

dynamic and continuous and the elimination of the time-warp simulation in some cases in

favor of a thorough evaluation of the situation.

In either approach, the agent lacks the capability to learn. The experiments

conducted by Saeki & Gonzalez [28] in modeling the agent driver do not take into

consideration the effect of stress, emotions, and other factors that affect human behavior.

Based on their [28] experiments, when the agent is faced with the options of walking to

its destination versus fixing the car tire, the effects of fatigue and weather should be

considered. It would be unexpected for some humans / agent to walk beyond a certain

limit, say - 2 miles to a meeting under very high temperatures just because walking is

calculated as being the best option. Whereas, the agent could as well fix the flat tire and

increase its speed to meet it’s most pressing need of getting to the meeting on-time and

reducing the effect of fatigue. In essence, the agent should be intelligent enough to know

how to adjust its speed to catch up for lost time spent in fixing the tire.

2.2.5 The DUAL Architecture

DUAL is a context-sensitive cognitive architecture conceived by Kokinov [90]. It is an

implementation of Kokinov’s dynamic theory of context [34]. It is made up of “a unified

description of mental representation, memory structures, and processing mechanisms.”

54

daihe
Underline

One of the major principles of DUAL is that the interaction of smaller structures form a

larger one. DUAL-based models can be analyzed at three different levels of granularity:

• Microlevel: this is the smallest granule of an agent. The internal structure of the

agent, the information processing capabilities of the agent and differences

amongst agent types are analyzed at this level.

• Mesolevel: this is a coalition of DUAL agents. Kokinov [90] defines a coalition as

“a set of agents and a pattern of interactions among them”. There are two distinct

properties of a coalition; emergent and dynamic. At this level, the interactions

between agents, the “emergence of non-local phenomena out of local activities”

and the dynamics behind the organizational structures of the DUAL agents in a

coalition, are considered.

• Macrolevel: this level deals with the formations created by DUAL agents and the

models. Kokinov [90] describe formations as a big population of agents. “At this

level, concepts like working memory, mapping and analogy are taken into effect

during analysis”[90].

Kokinov [90] notes that these three levels are interdependent and that it is difficult to

distinguish one from the other because an analysis of a coalition would depend on the

individual properties of the members of the coalition. If a change is made at a level, it

affects the other levels.

A cognitive system developed with the DUAL architecture is usually made up of

multiple simple agents that are highly interconnected with each other. Each of these

agents contains a specific knowledge for the performance of a specific task. The

interconnections between agents could be permanent links, or created dynamically during

55

the course of achieving a goal. Exchange of information is only possible between agents

that are close and have direct links with each other. The behavior produced for any given

situation is a combination of the parallel actions of all active DUAL agents in the system.

The action of individual agents is dependent on their activation level. At different

occasions, the activation level of the agents in different groups would dictate the

computation necessary for that situation, and thereby produce a certain behavior. In the

DUAL architecture, there is no distinction between external and internal context. The

activation level amongst the agents, help in explaining the various contexts and priming

effects14.

The architecture of DUAL agents is a hybrid one, meaning there are two parts to

an agent. Kokinov [90] calls these parts the “L-Brain and R-Brain” with no relationships

to the human brain structures. The L-Brain is designed according to the symbolic

paradigm while the R-Brain is designed according to the connectionist paradigm. In any

given context, the L-Brain represents a piece of knowledge while the R-Brain is the

relevance of this knowledge to the context. R-Brains operate in a parallel manner.

Kokinov [90] utilizes a frame-like representation scheme for representing agents

from the symbolic point of view and the connectionist perspective is used in the

representation of contexts. The relevance of each agent in any given situation helps in the

representation of contexts in a distributed way. The measure of relevance is the degree of

connectivity that exists between an agent and other agents.

Kokinov notes that the “R-Brains are processors that calculate the activation

values and outputs of the nodes on the basis of their input values and current activity.” He

14 Priming effect according to Kokinov [90] “is the change in human response to a target task caused by
changes in the subject’s preliminary setting” while Context effect “is the change in human response caused
by changes in the environment of the target stimulus.”

56

states that “it is important that the activation of a node is a function of both the

environment and the currently received activation from the net, and the previous

activation level of the node.”

A few successful applications and models have been developed on the DUAL

architecture, e.g. AMBR [91, 94] (Associative Memory-Based Reasoning) 15

2.3 Contextual Learning

Most studies on context claim to have some form of learning capabilities. Turner [36]

states that the agent used to control the autonomous underwater vehicle (AUV) learns by

merging c-schema objects to form new c-schema’s that define the current situation. The

problem with this is that the agent would always behave the same way under the same

conditions even if its behaviour were bad. This doesn’t result in true learning.

Bonzon [129] developed a contextual learning model that stores “sequences of

inference steps that lead to discovery of object-level concepts to be used later”[129]. He

tries to achieve generality in learning with this approach.

Kokinov [34] dynamic theory of context in which context is defined as a dynamic

state of the human mind has potentials of incorporating learning. He attempts to show the

difference between AI approach to contexts and psychological approach. He states that

AI’s approach to contexts “may be characterized as navigating between and within the

context boxes” [34]. Kokinov acknowledged the lack of learning in his DUAL cognitive

architecture [90].

15 AMBR adopts “an interactionist approach that identifies analog access, mapping, transfer, etc as parallel
subprocesses rather than the conventional serial stages” in analogy-making [91]. More information on
AMBR can be obtained from the works of Kokinov [91, 94]

57

Balkenius & Moren [119] notes that “context learning is an entirely passive

process” that doesn’t depend on actions of an agent. They showed how stable context

representations are learnt from “a dynamic sequence of attentional shifts between various

environmental stimuli”.

In this dissertation, it is asserted that:

True learning of contexts exists when a learning agent is able to adjust and

modify its beliefs on its actions in that context. In other words, true learning is

said to occur when a learning agent understands the attributes of the current

situation (context) and thereby modifies its actions when in that context as a

result of its interaction with its environment.

A method that implements a learning agent modifying its actions and understanding of

any situation by interacting with its environment is presented in this dissertation.

2.4 Others

There are many other modeling techniques that represent human behavior. The

Contextual Control Model (CoCoM) of Hollnagel [122, 123] attempts to take the

contextual effect of the environment on the performance of the operator. It is based on

three concepts: competence, control and constructs. Competence is the set of actions that

are possible in any given situation based on the needs of that situation as recognized by

an operator; Control defines the way competence is applied. There are four modes of

control: scrambled, opportunistic, tactical and strategic. These modes range from no

control at all (scrambled) to a completely deterministic control policy (strategic). Finally,

58

construct is the known information about the current situation. It is the basis on which

actions are selected by the system.

EPIC (Executive-Process/Interactive Control) has a goal of accurately accounting

for the timing of human perceptual, cognitive and motor activities. It provides a

framework that allows for the easy construction of human-system interaction models that

are accurate with detailed information processing units for practical problems.

Rational Behavior Model (RBM) developed by Byrnes [135] is a three-level

intelligent control architecture for autonomous agents. The three levels are: strategic,

tactical and execution. At the execution level, the emphasis is on the control of the

hardware, at the tactical level, the emphasis is on the selection of the appropriate

sequence of behavior for the agent and the strategic level deals with the plan and mission

logic. Some successful applications of RBM include the control of autonomous

underwater vehicles (AUV) Holden [136].

The modeling paradigms described in this dissertation are the important models

relevant to this research. There are other modeling paradigms not described in this

dissertation because they are not relevant to this research. The described modeling

paradigms show that many techniques exist for modeling human behavior and it is left for

the modeler to decide what modeling technique best fits the aspect of human behavior

(s)he intends to model. By and large all the modeling paradigms mentioned in this

research all suffer from the same problem, i.e. the lack of a robust, self-enhancing,

learning mechanism for the acquisition of knowledge used in modeling. The models built

with these techniques are overly-dependent on expert knowledge for their successful

implementation and functionality. Thus models built for tactical situations might fail to

59

achieve their mission objectives. This research produces a method that seeks to eliminate

these issues.

2.5 Comparison of HBR Models

With so many modelling techniques available for representing human behaviour, the

question of which technique is best unavoidably arises. With this in mind, some have

attempted to compare some modelling paradigms against some benchmarks. Bolton et al.

[20] compares three HBR modelling techniques as to how they generate instructional

materials for Navy training. The results show that the modelling techniques compared led

the participants of the training exercises to performance improvements that were

equivalent from a statistical perspective.

The US Air Force Research Laboratory has recognized that although there has

been progress in the HBR research arena, the academic and commercial sectors aren’t

producing human behavioural representation methodologies / technologies that

sufficiently meet all the requirements of the Air Force’s modelling and simulation needs.

Investments in this area were undertaken by the Air Force through a program named

Agent-based Modelling and Behaviour Representation (AMBR) [11, 51]. A primary

objective of the AMBR project was to improve the developments made in the cognitive

and behavioural modelling of military applications. The AMBR project compared various

HBR modelling approaches. One of the modelling goals was multi-tasking, done in a an

enroute air traffic control domain. The HBR modelling paradigms compared where the

ACT-R, D-COG, EPIC-Soar, and iGen16. It was noticed that all models built by the

various techniques successfully approximated trends and central tendencies of the data

16 iGen is based on the COGNET model

60

used by behaving similarly, but the way the various models implemented the multi-

tasking capability of human behaviour differed across the four models.

Kokinov [90] compares his DUAL architecture to that of Anderson’s ACT-R

[101]; he notes the similarities between both approaches but asserts that the declarative

knowledge is separated from the procedural knowledge and different mechanisms control

each one in ACT-R and as such, the priming effects cannot be explained. His DUAL

architecture has this ability. Furthermore, ACT-R considers only static environments,

whereas his DUAL takes note of the dynamic nature of the environment. Kokinov [90]

concedes that ACT-R is superior to DUAL because of its learning capabilities.

Nason [118] notes some differences between the implementation of their Soar-RL

architecture and ACT-R. These include: 1) soar can allow the encoding of information for

the preference of a particular rule over another whereas ACT-R can’t; 2) in soar, an

operator can have many rules that depend on different goals, whereas in ACT-R the

mechanisms relate to only a single goal.

A combination of different modelling techniques have been developed over the

years to account for the shortfalls of the individual techniques, for example the

integration of the Soar modelling technique with Reinforcement learning [118], the

integration of EPIC modelling technique to Soar [117].

Brown [137] compared CxBR with other traditional rule-based reasoning systems

and found that CxBR performed better and was more concise in the representation of

knowledge. Gonzalez et al. [4] compared CxBR in the control of an autonomous vehicle

with other traffic generating methods with emphasis on car-following algorithms and

found that expanding a system developed from CxBR is considerably easier. They further

61

noted that in comparing the size of the program based on number of lines of code, and in

terms of the designed behavior, CxBR had slightly more lines of code with more

behaviors compared to the car-following algorithm which had fewer behaviors. This

represents the concise nature of representing knowledge in CxBR architecture. The

execution rate for the CxBR model was the same. Lorins et al. [92] also compared the

CxBR modeling technique to that of the CxG modeling technique in decision making and

concluded that more exploration on the advancements of both techniques and their

implementation is needed to have a complete comparison based on the way context is

represented, the transitioning between contexts and the way knowledge is acquired.

Although there are no known direct comparisons on the CxBR technique to ACT-

R, Soar or DUAL, we can intuitively determine what the outcome of one would be, based

on the underlying principles for the creation of models using each technique. DUAL and

ACT-R are based on the generation of a particular “behavior” from the formation of a

smaller “behaviors”. The question that isn’t answered is what level of granularity would

determine a small “chunk” of knowledge? These architectures are also designed for

general problem solving and as such are structured around that. ACT-R is designed as

being cognitively correct. That is, it represents the human cognitive process. On the other

hand, CxBR was designed specifically for its efficiency, effectiveness and ease of

modeling human behavior in tactical situations. The ease at which an agent being

controlled with CxBR identifies and transitions between contexts is inherent in its design.

CMB closely resembles CxBR, but its concepts are yet to be fully implemented and

tested as has CxBR. COGNET does not take the context of the situation into its model as

intuitively as CxBR. It also lacks an inherent learning mechanism. CxBR also lacks a

62

learning mechanism. However, it has been shown that it facilitates learning and some

techniques have been developed that take advantage of its contextual decomposition. Its

hierarchical structure allows a learning problem to be broken down into smaller

problems. Learning these smaller problems could be facilitated. There are many other

advantages CxBR has over the other behavioral modeling techniques. This is why this

research was carried out using the CxBR model.

An addition of a learning mechanism to the CxBR architecture would be

implemented using a reinforcement learning algorithm to allow for the effortless

augmentation of the SME’s knowledge based on the goals. More about this later.

2.6 Summary

An introduction to context as it relates to modeling human behavior was presented. Some

modeling techniques that utilize contexts in modeling human behavior were discussed.

Learning in contexts was summarized and a comparison between some human behavior

modeling techniques was carried out, during the comparison and analysis, CxBR was

determined to be the technique of choice for this research because of its intuitive nature

in the modeling of tactical behavior

63

CHAPTER 3: PROBLEM DEFINITION

3.1 Problem Statement

The first step in the resolution of any problem is to identify the essence of the problem. In

this research the problem being addressed is a subset of the overall problems being

studied in the Human Behavioral Representation (HBR) area. That is, to model an agent

that would act the way a human acts when faced with different scenarios. In general, for

an agent to behave like a human in tactical decision-making, at least four problems have

to be overcome, these are:

 To efficiently represent the behavior of the human

 To effectively represent the behavior of the human

 To acquire these behavior in an efficient and effective way

 To validate the acquired behavior

This dissertation addresses the last two problems. As has been described in Chapter 1, the

major modeling techniques do not address all four problems simultaneously. Most

investigations have focused on how to efficiently represent the behavior of humans.

However, the acquisition of these behaviors has been mostly achieved through question

and answer sessions with subject matter experts or through observing the performance of

a subject matter expert. This limits the process to incorporating what a subject matter

expert knows and is able to articulate or demonstrate. This knowledge is often incomplete

and/or flawed.

A combination of methods is usually needed to tackle all four problems listed

above. Context-Based reasoning (CxBR), because of its modular design and ability to

64

prune the search space, has the capabilities of encompassing solutions to all four

problems. Therefore, this research was based upon CxBR as the underlying modeling

paradigm. This research also improves the CxBR technique by using RL.

Traditionally, to limit the ambiguities and errors introduced during knowledge

acquisition (KA), multiple domain experts are needed to provide different and

complimentary viewpoints on a simple problem. This was done either by question and

answer sessions or observing the expert performing the task. The need for domain experts

could become heavily dependent on each other, because when one expert reaches his/her

knowledge threshold, he/she calls upon another domain expert, and the team of experts

continues to grow until the minutest ambiguity is resolved. The question of when to stop

bringing specific subject matter experts could arise because the cycle of an expert having

only specific knowledge of certain aspects of his or her domain would always exist.

Therefore, several subject matter experts would be needed to totally cover a domain. This

could lead to the developed system being inefficient in carrying out the tasks assigned to

it because of the retrieval of information needed to resolve the simple problem.

Some of the issues highlighted above are partially resolved by Context-Based

Reasoning (CxBR). CxBR, as described in the previous chapter conforms to a Markov

process, “in which the next state of a system is determined by the current state of that

system and not by the previous states” [8]. The dictionary [1] defines a markov process as

“a simple stochastic process in which the distribution of future states depends only on the

present state and not on how it arrived in the present state”. For example, as stated by

Gonzalez et al [9], it is highly unlikely for a tire blowout event to occur while a car is

65

waiting at a traffic light. This is because the current event is the car waiting at a traffic

light and all events that occur next would be based on this fact.

Although there are many successful applications of various HBR techniques, as

noted in Chapter 1, they all suffer from the same fate; i.e. they suffer from the limitations

inherent in the way knowledge is acquired - the total dependence of knowledge

acquisition and representation on subject matter experts. Usually, the experts determine

what actions to perform in a given situation (context) and how the agent should behave in

all situations as perceived by the expert. Ranges of valid values are provided by the

experts for a given context and as such, all actions by the agent are predefined based on

these ranges. The question of what happens when the SME lacks knowledge for a

specific context or provides the wrong knowledge for that context arises. Also, how do

you reconcile differences in expert opinion for the same context? Usually, the knowledge

engineers start as novices in the domain being modelled. Would the KE rate one expert

highly over another without any basis? The fact that the SME provide the knowledge and

thus determine the behaviour of an agent isn’t wrong. What is wrong is the inability for

these models to be improved beyond the SME’s level of competence. The enhancement

of the agent model should be geared towards achieving the overall mission goal. A

system where the acquired knowledge - the actions and thus the behaviour of the agent

can be enhanced based on the mission goal, irrespective of the SME’s imparted

knowledge is most desirable. Conceptually, this can be achieved by placing the model

developed from SME’s knowledge in a simulator and exposing the model to situations

not imagined by the SME. The model is run multiple times until the knowledge acquired

66

from the SME is modified to address these new situations. The model is thus enhanced to

perform better, based on the mission goal.

Enhancing the behavior of HBR models is the goal of this research. This is

achieved by breaking the barrier of dependence on SME for the knowledge. This

dissertation investigates the feasibility of using experiential knowledge from an agents

experience in a simulator to enhance the agents’ behavior.

A few attempts have been made towards filling the voids left by incomplete

knowledge in a HBR model; In particular, knowledge acquisition methods that involve

observing expert actions are an attempt to eliminate some problems introduced during

SME introspective sessions. One of these is the lack of explanation of implicit actions

performed by the expert. Fernlund [10, 138] developed the GenCL model that captures

expert knowledge through observation. This captured knowledge is then transformed into

contexts that control an agent that behaves like the expert. Fernlund’s [10, 138] method

eliminates some of the errors that exist during the acquisition of the knowledge and

representation; it also eliminates occasional ambiguity caused by the experts language

and the difficulty in explaining implicit knowledge. Although the goal of Fernlund’s

research [138] was to automatically create agents by observing expert actions, it would be

interesting to make these agents perform better by learning through their experiences in a

simulator. In an example in his work [138], an agent that was created by observing a

‘reckless’ driver who ran through a red light, behaved exactly like the driver by running

through the red light in a simulator. Although Fernlund achieved his goal, the method

presented in this research goes a step further and refines (enhances) the agents behaviour

by making the agent learn that running through a red light represents a failure. The agent

67

learns this through the experience it gained in the simulator. In essence, it would be

advantageous for an agent to learn good from bad, relative to a goal even after observing

an expert execute a mission.

With the existing limitations of knowledge acquisition techniques for human

behaviour representation, this research produces a method that enhances a model by

subjecting a learning agent to situations not experienced by the SME, yet realistic in the

execution of a mission. Furthermore, the new methodology also addresses the lack of

expert explanation of implicit knowledge which could be a cause of incomplete

knowledge in the model.

3.2 Hypothesis

 This research proposes the following hypothesis:

Reinforcement learning can be used to automatically and efficiently enhance a

tactical agent’s behaviour from the experience gained by the interaction of the

agent with its environment. Additionally, based on the mission goals, these agents

will perform better than the agents developed from knowledge acquired from

experts.

The learning process of the agent is based on the predefined knowledge acquired from the

SME. The model built upon this knowledge is then refined (enhanced) in a simulation

based on the experience gained by the agent during its interaction with the environment.

Learning by the agent is non-monotonic, in that it can retract previously learnt actions

during its interaction with the environment when a new action is found to contradict an

existing one.

68

3.3 Contributions

The contributions of this research are:

• Providing a technique that breaks through the barrier of SME knowledge

limitations.

• Show that a human behaviour model, in particular a CxBR model, can be

automatically enhanced from the experience gained by the agent during its

interaction with the environment without human intervention.

• Providing an algorithm for the model enhancement process that can be applied in

other domains.

• The modified contexts would provide a more robust knowledge base that include

behaviours missed by the SME.

• Provide an analytical basis for knowing a fully enhanced model

• Provide a prototypical framework for the enhancement of models

• A by-product of the experiential learning technique is the provision of an

unbiased validation method for human behavioural representation systems.

The following are advantages of this research:

• The synergistic combination of CxBR and Reinforcement Learning would be the

foundation for achieving the automatic enhancement and creation of the human

behaviour models.

• The synergistic combination of CxBR and RL can aid in the acquisition of the

behaviour of experts via simulated agents in an efficient and effective way for

69

them to be correctly represented in a CxBR system thus eliminating the errors

that exist when this process is done manually.

• The elimination of the common criticism against artificial intelligence

researchers creating contexts as a movement between fixed boxes, by providing a

mechanism that automatically creates a context (behaviour) on the fly.

• Providing a HBR methodology where the knowledge acquisition methods are

goal oriented and thus an agent would identify and fix any lapses in the acquired

knowledge based on the predefined goal.

70

CHAPTER 4: RELEVANT MACHINE LEARNING TECHNIQUES

We propose to break the SME knowledge barrier by applying machine learning

techniques that enable experiential learning. In this chapter, some machine learning

strategies are described and a strategy that best achieves the goal of the research is

selected. This chapter is divided as follows: section 4.1 provides an introduction to

machine learning; section 4.2 describes supervised learning and includes some examples;

section 4.3 describes unsupervised learning while section 4.4 describes reinforcement

learning. Section 4.5 compares these machine learning groups and makes the case for the

learning strategy of choice for this research.

4.1 Introduction

The oxford dictionary defines learning as “Behavioural modification especially through

experience or conditioning” [1]. Mitchell [53] states that “learning is improving with

experience at some task”. Dietterich [54] states that “machine learning is the study of

methods for programming computers to learn”. Dietterich goes on to argue that although

it is relatively easy to develop applications that can be applied to solving a wide variety

of tasks, there are generally some tasks for which it is difficult or impossible to do this.

He groups such tasks into four categories:

• Problems were no human experts exist.

• Problems were human experts exist but cannot explain their expertise because

of the implicit nature of what they do.

71

• Problems where the underlying parameters / attributes change rapidly, e.g. the

stock market.

• Problems that are user specific in a large domain, e.g. a mail filtering system

for an organization, each user would have different criteria for filtering junk

mails; “self customizing programs” Mitchell [53].

Dietterich [54] believes that machine learning addresses most of the same issues

that statisticians, data miners and psychologist address, but the major difference lies on

the emphasis placed on the issues. While statisticians want to know and understand how

the data has been generated, data miners look for patterns in these sets of data.

Psychologists on the other hand try to understand why different people exhibit various

learning behaviours. Machine learning, on the other hand, is concerned mostly about the

accuracy and effectiveness of the resulting computer system.

Dietterich [54] states that a learning task can be classified along many

dimensions, but believes that an important dimension in which all learning tasks should

be classified is the distinction between empirical and analytical learning. Dietterich

defines empirical learning as one that relies on some external experience whereas

analytical learning requires no external inputs.

Dietterich [56] draws the relationship between learning and reasoning. He

attempts to show the ways in which machine learning research has either incorporated

reasoning or left out reasoning.

Machine learning could be divided into three types; Supervised Learning,

Unsupervised Learning and Reinforcement Learning. Supervised learning is when a

“teacher” is present, i.e. the agent learns from training samples available to it.

72

Unsupervised learning is when there is no teacher; there are no training examples

available to it. Reinforcement learning is when there is no teacher, there are no training

examples; the agent is rewarded either positively or negatively for being in certain states.

Over time the agent identifies what states are best to be in and what states to avoid.

Reinforcement learning agents can be said to start with no training examples and build

approximate training examples from their environment. 17There is some controversy as to

whether RL can be classified as a supervised learning technique. Some researchers

believe it falls under supervised learning while some others believe it falls under

unsupervised learning. Yet another group of researchers believe RL is the third group of

machine learning strategies/techniques and falls under its own group. There are major

differences between supervised learning techniques and RL. These include the absence of

a teacher vis-a-vis explicit training samples [176]. In RL, the rewards received do not tell

if an action is good or bad - it is left for the agent to make that judgment based on the

results of its decisions / actions. There are also major differences between RL and

unsupervised learning. For example, most unsupervised learning techniques are based

upon classifying the training samples based on “some distance” or “closeness” to a

particular property. Bartow and Dietterich [176] state that a supervised learning problem

can be converted to a RL problem, with the resulting problem becoming more difficult. A

RL problem however, cannot be converted to a supervised learning problem. With these

differences between RL and other learning techniques, we assert that RL be classified as

being in its own group.

17 The different types of machine learning are described in detail in later sections

73

4.2 Supervised Learning

Supervised learning is when a teacher is present during training. It is akin to a student

going to school everyday and being taught by a teacher. Christodoulou et al. [57] state

that an essential ingredient of this type of learning is the presence of an external teacher.

Usually the learner is given training sets that contain input-output pairs. For each input

shown to the learning agent, there is a corresponding output assigned to it. Nilsson [174]

states that finding a hypothesis that closely agrees with the mapping of a function to the

training samples is an objective of this type of learning. Dietterich [54] notes that a key

challenge for this type of learning is generalization. After a few training input–output

samples are presented to the agent, the learning agent is expected to learn some function

that correctly identifies or predicts what the output of a new input set would be. Usually,

the input–output pairs used during training are thought to be independent of each other

for proper training to occur. An example of a supervised learning implementation is a

simple feed-forward Artificial Neural Network. An example of a supervised learning

concept is observational learning.

4.2.1 Observational Learning

Observational learning is also known as learning by doing nothing. It can be considered a

supervised learning technique. Bandura, as narrated by [60], has demonstrated that the

“application of consequence” is not necessary for learning to take place. He also suggests

that learning can occur through the process of observing another person’s activity.

Bandura, as narrated by [60], states a four-step pattern for learning.

74

daihe
Underline

• Attention – this is the step in which the individual notices something in the

environment

• Retention – this is the step were the individual remembers what was noticed

• Reproduction – this is the step where the individual produces a copy of an

action that was noticed

• Motivation – a consequence is delivered by the environment that changes the

probability of the behavior being carried out again.

Another definition of observational learning is that an observer’s behavior changes after

viewing the behavior of a model [59]. Consequences can affect an observer’s behavior;

these consequences could be some form of reinforcement in the case of positive

consequence and some form of punishment in the case of negative consequence. The

guiding principles behind observational learning are as follows [177]:

a. The observer will ‘imitate’ the behavior of the human that it finds attractive or

desirable. An example of this is when a child imitates the behavior of a cartoon

character he admires, say ‘Spiderman’. This child most likely would attempt some

of the actions he observes Spiderman perform, he may or may not be successful in

attempting these actions but he does attempt them.

b. The observer reacts to the way his ‘idol’ is treated and mimics the idol’s behavior.

When there is a reward given to his idol for behaving a certain way, the observer

will attempt to copy the behavior but if there is a punishment, the observer would

avoid trying out that behavior. An example is a person learning how to drive by

observing his trainers behavior, if the trainer goes above the speed limit and gets a

75

speeding ticket from the police, the observer will not attempt to go above the

speeding limit, because he knows he could get punished for that.

c. There is a distinction between acquiring a behavior and performing a behavior.

By observing an idol, an observer can acquire the behavior without attempting to

perform them. But the observer can attempt to perform the acquired behavior at a

later time when the need arises. An example would be an automobile owner

watching a repairman change his tire. The owner of the car (observer) has

acquired the skills of changing a car tire but didn’t necessarily perform the

acquired knowledge because the need didn’t arise, however if he gets a flat tire

some days later, he could apply the acquired knowledge and change the tires

without the need for the auto repairman.

One of the most popular methods of knowledge acquisition is by observing expert

actions. This is so because it has an added advantage of acquiring implicit knowledge of

the expert. A disadvantage though, is that if the expert performs badly, so will the model

built from the acquired knowledge. Furthermore, the built model is limited to what the

expert knows.

4.2.2 Artificial Neural Networks

A neural network as defined by Christodoulou & Georgiopoulos [57] is a “network of

many simple processors (units, nodes and neurons) each of which has a small amount of

local memory”. These processors are interconnected and they carry data between

processors. Gurney [61] states that a “Neural Network is an interconnected assembly of

simple processing elements, units or nodes, whose functionality is loosely based on the

animal neuron. The processing ability of the network is stored in the inter-unit connection

76

daihe
Underline

strengths, or weights, obtained by a process of adaptation to, or learning from, a set of

training patterns”. Artificial neural networks are computational models that can learn to

generalize data [62]. Figure 4.1 shows a neuron.

w1

w2

wk

Y

.
..

∑

Figure 4.1 A Neuron

A simple feed forward neural network works as follows: training data is provided

consisting of several input sets and each with a corresponding output. These training data

are presented to the system and the weights of the system are adjusted appropriately to

reflect the training. Figure 4.2 shows a neural network with multiple layers. After training

the network, a sample data is passed through the system to predict what category a new

dataset belongs (in classification problems).

Artificial neural networks are of different types. Some are classified as supervised

while others are said to be unsupervised learners.18

18 The discussion about artificial neural networks classified as supervised learning is the feed forward
networks and the back propagation algorithm. Discussions about the self-organizing map which is a non-
supervised learning network is discussed under unsupervised learning.

77

Figure 4.2 k-layer Network (Reproduced from Nilsson [174] without

permission)

4.3 Unsupervised Learning

This is a scenario where the learning agent is not exposed to an external teacher or critic.

The training inputs do not have a corresponding output. The outputs of the system are

unknown. Because of the absence of an external teacher, Christodoulou et al. [57]

suggests that a provision be made to identify the quality of the representation that the

learning agent is required to learn. The parameters of the agent are then optimized with

respect to this measure. Dayan [181] defines unsupervised learning as techniques that

“study how systems can learn to represent particular input patterns in a way that reflects

the statistical structure of the overall collection of input patterns”. The input sets are

analyzed for similarities between any features. “Procedures that attempt to find natural

78

partitions of patterns within sets are utilized” [174]. After the training is over, the inputs

introduced to the agent are grouped based on the similarity measure defined on the

learning agent. Unsupervised learning techniques are usually used in classification and

data compression problems amongst others.

4.3.1 Self-Organizing Networks

This is a group of neurons where the weights are adjusted to match the input vectors in a

given training set. Competitive learning, which is a learning methodology that divides a

set of input data into clusters that represent the input data, is used as the learning

mechanism in these types of networks.

When input data is presented to the network, only one output (known as the

winner) is selected. Euclidean distance19 is utilized in the selection of the winner.

A self-organizing network has two stages of operation, the first stage is the

training of the network, in this phase, the network organizes itself by the use of the

competitive learning process. The second phase is the mapping phase where a new input

is passed through the network for classification or categorization. This new input is given

a location on the network, and the winning neuron whose weight is closest to the input

data determines how the new data is classified.

4.4 Reinforcement Learning

Imagine you are sailing in the ocean and suddenly there is a great storm. In this storm all

your crew members suddenly disappear, making you the only survivor. Your

19 The Euclidean distance measure utilized in the selection of the winner is as follows:
k: || wk –x || ≤ || wo – x || o∀

79

daihe
Underline

navigational system was destroyed in the storm, but you are lucky to have a large food

supply. You also have fuel and your boat engine is in excellent working condition. After

the storm, you find yourself in an unfamiliar place. This is the first time you are

experiencing this situation and you have to get back home (to shore). How do you

achieve this goal? The only way to achieve this goal is to try to sail randomly towards

shore; you utilize the actions available to you which are moving in any direction with the

hope that you are moving in the right direction towards shore. When you successfully get

to shore, if rescuers want to go back to where the storm occurred to attempt a rescue

mission, all you need to know and tell them are the successive directions / steps you took

to get you to your present location.

This same problem can be extended by noting that you have a limited supply of

food and drinks to survive on and as such have to achieve the goal of getting to shore

under a timed constraint. This in a nutshell is reinforcement learning, where you have a

goal and attempt to achieve the goal through interacting with the environment and

making decisions based on the experiences gained from the rewards and punishments

during these interactions. Another example of reinforcement learning is deciding on the

best route to a place you go to frequently, for example, your office. You might be faced

with many routes from your house to your office. In the early stages of trying out these

routes, you will have no opinion on the fastest route between your home and office.

Eventually after you have attempted each of the routes multiple times, your opinion on

the various routes would have been made in terms of shortest time, shortest distance,

fastest routes, and best time of the day to take a route, and much more.

80

4.4.1 Overview

Since the advent of modern computers, it has always been the wishes of man to have his

computer learn like he does, by learning through mistakes it makes. Barto [162] states

that the term reinforcement emanates from experimental psychology and animal studies.

It refers to the strengthening or the weakening of the probability of the response as a

result of the occurrence of an event [162]. Barto [162] emphasizes this point by noting

that in its simplest form, reinforcement learning utilizes a commonsense approach to

events, in that, if an action produces good results or responses, that action is reinforced.

Generally, in humans, the consequences of our actions always influence our behavior or

the behavior of others [163]. These consequences are based on three principles [163]

which are; “Consequences that give rewards increase a behavior, those that give

punishments decrease a behavior and those that produce neither rewards nor punishments

tend to extinguish a behavior.” An example to illustrate these principles is a child that

touches a hot stove. The consequence of the child’s action is pain and this punishes the

child, thus the child would avoid touching a hot stove in the future. If this same child

performs a task for which she is rewarded with candy (say, cleaning her room) she would

opt to clean her room regularly.

Gosavi [78] calls RL “an offshoot of dynamic programming; a way of doing

dynamic programming within a simulator”. A feature of Reinforcement learning is that it

is primarily learning from experience i.e. learning from one’s mistakes. It can be argued

that RL also encompasses learning from the mistakes of others, which is a key feature of

observational learning. As noted by Barto, the modern interest and development of

reinforcement learning is driven by the need for “autonomous agents that can operate

81

daihe
Underline

under uncertainty in complex dynamic environments and also the need for finding

approximate solutions to large scale dynamic decision making problems” [162].

RL is well suited for control and optimization problems in Markov Decision

Problems (MDP) [63, 162, 178, 180]. Recent investigations have indicated successes in

using RL techniques for Semi-Markov Decision Processes (SMDPs) and Partially

Observable Markov Decision Processes (POMDPs) [169, 180, 182]. POMDPs are

situations where an agent cannot see the world outside its immediate environment.

POMDPs are usually modeled by defining a mapping function between the hidden states

and what it observes. Finding an appropriate mapping between what it observes and the

actions that produces it, serves as the goal of a POMDP agent.

 In general, the RL problem can be shown to involve the following steps:

• The execution of an action by the agent on the environment during the agents’

interaction with it from a set of possible actions)(tt sAa ∈ . This leads the agent to

a new state.

• The receipt of a reward rt+1 from the environment when in the new state st+1

A note should be made that the reward or punishment received and the new state are

dependent upon the action executed by the agent as well as the state in which the action

was executed. Figure 4.3 shows a typical Reinforcement Learning agents’ interaction

cycle with its environment, while Figure 4.4 shows the reinforcement learning

architecture.

In figure 4.3, it can be seen that as the agent performs an action on the

environment, the state of the environment changes, this in turn triggers a reward or

punishment to the agent and the agent is then in a new state.

82

Figure 4.3 A Typical Agent Interaction Cycle

In figure 4.4, the agent performs an action ai, the state of the environment changes from

si to si+1, the agent then receives a reward or punishment from the environment.

EnvironmentAgent

State
Reward

action ai

si+1

ri+1

Figure 4.4 Reinforcement Learning Architecture

Barto [162] observes that a typical RL problem includes uncertainty because the agents’

behavior and its environment are subject to some form of randomness. In some cases, an

approximate model representing these uncertainties may be available for use in resolving

the RL problem. An important part of the RL problem is the reward input. This is the

The state of the
environment

changes

The agent
receives a

reward and also
perceives its
new state

Agent performs
an action on the

environment

83

aspect of the RL problem that indirectly controls20 the behavior of the agent. The reward

received by the agent in a given state after many trials, points it in the right direction.

According to Sutton and Barto [63], there are four elements of RL:

• A policy: “…. defines the way the agent behaves at any time, i.e. a mapping of

perceived states to actions”. It is denoted byπ . For example, if an agent is perceived

to be x miles from a traffic light, perform an action to slow down

• A reward function: “…. defines what goals the agent has to achieve in the RL

problem in an immediate sense”. For example, the reward of running through a red

light could be negative in the immediate sense.

• A value function: defines what goals the agent has to achieve in the long run. For

example the reward of running through a red light could be negative in the immediate

sense, but the value of that action may lead the agent to achieve its overall goal of

arriving at its destination on time.

• And sometimes, a model of the environment could be an element of the RL problem

The main goal of a reinforcement learning agent is to “maximize the total returns

(rewards) it receives over time”[63]. The description and definition of returns (rewards)

vary. In some RL algorithms, discounted returns21 are utilized e.g. [74] whereas in others

average returns are used [78, 141]. Gloennec [175] defines “the return function R(t) as a

long-term measure of the rewards.” Gloennec [175] describes three expressions used in

calculating returns. Generally, to maximize the total returns, the agent has to “look

ahead” at the available returns. The discounted return helps in finding out the current

20 When the agent receives a reward or punishment, based on this, it adjusts its behavior per the driving RL
algorithm; hence the reward input indirectly controls the agents’ behavior.
21 Discounted returns are when the impact of future rewards are taken into consideration now.

84

value (weight) of future rewards. At any given time t, the discounted return for an

infinite-horizon model22 [175] is given as:

nt
n

n rtR +

∞

=

−∑=
1

1)(γ 4.4.1.1

where γ the discount factor23 is between 10 ≤≤ γ

When γ is 0, the agent doesn’t bother about future rewards, it only concerns itself

with the immediate rewards it receives. As γ approaches 1, more weight is given to

future rewards in making a decision.

For a finite-horizon model24, a terminal state and a period exists i.e. sequence of

actions between the initial state and the terminal state. The return is given as [175]:

11)(−++ +++= nttt rrrtR 4.4.1.2

“n is the number of steps before the terminal state” [175].

For an average-reward model, the average of future reinforcements is calculated using:

∑
=

+∞→
=

n

n
ntn

r
n

tR
0

1lim)(4.4.1.3

4.4.2 Markov Decision Process

The modeling of Reinforcement Learning problems are typically based on Markov

Decision Processes (MDPs) [63, 162, 178, 180]. A Markov Decision Process satisfies the

Markov property. The Markov property simply means that the state of the environment at

any given time contains a summary of all states and actions the agent has encountered up

to that time and this state is the only required information used in determining the agents’

22 An infinite-horizon model is one where the sequence of actions is infinite [63, 175]
23 The discount factor γ is used to give more weight to future rewards, the closer it is to 1, the greater the
weights given to future rewards.
24 A finite-horizon model is one where the sequence of actions is finite [175]

85

daihe
Underline

next actions [164]. A system is said to possess the Markov property if the present state

can comparatively predict the future states as well as the history of all past and present

states. This is known as a memoryless process.

Some researchers e.g., [162, 178] note a fundamental difference between MDPs

and RL; usually in MDPs, the complete descriptions would have the probability metrics

between state transitions, actions and rewards and how these parts affect each other. Also

the main “objective of a MDP is to compute an optimal policy”. In constrast, RL deals

more with approximating an optimal policy during on-line25 behavior instead of

computing optimal policies off-line based on the known probability transition models.

Also the objective of RL is to maximize the total rewards received and not to compute an

optimal policy26.

Ratitch and Precup [164] suggest some attributes that can be used to characterize

MDPs, amongst which are state transition entropy and controllability. The effect these

attributes have on the performance of RL algorithms that use function approximation was

shown, especially on the quality of the learnt policies. These attributes were also shown

to affect the speed of learning.

4.4.3 Value Functions

This is the “heart” of reinforcement learning. The majority of reinforcement learning

algorithms strive to improve or calculate the value function of states. The value function

defines the goals the agent has to achieve; it is literally how good a state is or how good a

given action is in a state [63].
25 A detailed description of On-line and off-line behaviors is presented later in this chapter
26 As noted by Barto [162], maximizing the received rewards doesn’t always require the computation of an
optimal policy for all states because the agent may not visit all the possible states during its interaction with
the environment.

86

daihe
Underline

As stated earlier, a policy, ∏ defines the way the agent behaves at any time in the

environment. It is a mapping of actions to states. “The value of a state under a given

policy is the expected return when the agent starts in that state and follows the given

policy”[63].

Given a set of states S = (s1, s2, s3,…, sn) and a set of actions available in each

state: A = (a1, a2, a3,..., an)

The value of a state s∈ S,

{ }






 ==== ∑

∞

=

++∏∏
Π

0

1 ||)(
k

tkt
k

tt ssrEssREsV γ 3.4.3.1

Where ∏E {} is the expected value when the agent follows policy ∏ , t is the time step, r

is the expected reward, s is the state and γ is the discount factor between 0 and 1.

4.4.4 On-line and Off-line

RL algorithms are described as either on-line or off-line [63, 78], based on the qualifier

used. These qualifiers are 1) when the algorithm is being implemented and 2) the

mechanism used for updating the internal learning structures of the algorithm [78]. These

two qualifiers are elaborated on below.

An RL algorithm is off-line when it is run and tested in a simulator before it is

implemented in the real world. An on-line implementation means that the algorithm runs

on the actual system in real-time. That is, the learning agent improves its performance as

it experiences the environment.

During the on-line updating of the internal learning structure of the algorithm, the

values of the mechanisms that keep track of learning are updated immediately the agent

87

daihe
Underline

tries out an action. For example, with Q-factor 27, the state-action pair is immediately

updated after each trial. An off-line update is when these values are updated after a

certain number of trials, for example the TD(λ) algorithms28.

4.4.5 Exploration Vs Exploitation

Exploration is a systematic search in a search space whereas exploitation is the utilization

of available knowledge about a given situation to the greatest possible advantage. The

success of a RL algorithm is based on how good the agent balances its choice of actions

between exploring and exploiting. Researchers [63, 78, 162 and many others], have

postulated some action selection strategies for agents to utilize when solving a RL

problem. There is neither a good nor bad strategy for choosing whether to explore or

exploit existing knowledge during an agent’s interaction with the environment. If an

agent chooses to exploit its knowledge about its environment in the early stages of a

simulation, it risks not getting the potential maximum rewards available. A good strategy

is for the agent to explore at a faster rate during the initial stages of the simulation and

then exploit the knowledge gained towards the end of the simulation. When an agent tries

(explores) a vast range of actions, the agent will be better equipped to make decisions that

would maximize its rewards for any given task. Exploration and exploitation are also

referred to as non-greedy and greedy strategies.

Some of the most commonly used exploration strategies are as follows:

a) The P-greedy policy (Pseudo-stochastic Method) [175]

),(maxarg * bxQa
XAb∈

= 4.4.5.1

27 Q-factors are based on state-action pairs, it is an algorithm of RL based on the work of Watkins [74]
28 TD(λ) is the temporal difference algorithm, the values are updated after a finite number of steps
represented by λ. Sutton [72]

88

daihe
Underline

Here the action that produces the maximum return can be chosen with a high

probability P else an action is randomly chosen. The maximum Q value29 for a

state-action pair produces the maximum return.

b) Pseudo-exhaustive Method: the action that produces the maximum return can be

chosen with a high probability P, else the action that has the lowest probability of

being chosen is utilized.

c) Boltzmann Distribution: The action in any given state is chosen with probability:

∑
=

b
bxQ

T

axQ
TxaP

)),(1exp(

)),(1exp(
)/(4.4.5.2

T is a positive parameter known as the temperature [63]. According to [63], low

temperatures cause the probability of selecting actions with different value

estimates to be different, whereas “high temperatures cause the selection of all

actions to be nearly equi-probable” [63].

A reinforcement-learning agent has to explore new options and also exploit options that it

knows to best suit the current situation. One of the issues with reinforcement learning is

having the agent balance its choice between exploring new options and exploiting options

it knows would give the greatest rewards for the current situation.

4.4.6 RL General Problems

Assigning credit to the correct decision-making process in a RL problem is one difficulty

faced in RL. Credit-assignment can be either of two types; “temporal credit-assignment

problem and structural credit assignment problems” [165]. Temporal credit-assignment is

29 Q values are discussed later in this chapter.

89

daihe
Underline

when an agent cannot determine a particular actions contribution(s) to the overall quality

of the full sequence of actions to solving the RL problem. Structural credit-assignment

deals with multi-agent systems in which determining the contributions of a particular

agent to a common task in a RL problem are difficult. Some researchers have postulated

some solutions to the credit-assignment problems, Agogino & Tumer [165] show how the

temporal and structural credit-assignment problems are the same. Mahadevan [179]

compared four machine learning techniques along temporal, structural and tasks credit

assignment problems and found differences in the way they handle them. Sutton [72]

conceived the temporal difference algorithm to address the temporal credit assignment

problem.

RL problems can be of two types, they can be discrete or continuous. An

algorithm that generates adaptive controls for continuous processes was formulated by

Munos [156]. This is achieved by using finite-element methods to approximate the value

function. The learning dynamics as well as the structure dynamics are integral parts of

this algorithm [156]. The learning dynamics, known as “Finite-Element Reinforcement

Learning, estimates the value functions at the vertices of some triangulation defined in

the state space, while the structural dynamics defines these triangulations in regions that

have an irregular value function” [156].

Kimura & Kobayashi [170] present the stochastic gradient ascent algorithm that

deals with problems where the action space is continuous and rewards are delayed. Their

method doesn’t require a model of the environment and doesn’t need to approximate the

value function explicitly. They showed that their method learned a policy with less cost

when compared with the actor/critic algorithms described in Konda & Tsitsiklis [183].

90

Smart & Kaelbling [171] introduce an algorithm HEDGER that approximates the value

function for continuous state control problems. “HEDGER is based on locally weighted

regression where training points close to the query point have more influence over the

fitted regression surface” [171] . Their algorithm has an advantage of learning quickly

with a small amount of data.

Dayan & Hinton [147] propose the feudal reinforcement learning algorithm that

aims to speed up the learning process. This is achieved by breaking the problem into

smaller tasks where the high level tasks learn how to set tasks for the lower level tasks.

The lower level tasks learn how to maximize the reinforcement received based on the set

tasks.

Kretchmar [184] proposes the parallel reinforcement learning algorithm where

multiple RL agents interact and learn from the same environment in parallel. Because RL

environments are usually stochastic, the agents’ experiences would differ and eventually

converge on the same value function. By sharing information at intervals, the learning

process is accelerated.

Shapiro et al [185] describe “an agent architecture Icarus that embeds a

hierarchical RL algorithm in a language for specifying agent behavior”[185]. They show

an increase in “the learning rate and asymptotic performance and decrease in plan size

when background knowledge was introduced” [186].

Baird and Moore [186] derived the Value and Policy Search (VAPS) algorithm

that can generate new RL algorithms. These newly generated algorithms all guarantee

convergence to simple MDPs and POMDPs. They also include modifications to Q-

learning, SARSA and advantage learning.

91

Dietterich and Flann [187], synergistically combine explanation-based learning30

and RL to produce Explanation-Based Reinforcement learning (EBRL) because both

learning methods propagate information backward from the goal state towards the

starting state. In experiments they performed – comparing batch and online versions of

the new algorithm with versions of RL and EBL, they showed EBRL outperformed both.

They also believe one of the outcomes of their algorithm (Region-based dynamic

programming) provides a possible solution to a major limitation of RL which is, lack of

scaling up to large state space problems.

4.4.7 RL Techniques

There have been many notable RL algorithms developed. Amongst the most widely used

are Dynamic Programming (DP), Monte Carlo Methods (MC), Linear Programming

(LP), Q-learning, TD-learning and Hierarchical Reinforcement learning. Sutton & Barto

[63] discuss three broad classes of algorithms: Dynamic Programming, Monte Carlo

methods and the Temporal Difference algorithms.

4.4.7.1 Dynamic Programming

In dynamic programming, a model of the world is present and the agent attempts to

maximize its rewards. The model includes the transition probabilities between all states.

A major limitation of dynamic programming for solving RL problems is its requirements

for a model of the environment. Also, for large state-space problems, using dynamic

programming would be impractical because of the amount of computations and memory

30 Explanation-based learning “computes the weakest preconditions of operators and hence propagates
information backward from the goal on a region-by-region basis” [187]

92

daihe
Underline

needed. Sutton & Barto [63] note that this situation was termed the curse of

dimensionality by Bellman. Although Gosavi [78] calls RL “an offshoot of dynamic

programming and a way of doing dynamic programming within a simulator”, he [78]

illustrates the differences between RL and classical DP by noting that DP always

produces an optimal solution to control and prediction problems whereas RL produces

near-optimal solutions. In using DP to solve RL problems, based on the available model

of the environment, the transition probability and reward matrices can be generated in a

simulator and then dynamic programming algorithm applied to these transition

probabilities. This produces an optimal solution to the RL problem. In the case of RL, the

reinforcement learning algorithm is applied in a simulator without the model of the

environment and this produces the near-optimal solutions.

4.4.7.2 Monte Carlo Methods

Monte Carlo (MC) methods solve the RL problem by averaging the rewards (returns)

received over a period of time. Multiple trials which result in experiences generated by

the online or offline interaction of an agent with its environment are required for MC

methods. It is assumed in MC methods that these experiences are divided into episodes.

After the end of an episode, the estimates of the values are then changed. MC methods

are based on averaging the complete returns (rewards) received by an agent. The Monte

Carlo methods have features of dynamic programming, with the exception that a model

of the environment need not be available. A pseudo code for first-visit Monte Carlo

methods for estimating the value of a state is presented:

Initialize:
π policy to be evaluated

93

V an arbitrary state-value function
Returns(s) an empty list, for all s Є S

Repeat forever:
(a) Generate an episode using π
(b) For each state s appearing in the episode:

R return following the first occurrence of s
Append R to Returns(s)
V(s)average(Returns(s))

(Reproduced from Sutton and Barto [63] without permission).

While implementing the first-visit Monte Carlo method, you first of all initialize the

policy to be evaluated, i.e., you map available actions to the perceived states in the

environment. You initialize the value of a state chosen at random to some random

number. For all states of the environment, you initialize the returns received by the agent

in each state to zero. You start the simulation, for each state visited by the agent, you

note the reward received at that state. At the end of a simulation cycle, the value of a

state is determined by the average rewards received in that state, i.e. the total rewards

received by the agent while in that state, divided by the number of visits made to that

state.

4.4.7.3 Temporal Difference Learning (TD-Learning)

Temporal difference learning (TD-learning) is a combination of the ideas introduced in

the Monte Carlo and dynamic programming methods [63]. This method learns from the

experience achieved through the agents’ interaction with the environment and this learnt

knowledge can be updated based on the estimates of other learned estimates without

waiting for the final outcome of the reward. It is based on the principle that one does not

have to wait until the end of a task to provide an initial estimate for that task. The

94

example provided by Sutton and Barto [63] explains the basis of td-learning as an

example. Each day driving home from work, we inherently think of how long the journey

will take and thus provide an estimate. While on the journey, if it rains, we immediately

adjust our estimates to reflect the fact that we drive slowly when it rains. If we find

ourselves stuck in traffic, we keep readjusting our estimates based on the current situation

and the completed leg of journey until we complete the journey [63]. In other words, we

learn of a new estimate immediately, based on the previous estimate.

Tesauro [64] made the temporal difference learning algorithm famous with his td-

gammon learning system. From the work of Tesauro [64], RL was shown to achieve

results that other learning methods have not achieved. Tesauro [64] showed that using the

TD method of Sutton [72, 73] to solve the RL problem, the game of backgammon could

achieve masters’ level. This was achieved by the game playing about 1.5 million games

against itself and learning from the rewards and mistakes in those 1.5 million games.

With this much success of the application of the TD method towards the RL problem in a

practical scenario, researchers have high hopes for RL techniques and also believe that

RL techniques have great potentials.

There are some skeptics to the work of Tesauro however, Pollack & Blair [66] in

their work, try to attribute the success of the temporal difference methodology with the

game of backgammon by Tesauro [64] to the domain in which the TD method was used

i.e. because of the inherent nature of the game of backgammon. Pollack and Blair [66]

carry out a simple hill climbing algorithm in a relative fitness environment on the game

of backgammon and claim that any learning method can achieve what Tesauro [64] did.

95

However, they failed to achieve the same results as Tesauro [64]. A pseudocode for

TD(0) for estimating the value of a state is presented:

Reproduced from Sutton and Barto [63] without permission

Initialize arbitrarily, to the policy to be evaluated
Repeat (for each episode):
 Initialize s
 Repeat (for each step of episode):

 Take action a; observe reward, r, and next state,

 until s is terminal

SARSA, which is an on-policy TD31 control algorithm is presented:

Reproduced from Sutton and Barto [63] without permission

Initialize arbitrarily
Repeat (for each episode):
 Initialize s
 Choose a from s using policy derived from Q
 (e.g., -greedy)
 Repeat (for each step of episode):
 Take action a, observe r,
 Choose from using policy derived from Q
 (e.g., -greedy)

 ; ;
 until s is terminal

4.4.7.4 Q-Learning

Q-learning is an off-policy TD control algorithm created by Watkins [74]. It is based on

the selection of actions in states based on their Q-values. Q-values are a collection of

rewards for each state-action pair for each state. The state-action pair that produces the

31 On-policy is the same as online RL and off-policy is offline RL

96

greatest reward in each state is chosen32. Humphrys [173] notes that the actions available

to the agent in each state could be different. In the paper on Q-learning by Cybenko [79],

an agent in an unknown environment seeks to maximize the total reward it achieves when

starting from any state by choosing actions that would maximize its total rewards in that

state. The problem is that the agent doesn’t know what actions would maximize its total

rewards because if it did, the problem being solved would turn out to be a supervised

learning problem [173]. Through trial and error, the agent has to learn to choose actions

in each state that would bring about a total maximum reward. A pseudocode for Q-

learning is presented: (Reproduced from Sutton and Barto [63] without permission)

Initialize arbitrarily
Repeat (for each episode):
 Initialize s
 Repeat (for each step of episode):
 Choose a from s using policy derived from Q
 (e.g., -greedy)
 Take action a, observe r,

 ;
 until s is terminal

According to Gosavi [78], the fundamental concepts of RL are based on the Q-factors (Q-

values) and the Robbins-Monro Algorithm. The value function, which is the bedrock of

RL algorithms are stored in Q-factors. The value function is based on the Bellman

optimality equations as shown below [78]:

∑
=∈

+=
||

1

*

)(

*)](),,(),([max)(
S

jiAa
jJjaipairiJ γ 4.4.7.4.1

32 The choice of actions in each state is based on the Q-values as well as the defined policy

97

•)(* iJ is the ith element of the value function vector associated with the optimal

policy

• A(i) denotes the allowed actions when in state i

• p(i,a,j) is the transition probability of going from state i to state j when action a is

performed

• ∑ =
= ||

1
),,(),,(),(s

j
jairjaipair is the immediate reward expected in state i, if

action a is selected in that state, r(i,a,j) is the immediate reward when action a is

selected and the system transitions from state i to j because of the selected action.

• S is the set of states in the system

• γ is the discount factor that gives some weight to future rewards

An element of the Q-factor is usually associated with a state-action pair. For any given

state-action pair (i,a), the Q-factor is:

)](),,()[,,(),(*
||

1

jJjairjaipaiQ
S

j
∑

=

+= γ 4.4.7.4.2

Combining the Bellman optimality equation with the Q-factor equation, we get the

relationship between the value function of that state and the associated Q-factors:

),(max)(*
)(

aiQiJ
iAa∈

= 4.4.7.4.3

For all state-action pairs (i,a), the Q-factors equation can be written as:

)],(max),,()[,,(),(
)(

||

1

bjQjairjaipaiQ
jAb

S

j ∈=
∑ += γ 4.4.7.4.4

98

The above equation is known as the Q-factor version of the Bellman optimality equation

for all discounted reward MDPs [78].

The Robbins-Monro algorithm provides estimates of the mean of a random

variable from samples of it [78]. By averaging the samples, we can get the mean of the

random variable. According to [78], “let the ith independent sample of a random variable

X be si and the expected value (mean) by)(XΕ , with probability 1, the estimate of the

mean is:”

n

n

i
iS∑ = 1 4.4.7.4.5

This estimate of the mean, tends to the real value as ∞→n “according to the laws of

large numbers” [78]

n

n

i
i

n
SXE ∑ =∞→

=
1

lim][4.4.7.4.6

These samples are usually generated in a simulator. From the averaging process shown

above, [78] derived the Robbins-Monro algorithm. If Xn denotes the estimate of X after

obtaining n samples:

n

n

i
in SX ∑ =

=
1 4.4.7.4.7

1

1

1
1

+

+

=
+ ∑=

n

n

i
in SX 4.4.7.4.7.1

1
1

1

+
=

+∑ +=
n

n

i
ni SS

1

1

+

++=
n

nn SnX

99

1

1

+

++−+=
n

nnnn SXXnX

1

1)1(
+

++−+=
n

nnn SXnX

1

1

11

)1(
+

+

++

+−+=
n

n

n

n

n

n SXnX

1

1

1 +

+

+
+−=

n

n

n

nn SXX

111)1(+++ +−= nnnn SX αα 4.4.7.4.7.8

If)1(
11

+=+

n
nα

Thus:

1111)1(++++ +−= nnnnn SXX αα 4.4.7.4.8

This is known as the Robbins-Monro algorithm. When)1(
11

+=+

n
nα , the algorithm

becomes direct averaging. The Robbins-Monro proof shown above, was reproduced from

[78] without permission. α is known as either the step size or the learning rate, it

guarantees convergence to an optimal solution.

Combining the Robbins-Monro Algorithm with the Estimates of Q-factors

produces the optimal Q-factors without knowing the model of the environment. It has

been shown that every Q-factor can be expressed as an average of a random variable [78].

Recalling the Q-factor in Bellman’s equation:

)],(max),,()[,,(),(
)(

||

1

bjQjairjaipaiQ
jAb

S

j ∈=
∑ += λ 4.4.7.4.9

)],(max),,([
)(

bjQjairE
jAb∈

+= λ 4.4.7.4.9.1

100

=E[SAMPLE]

According to [78], E is the expectation operator of the random variable in equation

3.4.7.4.8.1. Robbins-Monro algorithm can be used to estimate the Q-factors if samples of

random variable are generated in a simulator. If the Robbin-Monro algorithm is used, the

Q-factor equation for each state-action (i,a) pair becomes:

)],(max),,([),()1(),(
)(

111 bjQjairaiQaiQ n

jAb

nnnn

∈

+++ ++−← λαα 4.4.7.4.10

The above equation does not include transition probabilities. With this algorithm, the

optimal Q-factors can be generated in a simulator without knowing the probability matrix

of the underlying Markov chain [78].

There have been many attempts to refine the Q-learning algorithm to produce

better performing algorithms. Guo et. al. [188] produces an algorithm, SA-Q-learning that

converges faster than Q-learning. Their algorithm also balances the exploration and

exploitation choices made by the agents, and its performance isn’t degraded because of

excessive exploration.

Wiering [189] developed the fast online Q(λ) algorithm based on the fact that the

updates to Q-values can be postponed until needed. In this algorithm, TD(λ) methods

were used to accelerate Q-learning. The fast online Q(λ) learning algorithm has a

complexity of O(|A|) per update.

Peng [190] combine Q-learning with TD(λ)-learning algorithms to produce a

faster algorithm. The new algorithm also eliminates the non-markovian effect of coarse

state-space quantization.

101

Dearden et. al. [191] produces the Bayesian Q-learning algorithm where a

Bayesian approach is used to maintain the agents’ value estimates of states. Probability

distributions of the Q-values are used to compute these value estimates of actions that

provide the best balance between exploration and exploitation.

4.4.7.5 Hierarchical Reinforcement Learning (HRL)

Hierarchical Reinforcement learning (HRL) reduces the complexities of a decision

making process by breaking down a large problem into a hierarchy of smaller problems.

Parr & Russell [139] note that these complexities could be reduced from an exponential

size to a linear size of the problem. In HRL, high-level activities are usually decomposed

into lower-level activities. As noted by Dietterich [140], “the aim of hierarchical

reinforcement learning is to discover and exploit hierarchical structures within a markov

decision problem.” Parr & Russell [139] describe a learning technique that utilizes prior

knowledge in finding solutions. They use hierarchical abstract machines (HAMs) in their

solutions. Constraints are placed on the policies available to the learning agent by the

HAMs. At each state of the learning process, a HAM - a program, restricts the actions

available to the learning agent. A HAM is akin to one of the tenets of the Context-based

Reasoning technique created by Gonzalez & Ahlers [7]. An example of a HAM would be

the classical example provided by Gonzalez et al. [9], that is, it is not possible for a tire

blow out to occur when a car is waiting in a traffic light and as such an agent wouldn’t

consider a tire blow out event when in a traffic light scenario. As such, the HAM for this

scenario would constrain the actions available to the agent by excluding an action for the

tire blowout event. Parr & Russell [139] note that “machines for HAMs are defined by a

102

set of states, a transition function, and a start function that specifies the initial starting

state of the machine.” There are four types of machine states in a HAM: the action states,

where actions are executed in the environment; the call state, where the execution of a

subroutine is initiated; the choice state, where the stochastic selection of the next machine

state is carried out; and finally the stop state, where the execution of subroutine is halted

and control is returned to the calling state. Figure 4.5 shows these states.

Action State

Call State -
Subroutine
Initiation

Choice
State

Stop State

Figure 4.5 Showing the Four Machine states for HAMs. The dashed line shows calls

to a subroutine.

The transition function determines what the next machine state should be. It is

based on the current state of the agent and some features of the agents’ environment. The

start function defines a HAM, i.e. the initial machine where execution begins and the

closure of all machines that can be reached from this initial machine [139].

In RL, the constraints placed by HAMs, can narrow the focus of exploration of

the state space. This technique reduces the exploration phase of the learning agent and

thus provides faster learning for the agent because the state space is reduced. Parr and

103

Russell [139] introduce the HAMQ-learning algorithm, which is a variation of Q-learning

[74, 79]. According to them [139], “the current environment state, t; the current machine

state, n; the environment state at the preceding choice point, sc; the machine state at the

preceding choice point, mc; the choice made at the previous choice point, a; the total

accumulated reward and discount rate since the previous choice point, rc and βc; an

extended Q-table, Q([s,m],a) indexed by an environment-state/machine-state pair and by

an action taken at a choice point” are all kept track by a HAMQ-learning agent.

For every action in the environment, a transition from state s to state t is made.

For each transition, the observed rewards r and discount factor β and updated by the

HAMQ-learning agent as follows:

ccccc andrrr β βββ ←+← 4.4.7.5.1

“Thus for each transition to a choice point, the agent does:”

)]],,([]),([[)],,([)],,([amsQntVramsQamsQ cccccccc −++← βα , 4.4.7.5.2

1,0 ←← ccr β

Dietterich [140] presents a learning algorithm which is an extension to Q-learning known

as Hierarchical Semi-Markov Q (HSMQ). He showed that a task using this algorithm can

converge to a recursively optimal policy. HSMQ has a goal of finding a recursive optimal

policy. Dietterich [140] states that a recursively optimal policy is an assignment of

policies to each subtask in such a way that the policy is optimal for all policies assigned

to all of its dependents. It is “a kind of local optimality that has no guarantees on the

quality of the overall policy.”[140] The idea for the HSMQ algorithm is that for each

subtask p, the Q function Q (p,s,a) is learnt, this Q function is the expected total reward

104

of performing the subtask p starting in state s, executing an action a and following the

optimal policy.

Dietterich [140] describes the algorithm for each subtask as:

function HSMQ(state s, subtask p) returns float

let TotalReward = 0

while p is not terminated do

choose action a=)(sxπ according to exploration policy xπ

execute a.

if a is primitive, observe one-step reward r

else r := HSMQ(s,a), which invokes subroutine a and

returns the total reward received while a executed.

TotalReward := TotalReward + r

Observe resulting state s’

Update Q(p,s,a) := (1 -)α Q(p,s,a) + α)]',',(max[
'

aspQr
a

+

end //while

return TotalReward

end

Dietterich [140] notes that the HMSQ learning algorithm solves the hierarchical

reinforcement learning problem by treating it as “a collection of simultaneous,

independent Q learning problems”. This doesn’t provide a representational

decomposition of the value function, and as such, the value function of each subtask is

represented and learned independently. This is not good, it would be better if some

“sharing and compactness” in the representation of the value function exists. Dietterich

developed the MAXQ value function which does this [140, 145].

Dietterich [140] notes that the value function of many subtasks don’t depend on

all the state variables in the original MDP and thus, there are three forms of state

105

abstraction that can be applied within the MAXQ value function decomposition. These

are: irrelevant variables, funnel abstractions and structural constraints. These abstractions

are necessary for the reduction of the memory needed to store the value function as well

as the amount of experience needed to learn the value function.

“A state variable is irrelevant for a subtask if the value of that state variable never affects

either the values of the relevant state variables or the reward function.

A funnel action is an action that causes a larger number of initial states to be mapped into

a small number of resulting states.

Structural constraints concerns implication relationships between a child task and its

parent task.” [140]

In analyzing the design tradeoffs in hierarchical reinforcement learning, Dietterich

[140] notes that a “recursively optimal policy can be far from being optimal”; the HAMQ

algorithm by Parr & Russell [139] learns a hierarchical optimal policy33 and as noted by

Dietterich [140], for an agent to learn a hierarchical optimal policy, information sharing

between subtasks must exist. Although, more state abstraction and reuse of subtasks can

be achieved through a recursively optimal policy than through a hierarchical optimal

policy, hierarchical optimality is usually better.

Hierarchical Suffix Memory (HSM) Reinforcement Learning was developed by

Hernandez-Gardiol & Mahadevan [148]. They note that perceptual aliasing, a situation

where the same observations are generated by different real-world states, is a problem in

the solution of RL tasks [148]. They suggest the addition of memory about past events to

address this. They show that when past experience is considered at some task-appropriate

33 “A hierarchical optimal policy is the best possible policy for the constraints on an imposed hierarchy”
Dietterich [140]. The policies used by the subtask might not be optimal.

106

variable resolution under perceptual aliasing, the speed of learning can be increased for

problems with long sequences of decision making. A limitation to their method is that the

past experience used is limited to the histories for each level of abstraction.

There are many other hierarchical reinforcement learning algorithms, for example

the hierarchical distance to goal (HDG) method by Kaelbling [146], where an agent acts

upon a partitioned environment with centers known as ‘landmarks’. Low level actions

are utilized to move towards the goal if an agent is sensed to be in the same partition as

the goal; otherwise high level actions are used to determine the landmark closest to the

goal.

Lane & Kaebling [149] propose a method were partial plans are developed over a

hierarchical region where each plan is a representation of some knowledge on the

achievement of a sub-goal within its region.

Bakker & Schmidhuber propose the HASSLE (Hierarchical Assignment of

Subgoals to Subpolicies LEarning) algorithm where sub-goals are automatically

discovered through high-level policies and learning to specialize on these sub-goals is

achieved through low-level policies [150]. In deterministic and stochastic large MDPs,

the HASSLE algorithm performed better than some other RL algorithms [150].

Bernhard [151] proposes the CQ algorithm that automatically generates a

hierarchy of sub MDPs using state variables to decompose the MDP. Bernhard [152]

proposes the HEXQ algorithm to solve multi-dimensional MDPs by constructing a

multilevel hierarchy of interlinked subtasks. This is done without having apriori

knowledge of the model. The MDP is automatically decomposed. The choice of

representation of variables, the temporal relationship between the variables and the type

107

of constraint placed on the stochasticity of the problem all affect the efficiency and

effectiveness of HEXQ decomposition [152]. Bernhard [153] tries varying degrees of

model resolution in approximating hierarchical decomposed MDP that are already state

abstracted.

McGovern & Sutton [154] analyze the advantages of macro-actions in

reinforcement learning as it relates to an agents’ exploratory behavior and speed that the

propagation of value information is carried out by the learning process. Their results

show the effects of both to be significant with a much larger effect of value propagation.

McGovern et. al. [155] in their approach, present ‘options’ where both high and

low-level decisions are treated the same way during problem solving. Traditionally, while

solving SMDPs, the sub-SMDPs are solved in parallel and their solutions merged without

taking into account the effect of actions available and transition probabilities of the

neighboring sub-SMDPs. Gang & Mahadevan [157] present an approach that resolves

this. With their approach of solving SMDPs, the sub-SMDP takes the different modes of

interaction between them and their neighbors into account. After the sub-SMDPs are

solved, the resulting policies are combined using a greedy algorithm for the problem

[157]. They show that their method outperforms traditional ‘flat’34 RL algorithms in a 12-

machine manufacturing transfer line, in terms of speed. Their method also performed

better than some heuristics currently being used in manufacturing transfer lines.

Singh [158] presents a hierarchical DYNA (H-DYNA) algorithm which is an

extension of Suttons [63] DYNA architecture. H-DYNA learns the hierarchy of temporal

34 A ‘flat’ RL algorithm is an algorithm that seeks to solve the RL problem without decomposing the
problem into sub-problems and without any special refinement of the function approximation method used
for the value function. A simple Q-learning algorithm can be considered a flat RL algorithm.

108

abstract models of the environment that can be used in solving stochastic control

problems and can also transfer learnt knowledge across different tasks.

Thrun & Schwatz [159] propose the SKILLS algorithm. The main idea behind the

SKILLS algorithm is the reduction of all possible actions an agent can take in any given

situation. This is done by giving the agent high-level skills that can be applied in many

situations. The skills are represented by subpolicies the agent can follow for many

timesteps.

Wiering & Schmidhuber [160] propose the HQ-learning algorithm which is a

hierarchical extension of the Q-learning algorithm. “It is based on an ordered sequence of

subagents that learn to identify and solve the markov subtask of the overall task.” They

show that the HQ-learning algorithm can solve complex tasks that Q-learning is

incapable of solving [160].

Goel & Huber [161] propose a technique where a RL agent discovers subgoals by

searching a learned policy model for states exhibiting some types of structural properties.

Barto & Mahadevan [141] discuss some hierarchical reinforcement algorithms and the

limitations of these methods. They [141] propose ways of extending these algorithms to

address multiagent coordination, concurrent activities, etc. and list existing huddles

facing hierarchical reinforcement learning.

From the above literature, it can be seen that there are many algorithms for

hierarchical reinforcement learning currently in use. These algorithms tend to address one

or more aspects of the shortfalls of hierarchical reinforcement learning. However

different these algorithms look, they all share the fundamental structure of hierarchical

reinforcement learning, which says that for any given complex task, the task can be

109

decomposed into subtask that would reduce the complexity of the problems. Stated

differently, they all share the goal of hierarchical reinforcement learning which is the

discovery and exploitation of hierarchical structures within a complex markov decision

problem.

As noted earlier, on first look at hierarchical reinforcement learning, one would

assume it is a paradigm that models tactical behavior like CxBR, with learning included

in it. In reality, the only similarity between hierarchical reinforcement learning and

context-based reasoning techniques is in the decomposition of complex tasks into smaller

subtasks; in CxBR, a complex task is thought of in terms of contexts and the appropriate

actions an agent would exhibit in each context is addressed in it. In HRL, the complex

task is decomposed into a hierarchy of abstract machines. Each abstract machine calls the

subtasks (subroutines) and the subtasks can all operate in parallel towards a solution. On

closer look, the dissimilarities between both techniques abound. In HRL, the lower

hierarchy must return control back to the calling function whereas in CxBR as soon as a

change in situation is noticed, control can be transferred to a new context that correctly

identifies the new situation, it doesn’t matter if control comes from a major-context, a

sub-context or a sub-sub-context. In CxBR, the flow of control of an agent’s action is

intuitive; meaning as soon as there is a recognized change in situation, much work isn’t

required to identify the new context. In HRL however, the flow of control of an agent’s

action is based on the observed or sensed rewards from the environment. In CxBR,

localized optimality35 is directly proportional to global optimality36 whereas in HRL,

localized optimality is not always directly proportional to global optimality. Another
35 Localized optimality is the optimal value of an attribute or action in a given context, sub-context or sub-
procedure towards the goal of the context, sub-context or sub-procedure.
36 Global optimality is the optimal value of an attribute or action in a given context, sub-context or sub-
procedure towards the overall goal.

110

distinguishing feature between CxBR and HRL is the fact that contexts can be refined in

terms of their attribute values, transition criteria between contexts, etc. whereas in HRL,

once a hierarchy is discovered, the boundaries are fixed.

4.4.8 RL Applications

There is a significant body of literature on reinforcement learning. The existence of these

publications is fueled by the need to make the reinforcement learning algorithms perform

better. Reinforcement learning algorithms are said to perform better if they find a solution

to the reinforcement learning problem faster by converging to an optimal solution

quicker. Most researches are focused on achieving faster algorithms for control and

predictions tasks for example [188, 190]. In most cases, a RL algorithm is said to perform

better if it converges to a solution in the shortest possible time with the smallest amount

of computation steps. Overall, most investigations in reinforcement learning are focused

on making the learning agent learn some value function or utility of a state or an action

faster. There are some criticisms to the study of RL, amongst which are the lack of

practical applications of RL. Most works on RL are theoretical, and most examples are

simulated. Unfortunately, in terms of real world applications of reinforcement learning,

only a few successful applications have been developed, amongst which include [67, 68,

69, 64, 70, 71, 167, 168]. As pointed out by Pratt [81], RL may not be a good framework

for describing animal intelligence, most works carried out in RL are on grid worlds with

the learning agent moving in a north, south, east, west fashion. Pratt [81] also points out

the technical hurdles in RL, which include “Curse of Dimensionality and the slow

111

daihe
Underline

learning with Primitive Actions” [81]. In most RL algorithms, the learning agent doesn’t

take into account behavioral variances caused by emotions, contexts, etc.

There are many papers on the future of RL, Sutton [65] talks about the current

state of RL and also about the future, stating that researchers should focus on the

structures that enable value function estimation and the possibility of a machine

constructing the features that affect learning and other structures automatically, instead of

people doing them [65]. Sutton [65] also talks about the idea of a developing mind as

currently being studied in psychology, called constructivism being part of the future.

Although there are some limitations to what reinforcement learning algorithms

can do, it proffers the best solution to the problem described in chapter 2 when compared

with the other two classes of machine learning algorithms. In the next section, a brief

comparison between all three classes of machine learning algorithms is made with a

focus on our defined problem.

4.5 Comparison of the Three Machine Learning Groups Towards the Enhancement of
Tactical Models

It has been established that machine learning techniques are used to acquire knowledge

for modeling tactical decisions. Usually, this knowledge is transformed from their raw

states to a form that can be understood by the modeler. In most cases, supervised learning

techniques are used to acquire expert knowledge. Based on some presented examples and

the conclusions arrived at with these examples, a learning technique would acquire this

knowledge and model the decision making process of an expert. According to Henninger

[126] inductive, connectionist, case-based and analytical methods, SOAR chunking and

interactive machine learning techniques can be used to accomplish the acquisition and

112

transformation of raw knowledge. Inductive techniques can be supervised learning or

unsupervised learning [126]. Connectionist techniques involve neural networks which are

usually supervised learning, pattern recognition and Hopfield networks which are

unsupervised learning [126]. Case-based and analytical methods usually keep cases that

identify problems and their solutions based on the similarities between the current

problem and past cases in the case library.

Unsupervised learning techniques are typically used in classification problems

where no goals exist. In the refinement of a human behavior model, the goals of the agent

exist and based on this goal, the refinement process occurs. The singular reason of the

existence of a goal precludes the use of unsupervised learning techniques in this research.

Observational learning, also a supervised learning technique is used to acquire

implicit knowledge from expert. When combined with CxBR, observational learning in

CxBR captures expert knowledge and can automatically build contexts based on the

captured knowledge [138]. In the work by Fernlund et al [10, 138], building agent

behaviors automatically was discussed. This involved building the transition from one

context to another through observation. The underlying motivations for human behavior

modelers to use observational learning in acquiring knowledge from a SME are exactly

the same motivations for this research with an additional motivation here of expanding

the acquired knowledge beyond the knowledge of the expert. For example, lack of

explanation for experts’ implicit actions and many others. There are limitations to the use

of observational learning and thus, supervised learning techniques to refining and

enhancing knowledge. This is because the acquired raw knowledge and the final model

are based on input/output pairs from the expert actions and the results of these actions.

113

The goal is always the result of the action which is obtained directly from the expert

which is limited to a particular action.

There are major differences to the approaches and expected results when

knowledge is acquired through observation in a CxBR model and when this knowledge is

refined through RL.

While the work on observational learning suggests ‘watching’ the expert or

“manned vehicle as it performs that behavior in battlefield situations similar to that to be

seen by the model” [10], the agents in this research interact with the environment. In this

research, the agent is an actor in the environment; it performs actions on the environment

that causes a state change in the environment. Whereas in observational learning in

CxBR, the agent is not an actor, it doesn’t perform any action in the environment and

cannot effect any state change in the environment. In reinforcement learning in CxBR,

the agent learns from the reinforcements or punishments it receives as a result f its

actions; whereas in observational learning in CxBR, the agent learns from the

reinforcement or punishment received the actions of others. The latter limits the range of

experiences that the agent can experience.

Another issue with observational learning is the same one associated with expert

questions and answers sessions. The expert performing an observable ‘act’ will only

perform what it knows. This is a great limitation to the agent learning by observing this

expert. Reviewing the work by Sidani [58], an agent tries to learn implicit knowledge by

observing an expert perform actions. The work failed to address the situation when the

agent watches two or more experts react differently to the same scenario! In a driving

scenario, if a pedestrian suddenly crosses a roadway, expert driver #1 might immediately

114

hit the brakes, while expert driver #2 might swerve to the right to avoid hitting the

pedestrian, likewise expert driver #3 might swerve to the left. If an agent is learning by

observing these expert actions, which does the agent retain and apply when faced with a

similar situation? 37

In summary, the relationship between this research and that of most researches in

observational learning in CxBR is minimal only in the sense that they both don’t

advocate the ‘hard-coding’ of transition rules between contexts based on knowledge

acquired through question and answer sessions. Observational learning in CxBR acquires

the knowledge required for modeling and thus generates its actions and transition rules by

observing the expert operate and transition between contexts, alternatively, this research

builds on the knowledge acquired through Q&A sessions and / or observation. The model

built is then refined by the agents’ constant interaction with a simulated environment.

This enables the agent to learn from its own experience and apply what is learnt to the

model – thus refining it to perform better. While observational learning has a

disadvantage of having the agent learn only what it observes, reinforcement learning

allows the agent to explore different actions and transitions between and within contexts

thereby allowing for flexibility for events that where never planned to occur or never

thought of by the expert. This is the reason why this research was carried out using

Reinforcement Learning techniques.

4.6 Chapter Summary

In this chapter, the three classes of machine learning techniques were presented.

Examples of the various machine learning techniques were also presented. Emphasis was

37 It can also be argued here that the agent would generalize, but there is always going to be an optimal
action to take, and generalization might not take this into effect.

115

placed on reinforcement learning and the techniques used in solving reinforcement

learning problems. A comparison on the three classes on machine learning techniques

was done based on the problem being researched and a justification was made as to why

reinforcement learning techniques were used in this research.

116

CHAPTER 5: CONCEPTUAL APPROACH

5.1 Introduction

The approach used to address the problems inherent in the knowledge acquisition process

utilizes experiential learning (reinforcement learning). The approach used in this research

is based on the popular sayings “hindsight is clearer than foresight”. Our approach to

breaking the SME knowledge barrier is to refine / enhance conventionally-built models

through reinforcement learning. This process consists of subjecting a model developed

with the help of a SME to several different scenarios in a simulator. If the model

embodied in an agent successfully completes the mission, decisions made are reinforced

and subsequently subjected to a new scenario that is a modified version of the last one. If

the agent fails, changes are made to the model and the same scenario is re-run. This

continues until the model successfully accomplishes the mission. Context-based

reasoning is used as the basis of the model.

This research is not the first attempt at synergistically combining reinforcement

learning and contexts. Wan & Braspenning [192] propose an extension to the RL

framework to incorporate the role of contexts in solving RL problems. They had

encouraging results in an experiment where the agent had to learn to intercept a moving

target from any position in a path-finding problem. The difference between their work

and this investigation is that this investigation focuses on enhancing the overall model of

the agent through refining the individual contexts the agent encounters.

117

Bridle & McCreath [144, 193] propose a method for learning transition models in

a RL agent. This reduced the number of trials required by the agent in finding an optimal

policy. This was done by taking the agents’ context into consideration.

Balkenius & Moren [119] present a computational model for context processing

that learns context representations from the sequence of attentional shifts between

environmental stimuli.

Balkenius & Winberg [121] note that in RL, policies for states are learnt

individually without taking into consideration the similarities between different states.

They state that it would be good if actions learnt could be generalized amongst states and

that the generalization could be introduced in the RL algorithm in many ways. One way

they suggest is to divide the input from the state into two parts – one part for the situation

(context) and the other part to control the actions. They believe this would cause learning

to generalize for similar states as well as similar contexts. This will cause the roles of

state and context to be symmetric [121]. They formulate Contextual Reinforcement

Learning that achieves this in some experiments carried out. They note the limitations of

their method to include further investigations on the “relationship between stimulus and

context generalization – how a context influences the generalization of an action to

similar states and also how the learning history influences it” [121]. A major limitation to

their approach is the lack of relationship between “the concepts of a context to that of a

goal”. This research touches on the latter and enhances a context definition based on the

mission goal.

118

5.2 RL-CxBR Integration

Recalling the components of CxBR in Chapter 2 and those of RL in Chapter 4, it can be

seen that the components common to both architectures are the agent, the environment

and the model as shown in Figure 5.1. The model in CxBR are the predefined contexts

and their transitions therein. Enhancing this model to address the shortcomings of the

knowledge acquisition process is what this research is about. Other components are

necessary for the enhancement process to occur. Modifications to some existing

components would also facilitate the enhancement process. Before the components of the

RL-CxBR architecture are described, some questions must be answered to illustrate the

functionality of these components in the enhancement process.

Figure 5.1 RL-CxBR Block Diagram

The answers to these questions are needed to define a conceptual approach to the problem

and thus provide a formalized algorithm and flow of activities. These questions are

presented below:

1. How does one implement the enhancement process – does one seek to learn contexts

Agent

CxBR RL

Environment

119

with a reinforcement learning agent or seek to incorporate a reinforcement learning

algorithm within the CxBR agent?

2. How are the rewards presented to the agent?

2.1. Who sets these rewards? If the expert sets them, why will there be any

improvements on the agents’ behavior based on the rewards set by the same

expert? In other words, what effect would the reward have on the overall

performance of the model if it is defined by the same expert whose limitations

we are trying to break through?

3. Can an active context be enhanced during the enhancement process in realtime?

3.1. If an active context is enhanced, how would the enhancement occur, would the

agent know of the enhanced or refined attributes / values immediately?

4. What are the criteria for stopping the enhancement process?

4.1. Are these criteria valid for the enhancement process of the whole model or only

for one Context within the model?

5. How does the agent know the correct results from actions it performs as defined by

the environment? Note that if the outputs for a given action are given, it is

reduced to a supervised learning problem.

6. What actions are available to the agent at any given time?

7. Should the entire environment be visible to the agent at all times?

8. Reinforcement learning seeks to learn the behavior of an agent in different states of

its environment. CxBR addresses the behavior of an agent in an environment based

on the context. How should the concepts of states and contexts be represented? Does

one represent a context as a state or a context as a group of states?

120

9. How should generalization be incorporated into the enhancement process? For large

state-space models, would each action be executed / attempted to properly

enhance/refine the model? Or will a generalized enhancement approach be sufficient?

10. Because contexts in a CxBR control an agents’ behavior based on a predefined model

of the environment, how would the agent explore and exploit this model? Would the

agent start the enhancement process by exploiting the knowledge it has of the

environment even though this knowledge might be wrong or incomplete? Or would it

forget all knowledge it has about the environment (all information defined in the

context) and start exploring the model?

11. Would the enhancement process deal with the issue of dynamic goals in the agents’

environment? If so, how?

12. How would the learning mechanism address any conflicting knowledge present in the

system?

Answers to the above questions are presented in the following sections.

5.2.1 Representation of the Enhancement Process

In our approach to breaking the SME knowledge barrier, it should be noted that the

knowledge to be enhanced is already defined and organized into contexts. Therefore,

creating a model from scratch through reinforcement learning is not relevant. This is

because it is the authors’ opinion that attempting to learn contexts from scratch in a

reinforcement learning problem would produce a method for organizing the expert

knowledge – which isn’t the objective of this research. Also, by organizing expert

121

daihe
Underline

knowledge irrespective of the quality of the knowledge will assist the reinforcement

learning algorithm to converge faster. This should be another topic for investigation.

Incorporating a reinforcement learning algorithm within the CxBR architecture is

most appropriate for the problem at hand. This is because having the agent explore

new actions within a context and its transitions between contexts can enable the

enhancement of the model. By having the agent perform actions within a context in a

simulator and learn from the rewards and punishments it receives, the agent would

know the best action to perform when put in the same situation in the simulator (or

real world). Knowing the best action in any context (situation) will enable the

enhancement of the context.

Mathematically, an enhanced Context '
iC is represented as:

ii CC R←' 5.2.1.1

Where R is the reinforcement learning algorithm applied to the context.

5.2.2 The Reward Function

The design of the reward function is essential for true and efficient learning to occur.

The reward function essentially directs the learning agent on what behavior to

reinforce and which to discard. It does not, however, tell the agent what is right or

wrong. For the enhancement process, the reward function directs the agent on the

contexts to enhance and the optimal values and attributes within these contexts. In a

typical mission, the reward function will be defined by the achievement of the goal

and sub-goals of the mission. Rewards will be attached to the constraints of the

122

daihe
Underline

mission. For example, if an agent completes a task successfully and on time38, a

positive reward could be attached to the achievement of this goal. If the agent

completes the task successfully but late, no reward is given. If the agent is

unsuccessful at the task, a negative reward39 is given.

The reward function will be defined by the SME, the knowledge engineer or the

application system developer. Allowing the SME set the reward might appear

counterintuitive at first because breaking the SMEs knowledge barrier is what this

research is all about. However, on a closer look, having the SME define the reward

function will highlight problems with the model to him or her. Furthermore, the

reward function neither contains the details of the actions nor the transition rules

within the model. For example, assuming a SME defines a maximum speed limit of

30 mph in a context and wants an agent to drive to a meeting 50 miles away. If this

SME defines a reward function that rewards the agent for arriving at the meeting

within an hour, the enhancement process identifies this error because the agent would

never achieve its goal. Another attribute of the reward function that is evident in the

enhancement process, is the identification of expert implicit knowledge, also, the lack

of SME knowledge in any given mission will be exposed.

Mathematically, the reward function ℜ is a function of the goal, the sub-goals and

the constraints of the mission, i.e.:

),,(oCsGG=ℜ 5.2.2.1

From equation 5.2.2.1, the reward an agent receives is constrained by the mission goal,

the immediate sub-goals of the agent as well as the overall constraints placed on the

38 On time means within the allowed timeframe
39 The concept of negative reward is utilized in the reinforcement learning community. it means punishment

123

mission. Placing a reward on a mission without taking the constraints of the mission into

account will be counter productive as the rewards received by the agent will not be a true

representation of the overall mission. For example, if a constraint exists that an agent

driver must arrive at its destination with its car at a given time and the agent arrives at the

destination at the given time without the car, the agent should not receive a positive

reward.

5.2.3 Enhancing/Refining an Active Context

The enhancement/refinement of an active context is possible in real-time in a simulator.

A copy of the active context will be created and placed in a repository known as the

Enhanced / Refined Context Repository. The function of this repository is to hold copies

of all contexts that have undergone some form of modification. As soon as a context

becomes active, a copy is created in this repository. As the agent explores with different

values and settings within a context, these are reflected in the copy in the repository

alongside the rewards received for each setting.

Mathematically, for an active Context ACi that exists in the context library, a copy

CCi exists in the repository. The copy CCi contains the various values and settings

explored and the corresponding rewards.

{ }),......,,(|),),.....(,(),,(njinnjiii rrrasasasCCi ⇐ 5.2.3.1

Where si is the state, ai are the actions and ri are the rewards obtained for performing

action ai in state si.

5.2.4 Enhancement Process Stopping Criteria

The criteria for ending the enhancement process involve the agent receiving the

maximum reward available and the mission goal being achieved. The actual value of the

124

daihe
Underline

daihe
Underline

maximum reward is not known to the agent. The agent has to determine this through its

interaction with the environment. The enhancement process is two-fold: the enhancement

of a given active context when the context is isolated and the enhancement of the entire

model. The former can lead to the agent performing better when run in the simulator with

the individual contexts active, whereas the later would have the agent perform better as a

complete model40. A criterion for determining this involves when the change in reward

received ε is zero or is negligible after a given number of time steps in the simulator.

Another criterion is when the total reward received begins to decrease.

In some cases, these two criteria can lead to early stoppage of the enhancement

process. This will produce a model that is not completely enhanced. This problem is

alleviated by introducing a function that compares the current calculated reward ℜ with

that of the generalized reward ℜg .

Mathematically, the criteria for stopping the enhancement process are:

1) Change in reward ε is zero:













→−

→=ℜ−ℜ

0ji

jiji

εε
εε

 for ℜg < ℜ 5.2.4.1

2) Total rewards received Tℜ begin to decrease:

0→ℜ T , for ℜg < ℜ 5.2.4.2

5.2.5 Available Actions

CxBR was designed to limit the actions available to an agent in any situation. This is one

of its many advantages. This makes CxBR an intuitive and efficient modeling tool. This

40 The effects of both methods are investigated further in different scenarios and their results presented in
chapter 6.

125

daihe
Underline

also places a constraint on the learning capabilities of CxBR. In this investigation, the

constraints placed on limiting the actions available to an agent in any context will be

softened during the learning phase of the algorithm. This is needed to enable the agent to

explore its environment completely and choose actions that would maximize its total

reward. To make this happen, an additional module is added to the environment. This

module is known as the action-base module and its sole purpose is to store all

perceivable actions needed in the environment of the agent. This is analogous to real life

situations where a person can attempt any action in his/her environment although most

actions will yield nothing because they can’t be performed in a given context. For

example, an automobile driver should be able to turn into a one-way road in the wrong

direction even though this action will probably lead to a negative reward. In a few cases,

however, it may be the only option available to succeed (e.g., escaping a dangerous

situation).

5.2.6 Environment Visibility and Accuracy of Actions

The portions of the environment necessary for the agent to make a decision will be

visible to the agent at all times. In this dissertation, visibility is defined as “the greatest

distance a person or an agent can see under normal conditions without the use of any

instrumental assistants or the knowledge of distant events available to the agent at any

given time” [unknown]. Invisibility is defined as “the distance beyond which a person or

an agent can see clearly or lack of knowledge of an event not available to an agent

irrespective of the distance” [unknown]. Ideally, an agent is expected to make decisions

on its actions based on the visible part of the environment and projections on what it

126

daihe
Underline

expects to exist in the invisible parts of the environment. This scenario is typical for all

learning beings. In any mission, humans typically are not immediately aware of all

elements of their environment. After they’ve interacted with their environment over a

period of time and gained enough experience, they might think they are fully aware and

make some projections on future states of their environment. Take, for instance, a person

driving home from work. This person becomes familiar with this route and can project

how long it would take to get to different landmarks on that route. Occasionally, the

person might be wrong in his/her projections because of rain, accidents, and other

environmental factors, but with considerable experience, he/she can make projections

with some degree of accuracy.

Occasionally, knowledge about the invisible parts of the environment is presented

to the agent through remote sensors or communications. For example, the agent driver

hears on the radio about an accident and subsequent high traffic on a particular route it

wanted to take. How would this issue be tackled in the enhancement process? Does the

agent automatically consider the new knowledge as visible even though it cannot see it?

Situations like this – provision of real-time knowledge would be handled by the simulator

and would occur randomly during the course of the simulation. The enhancement process

would handle this knowledge the way it handles all other knowledge – i.e. it can exploit it

or keep on exploring. At the time the knowledge is provided, it is considered visible to

the agent. It is left for the learning agent to decide whether to exploit its knowledge of the

situation ahead or to explore it. This happens in real life when we hear radio

announcements of traffic jams on a particular route, but as we approach that route, the

traffic jam is cleared. The agent doesn’t know whether actions it performs are right or

127

wrong because there isn’t a “teacher” in its environment. It can only learn how to

maximize its rewards and adjust its knowledge, based on actions that provide high

rewards.

The visibility of the environment in a mission gradually increases as the mission

evolves. The environment is a union of its visible and invisible parts. As the agent

approaches its sphere of visibility41 it takes actions and makes projections based on this.

The question of what level of visibility 42 would the agent have arises. It is assumed the

agent would initially have a 20/20 vision of events ahead and behind it.


∞

=
kt

ivvE 5.2.6.1

∞→→ viv ,0

Where E is the environment, v is the part of the environment visible to the agent at time tk

and i v is the part of the environment invisible to the agent at the same time step.

Actions rules ARMC and projection capabilities available to the agent at any time step tk

are directly proportional to the state in the visible portion of the environment vsi

ARMC ∝ { vs1 , vs2 , …., vsi } 5.2.6.2

As the visibility of an agent increases, the agent is expected to perform better and make

future decisions better.

5.2.7 States Vs Contexts

The definition of a context was presented in Chapter 2, as was that of a state. The CxBR

technique is flexible enough to allow a context to span multiple states or allow a context

41 Sphere of visibility relates to the radius of the environment visible to the agent.
42 Experiments on various levels of visibility were conducted and the results presented in chapter 6.

128

daihe
Underline

to represent a single state. Models built with the CxBR technique allow a context to

represent multiple states of the environment. For example, an UrbanDriving Context

could be argued as having a single state – driving in an urban setting with a set of fixed

actions. It could also be argued as having multiple states – driving in an urban setting

with different variables to contend with, e.g. Pedestrians, slow traffic, etc.

In this investigation, a context is a grouping of similar states that dictate how an

agent acts or reacts in a given situation. For example, in an UrbanDriving context

between points A and B, between these points there can exist many states. These states

share common characteristics of specified or defined behaviors expected from an agent

when being controlled by the context, for example the maximum speed limit.

For contexts equal to a state:

Ci = vs1 5.2.7.1

For contexts equal to a group of states:

Ci = { vs1 , vs2 , …., vsi } 5.2.7.2

5.2.8 Generalization of Actions

Generalization of actions during the enhancement process is an integral part of the

learning architecture. This is so because in large state problems, executing (exploring)

every action in every state is impossible (the Bellman’s curse of dimensionality43). The

question on how to generalize a reinforcement agent arises. Previous works depended on

function approximation – neural networks, etc. The issue of generalization does not arise

in CxBR, because actions and reactions to anticipated pre-determined events in the

agents’ environment are presented prior to the start of the simulation.
43 Bellman’s curse of dimensionality was presented in Chapter 3

129

daihe
Underline

For the enhancement process, the agent generalizes its actions over some states

and then observes the effect these have on its total rewards. A feed-forward neural

network or variations of it, is used to generalize. Typically, when generalizing with a

feed-forward neural network, input-output pairs exist and finding a ‘weight’ that can be

applied to new inputs to produce the desired outputs is a goal of this network.

)(xfd = 5.2.8.1

where d is the dependent variable and x is the independent variable. Usually, the input –

output pairs are denoted as: (x1,d1), (x2, d2), ….., (xj, dj).

)1(jixi ≤≤ are the inputs to the neural network and)1(jid i ≤≤ are the desired outputs.

During the training phase, these outputs are known, but during the implementation

(performance) phase these outputs are not known.

∑
=

=
k

k
kik xwd

0
5.2.8.2

where d is the desired output and wi is the calculated weight and xk is the input. The above

equation is from Christodoulou & Georgiopoulos [57].

According to Sutton and Barto [63], most function approximation methods

assume the training sets to be static over multiple training passes. However, in most

reinforcement learning algorithms, it is desirable for learning to occur online, during the

agents’ interaction with the environment or with a simulated model of the environment.

For this to occur, the function approximation method utilized must be able to learn

efficiently from data acquired incrementally at various intervals. Also, function

approximators used in RL should be able to handle non-static target functions (i.e.

functions that change over time) [63].

130

Another issue usually addressed when generalizing in RL is the performance

measure utilized in evaluating the chosen function approximation method. Generally,

most supervised-learning techniques attempt to minimize the mean squared error over a

distribution, D, of the inputs. In some RL techniques, the inputs to the function

approximator are states and the target function is the true value function πV , hence, from

[63], the mean squared error (MSE) for an approximation tV , using parameter tθ , is

2))()()(()(sVsVsDMSE t

Ss
t −= ∑

∈

πθ 5.2.8.3

where D is a distribution weighting the errors of different states. This distribution is

important because it is usually not possible to reduce the error to zero at all states.

In the enhancement process, the inputs are the states within a context and the

desired outputs are the values of these states based on the rewards received during the

agents’ interaction with its environment.

The generalization module and its algorithm are included in the architecture of the

enhancement process; but for the purpose of this dissertation, they are not implemented

because of the small state size for the chosen prototype. Look up tables are used and

direct calculations of all state values is carried out.

5.2.9 Exploring and Exploiting Contextual Knowledge

The knowledge in contexts would be initially exploited to get a baseline of anticipated

rewards in each state and anticipated values of states for the model. Thereafter, the agent

would continually explore its environment by attempting various actions in each state in

each context. The rate, at which the agent explores a given state in any context, would

decrease exponentially with the number of visits to that states. As the simulation

131

daihe
Underline

progresses and a state becomes visited many times, if an action stands out as being the

most desirable in that state, this information would be exploited. The agent is said to

perform better if the explored actions lead to state values that are better than the baseline.

5.2.10 Dynamic Goals

The issue of dynamic goals isn’t addressed much in most human behavior models. CxBR

does address it, however. An example of a typical human behavior that involves dynamic

goals is a police officer rushing to attend to a distress call. On his way, he witnesses a

separate life threatening accident. Does he then continue with his goal of attending to the

distress call or is the accident severe enough for his immediate goals to change? CxBR

addresses this issue by listing contexts for each situation and providing transition rules

that would enable the activation of the listed contexts. In most cases, the SME omits or

never envisions a situation where an agent’s goal would change when in a given context

and thus doesn’t provide transition rules between the contexts.

This problem is addressed by having the agent determine what contexts to

transition to in any given situation based on the knowledge it has learnt. In the example

provided, the police officer would act appropriately based on what he has learnt on the

situation, i.e., is the reward of attending to the distress call greater than that of attending

to the accident victims? In other words is the value of proceeding to the distress call from

the current state greater than the value of attending to the accident victims from the

current state? This can be determined by trial and error in an experiential learning

environment.

132

daihe
Underline

5.2.11 Conflicting Knowledge

It is expected that the SME would have some knowledge in a context that conflicts with

either a sub-goal of the mission or the mission goal itself. Likewise, some knowledge in

a context can also conflict with knowledge in another context. Knowledge in the

enhancement process is non-monotonic. Knowledge can be retracted and added during

the enhancement process. The enhancement process itself is based on these additions and

removal of knowledge from the agent model. An example of a conflict in knowledge is a

context that limits the maximum speed of an automobile to 30 mph and a sub-context

within this context having a minimum speed of 40 mph. How will this conflicting

information be used?

The defined rewards of the system identify this and a conflict resolver module

addresses the situation. The conflict resolver module is based on some hierarchical

principles in which the mission goal takes precedence over sub-goals and sub-goals take

precedence over contextual information.

5.3 Flow of Events

The flow of events for the enhancement process is presented below. The details on

achieving this are explained in the high level design section of this Chapter.

I. The Reinforced values (Rx) for each context, state and action tuple

are all initialized to zero

II. The default context is activated and controls the agent initially in a

simulation exercise.

133

daihe
Underline

III. An action in the active context is carried out taking the agent to a new

state

IV. The value of that action in that state in the current context is

calculated and the Rx values are updated based on the rewards for

the mission goal -]max[.),,(),,(ascascascRx jiiiiiii γ+= R

V. The sentinel rules are checked to see whether the current active

context needs to be deactivated (and another activated).

a. If a new context is called for, a new context is activated and

control returns to step III

b. The context selector module is activated. The context

selector module searches through all defined contexts to see

whether any match the current situation.

i. If there is a match, this context is activated and a

copy of the previously active context is made in the

context repository. This copy is refined/enhanced by

calling the context modifier module; the context

modifier does this by adding the active context

amongst the list of compatible contexts.

ii. Control is returned to step III

c. If none of the predefined context match the current situation

the context creator module is called. This module creates a

new context based on a predefined context template by

adding the various parameters of the current situation to this

134

template as obtained from the global fact base. Control is

then returned to step III.

VI. If the mission goal is achieved, this marks the end of an episode44. A

new episode is then started until the change in Rx values are

negligible or zero, i.e. the values converge.

VII. Based on the Rx values, choose the action that produces the most

reward for each state in a given context by choosing the max Rx

value for each context-state-action combination. Compare the

original predefined actions and attributes in a state in a context with

the newly learned actions (actions calculated) and attributes for the

same state in the same context

a. If the newly-learnt action (calculated action) and attributes

are different from the original action, create a copy of the

context in the context repository and call the context modifier

to refine / enhance the context with the newly learnt action

and attributes for that state in the context.

b. If the original predefined action and attributes are the same

as the calculated action, do nothing

The flow of events detailed above can enhance actions and attributes within a context and

context transitions as well as create new contexts based on a predefined context template.

44 An episode is the beginning to end of an agents’ interaction with its environment. It is essentially a run of
the agents’ activities from start to finish in the simulator. Many episodes need to be run in the simulator
when training the agent.

135

5.4 Components of the Enhancement Process

For a CxBR model of human tactical behavior to be enhanced, the enhancement process

utilizes new components in addition to the existing components of CxBR and RL. These

components are described below. Figure 5.2 shows the architecture of the enhancement

process.

136

Figure 5.2 Enhancement Process Architecture

Global Fact-
Base

Context
Creator

Context
Selector

Modifier

Rx
Values

Inference
Engine

Local Fact-
Base

Agent

A

B

C
D

E

F

F

G

G
H

II

J
K

L

M

N Environment

O

137

The labels shown in figure 5.2 are explained in the following subsections.

138

5.4.1 Action-Base (A)

The action-base is a component of the environment that contains all available actions in

that environment. The actions in the action-base are not restricted to any state or contexts;

they are available for the agent to explore in any state of the environment. Because the

agent possesses the ability to execute any action in any state doesn’t necessarily make the

action appropriate for the state. Through experience, the agent would learn what actions

are appropriate and those to avoid when in certain states and thus enable the enhancement

process. The availability of an action-base relaxes the CxBR principle that only a few

things can realistically occur in any context. Although it relaxes this principle for the

purpose of learning, the principle still holds true in reality. Therefore, after the model is

enhanced, the contexts eventually restrict the actions of the agent in any given state based

on what is learnt. The reasoning behind relaxing the principle is for the agent to be able to

explore actions not thought of by the SME when in a given context. The exploration only

occurs when the agent is learning or if it perceives a change in its environment. A direct

negative impact this would have on the overall learning process is an increase in the time

it takes to train the agent because of an increased number of actions the agent will need to

explore / perform in every explored state of its environment.

The action-base has an input of the state of the environment and has an output of

an action. As the agent learns the best action in a state, this information is sent to the

modifier module through I from fig. 5.2, likewise to the global fact-base through H.

139

daihe
Underline

5.4.2 Environmental States / Contexts (B)

States are components of the environment. An environment consists of many states. A

context is a group of states where similar actions can be performed. Typically when an

agent performs an action in the environment from a state, the action leads the agent to a

new state. The new state can be in the same context as the previous state or it can be in a

different context. Based on the state of the environment, the agent performs an action or a

group of actions and gets to a new state or remains in the same state. The process

continues until the mission goal is accomplished. The current state of the environment is

processed and analyzed by the inference engine through F, the result enables the picking

of a context.

5.4.3 Context Library (C)

The context library is a collection of all predefined contexts for the model. The definition

and descriptions of contexts have been presented in Chapter 1. Only one context in the

context library can be active at any given time. The contexts in the context library take

the states of the environment as inputs, thus the only allowed input to the library is a

‘state’ signal. The outputs of a context are the actions the agent can execute from any

given state, thus an output of the context library is the prescribed action for the agent.

Another output of the context library is the active context with all its attributes. A copy of

an active context is automatically copied to the context repository in preparation for its

refinement. The link L in figure 5.2 shows the active context being copied over to the

context repository.

140

daihe
Underline

daihe
Underline

5.4.4 Context Repository (D)

This component is also known as the enhanced / refined context repository. It is labeled

as D in Figure 5.2. A formal description along with the mathematical formalization was

presented in section 5.2.4. Copies of all modified contexts are stored in the context

repository. The functions of this repository are to provide an efficient backup mechanism

for the learning process. The repository enables the addition and retraction of new

knowledge by keeping track of all changes made to a context and at what “state” in the

world the changes occurred.

Figure 5.3 Context Repository

This repository will take contexts as inputs. The outputs are the actions in the refined

contexts. A call to the context repository module immediately creates a copy of the active

context. Control is automatically transferred from the active context to the copy created

in the repository. Actions are explored in this context and the values of these actions in

the states of the context are stored in the Rx table.

Context Repository

Active
context

Copy of
active context

Context Library

141

daihe
Underline

CCi ← ACi 5.4.4.1

{ }),......,,(|),),.....(,(),,(njinnjiii rrrasasasCCi ⇐ 5.4.4.2

The algorithm for the context repository module is as follows.

Upon activation of a new context

Create a copy of the active context in the context repository

Automatically transfer control of the agent to the newly created copy of the

active context

For the current state si, do until context Ci becomes inactive

attempt action ai and note the resulting reward obtained

update the Rx values according to the equation

]max[.),,(),,(ascascascRx jiiiiiii γ+= R

explore or exploit an action in the new resulting state

5.4.5 Context Selector

When called, the context selector module chooses the appropriate predefined context for

any given situation. Typically, in a CxBR model, the list of contexts that can be

transitioned from any given context is predefined within the context. This list is based on

expert knowledge about the given situation and the characteristics that would necessitate

a transition from the active context. Most times, this list is mostly correct, but

occasionally the list is incomplete or wrong. For example an UrbanDriving context that

has a list of compatible contexts that excludes a Freeway context or Ramp context is

incomplete. There are no mechanisms to prevent having a wrong or incomplete list of

compatible contexts. Therefore, a CxBR simulation ends (fails) when faced with this

142

daihe
Underline

situation because there is no valid defined context to transition to, based on the list of

compatible contexts. Likewise, when faced in situations of incomplete knowledge or

wrong knowledge, most human behavior modeling systems fail or act abnormally. The

enhancement process attempts to eliminate this by first searching through all predefined

contexts to see whether the attributes of any context match the current situation. If the

attributes of a given context match the current situation, the context is selected as the new

active context and the previously active context is sent to the modifier as represented by

J in figure 5.2. The modifier then modifies and enhances the context by adding the newly

active context amongst the list of compatible context.

In some cases, the attributes of the predefined context do not explicitly match the

current situation. The contexts that match the current situation are then selected and sent

to the modifier where some of their attributes are modified and tested to see whether they

match the current situation and still maintain their previous attributes. A comparison of

the contexts modified to address the current situation is carried out as depicted in figure

5.2 by K. Changes to the context that provides the highest Rx values are kept. This

context is sent to the enhanced / refined context repository.

This module takes as input all predefined and enhanced contexts and the output is

one or more contexts that appropriately address the current situation. The way the context

selector module works is almost akin to the competing context concept conceived by

Saeki & Gonzalez [28]. The major difference is in the way contexts are selected. While

the competing context concept eventually chooses a context at random during the hyper

simulation, the context selector module makes it choice based on the calculated Rx value.

143

5.4.6 Context Modifier

The context modifier module enhances predefined contexts by modifying the attribute

values available to the agent in a given state in the context, for example, actions. After a

context or group of contexts have been selected by the context selector module to match

the current situation, the contexts are passed through the modifier module where various

actions defined within them are attempted as well as actions defined in the action-base.

After these actions are executed, the action that produces the maximum Rx value for that

state is chosen as the most appropriate and the context is modified to reflect this. In cases

where only one context is selected by the context selector to appropriately address the

current situation, the previously active context is sent to the modifier and the list of

compatible contexts modified to reflect the newly active context. The modification of the

previously active context also occurs in cases where many contexts are chosen by the

context selector and an appropriate context is chosen based on the highest Rx value.

For a context to be modified, the predefined actions as well as actions from the

action-base are performed at random and the rewards from these actions are tabulated in

local memory base available only to the context modifier module. These rewards are back

Figure 5.4 Context Selection Process

Arrows represent contexts

Context
Selector

Modifier

Choice

144

daihe
Underline

propagated from the goal of the agent. After these actions are executed and their Rx

values known, a choice is made on the action and context that best address the current

situation relative to the goal of the agent.

From figure 5.2, the modifier takes as inputs the contexts through J and the

actions from the action-base through I. the output is either a list of modified contexts with

their Rx values which is depicted by K.

Formally, the copy of a selected context going through the modifier is as follows:

For a given state in context i, different actions are attempted.

{ }),......,,(|),),.....(,(),,(njinijiii rrrasasasCCi ⇐

5.4.6.1

The state/action combination that produces the maximum reward is chosen

)max(),(iii ras ⇔ 5.4.6.2

The previously active context is then modified to highlight the new context as a

compatible context.

The flow of events for the modification of a context is as follows:

• Upon a change in situation

• Search through the list of compatible context for a context that best

addresses the current situation

• If no context addresses the current situation

o Search through the list of all contexts (predefined, enhanced and

newly created) to determine the context that most nearly matches

current situation. (Determination of a context that nearly matches

the current situation is done by directly comparing the attributes of

145

the current situation as retrieved from the global fact base and

those of all contexts as defined by the action-rules, sentinel-rules,

etc. that are needed for the context to be activated).

o A score is provided to each context as it relates to the current

situation and the context with the highest score is selected for

modification. The way the score is obtained is by calculating the

total number of attributes that match the current situation as a

function of the total number of attributes of the current situation. For

e.g., if 10 attributes are listed by the global fact base for the current

situation, a context that satisfies 8 of those attributes is said to

have a score of 80%.

• If more than one context address the current situation

o Rank the contexts by their scores

o Modify each ranked context by performing the predefined actions

and actions defined in the action-base randomly

o Note the Rx value as calculated from

]max[.),,(),,(ascascascRx jiiiiiii γ+= R 5.4.6.3

• The action that produces the highest Rx value for the given state – action

combination is chosen

• The context is modified to reflect this

• The previously active context is also modified to reflect the addition of the

newly modified context among the list compatible next contexts

146

5.4.7 Context Creator

The context creator module creates a new context on demand. When the enhancement of

a context yields suboptimal45 values, the enhanced context is reinstated back to its

previous form from the context repository and a new context is created. The new context

is created from a predefined context template. This template contains sections for action-

rules, sentinel-rules, compatible contexts, and others. It primarily contains sections for all

the definitions of a typical context.

As soon as a decision is made to abandon all pending changes to an existing

context (enhancement) based on the Rx values being received for the enhanced context or

the system has determined that the number of attributes of existing context that match the

current situation is low (less than 40%) a call is made to the context creator module.

Upon calling the context creator module, a copy of the context template is made.

The attributes of the current situation are filtered from the global fact base and these

attributes are inserted to the context template copy. From the attributes, the title (name) of

the newly created context is generated. The newly created context is then sent to the

context repository where different actions from the action-base are attempted and their

Rx values noted. The actions and transition rules that produce the maximum Rx values

for each state in the context are noted. The constraints of the context are part of the

attributes.

The algorithm for the creation of a new context is as follows:

Upon a change in situation

45 Suboptimal values of a refined context are Rx values that are extremely low for the given state-action and
the Rx values of previously calculated context-state-actions are reduced. For example, a context-state-
action that previously produced the maximum Rx value and thus maximum rewards, if after being refined
this same context-state-action produces a lower Rx value, the Refined context is said to be suboptimal.

147

daihe
Underline

Upon searching through all existing contexts and finding no matching context or

upon finding a context with a low score46 (<40%)

Call the context creator module.

While the simulation is paused temporarily

Make a copy of the context template and place it in the context repository

Get all the attributes of the current situation from the global fact base

Filter these attributes according to various parameters, for e.g., location,

constraints, type of road, etc. (based on the system being modeled)

Continue simulation by making calls to the actions in the action-base

As each action is executed, a note is made on the Rx value obtained for that

action-state combination.

The action that produces the highest Rx value for each state-action combination

is chosen as the appropriate action

Update the context with the newly gathered information about its action-rules and

transition rules

46 A score is defined as the total number of attributes of a context that match the current situation divided by
the total number of attributes of the current situation. 40 % was chosen because it was intuitively
determined that more time will be spent modifying a context with more than 40% matched attributes than
creating a new context.

148

5.5 Enhancement Process Flow Chart

Figure 5.5 below presents the enhancement process flow chart.

149

Start simulation with default context
or continue with existing context

Current situation matches
attributes of listed compatible
contexts

No

Is there a match?

No

Calculate % of attributes in all
context that match current
situation

% >40%

No

Call context creator

Copy attributes of current
situation into context
template

Attempt actions in the
action-base

Calculate and store Rx
values for each state-
action combination

Compare Rx values,
choosing the action that
produces the maximum
value

Add context to context
repository and library

Is this a new situation that
calls for a new context?

No Yes

Yes

Activate new context

Yes

Activate Context and create
a copy in context repository

Activate modifier to modify
previously active context

Create copies of all contexts. Call modifier
and attempt all predefined actions in context
and action-base for each context

Yes

Calculate and store Rx values for each
context – state-action combination

Compare Rx values, choosing the action
that produces the maximum value

Refine context that produces maximum
Rx value and also refine the previously
active context

Activate context
selector – search
all contexts

150

5.6 Formal Representation

In this section, formal formalizations are provided for the enhancement process as well as

the context creation process.

For the enhancement process, an existing context is refined to appropriately

address the current situation.

For any given context Ci, there exists a set of predefined actions for the set of

states in the context.

Ci = {(si, ai), (si, aj), (si, an);(sj, ai), (sj, aj), (sj, an);………} 5.6.1

There also exists a set of predefined actions in the action-base which is available to all

states in all contexts.

a-b={a1,a2,a3,a4,…….an} 5.6.2

For the given context Ci and state sj, a comparison of Rx values is carried out.

Rx (context, state, action1) = Reward (context, state, action1) + γ .Max [Rx (same

context, next state, all actions]

)]([.)()(111 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.3

)]([.)()(122 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.4

)]([.)()(133 aSCRMaxaSCRaSCR jiXjijiX ++= γ 5.6.5

.

.

.

)]([.)()(1aSCRMaxaSCRaSCR jiXnjinjiX ++= γ 5.6.6

From equations 4.6.3 to 4.6.6, the context is constant, except in cases where the next state

falls within a new context. Taking Ci out of the equations, you have:

151

)]([.)()(1aSRMaxaSRaSR jXijijX ++= γ 5.6.7

The appropriate action for each state in the context is thus:

Max {Rx} 5.6.8

The formalization of the context creation process follows the same principle as that of the

enhancement process with only one exception, i.e. the only actions attempted are the

actions defined in the action-base.

5.7 High Level Design of Architecture

There are five sub-systems that interact together to perform the model refinement

(enhancement). The sub-systems have been described in previous sections and include

the context creator, context modifier, action-base, context selector and context repository.

Figure 5.6 shows the inputs and outputs from these sub-systems. At the center of all

activities is the CxBR core, i.e., all existing components of CxBR architecture as

described in Chapter 2 e.g. the global fact base, the inference engine, amongst others. The

CxBR core, communicates directly with the context repository. It also communicates

directly with the context creation module by sending filtered 47attributes about a situation

to it. The context creator, context repository and action-base are the next layer and

communications between these sub-systems are as shown in figure 5.6. The context

selector and context modifier sub-systems communicate with other sub-systems as shown

in the diagram.

47 Filtered attributes refer to the attributes of a situation that correspond with the attributes required in the
context creation template

152

CxBR Core

Context Repository

Action-Base
Context Creator

Context
ModifierContext Selector

Figure 5.6 High-level Design Showing Inputs and Outputs between Sub-systems

5.8 Preview of Prototype

The prototype used for this research is in the automobile driving arena. An agent driver is

expected to behave optimally on a driving mission when faced with various scenarios.

The choice of an automobile driver prototype is supported by the existence of results

153

from some automobile driver prototypes using the CxBR architecture. An automobile

agent driver is given a mission goal of going from home to work with some constraints

like arriving on time by choosing the fastest route, choosing the shortest route and many

others. There exist different routes from home to work, and each route comes with its

unique features, e.g. raining, potholes, intersections and many others. The prototype

consists of a hand-built CxBR model with purposely incomplete knowledge. The

prototype should enhance the model to enable the agent achieve its mission goal.

5.9 Chapter Summary

In this chapter, the conceptual approach to resolving the problem defined in Chapter 3

was presented. The definition of new modules that would help in achieving this is carried

out as well as a full description of these modules in the overall flow structure of the

enhancement process. An algorithm and the formalization of the enhancement process

were presented. The high level design of the enhancement process architecture was

presented as well as a sneak preview of the prototype.

154

CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF THE MODEL
ENHANCEMENT PROCESS

6.1 Introduction

Two prototypes implementing the technique for breaking the limitations on SME

knowledge in HBR systems and thus improving the performance of the agent are

described in this chapter. The prototypes are built and tested in the automobile driving

domain and in the submarine warfare domain. The automobile driving domain consists of

the agent driver; the environment which is composed of the different routes; the context

base; and the enabling functions for the simulation. In this dissertation, some pertinent

facts and attributes that are typical in automobile driving and submarine warfare domains

are neglected as they add little value to prove or disprove the hypothesis set forth in

Chapter 3. These attributes include the pressure on the acceleration pedal, wind velocity,

gravitational forces and others for the automobile driving domain. For the submarine

warfare domain, the size of the submarine, the functioning of the periscope, flood-tubes,

and others are also neglected. All aspects of a typical automobile driving domain and

submarine warfare domain that are not explicitly mentioned and used in the design and

implementation of this prototype are neglected.

A model of an agent driver and submarine is built a priori from the knowledge

acquired from a subject matter expert (SME) through various methods that include

observation, question and answer sessions, and others. How the pre-existing model was

built is likewise irrelevant to this research.

155

6.2 Prototype Descriptions

The underlying techniques for building the automobile driver prototype and submarine

warfare prototype are the same. The only differences are the context definitions and the

environment in which the agent operates. I will provide a description of the automobile

driver prototype in subsequent sections of this chapter and only discuss the submarine

warfare prototype in the section describing the environment and building the contexts.

The prototype used to implement and evaluate the model enhancement process

consists of an agent driver, the context-bases, context-base functions, functions that

enable the enhancement process and an environment in which the agent operates (the

world). The prototype was developed using Oracles’ PLSQL programming language and

an Oracle database. The prototype consists of the various modules described in section

5.4 of this dissertation. Database tables are created in an Oracle database. These tables

are used to store various data on the enhancement process as well as the entire simulation.

Among the information and data stored are the log of the entire simulation, context

definitions, context actions, context attributes, global facts and rewards.

The original CxBR Framework developed by Norlander [124] is not utilized in

the design and implementation of the prototype because the Framework does not support

the learning mechanism needed by the enhancement algorithm to enhance CxBR models.

In the prototype, contexts are defined and created in a context table. More on this in the

design section of this chapter.

The first step in the operation of the prototype is to create the underlying database

structures that store information on the agent, the context-bases, the world and the entire

simulation. This is known as the back-end of the application. After the creation of the

156

underlying database structures, the various modules that control the workings of the agent

are implemented.

The prototype operates in two phases. The first phase is the training of the agent,

(the learning of contextual and environmental attributes and actions; the learning of new

contexts) while the second phase is the execution of the enhanced agent. The agent

recognizes whether it has been previously trained by searching through the rewards table

and global fact base table. If rewards exist and the entries in the global fact base point to

a successful completion48 of learning, it is assumed that training has occurred. The

prototype then provides the option of either retraining the agent or using its current

knowledge. If a context definition or world definition has been changed since the last

time the agent was trained, for example, if the maximum speed defined for a road

segment has been increased, or the allowed depth49 of the submarine has been increased,

then the prototype automatically retrains the agent.

The training of the agent for the automobile driving domain consists of the agent

learning the optimum maximum speed defined for the different contexts it encounters

during its interaction with the world; and consists of learning the appropriate depth for

the submarine warfare domain.

6.3 Prototype Requirement Specifications

The function of the model enhancement prototype is two-fold. 1) To provide a test bed

for evaluating the context-based human behavior model enhancement technique. 2) To

show that the enhancement technique enhances an agents behavior by breaking the
48 Successful completion of learning is when the agent has successfully enhanced the contexts in the context
bases or learnt a new context. The function that identifies this is shown in a subsequent section in this
chapter
49 The depth of the ocean which the submarine must not go beyond, to be discussed later.

157

barrier of SME knowledge limitations and the limitations inherent in most knowledge

acquisition techniques currently in use. The prototype utilizes a pre-built CxBR agent

driver model. This model is executed in a simulator and subjected to the enhancement

technique. After the model is enhanced, the agent is expected to perform better by

achieving its goals within the defined constraints. Furthermore, this enhanced model

highlights any inconsistencies in the knowledge acquired from an SME.

To efficiently design, implement and understand the prototype, references must be

made to the preceding chapters. A few standards to which the design and implementation

of the prototype must adhere include:

a. The coding standards for this prototype include:

 Each context will be represented by a record (row) in the context table.

 Sub-contexts can be reused by all major contexts

 The design of a context shall exclude the definition of more than one situation.

The definition of a situation is… “One or more states with similar properties

closely located to one another” …. “A set of similar states or

circumstances”[1]. By limiting the design of a context to one situation, it

prevents ambiguities that could arise from having multiple situations defined

in a given context, for example having a traffic light situation defined in the

same context as city driving or freeway driving situations.

 The use of goto statements is not allowed

 The names of all modules / functions / classes should reflect the activities of

the module or function or class

 Code should be commented adequately for readability

158

 Context depth level shall be restricted to 2 for the purpose of this prototype,

i.e., you can have a context and a sub-context. No definitions of sub-sub-

contexts, or below shall exist.

6.3.1 Assumptions

The following assumptions were made with respect to this prototype:

 Other agent drivers do not exist on the road. Hence, there are no contexts defined

for “following other cars”, “overtaking other cars” and such other contexts that

interact with other cars.

 The agent knows of an event in the global fact base as soon as it occurs, hence no

delay in the transfer of knowledge

 Agent has no knowledge of the environment or segments of it, meaning the agent

cannot see farther than the information provided in the global fact base on the

environment. The environment is predefined and knowledge about agents’ current

location is passed through the global fact base (GFB) to the agent.

 The dynamics of the environment and the car are neglected. These include

frictional forces, wind force, driving at night vs. day, gravitational forces,

acceleration, car design, car size, angular velocities as well as angular

representations of routes (hilly routes, valleys) and other such issues.

 The width and elevation of the road isn’t taken into consideration.

6.3.2 Stakeholders of the Model Enhancement Methodology

The model enhancement technique has several potential and required stakeholders.

a. Required stakeholders include:

159

 Human Behavior Representation Research Community – HBR researchers

need a tool that can validate and enhance models designed from knowledge

acquired from SMEs. This tool can be used in the enhancement as well as the

validation of SME knowledge.

 Model Engineer - The model engineer / knowledge engineer can utilize this

prototype to learn more on a subject being modeled and focus their questions

to SME’s on the enhanced aspects of the model.

b. Potential stakeholders include:

 SME – the SME can use this methodology / prototype to expand his/ her

knowledge on a subject. After a model of the knowledge provided by the SME

has been built, the SME can use the enhancement technique to learn about

information they provided to determine which is wrong and safeguard against

this in the future.

6.3.3 Sequence of Events

The sequence of events during the agents’ simulation is described in Table 6.1 below.

The prototype operates a two-phase process. The first phase is when the training of the

agent occurs and the second phase is the execution of the enhanced agent. Most events

that occur during both phases of the simulation trigger an external stimulus as well as

some manipulation of the internal data and the state of some parts of the simulation.

Table 6.1 analyzes what these events are, the external stimuli that triggers the events, the

external responses and internal data changes and state of agent during and after the event.

160

Table 6.1 Event Table for Automobile Driving Prototype

Event Name External Stimuli External Responses Internal Data and State

Start Simulation None None 1. A determination is made by the agent if
training is complete or if training is
needed.
2. Variables are initialized, simulation
time is initialized, log table is truncated
(cleared) and rewards table is truncated.

Parking Lot
Driving – Default
Context

None None 1. The default context is activated and
the agents’ behavior is controlled by
it (the parking lot context). This
context sets the max speed and
actions available to the agent. When
the situation changes, it is no longer
active.

City Driving None None 1. Agents’ behavior is controlled by
context – maximum speed and action
available to the agent.

Dirt Driving None None 1. Agent’s behavior is controlled by
context – maximum speed and action
available to the agent

Freeway Driving None None 1. Agents’ behavior is controlled by
context – maximum speed and action
available to the agent.

Ramp Driving None None 1. Agents’ behavior is controlled by
context – maximum speed and action
available to the agent.

Traffic Light
Driving

None Light is red, yellow
or green

1. Agent responds to the color of light
by stopping, slowing down or continuing
at current speed. This is a sub-context.

Intersection
Driving

None Stop Sign Present 1. Agent responds by slowing down and
subsequently stopping at the intersection.
This is a sub-context.

End Simulation None None 1. Simulation cycle ends. In training
phase, the agent receives a reward.
Reward received is used to train agent on
learning maximum speed and appropriate
actions in the context being enhanced.
In execution phase, agent either achieves
its mission goal or does not achieve it.

Modify Context None None 1. Attributes of an existing context are
modified after the agent has been trained.
This enhances the context.

Create New
Context

None None 1. Attributes of current situation are
copied and a new context is created.

161

6.3.4 Use Case Diagram

Figure 6.1 shows the use case diagram of the prototype. There is one actor in the

environment, the agent. The use case diagram shows how the agent interacts with the

CxBR system. The actions performed by the agent as well as the appropriate responses

received by events in the environment.

6.3.4.1 Use Case Descriptions

a. Appropriate Response to Situations (Perform Action)

 Description: Pre-defined contexts are used to control the agents’ actions /

responses to situations in the agents’ environment. Contexts contain

information on the agents’ actions and responses to various events and

situations in the agent’s environment, for example, increasing or

decreasing its current speed, knowing the pre-defined speed limits in a

context and many more. The knowledge included in this information

allows the context to control the agent during the simulation.

Appropriate Response
to Situations

Receive Reward

Enhance Contexts

CxBR System

Agent

Figure 6.1 Use Case Diagram

162

 Exceptions: These arise when there are no predefined contexts to address

current situation. The context creation module is activated when this

exception arises. The function that does this will be described later in this

chapter.

b. Receive Rewards

 Description: As the agent encounters new states during its interaction with

the environment, it performs actions in these states. Feedback is received

from the environment in form of rewards. These rewards describe how

good or bad the action performed is, but doesn’t say whether the action is

right or wrong. Rewards are given via a predefined reward function that

places rewards on the agent achieving its mission goal. The reward

function is described in a later subsection in this chapter.

 Exceptions: none.

c. Enhance Contexts

 Description: Based on the rewards received, the agent’s actions and

responses to situations are refined and enhanced. This refinement leads to

the enhancement of the agents’ overall behavior.

 Exceptions: Attributes and actions in contexts are not refined if deemed

the best for the state.

6.3.5 Specific Requirements

This section describes the specific requirements for this prototype.

163

6.3.5.1 FUNCTIONAL REQUIREMENTS

1. The system shall allow users to define the agents’ environment according to the

provided guidelines and format

2. The system shall identify if training is complete and thus use existing learnt knowledge

or if further training is needed.

3. The system shall enhance an agents’ behavior by modifying actions and attributes in a

context, based on a predefined mission goal

4. The system shall create contexts that represent agents’ behaviors in unknown

situations. These contexts shall be created from information received from the global fact

base as well as rewards received from the environment.

Evaluation Method: Test Plan

6.3.5.2 INTERFACE REQUIREMENTS

1. The system shall not interface with any other application

2. There shall be a front end client application where the main function of the application

will be initiated.

Evaluation Method: N/A

6.3.5.3 PHYSICAL ENVIRONMENT REQUIREMENTS

1. The system shall operate on Microsoft Windows© 95/98/2000/XP or Linux/Unix

operating systems or other systems that have PLSQL programming language with Oracle

database.

164

Evaluation Method: Test Plan

6.3.5.4 USERS AND HUMAN FACTORS REQUIREMENTS

1. The system shall support modelers, SME’s and knowledge engineers.

Evaluation Method: Test Plan

6.3.5.5 DATA REQUIREMENTS

1. The system shall take as input the entry to execute the main function of the application.

2. The data for creating the original model shall be obtained through any method from a

SME. The system is required to then enhance this model as represented in contexts.

Evaluation Method: Test Plan

6.3.5.6 RESOURCE REQUIREMENTS

1. The space required is dependent on the model being designed, likewise the memory

requirements.

Evaluation Method: Test Plan

6.3.5.7 SECURITY REQUIREMENTS

1. The system shall not require any security settings at this time

Evaluation Method: N/A

165

6.3.5.8 QUALITY ASSURANCE REQUIREMENTS

1. The agents behavior in the simulation shall be controlled by a context designed for that

particular situation in the simulation.

2. The system shall use a "reasonable" amount of system memory during normal

operation. Memory and CPU utilized are directly proportional to the size of model being

enhanced.

3. The system reliability shall be 100% when operating under normal conditions

4. The time used to learn & enhance a model shall be reasonable and acceptable

Evaluation Method: Test Plan

6.3.5.9 PERFORMANCE REQUIREMENT

1. The agent shall achieve realistic50 mission goals

Evaluation Method: Test Plan

6.4 Prototype Design (Experimental Test-bed Design)

A description of the initial, hand-built model of the agent is presented. The prototype

consists of many parts and these parts all work cohesively to provide the learning

required to enhance the model. The designs of the different parts of the prototype are

described below.

50 Realistic mission goals are those that are achievable within the context of known scientific researches (as
of today). An example of an unrealistic mission goal is having an agent arrive at a destination 100 miles
away in 1min while driving a car having a maximum speed of 60 m/h!

166

6.4.1 The Environment

The automobile driving environment consists of three unique routes composed of

different road segments. These routes are used in the execution phase51 of the

experiments. Among the road segments in the routes are a parking lot - which acts as the

default starting point for some routes; a city road segment, a freeway road segment, a dirt

road segment, a ramp road segment, a traffic light, and an intersection segment as shown

in Tables 6.2, 6.3, 6.4, figures 6.2, 6.3 and 6.4.

Table 6.2 Route A

ROUTE_ID 1 1 1 1 1
ROAD_ID 1 2 3 4 5
ROAD_NAME PARKING_LOT CITY FREEWAY CITY PARKING_LOT

DESCRIPTION
PARKING LOT

Driving
CITY

driving
FREEWAY

driving
CITY

driving
PARKING_LOT

driving
ROAD_LENGTH 0.2 2 6 3 0.15
ANGLE 80 15 35 18 60
ROAD_TYPE PARKING_LOT CITY FREEWAY CITY PARKING_LOT
TRAFFIC 0 1 0 0 0
INTERSECTION 1 0 0 0 0
MAXSPEED 15 50 75 50 15

51 There are two phases of the experiments, the training and execution phases. More on the training phase in
chapter 7.

167

Figure 6.2 Pictorial Representation of Route A

Table 6.3 Route B

ROUTE_ID 2 2 2 2
ROAD_ID 1 2 3 4
ROAD_NAME CITY CITY FREEWAY RAMP

DESCRIPTION CITY driving CITY driving
FREEWAY

driving RAMP driving
ROAD_LENGTH 2.5 3.5 5 0.5
ANGLE 30 65 15 45
ROAD_TYPE CITY CITY FREEWAY RAMP
TRAFFIC 1 1 0 0
INTERSECTION 1 0 0 1
MAXSPEED 50 50 75 35

168

Figure 6.3 Pictorial Representation of Route B

Table 6.4 Route C

ROUTE_ID 3 3 3 3 3
ROAD_ID 1 2 3 4 5

ROAD_NAME FREEWAY CITY FREEWAY FREEWAY CITY

DESCRIPTION
FREEWAY

driving
CITY

driving
FREEWAY

driving
FREEWAY

driving CITY driving
ROAD_LENGTH 4 2.8 4.2 2.5 3
ANGLE 5 85 45 26 2

ROAD_TYPE FREEWAY CITY FREEWAY FREEWAY CITY
TRAFFIC 0 0 0 0 0
INTERSECTION 0 0 0 0 0
MAXSPEED 75 50 75 75 50

169

Figure 6.4 Pictorial Representation of Route C

The attributes that describe a given route were presented in Tables 6.2, 6.3 and 6.4. The

description of these attributes is presented in Table 6.5. These attributes are in the

environment (world) table in the database.

170

Table 6.5 Environment Attributes

ATTRIBUTE NAME DESCRIPTION EXAMPLE
ROUTE_ID The value of this attribute

distinguishes the various
routes in the environment.
This attribute is unique
amongst all routes

A ROUTE_ID of 1, 2 or 3 is
defined in the prototype because we
have 3 distinct routes.

ROAD_ID This attribute distinguishes
the various road segments
available in a route

ROAD_ID = 1, 2….n
The total number of ROAD_ID’s
available in a route is dependent on
the number of road segments in that
route

ROAD_NAME The name of the road
segment

ROAD_NAME =
“PARKING_LOT”, “RAMP”,
“CITY”, “FREEWAY”…..

ROAD_LENGTH The length of a road
segment.

ROAD_LENGTH = 4, means the
road segment is 4 miles long

ANGLE The angle of the road
segment when placed in an
X-Y Cartesian plane

ANGLE = 30 means the road
segment is 30 degrees in an X-Y
plane

ROAD_TYPE The type of road segment. ROAD_TYPE = “CITY ROAD”,
“FREEWAY”

TRAFFIC If a traffic light exists in a
road segment

This is a Boolean variable, with a
value of true or false. If the value is
true, records in the
TLIGHT_POSITION table exist
with positions of the traffic light set
to different values, for example 0.3,
1.5 means the distance of the
traffic light signal from the
beginning of the road segment is
0.3 miles and 1.5 miles

INTERSECTION If an intersection exists in a
road segment

This is a Boolean variable, with a
value of true or false. If the value is
true, records in the
INTERSECTION_POSITION table
exist with positions of the
intersection set to different values,
for example INTERSECTION =
0.6 means the distance of the
intersection from the beginning of
the road segment is 0.6 miles

MAX_SPEED The maximum speed a car
should attain in a road
segment

MAX_SPEED = 75 means an
automobile driver can attain a
maximum speed of 75 miles per
hour in the road segment

171

The relationship between the tables that form the environment is presented in figure 6.5.

From figure 6.5, the prototype environment consists of 5 tables:

World: This table stores information about the route, for example road_id, route_id,

road_name, and others as shown in figure 6.5.

Intersection_Position: This table stores information about the intersections on the route,

for example, the road segment the intersection occurs and the position on the road

segment.

Tlight_Position: This table stores information about the traffic lights on the route, for

example, the road segment the traffic light occurs and the position(s) of the traffic light

on the road segment.

 Gfb: This table is the global_fact_base that stores information on all activities of the

agent in the environment, for example, the location of the agent on the route at a given

time, the action performed by the agent, etc.

 Simulation_log: This table stores information on the entire simulation process, for

example, the procedures & functions called, the date and time the procedure is run, the

procedure message or error message if there is an error, etc.

172

Figure 6.5 Entity Relationship (ER) Diagram of Environment Tables

6.4.2 Context Infrastructure

The context infrastructure required by the model enhancement prototype consists of the

context library and all modules / functions that enable the control of the agents’ actions

and behavior by the contexts. The context library as described in the previous chapter

consists of the context definitions, the actions defined in a context as well as the attributes

for activating and deactivating a context. These are all defined in database tables. The

choice of database table is to allow for the efficient modification of existing contexts as

well as the introduction of new contexts. There are three tables in the context library, the

173

CTX, CTX_ACTIONS and CTX_ATTRIBUTRES tables. The relationship between

these tables as well as the attributes of the tables are shown in figure 6.6

Figure 6.6 Relationships Between Tables in Context Library and Their Attributes

Table 6.6 Context Definitions

CTX_NAME DESCRIPTION SUB_CTX_PRESENT
PARKING_LOT PARKING LOT CONTEXT 1
CITY CITY DRIVING CONTEXT 1
TRAFFIC_LIGHT TRAFFIC LIGHT CONTEXT 0
INTERSECTION INTERSECTION CONTEXT 0
FREEWAY FREEWAY DRIVING 0
RAMP RAMP TO FREEWAY 0

174

Table 6.7 Context Attributes

CTX_NAME ATTRIBUTE VALUE
PARKING_LOT MAXSPEED 10
PARKING_LOT COMPATIBLE CITY
PARKING_LOT COMPATIBLE INTERSECTION

CITY MAXSPEED 35
CITY COMPATIBLE TRAFFIC_LIGHT
CITY COMPATIBLE INTERSECTION
CITY COMPATIBLE RAMP
CITY COMPATIBLE PEDESTRIAN

TRAFFIC_LIGHT MAXSPEED 0
INTERSECTION MAXSPEED 0

RAMP MAXSPEED 20
FREEWAY MAXSPEED 55

Table 6.8 Context Actions

CTX_NAME ACTION_NAME VALUE
INTERSECTION INCREASE_SPEED_1 5
INTERSECTION INCREASE_SPEED_2 10
INTERSECTION INCREASE_SPEED_3 15
INTERSECTION INCREASE_SPEED_4 20
INTERSECTION INCREASE_SPEED_ADD_1 1
INTERSECTION MAINTAIN_SPEED 0.000001
INTERSECTION REDUCE_SPEED_1 -5
INTERSECTION REDUCE_SPEED_2 -10
INTERSECTION REDUCE_SPEED_3 -15
INTERSECTION REDUCE_SPEED_4 -20
INTERSECTION REDUCE_SPEED_MINUS_1 -1
INTERSECTION STOP 0
CITY INCREASE_SPEED_ADD_1 1
CITY INCREASE_SPEED_1 5
CITY INCREASE_SPEED_2 10
CITY INCREASE_SPEED_3 15
CITY INCREASE_SPEED_4 20
CITY MAINTAIN_SPEED 0.000001
CITY REDUCE_SPEED_MINUS_1 -1
CITY REDUCE_SPEED_1 -5
CITY REDUCE_SPEED_2 -10
CITY REDUCE_SPEED_3 -15
CITY REDUCE_SPEED_4 -20
CITY STOP 0
FREEWAY INCREASE_SPEED_ADD_1 1
FREEWAY INCREASE_SPEED_1 5
FREEWAY INCREASE_SPEED_2 10
FREEWAY INCREASE_SPEED_3 15
FREEWAY INCREASE_SPEED_4 20
FREEWAY MAINTAIN_SPEED 0.000001

175

CTX_NAME ACTION_NAME VALUE
FREEWAY REDUCE_SPEED_MINUS_1 -1
FREEWAY REDUCE_SPEED_1 -5
FREEWAY REDUCE_SPEED_2 -10
FREEWAY REDUCE_SPEED_3 -15
FREEWAY REDUCE_SPEED_4 -20
FREEWAY STOP 0
PARKING_LOT INCREASE_SPEED_ADD_1 1
PARKING_LOT INCREASE_SPEED_1 5
PARKING_LOT INCREASE_SPEED_2 10
PARKING_LOT INCREASE_SPEED_3 15
PARKING_LOT INCREASE_SPEED_4 20
PARKING_LOT MAINTAIN_SPEED 0.000001
PARKING_LOT REDUCE_SPEED_MINUS_1 -1
PARKING_LOT REDUCE_SPEED_1 -5
PARKING_LOT REDUCE_SPEED_2 -10
PARKING_LOT REDUCE_SPEED_3 -15
PARKING_LOT REDUCE_SPEED_4 -20
PARKING_LOT STOP 0
RAMP INCREASE_SPEED_ADD_1 1
RAMP INCREASE_SPEED_1 5
RAMP INCREASE_SPEED_2 10
RAMP INCREASE_SPEED_3 15
RAMP INCREASE_SPEED_4 20
RAMP MAINTAIN_SPEED 0.000001
RAMP REDUCE_SPEED_MINUS_1 -1
RAMP REDUCE_SPEED_1 -5
RAMP REDUCE_SPEED_2 -10
RAMP REDUCE_SPEED_3 -15
RAMP REDUCE_SPEED_4 -20
RAMP STOP 0
TRAFFIC_LIGHT INCREASE_SPEED_ADD_1 1
TRAFFIC_LIGHT INCREASE_SPEED_1 5
TRAFFIC_LIGHT INCREASE_SPEED_2 10
TRAFFIC_LIGHT INCREASE_SPEED_3 15
TRAFFIC_LIGHT INCREASE_SPEED_4 20
TRAFFIC_LIGHT MAINTAIN_SPEED 0.000001
TRAFFIC_LIGHT REDUCE_SPEED_MINUS_1 -1
TRAFFIC_LIGHT REDUCE_SPEED_1 -5
TRAFFIC_LIGHT REDUCE_SPEED_2 -10
TRAFFIC_LIGHT REDUCE_SPEED_3 -15
TRAFFIC_LIGHT REDUCE_SPEED_4 -20
TRAFFIC_LIGHT STOP 0

The defined contexts required for building the prototype are shown in Table 6.6, their

attributes are shown in Table 6.7 and their actions in Table 6.8. These contexts include:

FREEWAY-DRIVING, CITY-DRIVING, DIRT-DRIVING, RAMP-DRIVING, and

176

PARKING-LOT. Sub-contexts required include: INTERSECTION and TRAFFIC-

LIGHT. DIRT-DRIVING isn’t included in the hand-built original model because the

agent is expected to learn about it.

A design decision was made to represent ‘RAMP’, ‘DIRT’ and ‘PARKING-LOT’

as major contexts. This decision is based on the previously-mentioned coding standard

that limits the context depth to 2. Arguments can be made against making these three

contexts major contexts. Figures 6.7 and 6.8 show the context topology of the prototype

with ‘DIRT-DRIVING’ and ‘RAMP-DRIVING’ as major context and as sub-contexts

respectively.

The creation of DIRT-DRIVING context was omitted to prove the agent can learn

to create contexts after learning from its interactions with the environment.

Figure 6.7 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as Major

Contexts

MISSION
GOAL

CITY-DRIVING FREEWAY-
DRIVING DIRT-DRIVING

TRAFFIC-LIGHT

RAMP-
DRIVING PARKING-LOT

INTERSECTION TRAFFIC-LIGHT TRAFFIC-
LIGHT INTERSECTIONINTERSECTION

177

Figure 6.8 Context Topology Showing RAMP-DRIVING and DIRT-DRIVING as Sub-

Contexts

The other parts of the context infrastructure are the modules / functions that tie these

tables together as well as the context logic. These functions are described in subsequent

sub-sections of this chapter. First, a description of the redesign of contexts to enable

learning is presented.

6.4.2.1 Base Hand-Built Model

A hand-built model of a person driving from home to work was implemented as the base

model prior to the learning process. This hand-built model is what is enhanced by the

enhancement technique to improve its overall performance and behavior of the agent

while it achieves its mission goal. The performance improved is the total time used to

arrive at the destination and the arrival of the agent at the destination when no context is

defined. The improved behaviors are the agents’ behaviors at a traffic light and

intersection. The context topology of the base model is as shown in figure 6.7. The

MISSION GOAL

CITY-DRIVING FREEWAY-
DRIVING PARKING-LOT

TRAFFIC-LIGHT INTERSECTION DIRT-DRIVING RAMP-DRIVING

TRAFFIC-LIGHT

INTERSECTION

178

contexts are unique records in the context database table. The context definitions are as

shown in tables 6.6, 6.7 & 6.8.

6.4.2.2 Redesigning a Context to Enable Learning

As stated earlier, a redesign of the context architecture is necessary to allow the

modification of contexts and creation of new contexts during the agents’ interaction with

its environment. This is achieved by replacing hard-coded constants with variables. The

replacement of the constants with variables allow for the seamless modification of the

variables during the course of the agents’ interaction with its environment in a simulator.

These variables are stored within tables in a database. As the agent undergoes training,

these variables are modified until a value equal to or close to the value in the environment

(based on the mission goal) is achieved. This value henceforth be referred to as the

optimal value within the context of this dissertation. An optimal value is determined

when the value of a variable converges to a single value and/or the change in the value of

that variable becomes negligibly small after multiple simulation cycles.

The question of what part of the context to replace with variables arises. Does one

replace the action rules, transition rules, contextual values (e.g. maximum speed limit) –

attributes with variables? If these are all replaced with variables there is a tendency for

the agent to primarily learn everything from the beginning because these values may not

reflect what is in the environment. Learning from the beginning is acceptable, but a

balanced solution will be to provide the context with values of some or all attributes that

can be modified. For example, providing a maximum speed limit as a variable in a

database table, and also providing actions in the model that will enable the agent to learn

179

what the true maximum speed limit of a road segment is. In this prototype, all constants

were replaced with variables but the learning mechanism is designed to learn the

maximum speed variable. Tables 6.6, 6.7 & 6.8 show the attributes and actions with their

values replaced with variables

6.4.3 Sentinel Logic

The sentinel module searches to see whether the context attributes no longer match the

current situation and whether the end of a simulation cycle has been reached. It achieves

this by calculating the position of the agent and the defined location of the current road

segment relative to the start of journey. If the current position of the agent falls outside

the defined range of the context, the sentinel module attempt to sense the road type/road

segment on which the agent is currently, and then it activates the context that is defined

for that road segment, if one exists. If no context matches the definition of the current

road type, it calls the context modifier which searches through the contexts to see if any

context can be modified to meet the definition of the current position (based on the

number of attributes in the context that match the attributes of the current position). If no

context can be modified, the context creation module is called which creates a context

from the context template.

The sentinel module also identifies the end of a simulation cycle and calls the

reward function to reward the agent appropriately. The pseudo code is shown below:

• note the total length of the current road segment

• check the current position of the agent, if the agents’ current position is

outside the range defined for the road segment

180

o deactivate the current active context

o sense the road type and other information of the road segment

on which the agent currently is

o search through the context library to identify a context whose

attributes match the attributes of the current position

o if context is found

 activate the context and let the control of the agent be

guided by the defined actions and attributes of the

context

o if no context is found

 activate context modifier and then context creation

modules

o if the simulation cycle is complete

 call the reward function to assign an appropriate reward

to the agent

The sentinel_rule procedure takes as input the current position of the agent and outputs

the current context, the traffic light position if any exists on the current road segment, the

intersection position if any exists in the current road segment, the road id of the current

road segment and the run id of the current simulation run.

PROCEDURE "SENTINEL_RULES"
INPUTS Agents current position Run ID
OUTPUTS Active

Context
Traffic light and
position on road
segment

Intersection & position
on road segment

Road
ID

DATATYPE Variable
Character

Float Float Integer

181

6.4.4 Context Modifier

The context modifier module modifies existing attributes and actions in a context to

enhance them. In the prototype, the modifier module serves two purposes, one is to

modify the contextual attribute of maximum speed during training to enhance the agents

performance, and the second is to modify a context whose attributes closely match the

attributes of the agents’ current position (environment) to enable the creation of a new

context or modification of an existing context to include the current situation where one

is not defined.

The modifier module is activated every time the agent is undergoing training. The

values of the maximum speed in the context_attribute table containing the context

attributes are modified randomly in the beginning and then after 20 simulation cycles, the

value of the maximum speed attribute is modified based on the values learned during the

first 20 simulation cycles, i.e. the value with the most reward. The pseudo code below

shows the design of the modifier.

• Upon activation of the modifier for this simulation cycle, note the

context undergoing training

• Get the current value of the attribute(s) being modified – based on the

mission goal. In the prototype, the maximum speed value is being

modified.

• CASE A: training context has gone between 0 and 20 training cycles,

then

o Randomly select new values for the attribute(s) from the action

base

182

o Apply the selected values from the action base to the existing

values to come up with new values for the (maximum speed)

attribute(s)

o Use the newly calculated values to update the context attributes

table for the maximum speed attributes identified

• CASE B: context has gone between 21 and 40 simulation cycles, then

o Modify the maximum speed attribute with the value that appears

to generate more rewards from the environment.

• CASE C: context has gone between 41 and 50 simulation cycles, then

o Randomly modify the maximum speed value

• CASE D: context has gone between 51 and 60, then

o Modify the maximum speed attribute based on the value that

has generated the most rewards in previous simulation cycles,

taking note of the current maximum_speed value and the

previous simulation run maximum_speed value.

• Deactivate the modifier, passing out the newly updated values of the

attributes

Note that the values of “0 to 20”, “21 to 40”, etc. in cases A through D above

where chosen after initial test runs to see how the maximum speed attribute

converges with different reward values.

PROCEDURE "CTX_MODIFIER"
INPUTS Learning CTX Run ID
OUTPUTS New CTX attribute

(maximum speed)
DATATYPE Variable Character Float Integer

183

6.4.5 Context Creator

The context creator module creates new contexts that attempt to address situations not

defined by the SME. It achieves this by randomly copying an existing context and then

modifies the copied context to address the unknown situation. Typically, when human

behavioral agents encounter unknown situations in a simulated environment, they either

raise an exception or fail. In the prototype, when the CxBR agent encounters unknown

situations, a search through the context library is carried out to identify a context that can

be modified to fit the current situation. A context that can be modified to fit the current

situation is determined as described in Chapter 5.

If no context can be modified to fit the current situation, the context creator

module is activated. This module randomly copies an existing context from the context

library and sets the name to the name of the event. The modifier is then activated to

modify the attributes and actions of the newly copied context to fit the current situation.

The pseudo code for achieving this is described below:

• Upon activation of the context creator module, randomly copy an

existing context from the context table as well as the actions and

attributes of this context from the context action and context attribute

tables respectively

• Set the name of the newly copied context to match the event of the

environment without a context

• Activate the context modifier module to modifier the attributes and

actions of this context to their optimal values

184

6.4.6 Designing the Reward Function

The reward function drives (controls) the agents’ learning process. The design of the

reward function is based on the mission goal. There are some rules that govern the design

of reward functions:

a) The reward function should not contain a reward or punishment for an action. In

other words, the system should not reward or punish the agent for performing a

particular action or group of actions. This is so because the agent is not supposed

to know the best action in any given state. If it did, the problem would be

minimized to a supervised learning problem where the agent is rewarded or

punished if its actions are right or wrong.

b) The reward function should contain only definitions of states, i.e. the agent is

rewarded for being in a given state. This state could be the goal state or states

leading to it. The actions that lead to these states are unknown to the agent and the

agent is expected to learn them. An example of a reward function in the model

enhancement prototype is rewarding the agent for arriving at a state where the

maximum speed for the context being trained is equal to the maximum speed of

the road segment that the context represents in the world. Another example of a

reward function when the mission goal is to choose the shortest distance from

point A to point B amongst various routes available. This would mean designing

the reward function in such a way that the agent is rewarded positively for being

at the state where the total distance at the end of the simulation cycle is less than

the previous total distance when the agent used another route; the agent is

185

punished at the end of the simulation cycle for being in a state where the current

total distance is greater than the previous total distance.

The overall design of the reward function for the model enhancement prototype is based

on the stated mission goals of the prototype which are: 1) to improve the performance of

the agent in terms of arrival time at destination; 2) find the fastest route between the start

and end positions; 3) Learn the attributes of an undefined / missing road segment. In

order to achieve either of these goals, the agent encounters situations when one or more

segments in a route are unknown or undefined and also when the defined maximum

speed limits in contexts are different from what actually prevails in the environment.

The agent is rewarded for being in the goal state, i.e. at the end of each simulation

cycle the distance traveled or the total time between the previous simulation run is

compared to the distance traveled or the total time of the current simulation run. If the

distance traveled or the total time traveled is less for this simulation run and the routes are

different, the agent is rewarded positively. If the routes are the same between the current

simulation run and the previous simulation run, the agent doesn’t receive any reward. If

the previous simulation run produces a shorter time, the current simulation run is

rewarded negatively.

To arrive at the choice of route, the individual contexts in a sample route must be

trained to learn the actual maximum speed defined in the environment. By learning the

maximum speed, the overall performance of the agent is improved.

Some questions that might arise are: how to choose the value for the reward the

agent receives – will there be a difference in the learning process if a reward of 100

points is given to the agent versus a reward of 10 points? What about if the signs of the

186

reward change (a positive reward is changed to a punishment) or if no reward is issued.

These questions are answered in the next chapter during the evaluation of the results.

Reward function pseudo code: A note should be made that the simulation runs for

each mission goal is different. The reward presented below is generic and applies to the

mission goals of identifying the shortest time.

• At the end of the simulation cycle, check to see the total time traveled from the

beginning of the simulation cycle to the end of the simulation cycle.

• If this value is greater than the value for the previous run stored in the rewards

table, and the route for the previous run and the current run are different, punish

the agent (give the agent a negative reward) and store this information in the

rewards table. If the routes for the previous run and current run are the same, do

not punish or reward the agent, i.e. give the agent a reward of 0.

• If this value is less than the previous run, and the route between both simulation

cycles runs are different, reward the agent and store this information in the

rewards table. If the routes are the same, give the agent a reward of 0.

PROCEDURE "REWARD"
INPUTS Learning CTX Run ID
OUTPUTS Reward
DATATYPE Variable Character Integer Integer

The pseudo code for the reward function used in training the agent to learn the maximum

speed is presented below:

• Compare the maximum speed of the context being trained with the maximum

speed defined in the environment

187

• If the context maximum speed is greater than the maximum speed defined for the

road segment in the environment, then assign a reward of -20 (assign a negative

reward)

• If the context maximum speed is equal to the maximum speed defined for the road

segment in the environment, then assign a reward of +50 (assign a large positive

reward)

• If the context maximum speed is less than the maximum speed defined for the

road segment minus 5, then assign a reward of -10

• If the context maximum speed is less than or equal to the previous maximum

speed learnt for that training context, then assign a reward of -1

• If the context maximum speed is greater than the previously learnt maximum

speed for the context, then assign a reward of +1

• Insert what has just been learnt into the reward table.

The reward table stores all information about the rewards received by the agent and

the context that caused the reward along with the maximum speed of the context and

the run time of the simulation cycle. Figure 6.9 shows the relationship between the

reward table, context table and global fact base table. The definitions of the columns

in the reward table are also shown.

188

Figure 6.9 Reward table definition and relationships.

6.5 Main Function

PROCEDURE "RUN_RCXBR"
INPUTS Learning CTX
OUTPUTS
DATATYPE Variable Character

The main function calls all procedures and functions that enable the simulation of the

agents’ behavior. The pseudo code is presented below:

• Define all appropriate variables

• Get the count of rewards for the context being trained to determine if

training should continue or not

• If training should continue

189

o Call the context modifier module

• Generate a distinct run id for this simulation cycle

• While the end of simulation has been reached, loop through

o Randomly generate a traffic light color

o Call the sentinel rule procedure to sense the current situation

o Based on the situation identified, perform the actions of the

controlling context

o Insert the event id, run id, ctx and other values in the global fact

base

o Set the current distance to the new position

o Set the current speed to the new speed

o Set the previous time to the current time

o Calculate the elapsed time

• End loop

• Call the reward function to assign an appropriate reward for this

simulation cycle.

The relationship between all the tables in the simulation is presented below in figure 6.10.

190

Figure 6.10 Relationship between tables in the simulation

6.6 Training the Agent

Three smaller routes were used to train the agent. These routes consisted of all road types

available in the three actual routes traversed by the agent. The description of the agent

training is presented in the next chapter. As a primer, there were two learning strategies

utilized in training the agent. In the first learning strategy, during training, the agent

randomly picks a route or maximum speed value as the ideal value all through the

training simulation. That is, in all simulation cycles, the agent chooses the attribute being

191

learnt randomly. In the second learning strategy, some learning guidance is provided to

the agent based on its previous choices. In this learning strategy, the agent initially

chooses the attribute being learnt at random. After a certain number of simulation cycles,

the agent evaluates what it has learnt so far and then chooses the attribute value that has

given it the most reward thus far. It then randomly chooses a value again for a few more

simulation cycles before utilizing the value with the most reward in all simulation cycles.

That is, the agent learns randomly up to a point, then applies what it has learnt so far for a

few simulation cycles, then learns in a random fashion again before eventually using

what it learnt in all simulation cycles.

6.7 Chapter Summary

In this chapter a description of the prototype implementing the model enhancement

technique was presented. The requirements and specifications of the prototype was

outlined as well as assumptions made in the design and implementation of the prototype

used in the evaluation of the model enhancement technique. The detailed design of the

various modules / functions of the prototype were also presented. The tables used in

storing the data used in the simulations are described along with their relationships. The

training of the agent towards learning the optimal maximum speed for all contexts was

also presented along with graphs showing the training process.

192

CHAPTER 7 EXPERIMENTS AND EVALUATION OF RESULTS

The experiments performed with the prototype were used to evaluate the concept set forth

in Chapter 3. The overall goals of the agent in the prototype are to enhance the

knowledge in the contexts acquired from SMEs’ and correct any errors therein. Errors

made by SMEs’ can limit agents’ behavior and/or performance. The kinds of errors an

SME can make are grouped into three classes:

1) The SME can provide wrong information, for example, the SME can provide

an incorrect speed limit for an automobile driver.

2) The SME can provide an incorrect process or incorrect procedures in a tactical

situation. For example, the SME will not tell an automobile driver to stop at

intersections with stop signs or to stop at red traffic lights.

3) The SME can omit a task in process and thus provide incomplete processes or

procedures that are necessary to achieve a mission goal. For example, the

SME can omit providing information on a road type in an automobile driving

domain, and an agent may not know what to do upon encountering that road

type.

The experiments performed in this chapter address the three classes of errors described

above. A total of five experiments were performed. The goal of the first experiment is to

show the dangers of using incorrect knowledge in decision making. In this experiment,

the goal of the agent’s mission is to find the tactically optimal route to its destination, i.e.

the fastest possible time to its destination while adhering to all traffic rules and

constraints. Note that the goal of the agent is different from the goal (the reason) for

193

performing the experiment, that is, what the results of the experiment are supposed to

show and the usefulness of the experiment. In performing the first experiment to find the

tactically optimal route, a readers’ initial thought on this experiment (finding the

tactically optimal route to a destination) suggests it’s a trivial problem easily solved

through an optimization search. However, finding the tactically optimal route while

working with incomplete or incorrect knowledge can lead to making the wrong decision.

The investigation carried out in this dissertation does not simply find the tactically

optimal route, it fills in the missing information and corrects the wrong information

obtained from the SME; in other words, it breaks the SME knowledge barrier and thus

leads to finding the correct tactically optimal route.

The goal of the second experiment is to resolve situations when the SME provides

incorrect information, and show the impact this can have on the performance of an agent.

For example, in an automobile driving domain, where the mission goal is to arrive at a

destination as quickly as possible, the SME can provide an incorrect speed limit for an

automobile driver. If the speed limit provided by the SME is less than what exists in the

world, if the agent drives using the speed limit provided by the SME, the time it takes the

agent to arrive at its destination will be longer than what it would have been if the agent

were to drive with the actual speed limit that exists in the world. Conversely, if the speed

limit provided by the SME is higher than what really exists in the world and if the agent

uses the SME-provided speed limit, the time it takes the agent to arrive at its destination

will also be longer because the agent driver can be stopped and delayed by police for

driving above the speed limit on the road. Note that like the first experiment, the goal of

the experiment differs from the mission goal of the agent in the experiment. This is true

194

for all five experiments, i.e. the goal of performing the experiments differs from the

mission goal of the agent in the experiment and the seeming triviality of the agents’

mission goal is eclipsed by the underlying goal of performing the experiment.

The goal of the third experiment is to resolve situations when the SME provides

incorrect processes or procedures in a tactical situation, and shows the impact this can

have on the behavior of an agent. For example, using an automobile driving domain and

the same example as in the second experiment where the agent has to arrive at its

destination on time, the SME does not tell an automobile driver to stop at intersections

with stop signs or to stop at red traffic lights. Not stopping at an intersection or at a red

traffic light could have devastating effects, such as accidents or being ticketed by the

police. The behavior of the agent at intersections and at traffic lights are monitored in

this experiment.

The goal of the fourth experiment is to resolve situations when the SME omits

information about a task in a process or the process itself, and thus provides incomplete

processes or procedures that are necessary to achieve a mission goal. For example, in an

automobile driving domain where the agent has a mission goal to arrive at its destination,

the SME can omit providing information about a road type, thus an agent will not know

what to do upon encountering that road type.

The goal of the fifth experiment is to show the technique developed in this

investigation can be generalized to other domains other than the automobile driving

domain. The experiment was performed in a tactical submarine warfare mission as

described by Gonzalez and Ahlers [200]. In achieving this, the agent contends with and

195

resolves the incorrect information about a submarines depth provided by the SME. More

on this later.

There are two phases of the experiments. There is the training phase, were the agent

learns the appropriate contextual attributes, thus becoming an enhanced agent and there is

the execution phase, where the enhanced agent attempts to achieve its mission goal with

the correct knowledge. A smaller dataset with shorter routes and different route

compositions are used in the training phase. More on this later.

Note that the comparison in all experiments is performed between the enhanced

agent and the base agent. That is, the already trained agent is compared to the untrained

agent, which has no capabilities for learning in real time during the execution phase.

More on this later.

7.1 Evaluation Criteria

A measure of the success of a new approach is achieved by evaluating the new approach

in a controlled environment. A comparison of the new approach is carried out against

previously established approaches (where they exist) on known or unknown problems. In

this investigation, a CxBR agent enhanced by using the new approach is compared

against the base CxBR agent. Several criteria are used in evaluating the enhancement

technique. Recalling from Chapter 3, the overall goal of the enhancement technique is to

enhance existing human behavior representation models created from knowledge

collected from SME’s. This knowledge could contain errors or be missing some relevant

information as explained earlier in this chapter. The enhancement process creates an

avenue for implicit knowledge to be included in the final enhanced model as well as

196

creating new knowledge within the model. The enhanced model should not only behave

as well as the original model, it should behave better than the original model. The

evaluation of the enhancement approach is based on the following criteria:

 Performance of the agent in known and unknown situations

 Quality & reliability of the agents behavior

These are described below:

Performance of the agent in known and unknown situations: Performance

experiments measure whether the agent achieves its mission goal in the environments

provided and the duration it took the agent to achieve the mission goal. Performance in

the context of this dissertation is measured using the elapsed time from start to finish of a

mission. The actions taken by the agent in its environment determine whether the mission

goals are achieved or not. A comparison is carried out between the base agent’s

performance, i.e. elapsed time for the base agent to achieve its mission goal versus the

elapsed time of the enhanced agent to achieve the same mission goal. A comparison is

also carried out on both agents to see whether the mission goal is achieved or not in

known and unknown situations.

Quality & reliability of agents’ behavior: Experiments that measure the quality

and reliability of the agents’ behavior in the simulated environment are carried out. As

previously defined, the qualities of the agents’ behavior are the attributes and

characteristics of the actions taken at every state of the environment. The quality is

measured by noting whether the correct behavior is exhibited at every state of the agents’

environment. For example, does the agent come to a complete stop at a road intersection

197

with stop signs? A comparison of the base agents’ behavior to the enhanced agents’

behavior is carried out when both agents attempt to achieve the mission goal.

Reliability of the agent’s behavior is defined in terms of the change in the agents

exhibited behavior at a given state during the execution52 of the model in a simulator. For

example, does the agent change its behavior at an intersection on a different simulation

run for the same mission after learning (training) is complete? That is, after noting the

agent’s behavior at an intersection or a red traffic light during the first simulation cycle, is

there a change in the agent’s behavior at the same intersection or red light during the

second simulation cycle under the same conditions? A note should be made that quality

and reliability of the agents’ behavior are measured after the agents’ enhancement

(learning). A comparison between the base agent and the enhanced agent is carried out to

measure the long term reliability of behavior.

7.2 Experiments

This section outlines the experiments performed for the model enhancement technique.

There are three environments in the automobile driving domain used in the experiments,

two environments contain three routes and one environment contains four routes. The

first environment is the training environment that contains shorter routes and will be

described later in this chapter. The second environment is the execution environment

used in the execution of the already trained agent (the enhanced agent). The second

environment is used in evaluating the enhancement technique by comparing the enhanced

agent with the base agent. The third environment which contains four routes, is used in

the first experiment to show how using incorrect knowledge to make decisions leads to

making wrong decisions as shown in the agent determining the fastest route to a

destination. All three environments are described later in this chapter. In all

52 The execution of the model is done after the agent is trained. More on this in the section with the detailed
description of the experiments.

198

environments, the same environmental conditions exist on each route with differences on

the defined maximum speed limits53 on the road segments in the routes and the

arrangement of the road segments in each route. The overall objective of the testing effort

is to evaluate the enhancement technique based on the criteria listed in the previous

section.

7.2.1 Description of Test Environment

The hardware and software required to run the model enhancement technique includes

the following:

• CPU processor of 1000 MHz or greater

• Approximately 500 MB of available disk space

• Windows 95/98/2000/XP or LINUX operating system

• Oracle PL/SQL

• Oracle Database

The enhancement technique was tested for completeness with the experiments

described in the next section.

7.2.2 Experiment Descriptions

There are five experiments carried out to test the performance and behavior of the

enhanced agent. The goal and reasons for performing each experiment has been

explained earlier in this chapter. Before the experiments are performed, the agent is

trained to learn the contextual attributes of its environment, that is, the agent is enhanced.

53 The defined maximum speed limit for a given road type is the same in all environments, for example, the
maximum speed for ‘CITY’ road type is the same in all three environments. The differences in maximum
speed limit is between road types.

199

daihe
Underline

daihe
Underline

7.2.3 Enhancing the Agent

As stated earlier, the first environment consisting of three shorter routes was used to train

the agent. The reasons for using a different route to train the agent are twofold; 1) to be

sure the enhanced agent can generalize its actions and behavior in similar situations and

2) because of the speed in which the agent can traverse the shorter routes, that is, using

the shorter routes enabled faster training. The training routes consist of all road types

available in the three routes used in the execution phase.

The training of the agent consists of training the agent to achieve the mission

goals of all experiments performed in the automobile driving domain. This consisted of

training the agent to learn the maximum speed attribute of the various road segments

(context) when a context was defined for the road segment, while attempting to achieve

its mission goal of arriving at its destination as fast as possible without violating any

traffic laws. By learning the maximum speed attribute of each road segment, the

enhanced agent is expected to outperform the base agent and also behave better at red

traffic lights and intersections. On the other hand, if there are no contexts defined for the

road segment, the enhanced agent is expected to learn new contexts that accurately

represent the road segment. Tables 7.1, 7.2 & 7.3 show the definitions of the routes used

to train the agent. Figures 7.1, 7.2 and 7.3 show the pictorial representation of the training

routes. Note that the training routes shown in tables 7.1, 7.2 and 7.3 are different from the

routes used in the execution phase of the experiments.

200

daihe
Underline

Table 7.1 Training Route A

ROUTE_ID 1 1 1 1 1
ROAD_ID 1 2 3 4 5
ROAD_NAME FREEWAY CITY FREEWAY FREEWAY CITY

DESCRIPTION
FREEWAY

driving CITY driving
FREEWAY

driving
FREEWAY

driving
CITY

driving
ROAD_LENGTH 1.5 0.6 1.2 1.5 1
ANGLE 5 85 45 26 2
ROAD_TYPE FREEWAY CITY FREEWAY FREEWAY CITY
TRAFFIC 0 0 0 0 0
INTERSECTION 0 0 0 0 0
MAXSPEED 75 50 75 75 50

Figure 7.1 Pictorial representation of training route A.

201

Table 7.2 Training Route B

ROUTE_ID 2 2 2
ROAD_ID 1 2 3
ROAD_NAME PARKING_LOT CITY RAMP

DESCRIPTION
PARKING_LOT

driving CITY driving RAMP driving
ROAD_LENGTH 0.2 0.4 0.5
ANGLE 5 85 26
ROAD_TYPE PARKING_LOT CITY RAMP
TRAFFIC 0 0 0
INTERSECTION 0 0 0
MAXSPEED 15 50 35

Figure 7.2 Pictorial representation of training route B.

202

Table 7.3 Training Route C

ROUTE_ID 3 3 3
ROAD_ID 1 2 3
ROAD_NAME PARKING_LOT CITY DIRT

DESCRIPTION
PARKING_LOT

driving CITY driving DIRT driving
ROAD_LENGTH 0.2 0.4 0.5
ANGLE 5 85 26
ROAD_TYPE PARKING_LOT CITY DIRT
TRAFFIC 0 1 0
INTERSECTION 1 0 0
MAXSPEED 15 50 30

Figure 7.3 Pictorial representation of training route C.

Training route A was used in training the agent to learn the appropriate maximum speed

attributes for the FREEWAY and CITY driving. Training route B was used in training

the agent to learn the appropriate maximum speed attributes for the PARKING_LOT and

RAMP driving. Training route C was used in training the agent to learn the appropriate

203

maximum speed attributes for INTERSECTION and TRAFFIC_LIGHT driving as well

as learning and creating the appropriate context with appropriate actions and attributes for

DIRT driving.

Training the agent to learn the maximum speed attribute in the contexts

commences as the simulation begins. The training algorithm described in the previous

chapter is used.

Figure 7.4 Training Maximum Speed Attribute for City Driving

Figure 7.4 shows the different maximum speed values used by the agent in all the

simulation cycles. The figure shows how the training of maximum speed attribute

progresses through all the simulation cycles. From figure 7.4 above, it is seen that the

agent starts off the simulation with the maximum speed attribute for the CITY driving

context defined as 35 m/h. The SME defined the maximum speed attribute as 35 m/h for

204

the city driving context. After 91 simulation cycles, the agent learnt the appropriate

maximum speed attribute for city driving context to be 50 m/h. The value of the

maximum speed attribute for the city driving context during training and at each

simulation cycle can be seen in figure 7.4. The fluctuation in maximum speed values for

different simulation cycles is based on the maximum speed value being chosen at random

using the learning strategy described in Chapter 6 (the random learning strategy). The

maximum speed attribute eventually converges to the maximum speed value of the

environment. The convergence occurs when there is no change in the maximum speed

value between simulation cycles. Figure 7.5 is an enlarged version of portions of figure

7.4 showing when convergence occurs.

Figure 7.5 Training Maximum Speed Attribute for City Driving showing when

Convergence Occurs (Enlarged Figure)

205

Figure 7.6 shows the reward received by the agent while learning the maximum speed

attribute. It shows how the agent is rewarded in each simulation cycle for choosing the

correct maximum speed value. The value of the reward assigned to the agent for being in

a given state was discussed in chapter 6. It can be seen that the agent receives the highest

reward of 50 points whenever the maximum speed of 50 m/h is chosen.

Figure 7.6 City Driving Maximum Speed vs Reward

Figure 7.7 shows the reward received by the agent in each simulation cycle. From the

figure, it can be seen that the agent is punished in most simulation cycles. If figures 7.4,

7.6 and 7.7 are visually combined as a single figure, one can see that the agent is

consistently punished for choosing the wrong maximum speed value, the agent eventually

gets rewarded when it makes the correct choice.

206

Figure 7.7 City Driving Rewards vs Simulation Cycles

In training the agent to learn the appropriate maximum speed attribute for the freeway

driving context, the agent starts with the maximum speed value provided by the SME, i.e.

50m/h as shown in figure 7.8. A total of 71 simulation cycles were used in training the

agent to learn the correct maximum speed value in the freeway context. It uses the

learning strategy described in chapter 6, i.e., the agent randomly selects a maximum

speed value during the first 20 simulation cycle, during the next 20 simulation cycles, i.e.

from 21 to 40, it uses the value that provided the most reward or based on the reward the

agent received in the previous simulation cycle, it directs the learning efforts of the agent.

The agent randomly chooses the maximum speed value between 41 and 60 simulation

cycles and from the 61st simulation cycle, the agent settles for the maximum speed value

that produced the most reward in all 60 simulation cycles. As stated in Chapter 6, the

207

choice of training the agent this way is to incorporate some form of direction in the

agents learning. A random approach in training the agent will eventually converge as

used in learning the city driving context. The choice of 0 to 20, 21 to 40, etc were chosen

at random in even units, a choice of 0 to 10, 11 to 50, etc. could have been chosen as

well.

The SME defined the maximum speed attribute as 50 miles/hr for the freeway

driving context. After 71 simulation cycles, the agent learnt the appropriate maximum

speed attribute for freeway driving context to be 75 miles/hr. As can be seen from figure

7.8, the maximum speed attribute converges to the correct value after 60 simulation

cycles.

Figure 7.8 Training Maximum Speed Attribute for Freeway Driving

208

Figure 7.9 Freeway Driving Maximum Speed vs Reward

Figure 7.9 shows the reward received by the agent at a given maximum speed. From the

figure, it can be seen that the agent received the maximum reward when the maximum

speed value was 75 m/h. In figure 7.10, we can see the rewards received by the agent in

each simulation cycle. The same analysis and description carried out on the city driving

figures apply to the freeway driving figures too.

209

Figure 7.10 Freeway Driving Rewards vs Simulation Cycles

Figures showing the training outcomes for the other contexts – parking_lot driving, dirt

driving, intersection driving, traffic_light driving, ramp driving and submarine target

track are shown in Appendix A. The explanations provided for the training figures for

city and freeway driving also applies to the other contexts.

7.3 Experiment Descriptions and Results

Experiment 1.0

One of the environments is used in this experiment. Four routes are traversed and the

mission goal is for the agent to make an intelligent decision on the tactically optimal

route to its destination when being controlled by the base contexts or the enhanced

contexts.

210

The objective of this experiment is to show the dangers of using incorrect

knowledge in decision making. The base and enhanced agents have a mission goal of

finding the tactically optimal route to their destination, although a trivial mission goal

that can be achieved using simple search algorithms, the objective of the experiment

emphasizes the overall importance of the new technique in decision making. The

destination on each route is different. The mission goal of both agents can be translated to

finding the tactically optimal route to an emergency hospital54. The base agent uses the

knowledge provided by the SME in determining the fastest route, whereas the enhanced

agent uses the knowledge learnt during its training to find the fastest route.

The environment, the agents reward table, the global and local fact bases are all

initialized. The experiment is performed on each agent at different times with the

environmental conditions remaining the same. Upon starting the simulation, the agent

randomly chooses a route to traverse. In this experiment, the agents are trained to learn

the tactically optimal route. Recall that the base agent was previously trained to learn the

actual maximum speed attribute on each route, thus making it an enhanced agent. With

the knowledge of the actual maximum speed on any given route in its environment, the

enhanced agent traverses the routes noting the time it takes to get to the destination (end

of the route). This simulation cycle is repeated multiple times for both the base and

enhanced agent. The elapsed times to their destinations are noted. The learning strategy

defined in the previous chapter is used, i.e. both agents initially chooses a route randomly

and then based on the rewards they receive, they adjust their route choices in subsequent

simulation cycles. When the agents choice of route converges, i.e. a given route
54 Note that there can be different emergency hospitals in a vicinity and finding the fastest route to one of
them can help save a life. Also note that both agent drivers are akin to regular citizens that are expected to
obey all traffic laws irrespective of the emergency situation and are different from a fire truck or other
official cars that may not obey traffic laws in emergency situations.

211

consistently produces the most reward when chosen as the tactically optimal route, a

decision is made. A comparison is then carried out on the fastest route chosen by both

agents.

The definition of all routes traversed in this experiment is presented in Table 7.4

and figure 7.11

Table 7.4 Definition of Routes 1 through 4

ROUTE_ID 1 1 1 2 2
ROAD_ID 1 2 3 1 2
ROAD_NAME PARKING_LOT CITY DIRT CITY FREEWAY

DESCRIPTION PARKING_LOT CITY DESC
DIRT
DESC

CITY
DESC

FREEWAY
DRIVING

ROAD_LENGTH 0.2 0.4 0.5 0.35 0.75
ANGLE 5 85 26 30 15
ROAD_TYPE PARKING_LOT CITY DIRT CITY FREEWAY
TRAFFIC 0 1 0 1 0
INTERSECTION 1 0 0 1 0
MAXSPEED 15 50 30 50 75

ROUTE_ID 3 3 4 4
ROAD_ID 1 2 1 2
ROAD_NAME CITY FREEWAY FREEWAY CITY

DESCRIPTION CITY DESC
FREEWAY

DESC FREEWAY
CITY
DESC

ROAD_LENGTH 0.7 0.1 1 0.8
ANGLE 15 35 5 85
ROAD_TYPE CITY FREEWAY FREEWAY CITY
TRAFFIC 1 0 0 0
INTERSECTION 0 0 0 0
MAXSPEED 50 75 75 50

212

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9
R o u t e s 1 t h r o u g h 4 o n X - Y C a r t e s i a n P l a n e

y
-

co
or

di
na

te
s

x - c o o r d i n a t e s

R o u t e 1
R o u t e 2
R o u t e 3
R o u t e 4

Figure 7.11 Pictorial Representations of Routes 1 through 4

In this experiment, the agent randomly selected a route and traversed that route until it

arrived at its destination. Upon arrival, the time it took the agent to arrive at its

destination is recorded in the reward table and a reward assigned to the agent based on

the current elapsed time and the previous elapsed time. If the agent elapsed time of the

agent on the current route is more than the elapsed time on the previous route, the agent is

punished for taking the current route, on the other hand if the elapsed time on the current

route is less than that of the previous route, the agent is rewarded and the route is noted.

If there is no change in elapsed time between the previous and current routes, the agent is

neither punished nor rewarded. A snippet of the reward procedure is shown in figure

7.12

213

PROCEDURE "REWARD"
 (run_id IN pls_integer, TRAINING_MODE IN VARCHAR2, curr_rte_id IN pls_integer)
 IS
 rwd_cnt pls_integer;
 prev_sessionid pls_integer;
 prev_time float := 0.0;
 ctx_reward pls_integer;
 curr_time float := 0.0;
 prev_rte_id pls_integer;

BEGIN

Get the maximum session id in the reward table

 select max(session_id) into prev_sessionid
 from rwd
 where description = TRAINING_MODE;

-- Get the run_time and route id from reward table for the previous session

 select run_time, route_id into prev_time, prev_rte_id
 from rwd where session_id = (select max(session_id)
 from rwd
 where description = TRAINING_MODE);

 -- Get the total number of records in the reward table for the current training mode

 select count(*) into rwd_cnt
 from rwd a
 where a.description = TRAINING_MODE;

 -- Get the total elapsed time it took for the agent to arrive at its destination for the current
simulation run

 SELECT SUM(G.ELAPSED_TIME) INTO curr_time
 FROM GFB G WHERE G.SESSION_ID = RUN_ID;

 if rwd_cnt < 20 then -- if the total number of simulation runs is less than 20,
 if prev_rte_id = curr_rte_id then -- if the previous route id is the same as the current route
id randomly chosen
 ctx_reward := 0; -- set the reward to 0
 else
 if prev_time > curr_time then -- if the previous elapsed time is greater than the current
elapsed time
 ctx_reward := 10; -- set the reward for using this route to 10
 else
 ctx_reward := -10; -- else set the reward for using this route to - 10
 end if;
 end if;
 else
 if prev_rte_id = curr_rte_id then
 ctx_reward := 1;
 else
 if prev_time > curr_time then
 ctx_reward := 10;
 else

214

 ctx_reward := -10;
 end if;
 end if;
 end if;

 insert into rwd (session_id, description, run_time, route_id, reward)
 values (run_id, TRAINING_MODE, curr_time, curr_rte_id,ctx_reward);

 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 ----DBMS_OUTPUT.PUT_LINE(dbms_utility.format_error_backtrace);
 SIMULATION_RUNS(Run_ID, 'REWARD', 'Fail','Error=>'||
substr(dbms_utility.format_error_backtrace,1,200));
 RAISE;

END;

Figure 7.12 Procedure for rewarding the agent for choosing a faster route

Table 7.5 shows a snippet of the rewards table

Table 7.5 Snippet of Reward Table

SESSION_ID DESCRIPTION RUN_TIME ROUTE_ID REWARD
853 TIME 75.35 2 10
854 TIME 74.95 2 0
855 TIME 75.09 2 0
856 TIME 176.24 1 -10
857 TIME 177.75 1 0
858 TIME 74.66 2 10
859 TIME 79.71 3 -10
860 TIME 79.67 3 0
861 TIME 80.66 3 0
862 TIME 79.81 3 0

Table 7.6a Sum of Rewards when using the Original and Enhanced Contexts

ROUTE_ID
SUM of REWARDs using Original
Contexts

SUM of REWARDs using Enhanced
Contexts

1 -68 -60
2 185 16
3 -9 173
4 -59 -100

215

Table 7.6a shows how the agent decides what route is the tactically optimal route. Figure

7.13 is a pictorial representation of Table 7.6a. Both agents make their decisions based on

the sum of the rewards they receive during the simulation. As can be seen from Table

7.6a and figure 7.13, the sum of the rewards for the base and enhanced agents differ on

all routes. The base agent was consistently rewarded during the simulation for choosing

route 2 because the elapsed time to the destination in route 2 was the smallest. At the end

of the simulation the agent received a total of 185 points when it chose route 2, hence the

base agent made the decision that route 2 was the tactical optimal route. On the other

hand, the enhanced agent chose route 3 as the tactical optimal route.

Figure 7.13 Sum of Rewards

216

Table 7.6b Average Run Time on Each Route

Route ID Average Run Time (secs) using
Original Contexts

Average Run Time (secs) using
Enhanced Contexts

1 164.35 145.98
2 75.3 63.41
3 80.31 57.35
4 130.6 106.72

In the route selection experiment, the agent chooses route 2 as the tactically optimal route

to its destination when it is controlled by the base CxBR as shown in figure 7.13. On the

other hand when the agent is controlled by the enhanced CxBR, the agent chooses route 3

as being the tactically optimal route to its destination. This experiment shows that

incomplete knowledge or misrepresentations about a situation in a context could lead to

the agent making wrong choices. A note should be made that in this experiment, the

maximum speed value for the same contexts in the enhanced and original CxBR model

had the same values, with the exception of the CITY driving context. The maximum

speed value for the CITY driving context of the original CxBR model was reverted back

to 35 m/h whereas the enhanced model remained at 50 miles per hour. Both agents made

intelligent decisions on the tactically optimal route to their destination based on the

information available in their contexts.

Table 7.6b shows the average run times of the agent on each route when

controlled by the original and enhanced contexts. From the average run times, it can be

seen that the tactically optimal route is actually route 3 as determined by the enhanced

CxBR agent. The base agent made an incorrect choice. In reality the tactically optimal

route is route 3.

217

Experiment 2.0

The objective of this experiment is to show the effects of using incorrect or wrong

information on an agent’s performance in a given task. A comparison of the performance

of the enhanced CxBR agent to that of the base CxBR agent is carried out. The

performance is compared in terms of the elapsed time to arrive at their destinations while

traversing the same routes. The shorter the elapsed time to the agent’s destination, the

better the agent’s performance. Both agents traverse the three routes separately. The

agents traverse each route five times, traversing each route five times was chosen to

present enough data for analyzing the results55, the agents could have also traversed each

route 7 times or 28 times, etc. with no significant difference in the final results. The

agents encounter different road segments in each route as described earlier in the chapter.

The time it takes the agent to arrive at the destination for each simulation run before and

after the agent’s enhancement is presented below. Note that the agent had previously

been trained. The actual comparison in all experiments is between the already enhanced

agent and the base agent.

55 There was no difference in the overall result when the results of 1 or 2 or 3 simulation cycles were used

218

Table 7.7 Elapsed Time of Original CxBR agent and the Enhanced CxBR agent.

ROUTE_ID ELAPSED_TIME (Original CxBR)56 ELAPSED_TIME (Enhanced CxBR)
1 1197.44 940.23
1 1197.92 938.83
1 1198.45 938.8
1 1198.17 939.09
1 1197.33 938.33

2 1040.25 790.53
2 1036.34 788.83
2 1033.3 792.2
2 1033.33 792.98
2 1034.42 788.65

3 1270.17 762.64
3 1273.1 766.58
3 1006.95 767.09
3 1011.79 765.47
3 1006.51 763.44

56 For experiment 1, the behavior of the original CxBR was modified to observe all environmental /
simulation constraints such as stopping at intersections, stopping at red traffic light, etc. This was done to
present a uniform test bed for both the original CxBR agent and its enhanced counterpart.

219

Figure 7.14 Elapsed Time to Destination on Route 1

220

Figure 7.15 Elapsed Time to Destination on Route 2

221

Figure 7.16 Elapsed Time to Destination on Route 3

Figures 7.14 to 7.16 show the elapsed time to destinations of the base CxBR agent and its

enhanced counterpart on all three routes for the five simulation runs. The fluctuations in

elapsed time on each route for each agent is due to the various events in the environment,

for example, the traffic light color being different on each simulation run, hence the agent

might stop at a red light on one simulation run and maintain its current speed past a green

light on another simulation run.

Recall the hypotheses stated in Chapter 3, (3.2):

Reinforcement learning can be used to automatically and efficiently enhance a

tactical agent’s behaviour from the experience gained by the interaction of the

agent with its environment. Additionally, based on the mission goals, these agents

222

will perform better than the agents developed from knowledge acquired from

experts.

The enhanced agent was enhanced using reinforcement learning, proving this hypothesis.

We show this quantitatively as follows:

From table 7.4, according to Mason, et. al. [199] the difference d is:

d = Elapsed Time for Enhanced Agent (x) – Elapsed Time for Original Agent (y)

The null hypothesis is the original CxBR agent will perform as well as the enhanced

CxBR agent at the minimum.

0:
0:0

<
≥

da

d

H
H

µ
µ

Where dµ is the mean of the differences between the enhanced CxBR agent and the

original CxBR agent, 0H is the null hypothesis and aH is the alternate hypothesis.

223

Table 7.8 Differences in Elapsed Time

ROUTE_ID

ELAPSED_TIME
(Original CxBR) (y)

ELAPSED_TIME
(Enhanced CxBR)(x) d = x-y d2

1 1197.44 940.23 -257.21 66156.9841
1 1197.92 938.83 -259.09 67127.6281
1 1198.45 938.8 -259.65 67418.1225
1 1198.17 939.09 -259.08 67122.4464
1 1197.33 938.33 -259 67081

2 1040.25 790.53 -249.72 62360.0784
2 1036.34 788.83 -247.51 61261.2001
2 1033.3 792.2 -241.1 58129.21
2 1033.33 792.98 -240.35 57768.1225
2 1034.42 788.65 -245.77 60402.8929

3 1270.17 762.64 -507.53 257586.7009
3 1273.1 766.58 -506.52 256562.5104
3 1006.95 767.09 -239.86 57532.8196
3 1011.79 765.47 -246.32 60673.5424
3 1006.51 763.44 -243.07 59083.0249

Sum -4261.78 1326266.283

To get the average difference in elapsed time we use the formula below [199], where n is

the total number of simulation runs.

n
d

d ∑= =
15

4261.78-
= -284.1186667

Therefore, the average reduction in elapsed time is 284.1186667seconds

The standard deviation [199] is :

()

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
()

115
15

4261.78- - 31326266.28
2

−
 = 90.79609493

Using the t-test,

n
s

dt
d

= =
15

390.7960949
7284.118666-

 = -12.11931929

E

224

The results of the t-test above give a probability (p-value) of 0.0, thus there is a 0%

probability that the null hypothesis is rejected in error. The null hypothesis is rejected,

since the mean of the differences is less than 0 and the results show a 100% confidence

that the enhanced CxBR agent will out-perform the base CxBR agent when there is

incomplete and/or incorrect knowledge acquired from a subject matter expert.

An argument can be made against the validity of the results and conclusion of

experiment 2. The argument will be that in this experiment, the enhanced agent learnt a

maximum speed for each route that is higher than what the SME provided, and as such

the enhanced agent is expected to move faster and thus have a shorter elapsed time on

each route. For example, the maximum speed value for city driving provided by the SME

is 35m/h whereas the agent learnt the correct value was 50m/h; Driving at 50m/h rather

than 35m/h will definitely provide a shorter elapsed time on any route. The question is

what will be the impact in the performance of the agent, if the SME had provided 50m/h

and the agent learnt the actual speed was 35m/h? The argument can be made that the base

agent driving at 50m/h will have a shorter elapsed time to destination than the enhanced

agent driving at 35m/h. This argument is incorrect as the base agent moving at a faster

speed will be stopped multiple times by the police and thus there will be delays and

punishments for the base agent. These delays will lead to a larger elapsed time for the

base agent.

Experiment 3.0

The objective of this experiment is to compare the behavior of the enhanced CxBR agent

and that of the base CxBR agent. This experiment shows the effects of the SME

providing an incorrect process or omitting a process on a given task. In this experiment,

225

the process omitted by the SME is the process of stopping at a red traffic light or at an

intersection with a stop sign and also the process of decelerating when the traffic light

color is yellow and the agent is approaching the traffic light; in other words, the SME

omits some of the core behavioral attributes of a typical car driver. Recall that there is a

base agent and an enhanced agent. The behavior of both agents is compared in terms of

the agents’ actions and speed at intersections and traffic lights while both agents traverse

the same routes. Both agents traverse three routes separately. The agents traverse each

route five times as in experiment 2. The agents encounter different road segments in each

route as described earlier. The driving speed of both agents at intersections, red and green

traffic lights are presented.

Table 7.9 and figure 7.17 show a typical pattern of the enhanced and base agents’

speed when approaching a traffic light. Table 7.9 and figure 7.17 contain information for

only one traffic light. It can be seen that the enhanced CxBR agent starts to reduce its

speed when the traffic light color changes from green to yellow and subsequently to red.

On the other hand, the base CxBR agents’ speed remained constant; it was utilizing the

speed defined for the major context, CITY driving, even though it was being controlled

by the TRAFFIC_LIGHT context. The pattern in table 7.9 and figure 7.17 was consistent

in all simulation runs to test the behavior of the base and enhanced agents in all traffic

lights.

226

Table 7.9 The Pattern of Enhanced CxBR Speed vs Original CxBR Speed

AgentsPosition LIGHT_COLOR Enhanced CxBR Speed Original CxBR Speed
Before Traffic
Light GREEN 49.00 34.00

GREEN 49.00 34.00
YELLOW 29.00 34.00
YELLOW 9.00 34.00
YELLOW 4.00 34.00
YELLOW 3.00 34.00
RED 2.00 34.00
RED 1.00 34.00

At Traffic Light RED 0 34.00
After Traffic
Light GREEN 20.00 34.00

Figure 7.17 Enhanced CxBR agent vs Base CxBR agent Speed at a Traffic Light

227

In analyzing and computing the differences in behavior between the enhanced CxBR

agent and the base CxBR agent, a snapshot of the agents’ speed at the traffic light and at

intersections was carried out. This is shown in Tables 7.10 and 7.11

In Table 7.10, the route_id shows the route number, intersection_position is the

position where the intersection occurs on the route. Five records are shown, each

representing a run through the simulation for route_ids 2 and 3. Note that there are no

intersections on route 1.

 Table 7.10 Agents’ Speed at Intersection

ROUTE_ID INTERSECTION POSITION

SPEED at
INTERSECTION
(Base Agent)

SPEED at
INTERSECTION
(Enhanced Agent)

2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0
2 2.5 34.00 0

3 0.2 10 0
3 0.2 10 0
3 0.2 10 0
3 0.2 10 0
3 0.2 10 0

In Table 7.11, note that there are no traffic lights on route 1 and there are two traffic

lights on route 2, hence the denotation 2A and 2B to differentiate between both traffic

lights on route 2. T.L Position denotes the position the traffic light on the route and T.L.

Color denotes the color of the traffic light when both agents pass it. The behavior of the

agent at the traffic light for each simulation run can be seen from table 7.11 by the speed

at which it passes the traffic light based on the traffic light color, for example, on the first

simulation run, 2A, when the traffic light color was yellow, the base agent went through

at a speed of 34 m/h, its maximum speed, whereas the enhanced agent went through the

228

same traffic light at a speed of 29 m/h because it had already started applying the brakes.

On the second run through the first traffic light of route 2, i.e. 2A, the traffic light color is

green and both agents pass through the traffic light at their maximum speed. On the third

run, the traffic light color is red; the base agent cruises pass the light at its maximum

speed whereas the enhanced agent stopped at the traffic light.

Table 7.11 Agents’ Speed at Traffic Light

ROUTE_ID57 T.L POSITION T.L COLOR
SPEED at T.L.
(Base Agent)

SPEED at T.L.
(Enhanced Agent)

2A 1.5 YELLOW 34.00 29.00
2A 1.5 GREEN 34.00 49.00
2A 1.5 RED 34.00 0
2A 1.5 RED 34.00 0
2A 1.5 RED 34.00 0

2B 4 GREEN 34.00 49.00
2B 4 GREEN 34.00 49.00
2B 4 RED 34.00 0
2B 4 RED 34.00 0
2B 4 RED 34.00 0

3 0.9 YELLOW 34.00 4.00
3 0.9 RED 34.00 0
3 0.9 RED 34.00 0
3 0.9 RED 34.00 0
3 0.9 GREEN 34.00 49.00

Recalling the hypothesis and steps utilized in analyzing the performance from experiment

1, it is hypothesized that the enhanced agent will behave better than the original CxBR

agent. The measurement of behavior in this dissertation is restricted to the speed both

agents exhibit at and near intersections and traffic lights.

From tables 7.7 and 7.8, according to Mason, et. al. [199] the difference d58 is:

d = Speed for Enhanced Agent (x) – speed for Original Agent (y)
57 In route 2, there are two traffic light positions, hence the connotation 2A & 2B
58 d is the difference in speed between both agents at the traffic_light or intersection

229

The null hypothesis is the base CxBR agent will behave as well as the enhanced CxBR

agent at the minimum.

0:
0:0

<
≥

da

d

H
H

µ
µ

Where dµ is the mean of the differences between the enhanced CxBR agent and the base

CxBR agent, 0H is the null hypothesis and aH is the alternate hypothesis.

Table 7.12 Differences in Speed at Intersections for all Routes

ROUTE_ID
INTERSECTION
POSITION

SPEED m/h at
INTERSECTION
(Base Agent)(y)

SPEED m/h at
INTERSECTION
(Enhanced
Agent)(x) d = x - y d2

2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0
2 2.5 34.00 0 -34.00 1156.0

3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100
3 0.2 10 0 -10 100

su
m -220.00 6280.00

To get the average difference in the agents’ speed at the intersection we use the formula

below [199], where n is the total number of simulation runs.

n
d

d ∑= =
10

220.003-
= -22.0003

Therefore, the average difference in speed between the enhanced and base agents at

intersections is 22.0003

The standard deviation [199] is :

230

()

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
()

110
10

220.003- - 6280.19
2

−
 = 12.64937

Using the t-test,

n
s

dt
d

= =
10

12.64937
22.0003-

 = -5.49996

The results of the t-test above give a probability (p-value) of 0.0 from p-value tables, thus

there is a 0% probability that the null hypothesis is rejected in error. The null hypothesis

is rejected since the mean of the differences is less than 0 and the results show a 100%

confidence that the enhanced CxBR agent behaves better than the base CxBR agent at

intersections when the SME provides incomplete or incorrect knowledge or the

knowledge represented by the knowledge engineer in the model is incomplete and/or

incorrect.

231

Table 7.13 Differences in Speed at Traffic Lights on all Routes

ROUTE_ID
T.L
POSITION

T.L
COLOR

SPEED at
T.L.
(Original
CxBR)(y)

SPEED at
T.L.
(Enhanced
CxBR)(x) d = x - y d2

2A 1.5 YELLOW 34.00 29.00 -5.00 25.00
2A 1.5 GREEN 34.00 49.00 15.00 225.00
2A 1.5 RED 34.00 0 -34.00 1156.04
2A 1.5 RED 34.00 0 -34.00 1156.04
2A 1.5 RED 34.00 0 -34.00 1156.04

2B 4 GREEN 34.00 49.00 15.00 225.00
2B 4 GREEN 34.00 49.00 15.00 225.00
2B 4 RED 34.00 0 -34.00 1156.04
2B 4 RED 34.00 0 -34.00 1156.04
2B 4 RED 34.00 0 -34.00 1156.04

3 0.9 YELLOW 34.00 4.00 -30.00 900.01
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 RED 34.00 0 -34.00 1156.04
3 0.9 GREEN 34.00 49.00 15.00 225.00

su
m -281.00 12229.37

To get the average difference in the agents’ speed at traffic lights we use the formula

below [199], where n is the total number of simulation runs.

n
d

d ∑= =
15

281.0048-
= -18.733653

Therefore, the average difference in speed between the enhanced and original agents at

traffic lights is 18.733653

The standard deviation [199] is :

()

1

2

2

−

−
=

∑ ∑

n
n
d

d
sd

=
()

115
15

281.0048- - 212229.3719
2

−
 = 22.30491

Using the t-test,

232

n
s

dt
d

= =
15

22.30491
18.733653-

 = -3.25288

The results of the t-test above give a probability (p-value) of 0.0, thus there is a 0%

probability that the null hypothesis is rejected in error. The null hypothesis is rejected

because the mean of the differences is less than 0 and the results show a 100% confidence

that the enhanced CxBR agent behaves better than the original CxBR agent at traffic

lights and intersections when there are mistakes in the knowledge acquired from a subject

matter expert.

Experiment 4.0

The objective of this experiment is to test the agent’s performance when the SME omits a

task in a process, or the entire process itself during the knowledge acquisition process. In

this experiment, the SME omitted describing a route; thus during the execution of the

experiments, the agents encounter an unknown route. The performance of the agent is

compared when it is controlled by the base CxBR contexts versus when it is controlled by

the enhanced CxBR contexts. The same environmental conditions from previous

experiments apply in this experiment. The agent traverses the same routes under the same

conditions when controlled by either contexts (base and enhanced). The performance of

the agent is measured in terms of achieving the mission goal and the elapsed time to

arrive at its destinations. This experiment is carried out when one of the road segments in

a route is unknown to the agents.

233

The CxBR agent and the enhanced CxBR agent move from the starting point of

each route to the end point. There are three routes which the agents must traverse. The

objective of this experiment is for the agent when controlled by either the base or

enhanced contexts to merely arrive at the final destination when a road segment in one of

the routes is unknown.

Table 7.14 below shows the elapsed time to arrive at the destination when an

unknown road segment is introduced.

Table 7.14 Elapsed time to destination with introduction of an unknown road segment

ROUTE_ID ELAPSED_TIME (Original CxBR) ELAPSED_TIME (Enhanced CxBR)
4 Unmatched Context 644.88
4 Unmatched Context 645.46
4 Unmatched Context 644.75
4 Unmatched Context 644.29
4 Unmatched Context 644.77

As can be seen from table 7.14, the agent was unsuccessful in its mission when it was

controlled by the base CxBR contexts. The reason is, it encountered an unknown and

undefined situation which didn’t have a context defined and as such the mission goal was

not accomplished because an exception was raised and the base agent remained in the

same position (road segment) endlessly hence it couldn’t arrive at its destination. On the

other hand, when the agent was controlled by the enhanced agent, the mission goal was

accomplished, this is because during the training phase, the agent learnt of the new road

segment and learnt the appropriate actions and attributes of this road segment. Based on

the information learnt during training the agent was successful in its mission.

Because the agent was successful in its mission when controlled by the enhanced

contexts and unsuccessful in its mission goals when controlled by the base CxBR

contexts, we could conclude that the agent when controlled by the enhanced CxBR

234

contexts out-performed the agent when controlled by the base CxBR contexts because of

its successful completion of its mission goals.

Experiment 5.0

This experiment is a modification of the experiment performed by Gonzalez & Ahlers

[200] in the submarine warfare domain. Detailed description of the contexts, etc. can be

read from [200]. In [200], Gonzalez and Ahlers stated that the submarines had “…static

slots (defined as those whose values will not change during the simulation)…., examples

are maximum speed, quite speed, maximum depth, …..”. Note that some aspects of the

description of this experiment will not suffice in reality, for example, the angle of dive of

the submarine being greater than -10 degrees may not be feasible in reality. Irrespective

of the accuracy of the description of a submarine mission portrayed in this experiment,

the concept nevertheless is valid. This experiment only shows the extension of the

enhancement technique to other domains.

In this experiment, it is assumed that the maximum depth provided by the SME is

2376 ft (0.45 miles59), meaning the maximum depth of the body of water in which the

submarine can descend to. Note that it is assumed that there are no constraints on the

maximum depth of water the submarine is designed to descend to. The mission goal is

for the submarine to track an enemy’s submarine and return to sector.

Four simulation runs are carried out to compare whether the mission goal is

accomplished by the base agent and the enhanced agent. The choice of running four

59 Depth is not typically measured in miles. In the graphs of experiment 5, it is the authors preference to
measure depth in miles

235

simulations was taken to have enough data to analyze the results. The static enemy

submarine60 will be referred to as the target.

Table 7.15 describes the simulation parameters; the angle of dive refers to the

angle which the base agent and enhanced agent dive into the water. Xtarget and Ytarget

are the x-y coordinates of the stationary enemy submarine. The maximum speed for base

agent and enhanced agent submarines is 11.5 m/h (10 knots). It is assumed both

submarines will attain this speed within seconds of starting the simulation and when

being controlled by the contexts used in this example. The context hierarchy and the

transitions of the contexts are shown in figures 7.18 and 7.19.

Table 7.15 Location of Target on X-Y Plane

SIMULATION
RUN ANGLE of DIVE XTARGET YTARGET

1 -89 0.387580639 -0.379818702
2 -77 0.375877751 -0.704649047
3 -45 0.508713655 -0.739862961
4 -83 0.110872406 -0.47510347

Figure 7.18 Search and Track Mission Context Topology [200]

60 Enemy submarines are not static in reality, they move around.

SEARCH-AND-TRACK

SECTOR-SEARCH TRANSIT-TO-SECTOR

MANEUVER-INTO-POSITION TARGET-TRACK

TRANSIT-HOME

236

The flow of events for the search-and-track mission is as follows: The flow of events

starts from the default context (transit-to-sector). The flow is clockwise.

Figure 7.19 Context Transition

sector-search

maneuver-
into-position

transit-to-
sector
(Default
Context)

target-track

transit-home

237

Table 7.16 Comparison of Base Agent and Enhanced Agent Mission Success

Simulation Run Maximum Depth
defined by SME

Base Agent
(Successful or Not)

Enhanced Agent
(Successful or Not)

1 -0.45 miles (2376 ft) Success Success
2 -0.45 miles (2376 ft) Unmatched Context Success
3 -0.45 miles (2376 ft) Unmatched Context Success
4 -0.45 miles (2376 ft) Unmatched Context Success

Table 7.16 shows the result of the base agent and enhanced agent in achieving the

mission goal. In the first simulation run, it can be seen that both agents are successful in

achieving the mission goal; this is because the target (enemy submarine) is higher than

the maximum depth defined by the SME. The base agent couldn’t achieve the mission

goal in simulation runs 2 through 4 because the target was below the maximum depth

defined by the SME. On the other hand, because the enhanced agent was trained to learn

the actual maximum depth of the body of water, it was able to achieve its mission goal.

The path of both agents in simulation runs 1 through 4 is shown in figures 7.20 to 7.23.

Figure 7.20 highlights the contexts on the graph and figures 7.21 to 7.23 shows

the direction of the agents motion.

238

Figure 7.20 Base Agent vs Enhanced Agent both are successful in their mission goal

239

Figure 7.21 Base Agent vs Enhanced Agent with base agent unsuccessful and

enhanced agent successful in their mission goal

240

Figure 7.22 Base Agent vs Enhanced Agent with base agent unsuccessful and

enhanced agent successful in their mission goal

241

Figure 7.23 Base Agent vs Enhanced Agent with base agent unsuccessful and

enhanced agent successful in their mission goal

7.4 Summary of Results

In this section, a summary of the results of all experiments performed is presented. Recall

the objectives for performing the experiments highlighted at the beginning of the chapter.

Experiments 1 and 2 highlighted scenarios where the SME provided wrong information

and as such the agent was destined to make wrong decisions and perform poorly on a

given task. In Experiment 1, the agent was supposed to complete a simple mission of

choosing the fastest route to a destination. When the agent utilized the information

provided by the agent (base contexts), it incorrectly chose the wrong route as being the

fastest to the destination. On the other hand, when the agent utilized the enhanced

242

contexts, it made the correct choice. Thus, experiment 1 shows that the enhancement

technique leads to an agent making the right choices in a tactical situation. In experiment

2, the performance of the agent was put to test on a mission goal of arriving at a

destination with a minimum elapsed time. In experiment 2, the maximum speed value

provided by the SME on the various road segments in a route were incorrect. When the

agent used the information provided by the SME (base contexts), the elapsed time to its

destination was larger than when the agent used the enhanced information. In experiment

2, the SME provided a smaller maximum speed value for the various road segments; the

agent learnt that the actual maximum speed values for the road segments were larger. It

was noted in experiment 2 that the outcome of the result will remain the same even if the

SME had provided a larger maximum speed value and the agent learnt that the correct

maximum speed value was smaller, because the agent using the SME provided

information (base agent) will be stopped by police and delayed continuously throughout

the journey. Experiment 2 thus shows that the performance of the agent using the

enhanced information is better than the agent using the base information.

Experiment 3 shows when the SME provided an incorrect process; the SME failed

to tell the agent to stop at red traffic lights and intersections. It was shown that the

enhanced agent behaved better than the base agent at intersections and red traffic lights.

Experiment 4 showed when the SME omitted information about a road segment in a

route. The enhanced agent had previously learnt the attributes of the road segment and

thus when it encountered it during the execution phase, it was able to achieve the mission

goal. On the other hand, the base agent was unable to achieve the mission goal because it

lacks learning capabilities. Experiment 5 showed the application of the enhancement

243

technique on a different domain. A submarine warfare domain was used. In this

experiment, the submarine was supposed to track an enemy’s submarine that was stuck at

a given depth, i.e. the submarine was stationary. The SME provided the depth of water at

which the submarine could not go any deeper. When the enemy submarine was at a lower

depth than that provided by the SME, the base agent was unable to achieve its mission

goal, on the other hand, the enhanced agent achieved its mission goal.

7.5 Chapter Summary

In this chapter, the experiments and their results were described. Also, conclusions were

made on the effectiveness of the enhancement technique based on the results of the

experiments. The results of the experiments show that the agent when controlled by

enhanced contexts out-performs an agent controlled by the original contexts in known

and unknown situations. The quality of the agents’ behavior was also shown to be better

after the contexts were enhanced. On the other hand, the reliability of the agents’

behavior was unchanged between the enhanced contexts and base contexts. This was

because of the consistency in decision making of the CxBR technique, hence the behavior

of the agent will always be consistent in the same situation. The usefulness of the

enhancement technique was also shown in a decision making situation, where the agent

had to choose the fastest route to its destination, the enhanced agent chose the fastest

route based on the enhanced attributes of the contexts whereas the original agent choose

the fastest route based on the context attributes. In tactical situations, making the right

decisions at every point, could lead to a successful mission.

Tables 7.17 & 7.18 summarizes the results from all experiments.

244

 245

Table 7.17 Quantitative Summary of Results

Exp.
No. Exp. Description

Original CxBR
Ratio (O)

Enhanced CxBR
Ratio (E)

Difference in
Ratios (E-O)

1 Find Tactical Optimal Route 0 1 1
2 Agent Performance 0 1 1

3.1
Agent Behavior at
Intersection 0 1 1

3.2 Agent Behavior at T.L 0.4 1 0.6
4 Agent in Unknown Situation 0 1 1
5 Submarine Agent 0.25 1 0.75

Ratios = Number of Successful Runs / Total Number of Runs
In Experiment 1, Original CxBR Ratios = 0 /1 = 0; Enhanced CxBR Ratios = 1/1 =1;
Experiment 2, Original CxBR Ratios = 0 /15 = 0; Enhanced CxBR Ratios = 15/15 =1;
Experiment 3a, Original CxBR Ratios = 0 /10 = 0; Enhanced CxBR Ratios = 10/10 =1;
Experiment 3b, Original CxBR Ratios = 6 /15 = 0.4; Enhanced CxBR Ratios = 15/15 =1;
Experiment 4, Original CxBR Ratios = 0 /5 = 0; Enhanced CxBR Ratios = 5/5 =1;
Experiment 5, Original CxBR Ratios = 1 /4 = 0.25; Enhanced CxBR Ratios = 4/4 =1;

Table 7.17 shows the number of successes for each experiment for the original CxBR and

enhanced CxBR agent. The table provides a quantitative view of the success rate of an

experiment for both agents. The ratio has been defined as the number of successful runs

of a given experiment versus the total number of runs, for example, in experiment one,

where the agent’s goal is to find the tactically optimal route, the original CxBR agent

didn’t have a successful run, whereas the enhanced agent was successful; the total

number of independent experiment runs made in making the decision was 1. On the other

hand, in experiment two, there were 15 independent runs; the original CxBR agent was

unsuccessful in each run, whereas the enhanced CxBR agent was successful in all 15

runs.

 The results shown in Table 7.17 above clearly indicate that the enhanced agent

performed in a superior manner to the original agent in each of the tests. This is further

explained in Table 7.18 below.

 246

Table 7.18 Summary of Results

Experiment
Number

Mission Goal Purpose of
Experiment

Outcome of
Experiment

1 Find the tactically
optimal route.
There were four
routes with
different
destinations, akin to
finding the
tactically optimal
route to an
emergency hospital.

To show the
effects of using
incorrect
knowledge in
decision making.

The experiment was
successful. When the agent
used the incorrect
knowledge provided by the
SME, it chose a wrong route
as the tactically optimal
route. After the SME
knowledge was enhanced,
the agent chose the actual
tactically optimal route.
This is shown in Table 7.17

2 Arrive at the
destination on the
various routes in
the fastest time.

To compare the
performance of the
enhanced agent
and base agent
when the SME
provides incorrect
knowledge

The experiment was
successful. The enhanced
agent outperformed the base
agent. This is shown in
Table 7.17

3 Arrive at the
destination on the
various routes in
the fastest time.

To compare the
behavior of the
enhanced agent
and base agent
when procedural
knowledge
provided by the
SME is incorrect.

The experiment was
successful. The enhanced
agent behaved appropriately
at intersections and traffic
lights. This is shown in
Table 7.17

4 Arrive at the
destination on the
various routes.

To compare the
performance of the
enhanced agent
and base agent
when the SME
omits a process
needed to achieve
its mission goal.

The experiment was
successful. The enhanced
agent was successful in its
mission goal while the base
agent failed to achieve its
mission goal. This is shown
in Table 7.17

5 Track an enemy
submarine and
return to sector

To show the
enhancement
technique can be
used in other
domains

The experiment was
successful. The enhanced
agent was able to track the
enemy submarine and return
to sector, as shown in Table
7.17

CHAPTER 8 SUMMARY, CONCLUSIONS AND FUTURE WORKS

In this chapter, a summary of what this research was all about is provided as well as

conclusions on the results obtained, reasons for the choices made, layouts and strategies

for future works with this research as the foundation are provided.

8.1 Summary

In this section, four questions pertinent to this investigation are addressed. These are:

1) What was this investigation all about?

2) What was done during the investigation?

3) How was it done?

4) Why was it done (the various choices)?

8.1.1 What Was Investigated

This research investigated some techniques used in representing human behavior models

as described in Chapters 1 and 2. During the investigation, it was noted that most HBR

techniques suffer from the limitations inherent in the way knowledge is acquired i.e. the

total dependence of knowledge acquisition and representation on subject matter experts.

Usually, the experts determine what actions to perform in a given situation and how the

agent should behave in all situations as perceived by the expert. In some situations,

however, the SME might not know the optimal actions to perform, or might not know

how to describe an implicit action, hence that situation may not be properly represented.

In other situations, the interpretation of the SME actions by a knowledge engineer may be

incorrect or there may be some mistakes in the way a given action or attribute is

represented from the way it was intended. Additionally, how do you reconcile differences

247

in different expert opinions for the same situation under the same circumstances? In other

words, the information represented in the HBR application is incorrect.

 It was noted that the fact that the SME provides the knowledge that determine the

behaviors of an agent isn’t wrong. What was wrong is the inability of these models to be

improved beyond the SME’s level of competence or for these models to be improved

beyond the mistakes or omissions in the way knowledge for a given situation is

represented. An investigation into creating a technique that enhances a HBR model based

on the agent achieving the overall mission goal was carried out.

A system where the acquired knowledge - the actions and thus the behavior of the

agent can be enhanced based on the mission goal, irrespective of the SME’s imparted

knowledge was developed. This was achieved by placing the model developed with the

SME’s knowledge in a simulator and exposing the model to situations imagined and not

imagined by the SME. The model was run multiple times until the knowledge acquired

from the SME was modified to address these new situations. The model was thus

enhanced to perform better, based on the mission goal. Furthermore, this research showed

that the CxBR technique can be greatly improved by incorporating the RL technique in it.

8.1.2 What Was Done During the Investigation

After it was determined that most HBR models lacked a mechanism for enhancing the

knowledge being represented, a technique utilizing reinforcement learning was

hypothesized to do this. Reinforcement learning is a machine learning strategy that

assigns rewards (positive or negative) as an agent (simulated or live) interacts with its

environment (immediate or distant). Context-Based Reasoning was the HBR technique of

248

choice used in this investigation and Reinforcement Learning was synergistically

incorporated within CxBR. To prove the hypothesis, experiments where performed with

the agent placed in different situations and a comparison between the original agent and

the enhanced agent towards a mission goal was carried out.

8.1.3 How The Investigation Was Done

The experiments to test the hypothesis was carried out in an automobile driving

simulation test bed. Some of the constraints on using the CxBR technique were relaxed,

for example ‘hard-coding’ the relationship between contexts (which is the traditional

method for representing knowledge using the Context-Based Reasoning technique) in the

compatible context segment. Moreover, the context-based reasoning framework

developed by Norlander [124] and previously used by others in CxBR simulations was

replaced by database table structures in the definition of contexts. Nevertheless, the

context hierarchy of having a major context, sub-context, etc. was still maintained in

these table structures. The context definitions, context attributes, and context actions were

all placed in different database tables with identifiers relating a given context definition

to its attributes and actions. Contexts representing the different road types encountered to

the best knowledge of the SME were hand-created. The attributes of the various road

segments and actions available in the road segments were defined. The maximum speed

attribute was of particular interest in this investigation as most of the experiments

performed were based on this attribute. The sentinel rules, inference engine, etc. of the

CxBR model were developed. The new technique that incorporates reinforcement

learning within CxBR and code to implement the new technique were also developed.

249

The rewards associated with the new technique were defined and the agent was placed in

a simulator.

The agent went through a training phase and an execution phase. During the

training phase, the maximum speed attribute was trained to reflect the actual maximum

speed value of the environment in each road segment. Upon completion of the training

phase, the optimal maximum speed for each road segment was learnt. The learnt

maximum speed attribute was a correct representation of what was in the environment

during training. Also during training, the agent encountered a situation (road segment)

which had no context defined for it. The agent was able to learn the attributes of the new

road segment, create a context to represent this road segment and learn the optimal

maximum speed for this road segment.

After the training phase was complete, the agents’ performance and behavior were

compared when it was controlled by the enhanced contexts versus when it was controlled

by the original contexts.

8.1.4 Why Various Choices Were Made

Various choices pertinent to this investigation were made for different reasons. For

example, why was the CxBR technique selected as the HBR paradigm of choice in

performing the experiments? Why was an automobile driving simulation test bed used

and not a flight simulation test bed? Why was the maximum speed attribute the attribute

of choice for training? There are so many questions that could arise from the choices

made in this investigation, an attempt will be made to answer most of them.

250

The choice of CxBR as the modeling technique of choice is based on its modular

design and its ability to prune down the search space of the agents’ actions to only the

relevant actions for any given situation. The ease of use of CxBR has also been

established and its flexibility towards modeling any situation has also been established.

The choice of an automobile driving simulation test bed and the subsequent

choice of learning the appropriate maximum speed for the road segments in a route is

based on an assumption by the author that most people can easily relate to driving and

modifying their speed to obey the maximum speed signs as they approach different road

segments. The example of learning the appropriate maximum speed can be easily

understood by researchers in different domains and the technique presented can thus be

utilized in the domain of choice of the readers. Some examples of application of this

technique in other domains is presented in the future works section of this chapter.

8.2 Conclusions

In comparing the performance and behavior of the agent when it was controlled by the

enhanced CxBR contexts versus when it was controlled with the original CxBR contexts,

the agent when controlled by the enhanced CxBR contexts outperformed the agent when

it was controlled by the original CxBR contexts based on the SME definition of the

original CxBR contexts. The snapshot measurements of behavior of both agents also

show the enhanced agent behaving better than the base CxBR agent at traffic lights and

intersections. A conclusion can be made that the CxBR enhancement technique

introduced in this research enhances contexts that make an agent perform and behave

better than when the same agent is being controlled by the original CxBR contexts.

251

Some observations were made during the course of this investigation. It was

noticed that while training the agent, the rate of learning is directly proportional to the

value of reward chosen for the test domain. It was noticed that if the difference in value

between reinforcing a positive behavior and a negative behavior is small, it takes a longer

time for the agent to learn. For example, if one assigned a reward value of ‘+1’ to the

agent for choosing the correct maximum speed value in a given context and assigned the

value of ‘-1’ for choosing a maximum speed value that exceeds that of the environment,

it took a much longer time for the learning process to converge to the correct maximum

speed value. Whereas if one had provided a reward value of ‘+50’ for choosing the

correct maximum speed value in a given context and assigned a reward value of ‘-50’ for

choosing a maximum speed value that exceeds that of the environment, after a few

iterations of the agent in its environment, it became apparent what the correct maximum

speed value should be.

Also noted was the confidence level in determining that the performance and

behavior of the enhanced agent is better than the base agent. This can be attributed to the

knowledge acquired in the base CxBR contexts. Conversely, if the knowledge acquired

from a SME is absolutely correct and matches all expectations in the environment, there

will probably be no difference in the performance of the agent that goes through the

enhancement process and that of the original agent. In other words, assuming the

maximum speed value in the enhanced contexts were the original values provided by a

SME, if these contexts were to go through the enhancement process, there will be nothing

to enhance because the maximum speed values already represent what is optimal in the

real world. In cases like this, the enhancement process will not show any improvement in

252

performance or behavior but rather, act as a validation mechanism to validate the

knowledge from the SME. This point was observed because as a side experiment, an

attempt was made to enhance the already enhanced CxBR agent. A conclusion could be

made that at a minimum the enhancement technique will produce contexts (agents) that

are exactly like the original contexts (agents), hence there are no known disadvantages to

using the enhancement technique to attempt to enhance HBR models, other than the time

it takes the model to go through the enhancement process.

8.3 Future Research

Although the results obtained from experiments in the automobile driving and in the

submarine warfare domains were positive, it would be desirable to more extensively test

the application of this technique in other domains. As earlier described, the choice of

applying this technique in determining the optimal maximum speed for a given road

segment is to provide an example to which most people could relate. A conceptual

approach to applying this technique in other domains is presented here and it is the hope

of the author that other researchers will test the technique in different domains. Of

particular interest is using this technique in correctly identifying purchasing patterns of

people or correctly identifying an online search based on the search keyword and the

context in which that keyword is used.

Bookstores or movie rental stores typically like to suggest accompanying books

or movies after a book purchase or movie rental has been made. To determine this, books

are categorized and based on historical data, the pattern of relationships between

different categories and different books are presented to buyers. The mechanism for

253

relating the different categories is still a topic that needs further investigations because in

some cases, customers don’t like the books or movies that were recommended to them. It

will be nice to present the enhancement technique to determine the relationships between

the various categories (contexts). The enhancement technique can modify and learn new

relationships between the various contexts and will eventually provide optimal and

accurate book/movie suggestions to potential buyers who might want to purchase a

related book. The mission goal in this type of experiment will be to minimize the root

square error associated with recommending the wrong book or movie to a customer.

It would also be desirable to provide an online training mechanism to this

technique. Currently the contexts are trained offline and then modified based on the

optimal value of a variable learnt during training. What if after training a new optimal

value emerges, i.e., a new maximum speed value for a road segment is put in place by

law? The technique should be able to recognize this and learn in real time what the new

value is.

Although the CxBR technique was used as the HBR paradigm of choice in

evaluating the enhancement technique, it will be good to see how implementing the

enhancement technique with other HBR paradigms will be. Will the results be as

encouraging if the enhancement technique is used with other HBR paradigms?

It is also of interest that this technique be embedded in a robot to test its

effectiveness. Tests in simulations have shown positive encouragements, but it will be

good to test it in the real world using robots to evaluate its ease of use in the real world.

254

APPENDIX A

TRAINING RESULTS

255

Table A.1 City Driving Context Training

SESSION_ID
CTX_NAM
E RUN_TIME MAX_SPEED REWARD

101 CITY 1196.71 35 -10
102 CITY 1045.69 88 -10
104 CITY 309.53 78 -10
105 CITY 318.56 70 -10
106 CITY 414.95 32 -10
107 CITY 474.24 24 -10
108 CITY 354.75 49 1
109 CITY 1348.39 5 -10
110 CITY 358.81 47 1
111 CITY 864 9 -10
112 CITY 339.59 56 -10
113 CITY 337.72 57 -10
114 CITY 456.11 26 -10
115 CITY 361.61 46 1
116 CITY 361.69 46 -1
117 CITY 613.35 15 -10
118 CITY 356.68 48 1
119 CITY 1627.7 4 -10
120 CITY 341.72 55 -10
121 CITY 323.61 66 -10
122 CITY 309.44 78 -10
123 CITY 327.43 65 -10
124 CITY 311.45 76 -10
125 CITY 299.61 91 -10
126 CITY 296.44 95 -10
127 CITY 672.1 13 -10
128 CITY 397.07 36 -10
129 CITY 552.51 18 -10
130 CITY 343.58 54 -10
131 CITY 464.47 25 -10
132 CITY 352.63 50 50
133 CITY 441.03 28 -10
134 CITY 343.67 54 -10
135 CITY 473.46 24 -10
141 CITY 3009.81 2 -10
142 CITY 306.54 82 -10
143 CITY 441.02 28 -10
144 CITY 379.8 40 -10
145 CITY 295.47 96 -10
146 CITY 299.36 91 -10
147 CITY 367.73 44 -10
148 CITY 294.47 98 -10
149 CITY 317.42 71 -10
150 CITY 300.4 90 -10
151 CITY 320.54 68 -10
152 CITY 341.75 55 -10

256

153 CITY 474.15 24 -10
154 CITY 426.97 30 -10
155 CITY 326.85 65 -10
156 CITY 800.52 10 -10
157 CITY 296.44 95 -10
158 CITY 318.78 70 -10
159 CITY 350.53 51 -10
160 CITY 298.39 92 -10
161 CITY 315.5 73 -10
162 CITY 441.31 28 -10
163 CITY 307.64 80 -10
164 CITY 307.56 81 -10
165 CITY 351.89 50 50
166 CITY 341.9 55 -10
167 CITY 405.98 34 -10
168 CITY 294.33 99 -10
169 CITY 307.5 81 -10
170 CITY 320.59 68 -10
171 CITY 302.34 87 -10
172 CITY 410.18 33 -10
173 CITY 484.28 23 -10
174 CITY 345.54 53 -10
175 CITY 320.61 68 -10
176 CITY 361.59 46 -1
177 CITY 495.34 22 -10
178 CITY 320.51 68 -10
179 CITY 302.56 87 -10
180 CITY 295.55 96 -10
181 CITY 339.52 56 -10
182 CITY 301.48 88 -10
183 CITY 299.33 91 -10
184 CITY 330.64 62 -10
185 CITY 5764.8 1 -10
186 CITY 319.56 69 -10
187 CITY 5776.65 1 -10
188 CITY 434.32 29 -10
189 CITY 312.53 75 -10
190 CITY 298.55 92 -10
191 CITY 349.75 51 -10
192 CITY 464.33 25 -10
193 CITY 299.7 90 -10
195 CITY 354.21 50 50
196 CITY 351.84 50 50
197 CITY 351.6 50 50
198 CITY 352.12 50 50

257

Table A.2 Freeway Driving Context Training

SESSION_ID
CTX_NAM
E RUN_TIME MAX_SPEED REWARD

200 FREEWAY 426.81 50 -10
201 FREEWAY 290.72 87 -20
202 FREEWAY 481.64 42 -10
203 FREEWAY 355.66 64 -10
204 FREEWAY 304.78 81 -20
205 FREEWAY 307.67 80 -20
206 FREEWAY 372.05 60 -10
207 FREEWAY 279.56 93 -20
208 FREEWAY 338.03 69 -10
209 FREEWAY 596.2 32 -10
210 FREEWAY 386.02 57 -10
211 FREEWAY 401.06 54 -10
212 FREEWAY 386.08 57 -10
213 FREEWAY 320.58 75 50
214 FREEWAY 457.27 45 -10
215 FREEWAY 976.84 18 -10
216 FREEWAY 301.52 82 -20
217 FREEWAY 311.66 78 -20
218 FREEWAY 341.7 68 -10
219 FREEWAY 279.41 93 -20
220 FREEWAY 427.06 50 -10
301 FREEWAY 320.16 75 50
302 FREEWAY 307.39 80 -20
303 FREEWAY 320.48 75 50
304 FREEWAY 335.58 70 -1
305 FREEWAY 320.53 75 50
306 FREEWAY 317.63 76 -20
307 FREEWAY 320.24 75 50
308 FREEWAY 334.73 70 -1
309 FREEWAY 320.58 75 50
310 FREEWAY 317.59 76 -20
311 FREEWAY 319.64 75 50
312 FREEWAY 334.87 70 -1
313 FREEWAY 320.56 75 50
314 FREEWAY 317.76 76 -20
315 FREEWAY 320.12 75 50
316 FREEWAY 334.74 70 -1
317 FREEWAY 320.51 75 50
318 FREEWAY 317.66 76 -20
319 FREEWAY 320.42 75 50
320 FREEWAY 1124.67 15 -10
321 FREEWAY 436.14 48 -10
322 FREEWAY 305.59 81 -20
323 FREEWAY 519.55 38 -10
324 FREEWAY 372.03 60 -10

258

325 FREEWAY 293.41 86 -20
326 FREEWAY 555.35 35 -10
327 FREEWAY 376.78 59 -10
328 FREEWAY 1084.08 16 -10
329 FREEWAY 1626.17 10 -10
330 FREEWAY 319.81 75 50
331 FREEWAY 306.83 80 -20
332 FREEWAY 320.61 75 50
333 FREEWAY 335.67 70 -1
334 FREEWAY 319.65 75 50
335 FREEWAY 316.69 76 -20
336 FREEWAY 320.5 75 50
337 FREEWAY 335.6 70 -1
338 FREEWAY 320.5 75 50
339 FREEWAY 317.54 76 -20
340 FREEWAY 320.61 75 50
341 FREEWAY 320.49 75 50
342 FREEWAY 320.5 75 50
343 FREEWAY 320.51 75 50
344 FREEWAY 319.69 75 50
345 FREEWAY 320.63 75 50
346 FREEWAY 320.49 75 50
347 FREEWAY 320.43 75 50
348 FREEWAY 319.72 75 50
349 FREEWAY 320.5 75 50
350 FREEWAY 319.68 75 50

Table A.3 Parking_Lot Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
425 PARKING_LOT 92.44 60 -20
426 PARKING_LOT 126.72 17 -20
427 PARKING_LOT 106.48 29 -20
428 PARKING_LOT 117.55 21 -20
429 PARKING_LOT 91.42 68 -20
430 PARKING_LOT 88.42 96 -20
431 PARKING_LOT 88.54 90 -20
432 PARKING_LOT 99.5 40 -20
433 PARKING_LOT 94.44 56 -20
434 PARKING_LOT 99.37 41 -20
435 PARKING_LOT 99.12 40 -20
436 PARKING_LOT 87.86 96 -20
437 PARKING_LOT 92.58 63 -20
438 PARKING_LOT 100.53 38 -20
439 PARKING_LOT 109.53 26 -20
440 PARKING_LOT 100.44 39 -20
441 PARKING_LOT 442.07 3 -10
442 PARKING_LOT 88.83 95 -20
443 PARKING_LOT 153.87 10 -1

259

444 PARKING_LOT 88.41 95 -20
445 PARKING_LOT 111.5 25 -20
446 PARKING_LOT 153.89 10 -1
447 PARKING_LOT 226.03 5 -10
448 PARKING_LOT 153.66 10 1
449 PARKING_LOT 129.71 15 50
450 PARKING_LOT 129.59 16 -20
451 PARKING_LOT 129.58 15 50
452 PARKING_LOT 153.78 10 -1
453 PARKING_LOT 129.7 15 50
454 PARKING_LOT 129.6 16 -20
455 PARKING_LOT 129.67 15 50
456 PARKING_LOT 153.71 10 -1
457 PARKING_LOT 129.59 15 50
458 PARKING_LOT 129.75 16 -20
459 PARKING_LOT 129.57 15 50
460 PARKING_LOT 153.67 10 -1
461 PARKING_LOT 129.7 15 50
462 PARKING_LOT 129.59 16 -20
463 PARKING_LOT 129.57 15 50
464 PARKING_LOT 153.85 10 -1
465 PARKING_LOT 94.42 53 -20
466 PARKING_LOT 98.89 42 -20
467 PARKING_LOT 92.56 66 -20
468 PARKING_LOT 108.55 27 -20
469 PARKING_LOT 89.39 86 -20
470 PARKING_LOT 93.42 57 -20
471 PARKING_LOT 99.53 39 -20
472 PARKING_LOT 92.42 64 -20
473 PARKING_LOT 184.81 8 -10
474 PARKING_LOT 104.5 32 -20
475 PARKING_LOT 129.64 15 50
476 PARKING_LOT 153.88 10 -1
477 PARKING_LOT 129.81 15 50
478 PARKING_LOT 129.57 16 -20
479 PARKING_LOT 129.58 15 50
480 PARKING_LOT 153.87 10 -1
481 PARKING_LOT 129.59 15 50
482 PARKING_LOT 129.58 16 -20
483 PARKING_LOT 129.59 15 50
484 PARKING_LOT 153.82 10 -1
485 PARKING_LOT 129.56 15 50
486 PARKING_LOT 129.58 15 50
487 PARKING_LOT 129.67 15 50
488 PARKING_LOT 129.62 15 50
489 PARKING_LOT 129.67 15 50
490 PARKING_LOT 129.61 15 50
491 PARKING_LOT 129.61 15 50
492 PARKING_LOT 129.83 15 50
493 PARKING_LOT 129.63 15 50

260

494 PARKING_LOT 129.47 15 50
Table A.4 Ramp Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
355 RAMP 145.94 42 -20
356 RAMP 147.07 40 -20
357 RAMP 180.41 23 -10
358 RAMP 180.66 23 -10
359 RAMP 976.94 2 -10
360 RAMP 124.61 83 -20
361 RAMP 127.78 75 -20
362 RAMP 128.71 72 -20
363 RAMP 147.14 41 -20
364 RAMP 148.75 39 -20
365 RAMP 229.17 14 -10
366 RAMP 123.66 91 -20
367 RAMP 153.72 35 50
368 RAMP 126.62 77 -20
369 RAMP 149.76 38 -20
370 RAMP 143.69 44 -20
371 RAMP 176.62 24 -10
372 RAMP 123.61 90 -20
373 RAMP 149.74 38 -20
374 RAMP 129.92 68 -20
375 RAMP 153.88 35 50
376 RAMP 161.86 30 -1
377 RAMP 153.75 35 50
378 RAMP 152.82 36 -20
379 RAMP 153.83 35 50
380 RAMP 161.8 30 -1
381 RAMP 154 35 50
382 RAMP 152.78 36 -20
383 RAMP 153.73 35 50
384 RAMP 162.75 30 -1
385 RAMP 153.83 35 50
386 RAMP 152.74 36 -20
387 RAMP 153.86 35 50
388 RAMP 162.77 30 -1
389 RAMP 153.74 35 50
390 RAMP 152.89 36 -20
391 RAMP 153.79 35 50
392 RAMP 161.8 30 -1
393 RAMP 153.92 35 50
394 RAMP 152.71 36 -20
395 RAMP 183.86 22 -10
396 RAMP 131.65 64 -20
397 RAMP 124.69 86 -20
398 RAMP 124.58 86 -20
399 RAMP 137.8 52 -20
400 RAMP 161.8 30 -1

261

401 RAMP 121.61 99 -20
402 RAMP 171.06 26 -10
403 RAMP 183.9 22 -10
404 RAMP 169.6 27 -10
405 RAMP 153.71 35 50
406 RAMP 147.72 40 -20
407 RAMP 153.77 35 50
408 RAMP 161.87 30 -1
409 RAMP 153.74 35 50
410 RAMP 152.98 36 -20
411 RAMP 153.75 35 50
412 RAMP 162.77 30 -1
413 RAMP 153.77 35 50
414 RAMP 152.72 36 -20
415 RAMP 153.85 35 50
416 RAMP 153.78 35 50
417 RAMP 154.1 35 50
418 RAMP 153.63 35 50
419 RAMP 153.48 35 50
420 RAMP 153.91 35 50
421 RAMP 153.7 35 50
422 RAMP 153.78 35 50
423 RAMP 153.8 35 50
424 RAMP 153.83 35 50

Table A.5 Dirt Driving Context Training

SESSION_ID CTX_NAME RUN_TIME MAX_SPEED REWARD
502 DIRT 126.03 96 -20
503 DIRT 131.98 72 -20
504 DIRT 171.78 27 -1
505 DIRT 145.31 44 -20
506 DIRT 975.76 2 -10
507 DIRT 124.28 77 -20
508 DIRT 126.99 81 -20
509 DIRT 125.89 87 -20
510 DIRT 146 41 -20
558 DIRT 329.94 8 -10
559 DIRT 135.81 63 -20
560 DIRT 133.11 68 -20
561 DIRT 126.82 72 -20
562 DIRT 123.73 90 -20
563 DIRT 125.26 90 -20
564 DIRT 174.8 25 -1
565 DIRT 130.03 61 -20
566 DIRT 126.52 89 -20
567 DIRT 136.97 63 -20
568 DIRT 126.28 90 -20
569 DIRT 168.14 27 -1

262

570 DIRT 176.03 25 -1
571 DIRT 171.07 27 1
572 DIRT 167.31 28 1
573 DIRT 172.03 29 1
574 DIRT 162.22 30 50
575 DIRT 162.53 31 -20
576 DIRT 168 30 50
577 DIRT 179.53 25 -1
578 DIRT 166.27 30 50
579 DIRT 157.79 31 -20
580 DIRT 168.17 30 50
581 DIRT 176.27 25 -1
582 DIRT 169.16 30 50
583 DIRT 162.29 31 -20
584 DIRT 165.86 30 50
585 DIRT 177.94 25 -1
586 DIRT 166.47 30 50
587 DIRT 159.19 31 -20
588 DIRT 164.39 30 50
589 DIRT 137.06 67 -20
590 DIRT 130.03 66 -20
591 DIRT 142.01 53 -20
592 DIRT 131.02 76 -20
593 DIRT 173.05 25 -1
594 DIRT 1845.58 1 -10
595 DIRT 137.14 56 -20
596 DIRT 132.34 71 -20
597 DIRT 144.61 42 -20
598 DIRT 126.41 89 -20
599 DIRT 165.4 30 50
600 DIRT 178.68 25 -1
601 DIRT 162.39 30 50
602 DIRT 158.02 31 -20
603 DIRT 165.08 30 50
604 DIRT 174.13 25 -1
605 DIRT 164.48 30 50
606 DIRT 161.33 31 -20
607 DIRT 166.1 30 50
608 DIRT 179.25 25 -1
609 DIRT 169.34 30 50
610 DIRT 164.06 30 50
611 DIRT 165.02 30 50
612 DIRT 164.03 30 50
613 DIRT 162.16 30 50
614 DIRT 165.07 30 50
615 DIRT 162.04 30 50
616 DIRT 165.14 30 50
617 DIRT 166.28 30 50
618 DIRT 161.61 30 50
619 DIRT 167.27 30 50

263

620 DIRT 165.85 30 50
621 DIRT 157.04 30 50
622 DIRT 162.17 30 50
623 DIRT 163.25 30 50
624 DIRT 169.5 30 50
625 DIRT 169.38 30 50
626 DIRT 161.99 30 50
627 DIRT 170.23 30 50
628 DIRT 161.1 30 50
629 DIRT 163.11 30 50
630 DIRT 164.05 30 50
631 DIRT 164.33 30 50
632 DIRT 163.61 30 50
633 DIRT 166.03 30 50
634 DIRT 164.22 30 50
635 DIRT 167.11 30 50
636 DIRT 164.24 30 50
637 DIRT 163.21 30 50
638 DIRT 163.08 30 50
639 DIRT 166.23 30 50
640 DIRT 162.1 30 50
641 DIRT 164.98 30 50
642 DIRT 169.08 30 50
643 DIRT 167.22 30 50
644 DIRT 166.28 30 50
645 DIRT 166.37 30 50
646 DIRT 164.55 30 50

264

APPENDIX B

TRAINING GRAPHS

265

Figure B.1 Training Maximum Speed for Parking Lot Driving

266

Figure B.2 Parking Lot Driving Maximum Speed Vs Reward

267

Figure B.3 Training Maximum Speed for Ramp Driving

268

Figure B.4 Ramp Driving Maximum Speed Vs Reward

269

Figure B.5 Training Maximum Speed for Dirt Driving

270

Figure B.6 Dirt Driving Maximum Speed Vs Reward

271

REFERENCES

[1] Oxford Dictionary; www.dictionary.com

[2] Kokinov, B. (1997). A Dynamic Theory of Implicit Context. In Proceedings of

the 2nd European Conference on Cognitive Science, April 9-11, Manchester, UK

[3] Lenox, T., Payne, T., Hahn, S., Lewis, M. & Sycara, K. (1999). MokSAF: How

should we support teamwork in human-agent teams? CMU Technical Report.

CMU-RI-TR-99-31

[4] Gonzalez, F. G., Grejs, P. & Gonzalez, A. J. (2000). Autonomous Automobile

Behaviour through Context-Based Reasoning. In Proceedings of the 12th

International Florida Artificial Intelligence Research Society Conference, pp. 2-6,

May 22, Orlando, Florida.

[5] Zachary, W., Ross, L., & Weiland, M. (1991). COGNET and BATON: An

integrated approach for embedded user models in complex systems. In

Proceedings of International Conference on Systems, Man, and Cybernetics, (Vol.

1, p. 689). New York, NY: IEEE.

[6] Turner, E. H. & Turner, R. M. (1991). A Schema-based Approach to Cooperative

Behaviour. In Proceedings of the Thirteenth Annual Conference of the Cognitive

Science Society.

[7] Gonzalez, A. J. & Ahlers, R. (1994). A Novel Paradigm for Representing Tactical

Knowledge in Intelligent simulated Opponents. In Proceedings of the 7th

international conference on Industrial and engineering applications of artificial

intelligence and expert systems, pp. 515-523, Austin, Texas.

272

http://www.dictionary.com/

[8] Geffner H., Modelling Intelligent Behaviour: the Markov Decision Approach.

Invited talk Iberamia 98, Lect. Notes in AI 1484, H. Coelho (Ed), pp 1--12,

Springer, 1998

[9] Gonzalez, A. J., Georgiopoulos, M., DeMara, R. F., Henninger, A. E. & Gerber,

W. (1998). Automating the CGF Model Development and Refinement Process by

Observing Expert Behaviour in a Simulation. In Proceedings of the 7th

Conference on Computer Generated Forces and Behaviour Representation, July,

Orlando, Florida.

[10] Fernlund, H. & Gonzalez, A. (2002). An Approach Towards Building Human

Behaviour Models Automatically by Observation. In Proceedings of the 1st

Swedish–American Workshop on Modeling and Simulation (SAWMAS-2002),

Orlando, Florida.

[11] http://www.mesa.afmc.af.mil/html/ambr.htm

[12] Michael van Lent, Ryan McAllinden, Paul Brobst, Barry G. Silverman, Kevin

O’Brien, Jason Cornwell, Enhancing the Behavioral Fidelity of Synthetic Entities

with Human Behavior Models. Proceedings of the 2003 Conference on Behavior

Representation in Modeling and Simulation

[13] Sukthankar G., Hodgins J., Mandel M., Sycara K., Modeling Physical Variability

for Synthetic MOUT Agents. In Proceedings of Behavior Representation in

Modeling and Simulation Conference (BRIMS 2004)

[14] Wray R. E., Laird J. E., Variability in Human Behavior Modeling for Military

Simulations, BRIMS 2003

273

http://www.mesa.afmc.af.mil/html/ambr.htm

[15] Lundin, M., Simulating the Effects of Mental Workload on Performance in Tank

Crew.

[16] Castro J., Gonzalez A. J., Gerber W. J., “Design and Implementation of CITKA, a

Context Based Tactical Knowledge Acquisition System.” SAWMAS-2002

[17] Gonzalez A. J., Gerber W. J., Castro J., Automated Acquisition of Tactical

Knowledge through Contextualization. BRIMS 2002

[18] Douglas Pearson, John E. Laird, Redux: Example-Driven Diagrammatic Tools for

Rapid Knowledge Acquisition, Proceedings of Behavior Representation in

Modeling and Simulation, 2004, Washington, D.C.

[19] Kim J., Gil Y., Interactive Acquisition of Behavior Models. Proceedings of the

2003 Conference on Behavior Representation in Modeling and Simulation

(BRIMS), 2003.

[20] Bolton A., Buff W., Campbell G., Faster, Cheaper and “Just As Good”? A

Comparison of the Instructional Effectiveness of Three HBRs that Vary in

Development Requirements.

[21] Henninger A. E., and Gonzalez A. J.,: “Automated Acquisition Tool for Tactical

Knowledge” Proceedings of the 10th Annual International Florida Artificial

Intelligence Research Symposium, pp. 307-311, May 1997.

[22] Gonzalez, A. J., “Validation of Human Behavioral Models”. FLAIRS Conference

1999: 489-493

[23] Rainer Knauf, Ilka Philippow, Avelino J. Gonzalez, Klaus P. Jantke: The

Character of Human Behavior Representation and Its Impact on the Validation

Issue. FLAIRS Conference 2001: 635-639

274

http://www.informatik.uni-trier.de/~ley/db/conf/flairs/flairs2001.html#KnaufPGJ01
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jantke:Klaus_P=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Philippow:Ilka.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Knauf:Rainer.html
http://www.informatik.uni-trier.de/~ley/db/conf/flairs/flairs1999.html#Gonzalez99
http://www.informatik.uni-trier.de/~ley/db/conf/flairs/flairs1999.html#Gonzalez99

[24] Harmon S. Y., Hoffman C. W. D., Gonzalez A. J., Knauf R., Barr V. B.

Validation of Human Behavior Representations

[25] Russell S., Norvig P. Artificial Intelligence: A Modern Approach. Englewood

Cliffs, NJ. Prentice-Hall, Inc, 1995

[26] Foner, L. N., "What's An Agent, Anyway? A Sociological Case Study," MIT

Media Lab, Boston, Technical Report, Agents Memo 93-01, 1993.

[27] Franklin, S., Graesser, A., “Is It An Agent or Just A Program?: A Taxonomy for

Autonomous Agents” Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Spinger-Verlag, 1996.

[28] Saeki, S., Gonzalez, A. J., “Competing Context Concept: Experimental Results”,

Proceedings of the 9th Computer Generated Forces and Behavioral Representation

Conference. Orlando Fl. 2000

[29] Easterbrook, S. M., “Coordination Breakdown: How Flexible is Collaborative

Work?” In P. Thomas (ed) CSCW: Requirements and Evaluation, Pp91-106.

London: Springer-Verlag (1996)

[30] Gore, B. F., “Human Performance Cognitive-Behavioral Modeling: A Benefit For

Occupational Safety”, In B. Chase & W. Karwowski (Eds.), International Journal

of Occupational Safety and Ergonomics (JOSE) 2002, Vol., 8, No.3, 339-351

[31] Picard, R. W., “Toward Agents that Recognize Emotion”, M.I.T Media

Laboratory Perceptual Computing Section Technical Report No. 515, Appeared:

Actes Proceedings IMAGINA, March 1998, pp. 153-165, Monaco.

275

[32] Archer, R., Lavine, N., Goldberg, S., “Using Human Performance Models to

Train Tomorrow’s Soldiers for the Objective Force” Report of Micro Analysis &

Design Inc. and the US Army Research Institute, 2001.

[33] Laird, J. E., Newell, A. and Rosenbloom, P. S., “Soar: An Architecture for

General Intelligence”, Artificial Intelligence, 33(1), 1987, pp. 1-64.

[34] Kokinov B., Dynamics and Automaticity of Context: A Cognitive Modeling

Approach, P. Bouquet et al. (Eds.): Context’99, LNAI 1688, pp. 200-213

[35] Zibetti E., Hamilton E., Tijus C., The Role of Context in Interpreting Perceived

Events as Actions, P. Bouquet et al. (Eds.): Context’99, LNAI 1688, pp. 200-213

[36] Turner, R. M. (1997). Context-Mediated Behavior for Intelligent Agents.

International Journal of Human-Computer Studies, 3(48), 307-330

[37] Sowa, J. (1999). Knowledge Representation: Logical, Philosophical, and

Computational Foundations. New York, PWS Publishing Co

[38] Dey, A., Abowd, G. & Salber, D.(1999). A Context-based Infrastructure for

Smart Environments. In Proceedings of the 1st International Workshop on

Managing Interactions in Smart Environments (MANSE '99), pp. 114-128,

December 13-14, Dublin, Ireland

[39] Gonzalez, A. J. & Ahlers, R. (1995). Context-based representation of intelligent

behaviour in simulated opponents. In Proceedings of the 5th Conference on

Computer Generated Forces and Behavioural Representation, pp. 53-62

[40] Brezillon, P. (2002). Modeling and Using Context: Past, Present and Future.

http://www.lip6.fr/reports/lip6.2002.010.html

http://ftp.lip6.fr/lip6/reports/2002/lip6.2002.010.pdf

276

http://ftp.lip6.fr/lip6/reports/2002/lip6.2002.010.pdf
http://www.lip6.fr/reports/lip6.2002.010.html

[41] Gonzalez, A. J. & Ahlers, R. (1999). Context-based Representation of Intelligent

Behaviour in Training Simulations. Transactions of the Society for Computer

Simulation International, 15(4), 153-166

[42] Gonzalez, A. J. & Saeki, S. (2001). Using Contexts Competition to Model

Tactical Human Behavior in a Simulation. CONTEXT 2001, pp. 453-456

[43] Saeki, S., & Gonzalez, A. J. (2000). Soft-coding the Transitions between Contexts

in CGF's: The Competing Context Approach. In Proceedings of the Computer

Generate Forces and Behaviour Representation Conference, Orlando, FL, May

17, 2000.

[44] Turner, R. M. (1998). Context-Mediated Behavior for AI Applications. In

Proceedings of the 11th International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems, IEA/AIE-98, Vol. 1,

pp. 538-545, June 1-4, Castell, Spain.

[45] Picard, R. W. Toward Computers that Recognize and Respond to User Emotions.

IBM Systems Journal, Vol. 39, Number ¾, Page 705. MIT Media Laboratory,

2000.

[46] Davis, D. N. (2000) Agents, Emergence, Emotion and Representation, IEEE

International Conference on Industrial Electronics, Control and Instrumentation

(IECON2000) Nagoya, Japan 2000.

[47] Davis, D. N. Modelling Emotion in Computational Agents (2000)

http://www2.dcs.hull.ac.uk/NEAT/dnd/papers/ecai2m.pdf

[48] McCauley, T. L., “Implementing Emotions in Autonomous Agents.” Master of

Science Thesis, University of Memphis, August 1999

277

http://www2.dcs.hull.ac.uk/NEAT/dnd/papers/ecai2m.pdf

[49] Kort B., Reilly R. Analytical Models of Emotions, Learning and Relationships:

Towards an Affect-sensitive Cognitive Machine

[50] Giordano, J.C.; Reynolds, P.F.; Brogan, D.C., “Exploring the Constraints of

Human Behavior Representation” Proceedings of the 2004 Winter Simulation

Conference. R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

Pages 893- 901

[51] Tenney, Y. J., Diller, D. E., Pew, R. W., Godfrey, K., Deutsch, S. The AMBR

Project: A Case-Study in Human Performance Model Comparison.

[52] Pew, Richard W. and Mavor, Anne S. (Eds.) 1998. Modeling Human and

Organization Behavior: Application to Military Simulations. National Research

Council. National Academy Press, Washington DC.

[53] Mitchell, T. (1997). Machine Learning. McGraw-Hill

[54] Dietterich, T. G. (2003). Machine Learning. In Nature Encyclopedia of Cognitive

Science. Macmillan, London

[55] Dietterich, T. G. (1997). Machine Learning Research: Four Current Directions. AI

Magazine, 18(4), 97-136

[56] Dietterich, T. G. (2003). Learning and Reasoning.

[57] Christodoulou, C. & Georgiopoulos, M. (2000). Applications of Neural Networks

in Electromagnetics. Artech House Inc.

[58] Sidani , T. A.: “ Learning Situational Knowledge through Observation of Expert

Performance in a Simulation-based Environment” Doctoral Dissertation, Dept. of

Electrical and Computer Engineering, University of Central Florida, Orlando, Fl

December 1994

278

[59] Merlo, A., Schotter, A., “Learning by Not Doing: An Experimental Investigation

of Observational Learning”. New York University, May 2000

[60] Huitt, W., Hummel, J., “Observational (Social) Learning”, August 1997 -

http://home.utm.utoronto.ca/~n_h/ppoint-6.htm

http://chiron.valdosta.edu/whuitt/col/soccog/soclrn.html

[61] Gurney, K., “Computers and Symbols versus Nets and Neurons”, Dept. of Human

Sciences, Brunel University Uxbridge, Middx.

http://www.cs.pdx.edu/~bart/cs510games-summer2000/papers/nets.pdf

[62] Krose, B., Patrick van der Smagt, “An Introduction to Neural Networks” 8th Ed

[63] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction. Cambridge,

MA: MIT Press, 1998.

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html

[64] Tesauro, G. (1995). Temporal difference learning and td-gammon.

Communications of the ACM, 38(3):58-68.

[65] Sutton, R. (1999). Reinforcement learning: Past, Present and Future. Springer-

Verlag pp. 195-197.

[66] Pollack J. B., Blair A. D. Why did TD-Gammon Work? Computer Science Dept.,

Brandeis University

[67] R. Crites and A. Barto. (1998) "Elevator Group Control Using Multiple

Reinforcement Learning Agents". Machine Learning 33, pp. 235-262. (81045

bytes)

279

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html
http://www-anw.cs.umass.edu/~rich/book/the-book.html
http://www.cs.pdx.edu/~bart/cs510games-summer2000/papers/nets.pdf
http://chiron.valdosta.edu/whuitt/col/soccog/soclrn.html
http://home.utm.utoronto.ca/~n_h/ppoint-6.htm

[68] Crites, R., and Barto, A. (1995). Improving elevator performance using

reinforcement learning. Advances In Neural Information Processing Systems 8.

D. Touretzky, M. Mozer, and M. Haselmo, ed. MIT Press, Cambridge, MA.

[69] Singh, S., Bertsekas, D. “Reinforcement Learning for Dynamic Channel

Allocation in Cellular Telephone Systems”.

[70] W. Zhang and T. G. Dietterich. Solving combinatorial optimization tasks by

reinforcement learning: A general methodology applied to resource-constrained

scheduling. Journal of Artificial Intelligence Reseach, 2000.

[71] Gosavi, A., Bandla, N., & Das, T. (2002). Airline seat allocation among multiple

late classes with overbooking. IIE Transactions 34:9, 729-742.

[72] Sutton, R. S. “Temporal Credit Assignment in Reinforcement learning”. PhD

thesis, University of Massachusetts, Amherst, MA, USA, May 1984.

[73] Sutton, R. S. “Learning to Predict by the Method of Temporal Differences”.

Machine Learning, 3:9-44, 1988.

[74] Watkins, C. J. “Learning from Delayed Rewards”. PhD thesis, Kings College,

Cambridge, England, May 1989.

[75] Harmon, M. E., Harmon, S., “Reinforcement Learning: A tutorial”. Wright

Laboratories, OH.

[76] Kaelbling, L. P., Littman, M. L., Moore, A. W., “Reinforcement Learning: A

Survey” AI Access Foundation and Morgan Kaufmann Publishers, 1996.

[77] Whitehead, S. D., Sutton, R. S., Ballard D. H., “Advances in Reinforcement

Learning and Their Implications for Intelligent Control” IEEE Trans. On Systems,

Man, and Cybernetics, pg 1289 - 1297, 1990

280

[78] Gosavi, A, 2003. Simulation-Based Optimization Parametric Optimization

Techniques and Reinforcement Learning, KluwerAcademic Publishers, Boston,

Massachusetts, USA.

[79] Cybenko, G., Gray, R. & Moizumi, K. (1997). Q-Learning: A Tutorial and

Extensions. Mathematics of Neural Networks, Kluwer Academic Publishers,

Boston/London/Dordrecht

[80] Keerthi, S. & Ravindran, B. (1995). A Tutorial Survey of Reinforcement

Learning. Indian Academy of Sciences, Sadhana.

[81] Pratt, E. J. (1999). Elephants Don’t Play Backgammon Either. MIT Leg

Laboratory, 545 Technology Square, Cambridge, MA 02139

 [82] Brooks, R.A., "The Role of Learning in Autonomous Robots", Proceedings of the

Fourth Annual Workshop on Computational Learning Theory (COLT '91), Santa

Cruz, CA, Morgan Kaufmann Publishers, August 1991, pp. 5–10.

[83] Brezillon, P. “Context Dynamic and Explanation in Contextual Graphs”

Brézillon, P. (2003) Context dynamic and explanation in contextual graphs. In:

Modeling and Using Context (CONTEXT-03), P. Blackburn, C. Ghidini, R.M.

Turner and F. Giunchiglia (Eds.). LNAI 2680, Springer Verlag

(http://link.springer.de/link/service/series/0558/tocs/t2680.htm). pp. 94-106.

[84] Brooks, R. A., "How To Build Complete Creatures Rather Than Isolated

Cognitive Simulators", Architectures for Intelligence, K. VanLehn (ed), Erlbaum,

Hillsdale, NJ, Fall 1989, pp. 225–239.

[85] Brooks, R.A., "Integrated Systems Based on Behaviors", SIGART Bulletin (2:4),

August 1991, pp. 46–50

281

http://link.springer.de/link/service/series/0558/tocs/t2680.htm

[86] Maes, P., Brooks, R. A. “Learning to Coordinate Behaviors”

[87] Kokinov, B., Yoveva, M. (1996). “Context Effects on Problem Solving.” In

Proceedings of the Eighteenth Annual Conference of the Cognitive Science

Society. Hillsdale, NJ:Erlbaum.

[88] Brézillon, P. (2005) Role of context in social networks. Proceeding of the 18th

International FLAIRS Conference, Invited Special Track “AI for Social

Networks, Social Networks in AI”, Miami, Florida (To Appear)

[89] Stensrud, B. S., Barrett, G. C., Gonzalez, A. J. Context-Based Reasoning: A

Revised Specification. FLAIRS 2004

[90] Kokinov, B. “The Cognitive Architecture DUAL”.

http://www.socsci.uci.edu/~apetrov/proj/dual/

Kokinov, B. (1994). The Context-Sensitive Cognitive Architecture DUAL. In:

Proceedings of the 16th Annual Conference of the Cognitive Science Society.

Erlbaum, Hillsdale, NJ.

[91] Kokinov, B. “The Cognitive Model AMBR”

http://www.nbu.bg/cogs/personal/kokinov/ambr_i.html

[92] Lorins, P., Brezillon, P., Gonzalez, A. J. (2004). “Context-Based Decision

Making: Comparison of CxBR and CxGs Approaches.” DSS2004 Conference

Proceedings

[93] Kokinov, B. “A Dynamic Approach to Context Modeling.” Proceedings of the

IJCAI-95 Workshop on Modeling Context in Knowledge Representation and

Reasoning. LAFORIA 95/11, 1995

282

http://www.nbu.bg/cogs/personal/kokinov/ambr_i.html
http://www.nbu.bg/cogs/personal/kokinov/dual_ctx.pdf
http://www.socsci.uci.edu/~apetrov/proj/dual/

[94] Kokinov, B., Grinberg, M. “Simulating Context Effects in Problem Solving with

AMBR”

[95] Kokinov, B., Hadjiilieva, K., Yoveva, M. “Is a Hint Always Useful in Problem

Solving? The influence of Pragmatic Distance on Context Effects”

[96] Zibetti, E., Quera, V., Beltran, F. S., Tijus, C. “Contextual Categorization: a

Mechanism Linking Perception and Knowledge in Modeling and Simulating

Perceived Events as Actions.” Modeling and Using Contexts (pp. 395-408).

Berlin: Springer (2001)

[97] Pomerol, J., Brezillon, P. “Context Proceduralization in Decision Making”

[98] Sidani, A., Gonzalez, A. J. “A Framework for Learning Implicit Expert

Knowledge through Observation”

[99] Arritt, R. P. and Turner, R. M. “Context-Sensitive Weights for a Neural

Network”. In Proceedings of the Fourth International and Interdisciplinary

Conference on Modeling and Using Contexts, pages 29 – 39, 2003

[100] Ciskowski, P.”Context-Dependent Neural Nets in Contextual Modelling”.

Wroclaw University of Technology, Institute of Engineering Cybernetics,

Wroclaw, Poland.

[101] Anderson, J. R., “ACT: A Simple Theory of Complex Cognition” American

Psychologist, 51, 355-365. April 1996

[102] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y.

“An Integrated Theory of Mind” Psychological Review 111, (4). 1036-1060

(2004)

283

[103] Laird, J. E., Congdon, C. B., Coulter, K. J., “The Soar User’s Manual, Version

8.2” First Ed. June 1999

[104] Laird, J. E., “The Soar 8 Tutorial” Jan. 2003

[105] “Wearable Behavior Acquisition”

http://vismod.media.mit.edu/vismod/demos/learninghumans/behavior.htm

[106] Fernandez-Breis, J. T., Valencia-Garcia, R., Martinez-Bejar, R., Cantos-Gomez,

P., “A Context-driven Approach for Knowledge Acquisition: Application to a

Leukaemia Domain”

[107] Kass, R., Finin, T., “Rules for the Implicit Acquisition of Knowledge About the

User” AAAI-87 Proceedings

[108] Flournoy, R. D., “Leveraging Human Behavior Modeling Technologies to

Strengthen Simulation-Based C2 System Acquisition” The MITRE Corporation

April 2002

[109] http://www.epistemics.co.uk/Notes/63-0-0.htm

Knowledge Engineering and Management: The CommonKADS Methodology,

Schreiber et al., 2000, MIT Press. (Chapter 8)

[110] A.J. Gonzalez, P. J. Drewes and W. Gerber, "Interpreting Trainee Intent in Real

Time in a Simulation-based Training System", Transactions of the Society for

Computer Simulation International, Vol. 17, No. 3, September 2000, pp. 135-147.

[111] Chen, L., Chan, C. W., “Ontology Construction from Knowledge Acquisition”

[112] Simon, G., “Knowledge Acquisition and Modeling for Corporate Memory:

Lessons Learnt from Experience” Proceedings of the 10th Knowledge Acquisition

for Knowledge-based Systems Workshop (KAW'96), pp. 41/1-41/18, 1996

284

http://www.epistemics.co.uk/Notes/63-0-0.htm

[113] Zachary, W. W., Ryder, J. M., Hicinbothom, J. H., “Cognitive Task Analysis and

Modeling of Decision Making in Complex Environments”. J. Cannon-Bowers &

E. Salas (Eds.), Decision making under stress: Implications for training and

simulation. Washington, DC: American Psychological Association

[114] Ryder, J. M., Weiland, M. Z., Szczepkowski, M. A., Zachary, W. M., “Cognitive

Engineering of a New Telephone Operator Workstation Using COGNET”

International Journal of Industrial Ergonomics 22 (1998)

[115] Ritter, F. E., Shadbold, N. R, Elliman, D., Young, R. M, Gobet, F., Baxter, G. D.,

“Techniques for Modeling Human Performance in Synthetic Environments: A

Supplementary Review” June 2002

[116] Young, R. M., Lewis, R. L., “The Soar Cognitive Architecture and Human

Working Memory” A. Miyake & P. Shah (Eds), Models of Working Memory:

Mechanisms of Active Maintenance and Executive Control. New York:

Cambridge University Press. Nov. 1997

[117] Chong, R. S., Kieras, D. E., “Modeling with Perceptual, Memory and Motor

Constraints: An EPIC-Soar Model of a Simplified Enroute Air Traffic Control

Task” Aug. 2000

[118] Nason, S., Laird, J. E., “Soar-RL: Integrating Reinforcement Learning with Soar”

[119] Balkenius, C., and Morén, J. (2000). A computational model of context

processing. In Meyer, J-A., Berthoz, A., Floreano, D., Roitblat, H. L., Wilson, S.

W. (Eds.), From Animals to Animats 6: Proceedings of the 6th International

Conference on the Simulation of Adaptive Behaviour. Cambridge, MA: MIT

Press.

285

[120] Balkenius, C. (2003). Cognitive processes in contextual cueing. In Schmalhofer,

F., Young, R. M., and Katz, G. (Eds.), Proceedings of the European Cognitive

Science Conference 2003 (pp. 43-47). Mahwah, NJ: Lawrence Erlbaum

Associates.

[121] Balkenius, C., and Winberg, S. (2004). Cognitive modeling with context sensitive

reinforcement learning. In Proceedings of AILS '04. Lund: Dept. of Computer

Science.

[122] Hollnagel, E. (1993) Human reliability analysis: Context and control. London:

Academic Press

[123] http://www.ida.liu.se/~eriho/COCOM_M.htm

[124] Norlander, L., “A Framework for Efficient Implementation of Context-Based

Reasoning in Intelligent Simulation”, Masters Thesis, Dept. of Electrical and

Computer Engineering, University of Central Florida, Orlando, FL., 1998

[125] Henninger, A. E., “Neural Network Based Movement Models to Improve the

Predictive Utility of Entity State Synchronization Methods for Distributed

Simulations”, Doctoral Dissertation, University of Central Florida, Orlando, FL.

2000.

[126] Henninger, A. E., “ATTacK: Automated Acquisition Tool for Tactical

Knowledge” Masters Thesis, University of Central Florida, Orlando, FL. 1996

[127] Viet C. Trinh, Brian S. Stensrud, Avelino J. Gonzalez, “Implementation of a

Prototype Context-Based Reasoning Model onto a Physical Platform” SAWMAS

2004

286

http://www.ida.liu.se/~eriho/COCOM_M.htm

[128] Roberto C. Sanchez, Avelino J. Gonzalez, “Improving Computational Efficiency

in Context-Based Reasoning Simulations” SAWMAS 2004

[129] Bonzon, P. (2000). Contextual Learning: Towards Using Contexts to Achieve

Generality. Vol. 10, pp. 127-141, Kluwer Academic Publishers.

[130] Lebiere, C., “Introduction to ACT-R 5.0 Tutorial”, 24th Annual Conference

Cognitive Science Society”

http://act-r.psy.cmu.edu/tutorials/

[131] Kukla, R., Kerridge, J. and Willis, A. (2003). Application of Context Mediated

Behaviour to a multi-agent pedestrian flow model (PEDFLOW). Transportation

Research Board Annual Meeting, Washington, 82nd Annual Meeting

[132] Brezillon, P., “Context-based Modeling of Operators’ Practices by Contextual

Graphs”. 14th Mini Euro Conference, Luxembourg, May 5-7, 2003

[133] Brezillon, P., Pasquier, L., Pomerol, J., “Modelling Decision Making with

Context-Based Reasoning and Contextual Graphs. Application in Incident

Management on a Subway Line”.

[134] Kieras, D. E., Meyer, D. E., (1997) “An Overview of the EPIC Architecture for

Cognition and Performance with Application to Human-Computer Interaction.”

Human-Computer Interaction, 12, 391-438.

[135] Byrnes, R. B., “The Rational Behavior Model: A Multi-Paradigm, Tri-level

Software Architecture for the Control of Autonomous Vehichles”, Phd

Dissertation, Naval Postgraduate School, Monterey, California, March 1993.

[136] Holden, M. J., “Ada Implementation of Concurrent Execution of Multiple Tasks

in the Strategic and Tactical Levels of the Rational Behavior Model for the NPS

287

http://act-r.psy.cmu.edu/tutorials/

Phoenix Autonomous Underwater Vehicle (AUV)”, Masters Thesis, Naval

Postgraduate School, Monterey, California, September 1995.

[137] Brown, J. B., “Application and Evaluation of the Context-based reasoning

Paradigm”, Master’s Thesis, Dept. of Electrical and Computer Engineering,

University of Central Florida, Orlando, FL, July 1994

[138] Fernlund, H., “Evolving Models from Observed Human Performance”, Phd

Dissertation, University of Central Florida, Orlando, FL., Spring 2004.

[139] Parr, R., Russell, S. (1998), “Reinforcement Learning with Hierarchies of

Machines.” In Advances in Neural Information Processing Systems, Vol. 10, pp.

1043-1049 Cambridge, MA. MIT Press.

[140] Dietterich, T. G., “An Overview of MAXQ Hierarchical Reinforcement

Learning”

[141] Barto, A. G., Mahadevan, S. “Recent Advances in Hierarchical Reinforcement

Learning”. Discrete Event Systems, Special issue on reinforcement learning,

13:41-77, 2003.

[142] Tesauro, G., “Practical Issues in Temporal Difference Learning”

[143] Hogkolan, K. T., “Teaching Robots Behavior Patterns by Using Reinforcement

Learning: How to Raise Pet Robots with a Remote Control” Masters Thesis,

Computer Science and Engineering Dept., NADA.

[144] Bridle, R., McCreath, E., “Learning a Transition model to Enhance the

Performance of Reinforcement Learning”

[145] Dietterich, T. G. (2000), “Hierarchical Reinforcement Learning with the MaxQ

Value Function Decomposition.” Journal of Artificial Intelligence Research

288

[146] Kaelbling, L. P. (1993), “Hierarchical Learning in Stochastic Domains:

Preliminary Results” In Proceedings of the Tenth International Conference on

Machine Learning, pp. 167-173 San Francisco, CA. Morgan Kaufmann.

[147] Dayan, P., Hinton, G. (1993), “Feudal Reinforcement Learning.” In Advances in

Neural Information Processing Systems, 5, pp. 271-278. Morgan Kaufmann, San

Francisco, CA.

[148] Hernandez-Gardiol, N., Mahadevan, S. “Hierarchical Memory-Based

Reinforcement Learning”

[149] Lane, T., Kaelbling, L. P., “Toward Hierarchical Decomposition for Planning in

Uncertain Environments”

[150] Bakker, B., Schmidhuber, J., “Hierarchical Reinforcement Learning Based on

Subgoal Discovery and Subpolicy Specialization”

[151] Hengst, B., “Generating Hierarchical Structure in Reinforcement Learning from

State Variables” In PRICAI 2000 Topics in Artificial Intelligence, pages 533–

543,San Francisco, 2000. Springer.

[152] Hengst, B., “Discovering Hierarchy in Reinforcement Learning” PhD Thesis

School of Computer Science and Engineering, University of New South Wales

Australia, December 2003

[153] Hengst, B., “Variable Resolution Hierarchical RL”

[154] McGovern, A., Sutton, R. S., “Macro-Actions in Reinforcement Learning: An

Empirical Analysis” Technical Report

289

[155] McGovern, A., Precup, D., Ravindran, B., Singh, S., Sutton, R. S., “Hierarchical

Optimal Control of MDP’s” Proceedings of the 10th Yale Workshop on Adaptive

and Learning Systems.

[156] Munos, R., “Finite-Element Methods with Local Triangulation Refinement for

Continuous Reinforcement Learning Problems.” European Conference on

Machine Learning, 1997 pp 170-182.

[157] Gang, W., Mahadevan, S., “Hierarchical Optimization of Policy-Coupled Semi-

Markov Decision Processes” International Conference on Machine Learning

(ICML-99)

[158] Singh, S. “Reinforcement Learning with a Hierarchy of Abstract Models”

Proceedings of the 10th National Conference on Artificial Intelligence 1992.

[159] Thrun, S., Schwartz, A. “Finding Structure in Reinforcement Learning.”

Advances in Neural Information Processing Systems 7, Morgan Kaufmann, San

Mateo (1995)

[160] Wiering, M., Schmidhuber, J., “HQ-Learning: Discovering Markovian Subgoals

for Non-Markovian Reinforcement Learning” Technical Report IDSIA-95-96,

October 1996

[161] Goel, S., Huber, M. “Subgoal Discovery for Hierarchical Reinforcement Learning

Using Learned Policies” Proceedings of the 16th International FLAIRS

Conference. Pp. 346-350, St. Augustine, FL 2003

[162] Barto, A. G., (2003) “Reinforcement Learning”

In Handbook of Brain Theory and Neural Networks, Second Edition M.A. Arbib

(Ed.), pages 963-968. Cambridge: MIT Press.

290

http://mitpress.mit.edu/

http://cogns.northwestern.edu/RL-handbook-proofs.pdf

[163] Reinforcement Theory: http://www.as.wvu.edu/~sbb/comm221/chapters/rf.htm

[164] Ratitch, B., Precup, D. (2002) “Characterizing Markov Decision Processes” In

13th European Conf. on Machine Learning (ECML’02), Helsinki, Finland.

[165] Agogino, A. K., Tumer, K. “Unifying Temporal and Structural Credit Assignment

Problems” In Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 2 (AAMAS'04) , pp.

980-987 New York City, New York, USA july 2004

[166] Wray, R., Jones, R. “How to Build Intelligent Interactive Agents Using Soar”

BRIMS Conference, Scottsdale, AZ, May 12, 2003.

[167] Riedmiller, M. “Application of Sequential Reinforcement Learning to Control

Dynamic Systems”

[168] Madden, M.G.M., Nolan, P.J. “Application of AI Based Reinforcement Learning

to Robot Vehicle Control

[169] Kaelbling, L.P., Littman, M. L., Cassandra, A. R. “Planning and Acting in

Partially Observable Stochastic Domains” Artificial Intelligence, Vol. 101, 1998

[170] Kimura, H., Kobayashi, S. “Reinforcement Learning for Continuous Action using

Stochastic Gradient Ascent”

[171] Smart, W. D., Kaelbling, L. P., “Practical Reinforcement Learning in Continuous

Spaces”

[172] MICHAEL T. ROSENSTEIN and ANDREW G. BARTO, “Supervised Actor-

Critic Reinforcement Learning”

291

http://www.as.wvu.edu/~sbb/comm221/chapters/rf.htm
http://cogns.northwestern.edu/RL-handbook-proofs.pdf

http://www-anw.cs.umass.edu/~mtr/papers/RosensteinM04b.pdf

[173] Mark Humphrys, “Action Selection methods using Reinforcement Learning” Phd

Thesis Trinity Hall, Cambridge, June 1997

http://computing.dcu.ie/~humphrys/Notes/RL/how.q.html

[174] Nilsson, N. J., “Introduction to Machine Learning” 1996

[175] Glorennec, Pierre Yves, ”Reinforcement Learning: an Overview”, European

Symposium on Intelligent Techniques, Aachen Germany.

[176] Barto, A.G., DIETTERICH, T. G., “Reinforcement Learning and its Relationship

to Supervised Learning”

[177] http://www.funderstanding.com/observational_learning.cfm

[178] Singh, S. P., “Learning to Solve Markovian Decision Processes” PhD

Dissertation, February 1994, University of Massachusetts

[179] Mahadevan, S., “Machine Learning for Robots: A Comparison of Different

Paradigms”

[180] Sallans, B., “Reinforcement Learning for Factored Markov Decision Processes”

Phd Dissertation, 2002, University of Toronto

[181] Dayan, P., “Unsupervised Learning” Appeared in Wilson, RA & Keil, F, editors.

The MIT Encyclopedia of the Cognitive Sciences.

[182] Hasinoff, S.W., “Reinforcement Learning for Problems with Hidden State”

September, 2003

[183] Konda, V. R., Tsitsiklis, J. N., “On Actor-Critic Algorithms”

http://web.mit.edu/jnt/www/Papers/J094-03-kon-actors-pre.pdf

[184] Kretchmar, R. M., “Parallel Reinforcement Learning”

292

http://web.mit.edu/jnt/www/Papers/J094-03-kon-actors-pre.pdf
http://www.funderstanding.com/observational_learning.cfm
http://computing.dcu.ie/~humphrys/Notes/RL/how.q.html
http://www-anw.cs.umass.edu/~mtr/papers/RosensteinM04b.pdf

[185] Shapiro, D., Langley, P., Shachter, R., “Using Background Knowledge to Speed

Reinforcement Learning in Physical Agents”

[186] Baird, L., Moore, A. “Gradient Descent for General Reinforcement Learning”

[187] Dietterich, T. G., Flann, N. S., “Explanation-Based Learning and Reinforcement

Learning: A Unified View”

[188] Guo, M., Liu, Y., Malec, J., “A New Q-learning Algorithm Based on the

Metropolis Criterion

[189] Wiering, M., “Fast Online Q(λ)”

[190] Peng, J., “Incremental Multi-Step Q-Learning”

[191] Dearden, R., Friedman, N., Russell, S., “Bayesian Q-learning”

[192] Wan A.D.M. and Braspenning P.J. (1997). Context and Generalization in a

Multiple Goal State Reinforcement Learning Task. In: K. van Marcke & W.

Daelemans (eds.), Proceedings of the Ninth Dutch Conference on Artificial

Intelligence (NAIC '97), pp. 293-302.

[193] Bridle, R., McCreath, E., “Improving the Learning Rate by Inducing a Transition

model” In proceeding of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems(AAMAS2004), Columbia University New York

City, July 2004

[194] Schutte, P. C., “Definitions of Tactical and Strategic: An Informal Study”. NASA/

TM-2004-213024, November 2004

http://techreports.larc.nasa.gov/ltrs/PDF/2004/tm/NASA-2004-tm213024.pdf

293

http://techreports.larc.nasa.gov/ltrs/PDF/2004/tm/NASA-2004-tm213024.pdf

[195] Latorella, K., Chamberlain, J., “Tactical vs. Strategic Behavior: General Aviation

Piloting in Convective Weather Scenarios”, Proceedings of the Human Factors &

Ergonomics Annual Meeting, Baltimore, MD., 2002

http://techreports.larc.nasa.gov/ltrs/PDF/2002/mtg/NASA-2002-46hfes-kal.pdf

[196] Petty, M.D., “Benefits and Consequences of Automated Learning in Computer

Generated Forces Systems” Information and Security: An International Journal,

Vol. 12, No.1, 2003, pg 63-74

http://cms.isn.ch/public/docs/doc_6934_259_en.pdf

[197] Gonzalez, A. J., Dankel, D. D., “The Engineering of Knowledge-Based Systems,

Theory and Practice” Prentice Hall, NJ

[198] Fernlund, H, Gonzalez, A. J., “Using GP to Model Contextual Human Behavior –

Competitive with Human Modeling Performance”

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP015.pdf#search='gencl

%20fernlund'

[199] Mason, R.D., Lind, D.A., Marchal, W.G., “Statistics, An Introduction”, Duxbury

Press, 4th Edition

[200] Gonzalez, A. J. and Ahlers, R. H., "Context-Based Representation of Intelligent

Behavior in Training Simulations", Naval Air Warfare Center Training Systems

Division Conference, 1998.

294

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP015.pdf#search='gencl%20fernlund
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP015.pdf#search='gencl%20fernlund
http://cms.isn.ch/public/docs/doc_6934_259_en.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2002/mtg/NASA-2002-46hfes-kal.pdf

	University of Central Florida
	
	A Reinforcement Learning Technique For Enhancing Human Behavior Models In A Context-based Architecture
	2008
	David Aihe
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABREVIATIONS
	CHAPTER 1:INTRODUCTION AND BACKGROUND
	1.1 Overview
	1.2 Human Behavior Representation
	1.3 Acquisition of Knowledge for Modelling Human Behaviour
	1.4 A Brief Introduction to Agents
	1.4.1 Types of Agent Programs

	1.5 Introduction to Some Human Behavior Representation Paradigms
	1.5.1 Cognitive Network of Tasks (COGNET)
	1.5.2 Atomic Components of Thought or Adaptive Character of Thought (ACT-R)
	1.5.3 State Operator And Result (SOAR)

	1.6 Organization of Dissertation
	1.7 Summary

	CHAPTER 2: HUMAN BEHAVIOR REPRESENTATION THROUGH CONTEXTS
	2.1 Contexts
	2.2 Representing Human Behavior through Contexts
	2.2.1 Context-Mediated Behavior
	2.2.2 Contextual Graphs
	2.2.3 Context-Based Reasoning
	2.2.3.1Components of CxBR
	2.2.3.2 Formalization of CxBR

	2.2.4 Competing Context Paradigm
	2.2.5 The DUAL Architecture

	2.3 Contextual Learning
	2.4 Others
	2.5 Comparison of HBR Models
	2.6 Summary

	CHAPTER 3: PROBLEM DEFINITION
	3.1 Problem Statement
	3.2 Hypothesis
	3.3 Contributions

	CHAPTER 4: RELEVANT MACHINE LEARNING TECHNIQUES
	4.1 Introduction
	4.2 Supervised Learning
	4.2.1 Observational Learning
	4.2.2 Artificial Neural Networks

	4.3 Unsupervised Learning
	4.3.1 Self-Organizing Networks

	4.4 Reinforcement Learning
	4.4.1 Overview
	4.4.2 Markov Decision Process
	4.4.3 Value Functions
	4.4.4 On-line and Off-line
	4.4.5 Exploration Vs Exploitation
	4.4.6 RL General Problems
	4.4.7 RL Techniques
	4.4.7.1 Dynamic Programming
	4.4.7.2 Monte Carlo Methods
	4.4.7.3 Temporal Difference Learning (TD-Learning)
	4.4.7.4 Q-Learning
	4.4.7.5 Hierarchical Reinforcement Learning (HRL)

	4.4.8 RL Applications

	4.5 Comparison of the Three Machine Learning Groups Towards the Enhancement of Tactical Models
	4.6 Chapter Summary

	CHAPTER 5: CONCEPTUAL APPROACH
	5.1 Introduction
	5.2 RL-CxBR Integration
	5.2.1 Representation of the Enhancement Process
	5.2.2 The Reward Function
	5.2.3 Enhancing/Refining an Active Context
	5.2.4 Enhancement Process Stopping Criteria
	5.2.5 Available Actions
	5.2.6 Environment Visibility and Accuracy of Actions
	5.2.7 States Vs Contexts
	5.2.8 Generalization of Actions
	5.2.9 Exploring and Exploiting Contextual Knowledge
	5.2.10 Dynamic Goals
	5.2.11 Conflicting Knowledge

	5.3 Flow of Events
	5.4 Components of the Enhancement Process
	5.4.1 Action-Base (A)
	5.4.2 Environmental States / Contexts (B)
	5.4.3 Context Library (C)
	5.4.4 Context Repository (D)
	5.4.5 Context Selector
	5.4.6 Context Modifier
	5.4.7 Context Creator

	5.5 Enhancement Process Flow Chart
	5.6 Formal Representation
	5.7 High Level Design of Architecture
	5.8 Preview of Prototype
	5.9 Chapter Summary

	CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF THE MODEL ENHANCEMENT PROCESS
	6.1 Introduction
	6.2 Prototype Descriptions
	6.3 Prototype Requirement Specifications
	6.3.1 Assumptions
	6.3.2 Stakeholders of the Model Enhancement Methodology
	6.3.3 Sequence of Events
	6.3.4 Use Case Diagram
	6.3.4.1 Use Case Descriptions

	6.3.5 Specific Requirements
	6.3.5.1 Functional Requirements
	6.3.5.2 Interface Requirements
	6.3.5.3 Physical Environment
	6.3.5.4 Users and Human Factors Requirements
	6.3.5.5 Data Requirements
	6.3.5.6 Resource Requirements
	6.3.5.7 Security Requirements
	6.3.5.8 Quality Assurance Requirements
	6.3.5.9 Performance Requirement

	6.4 Prototype Design (Experimental Test-bed Design)
	6.4.1 The Environment
	6.4.2 Context Infrastructure
	6.4.2.1 Base Hand-Built Model
	6.4.2.2 Redesigning a Context to Enable Learning

	6.4.3 Sentinel Logic
	6.4.4 Context Modifier
	6.4.5 Context Creator
	6.4.6 Designing the Reward Function

	6.5 Main Function
	6.6 Training the Agent
	6.7 Chapter Summary

	CHAPTER 7: EXPERIMENTS AND EVALUATION OF RESULTS
	7.1Evaluation Criteria
	7.2 Experiments
	7.2.1 Description of Test Environment
	7.2.2 Experiment Descriptions
	7.2.3 Enhancing the Agent

	7.3 Experiment Descriptions and Results
	7.4 Summary of Results
	7.5 Chapter Summary

	CHAPTER 8: SUMMARY, CONCLUSIONS AND FUTURE WORKS
	8.1 Summary
	8.1.1 What Was Investigated
	8.1.2 What Was Done During the Investigation
	8.1.3 How The Investigation Was Done
	8.1.4 Why Various Choices Were Made

	8.2 Conclusions
	8.3 Future Research

	APPENDIX A: TRAINING RESULTS
	APPENDIX B: TRAINING GRAPHS
	REFERENCES

