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ABSTRACT 

 The analysis of 110 automotive paint samples was conducted for the research 

presented here.  Laser-induced breakdown spectroscopy (LIBS) was the central 

instrument utilized for analysis although scanning electron microscopy / energy 

dispersive x-ray spectroscopy (SEM/EDS) and Fourier transform infrared spectroscopy – 

attenuated total reflection (FTIR-ATR) analyses were also performed.  Two separate 

methods of LIBS analysis of samples were used: a cross sectional analysis and a drill 

down analysis.  SEM/EDS analysis focused on the cross section while FTIR-ATR 

analysis concentrated on the clearcoat layer.  Several different data/statistical analyses 

were evaluated including principal components analysis (PCA), two tailed t-tests based 

on several different metrics (Hit Quality Index (HQI), Pearson’s correlation and Sorenson 

index), multivariate analysis of variance and receiver operating characteristic (ROC) 

curves.  Full spectrum data analysis from LIBS spectra resulted in 99.7% discrimination 

between different sample comparisons and 12% between same sample comparisons based 

on HQI and t-tests.  Peak analysis of LIBS spectra resulted in 87.5% discrimination 

between different sample comparisons and 5% between same sample comparisons based 

on MANOVA.  When combining the results of the FTIR-ATR and SEM/EDS analyses, 

88% of the samples could be discriminated. 
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CHAPTER 1: GENERAL INTRODUCTION 

 Automobile paint has been found at crime scenes such as hit-and-runs as well as 

other automobile accidents in numerous cases over the last 75 years.  Several articles 

have documented the probative value of automotive paint,1-3 and different approaches to 

its analysis have been developed and standardized over the years.4  This research focuses 

on automobile paint analysis with the primary utilization of laser-induced breakdown 

spectroscopy (LIBS).  Fourier transform infrared spectroscopy (FTIR) and scanning 

electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) are also explored 

and incorporated into the data analysis which covers a variety of approaches in its pursuit 

of discriminating between paint samples. 

Automotive Paint 

 Automotive paint is classified as a surface coating.  It serves dual purposes as 

both a decorative and a functional coating.  It serves as a way to create something 

pleasing to the eye by “hiding” the lower substrate.  It also protects the metal or plastic 

body from degradation due to environmental elements such as ultraviolet rays, salt, and 

oxygen; and from injury due to contact with rocks and other cars.5 

Components 

 Paint in its unapplied form consists of three main components: binder, pigment 

and solvent.  Additives are also developing into an increasingly important part in paint 

formulations.  In a single paint sample, each component can be made up of many 

different compounds.  Each compound contributes its own part to the underlying 

purposes of protection and decoration. 
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 The majority of solids within the paint consist of the binder also called the resin.  

The binder is responsible for adhesion and cohesion: ensuring that the paint remains 

attached to the substrate while keeping the pigment within the coating.  In the past, these 

typically consisted of high weight polymers which required a large amount of solvent to 

dissolve and apply.  The large amount of solvent also resulted in very thin layers, which 

required multiple applications in order to gain the required thickness.  However, the use 

of lower weight monomers that, after evaporation of the solvent, crosslink forming larger 

weight polymers has increasingly become more popular.  The polymers are usually 

synthetic and examples of these include epoxies, polyesters, alkyds (oil-included 

polyester), melamine and acrylics, shown in Figure 1 below. 

 

Figure 1: Examples of monomers and binders 
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 As was mentioned previously, mixtures of different monomers, such as 

formaldehyde with melamine, urea or phenol, are combined to obtain the desired 

durability and flexibility.  The compounds crosslink upon stoving, which is heating at a 

high temperature (~165ºC), and provide a strong, durable coating.  Isocyanates are also 

used to crosslink the resin.  These are often blocked for application with groups such as 

alcohols or lactams of low molecular weight.5  Upon heating, the reversible covalent 

bond between the blocking group and the isocyanate is broken and the blocking groups 

are lost through evaporation to allow for crosslinking.  The traditional binders have given 

way to “high solids, solvent free, powder, waterborne and non-aqueous dispersion 

media.”6 

 The pigment primarily provides color and opacity.  It can also impart other 

protective properties such as UV protection, glossiness and durability.  Pigments can be 

organic or inorganic, natural or synthetic.  The principle black and white pigments are 

inorganic, carbon black and titanium dioxide (TiO2) respectively, while colored pigments 

are typically organic because they tend to give truer, brighter colors.  Table 1 displays 

examples of pigments used in automotive finishes.  In some cases pigments contain both 

organic and inorganic components, as in the phthalocyanine pigments, which consist of 

an inorganic element (e.g. Cu2+) coordinated with the nitrogen atoms on the organic 

structure (Table 1).  In the pigmented basecoat, more than one pigment may be used to 

produce the desired color especially with organic pigments, for example a quinocridone 

with a diketopyrrolopyrrole (PR 254). 
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Table 1. Pigments used in automotive paint 

Inorganic Pigments 
White 
Titanium dioxide – TiO2 

Color 
Bismuth Vanadate – BiVO3 
Cerium Sulfide – Ce2S3 
Yellow 53 – NiSbTi 
Brown 24 – CrSbTi 
Lithopone – ZnS/BaSO4 
Aluminum flakes 
Mica – KAl2(AlSi3O10)(F,OH)2 

Black 
Carbon Black 

Organic Pigments 
Quinocridone                                                   Pigment 254 
 

                              
 

PO 36                                                              PY 154 

     
P. Br. 25                                                         Thiazine 

   
Organic+Inorganic Pigments 
 
Copper Phthalocyanine Blue                           PY 179 
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 Effect pigments have become significant in the paint industry.  In 2000 it was 

estimated that ~70% of topcoats contained some form of effect pigment7 and with the 

popularity of “tricking out” cars that number has understandably grown larger.  These 

flakes or platelets reflect light differently based on the observation angle.  Pigments 

giving special optical effects, referred to as a lightness or color “flop”, to the paint use a 

variety of substrates and coatings including coated mica platelets, silicate (SiO2) or 

alumina (Al2O3) flakes.8  Mica by itself gives a dull glimmer effect and is typically 

coated.  It can be coated with a wide variety of materials (e.g. TiO2, Fe2O3 and SiO2) 

separately and in combination.  By varying the thickness of a coating on a mica platelet, 

the reflected color is also varied.  As the paint dries, the pigments align parallel to the 

surface giving the effect. 

 With the exception of powder coatings, the solid binder and pigment need a 

vehicle in which they can be applied to a surface.  Solvents dissolve or dilute the pigment 

and binder depending on the liquid, thereby aiding in the manufacture and application of 

the paint.  The solvent evaporates with or without the aid of heat leaving behind the 

binder and pigment after the paint has been applied.  Often solvents are organic 

compounds that are very toxic to humans and/or the environment.  Increasingly, these 

organic solvents are being limited, replaced with waterborne and emulsion coatings or 

eliminated altogether in the case of powder coatings. 

 Other additives, which are also referred to as extenders, are included within the 

paint for a number of different reasons.  Originally they were included to produce a less 

expensive product; however, the applications have expanded to include affecting drying, 

glossiness and interfacial and surface tension, guarding against micro-organisms and 
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aiding in applying paint to the surface.5, 9  With the introduction of waterborne paints, the 

need for additives has increased.  Defoamers and wetters for the substrate and the clear 

coat are necessary ingredients for waterborne applications.  With the increase in the use 

of organic pigments which are not as lightfast (tendency to fade) as inorganic pigments, 

UV stabilizers or blockers can be found specifically in the clearcoat. 

 There are situations in which the inclusion of three main components can be 

changed and even omitted.  Powder coatings only contain a pigment and a binder.  The 

paint is sprayed onto a surface or the substrate is dipped into the paint, and then baked to 

melt the components and create a coating on the surface.  This method avoids using a 

costly and possibly hazardous solvent and does not necessitate the expensive equipment 

needed to dispose of the solvent.  However, only certain binders and pigments are 

suitable for this type of application and layers can become too thick for car paint 

applications. 

 Paints can be applied in a number of different methods.  Based on the substrate 

and paint’s composition, the paint may be sprayed, dipped (electrodeposition), rolled, 

brushed, etc.  The most common forms of application in the automotive industry are 

spraying and dipping.  Spraying involves high rotational bells that depend on mainly 

centrifugal forces with slight electrostatic assistance for application of the paint.  Dipping 

in the form of cathodic electrodeposition utilizes a positively charged substrate (metal) to 

attract solubilized epoxy or acrylic binders.10  Layers upon stoving are even and thin. 

Structure 

 In the automotive industry, the responsibility of protection and decoration has 

been divided between layers of paint.10  As such, automotive paint as trace evidence 
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usually presents itself as layered chips.  These samples can be classified into two types: 

original equipment manufacture (OEM) and refinished. 

OEM 

 Chips with OEM paint have three to four layers consisting usually of a primer, 

surfacer, basecoat and clearcoat (Figure 2).  The purpose of each layer is to protect the 

substrate and the layers below it, either through anticorrosive pigments or the physical 

thickness of the layer.  The top two layers are responsible for decoration by imparting 

color and gloss. 

 

 

Figure 2.  Paint chip structure for original equipment manufacture 

 

 The substrate (either galvanized steel or plastic) is cleaned and pretreated to form 

a phosphate conversion layer which is about one micrometer thick.  This layer helps to 
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protect the substrate from corrosion and provides a platform for better adhesion of the 

successive paint layers.5, 7, 10, 11  Then an electrocoat primer is applied to the surface.  The 

primer usually consists of zinc phosphate in a waterborne epoxy resin that serves to 

protect the metal body from rust.  The substrate is dipped in a bath, and through cathodic 

electrodeposition a 20-30 μm layer is created. 

 An opaque surfacer is applied after the primer to hide the substrate and primer and 

sanded to provide a smooth surface for the next layer.  It also provides protection from 

stone chipping of the primer.  Binders used in this layer include polyesters which 

necessitate an organic solvent and polyester-melamine which can be used with 

waterborne systems.  These layers are applied using an electrostatic spray and typically 

range between 30 and 40 μm.  Pigments in these types of layers are responsible for hiding 

the substrate, so they need to have a refractive index greater than that of the binder.  

Typically titanium dioxide is employed in this capacity. 

 The pigment-containing basecoat is subsequently applied, and often metal flakes 

or platelets, most often coated with rutile TiO2, can be found in the colored basecoat.  

Two coats are usually applied, the first with an electrostatic spray then a second with 

compressed air.  The second application contains the metal flakes and the compressed air 

helps to orient them parallel to the outer surface which allows for a total thickness of 15 

μm for this layer.  The binders used in this layer are usually an acrylic or alkyd with 

melamine-formaldehyde crosslinking resin.  The panel is kept warm for 3-5 minutes at 

40-60°C. 

 The final addition of the clearcoat completes the painting process.  This last layer 

protects the previous layers beneath it from mechanical as well as other types of damage 



 9

while also allowing the color from the pigments in the lower layer to be visible.  For this 

reason, no pigments are found in the clearcoat which is usually about 40 µm thick.  The 

binders found in these layers are often acrylic melamine-formaldehyde systems with 

blocked isocyanates that crosslink upon stoving.  The clearcoat also contains additives 

that protect pigments in the underlying layer from UV degradation.  The basecoat and 

clearcoat are cured together as the last part of the application process. 

Refinished 

 A refinished automotive paint chip differs from an original manufacturer’s paint 

chip in several ways.  In most refinished samples, the number of layers exceeds four by 

means of painting over the OEM coatings; layers of up to 20 have been documented.12  

Since refinishers are not able to cure the paint at factory temperatures, solvents must be 

able to evaporate at ambient temperatures or at temperatures much lower than curing 

temperatures.  For this reason, refinished layers can be characterized by the use of older, 

more traditional binders such as nitrocellulose that require the use of volatile organic 

compounds (VOCs).5  The crosslinking found in OEM layers is absent in refinish 

samples.  The presence of dust particles that would not exist in an OEM chip is also a 

differentiating factor.  Since the method of application is often controlled by a person 

rather than a machine, the width of layers is also often greater than OEM and less 

consistent. 

 Since its beginnings, the automotive paint industry has been in a constant process 

of change.  The reasons for this are often linked, for example the development of new 

products and introduction of new laws.11  Specific elements and classes of compounds 

have been eliminated which have caused a gap in the market that has needed to be filled.  
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For example, thirty years ago lead was banned for use in paints because of its toxicity 

which required the industry to generate different sources for pigments.  The bright colors 

produced by lead pigments were replaced by organic pigments.  Another ingredient being 

influenced by legislation is chromium, which had been used as a pigment in the 

electrocoat and the basecoat.  As mentioned above, chromium has been replaced by zinc 

phosphate in order to protect the substrate from corrosion in the electrocoat and other 

pigments in the basecoat. 

 A push towards a decrease in the consumption of VOCs, in particular 

polyaromatic hydrocarbons (PAHs), has been the most recent target in legislation.7  Since 

they are derived from petroleum products and are essentially lost to the atmosphere after 

application, VOCs cost the paint industry in terms of disposal and raw products.  For 

these reasons, high solids (decrease in VOC content), powder, and waterborne-based 

applications of paints have been developed which also affect the industry.  The industry 

is also constantly looking for new and less expensive ways to produce and apply 

automobile paint. 

Previous Forensic Analysis 

 Combining all of the factors mentioned in the previous section (paint components: 

binders + pigments+ additives; and at least four different layers) creates a very complex 

matrix.  The layers themselves are also very thin which complicates analysis.  While the 

automotive industry has provided crime labs with catalogues of paint samples, there is no 

standard sample for paint in order to compare results as is done with other regulated 

products, so only qualitative and semi-quantitative methods have been developed.  These 

factors serve to obscure the analysis of paint. 
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 Car paint analysis has primarily been carried out by visual observation as a first 

step, usually with a polarized light microscope or stereomicroscope.13  By examining a 

paint cross section, the number and thickness of the layers and description of the layers 

can be determined; microscopy provides a quick and easy way of examining a sample.  

From there a microspectrophotometer is used to determine the color of the pigments 

found in each layer.  The resulting spectrum as well as Commission International de 

l’Éclairage (CIE) color coordinates from the microspectrophotometer analysis is valuable 

in discriminating between samples. 

 The analysis usually then diverges between analyses of the organic and inorganic 

components.  For analysis of the clearcoat, pigments and binders, the use of Fourier 

transform infrared spectroscopy14-16 has extensively been documented by Suzuki, et al, 

among others.17, 18  While creating a cross section with use of a microtome and collecting 

a transmission spectrum gives more reproducible results, obtaining a reflective spectrum 

is easier and less destructive.18  An attempt at mapping layers using FTIR has been 

performed by Flynn, et al.17  The Royal Canadian Mounted Police (RCMP) has 

developed the Paint Data Query (PDQ) Database that can search, compare and find 

similar FTIR spectra. 

 While FTIR has been valuable for forensic paint analysis, other instruments have 

also been evaluated.  Pyrolysis gas chromatography mass spectrometry has also had some 

limited use.19  It has proven to be slightly more successful in discriminating between 

samples20 and the use of a laser for micro-pyrolysis appears to provide acceptable 

results21; however, it is destructive and sample preparation is time consuming.  Similar to 

Py-GC/MS, Stachura et al, have explored laser desorption mass spectrometry that uses a 
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time-of-flight mass spectrometer to analyze pigments.22  These types of analyses only 

identify the organic components of a paint chip. 

 For analysis of the inorganic components, scanning electron microscopy/energy 

dispersive X-ray spectroscopy23 and laser ablation inductively coupled plasma mass 

spectrometry24, 25 are the most widely-used techniques.  SEM/EDS requires extensive 

sample preparation due to the nonconducting nature of a paint sample but has been able 

to discriminate between similarly colored car paints.  Raman spectroscopy15 has also 

been building in popularity for the identification of extenders and inorganic pigments, 

including effect pigments.  X-ray diffraction (XRD)26, 27 and X-ray fluorescence (XRF)28 

have also been developed as techniques to analyze the inorganic elements in paint 

samples.  However, these techniques do not have a limit of detection as low as SEM/EDS 

analysis. 

 The benefit of using two of the previously mentioned analyses, such as FTIR with 

Raman or SEM/EDS, has been suggested in order to identify both organic and inorganic 

ingredients resulting in increased discrimination.29, 30  While this is possible, it is not as 

probable since forensic scientists are limited in the amount of sample that is available to 

them.  Other methods should be developed that are able to analyze both inorganic and 

organic components simultaneously. 

Instrumental Analyses 

 Three instruments were used in this research to analyze the automotive paint 

samples: laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared 

spectroscopy (FTIR) and scanning electron microscopy / energy dispersive X-ray 

spectroscopy.  While FTIR and SEM/EDS are established methods of forensic paint 
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analysis as mentioned above, LIBS is a more recent technique and is the focus of the 

research here. 

Laser-Induced Breakdown Spectroscopy 

 LIBS offers contrasts to the previously mentioned instrumentation: little sample 

preparation, quick sample analysis and inexpensive instrumentation.  Since the first 

observation of laser induced plasma in the 1960s, the field developed relatively slowly at 

first; however, with the development of more interest and improved detectors LIBS has 

progressed more rapidly in the past 15 years. 

Theory 

 Lee, et al, has defined LIBS as an “elemental analysis based on the atomic 

emission from the plasma generated by focusing a powerful laser beam on a sample 

(solid, liquid or gas).”31  The main difference between it and other plasma emission 

spectroscopy is that the plasma forms over the sample allowing for a simpler instrumental 

setup and a more convenient analysis than conventional atomic emission spectroscopy. 

 As the name infers, a laser is used to break down a sample and create the plasma.  

Different types of lasers can be employed in this type of instrument but commonly solid 

state pulsed lasers such as a neodymium: yttrium aluminum garnet (Nd:YAG) are found 

in many instruments.  Ruby, gas and excimer lasers have also found use in LIBS 

instruments.  The lasers are pulsed for 5-10 nanoseconds; although, femtosecond lasers 

have also been explored as possibly more beneficial for analysis.32 

 When energy from the laser pulse exceeds a critical threshold value, which is 

dependant on the sample, the sample rapidly heats, melts and becomes vaporized to 
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create a plasma which expands directly above the sample toward the focusing lens.  In 

order for the plasma to form, free electrons must be generated, and an avalanche 

ionization must occur.33  A plasma is “a local assembly of atoms, ions and free electrons, 

overall electrically neutral, in which the charged species often act collectively.”34  The 

ratio of the different species changes throughout the lifetime of the plasma which lasts 

only a few hundred microseconds.  The temperature within the plasma can reach tens of 

thousands of degrees (Kelvin). 

 During the first ~100 ns, a high white light continuum and a shock wave can be 

observed.  The continuum results from a combination of bremmstrahlung and 

recombination events within the plasma.  After this period, discrete lines from the 

elements in the plasma can be observed.  To reduce the continuum interference, time-

resolved spectra are taken by delaying the gate of the spectrometer. 

 Detectors are divided into two categories: 1) photodiodes and photomultipliers 

and 2) photodiode arrays, charged coupled devices (CCDs) and charge-injection devices.  

The second type was used in this research, specifically charged coupled devices.  Several 

of this type of detector can be used to encompass a broad range of wavelengths.  This 

allows a wider variety of elements to be detected with the same instrument. 

 Although it was mentioned previously that LIBS is an atomic analysis, diatomic 

species can also be observed in the spectra, specifically C2 and CN bands.  These bonds 

originate from recombinations of two atoms from the sample or one atom from the 

sample and one from the atmosphere (nitrogen).35 

CNNC 222 →+         (1) 
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Previous work 

 Laser induced breakdown spectroscopy has been explored for numerous 

applications.  Because of its minimal sample destruction, quick analysis time and limited 

sample preparation, several areas have explored its use.  For example, the historical 

preservation and yet scientific need to explore the contents of certain valuable objects (i.e. 

historical documents and paintings, etc.) has propelled the research to explore the use of 

LIBS.  LIBS has been used to determine the best laser cleaning process when preserving 

historical paper documents.36  It has also been used to characterize cinematographic films 

for conservation purposes.37  LIBS has been used to distinguish between layers in 

ceramics as well as other layered samples.38  Tool steel and glass have been analyzed 

using microscopic LIBS in which a microscope objective is used to focus the light from 

the laser to a one micrometer focal spot. 

 The data analysis of LIBS spectra has been approached in several ways.  These 

include correlation analysis, a calibration-free method and others.  Lentjes has advocated 

the use of correlation methods, and Gornushkin et al has demonstrated its advantages 

over the rank (Spearman) correlation.39  Principal components analysis (PCA) has been 

employed in use of grouping soil data using LIBS.40 

 Forensic science has also deemed LIBS a potential method of analyzing evidence.  

LIBS has been used to investigate the analysis of solid, liquid and gas samples and to 

discriminate between matrices such as glass.41, 42  Residue explosives analysis has also 

used LIBS as a stand-off method of detection.43, 44  It has also been used to map latent 

fingerprints45 and analyze gunshot residue.46  The analyses of human remains and 

prosthetic implants have also been conducted using LIBS providing a forensic use.47 
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 Some problems encountered using LIBS include matrix effects, self-absorption, 

line broadening and background radiation.  Borisov, et al, explored fractionation and 

signal intensity as a function of crater development (for LA-ICP-MS).48  Fractionation, 

which is the tendency of certain analytes to be sampled preferentially to other analytes, 

was also the subject of an article by Outridge that explored the relationship between the 

melting point and non-representative sampling of a glass sample.49  These problems can 

be limited but not entirely eliminated.  In order to limit some of these effects, 

Čtvrtníčková, et al, have experimented with limiting the amount of light to the center of 

the plasma in order to obtain better spectra.50  Castle, et al, also inputs several variables 

for reproducibility in LIBS when analyzing copper. 

Instrumental Setup 

 A commercial LIBS instrument (model LIBS2000+) from Ocean Optics (Dunedin, 

FL, USA) was used during the research.  The setup for the LIBS instrumentation can be 

seen in Figure 3.  The neodymium: yttrium aluminum garnet (Nd:YAG) pulsed laser (Big 

Sky Lasers, model CFR200, Bozeman, Montana, USA) emits at the fundamental 

wavelength of 1064 nm for a pulse width of 9 ns.  The laser is focused through a single 

lens (f = 7.5 cm) onto the sample.  The sample is located within a chamber on a movable 

stage that can be shifted in both X and Y directions. 
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Figure 3.  LIBS setup 

 

 The emitted light from the plasma is then collected by a bifurcated set of optical 

fibers, oriented 45º to the incident laser beam.  The fibers connect to a train of seven 

separate linear CCD array spectrometers which detect from 198.14 to 965.43 nm.  The 

spectrometers have a range of resolutions from 0.04-0.07 nm.  A personal computer 

equipped with Ocean Optics OOILIBS software then acquires the data detected by the 

spectrometers.  The software also controls the firing of the laser by controlling the Q-

switch within the laser.  A typical LIBS spectrum from a paint sample can be seen in 

Figure 4.  The software allows for a spectrum from either a single plasma event to be 

recorded or the average of a specified number of pulses. 
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Figure 4.  LIBS automotive paint spectrum 

 

Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) 

 Infrared spectroscopy is based on the transitions of molecules from one 

vibrational level to another.51  In order for vibrations to be IR active, they must be 

associated with changes in the permanent dipole.  Spectra are collected in the mid-

infrared, approximately 4000-400 cm-1.  The spectra indicate the vibrations (symmetrical 

and asymmetrical stretching, scissoring, wagging, twisting and rocking) that a molecule 

exhibits when exposed to infrared light.  Samples can be liquid, solid or gas. 
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 The FTIR-ATR instrument consists of a silicon-carbide source which emits 

broadband radiation in the mid-infrared wavelength range.  The radiation from the source 

passes to the Michelson interferometer.  Within the interferometer, the radiation is 

directed to one of two mirrors, one which is stationary and another which oscillates 

continually between two distances.  The radiation is reflected back by both mirrors and 

recombines creating an interference pattern which can be constructive or destructive 

depending on the position of the movable mirror.  A HeNe laser (632 nm) with a high 

frequency also passes through the interferometer so that the resolution can be established. 

 The optics of the attached microscope focus the radiation from the interferometer 

to the sample, which has been previously been brought into focus.  The sample reflects or 

transmits the light to the mercury cadmium telluride (MCT) detector.  The signal from 

the detector is converted mathematically from the time domain to a frequency domain 

with the use of a Fourier transform.  Several spectra are usually averaged in order to 

obtain a spectrum with relatively little noise. 

 The attenuated total reflectance attachment allows for analysis of samples where 

the radiation is passed through a silicon crystal of high refractive index relative to the 

sample such that an evanescent wave is created.  The sample absorbs the radiation at 

certain wavelengths and reflects back the attenuated energy from the evanescent wave.52  

This can be done with solids such as films, pastes and powders.  The ratio between the 

peaks in the spectra using the ATR attachment are not the same as with a transmission 

spectrum but generally the same peaks are observed allowing for determination of the 

compound.53 
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Scanning Electron Microscope / Energy Dispersive X-Ray Spectroscopy (SEM/EDS) 

Theory 

 The SEM/EDS energizes a sample by directing a beam of electrons to the 

sample.54  The products of interest in the interactions between the electron beam and the 

sample are of three kinds: backscatter (BS) electrons, secondary (S) electrons and X-rays.  

Backscatter electrons are inelastic scattering of electrons from the beam after interaction 

with the sample with minimal loss of kinetic energy.  They can provide qualitative 

information about a sample as well as imaging capabilities.  Secondary electrons are the 

next most probable event in this situation; the electron beam stimulates the sample to 

release an electron that is loosely bound.  Backscatter and secondary electrons are 

important for imaging and qualitative analysis of the sample. 

 Finally, the third, most infrequent and important to quantitative analysis, are the 

X-rays produced by the interaction of the electron beam with the sample.  The electrons 

from the beam excite an electron in the inner three shells of the atom within the sample 

(K, L and M).  Because of this energy, the electron is ejected from the atom.  The atom is 

left in an excited state, and as the atom comes back to the ground state it gives off X-rays 

indicative of the energy.  The X-rays intensities are generally reported as energies and are 

plotted as a spectrum (Figure 5). 
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Figure 5.  EDS spectrum of cross section of Pontiac GTO 

 

Instrument 

 The source of the electron beam is most commonly a tungsten filament although 

lanthanum hexaboride (LaB6) filaments can also be utilized.54  A high negative voltage is 

maintained through the filament which is shaped like a hairpin.  Due to the heat produced 

by the voltage, electrons from the filament are emitted and travel toward the anode 

(ground potential) and through a set of electromagnetic lenses which, similar to their 

optical counterparts, serve to collimate and focus the beam.  The beam is rastered across 

the area of the sample to be analyzed with the use of scan coils creating an image from 

the BS and S electrons and X-rays for detection by the EDS. 



 22

 The X-rays are collected at a specific angle to the sample and are detected through 

the use of a lithium-drifted silicon (Si(Li)) crystal.  The crystal produces photoelectrons 

which are detected and amplified.  Since the X-ray events are rare it is important to 

eliminate as much instrument noise as possible.  For this reason, the Si(Li) crystal and 

detector needs to be cooled through the use of liquid nitrogen.  A computer controls and 

displays all images and data from the detectors. 

 Although detection of lighter elements down to beryllium is possible with a 

windowless EDS, the resolution between the different x-rays from elements found below 

1 keV becomes poor.54 

Data Analysis 

 Several different approaches were explored to analyze the data collected from all 

experiments.  The first few are based on common comparisons used by multiple 

computer software packages while others are based on work by previous LIBS 

researchers as detailed above.  Previous research on glass41 laid the groundwork for this 

data analysis.  However glass and paint spectra are very different visually. 

 The data analysis has been divided into two different sections based on what is 

being analyzed: the full spectrum or specific peaks.  The focus of the data analysis 

discussed here was on devising a method to use the entire spectrum since it would seem 

to be more advantageous to use all possible information gathered during the experiment.  

The focus of the second section is a much more tedious process to individually select 

relevant peaks for analysis. 
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Pretreatment 

 Due to the nature of spectral data, it is sometimes necessary to pre-treat the data in 

order to compare them.  One process is normalization which scales the intensities in the 

spectra so that all spectra are on the same scale (e.g. have the same maximum intensity).  

This is necessary for some comparison procedures while not necessary for others.  The 

general procedure used in this research was normalizing the spectra to unit vector length 

unless otherwise noted. 

 When comparing peaks, the most important factor is the intensity of the peaks.  

The baseline is indirectly linked to this calculation in that it partially determines the peak 

height.  Each spectrometer used in the research has its own baseline which is slightly 

different from each other.  For example in Figure 4, the peak at ~525 nm appears to have 

a greater intensity than the peak at ~495 nm due to the baseline shift in the fourth 

spectrometer.  If the spectrum was baseline corrected, the peak at 525 nm would be less 

intense than the one at 495 nm. 

 However, this effect is reduced by baseline correcting the spectra; the true peaks 

and elimination of the false peaks - those that have high counts due to a high baseline, are 

obtained (see Figure 6).  Baseline correcting the spectra can be as simple as subtracting a 

certain amount Y from each intensity to as complicated as iteratively fitting all points to a 

line.  The baseline correction method used in this research uses the latter approach and 

was based on a method used by Coombes, et al.  The method first locates the peaks and 

their bases, removes the peaks, and takes as the baseline the local minimum within a 

specified width.  This baseline is subtracted from the original spectrum and the process is 

repeated a second time which then becomes the baseline corrected spectrum (Figure 6).55 
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Figure 6.  Original (top) and baseline corrected (bottom) spectra. 
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Full Spectrum 

 In this research, the number of wavelengths that were monitored in a full LIBS 

spectrum was 13,696.  Both normalized and baseline corrected spectra were used during 

these types of analyses. 

Hit Quality Index 

 The Hit Quality Index (HQI) is similar to a Euclidean measure of the distance 

between two spectra; HQI is based on the dot product between the spectra.56  The 

equation indicates that as the numerator approaches 0 (the samples are not similar), the 

HQI approaches 2 . 

QQKK
QKxHQI

••
•

−= 12        (2) 

K is the known spectrum while Q is the questioned spectrum. 

Principal Components Analysis 

 Principal components analysis (PCA) is “a variable reduction procedure… [that] 

reduce[s] the observed variables into a smaller number of principal components that 

account for most of the observed variance in the variables.”57  According to O’Rourke, “a 

principal component can be defined as a linear combination of optimally weighted 

observed variables.”  The principal components are obtained through a singular value 

decomposition of either a covariance or correlation matrix.  The decomposition yields 

eigenvectors and the associated eigenvalues which are used to calculate the principal 

components.  The first principal component contains the most variance, and each 

subsequent principal component accounts for less variance and is orthogonal and 
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uncorrelated to the previous principal component.  The number of possible principal 

components is equal to the number of samples being analyzed.  The component loading is 

the correlation between the component and the variables.  Its use does not differentiate 

between samples per se, only decreases the number of variables which then could be used 

to conduct further analysis such as a cluster analysis. 

 It is important in this analysis to identify how many principal components are 

necessary for subsequent analyses.  There are many ways to accomplish this.  One is to 

construct a plot of the eigenvalues associated with each component called a Scree plot 

and retain all components before there is a break.  Secondly, retaining all principal 

components with eigenvalues greater than one is also another method.57  The number of 

principal components that are retained may also be chosen based on the proportion of 

variance that they account for.  However the necessary principal components are 

determined, they must be valuable to the subsequent analysis and reconstruct the original 

spectra. 

 After the number of necessary principal components is determined, the scores 

associated with each sample can be used to conduct a cluster analysis.  The cluster 

analysis calculates the Euclidian distance between each sample and groups them based on 

their relative distances.  Clusters are formed by joining the two “closest” values together 

which is then continued in a stepwise fashion until all samples are combined into one 

single cluster.58  Such analysis can provide categories based on determined distances but 

again does not necessarily discriminate between each sample individually.  However, 

there is no guarantee that the main principal components are valuable for discrimination 

or groupings using further analysis. 
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Correlation/Pearson 

 Similar to the HQI, the Pearson product-moment correlation coefficient value (r) 

is calculated using the following equation, 

( )( )
( ) ( )∑ ∑
∑

−−

−−
=

22 bbaa

bbaa
r

ii

ii         (3) 

In the equation, ai is the ith value in spectrum A and bi is the ith value in spectrum B 

while a  and b  are the average values of the spectrum.  As the r value approaches 1, the 

spectra are considered to be more similar.  Normalization of data in this calculation does 

not affect the outcome as it would in the HQI calculation since the equation involves 

mean centering the data.  However, it is assumed that the variables are measured on an 

interval- or ratio-level of measurement and that the variables can assume a large number 

of values. 

Sin²θ 

 Similar to Euclidean distance, the sin2θ value is calculated using the following 

equation.  This analysis treats each spectrum as a vector and calculates the angle between 

the vectors. 

sin2θ 
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Evaluation: Two-tailed t-test 

 While calculating values based on comparisons and differences convey how 

similar or dissimilar samples are, it does not create a way to statistically discriminate 

between similar comparisons.  One way to achieve discrimination between samples is by 
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using a two-tailed t-test.  The t-test is a statistical method used to compare two averages 

based on their standard deviations.  The null hypothesis in this case is that the averages 

are the same (H0: 21 xx = ) while the alternative hypothesis is that they are different (HA: 

21 xx ≠ ).  If their distributions overlap significantly (more than the alpha (α) value), they 

are thought to be the same (H0).  If they do not overlap significantly, then they are 

thought to be different (HA).   

 The averages used during this research were based on same sample comparisons 

(DSS) and different sample comparisons (DDS).59  For example, each sample is analyzed 

repetitively giving the resultant spectra.  The spectra are compared within each sample 

and averaged over both same sample comparisons (DSS) for an individual t-test.  Then the 

spectra are compared between samples and averaged (DDS). 

 Numerically the t-test requires calculating the t value (equation below), 
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where DDS and DSS are the averages that are defined above and SDS and SSS are their 

standard deviations and nDS and nSS are the number of comparisons that were used to 

calculate the averages, respectively.  This calculated t value (tcalc) is then compared to a t 

value (ttable) found in a table which is based on the alpha value and the calculated pooled 

degrees of freedom (DF). 
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If tcalc is greater than ttable, the samples are statistically different. 

Peak Analysis 

 Although the entire spectrum is available for comparison, there are some 

instances when samples only vary by certain elements so that use of the entire spectrum 

prevents samples from being discriminated from one another due to their overall 

similarity.  Using the peaks from baseline corrected spectra, different spectra from 

different samples can be compared.  Although the resolution of the spectrometers is not 

accurate enough to assign elements to peaks definitively, numerical data analysis can be 

employed to gain some discrimination.  These methods include the calculation of the 

Sorenson Index and multivariate analysis of variance (MANOVA) and its subsequent 

tests (analysis of variance (ANOVA) and Tukey Honestly Significant Difference (HSD) 

Post-hoc test). 

Sorenson Index 

 The Sorenson index calculates the similarity between the spectra based on 

whether they share the same number of peaks.60  The basic formula can be seen below. 
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where P1 is the number of peaks in spectrum 1, P2 is the number of peaks in spectrum 2 

and P1U P2 represents the number of peaks that the two spectra have in common.  As the 

Sorenson index approaches 1, it is presumed that the spectra are more similar. 

Multivariate Analysis of Variance (MANOVA) 

 Multivariate analysis of variance is an analysis method in which a multiple 

criterion variables are evaluated as to their efficacy in differentiating between samples.  

MANOVA determines “whether there is a significant difference between samples when 

compared simultaneously on all variables.”57  In this case, the variables that were 

evaluated were wavelengths based on the intensity of a peak.  Discrimination using 

MANOVA can be a three part process.  The first involves the MANOVA calculations. 

 The null hypothesis for MANOVA states that all groups have the same mean (M). 
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M21 indicates the sample mean for the second variable for the first experimental group.  A 

Wilks’ lambda value is calculated based on the matrix of the means to measure the level 

of association between the variables.  An F statistic is calculated to evaluate the 

significance of the Wilks’ lambda.  The formula for the F statistic can be written as 

groupswithin

groupsbetween

MS
MS

F =          (9) 

MS is the mean square which is a measure of variability.  MSbetween groups accounts for 

variability in error as well as variability due to differences in the means while MSwithin 

groups accounts for only variability in error. 
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 In the software used during this research, a p value is also calculated that indicates 

the probability of obtaining an F value greater than or equal to the calculated F value if 

the null were true.  In order to reject the null hypothesis, the p value must be lower than 

the established significance (α) value. 

 If the MANOVA result is significant (i.e. the groups of means are different), 

further analysis involving analysis of variance (ANOVA) is performed for each 

wavelength.  ANOVA also calculates a similar F statistic and similarly a p value based 

upon it which can reject or accept the null hypothesis (H0 : M1 = M2 = M3).  ANOVA is 

comparable to a t-test but it is able to compare more than two samples at a time.  It, 

unlike the MANOVA, can indicate which wavelengths can be used to discriminate 

between samples. 

 Finally, if the ANOVA results are significant, the Tukey’s Honestly Significant 

Difference (HSD) test can be employed.  The previous two tests only indicate as to 

whether there were any differences between sample means.  This test indicates which 

samples are statistically different from the others based on their means and can also group 

them accordingly.  However, rejecting the null hypotheses of the previous two tests is 

necessary in order to perform the Tukey’s HSD test. 

Receiver Operating Characteristics Curve 

 Evaluating a data analysis method can prove to be difficult; however, the use of 

receiver operator characteristic (ROC) curves has proven successful to evaluate DNA 

databases.  ROC curves originated in clinical medicine trials to provide an objective 

measure of effectiveness.61  The analysis evaluates the sensitivity (how close the 
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differences are) and specificity (whether they can be differentiated) of a data analysis 

based on comparison values such as HQI values.   

 The data is ordered into same sample comparisons and different sample 

comparisons.  This analysis assumes that for good sensitivity and specificity each group 

of values will be different.  For instance, in calculating the HQI values for a number of 

samples analyzed using LIBS, the values for the same sample comparisons should be 

lower than most of the values for the different sample comparisons.  If this were absolute 

then the area under the curve would be 1.00 and the data analysis would be ideal, i.e. all 

different sample comparisons would be discriminated from one another.  There would be 

a very low probability that a value from the same sample comparisons would not have a 

lower score than that from the different sample comparisons.  The resultant histogram 

would have the same sample comparisons grouped near the abscissa, while the different 

sample comparisons would occupy space above the same sample comparisons.  A far 

from ideal situation would be an area of 0.50.  In that case, there would be a 50% 

probability that the same sample comparison would not have a lower score than that from 

the different sample comparisons. 

Distribution issues 

 Many of the data analysis methods that were mentioned previously share a 

requirement: the data must be normally distributed.  A normal distribution is symmetric 

and has an inherent appeal for those who use it.62  The appeal encompasses several 

factors.  An addition-based analysis is easier to calculate and understand than a 

multiplication-based one and results can be stated in a concise manner; the method has 

been established for more than 100 years; and the distribution retains the title “normal.”  
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The caveat if the data is not normally distributed is that the results can be misleading and 

ultimately inaccurate. 

 It has been suggested and documented that most scientific data is not normally 

distributed62 but that the underlying distribution is log normal.  This implies that the 

mean is skewed to the left and values making up the distribution can only be positive.  

This is the multiplicative (as opposed to the additive: normal) version of the central limit 

theorem.  By taking the log of the values, the distribution can become normal.  However, 

the statistical calculations of the mean, standard deviation, etc. are somewhat different 

from the normal distribution implied by the multiplicative term. 

 Another group63 found that linear correlations between LIBS spectra were gamma 

distributed.  They resolved this issue by averaging sufficient correlation values until the 

distribution became Gaussian.  This phenomenon is further explained and supported in a 

paper by Gornushkin, et al.39  Gornushkin also displayed the robustness of linear 

correlation in regard to peak fluctuations. 

 Michel and Chave state that LIBS data in particular is not normally distributed.64  

While they cite other researchers in their efforts at obtaining normally distributed spectra, 

the authors contend that all spectra are representative and should be used.  By doing this 

they conclude that the data does not follow the central limit theorem but rather that LIBS 

data might follow an extreme value distribution.  The authors caution other LIBS users 

and admonish them to check their data as to normality. 

 Regardless of the distribution, there are a few different methods to address this 

problem.  One is to convert the data using the Fisher’s z transformation and has been 

used in this research to provide statistically accurate results. 
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Fisher’s Transformation 

 Fisher’s transformation was developed in 1915 by Fisher for a bivariate 

distribution.  The process converts a non-normal distribution to a normal distribution so 

that tests that require a normal distribution, such as a t-test, may be performed.  The 

equation can be seen below.65 
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r is the value that is transformed (Pearson coefficient) and ln is the natural log.  This 

transformation has classically been used with the Pearson coefficient which often gives a 

classic bivariate distribution. 
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CHAPTER 2: EXPERIMENTAL 

Samples 

 One hundred ten automotive paint samples were collected from South Carolina 

Law Enforcement (SLED) and a junkyard in Bithlo, FL (Appendix) over the course of a 

year.  Characteristics of the samples were catalogued and can be seen in the Appendix.  

Samples ranged a number of production years (1985-2006), makes, manufacturers, and 

colors.  Also noted in the table are the presence/absence of visible effect pigments, type 

of substrate (if known) and number of discernible layers as seen through a 

stereomicroscope (34X). 

Instruments 

 The instrumental parameters for the LIBS instrument for each type of analysis 

will be detailed in their sections.  However, the laser power was maintained at 22 

mJ/pulse except during the cross section reproducibility experiments when it was at 31 

mJ/pulse.  The Q-switch delay was optimized for each experimental day and varied 

between -2.5 and -5.0 μs.  The atmosphere was air at ambient pressure and temperature. 

 The second instrument used during this research, the ATI Mattson Infinity Series 

FTIR with a SpectraTech IR Plan Advantage IR Microscope using an ATR objective, 

was used to obtain FTIR spectra of the samples.  Spectra were processed and analyzed 

using the OMNIC software. 

 Finally the LEO 1450VP Scanning Electron Microscope equipped with an Oxford 

Energy Dispersive Spectrometer was used to obtain X-ray spectra of the cross sections of 
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the samples.  The INCAEnergy Microanalysis System software was used to analyze the 

spectra from each sample. 

Analysis 

 Table 2 details the experiments performed for this research that are further 

explained below. 

 

Table 2.  Summary of details of research experiments 

Experiment Instrument 

Cross 
Section 

(CS) / Drill 
Down (DD) 

Number 
of 

samples 

Spectra 
per 

sample 
Set Sample 

preparation 

Time after 
initial 

experiment 

1 LIBS CS 25 5 1 chip   
2 LIBS CS 51 5 1 chip   
3 LIBS CS 10 5 2 chip 0 
4 LIBS CS 10 5 2 chip 2 days 
5 LIBS CS 10 5 2 chip 1 week 
6 LIBS CS 10 15 2 chip 4 weeks 
7 LIBS DD 25 20 1 substrate   
8 LIBS DD 25 20 2 chip   
9 LIBS DD 93 20 1 chip   

  FTIR-ATR   51 3 1 substrate   
  SEM/EDS CS 23 3 1 chip   

 

 

LIBS 

 The inherent structure of the layers of a paint chip allows for two different 

methods of approaching its analysis: from the top using a drill down method or from the 

edge analyzing the cross section (Figure 7). 
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Figure 7.  Two analysis methods 

 

Cross Section 

 The first method was interrogating the edge or cross section of the paint chip.  

Figure 8 depicts the sample setup of the cross section analysis.  Two microscope slides 

were employed to keep the paint chip normal to the surface of the stage.  Double sided 

tape was used to keep the microscope slides in place.  All layers were simultaneously 

analyzed in one pulse. 

 Five spectra per sample were obtained for analysis for both Experiment 1 and 2.  

For the reproducibility tests (Experiments 3, 4, 5 and 6), a chip from a sample was split in 

half and five single shot spectra were obtained from the edge of each resulting chip 

(Experiments 3, 4 and 5).  The splitting of the chip created two sets of data: spectra from 

the first chip (Set 1) and spectra from the second chip (Set 2).  The time between analyses 

3 and 4 was two days and between 3 and 5 was one week.  For analysis 6, a chip from 

each sample was split in half as with the previous analyses; however, fifteen spectra from 
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each chip were used for the analysis.  The time between experiments 5 and 6 was three 

weeks. 

 

 

Figure 8: Cross Section Analysis (paint chip not drawn to scale) 

 

Drill Down 

 The second method of analysis involved drilling down through the layers starting 

with the clearcoat.  Two different arrangements were designed for this type of analysis.  

The first was the most straightforward and required analyzing the paint chip on its 

substrate, if present, and drilling down from the top (clearcoat) down to the substrate 

(Appendix: LIBS Drilldown, Experiment 7).  Twenty single pulse spectra were saved 

using this setup.  Five different locations (spots) on the sample were analyzed per sample.  

This analysis was only performed on the first 25 samples. 

 The second arrangement involved only the paint layers which were mounted on 

polyisobutylene on a microscope slide (Figure 10).  The polyisobutylene had been 

softened at ~200ºC and smoothed so that the paint chips would lay flat.  At great enough 

thicknesses, isobutylene does not produce a signal during the LIBS experiment (Figure 9), 

and it imparts stability to the samples during the analysis. 
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Figure 9.  Spectra of polyisobutylene at different thicknesses 

 

 If samples were attached to a substrate, a large enough chip was removed for 

analysis. 

 

 

Figure 10. Drill Down Analysis 
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 A preliminary drilldown was performed in order to determine the number of 

pulses necessary to go through all the layers.  The spectra from each subsequent 

drilldown were averaged by the software and three spectra from each sample were 

obtained.  The number of shots per drill down varied between chips.  An initial analysis 

was performed in which two chips each from 25 samples were analyzed (Appendix: 

LIBS Drill Down, Experiment 8).  Three spectra from each paint chip were acquired.  A 

second analysis involving ninety-three samples was also conducted using this 

arrangement (LIBS Drill Down, Experiment 9). 

FTIR-ATR 

 The clearcoats of fifty-one samples were analyzed using the FTIR-ATR 

(microscope).  The samples were placed on a microscope slide on a pressure sensor plate 

on the stage of the microscope, and the stage was adjusted so that sufficient pressure was 

applied between the silicon crystal of the ATR and the sample.  Three spectra of 32 scans 

each were obtained from different locations on the surface of the sample.  The 

absorbance spectra were taken from 4000 – 650 cm-1. 

SEM/EDS 

 The spectra from the cross sections of 26 samples (SEM/EDS: Appendix 1) were 

obtained using the SEM/EDS.  Thin layers of the cross section from the samples were cut 

using a scalpel.  These were placed on an adhesive carbon tab which was mounted on an 

aluminum stub (Figure 11).  The samples were lightly sputtered with carbon with the 

Denton Vacuum LLC Desk II Cold Sputter/Etch Unit and Carbon Evaporation Accessory 
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(Denton Vacuum Inc.) to prevent charging of the sample before placing in the sample 

chamber of the SEM/EDS. 

 

 

Figure 11.  Stereomicrograph (50.4X) of sample preparation for SEM/EDS analysis 

 

 The working distance of the SEM was maintained at 15 mm while the 

accelerating voltage for EDS analysis was 20 keV.  The beam current was varied based 

on the sample in order to maintain an acquisition rate of 2-3 kilocounts per second (kcps).  

A strip of copper was used as the standard for quantitative optimization. 
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CHAPTER 3: LIBS Cross Section 

 Five spectra each from three samples can be seen in Figure 12.  Each spectrum is 

representative of the different types of spectra obtained from the LIBS cross section 

analysis.  The number of peaks that can be observed in the 03 Saturn Ion spectra (a) is 

much greater than that in the spectra from the 02 Ford Mustang (c).  The 95 Honda Civic 

(b), on the other hand, appears to have two spectra with many peaks and three spectra 

with very few peaks.  This inconsistency between the spectra from the same sample will 

become important later during the numerical/statistical analyses. 
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(a)  

(b)  

(c)  

Figure 12.  Normalized spectra from three samples from the cross section analysis 
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Library 

 Each of the single shot spectra from Experiment 1 (Appendix: LIBS Cross 

Section) were compared to each other using the HQI equation (Eqn. 2).  The same sample 

HQI comparison values and the different sample HQI comparison values calculated 

between the spectra were used to conduct a ROC analysis (SigmaPlot 10.0).  The ROC 

analysis (Figure 13) revealed the usefulness of this type of analysis.  The area under the 

curve was 0.92 which indicated that there was a 0.92 probability that the HQI value 

between two randomly chosen spectra from the same sample (Correct) would be smaller 

than the HQI value between two randomly chosen spectra from two different samples 

(Incorrect).  As can be seen, the HQI values for the same sample comparison (Correct) 

varied widely, reaching values as high as 0.75. 

 

 

Figure 13.  ROC analysis of replicate cross section analyses 
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HQI and t-test 

 The HQI values for comparisons between spectra were calculated for both 

Experiments 1 and 2 together and separately and compared using a t-test to determine 

whether the samples could be discriminated from each other.  The α value was held at 

0.05 and the results can be seen in Table 3 for each analysis.  The sample set 225 indicates 

the twenty-five samples that were analyzed during Experiment 2 that were also analyzed 

during Experiment 1.  Of the 25 samples that were repeatedly analyzed, only 12% (3 of 

25) of same sample comparisons were not discriminated from themselves. 

 

Table 3.  Results from the HQI/t-test cross section analysis 

 
Different Sample 

Discrimination 
Same Sample 
Discrimination 

1 v. 225 95.2% 88.0% 
2 v. 2 92.9%   
1 2 v.1 2 95.4% 88.0% 

 

 

 The high same sample discrimination from the t-test can be illustrated by 

examining the DDS and DSS distributions for the same sample comparison of sample 18 

(Figure14).  The standard deviations appeared similar but the averages were far enough 

apart that the two curves did not overlap significantly to be considered statistically 

similar. 
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Figure 14.  Distribution of same sample comparison and different sample comparison for t-test 

 

Reproducibility tests 

 In order to explore the large amount of Type I error (discrimination between 

samples that should not be discriminated) found in the previous analyses, the spectra of 

ten samples (Appendix: LIBS Cross Section: Experiments 3, 4, 5 and 6) were compared 

using t-tests based on HQI values.  Tables 4 and 5 give the results of these experiments. 
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Table 4.  Different sample discrimination of reproducibility experiments 

Different 
Sample 

Discrimination 

Experiment 

3 4 5 6 
3 98.3       
4 99.4 100     
5 100 99.4 98.9   
6 89.5 90.0 89.5 100

 

 

Table 5.  Same sample discrimination of reproducibility experiments 

Same   
Sample 

Discrimination 

Experiment 

3 4 5 6 
3 50       
4 72.5 60     
5 62.5 62.5 50   
6 92.5 62.5 62.5 90

 

 

 From two days to a week after the initial experiment, the discrimination between 

samples increased slightly from 98.3 to 100%.  There was a significant drop of 

discrimination between different samples between the experiments run within a week (3, 

4 and 5) and after four weeks (6).  The same sample discrimination, which is initially 

high as well, also increased after two days or a week with the largest amount of same 

sample discrimination (92.5%) between Experiment 3 and 6. 

 When the fifteen spectra from Experiment 6 were averaged (15/5 = 3 spectra), the 

discrimination between different samples decreased to 85.8% while the same sample 

discrimination also decreased to 80%. 
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Discussion 

 The results from the Library data analysis showed a 0.92 area under the curve for 

the ROC analysis and indicated that this type of data analysis might be suitable for LIBS 

cross section paint data.  Although the area was relatively high, the dot histogram also 

revealed that the same sample HQI values reached as high as 0.75 and did not group well 

near the abscissa.  This might be an indication of poor reproducibility of the cross section 

spectra. 

 HQI/t-test showed mixed results.  While the discrimination for comparisons 

between different samples using the HQI/t-test is rather high, the same sample 

discrimination was also high which is unacceptable in this case.  Even when the number 

of spectra per sample was increased, the same sample discrimination also increased 

leading to 90% of the samples being discriminated from themselves.  This high self 

discrimination calls into doubt the discrimination between the samples since it greatly 

exceeds the alpha value. 

 This irreproducibility could be due to a variety of different factors originating 

from both instrumental and sample issues.  These issues could include laser variability, 

layer thickness, orientation of the sample and heterogeneity within the sample.  Although 

the laser power level was set on the power supply of the laser, there are slight fluctuations 

of the laser pulse power from pulse to pulse. 

 Optical considerations could also contribute to poor reproducibility.  They proved 

to be important for cross section analysis since the area of sampling was small.  If the 

laser was not directly focused on the same point in the cross section each time it was 

pulsed, the spectra could be different as the LIB event consumed different amounts of 
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each layer.  If the surface of the cross section was not at the same angle to the laser beam, 

the spectra could also be different due to problems with focusing the camera used to 

image the sample area that was ablated.  These were issues that could possibly have 

influenced the reproducibility when sampling from the cross section of the paint sample.  

Without pinpointing the cause, the sample-to-sample irreproducibility of the data makes 

the cross section sampling method unusable. 
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CHAPTER 4: LIBS DRILL DOWN 

 An image of the laser profile on burn paper was obtained and can be seen in 

Figure 15.  The ablation from the energy level used during the drill down experiments is 

situated second from the right.  The ablation was not circular and “tailed” in one direction.  

As the power was increased, the ablation became more circular (leftmost ablation). 

 

 

Figure 15.  Micrograph of laser ablation of burn paper at decreasing laser energy levels 

 

 With the same energy (22 mJ/pulse), an automotive paint sample was ablated with 

one laser pulse (Figure 16).  The pulse ablated both the clear coat and basecoat (large 

circle in red) down to the surfacer layer (smaller red circle).  Again the ablation was not 

circular. 
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Figure 16.  Micrograph of the crater formed from a single laser pulse on a paint sample 

 

 Other observations of the ablation of the paint sample (Figure 16) include the 

distribution of the effect pigments within the basecoat.  In the micrograph, the 

distribution does not appear homogeneous while different types of effect pigments appear 

to be present (blue and white colors not seen in image).  The diameter of the laser is 

obviously larger than the pigments themselves. 

 A raw drill down spectrum from samples 90 and 33 can be seen in Figure 17.  

Although the samples share certain attributes (color and presence of effect pigments), 

their spectra are visually different. 
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(a)  

(b)  

Figure 17.  Averaged drill down spectra of 1987 Dodge Ram (a) and 2005 Mazda Tribute (b) 
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 The drill down analyses will be divided into two different categories based on 

how the samples were prepared.  The first set of samples that will be discussed was 

analyzed on their substrate (if present) and the second set was analyzed on 

polyisobutylene. 

Substrate 

 The samples included for this data analysis are only from the LIBS Drill Down, 

Experiment 7 group (Appendix). 

Layer Identification 

 Pearson correlation values were calculated between spectra from the same 

location on the same sample.  A matrix of the Pearson correlation values between the 

spectra within a single drill down was constructed for each location on each sample.  

Contour surface plots were constructed based on the matrix of these Pearson correlation 

values for each location of analysis.  By comparing each spectrum within the same drill 

down, distinctions between each individual layer may be found.  In Figure 18, the plot on 

the right is an example of a sample that was “well behaved,” meaning that there appears 

to be distinctions between the spectra.  There are spectra that correlate more highly with 

each other than the other spectra designating them as coming from the same layer.  The 

plot on the left is not a “well behaved” sample; there is high correlation between all the 

spectra for the sample and there does not appear to be any discernible layers. 
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Figure 18.  Contour surface plots based on Pearson correlation values comparing spectra within 

the same drill down. 

 

Library 

 Based on the results from the previous data analysis, the first five spectra from 

each location on each sample were averaged giving five averaged spectra per sample.  

The resultant averaged spectra were compared to each other using the HQI equation (2).  

The same sample comparison values were separated from the different sample 

comparison values and a ROC curve analysis was performed.  The ROC curve and 

histogram for the results of this analysis (Figure 19) showed the relatively good 

sensitivity and specificity of this method of analysis.  The area under the curve was 0.98 

and there was relatively little overlap between the Correct and Incorrect values based on 

the dot histogram. 
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Figure 19.  ROC analysis of Library analysis of drill down spectra 

 

Polyisobutylene Mounted Analyses 

 The spectra from Experiments 8 and 9 were the basis for the following data 

analyses.  Spectra from both experiments were used to conduct full spectrum analyses 

while the spectra from Experiment 8 were also used for peak analysis. 

Full Spectrum 

 While a full spectrum obtained using LIBS encompassed the range of 198 to 965 

nm, only the data from 200 to 900 nm were used for data/statistical analysis. 

t-test 

 The spectra from both Experiments 8 and 9 were the basis for this analysis.  Two 

different values based on the full spectrum were calculated for subsequent t-tests: HQI 

and the Fisher transform of the Pearson correlation coefficient (Z(r)).  Both calculated 
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types of values entailed using the full spectrum however the spectra were normalized 

prior to calculation of the HQI.  Using the HQI equation, values were calculated for 

comparisons between the spectra.  Two-tailed t-tests were performed based on the HQI 

values calculated between and within samples. 

 

Table 6.  T-test results based on HQI values from drill down spectra 

Experiment 
No. of 

samples 

No. of 
spectra 
per file 

No. of 
shots per 
spectrum

Different Sample 
Discrimination 

(%) 

Same Sample 
Discrimination 

(%) 
 8 25 3 variable 95.0 16.0 

8 (BC) 25 3 variable 94.5 12.5 
 9 93 3 variable 99.4   
 9 93 3-5 variable 99.2   

9 (BC) 93 3-5 variable 99.3   
BC: Baseline corrected spectra 

 

 In Table 6, “variable” indicates that the number of spectra per averaged spectrum 

was determined during the initial drill down.  Baseline correcting (BC) the spectra did not 

appear to change the different sample discrimination while the same sample 

discrimination decreased.  Increasing the number of spectra per file decreased different 

sample discrimination only slightly (99.4 to 99.2). 

 The other value that was calculated before further t-tests were performed was 

Pearson’s correlation coefficient.  After calculation of the value of r it was converted 

using Fisher’s transformation (Z(r)), and the t-test was performed on the Z(r) values.  

Table 7 shows the results of the various data analyses. 
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Table 7.  T-test results based on Z(r) values from drill down spectra 

Experiment 
No. of 

samples 

No. of 
spectra 
per file 

No. of 
shots per 
spectrum

Different Sample 
Discrimination 

(%) 

Same  Sample 
Discrimination 

(%) 
 8 25 3 variable 95.5 20.0 

8 (BC) 25 3 variable 95.3 12.0 
 9 93 3 variable 94.9     
 9 93 3-5 variable 99.6     

9 (BC) 93 3-5 variable 99.7     
BC: Baseline corrected spectra 

 

 Similar results were obtained with the Z(r) values as with the HQI values.  

Baseline correcting the spectra allowed for less discrimination between same sample 

comparisons.  However, using more spectra per file allowed for better discrimination 

with t-tests based on the Z(r) values while baseline correcting the spectra had a mixed 

result between the different sample comparisons between the two different set sizes. 

PCA/Cluster Analysis 

 The twenty-five samples utilized for this analysis can be seen in the Appendix 

(LIBS Drill Down, Experiment 8).  Spectra were first normalized and then averaged prior 

to analysis.  Non-baseline corrected spectra were normalized by two separate methods.  

The first method involved dividing each intensity in a spectrum by the square root of the 

sum of the squares of the intensity in the spectrum ( ∑ 2
ix ) while in the second method 

the intensity was divided by the sum of the intensities within the spectrum (∑ ix ).  

Baseline corrected (BC) and non-baseline corrected (NBC) spectra were analyzed 

separately.  Using the Mathematica software, the data matrix (rows x columns = 

wavelengths x sample) was premultiplied by its transpose and the eigenvalues and 

eigenvectors were obtained by decomposition of the matrix. 
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 Two different methods for determining the necessary number of principal 

components were used.  A Scree plot and any eigenvalue greater than 1 were evaluated as 

to their effectiveness.  The Scree plot for the first set of non-baseline corrected spectra 

normalized using the first method (Figure 20) indicated the first three components while 

the eigenvalue >1 method indicated seven components.  The first three components 

accounted for 99.1% of the variance while seven components accounted for 99.7%. 

 

 

Figure 20.  Scree plot of eigenvalues from PCA of non-baseline corrected spectra 

 

 For further investigation, the eigenvectors associated with these methods were 

examined using a cluster analysis.  The dendogram from the cluster analysis based on 

each set of eigenvectors is displayed in Figure 21.  Around a distance of 1.0, there are 

five different groups based on 3 eigenvectors (top).  When 7 eigenvectors (bottom) are 

used, the distance drops to 0.8.  However, the constituents of the different groups did not 

change from increasing the number of eigenvectors used for the analysis. 
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Figure 21.  Cluster analysis dendograms based on principal components (3: top; 7: bottom) based 

on NBC spectra 
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Figure 22.  Principal components plot based on PCA of NBC spectra 

 

 The plot of the first three principal components (Figure 22) for each sample 

shows the groupings based on the cluster analysis.  Although there did appear to be some 

smaller groupings within the largest grouping (circled in green), the distances between 

these small groupings were smaller than the distances between the other groupings (black, 

blue, gold and red).  The circled groupings in Figure 22 were hand drawn and do not 

indicate 95% confidence ellipses.  The samples within each grouping did not correspond 

to any association based on year, manufacturer, physical characteristics, etc. 

 When the spectra were normalized by the second method, none of the eigenvalues 

were greater than one so the necessary eigenvalues were determined through the Scree 
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plot (Figure 23).  The plot indicated that three eigenvalues were valuable for later 

analysis and that they made up 99.2% of the variance within the spectra. 

 

 

Figure 23.  Scree plot of eigenvalues based on PCA of NBC spectra normalized by the 2nd method 
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Figure 24.  Cluster analysis dendogram of 3 principal components based on NBC spectra 

 

 The cluster analysis revealed four different groups at a distance of 0.0010 (Figure 

24).  These groups have been identified in the plot of the three principal components 

(Figure 25).  Again, smaller clustering can be seen within the largest group and samples 

within the groups can not be associated based on their model, physical characteristics, etc. 
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Figure 25.  Plot of three principal components obtained from PCA of NBC spectra 

 

 Baseline correcting the spectra produced different results.  The significant 

eigenvectors based on the Scree plot was four (97.0 % of the variance) while those based 

on the >1 method was five (97.8% of the variance).  Cluster analysis revealed some 

similarities with the NBC spectra (Figure 26).  For example, samples 28 and 44 are still 

relatively close to each other and there was a large grouping (green) that was important in 

the previous cluster analyses. 
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Figure 26.  Cluster analysis dendograms of principal components (4: top; 5: bottom) based on BC 

spectra 
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 The number of differences between the PCA of NBC and BC spectra, however, 

was larger.  Sample 27 was not clustered with other samples based on NBC spectra 

normalized using the first method however when baseline correcting sample 27 was 

grouped with sample 50 as the most distinctly separated from the other samples.  The 

larger amount of smaller groupings found in the cluster analysis based on the NBC 

spectra is not found in the analysis based on the BC spectra. 

Peak Analysis 

Sorenson 

 Spectra were simultaneously baseline corrected while the peaks were identified.55  

The Sorenson index was calculated (Eqn. 7) for comparisons between spectra and the 

samples were compared using a two-tailed t-test based on the indices.  The results of the 

discrimination from different sample sets can be seen in Table 8.   

 

Table 8.  Sorenson/t-test discrimination percentages based on drill down spectra 

 

Different Sample 
Comparison 

(%) 

Same Sample 
Comparison 

(%) 
81 v 82 50.9 20.0 

81 v 925 65.3 75.0 
82 v 925 60.0 70.8 

9 v 9 78.4   
 

 

 Data sets 81, 82 and 925 came from spectra from the same samples.  Spectra for 

data sets 81 and 82 (Appendix: Drill Down, Experiment 8) were taken on the same day 

with data set 81 originating from the first set of chips from each sample and 82 being 
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derived from the second set of chips from each sample.  Data set 925 was taken a month 

later and is a part of the larger group of samples from Experiment 9 (Appendix: Drill 

Down).  The Sorenson indices for different sample comparisons ranged from 0.09 to 

0.992 while those for same sample comparisons ranged from 0.09 to 0.825. 

 The comparisons between sample sets collected on the same day yielded the 

lowest discrimination between different samples but also had the lowest same sample 

discrimination.  As the discrimination increased for comparisons of data sets from 

different days, the same sample discrimination also increased. 

MANOVA/ANOVA/Tukey 

 Fifty-two wavelengths were chosen based on peaks that were common in five 

representative baseline corrected spectra from LIBS Drill Down, Experiment 8.  However, 

only twenty of the twenty-five samples analyzed during Experiment 8 were used for this 

data analysis and are indicated under Experiment 8a in the Appendix.  The intensities of 

these 52 wavelengths were extracted from the baseline corrected spectra and ordered into 

a data set for analysis by the Statistical Analysis System (SAS) software.  MANOVA was 

performed on the data set to determine whether there was a significant difference 

between the intensities at different wavelengths and, if so, between the samples based on 

the emission intensities at each wavelength (ANOVA and Tukey). 

 The Wilks’ lambda for the MANOVA was 0.00 while the p-value was <.001.  

This result indicates that there was a difference between the emissions at different 

wavelengths in at least two of the wavelengths when they were compared simultaneously 

across all samples.  This meant that the subsequent ANOVA for each wavelength could 

be analyzed.  Each ANOVA for each wavelength had a p-value of <.001 which indicated 
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that the null hypothesis could be rejected and it could be concluded that there was a 

significant difference between at least two of the samples with respect to each 

wavelength.  It also signified that the Tukey HSD test results could be interpreted.  The 

Tukey HSD test was able to discriminate between samples based on the wavelength. 

 Based on the results from the Tukey HSD tests, discrimination matrices could be 

constructed for each wavelength (Table 9).  The samples 1 and 21, 2 and 22, etc., were 

different chips from the same sample.  The comparisons indicated with a “1” signify that 

the comparison was discriminated while the comparisons with a “0” indicated that the 

comparison was not discriminated.  The matrix is symmetrical about the diagonal.  For 

this wavelength, the discrimination between different sample comparisons was only 

24.9%, but importantly none of the same sample comparisons were discriminated against 

each other. 
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Table 9.  Tukey discrimination matrix for Wavelength 1 (394.43 nm). 
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 The F values obtained from each ANOVA indicated the relative strength of each 

wavelength’s discrimination although it was not absolute (i.e. the wavelength with the 

highest F value did not have the highest discrimination over all wavelengths).  Each 

discrimination matrix for each wavelength was combined with others by establishing that 

discrimination of one comparison by one wavelength meant that the samples were 

discriminated regardless of the result from other wavelengths. 

 Fourteen wavelengths were identified that were able to discriminate the largest 

number of different sample comparisons while limiting the number of discriminated same 

sample comparisons to a minimum.  The discrimination matrix (Table 10) displays the 

result of combining the discriminations from these wavelengths in which sample 

comparisons were considered discriminated based on discrimination in any of the 

wavelength discrimination matrices.  Again, sample 1 and 21, 2 and 22, 11 and 31, etc., 

are from the same sample but from different chips.  As seen in other discrimination 

matrices, 1 indicates discrimination between the compared samples while 0 indicates that 

the samples were not discriminated.  A discrimination of 87.5% for different sample 

comparisons was found while the same sample discrimination was limited to 1 in 20 (5%). 
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Table 10.  Overall discrimination of samples by MANOVA 
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 The fourteen wavelengths that were used for this discrimination (Table 11) were 

“identified” using both the OOILIBS software as well as a standard reference.66  While 

occasionally the software and MIT wavelength tables agree on certain wavelengths (WL 

1, 7, 15, 21 and 41), the assignments from the MIT wavelength tables are more reliable. 

 

Table 11.  Wavelengths used for MANOVA, their possible elemental identification and 

discrimination 

Wavelength (nm) 

Source  

OOILIBS 
Software 

MIT 
Wavelength 

Tables 

Discrimination 
of Samples 

(%) 
WL 1 394.43 Al Al 24.9 
WL 3 453.60 NA Ti 47.1 
WL 6 514.67 NA Co 55.1 
WL 7 517.31 Mg Mg 61.4 
WL 8 519.23 NA NA 63.8 

WL 10 522.34 NA Ti 43.3 
WL 15 553.51 Ba Ba 43.8 
WL 16 566.16 NA Ti 55.3 
WL 20 586.57 NA Ti 55.5 
WL 21 588.91 Na Na 19.7 
WL 24 599.67 NA Ni 53.1 
WL 28 614.09 NA Ba 38.3 
WL 30 626.04 NA Ti 47.2 
WL 41 670.70 Li Li 33.5 

NA: Not assigned 

 

Discussion 

 The drill down approach has provided certain challenges during the experimental 

and subsequent data analysis.  The shape of the crater formed by the ablation of the 

sample may be attributed to several factors.  The beam energy profile for the laser used 

during this research should have been Gaussian but did not appear to be.  The interaction 

between the laser and the sample (i.e. melting and ejecting of matter) may have caused 
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areas outside the main irradiance area to be ablated although the directionality of the 

ablation did not support this.  Since the profile did not appear to be Gaussian, the upper 

layers from one of the sides of the crater may have contributed to the subsequent spectra.  

These problems affected the spectra and, therefore, the analysis of the spectra. 

 It has been reported previously that drilling down through the layers has not been 

the optimum method for examining layers due to fluctuations in the laser31 and the laser 

profile.  This was found to be a problem in this research when attempting to differentiate 

between the layers.  Correlations between spectra from the same drill down remained 

relatively high in most samples so that differentiating between the layers was not possible. 

 Several varieties of data analysis for LIBS drill down spectra have been explored.  

While the full spectrum analysis was more convenient to utilize (no need of baseline 

correcting and finding peaks), the peak analysis (i.e. MANOVA, etc.) offered specificity 

and elimination of the many baseline points which could incorrectly influence the data 

analysis leading to Type I and Type II errors.  However, this tendency did not appear to 

be relevant in the results.  Results from the full spectrum data analysis appeared to give 

higher different sample discrimination than the peak analysis (Z(r)/t-test: 99.7%) while 

for peak analysis lower same sample discrimination could be achieved (MANOVA: 5%). 

 The library method based on HQI values produced an area under the ROC curve 

that was extremely high and approached ideal behavior.  The dot histogram also showed 

that the same sample HQI values also tended to gather near the abscissa which was not 

observed during analysis of cross section spectra.  The relative success of this method 

suggests that limiting the number of pulses per averaged spectrum for each sample might 

be advantageous, regardless of chip thickness. 
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 Averaging of the drill down spectra during experiments both on substrate and 

isobutylene appeared to improve the results.  However, in some cases discrimination 

between points on the same sample (i.e. high same sample discrimination) was achieved 

which is not desirable (see Table 12).  Baseline correcting the spectra improved both the 

different sample discrimination as well as lowered the same sample discrimination.  

Samples that were not discriminated could be linked by similar manufacturer, color 

and/or year for the HQI or Z(r) with t-test analyses.  However, high discrimination 

between same sample comparisons of spectra taken on separate days still occurred even 

when the spectra were baseline corrected. 

 

Table 12.  Review of results from data analysis of drill down spectra 

 Error (%) 
Data Analysis Type I Type II 
HQI Library 10.0 0.4 
HQI/t-test 12.5 – 16.0 0.6 – 5.5 
Z(r)/t-test 12.0 – 20.0 0.3 – 4.7 
Sorenson/t-test 20.0 – 75.0 21.6 - 49.1 
MANOVA 5.0 12.0 

 

 

 For the PCA/cluster analysis based on NBC spectra, while the number of 

significant eigenvalues that were chosen was usually greater than one, the first 

eigenvalues contained at least 90% of the variance for each analysis.  When visually 

inspecting the NBC spectra normalized by the first method (Figure 27), it appeared that 

the baseline was accounting for the largest variance.  The spectrum at the bottom had a 

relatively small baseline in comparison to the spectrum that is second from the top which 

had a larger baseline.  This effect was also found when the spectra were normalized by 

the second method although the effect was not as pronounced. 
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Figure 27.  Representative averaged spectra from PCA/cluster data analysis 
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 When the baseline was corrected, physically meaningful groupings were not 

found.  The number of groupings decreased so that there were three small groups of one 

or two samples each and one very large group suggesting that all of the samples are very 

similar and could not be discriminated using this method.  Limiting the range of 

wavelengths used for the analysis might be prudent so that the analysis is focused on a 

limited number of peaks. 

 The MANOVA and subsequent analyses produced relatively high different 

sample discrimination and lower same sample discrimination than full spectrum data 

analysis methods.  However, the complexity of the procedure makes it intimidating and 

time consuming.  While the wavelengths were identified with elements, the 

identifications were not certain due to the resolution of the spectrometers. 

 The variety of different data analyses allowed for an overall assessment of the 

LIBS Drill Down experiments.  Reproducibility continued to be a problem while 

discrimination between the full spectrum of a large amount of samples (up to 93) was 

very high. 
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CHAPTER 5: SEM/EDS & FTIR-ATR 

SEM-EDS 

 The cross sections of twenty-six samples were analyzed with the SEM/EDS.  The 

sampling area for each spectrum encompassed all layers of the cross section and three 

spectra per sample were collected.  Figure 28 shows a typical spectrum from an 

automotive paint sample.  Several different elements can be observed including carbon, 

iron, titanium, magnesium and aluminum which were identified with the aid of 

instrument manufactured software.  

 

 

Figure 28.  EDS spectrum of Pontiac GTO 
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Results 

 Using the HQI, Z(r) and the Sorenson index values as bases for t-tests, the 

samples were compared.  The results from the different sample comparisons (Table 13) 

show discrimination as high as 70.6% from the baseline corrected spectra comparisons 

using HQI.  The Sorenson index based t-tests discriminated only 37.8% of the samples. 

 

Table 13.  T-test results from SEM/EDS analysis 

 

 

FTIR-ATR 

 A sample spectrum from the analysis can be seen in Figure 29.  At 1452 cm-1 

there is C-H bending with corresponding C-H stretching 2800-2960 cm-1.  The peaks 

around 1700 cm-1 indicate the presence of a carbonyl while the stretching bands between 

1000 and 1175 cm-1 imply that the carbonyl might be part of an ester group.  According 

to the classification developed by Ryland67, this sample’s clearcoat is possibly an alkyd 

(alcohol + acid). 
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Figure 29.  FTIR-ATR transmittance spectrum of the clearcoat of 2005 Pontiac GTO 

 

Results 

 The results from the HQI/t-test analysis can be seen in Table 14 which has been 

arranged according to groups which contain samples that are discriminated or not 

discriminated from similar samples (for example, group A is not discriminated from 

themselves, group B and C).  The discrimination matrix is symmetric about the diagonal 

(highlighted in yellow) and “1” indicates the samples were discriminated while “0” 

indicates that the samples were not discriminated. 

 Each of the five groups (A, B, C, D and E) contains a similar number of samples 

except for E which only contains Sample 37 which was discriminated from all other 

samples due to large absorption bands at 634 cm-1 and below.  For groups A, C and D the 
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Table 14.  Results from the t-tests based on HQI from the FTIR-ATR spectra. 

 



 80

samples within the group are not discriminated from each other for the most part.  

According to the classification determined by Ryland, group A contained acrylic 

melamine, group C mainly acrylic urethanes and group D was made up of spectra from 

samples which were devoid of strong absorption bands (i.e. poor spectra).   

 The same was not found for the samples within group B.  For this reason, group B 

was a mixture of samples that did not fit in the remaining groups but were not necessarily 

discriminated from themselves.  The group was made up of samples of possible alkyd 

and/or acrylic melamine (as seen by nondiscrimination between samples in group A and 

B).  The groups determined by the HQI/t-tests were the same as those determined by the 

Z(r)/t-tests. 

 Discrimination between different sample comparisons reached 62.7% based on 

HQI/t-tests.  When the Z(r) values were compared using the t-test, the discrimination 

dropped slightly to 62.1%.   

 

Table 15.  Combination of results from SEM/EDS and FTIR-ATR analyses 

HQI FTIR-
ATR 

SEM/EDS 
NBC BC 

FTIR-ATR 62.7     

SEM/EDS NBC 88.0 70.4   
BC 88.0   70.6

     
     

Z(r) FTIR-
ATR 

SEM/EDS 
NBC BC 

FTIR-ATR 62.1     

SEM/EDS NBC 88.0 69.0   
BC 87.0   69.3
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 When combining the results for the thirteen samples that were analyzed by both 

SEM/EDS and FTIR-ATR, the discrimination increased to 88% (Table 15).  There was 

very little difference between the different metrics used for the subsequent t-test and also 

between the spectra that were baseline corrected with those that were not. 

Discussion 

 Between the SEM/EDS and FTIR-ATR analyses, the SEM/EDS appeared to 

better discriminate between the samples.  This could be due to differences in the 

experimental analysis of the samples between the two instruments.  Using the FTIR-ATR, 

the analysis was limited to the clearcoat.  During SEM/EDS analysis, the entire cross 

section was interrogated although the SEM/EDS analysis only addressed the inorganic 

components within the layers which limited the analysis to the pretreatment, electrocoat, 

surfacer and possibly the basecoat. 

 The low discrimination from the Sorenson index based t-tests is due in part to the 

fact that many of the samples shared the same peaks, i.e. elements.  This was not 

unexpected since certain elements are relatively common in most layers of automotive 

paint, for example, titanium, aluminum and iron.  The calculated HQI or Z(r) were more 

precise than the Sorenson index since they take into account all points of the spectrum 

while the Sorenson index is only concerned with the peaks.  The HQI and Z(r) values 

provided higher discrimination during the t-test between different sample comparisons. 

 As has been reported elsewhere29, 30 when combining the results from the two 

instrumental analyses, higher discrimination between the different sample comparisons 

was found relative to both analyses by themselves.  Higher discrimination that was 

typically found using the HQI values in comparison with the Z(r) values in previous data 
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analyses was not found when the two analyses results were combined.  However, the 

samples that were not discriminated were not similar in their physical characteristics, for 

example, color, presence of effect pigments, number of layers, etc. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

Conclusions 

 Obtaining reproducible LIBS spectra from the cross section appeared to be very 

difficult due to a variety of factors.  The different sample discrimination between the 

cross section spectra was high; however, the impact of this result was nullified by the 

high same sample discrimination.  Increasing the number of spectra and averaging them 

did not create a better result. 

 Averaging the spectra from the drill down analysis, however, was the best method 

for obtaining optimal discrimination results from LIBS spectra.  The drill down approach 

produced more reproducible spectra than the cross section yielding lower same sample 

discrimination than the cross section analysis.  The areas under the curve from the ROC 

analyses based on the Library analyses of the cross section and drill down spectra were in 

agreement with this assessment. 

 However, reproducibility was still a problem for the LIBS drill down spectra.  

Baseline correcting the spectra in conjunction with the Z(r) based t-test improved the 

same sample discrimination.  However, the same sample discrimination could only be 

reduced to 12.0%.  Using the MANOVA analysis, the same sample discrimination was 

limited to one in twenty samples. 

 The different sample discrimination from the FTIR-ATR and SEM/EDS 

individually was much lower than those from the LIBS analyses; however, the 

reproducibility problems found in the LIBS spectra have been proven to be a much 

smaller problem with FTIR and SEM/EDS instruments.  Even when the results from 
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these two instruments were combined, the different sample discrimination was still not 

quite as high as that from LIBS. 

Future Research 

Automotive Paint 

 In the future, perhaps a better way of analyzing paint samples as well as other 

“softer” materials would be to use a femtosecond laser as opposed to the nanosecond 

laser used in the LIBS experiments reported here.  Baudelet, et al demonstrated the 

positive outcome of using such a laser on biological samples.32  These included lower 

(practically negligible emission from excited ambient air) and faster decreasing plasma 

temperature and explosive ejection of matter, and molecular spectral signatures of a 

sample together with the atomic emissions.  Cravetchi, et al also evaluated femtosecond 

lasers used in LIBS experiments, and compared the results to those from nanosecond 

lasers.68  The results were similar. 

 A possible solution to the focusing problem found in the cross section analysis 

might be to use a microscope to focus the laser.  Gornushkin, et al, have described and 

used a microscope setup for analysis of solid materials.69  A crater diameter of ~20 μm 

was achieved at a working distance of 5 mm for a 10x objective.  The diameter was 

similar to the width of individual automotive paint layers. 

LIBS 

 As Locard has stated70, “physical evidence cannot be wrong, it cannot perjure 

itself, it cannot be wholly absent. Only human failure to find it, study and understand it, 

can diminish its value.”  The understanding of the results from any chemical experiment 
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is perhaps the most important part in determining results and conclusions.  It is therefore 

imperative that it is understood what happens when a sample is interrogated with a laser.  

Continued work on understanding the processes and what affects those processes during a 

LIBS experiment will help to interpret results and provide a better understanding of how 

to proceed towards making LIBS a better method for analyzing samples especially 

complex matrices such as automotive paint chips. 

 Control of the sampling atmosphere might also be a factor in obtaining more 

reproducible data.  The sample chamber used during this research was not airtight and so 

could not be evacuated or completely filled with an inert gas (e.g. He, Ar).  An inert gas 

would not contribute to the spectra as air does since it does not interact with elements 

found within the sample.  Evacuating the chamber might also give a cleaner spectrum 

because there is less interference between the plasma and collecting lens.31 

 Another method for dealing with the atmosphere of a sample chamber that is not 

airtight is to use double pulse LIBS.71  Two pulses of a laser which are microseconds 

apart are shot at a sample either normal or parallel to each other.  When the pulses are 

parallel to each other, the first laser pulse creates a vacuum and the second creates the 

plasma.  This setup has resulted in an increase of signal and decreased introduction of 

atoms from the atmosphere (N, O, etc.).  However, since more laser pulses are used, more 

of the sample is ablated. 

Distribution free analysis 

 These types of analyses are also referred to as non-parametric data analyses.72  

These methods have the drawbacks of producing results that are difficult to relate to the 

real world and may contain severe computational difficulties, and these methods are 
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relatively new so they are not as well established as other methods.  Their power is also 

not as great as parametric tests.  Samples that might be discriminated using a parametric 

test might not necessarily be so using a non-parametric test.  There are some routes 

around the computational problems by simplifying and estimating.  However, using this 

type of analysis is statistically more rigorous than altogether ignoring the necessity of a 

normal distribution. 

 The name distribution-free is misleading since it suggests that there is not a 

distribution involved in the analysis.  There is no assumed distribution before analysis of 

the data (for example, the decomposition found in PCA).  A model is formed based on 

the data and not vice versa.  Several different tests have been developed including those 

specifically categorizing data as non-Gaussian. 

 For example, a parametric measurement such as Pearson’s correlation has 

nonparametric equivalents in Spearman’s rank correlation and Kendall’s tau.  As opposed 

to calculating the value without altering the data as is done with Pearson’s correlation, the 

data is ranked prior to calculation of the value.  Spearman’s rank correlation uses the 

same equation as the Pearson’s correlation (Eqn. 3) while Kendall’s tau (tk) is calculated 

using the following equation. 

( )12
1 −

−
=

nn
nn

t dc
k  

nc is the number of concordances between two spectra based on their ranked data while nd 

is the number of discordances.  Using rank is a form of permutation which along with 

randomization forms the basis for nonparametric statistical tests.73 
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Combination Plots 

 In an attempt to apply a distribution free statistical analysis, the two sets of 

spectra generated from twenty of the twenty-five samples from LIBS Drill Down, 

Experiment 8 were used for this data analysis.  The twenty samples whose spectra were 

used are indicated in the column Experiment 8a (Appendix).  Three separate distances 

were calculated between the spectra which included Euclidean, sin2θ, and 1-r where r is 

the Pearson correlation coefficient.  These were used to construct plots (Figure 30) in 

order to differentiate between samples based on all three distances.74  Individual refers to 

the individual distances calculated between spectra, while average indicates the average 

distances calculated between samples. 

 

 

Figure 30.  Combination plots using three calculated values 

 

 Distances between spectra from the same sample are located close to the origin 

(0,0,0), while distances between spectra from different samples appear to follow a curve 
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due to the relationship between the Euclidean distance and sin2θ values.  From these plots, 

confidence volumes were established based on the values for the same sample distances.  

The maximum values from the same sample comparisons for each calculated metric 

established the limit of the confidence volume.  The different sample comparisons 

outside of the volume were characterized as discriminated (Table 16). 

 The discrimination based on the established volumes reaches 95.8 % when 

averages of the distances and only 95 % of same sample comparisons were used.  This 

number drops to 76.8% when all the averages of same sample comparisons are used to 

construct the confidence volume. 

 

Table 16.  Percent discrimination of different comparisons outside of the confidence volume 

 

 

 While the combination plots attempted to address possibly non-Gaussian data and 

provide a method to analyze it, the resulting discrimination was low in comparison to 

other statistical methods used to analyze drill down spectra.  Again, the reproducibility, 

as with other data analyses, from Set 1 to Set 2 was poor, as can bee seen in Figure 29.  

The 1-r values appeared to define the distinction between values from Set 2 (green +) 

which were closer to the Euclidean axis (1-r values were lower) than the values from Set 

1 (red O) (1-r values were higher).  However, the relative position between the respective 
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calculated distances within each set was similar.  This suggests that between sets of data, 

calculated values (Euclidean distance, etc.) changed but relative placement of 

comparisons within the sets did not change from set to set. 

 Currently other nonparametric methods are being attempted such as permutations 

in order to investigate the number of spectra needed to encompass the variability within 

the LIBS instrumental analysis.  This research will lead to a decrease in the Type I error 

that parametric methods have not been able to reduce. 
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APPENDIX 
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CC: Clearcoat assignment according to Ryland; M: acrylic melamine; L: acrylic lacquer; U: acrylic urethane; A: alkyd; *: unassigned. 
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CC: Clearcoat assignment according to Ryland; M: acrylic melamine; L: acrylic lacquer; U: acrylic urethane; A: alkyd; *: unassigned. 
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