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ABSTRACT

This thesis consists af major parts. In the first part (Chaptelrs- 2), we introduce the overview,
motivation, and contribution of our works, and extensiv@lyvey the current literature forrelat-

ed topics. In the second part (Chapt&rs7), we explore the concept of “Self-Similarity” in two
challenging scenarios, namely, the Action RecognitiontaedViotion Retrieval. We build three-
dimensional volume representations for both scenarias,d@vise effective techniques that can
produce compact representations encoding the internaldigs of data. In the third part (Chapter
8), we explore the challenging action spotting problem, aroppse a feature-independent unsu-
pervised framework that is effective in spotting action endarious real situations, even under
heavily perturbed conditions. The final part (Chapt&rss dedicated to conclusions and future

works.

For action recognition, we introduce a generic method tbasdot depend on one particular type
of input feature vector. We make three main contributionsie introduce the concept of Join-
t Self-Similarity Volume (Joint SSV) for modeling dynamicystems, and show that by using a
new optimized rank-1 tensor approximation of Joint SSV areabtain compact low-dimensional
descriptors that very accurately preserve the dynamidseobtiginal system, e.g. an action video
sequence; (ii) The descriptor vectors derived from thenoged rank-1 approximation make it
possible to recognize actions without explicitly alignithg action sequences of varying speed of
execution or difference frame rates; (iii) The method isegenand can be applied using differ-
ent low-level features such as silhouettes, histogramiehted gradients (HOG), etc. Hence, it
does not necessarily require explicit tracking of featurethe space-time volume. Our experi-
mental results on five public datasets demonstrate that etlrod produces very good results and

outperforms many baseline methods.



For action recognition for incomplete videos, we determaiieether incomplete videos that are
often discarded carry useful information for action reatign, and if so, how one can represent
such mixed collection of video data (complete versus indetepand labeled versus unlabeled) in
a unified manner. We propose a novel framework to handle ipt&tevideos in action classifica-
tion, and make three main contributions: (i) We cast theoaatlassification problem for a mixture
of complete and incomplete data as a semi-supervised teppnoblem of labeled and unlabeled
data. (ii) We introduce a two-step approach to convert thatimixed data into a uniform compact
representation. (iif) Exhaustively scrutinizi@g0 configurations, we experimentally show on our
two created benchmarks that, even when the videos are elfreparse and incomplete, it is still
possible to recover useful information from them, and d¢fgssiknown actions by a graph based

semi-supervised learning framework.

For motion retrieval, we present a framework that allowsddtexible and an efficient retrieval
of motion capture data in huge databases. The method firsedsran action sequence into a
self-similarity matrix (SSM), which is based on the notidnself-similarity. This conversion of
the motion sequences into compact and low-rank subspacesegations greatly reduces the
spatiotemporal dimensionality of the sequences. The SS®lishen used to construct order-3
tensors, and we propose a low-rank decomposition schermalltvas for converting the motion
sequence volumes into compact lower dimensional reprasens, without losing the nonlinear
dynamics of the motion manifold. Thus, unlike existing Anelimensionality reduction methods
that distort the motion manifold and lose very critical amscdminative components, the proposed
method performs well, even when inter-class differencessanall or intra-class differences are
large. In addition, the method allows for an efficient retaleand does not require the time-
alignment of the motion sequences. We evaluate the perfarenaf our retrieval framework on
the CMU mocap dataset under two experimental settings, dertonstrating very good retrieval

rates.



For action spotting, our framework does not depend on angifspéeature (e.g. HOG/HOF, STIP,
silhouette, bag-of-words, etc.), and requires no humaalilzation, segmentation, or framewise
tracking. This is achieved by treating the problem holaticas that of extracting the internal dy-
namics of video cuboids by modeling them in their naturatf@s multilinear tensors. To extract
their internal dynamics, we devised a novel Two-Phase Deoaition (TP-Decomp) of a tensor
that generates very compact and discriminative represensehat are robust to even heavily per-
turbed data. Technically, a Rank-based Tensor Core Pyr@Raidk-TCP) descriptor is generated
by combining multiple tensor cores under multiple rankkveihg to represent video cuboids in
a hierarchical tensor pyramid. The problem then reducegeémalate matching problem, which
is solved efficiently by using two boosting strategies: diyéduce the search space, we filter the
dense trajectory cloud extracted from the target videdidiiboost the matching speed, we per-
form matching in an iterative coarse-to-fine manner. Expents on 5 benchmarks show that our
method outperforms current state-of-the-art under varahallenging conditions. We also created
a challenging dataset called Heavily Perturbed Video Ari@JPVA) to validate the robustness of

our framework under heavily perturbed situations.
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CHAPTER 1: LITERATURE REVIEW

In this chapter, we provide brief literature review fotopics, namely, the recurrence plot theory,
self-similarity matrix, low-rank tensor approximationgten recognition, motion retrieval, and
action spotting, respectively. These topics are closdbted to our work in this thesis. In the
corresponding chapters, we will provide detailed inforioratibout the motivation, related works,
or backgrounds of each topics. The main thread running girail those topics is the tensor based

multilinear algebra.

Recurrence Plot Theory

Recurrence Plots (RP) were initially proposed in [1] to destmte the dynamics of trajectories for
dynamical systems in phase space. Traditionally, it isadiffito visualize the phase space, because
higher-dimensional phase spaces can only be projecte@intwr 3D subspaces for visualization.
The RP, on the contrary, allows researchers easily integprdiagnose a dynamicial system. The

information it reveals are interpretable about time sgaldsch are otherwise inaccessible.

Recurrence Quantification Analysis (RQA) was later proddsemeasure the various structures
in RPs [2]. The quantification is useful for RAQ because thewe important information for
the classification of different types of dynamics in the ghggace. There are some important re-
currence quantification measures, such as Recurrencef}elleterminism (DET), Divergence
(DIV), Entropy (ENTR), etc. Those measures can be compute@dch diagonal line parallel
to the main diagonal, and thus can be found as a function ofligtance to the main diagonal
[3]. RQA was applied in applications in various fields suclphgsiology [2, 4], geology [5], and

economy [6, 7].



Researchers were also interested in learning the rel&iphstween RPs and dynamical invariants
[8, 9]. Cross Recurrence Plots (CRPs) are the extension sf RRe aim of CRP is to interpret
the dependencies between two different dynamical systé®<[l]. As a generalization of linear
version of cross correlation function, CRP can be adoptettostationary and short time series
[1], and it had been successfully used in climate analysisgeological systems [12, 11, 13].
However, CRP method has several drawbacks. For examplejORPappropriate to analyze the
synchronization of oscillators. Meanwhile, CRP may not biable to detect small changes in

coupling strength [10].

As an effective alternative, the Joint Recurrence Plot MR proposed in [1]. It is the Hadamard
product of the recurrence plots of the considered sub-s\sstl has several advantages compared
with CRP. The JRP is well defined if two systems have diffedémiensions. In addition, the JRP is
invariant under coordinate permutation and thus can be tosgéetect phase synchronization. The
JRP can also be calculated using a fixed amount of nearesthwegy Each individual RP which

contributes to the final JRP can then be computed using the samber of nearest neighbors.

During the past decades, the recurrence plot theory hasdmg#ied in numerous applications.
One of the first application was the heart beat intervalsyasma[14], which revealed features for
cardiac transplant patients and cardiomyopathy patieAtso, many studies used the RQA in
order to monitor disease [15] or to detect cardiac arrhy#it2]. For example, the RQA method
was used to analyze DNA sequence of the gencaemorhabditis elegar{46], which showed the

long-range correlations in introns and intergenic regidnsaddition, the recurrence plot theory
has also been used in economics to identify chaos in timessgr7]. In [7], RQA was used to find

correlations between currencies, which may be difficultritalygze in raw exchange data.



Self-Similarity Matrix

The notion of “self-similarity” has received significantexition in the recent years. The work in
[18] describes a gait recognition technique based on thgemsalf-similarity of a walking person
and classify the movement patterns of different people. &warks [19, 20] show the effective

use of the self-similarity in recognizing different typedological periodic motions.

The method that is closely related to ours is that of Junep.ef21]. The authors exploit the
notion of image self-similarities, as proposed by [22]. Bogiven action sequence, [21] first
extracts some low level features. The distances betweeactad features for all pairs of time
frames are computed and this results in a Self-SimilarityriIddSSM). Each action sequence is
thus reduced to a 2D SSM, and the authors then proceed t@xgrgaome useful features from

these SSMs and use it to train the action recognition system.

The concept of self-similarity is also closely related te #tatistical co-occurrence of pixel inten-
sities across images captured by Mutual Information [23]e Paper in [24] proposed an image
matching method based on internal self-similarity propeftimages, and explored various defi-

nitions of self-similarity to find the best one for image nfahg.

In terms of video analysis, there are mainly two types of-seffilarity based descriptors in the
literature, namely the local self-similarity descriptb6S) and the global self-similarity descriptor
(GSS). In [25], the authors introduced the concept of LSS8rilgers that capture internal geomet-
ric layouts of local self similarities with videos, and tleasescriptors are estimated on a dense grid
of points in the video data at multiple scales. This type cfctigtor captures the internal layout of
local regions and can be compared across images which agydestentially different at the pixel
level [26]. Built upon this method, [27] explored instea@ ®tructure of similarities between all

pairs of time-frames in a sequence, and made only mild assomspabout the rough localization



of a person in the frame, instead of relying on structureveoand correspondence estimation.

Myriads of other applications are also proposed based srL®$ descriptor [26, 28, 29, 30].

In contrast, in [26] the authors explored instead the glskétsimilarity and its advantages over
the local ones, and proposed two global descriptors: theobagrrelation-surfaces and self-
similarity hypercubes. The paper further declared that @8 outperform LSS and is computa-
tionally more efficient. However, since the GSS descriptd26] was applied merely on Pascal
VOC 2007 and ETHZ Shape Classes datasets rather than pagtitawm recognition datasets, we

are unable to conclude that on human action datasets GE&ugpiérforms LSS.

Low-Rank Tensor Approximation

The tensor theory has attracted increasing attention entegears. For example, tensor approx-
imation has been applied in signal processing [31, 32], eaderpvision [33, 34, 35, 36, 37, 38],
data mining [35, 39, 40], neuroscience [41, 42, 43, 44], etc.

In image and video analysis, [45] presents a multilineagpahdent component analysis (ICA)
method to solve statistical independence problems by engdige input image as a general tensor.
The face recognition problem also often boils down to maki&r discriminant analysis [46, 47].
In [48], the authors propose an algorithm for face repredent based on the tensor algebra and

differential geometry.

Tensor theory also plays a special role in action recognitfeor example, [49] extends the clas-
sical canonical correlation analysis (CCA) into that oftgyder tensors and proposes a tensor
canonical correlation analysis (TCCA) which can extracdatiptive correlation features of two
videos in the joint space-time domain. The work in [50] presen action recognition framework

based on the idea of non-negative tensor factorization. c&nestudy in [51] represents videos



as a tangent bundle on a Grassmann manifold, and videosamessed as third order tensors and

factorized to a set of tangent spaces.

However, we observed that, those tensor related actiorgnéiotan methods are either feature-

dependent [50], or rely on complex models that are very cdatfmnally demanding [49, 51, 52].

Action Recognition

Action recognition has continued to be an active area ofareseand has thus rightfully attracted
much attention from the researchers over the years. Imuaafgplication domains, such as auto-
matic video indexing and archiving, video surveillancemam-computer interaction, augmented
reality, user interface design, and human factors woul@fiemmensely from a robust and effi-

cient solution to this problem.

There are many factors that make this a challenging probiechyding the large variations in

performing an action by different people, whether by vagytime postures, or the execution speed,
illumination variations in the sequences, occlusions asdatlusions, distracting background mo-
tions, and perspective effects and camera motion. As a qarsee, current methods often resort
to restricted and simplified scenarios with simple backgds, simpler kinematic action classes,

static cameras or limited view variations.

Various approaches have been proposed over the years fon aetognition. On the basis of
representation, they can be categorized as: time evolofitluman silhouettes [53, 54], space-
time shapes [55, 56, 57, 58], dense trajectories [54, 5% 50.and locaBD patch analysis [62,

63, 64, 65, 66], generally coupled with some machine legrtechniques.

All these works rely primarily on effective feature extract These feature extraction methods



can be roughly divided into the following four categoriesotion based [67, 68], appearance based
[57, 69, 70], space-time volume based [55, 56, 57], and spareeinterest points or local features
based [65, 71, 72, 73, 74Motion basedmethods generally compute optical flow from a given
action sequence, followed by appropriate feature extractHowever, these methods are known
to be very susceptible to noise and easily lead to inacesadippearance basethethods are
prone to differences in appearance between the trainirggeiaand the testing sequencésiume

or shape basednethods mostly require highly detailed silhouette extoactwhich may not be

possible in real-world noisy video dataset.

In comparison with these approaches, shace-time interest point (STIP) baseéthods [63, 72,
73] are more robust to noise and camera movement and alsaseark quite well with low res-
olution inputs. However, these methods rely solely on tiserttninative power of individual local
space-time descriptors. Information related to the glepatio-temporal distribution is ignored,
and smooth motions cannot be captured using STIP methodaddition, issues like optimal
space-time descriptor selection and codebook clustelgayithm selection have to be addressed,

with fine-tuning various parameters, which is highly datpetedent [75].

Motion Retrieval

Generation of human motion capture dataset is a very timswuoimg and an expensive process,
but it is also a very critical application for animation anavre industry [76, 77]. An equally
important problem is tadentify or retrieve an action sequence that might already be present in
the motion capture dataset. Additional complications oeduen a particular action sequence in
the database has many variants [76, 78]. These variationsecaaused by individual differences
in expression, posture, motion clothing, perspectivectdfand camera motions. Also, actions

frequently involve and depend on manipulating objects,cWwldadds another layer of variability.



For example, we might have two instances of a kick motion eege, which may seem similar
visually but may differ significantly if compared numerilgabn a frame-by-frame basis. This

work proposes a novel method that aims to address some dbdive anentioned issues.

With the growth of available motion databases, indexing&tdeval of motion data has received
an increasing attention in the literature. Various appneachave been proposed in the past few
years. The work in [79] constructed a hierarchical tree o$trs of motions by using the extract-
ed keyframes for each motion, with deeper levels of the toeresponding to joints deeper in the
skeletal hierarchy. The DTW-based indexing technique @ [8 applied to mocap editing oper-
ations such as time-warping, filtering, or motion-warpinf§1] proposed a retrieval strategy by
precomputing a match web as an efficient searchable repagisenof all possibly similar motion
segments. [76] presented an approach where they first defiieis kinds of geometric features
that are claimed to be invariant under spatial variatiortnen[ they perform an adaptive segmenta-
tion to achieve invariance under temporal deformationso mvotion clips are then considered as

similar if they have similar progression of geometric featu

Recently, [82] propose an automated method for identiffaigically similar motions in a data set
and use them to build a continuous and intuitively paranegdrspace of motions. However, they
require time correspondences for matching two sequen&3.ufe a motion pattern discovery
and matching scheme that decomposes human motions intt-lagsed, hierarchical motion rep-
resentation. A fast string match algorithm is then used fataming. [84] propose a method for
global similarity searches based on kd-tree-based loéghherhood searches. The work in [85]
applied SVM on extracted geometric motion vectors for humemtion classification. However,

since the motion retrieval problem always involves a trédfdeetween accuracy and efficiency,

these methods either focus more on “accuracy” with lesscleficy”, or vice versa [86].



Action Spotting

The aim of action spotting is to spatiotemporally detect lmadlize a given query action within a
larger search video. The intra-class variance and scetteraliake action spotting difficult. Some
previous works combine tracking and classification foractocalization, or treat action spotting

and recognition in a joint manner [87, 88].

We observe several drawbacks hindering the performanceistirg techniques that rely on ex-
tracting specific features. For exampiacking-basednethods [89, 90] must track multiple body
parts or joints and classify actions based on stable matapedtories. But the tracker initialization
and its robustness often impede a fully automatic operatind manual intervention is therefore
inevitable.Contour/silhouette baseahethods [91, 92] seek to extract features from the 3D space-
time body shape. But itis often hard to perform robust sedatiem for complex videos. Also, the
silhouette is ambiguous if the body limbs are in front of tloelyp Foroptical flow-basednethods

[93, 94], the dense flow estimates are unreliable when theesiseunder camera motion, such as
zooming, pan, translation, or along occluding boundarres ¢he presence of foreground clut-
ter. Spatiotemporal gradients basedethods [95, 74] seek to generate compact representations
to characterize video spatiotemporal structures. But thegmce of foreground clutter in a video
could still contaminate dimensionality measurements haod imake the matching fail [87&pace-
time interest points basadethods [96, 97] are usually adopted to construct globaldfagords
descriptors. Although showing merits, they may fail to deteterest points within shadows, along

object occluding boundaries, or in highly dynamic clutters

In addition, action can sometimes be represented by demgeates of image-based measurements
such as the optical flow, spatiotemporal gradients, etc.sd@measurements are searched in a
video using a sliding window formulation, avoiding probletc preprocessing operations such as

localization, tracking, and segmentation. But these nagloan be computationally costly.
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CHAPTER 2: OVERVIEW AND CONTRIBUTIONS

In this chapter, we first present an overview of our framewdok four major applications, namely,
the action recognition, the action recognition for incoetplvideo, the motion retrieval, and the

action spotting. We then summarize our contributions tsétfeur applications.

Overview

To tackle the problem of action recognition, we analyze tbecept of self-similarity (SSM),
followed by the detailed descriptions of an effective repraation called the Joint Self-Similarity
Volume (Joint-SSV). The flow of our action recognition frammek is as follows.First, given an
input action video, we extract either low-level featuré&s silhouettes in a frame-by-frame manner,
or middle-level features like HOG3D from the partitionede® blocks, or some tracked feature
points. Secongdwe transform the feature vector in each frame into an SSkEmRhe sequence
of SSMs we then construct a symmetric and unique 3D strucivreh we refer to as the Joint-
SSV. This volume holds characteristic information abouitoacdynamics. However, in order to
exploit it more efficiently, and handle its large dimensidns decomposed into three compact
and discriminative vectors, two of which are identical (doisymmetry). These descriptor vectors
characterize the internal dynamics of an actidfinally, these vectors are used for measuring

distances to a reference set of vectors for final classidicati

To tackle the problem of action recognition for incompletgew, we adopt a framework that in-
volves five steps. The first step is the mixing of incompleteé eomplete videos. To generate a
large amount of incomplete videos, we sparsely sample thplade videos under various sparsity

settings. Regarding an incomplete video as a three-wayriptsie tensor, our second step is to



recover incomplete videos using an existing tensor congpletigorithm. Different sparsity pa-

rameters are tested to handle incompleteness under gEatings. At the third step, we generate
lower-dimensional representation using a rank-1 tensoom@osition algorithm. The generated
compact vectors are fed into the fourth step to form the feaspace. In the final step, we use

graph-based semi-supervised learning for binary-classraclassification.

To tackle the problem of motion retrieval, our framework ssfallows. First, we set up skeletal
model for motion sequence poses for initial representat@congdwe convert motion sequence
into a series of self-similarity matrix representationsémporal dimension under Euclidean dis-
tance metric, thereby creating a Motion Sequence VolumeM(Msructure that encodes the in-
ternal dynamics of a motion sequencéhird, the structure is decomposed into three low-rank
compact vectors using an optimal iterative algorithRinally, we employ the cross correlation

based similarity measure for the final retrieval phase.

To tackle the problem of action spotting, we first treat aé thdeo cuboids involved as three-
way tensors in multilinear algebra, and propose a natutaffective technique called Two-Phase
Decomposition (TP-Decomp)Secongdwe explore the rank, a critical factor in determining the
tensor dynamics, and observe experimentally that, usimgambination of multiple cores outper-
form that of using a single core. This motivate us to estaldi®Rank-based Tensor Core Pyramid
(Rank-TCP) descriptor that can hierarchically represemd@o, yet preserve discriminative ability.

Finally, we adopt two effective boosting strategies for péaite matching.

Contributions

We make multiple contributions in the four fields. For actienognition, (i) we propose a generic

framework that can be applied using various features sllobustte, 3d tracked points, HOG/HOF,
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etc. (ii) we extend the concept of SSM to higher dimensioinatispace volumes to characterize
action dynamics. (iii) we introduce an optimized low rankger approximation algorithm to

obtain compact description of high-dimensional time-gpsalf similarity representation.

For action recognition in incomplete video, (i) We cast tlotian classification problem for a
mixture of complete and incomplete data as a semi-supehesening problem of labeled and
unlabeled data. (ii) We introduce a two-step approach teerhe input mixed data into a uni-
form compact representation. (iii) Exhaustively scruting 280 configurations, we experimentally
show on our two created benchmarks that, even when the vateaxtremely sparse and incom-
plete, it is still possible to recover useful informationrn them, and classify unknown actions by

a graph based semi-supervised learning framework.

For motion retrieval, (i) we propose a retrieval framewdrattdoes not require temporal alignment
in contrast to the conventional methods. (ii) we propose\e@hscheme of subspace dimension-
ality reduction for fast motion sequence retrieval basedamk-1 tensor decomposition. (iii) as
a byproduct of low rank decomposition, reduced time-coxipleand hence fast indexing and

retrieval is achieved to handle very large databases.

For action spotting, the contributions of the proposed vaseksummarized as follows. (i) we pro-
pose an unsupervised framework for action spotting in \8dkat does not depend on any specific
feature (e.g. HOG/HOF, STIP, silhouette, bag-of-words.)eand our solution requires no human
localization, segmentation, or frame-wise tracking. \(fig devise a Two-Phase Decomposition
procedure, and both theoretically and experimentallyfyets advantages and feasibility. (iii)
we propose a Rank-based Tensor Core Pyramid (Rank-TCRjthlgowhose hierarchical struc-
ture enables fast template matching, and the resultingigéscenables compact representations.
(iv) we introduce two very effective boosting strategieattban prune a considerable amount of

irrelevant search spaces in template matching.
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CHAPTER 3: REPRESENTATION OF VIDEO DYNAMICS WITH SELF
SIMILARITY 1

In this chapter, we introduce in detail how to construct a¢hdimensional volume structure called
“Joint-SSV” that can fully characterize the dynamics of deo volume. Then we provide three
types of concretization schemes for building Joint-SS\éh=af them has distinct properties, and

can be applied under various situations.

Preliminaries of Self-Similarity Matrix (SSM)

Let us first introduce some preliminaries of Self-Simikafatrix. SSM provides important in-
sights into the dynamics of a vector in both spatial and temptimensions, which is especially

advantageous in a high dimensional space, as stated inrtizeessearch in [98].

A SSM can be expressed by\ax N matrix:

Rij(e,0) = O(e = v = vj]p), 4,5 € [1, N7,

where N is the length of a vector, ande is a threshold distance. The threshel® a tuning
parameter that changes the characteristics of the SSM dgsaithe| - | is a predefined norm,
and the functiono(-) can be the Heaviside function (i.e(z) = 0if x < 0, andO(x) = 1
otherwise), or other proper filter functions [98]. In thigs#s, we will adopt a different function

for ©, as defined shortly.

The content in this chapter and the next chapter was publisttee paper: Chuan Sun, Imran Junejo, and Hassan
Foroosh, “Action Recognition using Rank-1 ApproximatiohJoint Self-Similarity Volume”, IEEE International
Conference on Computer Vision (ICCV, Spain) 2011: 10072101
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Concretely, for a row vectar = (v, vs, ..., v, ), Whose component; is a column vector such that

v; € Rt andv; = (vi, vig, ..., i )T, the SSM can be explicitly expressed by

0 d12 d13 dln
d21 0 d23 d?n

dnl an dnB 0

whered,; is the distance between vector componentandv; under distance norm such that

dij = [[vi = v .

SSM behaves differently given different distance noprend the thresholds In this chapter
we sete = 0 for a complete representation for the ]SSM representatibiciwis defined below.
We useM (v) to represent the resulting SSM of vectothoughout our work, and we use thge
norm defined byl;; = {37, |vik - vjk|P}§ as the distance metric. This metric gives the Manhattan
distance and Euclidean distance whea 1 andp = 2, respectively. Note that the SSM holds the

following three properties:

1. Symmetry:R; ; = R;;

2. Non-negativity:R; ; > 0

3. Triangle inequalityR; ,, <= R; ; + R«
If all elements of vectov are identical, namely; = v; for all i, j € [1, N], the SSM would become
an all-zero matrix. We name this type of vector and its rasglESM the “constant vector” and

“constant SSM”, respectively. Based on the definition, weesbe that a non-constant vector

v € R? uniquely corresponds to a SSM? under threshold and distance metrig.

13



3
\
\
\
\
\
3
)
.
.
.

Figure 3.1: Four parameterized Lorenz curves and theiesponding SSM representations.
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Figure 3.2: The fusion of two three-dimensional traje@sifbetter be viewed in color)l {t row)
The first figure shows the fusion between the trajectoriesigeed by two Lorenz attractors, while
the second figure is for the fusion results between a Lorenzand a parameterized “Butterfly
curve”. 2nd and3rd row) Thelst column shows the SSM for the blue trajectory; Phel column
shows the SSM for the red trajectory; Thel column shows the Joint SSM computed®yM,.. 0
S'S Myye; Thedth column shows the SSM computed by the gradient opefans,..;—SS Mye|-
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We demonstrate the intuition of SSM by adopting the Loretraetor, which is a three-dimensional
dynamical system representation that exhibits chaotic, flovted for its figure-eight shape, as
shown in Fig.3.1. The four curves are generated using fdsrcgelifferent initialization parame-

ters. The curves show how the state of a dynamical systemes/oler time in a complex, non-
repeating pattern, which, to some extent, is difficult t@rptet directly in the three-dimensional
space. We observe that the SSM representation is not ordytaloeveal the subtle internal vari-
ations within each dynamical system, but it can also unctheexternal discriminating patterns

amongst different attractors.

Joint Self-Similarity Matrix (j]SSM)

SSM reveals the dynamics of one individual vector. What ifwant to encode the mutual dy-
namics between two vectors? Inspired by the Joint RecwerBhat (JPR) theory [98], we extend
the concept of SSM to the joint SSM, which aims to describearttexaction between two vectors.
For notational purpose, we use the short-hand “jJSSM” to teettte joint SSM, and present the

following definition.

Definition 1. The j]SSM is defined as

JRZ;U(GW €w>v>w) = @(EU - HUZ - Uj”pl)@(ew - ”wl - wj ”1?2)7

in whichi, j € [1, N], ¢, ande,, are two internal thresholdg; andp, are two distance norms.

The jSSM will be used in our volume construction procedurdefines an operation that generates
one “fused” SSM out of two existing SSMs. The motivation foistextension is that/ ;" can
be viewed as defining the relationship between two trajexgpiand represent their interaction

in a uniform manner. We illustrate this intuition in the B@, in which the mutual dynamics
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between two different well-known trajectories are showmother words, a recurrence will take
place if a pointv; on the first trajectory returns to the neighborhood of a former pointand
simultaneously a pointy; on the second trajectory returns to the neighborhood of a former
pointw;. For this reason, this extension is advantageous when wetwéuse two SSMs, whose

resulting SSM specifically encodes the mutual dynamicsefriput trajectories.

Joint-SSV Construction

In this section, we first discuss our motivation behind thaetdJ8SV. Then, we introduce in detail

how to build the Joint-SSV, and finally state several prapsrt

Motivation

For action recognition, SSM has been experimentally prdeene a very useful representation
[18, 19, 20, 21]. Amongst those prior works, the one in [21§lssely related to ours. However,
each action video in [21] is simply reduced to one single S&M many useful and salient local
structures may potentially be lost. On the other hand, sgatiporal volume based analysis, in
contrast to the bag-of-features (BoF) based approachesefisrable not only because local de-
scriptors can be extracted, but also many local contexté@lnation at spatiotemporal key-points
can be preserved. In other words, spatial and temporahsgliaformation embedded in the vol-
ume plays a key role in characterizing the volume. For badélseas, our aim in this section is to
embed the SSM representation into a characteristic 3D wlumamely, the Joint-SSV, to assist

action recognition.

Joint-SSV can be virtually constructed from any featurdmedo demonstrate the generic nature

of our method, we consider three types of feature that aré fisquently in action recognition,
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and introduce in detail how we build corresponding volum#hweégard to each type.

Construction Procedure

The Joint-SSV construction procedure consists of two stejps first step is to generate a sequence
of matrices via Laplacian operation. The second step isitd BuBD volume out of a sequence of

fused jSSMs. We now describe the two steps in detail.

Inspired by the Laplacian kernel for edge enhancement iadlignage processing, we adopt the
one-dimensional Laplacian operator to capture the diffieze amongst a sequence of SSMs. The

reason of using the Laplacian operator stems from three:fact
1. Within an image, the Laplacian operator is able to find the fletails, highlight the edges,
and enhance features with sharp discontinuities;

2. As a second order derivative based operator, the Laplasignown to have stronger re-

sponse to fine details than the first order derivative (adeadient operator) [99];

3. Laplacian is an isotropic operator, implying that saffitarity is not dependent on the di-

rection along the temporal axis.

Let U be a sequence of feature vectors

v = {‘/17‘/27 7VN}

with V; e R, LetT : R? — R4 be the operator that maps a vectgre R? to a SSMI'(V;). We

applyI’ on each element oF, resulting a sequence of SSMs

M = {M17M27“'7MN}7
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where M; = T'(V;) and M; € R¥<4, We first apply the gradient operatorto M. This yields a
resulting sequence

g = VM = {G27G37“'7GN}7

whereG; = dM;/dt = M; — M;_; andG; € R*?, The size ofg becomesV - 1 since we ignore
M, for consistent representation. Then, we apply the gradigatatory to G. This yields another
sequence

L= Vg = {L37 L47 ) LN}7

whereL; = VG, = G; - G;_; andL; € R%4, Similarly, we ignore the first elements 6f The size

of £ becomesV - 2. Notice thatl = VG = V2M andL; = M; — 2M;_, + M;_,.

The resulting sequencé carries the2nd order difference information of1. Analogous to the
case when Laplacian operator is applied to one-dimensi@tabrs, the “edges”, “sharp points”,
or “steep changes” in the SSM sequenkttis enhanced. Sinc#1 corresponds to the spatial

dimension of video frames, the temporal dynamics is consdl® be embedded ifi.

The M andL encodes the spatial and temporal dynamics, respectivalym@tivation of defining
the concept of Joint-SSV here is to create a representditairencodes both spatial and temporal

dynamics in a coherent way, namely

Definition 2. Given a sequence of feature vectdrs {V;,V5,---, Vv } with V; e R¢ andi € [1, V],
the Joint-SSV ofl is formed by concatenating a sequencéVof 2 matricesS = {Ss, S4, -+, Sy },

whereS is obtained by element-wisely fusingl and£ of ¥, i.e.,

Sj=M;oL;, je[3,N],

whereo is the element-wise multiplication operator between the twatrices) ; and L.
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According toDefinition 1, both M; andL; are SSMs, and the resultirfg is thus a JSSM. The&

is a collection of j]SSMs, and the Joint-SSV is the concatenatf all ]SSMs inS.

Figure 3.3: Visualization of the symmetric Joint-SSV. Thaldbe figure shows its cut in three
directions. The right figure shows the X-section of the vatum

Properties of Joint-SSV

The Joint-SSV has two distinct properties. First, the 388V is a symmetric 3D structure. The
reason is that for a given vectdr, all elements of its\, G, and£ consist of symmetric matrices.
Second, the Joint-SSV encodes both spatial and temporalntiga of an action video, whose
spatial dynamics is frame-wisely encoded in SSMs, whiléeibsporal dynamics is first enhanced
by the Laplacian operator, then encoded by the concatenatiall fused jSSMs. In a word, the
construction of Joint-SSV enables us to combine both tlee-inhme dynamics and the intra-frame

dynamics in an video.

We illustrate a Joint-SSV in Fig.3.3. The central figure @f.Bi3 shows its cut in three directions.
The X-section representation demonstrates its internmauatycs. It is worth noticing that this vol-
ume might also encode redundant information, and we aredabie problem of further reducing

its dimensionality and removing its redundancy. For humztioa videos, we will provide three

20



schemes to construct the volume from various featuresrdilv-level feature like silhouettes and

tracked points, or mid-level feature like the HOG3D dedorip

Joint-SSV Concretization

In practice, to make full use of the Joint-SSV, we need todbdidint-SSV upon a certain feature.

In this section, we present three concretized Joint-SSMlagid construction procedures.

Silhouette-based Joint-SSV

Human silhouette in an action has been extensively explioréae action recognition literature.
The advantage of silhouette-based approaches is thatisilieaas a feature can be easily extracted
from raw video frames using object localization and backgrbsubstraction. Silhouettes can be
easily extracted from static or uniform action backgrouddwever, it is harder or even impractical
for more challenging action sequences with dynamic backgtoFor this reason, we only test this

scheme on Weizmann dataset, which provides well-extractieouette features.
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Figure 3.4: Convert silhouette features to time seriesgugia method in [100] foBendandJack
action from the Weizmann dataset
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Figure 3.5: A sequence of computed SSMs for frames seleobed the theBendaction in the
Weizmann dataset. Note that all above SSMs are of identicaasion.

HOG3D

block \ slice

Figure 3.6: (Left) Extracting HOG3D feature descriptoreafthe dense sampling for the action
volume in ROI and the partitioning of the volume into blockRjght) All blocks with the same
temporal location form alice Each slice is further vectorized to a vector feeding in® Jdbint
SSV construction procedure

To answer the important question of how to represent siltteishapes efficiently and robustly,
various solutions such as shape moments [101], Fourierigess [102], and shape context [103]
are proposed. In our framework, we first represent the sdtieun each frame using SSMs, and
we transform an action sequence into a volume frame by framdetail, we extract the contour

from silhouette in each frame and transform the contourtinte series using the method in [100],
as shown in Fig.3.4. The time series are normalized to zesmmaad unit variance before being

fed into the framework as input vectors to generate the B8\. Fig.3.5 shows a sequence of
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generated SSMs for ti@endaction in the Weizmann dataset. It can be observed that latins

and subtle differences between silhouette contours apctefl in SSMs.

HOG3D-based Joint-SSV

We employ the dense representation as in [104], and use HOd&3Driptor [105] at densely
distributed locations within a Region of Interest (ROI) ted around the actor, and partition the
volume into regular overlappingiocks and all blocks are then partitioned into small regakats
Histograms of 3D gradient orientations, generated usirtedahedron based quantization [105]
with 6 orientation bins, for cells within a block, are themmauted, and concatenated to form a
block descriptor. Here we name all blocks within the sameptenal location sslice, as shown in

Fig.3.6.

We used the same configuration for defining ROIs but a diftdvkatk setup as in [104]. We used
2% x 2% x 27 pixel blocks subdivided int@ x 2 x 2 cells, and computed the HOG3D descriptor for
each block. Note that andr are parameters that control the size of blocks. We letnge fron

to 4. Otherwise, the larger theis, the less the number of blocks for each slice will be, wimay

be disadvantageous for the computation of Joint SSVs.rTaages fron to 5. It can control the

depth of the generated volume.

Slices overlap with each other between consecutive onefiyg a redundant representation,
which enhances the discriminative power [104]. Within eslite, all blocks are concatenated in
row order into a block sequence. This sequence is a vectarfosduilding the self-similarity

matrix. Using all slices, we then construct a Joint SSV ou§8Ms and Joint SSMs using the

procedure described in Section 4.
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Tracked Points Based Joint-SSV

We evaluate our framework also on the CMU Mocap dataset and@F-CIL dataset containing
tracked points at limbs for human actions. Both datasettagotracked points for different joints

of human body for each action frame.

Human pose can be represented using a simplified model ofrhskedeton composed of bones
that are connected hygints. The position of all joints at a given time is known agase described
as a vectop € R**’I, where|.J| is the number of joints in the skeletal model and each joiqires
3 elements to describe its 3D position. A mocap sequence edhdn formally described as a
time-dependent sequence of poses. This can be represgnae2lbmatrixS € R7*(3x17)  where

T is the number of poses (frames) in the mocap sequence.

The CMU mocap dataset uses a skeletal modé&kgbints (i.e.,|.J| = 32). It provides a detailed
configuration for the joints such as the thumb joint. Sincgalis are sufficient to represent the
skeleton for a motion action [106], we select 13 key pointg] then concatenated them into a
vector in the following orderteft knee, right knee, left foot, right foot, hip, left elbaight elbow,
left shoulder, right shoulder, neck, head, left hamtdright hand as shown in Fig.3.7. Note
that the concatenation order of the key points actually am¢snatter much in building the final
volume. In this way, each frame of an action sequence canitialinrepresented by a vector of

size 13, which is used in the subsequent Joint SSV congirustage.

The UCF-CIL dataset also provides the joint position infation for each frame of actions. As
shown in Fig.3.7, this dataset provides manually marked limb positions. We build SSMs and

Joint SSVs in a similar way to the CMU Mocap dataset.

Many popular vision-based or statistic-based action reitimgn methods may substantially fail

2http://cil.cs.ucf.edu/ucf-cilactiondataset.html
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when dealing with these two datasets because of the didcaeteed points. However, our JSSV-
pos model is equally capable of discriminating actions im#éoum and flexible manner based on

a set of tracked points. We will elaborate the applicatioowfJSSV-pos to those two datasets in

Chapter 7.
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Figure 3.7: Building SSMs for both CMU Mocap dataset and tid#-tCIL dataset. (1st row) The
RunandKick action in skeleton representation in CMU Mocap dataset.Skieéeton in the center
with indices shows the tracked point position and theirgedifor forming the initial vector; (2nd
row) The SSMs correspond to tiRunandKick actions. All SSMs are of the dimensidf x 13
and are generated from a vector by concatenating the trdickbdooints; (3rd row) Thdouette
action in UCF-CIL dataset represented by the manually ntatldekey limb positions; (4th row)
The SSMs corresponding to theuetteaction. All SSMs are of the dimensidn x 11.
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CHAPTER 4: MULTILINEAR APPROXIMATION OF JOINT-SSV

In this chapter, we first describle the motivation of the Iamk decomposition for Joint-SSV.
Then, we provide some necessary preliminaries of mulalinensor algebra. Next, we discuss in
detail the low-rank approximation algorithm for Joint-S$hally, we exposit the advantages of

our algorithm over traditional dimensionality reducti@chniques.

Motivation

Numerous methods have been proposed in recent years foimgdpgm high-dimensional space

to low-dimensional space. Here we address the problem afroby low-dimensional represen-
tation of Joint-SSV from a different perspective. Since Jbet-SSV is a characteristic, unique,
and a symmetric 3D structure, we treat the Joint-SSV as atemsnultilinear algebra, and aim

to perform multilinear projection to generate its compagresentation. In this section, we first
introduce some preliminaries of tensor, then present aorigthign that approximate the Joint-SSV
to its low-dimensional alternative, and finally analyze tisefulness of the proposed algorithm in

dimensionality reduction.

Tensor Preliminaries

To better assist our elaboration, we briefly provide somessary preliminaries for tensor approx-
imation. A high-order tensor is denoted.ds R/1x/2x>In  Then-mode product of a tensot by

a matrixU € R/»*I» denoted byA x,, U, is defined by a tensor with entries [107]

(A xp U)z‘1~-~z‘n71jnz‘n+1~-~m = Z iy iy Ui -
in
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The Forbenius norm of a tensdre R1/2x>I~ js defined ag.A| = \/(A, .A). The rank of a tensor
A is defined as the minimum number of rank-1 tensors that sura 4J108], and a tensor is said
to be rank-1 if it can be expressed as an outer product of a eunflvectors. Thei-rank of A,
denoted byR, = rank,(.A), is the dimension of the vector space spanned by:thede vectors.
According to the description of HOSVD in [31], any tensére R/1*/2x<Ix can be expressed as
the product

A=Bx; UD xq U sy UM, (4.1)

with the properties that ™ = (U™ U{™...U{) is a unitary(1,, x I,,) matrix.

Rank-1 Tensor Approximation Algorithm

The problem of tensor rankR:, R, -, Ry ) approximation for a reaVth-order tensopl € R1x/zxxIn
can be formulated as finding a tensbe R</2x-xIx satisfyingrank, (A) = Ry, ranks(A) = Rs,
-, ranky(A) = Ry such that the least-square functidre argmin ; | A~ A, can be minimized.

The desired tensor can be represented as
An A=Bx; UD xa U gy UM, (4.2)

whereU(™ ¢ RIvE J(2) ¢ Riaxfz .. U(N) ¢ RIvEn and B ¢ Rfaxfexhn andU(®) has

orthonormal columns for <7 < N.

Let A be a Joint-SSV. We considgr as a3-order tensor in multilinear algebra, and we attempt to

find an approximation of, denoted byA, that satisfies the following objective function

A=argmin |A- Als,.
A
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approximated
rank-1 tensor A4

Figure 4.1: Rank-1 approximatiof = \U(M o () o U®) for a Joint SSVA

To obtain an optimal rank-1 approximation for the Joint-S8% adopt the alternating least squares
(ALS) algorithm in our work in an iterative fashion similar {09, 110]. Although the truncation
of the high-order SVD (HOSVD) of a given tensor may lead to adymank-(R;, Rs, ..., Ry) ap-
proximation, it is known that this will not necessary genertne best possible (least-squares)
approximation under the givemrmode rank constraints [109]. In addition, although the @it
convergence of ALS-based method has not yet been analyzed literature, it is proved in [111]
that linear convergence of ALS can be achieved in a neigldmatiof the optimal solution by the

technique of Generalized Rayleigh Quotient (GRQ).

The rank-1 approximation od yields the fact that the tens@rin Eq.(4.1) is a tensor of dimension
1 x 1 x -+ x 1, which is equivalent to a numerical scalar. Siée have orthonormal columns, we

have|U® |, =1for 1 <i< N, and Eq.(4.2) can then be transformed into

Ax, UD s, U@ xy UM 2 ),

This expression leads to an efficient computation compartgdtihie conventional HOSVD-based
approximation methods. In our work, we only consider theeagkenN = 3 since we deal with
three-dimensional Joint-SSV. The algorithm for rank-1ragpnation of3-rd order tensor Joint-

SSV is described illgorithm 1. For clarity of presentation, we dendté!), U(?) andU®) as
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«, 3, and~, respectively. Thé&; for i = 1,2, 3 denotes the multiplication between a tensor and a

vector in moderof that tensor, whose result is also a tensor, namely,

1
B = .A;Z-a = (B)]k = ZAijkai~
i=1

The value ofU (™) ¢ RI»<E» was initialized with the truncation of the HOSVD in [31]. Hewer,
the computation of HOSVD is very expensive in that for thenmatnfoldings A, (1 < n < N),
the columns of the column-wise orthogonal matrices spaisplaee of the dominant left singular
vectors. In our work, we instead adopt the uniformly disttéad random numbers (though columns
are not necessarily orthonormal) for initialization. 8tag with random initial values fot, 3, and

v, the algorithm alternately updates one variable while §xhme other two and iteratively achieves
the optimal approximation. The iteration stops when thietihce betweenl and A arrives at a
sufficiently small value (i.e.10-1°), as illustrated in Fig.4.2. We observed that when the tit@na
number is 5, it is experimentally sufficient to obtain a rantensorA = \a o 8 o v that achieves

the optimal approximation of the original Joint-SSV

Rank-1 approximation error

1 2 3 4 5 6 7 8 9 10
Iteration number

Figure 4.2: Rank-1 tensor approximation error for Joint SSV
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Feature Properties and Discussion

Algorithm 1: Joint-SSV rank-1 approximation

input : A 3-order tensor Joint-SSM € R’*/*K and an iteration termination threshald

output: Three vectorsy, 3, andy that minimize|.4 — Aa o § o v|2, wherea e RI*1, g e R/x1,
7 eREL, andlaly = ]2 = |y]2 = 1

Initialize o), 8O, and ~();

while | A - X®a® o 51 04D, > e do

) = Ay B34y O

Bt = AR a3y ®);

F(t+1) = Ax,a0%,80);

at+l) = a’(tﬂ)/”a’(tﬂ) ”’

Bt+1) = g(m)/Hg(m) I;

,y(t+1) — ’,7’(t+1)/”:37(t+1) ”’

2\ (t+1) :A;1Oé(tJrl);zﬁ(tH);g”)/(Hl);

end

Linear methods, such as principal component analysis (R@A)multidimensional scaling, aim
to perform a linear mapping of the data to a lower dimensispate such that the variance in the
low-dimensional representation is maximized. Nonlineahniques, including Isomap, locally
linear embedding (LLE), Laplacian eigenmaps, etc, coost@uow-dimensional data represen-
tation using a cost function that retains local propertiethe data. However, those techniques
often become inadequate when handling multidimensiortal decause they result in very high-

dimensional vectors, or break the natural structure anelation in the original data [112].

Our method can be categorized into multilinear projectioait tnaps from a high-dimensional
tensor space to a low-dimensional vector space [112], Isecthe rank-1 tensor approximation
enables the mapping from the high-dimensional Joint-S5d low-dimensional final vectors,

B, andy. Our method differs from these existing dimensionalityugttbn methods in two aspects:

1. Rather than representing input data as vectors, we finthtreimensional representation

by performing mode-wise iteration until convergence, withgoing through vectorization,
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as shown imAlgorithm 1

2. We holistically operate on natural tensorial repregeriaf the Joint-SSV, and the structure

and correlation in the original volume are then preserved.

In addition, since the Joint-SSV is a symmetric structure,havel = .J, which yieldsa = 5 in
Algorithm 1. Therefore, only two out of three vectors are responsibitelfe low-dimensional
representation. The dimension of the original Joint-SSK isK, while the dimension of the final
feature vectors used for classificatior2is+ K. It is the vectorx (or 3) that captures the spatial

dynamics of the Joint-SSV, and the vectathat encodes the temporal dynamics.
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CHAPTER 5: ACTION RECOGNITION USING JOINT-SSV 1

In this chapter, we discuss how to perform action recogmitising our Joint-SSV based represen-
tation, with the help of low rank decomposition as dimenalidy reduction technique. We veri-

fy the feasibility of our framework using two classificatoretrics, namely, the cross-correlation
based, and the Gaussian Process based metric. We expeoimfesg datasets: the Weizmann, the

KTH, the UCF sports, the CMU Mocap, and the UCF-CIL dataset.

Motivation

We address action recognition from a different perspecibrapared to traditional approaches. In
contrast to [18, 19, 20, 21] where they reduce an action segu® a 2D SSM, our formulation
constructs &-order tensor for each action sequence, which we refer toeaddint Self-Similarity
Volume (Joint-SSV). We propose that a Joint-SSV for a hunaéiomis sparse, and hence propose

a new optimized rank-1 tensor approximation to represent it

This approach has multiple advantagist, avoids the need to pre-align videsgcondleads to
huge dimensionality reduction, and hence a significanhggvi memory and computational time,
because the reference database is just a collection ofiréeksors; anfinally, we only need one
rank-1 tensor per action in our reference database andahem@quire no training. We evaluate
three different schemes of constructing the Joint-SSV,ehathe HOG3D-based, the silhouette-
based, and the tracked point based schemes, on five pulasetst The results are very promising,

and experimentally outperform most baseline methods.

The content in this chapter was published in the paper: Cl8uam Imran Junejo, and Hassan Foroosh, “Ac-
tion Recognition using Rank-1 Approximation of Joint S8Ifailarity Volume”, IEEE International Conference on
Computer Vision (ICCV, Spain) 2011: 1007-1012.
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In [113] the authors provide an excellent survey about thieeot action recognition methodolo-
gies. They state that almost all current methods in thealitee can be classified into two cate-
gories: single-layered approaches and hierarchical appes. The former category are methods
that can represent and recognize actions directly basemage sequences, which themselves are
classified into space-time approaches and sequentialagps. The latter category represents hu-
man actions using constructed example-based or state fhadetl models, and describes action
sequences in terms of simpler human activities called sriisy We observe that our framework
can be categorized as single-layered approach as our vgeneation scheme relies on sequen-

tial dependency.

Our framework is shown schematically in Fig.5.1. We corgtau SSM for each frame of the
video sequence using a certain type of feature vector. Wedkieact joint SSMs (j]SSM) from this
sequence of SSMs, leading to a Joint Self-Similarity Volydwnt-SSV). Joint-SSV is then de-
composed into its rank-1 approximation vectors using amopéd iterative tensor approximation
algorithm. This yields a set of compact vector descriptbet &re discriminative between differ-
ent actions. To evaluate our method on human action recognitve used five different public

datasets.
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Classifier

o

Figure 5.1: The flow of our action recognition frameworkirst, given an input action video,
we extract either low-level features like silhouettes inmanfe-by-frame manner, or middle-level
features like HOG3D from the partitioned video blocks, omgatracked feature point&econd
we transform the feature vector in each frame into an SSMmRhe sequence of SSMs we then
construct a symmetric and unique 3D structure, which wer riefeas the Joint Self-Similarity
Volume. This volume holds characteristic information ataction dynamics. However, in order
to exploit it more efficiently, and handle its large dimemsitt is decomposed into three compact
and discriminative vectors, two of which are identical (tlmsymmetry). These descriptor vectors
characterize the internal dynamics of an actidfinally, these vectors are used for measuring
distances to a reference set of vectors for final classificati

Two Action Classification Methods

To validate the ability of our decomposed vectors for acteeognition, we consider two classi-
fication methods, namely the cross-correlation metric thatsssification (X-corr based), and the
Gaussian Process based classification (GP-based). Then@stidopts thé Nearest Neighbor-
hood ¢-NN) approach, which is straightforward and widely-usediany applications: an action
is classified by a majority vote of its neighbors, with theeabjbeing assigned to the class most
common amongst it nearest neighbors. The second one is a latent variable baseel with

a nonlinear probabilistic mapping from latent positionsd @ a stable approach with respect to

different parameter settings, and it has a very good alafityeneralization [114][115].

The motivation of introducing the GP-based classificati@iimd lies in the following facts. The

k-NN approach in X-corr based method relies on the assumfitadnnput feature vectors are em-
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bedded in linear Euclidean distance space, which is stifaigtard and easy to compute. While the
GP-based classification assume that the feature vectolzeaaondeled by parameterized Gaussian
process, which is more parameterically involved and génditzerefore, in order to demonstrate
that our framework can indeed produce discriminative fieatectors, we show results under both

classification methods.

Cross-correlation metric based classification

Let &, and ¥, be the two initial vectors. By dimensionality reduction veank-1 tensor approx-
imation, we obtain their corresponding approximated veptirsv® = {U" U U} and
v0) = (UM UP U}, respectively. Specifically, for bott) andv(), we know that/!" = U
andU" = U due to volume symmetry. Note tha} "’ andU{" are not necessarily of equal
length since they are determined by the spatial dimensidmedf corresponding Joint SSMs, and
neither are/*) andU”. To tackle the length inequality, we normalizg” andU‘" (as well as

UZ.(?’) andUJ@)) to zero mean and unit variance, and make them of equal lesgtlescribed below.

We define the cross-correlation based meljg,,., as
N () (k)
Da:corr(\lliu \Dj) = Z d(Uz 7Uj )7 (51)
k=1

with
d= maXC(Ui(k), U;k)),

wherek = 1,2, 3. The functiorC returns the vector containing the cross-correlation \sahetween

the components!* andU"’, namely

36



(jgu
)
/(jgv .(Zgu
whereC}” andC{" are the variances of, andw;, andCy* is the cross-covariance of andv;

defined by

Clu,v) =C" =

1 N
Cyt = N > (05 = p) (Uicy = i),
i=t+1

andu, andyu,, are the mean values of andu;, respectively.

For various motion sequences, their execution frames at@pty of unequal length, leaving those
two components of unequal size, then we zero-pad the shattor to the length of the longer
vector. By this similarity measure, the more similéﬁk) and U](’“) are, the larger the value @

will be.

Gaussian process based classification

For notational convenience, we use the following shorteantihe training data is denoted by

n x d matrix X =[x, ..., X, ], the target value is denoted byx 1 vectory = [y, ..., y,]|*, where

y; € {-1,1} and the latent function values are summarized by| f1, ..., f,]7 with f; = f(x;).

Let D = {(X;,y;)|i = 1,...,n} = (X,y) be the observed data. Test data can be referred to by
asterisk, namelyf, is the latent function values for test da¥a. = [x.,..,X..,]. Covariances
betweenf andf, are written by[K... ]i; = k(x4 ;,%. ;), [K.]ij = k(xi, %), [ke]i = k(x5, (2)4),

andk,., = k(z.,z.), where[---],; denotes the entryj of the matrix.

A GP [116] is a stochastic process fully specified bynaan functionn(x) = E[f(x)] and a
positive definitecovariance functiork(x,x’) = V[ f(x), f(x’)]. We put a Gaussian process prior
on the latent functiorf such that any number of data evaluated from this functionahamsulti-

variate Gaussian density, that i f|X, 0) = V(fjm,, K).
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Given data seD, we wish to find the correct class label for a new databy computing the
class probability?(y.|z., D). The marginalization over the training set latent varialite making

predictions is
]P’(f*|X*,y,X,9):/]P(f*,ﬂX*,y,X,@)df:fIP’(f*|f,X*,X,Q)P(f|y,X,¢9)df,

where

P(f.|f,X,,X,0) = N (£, KTK'f, K., - K'K"'K,),

and

P(fly, X, 0) o< P(y|f, X, 0)P(f[X,0) = {ﬁ P(yilfi, 0)}P(£]X., 0).

i=1

Finally, the predictive class membership probabifity:= P(y. = 1|x.,D, ) is obtained by inte-

grating out the test set latent variablés

P(y.b.,y.X,0) = [ P(ILIP(flx..y. X, 0)df..

In our experiments, we adopted the GPML pacKdge Gaussian Process learning and inference.
There are mainly four key factors in GP learning: mean fumc{MF), covariance function (CF),
inference function (IF), and likelihood function (LF). Fdifferent applications, each factor has
various optional functions to choose from. For example, ML, there are9 MF, 21 CF, 6 IF,
and6 LF. For thoses804 function combinations, we filter out those combinationg e inappro-
priate for classification, and ignore those invalid combores. For example, exact inference in IF
and Gaussian likelihood in LF should not be combined forsifestion in our Gaussian Process

learning, yet they can be combined for regression. Thisieétion process results in a total tf4

2http://www.gaussianprocess.org

38



candidate combinations. We will describe how we performeeixpents under this classification

method in the next section.

Experiments

We evaluated our method on 5 well-known public datasetszkvenn, KTH, UCF sports, CMU
Mocap dataset, and the UCF-CIL dataset. Our goal is to eteatha feasibility of our framework
on various datasets with different Joint SSV schemes. Ftraafesults reported in this section, we
performed the recognition using the leave-one-out crokgdataon based on the two classification

methods.

We perform Gaussian Process (GP) based classificationtirgfigllowing steps. First, for thes4
function combinations in the GP parameter settings, weop@rbur final action classification by
randomly selecting00 combinations. This is motivated by the fact that, in the absef any prior
information, all combinations are equally likely to progithe best classification rate. In addition,
thosel00 random combinations can largely cover almost all potef@Rparameter combinations.
Second, since each dataset has its own corresponding J&MWitg perform action classification
under these randoi®)0 combinations for each type of JSSV, and report our best fatéisat type.
Lastly, we make comparisons with both our X-corr based nethad other methods reported in

the literature.
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Figure 5.2: Screenshots for different action classes oflipdatasets. (1st row) The Weizmann
dataset; (2nd row) The KTH dataset; (3rd row) The UCF spatasét; (4th row) The CMU Mocap
dataset; (Last row) The UCF-CIL dataset. Note that for thed OWbcap dataset, the actions shown
here denotdick, run, walk-turn, jump, and cartwheelgspectively
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Weizmann dataset

The Weizmann datasétconsists of videos of 10 different actions performed by ®wsct Each

video clip contains one subject performing a single actidime 10 different action categories
are: walking, running, jumping, gallop sideways, bendioige-hand-waving, two-hands-waving,
jumping in place, jumping jack, and skipping. Each of thegliasts about 2 seconds at 25Hz with

image frame size of80 x 144.

We evaluated two schemes, namely the JSSV-silh and the G8&34d, separately, using the two
classification methods, respectively. The JSSV-pos schemgavailable for this dataset since
there is no body joint point information available. For ti&SY-silh scheme, we used the provided
well-extracted silhouettes in the dataset to build inputees for the whole framework; and for

the JSSV-hog3d scheme, we extract the ROI using the siltesugy fitting a bounding box around

each of them. To be consistent, all ROIs in our experimemsealed and concatenated to form
a128 x 64 x t volume, where is the frame number in sequence. We evaluated various bipek s

setups (Table 5.1).

For the X-corr based classification, we were able to achieeeagnition rate ol 00% for JISSV-
silh. We also observed that when= 4 andr = 3 (i.e. block size:16 x 16 x 8), the JSSV-
hog3d scheme yields the best recognition raté00f%, as shown in Table 5.2. For the GP-based
classification method, we use the same generated featu@ves in the X-corr based method,
and scanned through the randomly choseéihcombinations. For the JSSV-silh and JSSV-hog3d

scheme, we achieved our best classification raté8@f and97.3%, respectively.

Shttp://www.wisdom.weizmann.ac.il/Vision/SpaceTinwians.htm|
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Figure 5.3: Recognition rate under different HOG3D bloclpttis 27 for three datasets using
JSSV-hog3d for the X-corr based classification method

KTH dataset

The KTH dataset consists of 6 actions performed by 25 actors in four diffesmenarios. We
followed the evaluation procedure in [104] but used slighkiifferent settings for block size. We
extracted the ROIs using the bounding boxes provided by. [Bihce both the JSSV-silh and
JSSV-pos schemes are unavailable for this dataset, weadgdlanly the JSSV-hog3d scheme on

this dataset under various block size configurations, asshoFig.5.3.

For the X-corr based classification method, wheis small, the block depth is small, making the
final decomposed vectors non-discriminating for clasdifica But asr grows, the recognition

rate grows accordingly. This also agrees with our intuitizat larger blocks contain more cells,
and capture more stable gradient information compared thélsmaller ones. But as the block
size becomes larger, more redundant information is intteduleading a reduced recognition rate

beyond an optimal size.

Especially, our best recognition rate &f0% is achieved wher = 4 andr = 4, This outperform-

http://www.nada.kth.se/cvap/actions/

42



s both the result in [104]9¢.4%), which has similar experimental configuration to us, aral th
state-of-the-art in [117]9%.5%), while using the GP-based classification method yieldsbtst

classification rate 0$6.5%.

Table 5.1: Recognition rate comparison for 3 action dasasetler the JISSV-hog3d scheme using
both X-corr based and GP-based classification methods. dfoonstration purposes, we also list
our recognition rates under only four random GP parameténgse. Thex andr are parameters
controlling the block siz€r x 2% x 27

| | I Weizmann | KTH | UCF sports |
7=1|7r=2 | 7=3 | 7=4 | 7=5|| =1 |7=2 | =3 | =4 | r=5|| =1 | 7=2| =3 | =4 | =5
k=2 70.5 78.4 82 80.1 71.1 70.5 73.9 64.8 76.3 60.2 68 64.7 69.8 72 48.6
X-corr k=3 75 76.5 86.2 87.3 85.4 75.5 70.4 84.8 88 84 63.9 72.8 86.9 80.5 76.4
k=4 83.6 90.1 100 90 89.1 80.2 83 94.8 100 92.2 68.2 81.9 64.8 77.5 76.1
k=2 76.2 82.4 69.6 70.2 70.9 83.9 90.6 92.4 95.6 67 69.8 84.3 68 81.1 81.8
GP-paral| =3 86.6 81.3 72.5 81.3 71.2 92 84.7 95.7 82.3 80.9 82.7 69.4 74.7 724 81.6
k=4 685 | 91.6 | 83.2 | 939 | 87.2 90.2 | 736 | 814 | 93.1 | 83.6 75.3 | 834 71 72.4 | 70.4
k=2 67.4 70.5 92 81 91.5 72.9 71.2 72.4 68.2 85.4 73.1 84.9 80.2 79.7 73.3
GP-para2| =3 73 83 85.2 67.9 84.8 75.1 82.6 87.1 81.4 82.5 84.6 80.9 76.6 79.2 77.4
k=4 77.5 68.4 81.1 72.5 70.5 79.9 70.5 81.2 91.7 92.3 72.2 74.8 72.9 73.9 74.8
k=2 88.1 88.3 68.8 91.9 94 75.5 76.6 80.5 85.7 67.7 76.2 68 86.9 87.8 77.8
GP-para3| =3 955 | 919 | 89.7 | 818 | 721 914 | 832 | 917 77 79.9 778 | 744 | 86.8 | 75.1 | 69.4
k=4 78.5 70.8 67.8 94.2 75.7 68.5 72.1 86.2 76.5 93 84.2 75.6 72.3 75.9 69.1
K=2 92.1 69.5 77.6 77.7 86.8 85.6 81 71.4 89.6 69.9 76.7 77.5 73.5 73.1 81.9
GP-para4| k=3 843 | 89.8 | 776 | 729 | 69.5 755 | 73.8 | 823 | 69.6 | 78.7 68.5 | 80.4 | 80.8 | 79.2 | 69.3
k=4 89.3 72.9 78.2 83 73.6 70 70.2 89.7 75.4 84.5 71.6 72.7 77.5 69.9 78.1

UCF sports dataset

The UCF sports dataset contains 11 actigudf swing (back, front, side), kicking (front, side), rid-
ing horse, run, skate boarding, swing bench, swing (side),walk Similar to the KTH dataset,

this dataset does not provide silhouette or tracked pofotnmation. And due to dynamic back-
grounds and potential moving viewpoints, it seems impcatto consistently extract reliable sil-
houettes from it, meaning we cannot apply our JSSV-silh @\VJpos schemes. Fortunately,
this dataset provides the well-extracted bounding boxesxtracting the ROIs from each action

sequences, which enable us to apply our JISSV-hog3d scheme.

We choose 10 example videos for each action class. For ¢tensysin our experiments, since in

the UCF sports dataset there are different number of exavigees for different actions, for those
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actions with less than 10 examples such as “golf-swing-hagklf-swing-side”, and “golf-swing-
front”, we increased the number of available video examplesadding a horizontally flipped

version of selected existing videos. This resulted in 1ldhgxe videos in total.

For X-corr based classification method, as shown in Tablgdailbest recognition rate 66.9%
was achieved wher = 3 and 7 = 3, which is comparable with the state-of-the-art in [118]
(87.27%). For the GP-based classification method, we were able iewathe best rate &.5%,

which also outperforms our X-corr based method.

CMU mocap dataset

We used motion capture data from CMU dataset to evaluatedttiermance of our framework. A
total of 164 sequences corresponding to 12 actiaradkturn, golf, fjump, flystroke, jjack, jump,
carwheels, drink, kick, walk, bend, ruwere used. This dataset is different from all previous
datasets in that the only information stored are trackedyhjoihts location rather than frame

pixels. Therefore, only the JISSV-pos scheme is applicable.

For the X-corr based classification method, our overall gad@n rate wa$3.1%, which out-

performs the method in [11992.0%), but [119] adopted a different evaluation setting usintyon
5 actions, each performed by 3 actors. Note that our appraschoutperforms the method in
[21] (90.5%), which also explored several SSM-based approaches. E@RPhbased classification
method, we were able to achieve the highest rat@4af%, which even outperforms the X-corr

based classification method.
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UCF-CIL dataset

The UCF-CIL dataset consists of 56 sequences of 8 actiorell@t bbuette, 12 ballet spin, 6 push-
up, 8 golf swing, 4 one-handed tennis backhand stroke, 8havaled tennis backhand stroke,
4 tennis forehand stroke, and 10 tennis serve). Each adiperformed by different subjects.
Compared with the CMU Mocap dataset, all the joint positiohthe human body in each frame

are manually annotated frame-by-frame, rather than beptguced by motion capture system.

This dataset provides 11 joint positions for every framehaf action sequence. Similar to the
construction procedure of the CMU Mocap dataset, we budtX8SV-pos volume using the
annotated points in the following order: head, right sheyldght elbow, right hand, left shoulder,
left elbow, left hand, right knee, right foot, left knee, aledt foot. Similar to the CMU Mocap
dataset, only the JSSV-pos scheme is valid for this datd&smtthe X-corr based and GP-based

classification method, our best recognition rates &ré% and90.7%, respectively.

Table 5.2: Recognition rate comparison for 5 datasets letwar 3 different schemes (JSSV-silh
[ JSSV-hog3d / JSSV-pos) and other methods in the literafline symbol - means the rate is
unavaliable under corresponding schemes.

| Methods | Weizmann | KTH | UCF sports ]| CMU Mocap | UCF-CIL |
X-corr based 100.0100.0- -/100.0- -/86.9/- -/-/93.1 -/-/87.1
GP-based 100.097.3/- -/96.5/- -/88.5- -/-/94.8 -/-/90.7
Schindler [120]100.0 Gilbert [117] 94.5| Kovashka [118] 87.27| Shen [119]92.0| Shen [121]95.83
Zhang [122] 97.8 Lin[71]93.4 Klaser [123] 86.7| J.Imran [21] 90.5
Other methods J.Imran [21] 95.3| Schindler [120] 92.7 Wang [124] 85.6
Niebles [72] 90.0| Weinland [104] 92.4
Liu [125] 89.3 Liu [125] 82.8
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CHAPTER 6: ACTION RECOGNITION FOR INCOMPLETE VIDEOS 1

Background and Motivation

Action recognition in video data has been applied in mangsseich as video retrieval, annotation,
surveillance, and human computer interaction, etc. Desfsiextensive study, it still remains one
of the most challenging problems in the literature. Foractiecognition, many approaches have
been proposed and high recognition rates have been regortearious datasets in the literature.
However, we noticed that many existing methods lack sorme t#fuealism, in the sense that they
include only video data that are complete, i.e. have no mgsgarts, occlusions, or noise, and are
densely sampled. In a world inundated with videos (e.g. Yoel}, vast majority of data may be one
way or another subject to some level of incompleteness (f@sedeshortly). The purpose of this
paper is thus to determine to what extent incomplete datas@fl and carry helpful information

for action recognition.

For clarity, we use the word “complete” throughout this pajgerefer to raw, uncontaminated,
occlusion-free, or densely sampled video, and “incompleteefer to video that is contaminated,
corrupted, occluded, sparsely sampled, or simply missatg ¢pixels or blocks). We observe
that most existing recognition methods require action datae complete and they would fail
to achieve the same recognition performance if the videadgsmplete. For instance, methods
based on the spatiotemporal descriptors, such as the spe@terest point (STIP) descriptor
[118][126], the HOG3D descriptor [127], and the bag-of-d®based approach [128], etc., would
fail to detect sufficient features under high degree of migsiata (e.g. when using a compressive

sensing device). Some approaches have also been propoladdie occlusions itracking or

1The content in this chapter was accepted in the paper: ChuanHassan Foroosh, “Should We Discard Sparse
or Incomplete Videos?”, IEEE International Conferencemagde Processing 2014.
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detection[129][130][131], but they may still fail under severe ocgllons. Also, if a large portion
of the video element is sparsely sampled, the performanbagf-words based approach [128]

will inevitably be hampered due to insufficient video words.

Researchers prefer complete and clean video data rathemitmplete or corrupted data due to
mere convenience. As a result, it is conceivable to assuatgptitentially useful information is

lost when we discard incomplete data in a dataset. This keatth® important questions our study
aims to answer: (1) Is it always wise to simply discard inctatgvideo just because they are

incomplete? (2) Is it possible to make full use of incompbidéa in action classification?

Many factors can cause a video to be incomplete. Occlusiod®bck loss (e.g. in ATM video)
are some common examples. For example, part-based dstéetae been explored in handling
the partial occlusion in images [132]. They alleviate thelasion side effect using the unocclud-
ed parts to determine the human pose. In [133] the authcegrities the part-based detectors
to the sliding-window detectors, and propose a human detentethod to handle image partial
occlusion. However, those methods have to identify theuataxd regions inside the sliding win-
dow detectors when partial occlusion appears, and havetéondi@e whether an occlusion has
occurred, and if so, where it is located. Another recent@sing work is in [131]. The authors
propose a hybrid approach using the partitioning of a deis#¢l®G representation in a hier-
archical classifier to handle both viewpoint changes andusmns, and shows some promising

recognition results.

It is worth noting that most of these contributions have gemion handling occlusions in tracking
or detection problems, and less attention has been paic teffiact of incompleteness of data on
human action classification. Based on the discussion ind®e®fwe focus on binary classification
of sparsely sampled videos. We list our contributions dsvd: (1) We cast the action classifica-

tion problem for a mixture of complete/incomplete data asraissupervised learning problem of
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labeled/unlabeled data, for which we propose a graph-bssetion. The classification requires
neither the localization of the occluded regions, nor thafigoiration of part-based detectors. (2)
We introduce innovative steps to convert the input mixe@datio a uniform representation that
can be used by the above graph-based semi-supervisechpanethod. The steps are (a) tensor
completion using Canonical Polyadic decomposition, (lw-tank tensor representation of ten-
sors to generate vectorized features. (3) We experimgrgabw that it is possible and a good
idea to mix incomplete and complete data to boost classticgterformance. Therefore, a large
number of videos, often discarded as useless, do indeeg significant information. What has
been hindering this from happening in the past is merely tdadood unifying and homogeneous

representation of such data, which we introduce in this pape

To study these two questions, we propose a framework inojufdiur steps. The first is the mix-
ing of incomplete and complete videos. To generate a largauatrof incomplete videos, we
sparsely sample the complete videos under various spaediipngs. Secondly, we regard an in-
complete video as a three-way incomplete tensor, and reaos@mplete videos by a solid tensor
completion algorithm. Thirdly, we build lower dimensiomapresentation using a rank one tensor
decomposition algorithm. Finally, we apply graph basedissrervised learning for action clas-
sification. Our experiments show that the proposed framievgovery effective, and to our best

knowledge, is the first attempt to address this challengioglpm in the literature.

Figure 6.1: The process of generating the sparse représentdVe add sparse occlusions to a
complete video. This result in an incomplete occluded tem$anknown rank. Its complete
version under specified rank is then recovered. We then pperéogeneralized tensor rank-1 de-
composition algorithm to obtain its compact representatio
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Figure 6.2: Occluded frames under different occlusionregttfor the KTHrunningaction. The
1st row shows the original complete frames; Thed, 4th, 6th, 8th rows showsl %, 31%, 61%,
and91% pixels are occluded; The&rd, 5th, 7th, 9th row shows corresponding recovered frames.
We fix the rank valuer = 16.

Sparse video recovery

Incompleteness

We first summarizel types of incomplete video. (1) THest involves the sparseness and ran-
domness in compressive sensing [134, 135, 136, 137, 138,148 In sparsely sampled video,

a number of pixels in random locations would be missing. Amp@ssive sensing is becoming
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popular, it is likely that more and more sparsely sample@eo#dwill be generated. (2) Theec-
ondis caused by partial occlusion lasting throughout all framEhe work in [131] explored this
type by artificially placing occluders on some predefinedgar the human body. This method
however needs to calculate the overlapping amount with ¢tekiding object, and complex local
partitioning is required to ensure robustness. (3) el is the partial occlusion with short du-
ration. This behaves like spatiotemporal “holes” and igdily related to the video completion
problem, which is the process of filling in missing pixels eplacing undesirable pixels [141]. To
sum up, the first is closely related to compressive sensimg ldst two are special cases of the
first. Since the second and the third type are well studiedpainting and video completion, we

focus on the first in this paper.

Recovery procedure

Regarding the sparse vid®aunder sparse sampling magkas an incomplete tensdtf, the sparse
video recovery is equivalent to sparse tensor completi@i)Le R’*/>T be an incomplete video
in gray scale, and’ is the frame number. Lety ¢ R/*/*T be a sparse weight tensor represent
V’s missing entries)V acts as a binary mask filtering out certain portion/ofTo specify video
sparsity, we follow the approach in [142]. L&tbe a three-way tensor of siZe< J x K with rank

R. For the missing entries in the sparse tensor, tensor recea® be defined as minimizing the

error function:
J R

fu(A,B,C) = EI: >, i{wijk(xijk‘ = aibjrcir) 1,
i=1j=1k=1 r=1
wherex;;;, = Zfil aibjrcry foralli e [1,1],7 € [1,J], andk € [1, K]. The factor matricesl, B,
andC are of sizel x R, J x R, and K x R, respectively. It leads to a weighted least square
Canonical Polyadic (CP) decomposition problem [142], \whiga generalization of the SVD to

tensors [142] in multilinear algebray is a nonnegative weight sparse tensor defined,as= 1
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if 2, is known, andw;;;, = 0 if x;;;, is missing, and is of the same dimensiomasThe objective

function can further be generalized as:
S (AW ACHA®) = W+ (X~ (AD, AP AG)) |,

where theg( A | A2 A®)) defines al; x I, x I3 tensor whose elements are given by:

R
1 2 3 M) ,@ ,6)
((A( )714( )7A( ) 111213 Z nr zzr ’L37‘

LetY =W+ X andZ = W x (A1) A@) AB)), the gradient of the objective function can be
computed by the partial derivatives ¢f, with respect to each element of the factor matrices,

namely

9fw
OAM)

= 2(Z) = Yi)) AT,

where A7) = ABG) @ A® o AM for n = 1,2,3 and e is the Khatri-Rao product. The optimal

factor matrices can then be computed iteratively using thdignt descent method.

To recover an incomplete video, we need to consider thréealrparameters. Thiérst one is the
sparsity ofV. It can be denoted by the percentage of missing entries. Mi#des the percentage,
the less sparse the’ will be. Meanwhile, the larger the percentage, the morelgaostrecover
the incomplete video. Theecondis the randomness of¥. The sparse element locations are
generated from a standard normal distribution with smatiysbation noises. Thhird is the rank

of V, which is defined as the smallest number of rank-1 tensotg#rerate’ as their sum [143].

Fig.6.2 illustrates the frames from the recovered actionsTiH dataset under a fix rank = 16.
We set different occlusion percentages ranging fidmto 90%. We observe that the frames can
be nicely recovered if the occlusion percentage is ustgr. Severe occlusion occurs above this

percentage, making the recovered frames full of noise, en eneaningless (see théh row in
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Fig.6.2). This is because the original video structure esvig corrupted, and the recovery algo-
rithm fails to factorize its factor matrices. Note thathaltigh undei % occlusion, the recovered
frames in the3rd row look as blurred as th&h row, this stems from the nature of the recovery

procedure, which is not intended to generate element-\pigel{wise) recovery.

Compact representations

After incomplete video recovery, we are facing two issudl: The three-way tensor is highly
costly to be directly used in classification due to high disienality. (2) It is hard to extract

dominant features due to heavy contamination.

To overcome both issues, we extend the rank-1 tensor dectgpmomethod proposed in [144]
to generate the low-dimensional compact representatidhs. outputs are one scalar value and
three compact one-dimensional vectors, which discrireigatepresent the decomposed video.
In the context of [144], the tensors degenerate to symmtgnsor due to frame symmetry. In
our scenario, however, we handle instead the general asyyronemsors due the randomness and

sparseness of the weight ten3or

Starting with random initial values far, 3, and~, the algorithm alternately updates one variable
while fixing the other two and iteratively achieves the o@iimlecomposition. By Algorithm 3, we
transform any 3D tensod into three compact vectors, 3, and+, such that| A - Aa o o 7|2 is
less than a predefined sufficiently small threshold valuend that|«|s = |82 = |7]2 = 1. We
linearly concatenate those three vectors to form a singleife vectorf such thatf € RU+K+7)x1,
Therefore, the dimensionality of the feature vector is neduced from/ x K x Jto [ + K + J.

The details can be referred in [144].
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Table 6.1: The classification error rates of our two benclmarhe first and second table illustrate
the error rates (%) for benchmarks stemming from KTH and U@&1tS, respectively. We exten-
sively scrutinize280 possible parameter combinations for our classificatioimwicomplete-data
scenario. Note that “r8” means the evaluation is under r&w8"

P P=1% P=20% P=30% P=40% P=60% P=80% P=90%

Q r4 8 r12 | r16 | r4 8 rl2 | r16 | r4 8 r12 | rl6 | r4 8 rl2 | r16 | r4 8 r12 | rl6 r4 8 r12 | rl6 | r4 8 r12 | rl6
Q=90%| 14.7| 17.6| 13.3| 10.3| 20.2| 15.2| 12.6| 11.2| 11.1| 155| 11.1| 4.6 | 22.3| 15.6| 13.7| 10.4 | 26.5| 18.6| 22.2| 10.3| 47.7 | 39.8| 36.6 | 35.7| 49.9| 45.2| 48.5| 46.8
Q=70%| 84 | 98| 7.1 | 87 |13.4|120| 7.3 |10.7|140| 125| 84 | 57| 89 | 12.7|10.3| 85 | 19.9| 156 18.3| 17.8| 31.3| 15.4| 20.1| 17.7 | 41.1| 48.2| 49.4| 47.1
Q=50%| 7.9 | 93 | 50| 6.7 | 143|133| 85 |174| 78 | 58 | 94 | 43| 9.7 |125| 6.7 | 7.2 | 9.6 | 9.7 | 59 | 6.2 | 22.6| 18.1| 13.2| 14.3| 47.5| 41.7 | 45.9 | 48.6
Q=30%| 53 | 52| 94| 61| 78| 92|52 |131| 31| 62| 95|69| 86| 85 |16.7|140| 9.7 | 65| 65 | 3.8 |17.6|14.1| 15.0| 9.4 | 49.6| 43.8| 44.5| 43.9
Q=10%| 10.2| 12.7| 94 | 51 | 81 |104| 6.7 | 58 | 83 | 65| 9.1 | 3.2| 115|204 | 6.6 | 148| 9.2 | 7.3 | 10.1| 2.0 | 9.6 | 14.7| 11.2| 8.0 | 48.4| 40.1 | 44.2| 39.2

P P=1% P=20% P=30% P=40% P=60% P=80% P=90%

Q r4 8 | r12 | r16 | r4 8 | r12 | r16 | r4 8 | r12 | r16 | r4 8 | r12 | r16 | r4 8 | r12 | r16 | r4 8 | r12 | r16 | r4 r8 | r12 | r16
Q=90%| 16.8| 14.6| 13.2| 9.3 | 15.2| 15.3| 14.8| 11.3| 18.0| 15.4| 11.0| 13.6| 22.2| 19.7| 17.8| 17.4| 26.5| 19.7| 22.1| 17.3 | 35.6| 33.2| 32.6| 30.8| 49.6 | 42.2| 47.6 | 48.8
Q=70%| 15.5| 16.9| 12.0| 14.8| 13.6 | 12.9| 9.4 | 8.8 | 16.0| 19.5| 20.5| 17.9| 20.9| 17.8| 15.3| 13.7| 24.9| 23.6 | 20.5| 18.4 | 34.3| 36.3| 32.2| 30.9 | 44.1| 39.3| 47.7 | 49.6
Q=50% | 17.8| 14.8| 12.9| 13.2| 14.1| 14.6| 13.5| 13.3| 17.8| 18.9| 19.8| 23.2| 24.8| 28.8| 20.9| 18.2 | 25.8| 22.8| 18.9| 20.2 | 42.8| 38.4| 33.2| 30.0| 48.6 | 46.6 | 44.8 | 38.6
Q=30% | 15.5| 15.2| 16.0| 17.9| 17.5| 18.2| 13.2| 9.0 | 18.2| 17.5| 19.7 | 12.9| 18.9| 17.4| 25.4| 40.0 | 42.7 | 36.5| 36.4| 37.7 | 47.7| 40.4| 35.1| 36.4| 49.6 | 43.9 | 42.7 | 48.9
Q=10%| 14.0| 13.2| 20.1| 15.6| 18.0| 20.1| 8.8 | 15.7| 20.1| 15.2| 14.1| 16.4| 20.4| 17.3| 15.8| 17.9| 40.1| 47.2| 30.0| 35.9| 38.3| 44.4| 45.1| 43.0| 49.2| 46.2| 49.1| 48.0

Classification

We make three assumptions before classification: (1) Therenany sparse videos available.
(2) 1t might be expensive or impractical to label the spanskeas due to heavy occlusions. (3)
Complete videos are labeled, whereas sparse ones are ledlabbe reasons for those three are
straightforward. On the one hand, the essence of our framkeves in the conjecture that using
unlabeled incomplete videos would be helpful for classiitca We believe that it might be hard to
directly use sparse videos in classification if the occla@ee dense, but their recovered versions
could make this possible. On the other hand, the semi-sigeeiearning (SSL) uses readily
available unlabeled data to improve classification ratemyikabeled data is scarce or limited. If
sparse videos dominate the dataset and they happen to bdeeledathe SSL will be our best

choice.

The first key component in our SSL is to build a sparse weiggtagh out of video data. Graph
based models are ideally suited to represent data basedwmseanformation such as similarities,
distances, and relations [145]. Practically, instead afilly tconnected dense graph, we prefer

sparse graphs such as theNN graph and the-NN graph for video graph construction. We
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use the Gaussian kernel similarity function to measure itndagity between graph nodes, i.e.,
s(x,y) = exp(-|z-y|?/(202)). Fig.6.4 show the constructéeNN graphs for KTH dataset. Since
many graph-based methods can be viewed as estimating @fuiiadn the graph [145][146], we

then follow the method in [146] and adopansductive learningia regularized least squares to

predict labels on the unlabeled videos.

Experiments

To fully characterize how the incomplete videos affect thessification stage, we extensively
evaluate a total 0280 possible parameter combinations. Here we emphasize teaxkhaustively
examine all the280 cases, primarily because we want to spot the true underfgictgrs behind

our challenging classification-with-incomplete-datarsreo.

However, to our best knowledge, there is no existing “inclatgvideo dataset” available for
benchmark purpose, we thus create two special benchmankstfre KTH and the UCF Sports
dataset. To decide how the SSL method behaves under diffspansity settings, we chose 2
action classes from the KTH datasairfningandhandwaving. A total of 100 videos belong to
these two actions, of which there are 49 running actions dndehdwaving actions. The second
benchmark stems from the UCF Sports dataset, in which adbttl actions are considered, 20
walkingfrontactions and 2@enchswingactions. Our benchmarks are distinct from conventional

ones because the many different sparsity and rank settiagsgenerated from these videos.

280 parameter combinations

Letn be its total video number for each benchmark. We randomécsetin.. out of » and regarded
them as labeled complete observations, while for therrgstn — n.. videos, we generated sparse

videos under various settings, and considered them aselathbbservations. The sparsity and
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randomness afi, videos were specified by tensor rank

R={4,8,12,16}

and sparseness percentages

P ={1%,20%, 30%,40%, 60%, 80%, 90%} .

The combination of both parameters yielded a total ef7 = 28 settings for each video, both in

the complete and the sparse set.

For each of they, sparse videos, following the steps in Section 2, we recase&omplete version
under all28 settings. Each recovered video yields a three-dimenstenabr. We then generated
its rank-1 compact representations using the Algorithngielding its final feature vectors. It is
worth noting that these final feature vectors are not nedgsséthe same length due to different
video sizes. Before the vectors are fed into the final gragledbaemi supervised learning stage, a

z-normalization was conducted to make them of identicaledisions.

Another critical parameter

Q = {10%, 30%, 50%, 70%, 90%}

was also configured throughout our experiments to denotpdheentage of the, sparse videos
out of all videos, namelyy) = n,/(n,+n.). () was very necessary in SSL learning, since practically,
we cannot know in advance how many sparse videos should Oéardgetter classification. Under

each setting, we chosg = () x n sparse videos randomly rather than deterministically.@~g.

To build the sparse weighted graph, we chose betweek-Nid and thec.-NN graph. Note that as

we increase thé or ¢, the number of edges increase accordingly (Fig.6.4). Redlgt we fixed
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k =5 ande = 0.3 throughout our experiments. If under a certain setting thssification rate is
larger for thek-NN graph structure than for theNN structure, then we chogeNN graph, and

vice versa.

Results and discussions

There were totall\28 sparsity settings for each sparse video. If we take intoidenstion theb
percentage ratios given ldgyand the2 graph structures in SSL framework, there will be totakhy

5 x 2 = 280 experimental configurations for each benchmark. Note thetyesingle configuration
was involved with randomness: the sparsity itself was ramdbe selection of whether a video
should be considered as sparse video was also made randorthuS\Vperformed classification
on every single configuration f@0 times (L0 for £-NN graph, the othet0 for e-NN graph). We
computed the average classification rate for each strycamek chose the larger value between

these two. The classification rate comparisons for KTH ané 3@orts is shown in Table 6.1.

How does rank value affect error rates? The r&nk the primary factor that affects the incomplete
video recovery. The gradient descent method benefits framgar rank value, and hence increases
recovery precision. Experimentally, we observed in mosesdhat larger rank does help reduce
classification error rate (a.k.a, boosting classificatairs). Also, it is worth noting that in Fig.6.2,
we use fixed rank valug = 16, which makes the recovered frames more authentic than k@thks

smaller thanl6. Note that larger ranks also introduces higher computatibarden.

How does the “incompleteness” affect error rates? We stialighole range of possible occlusion
percentage® (Table 6.1), and observed that@sncreases, the classification error rates follow an
overall subtle (but not monotonic) increasing pattern. Bueandomness, lowep in some cases
(e.9.,60% and80% for UCF sports) leads to higher error rates. But the overatid can be readily

perceived. Firstly, under heavy occlusiaR ¢ 90%), a large portion of video pixels is missing
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and video’s structure is heavily corrupted. The recovenedmplete videos no longer contribute
positively to the classification rates that are slightlytéethan random binary selection (i 80%
probability). Secondly, within the rangés ~ 80%, the incomplete videos are under either mild
or large occlusions. By properly combining occlusion patage P and unlabeled data rati@,
their classification rates can be acceptable, or even vghy Aio sum upincomplete videos, once
properly recovered, indeed show merits in action clasdifica Especially, in the cases where only
few complete videos are available, itis feasible (or evaressary) to include available incomplete

videos, rather than simply ignore or discard them

57



Figure 6.3: Occluded frames under different occlusionregttfor the UCF SportSwingbench
action. Thelst row shows the original complete frames; Thed,4th,6th,8th rows shows
20%, 40%, 60%, and80% pixels are occluded; Thard, 5th, 7th,9th row shows corresponding
recovered frames. We fix the rank vallte- 16.
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Figure 6.4: The constructetNN (k£ = 5) sparse weighted graph for the KTH dataset. For a
total of 100 videos, there are two classes involved:runningactions (Red) and1 handwaving
actions (Blue). All circle dots denote complete videos, alhdquare dots denote sparse incomplete
videos. The percentage of sparse unlabeled videos, fromo lefht, are30%, 50%, 70%, and90%,
respectively. (Zoom in for better view)
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Figure 6.5: The constructddNN ande-NN sparse weighted graphs for the UCF Sports dataset.
For a total of40 videos, there are two classes involvéd:walkfrontactions (Red) and0 swing-
benchactions (Blue). All circle dots denote complete videos, alidquare dots denote sparse
incomplete videos. The percentage of sparse unlabeledwvigged i80%. (1st)k-NN graph with

k =5; (2nd)k-NN graph with% = 10; (3rd) e-NN graph withe = 0.3; (4th) e-NN graph withe = 0.5
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CHAPTER 7: MOTION RETRIEVAL USING MOTION SEQUENCE
VOLUME ?!

We propose a framework for motion retrieval by exploring tlgion of “self-similarity”, which
has received significant attention recently. The work ir] e&scribes a gait recognition technique
based on the visual self-similarity of a walking person tassify the movement patterns of dif-
ferent people. [147] shows the effective use of the selftanity in recognizing different types
of biological periodic motions. In [148], the authors ex@self-similarities of action sequences
over time to capture the structure of temporal similariaes dissimilarities within an action se-
guence. For a given action sequence, they compute the cikstdoetween action representations
for all pairs of time-frames and store the results in a SatiH@rity Matrix (SSM). They consider
the temporal similarities between frames of image sequentiee method in [148] also exploits
the notion of image self-similarity. For a given action/motsequence, they first extract some low
level features. The distances between extracted featored! fpairs of time frames are computed
and this results in a SSM. Each action sequence is thus re@do@2D SSM matrix, and the au-
thors then proceed to extracting some useful features fn@set SSMs and use them to train their

action recognition system.

The content in this chapter was published in the paper: “doSequence Volume based Retrieval for 3D Cap-
tured Data”, Computer Graphics Forum (CGF), Volume 30,ds&pages 1953-1962, September 2011.
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Figure 7.1: The overview of our retrieval framework for nuoticapture data.

We make multiple contributions to the motion retrieval fiel@ihe first contribution is that, we
propose a retrieval framework that does not require timgnatient in contrast to the conven-
tional methods. We employ the notion of self-similarity ised from the recurrence plot theory,
and generate a unique, symmetric structure to summarizg evation sequenceSecongdwe
propose a novel scheme of subspace dimensionality reduttidast motion sequence retrieval
based on rank-1 tensor decomposition. Compared with tleat@pproaches that involve dynamic
time warping (DTW) for building score-based correspon@snisetween related events, our ten-
sor subspace decomposition condenses an action into itsimgéa representation by reducing
it to its lowest rank feature vectorshird, as a byproduct of low rank decomposition, reduced

time-complexity, and hence fast indexing and retrievatisieved to handle large databases.

Fig.7.1 gives an overview of our proposed framewdtkst, we set up skeletal model for motion
sequence poses for initial representati®acongdwe convert motion sequence into a series of self-
similarity matrix representations in temporal dimensiower Euclidean distance metric, thereby
creating a Motion Sequence Volume (MSV) structure that dasahe internal dynamics of a
motion sequencelhird, the structure is decomposed into three low-rank compaxtovgusing an
optimal iterative algorithmFinally, we employ the cross correlation based similarity measure f

the final retrieval phase.
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Motion Capture Data Representation

Motion sequence retrieval has been extensively explonedvier a decade. The task is to query a
motion sequence and find the sequences whose distance todheig|either below a threshotd

or among the: smallest. Our primary motivation is to devise an effectia¢adrepresentation and
framework that identifies similar motions that are numdlycdissimilar. Our secondary motiva-
tion is to propose a method that allows the animators to dyfekd similar motions within a large

motion capture database.

Terminology

Human pose can be represented using a simplified model ofrhskedeton composed of bones
that are connected [pints. Motion capture can then be regarded as the process of regaad
temporal sequence of 3-dimensional joint positions. Tha&tjpm of all joints at a given time is
known as gose described as a vectpre R3xI/I, where|J| is the number of joints in the skeletal
model and each joint requires 3 elements to describe its 3Dipe. A mocap sequence can be
then formally described as a time-dependent sequence e§pdsis can be represented by a 2D

matrix .S € RT*Gx7) whereT is the number of poses (frames) in the mocap sequence.

Skeletal model

The CMU mocap dataset uses a skeletal modékgbints (i.e.,|.J| = 32). It provides a detailed
configuration for the joints such as the thumb joint. Howeeficient retrieval or classification
does not require detailed joints information when perforgréomparison between motion classes.
For instance, the variation in thumb joint position is olmaty less important than that of the femur

joint position. Also, since it is believed tha8 joints are sufficient to represent a motion action
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[106], we evaluate our motion capture sequences using atakehodel consisting of3 most
significant joints, namely thieft knee, right knee, left foot, right foot, heep, left @lbaght elbow,
left shoulder, right shoulder, neck, head, left haaddright hand We concatenate these joints

into a vector in the order specified by indices from 1 to 13 e in Fig.7.3.

Figure 7.2: The tracked joint positions and their indiceséoming the initial vector
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Figure 7.3: SSMs built foRunandKick actions in the CMU Mocap dataset by stacking the 13 key
limb joints. All SSMs are of dimensiotB x 13 and are generated from the vector by concatenating
the tracked limb points

In this way, each frame of an action sequence can be initieflyesented by a vector of siz8,
which is used in the subsequent Motion Sequence Volume remtisin stage. In Fig.7.4, we show
5 out of 12 motion sequences from the CMU Mocap dataset. Iteaobserved that apparently
walk andrun exhibit similar motion patterns. Thealkturn motion is also similar tavalk motion
except that the human body turns by some angle while walkivigjle traditional motion retrieval
approaches sometimes fail to discriminate these pairs af-identical patterns, our method is
capable of finding their characteristic differences by mgkt possible to focus on a subspace of

the motion volume.
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Motion Sequence Volume (MSV) Construction

Since the 3D human motion data is typically high-dimensi@ama nonlinear, operations on such
data often involve dimensionality reduction as a critida&psbefore further processing. Forbes
et al. [149] used the weighted PCA in searching of motion.d8@rbic et al. [150] used PCA
to cut a long motion data stream into single behavioral seggnerhe method in [151] detects
key motion poses in locations where local variations arepshath a Multi-Dimensional Scal-
ing (MDS) technique. Due to the fact that each frame encodeal ligh-dimensional vector has
a nonlinear relationship with other frames, [152] adopteel ttocal Linear Embedding (LLE),
an unsupervised non-linear dimensionality reductionriegke, to compute a low-dimensional,
neighborhood-preserving embedding for motion poses. Ppheoach attempts to discover nonlin-

ear structures in high-dimensional data by exploring tkallsymmetries of linear reconstructions.

Unfortunately, popular low-dimensional embedding apphes like PCA and MDS tend to create
distortions in nonlinear manifolds due to their linearsyd thus hinder the detailed dynamics of
the motion. As a result, they are suitable for datasets winéee-class distances are sufficiently
large to distinguish different motion sequences. On therdtland, the LLE method is highly sus-
ceptible to local minima in optimization, and tends to engib@preserving purely local geometry

and ignores distant inputs.

To tackle this problem, we perform the subspace projectrmhdimensionality reduction from a
different perspective. The main motivation is to deal with honlinearity of the high-dimensional
input motion manifold by using the multilinear algebra ahd tecurrent plot theory. Starting from
the construction of self-similarity matrix, our technigbeilds an ordef tensor from the input

motion, and then performs an optimal rank-1 tensor decompodo reduce a motion sequence

into its compact and discriminative representation.
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Based on our skeletal model representation, we compute3Mef8r each pose; in the motion
sequence. In order to characterize the dynamics of the mptibn sequence based on the SSMs,
we construct a 3D structure called Motion Sequence Volum8\{\Moy linearly concatenating the
intermediate SSMs in temporal dimension. We define the M3\dsep under distance metrig

as

V@ (p) = {IMD(p1), M@ (ps), ..., M (1)}, (7.1)

wheret is the temporal dimension of the pose, afié (p) denotes the concatenation of the SSM

of each individual posg;.

It can be observed that for different motion sequences, ¢kaelting MSVs might be of differ-
ent temporal dimensions, but they all have identical spdimension since their components
M@ (p;) are computed under the same skeletal model configuratiorre Bfeecifically, the di-
mension of all MSV isl3 x 13 x ¢ in our method, whereé denotes their corresponding temporal

dimension.

Fig.7.5 illustrates 5 different MSVs computed using Euedid metric for 5 motion sequences in
Fig.7.4. We useyz axis to denote the spatiotemporal dimension of the MSV &ireczy-plane
encodes the spatial dimensions of SSMsljrection depicts the temporal dimension. As we can
see, the similarity and hence confusion betweeik andrun can be largely reflected in their
MSV structure. Especially, we can observe thatghelane of both motions have similar spatial
patterns given their different motion durations. Similéaservations can be made faalk and

walkturnsequences.

66



MSV Tensor Approximation

As the MSV is a characteristic, unique, and a symmetric 30cstre, we developed an iterative
algorithm using the tensor theory to extract the most cotrgrat optimized discriminative features

from it. The motivation for this subspace decompositiomisfold:

1. It reduces the dimensionality of the problem by explgjtine redundancy in the symmetric

structure of the motion manifold;

2. It does not distort the manifold by imposing linearity agsicommon practice in existing

dimensionality reduction techniques.

This latter motivation, is important, as also verified expentally later, for preserving the dynam-

ics of the motion in this process of dimensionality reducttio

We now discuss the intuition for each decomposed vector amddach vector can be used to
interpret spatial-temporal variations of human motionaligorithm 1,p(*+1) is updated using both
p ande® by %, andx; operators, leavingd unaffected in mode-1 dimension; whi€+) is
updated using the twa®) by x; andx, operators, leavingl unaffected in mode-3 dimension. It is
known from tensor theory and symmetry property of the MSM tha mode-1 and mode-2 of the
MSV is identically responsible for spatial dimension, ahed mode-3 for the temporal dimension.
In other words, the primary vectgrmainlyencodes the dynamics of the spatial variance of MSV

while the secondary vectermainlyencodes the temporal variance.

By using the algorithm, each motion sequence in the databas@sformed to three low-dimensional
vectors, namely, two identical vectot&"), U(2) mainly corresponding to the spatial dimensions
of the motion sequence, and another ve€té¥ mainly corresponding to the temporal dimension.

The retrieval can then be performed at the event level raftiaer at the frame level, which leads to
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huge reduction in memory consumption and run time for lacgde databases, while preserving

the dynamics of the motion manifolds, as shown in our expeniis

In order to illustrate the difference between the decomgpasetors for motions from the same
action classes, we randomly chose 6 samplesvidk, 8 samples fowalkturn, and 7 sample for
cartwheelfrom the CMU Mocap dataset. Samples within the same motiassels have various
frames and execution speeds, as shown in the second row.@f@ziJake thavalk for example.
Although its 6 samples are performed by various actors udifferent speeds, their decomposed
vectors (M) andU®)), show strong similarities. This is also true for tivalkturnandcartwheel
classes. Especially, treartwheelclass involves more complex body movements and orientation
variations tharwalk, and hence the decomposed secondary vettGdsvary a lot compared with
walk andwalkturn However, we can still identify the striking similaritieshen comparing their

curves.

Another noticeable example is the comparison betwesk andwalkturn Logically, both motion
classes are very similar except that thalkturn motion class involves a turning angle. In other
words, the spatial configurations of the body skeleton goatta specific frame for both motion
classes are very similar but these spatial configurationsteasome extent along the time dimen-
sion. Therefore, the primary vectors for both motion classe slightly similar. However, the
secondary vectors encode the subtle variations betweee tineo motion classes, as illustrated

also in Fig.7.6.

Note that it may not be straightforward to visualize or conepdirectly the similarities of motion

sequences within the same class from their generated MSY$ (). Their decomposed vectors
UM andU®), however, clearly demonstrate strong similarities givéfeknt execution speeds
and body joints moving patterns. Specifically, within thensamotion class, the primary vector

U™ of motion samples largely overlap. It is worth noticing atkat even for motion samples
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from different classes, their primary vectors may still d&p to some extent, but their secondary

vectors will instead largely capture the motion dynamics.

Similarity Measure

For motion retrieval, finding motion sequences that arelaim a given query motiop is highly
dependent on the similarity measure. Variations in the satien class are allowable as long as we
can correctly identify the matches. However, it is knowrt 8imilar motions may be numerically

dissimilar because corresponding poses may have variou®jentations and angular velocities.

As a result, traditional methods based on aggregating fnaise scores, often fail to distinguish
between numerical similarity and visual similarity. In ethwords, they fail to differentiate mo-
tions that are different versions of the same class of a¢8bh On the other hand, linear subspace
decomposition methods that achieve dimensionality rediictlistort the non-linear motion man-
ifold, and hence cause the opposite problem of concealmdisimilarity between two close, but

different classes of actions.

We now describe our similarity measure as follows. hét andp() be the two initial motion
sequences. By dimensionality reduction via rank-1 tensgpuhposition, we obtain their corre-
sponding approximated vector paif®) = {U", U, U{”} andv0) = (UM UP, U}, respec-
tively. Specifically, for bothy() andv(¥), their first two components are vectors of size 13, and the

size of the third component is equal to the motion sequereedmumber.

We define two similarity metrics for motion retrieval, naméhe cross-correlation based metric

D...orr @and the dynamic time warping based mefig,,, respectively. Th®,.... is defined as

3
Dacorr (P, p9) = 3> d(UP, UM, (7.2)
k=1
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with
d =maxC(UM,UM),

wherek = 1,2, 3 andr is the component dimension. The functiorreturns the vector containing
the cross-correlation values between the compori@ﬁfsandU J.('“). For various motion sequences,
their execution frames are probably of unequal length,itepthose two components of unequal
size, then we zero-pad the shorter vector to the length ofathger vector. By this similarity

measure, the more similé@(k) ande(k) are, the larger the value &f will be.

The other metrid,,,, is defined as

3
Dir (p0,p9) = > DTW (U, UM, (7.3)
k=1

where the functiordDT'W is used for measuring the similarity between the two inpgusaces.
Note that although DTW-based comparisons are widely usedaition retrieval, our usage here
has particular advantage that the computation is perfonezlir decomposed vectors rather than

on initial motion data as in conventional methods [81].

Two Experiments

We consider the motion sequences corresponding to 12 adu@tkturn, golf, fjump, flystroke, j-
jack, jump, cartwheels, drink, kick, walk, bend, ymom the CMU mocap database. This amounts
to a total of 196 motion clips with the duration length rarggfrom 90 to 1000 frames per clip. The
motion actions are chosen so that they span various clasgksstrate the generality of our tech-
nique. For example, thealk andrun actions are similar in nature representing different degre

of a single locomotion class, where@asnp, kick, etc are distinct motion types. All experiments
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were implemented with Matlab with 4GB memory and a 2.66 GHe@buo processor.

Experiment 1

To efficiently measure the similarity of the query motion lwimotions in our dataset, we first
performed the motion retrieval using the given query motiamder similarity measure in both
Eq.(7.2) and Eq(7.3). Since the degree of similarity atyuapresents the relevance between
the queried motion and all retrieved candidate motionghallretrieved motion clips were sorted

according to their degree of similarity to the queried mtio

Table 7.1: Comparison of retrieval rate from 4 selected omtiasses

| | walk [ run | jump | kick | Overall|
Ours usingDy;,, | 93.0 | 95.2| 92.0 | 100.0| 95.1
Ours using Do | 95.7 | 97.2| 83.4| 86.8 90.8
Deng [83]| 92.1 | 98.0| 87.4 | 78.0| 88.9

Kovar [81] | 82.0 | 85.3| 86.7 | 75.2 82.3
Forbes [149]| 74.4| 80.0| 63.1 | 65.5 70.8
Liu[153] | 80.0|93.1| 70.9 | 63.9 76.9

In other words, for each query, we maintained a sorted lissisting of all motions in descending
order denoted b@ = {Q;}, wherei = 1,2, ..., N with NV being the number of all motion sequences.
LetC = {¢;}, wherej = 1,2,..., J, be the set of motion classes. Hefe- 12 since we considered
12 motion classes. Let the functigrdenote the correspondence between a ma@pipand its class
¢;, namelye; = f(Q;). For a query motion, let C'Q;, be the set of classes for the tbgandidate
motions, i.e..CQy = {Q1,Q2, ..., @k}, Where we set = 20. Our aim is to establish how many
motions inC'Q),, have the identical motion class #é;). For example, thaalk andrun motions
sometimes cannot be correctly differentiated because dheyisually different but numerically

similar. Intuitively, given awalk motion for querying, we want our retrieved results have more
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candidates fowalk rather tharrun, and have less or even no candidateggyfaf motion.

To evaluate the retrieval accuracy of our approach, we attediexperiments similar to the settings

in [81] and [83]. Our objective was to query the same motiotwa different types of datasets.
The first one was the labeled dataskt;.;.; with the same motion class, and the second one was a
mixture of unlabeled motiond,,,,;.1e1cq With vVarious classes. Th;,....q Can be considered as the
ground-truth compared with thB,,,,;4e1cq- 1N Order to make comparison with the experiments in
[81] and [83], we collected a motion dataset consisting ofotiom categories, namelyalk, run,
jump, andkick, with 80 sequences and 4570 frames from the CMU mocap datagstr motion
categories were not included in this experiment either bee#heir numerical experimental results

were unavailable, or because they were tested in a diffelaaset.

The work in [154] used thé&rue-Positive Rati@s an accuracy criterion that was defined as the per-
centage of the top retrieved candidates from the mixed dataSg};.,.;..; that were in the correct
labeled dataseb,,;...q. Here we also used this criterion and compared our approéblrseveral
related works, as shown in Table 7.1. Those four motion caiteg were correctly retrieved under
the two similarity measuredX,..,, andDy,,) at high mean rate9(.8% and95.1%). Especial-

ly, the dynamic time warping based similarity measure atitpeed the corss-correlation based

similarity measure in this testing scenatrio.

Experiment 2

It is known that confusion matrix is a good representatianréde comparison, which contains
information about actual and predicted classified (or ee&d) data performed by a classification
(or retrieval) system. For a retrieval system, each colufrthie matrix represents the instances
in a retrieved motion class, while each row represents tstamtes in an actual motion class. An

important advantage of a confusion matrix is that it is easyee if the system is confusing two
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classes (i.e. commonly mislabeling one as another). Ferrdason, as an alternative of true-
positive ratio, the confusion matrix is adopted herein taleate the efficiency of our method on

more than 4 motion classes compared with the previous expati

Below are the details of how the experiment was conductede, iee input is only labeled motions
instead of the two separate datagets;.cicq aNd D, e @S in the first experiment. We considered
not only the number of correctly retrieved motions, but als® classes of mistakenly retrieved
motions. Fig.7.7 shows the two confusion matrices of meémewal rates using the similarity
measures in Eq.(7.2) and Eq.(7.3) for all the 196 motionsahth 12 classes. The diagonal of
this matrix denotes the correct retrieval rate for a certaotion sequence, and the off-diagonal
elements denote the rate for mistakenly retrieved clas&es.theflystrokemotion in the first
confusion matrix of Fig.7.7, for instanc@5.8% of all the retrieved motion clips are correctly
retrieved adlystroke whereas onlyt.2% are incorrectly retrieved agack motion, and for thgolf
motion, 100% of all retrieved motions are correctly identified. This me#mat, for thegolf action

our method retrieves the motion with no confusion.

Since logically thavalkturnand thewalk are very similar but numerically the former one involves
a turning angle while walking, as shown in Fig.7.6, it may beteasy to differentiate them using
conventional retrieval methods. But both confusion matiidemonstrate that our method can
nicely differentiate them with very low confusior §%). Another special pair is thijumpand the
jump. Itis worth mentioning that both logically and numericalipse two categories are extremely
similar: thefjumpinvolves jumping forward at a certain distance; while jilmapinvolves landing
on the same location. The two confusion matrices show theadproach can still have somewhat

acceptable retrieval rates.

Moreover, the overall mean retrieval rates of our methodhis ¢xperiment i93.1% and91.8%,

respectively, for the two similarity measures. It can beawsat that the overall performance of
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cross-correlation based measure is slightly better thardyimamics time warping measure, but
its performance falls behind when handling some motiongmates likewalkturn, flystroke, jjack

andkick

Time and space complexity

Since we reduce each motion sequence to low-rank vectosgmaarity measure, the retrieval can
be performed at the event level rather than at the frame.|&e$ can largely reduce the run time
for large-scale databases, while preserving the dynamitganotion manifolds, as shown in our
experiments. In particular, the time complexity requireduild and store our index structure is
linear, O(n)compared with DTW-based strategies, which@uadratic, O¢?), with regards to the

frame number in the database.

Based on the mocap sequence terminology in Section 7, thee syanplexity for an original
motion dataset ofn clips can be expressed &s= Y", 3 x h x T}, whereh is the number of
joints in skeletal modelA = 13 in this work), andT7; is the temporal duration for th#¢h motion
clip. Using our low-rank subspace decompositiollgorithm 1, the space complexity becomes
S’ =¥y (h+T;) since the length a7V, U, andU®) areh, h, T;, respectively. The compression

ratio is thus

m 1

R=S18= ——+— )
5= 55m T  3h

As we can see, a smallé¥ corresponds to a larger saving in space complexity. In dale¥duce
R, one can either increase the quanfiti/, 7; or h. Intuitively, the quantity}..", 7; is relatively
large for large capture datasets. As modern motion capaiasets grow increasingly large, our
technique becomes particularly suitable in the applioatiovhere both retrieval efficiency and

accuracy are required.
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(e) Cartwheel

Figure 7.4: Five selected Mocap motion sequences out of ibmolasses from CMU Mocap
dataset Walkturn, golf, fjump, flystroke, jjack, jump, cartwheetsink, kick, walk, bend, run
Each motion sequence is performed by various actors. Eash igorepresented by a skeletal
model consisting of 13 joints.
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(c) Jack Jump MSV (d) Walkturn MSV (e) Cartwheel MSV

Figure 7.5: The constructed Motion Sequence Volume for #lected 5 motion sequences in
Fig.7.4. Each slice inry-plane is the Euclidean metric based SSM of dimensidr 13. The

z direction represents the temporal dimension of the motemuence. Each volume structure is
symmetric, encoding the internal dynamics of motion.
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Figure 7.6: Comparisons for the decompogpeidhary vectorU()) and thesecondary vectot/ 3)
between 3 classes of motions. The columns from left to rigitespond tovalk (6 samples),
walkturn (8 samples), andartwheels(7 samples), respectively. The first and the second row
correspond to the comparisons for fmémary vectorandsecondary vectorespectively. In each

column, the curves in the same color denote the same motioplea within identical class (Better
to view in color).
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Figure 7.7: The confusion matrices of motion retrieval fiM@ mocap dataset using two similarity
measures. (Left) Cross-correlation based measure; (Rigimamic time warping based measure
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CHAPTER 8: ACTION SPOTTING VIA RANK-BASED
TENSOR CORE PYRAMID 1

A natural way to represent a video is to holistically encadanternal dynamics in a three-way
tensorial manner, rather than the commonly-used ad-howneation. The multilinear tensor
analysis, subsuming conventional linear analysis as dapase, emerges as a unifying powerful
mathematical framework suitable for addressing problenmsany fields [33]. In computer vision,
the past decades witnessed many successfully applicatiahigections such as face recognition

[33], action recognition [50], action categorization aredettion [155], etc.

Our motivation is to spot actions in a data-driven mannehauit relying on commonly-used fea-

tures, and without requiring human localization, segnt@raor frame-wise body parts tracking.

To achieve this, we formulate the problem as that of disangehe internal dynamics of a three-
way time-space tensor. In a nutshell, we treat all video mgmvolved as three-way tensors.
We then introduce a new multilinear tensor decompositidleddwo-Phase Decomposition (TP-
Decomp) tailored for action spotting, by combining the Terotecomposition with CANDECOM-

P/PARAFAC (CP for short) decomposition [107] in a natural gfective way. This is then used

to establish a Rank-based Tensor Core Pyramid (Rank-TGRjigeor using multiple tensor cores
under multiple ranks, which is basically a new tensor-bdsethrchical video representation. At
the final template matching stage, we adopt two effectivestiog strategies that requires no hu-

man localization, segmentation, or frame-wise tracking.

The content in this chapter was published in the paper: CBuan Marshall Tappen, Hassan Foroosh, “Feature-
Independent Action Spotting Without Human Localizatioeg®entation or Frame-wise Tracking”, IEEE CVPR,
2014.
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Two-Phase Decomposition (TP-Decomp)

The Tucker and CP decomposition are two powerful technidhat decompose tensors onto
modes [107]. However, they have very different charadiesgthe Tucker algorithm is a form
of higher-order PCA that decomposes a tensor into a corertemdtiplied by a matrix along each
mode; while the CP decomposition factorizes a tensor intona &f component rank-tensors
[107]), and have been mostly treated as two distinct algmst independently applied to various

fields [33, 156, 157].

o

s :x =JAR9 R,!B
y Al
= ———7
v
S
U

Figure 8.1: The illustration of Tucker decomposition faled by CP decomposition.

We establish a procedure called TP-Decomp that combinee ttveo powerful techniques in a
natural yet very effective way. Its resulting vectors shoammarkably good performance in terms

of robustness and discriminative ability.
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TP-Decomp procedure

Given a query vided@ ¢ R™*/*K and a large target videS8, wherel and.J correspond to the
spatial dimension of2, and K corresponds to the temporal dimension. The objective abmact
spotting is to find the best match f@ out of all sub-volumes of. We formulate this problem in
a tensor-based framework. For the preliminaries of tengbnitions and operations, please refer

to [107].

Since query vide® is a3-way tensor, we first apply the Tucker decompositio@taesulting in

a smaller-sized tens@r and three factor matrices

P Q R
ngxlengz),C:ZZngqTapobqoc,«, (8.1)

p=1g=1r=1

whereA € R*P, B e R/*¢, andC ¢ RE*E are the orthogonal factor matrices. Thgoperator
denotes the multiplication between a tensor and a vectoed of that tensor, whose result is

also a tensor, namely = Bx,a <= (A) i, = >, Bijra.
The first-phase operatdf,;, is defined as follows.

Definition 1: The F};, operator is a mapping that transforms the input teg@a@rR/*/*X into a
tensorG e RER<E namely,Fi,(Q) = G = Q x; AT xo BT x3 CT, whereR < min{/, J, K}, and

AT, BT CT are transposes of the factor matrices in Eq.(8.1).

Recall that the CP decomposition factorizesa@rder tensoft € R™*/*K into a sum of component
rank-l tensorsX¥ ~ Y% w, o v, o w,, whereR is a positive integer and, ¢ R/, v, ¢ R/, and
w, e RE forr ={1,...,R}. If P=Q = R =1, then the CP decomposition degenerates to the tank-

decomposition.

We define the second-phase operdigras follows.
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Definition 2: TheF,, operator is a mapping that transforms a cubcalR 7= into a quadruple,
namely,F.,(G) = [Ar;Ur, Vr, Wr], where\ is a scalar, and/,V, W are three vectors of sizes

1x R.

We emphasize that, it is this second phase operatpmwhich operates directly o, that distin-
guishes our TP-Decomp from conventional approaches. Safiwatly, the transformation flow is
as follows:

Ftk FCP

Q-5 Gr -5 [\GUL, VL, WR.

For notation purpose, we define a mapping funciidhat maps the input volum@ to a quadruple

E:RIXJXK {R;RlXI,Rb(J,RlXK}.

Theoretical Insights of TP-Decomp

Given an input query vide@, in the first phase, the coteencodes most of the action dynamics.
In the second phasé,is further reduced to compact representation via rank-bm@osition. We

mainly focus on why the TP-Decomp is robust to perturbations

Two Operatorgy, and F,

In the first phase of TP-Decomp, the ca¥ecan be obtained by various methods such as the
higher-order SVD (HOSVD) [158] or the higher-order orthagbiteration (HOOI). They can be
viewed as natural extensions to the Singular Value Decompo$SVD) and Principal Component
Analysis (PCA). In our framework, we adopt the HOOI as outding block to obtain the coré,

as shown irAlgorithm 1. The initialization step applies HOSVD for one time. Afteat, multiple
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iterations are performed until convergence.

In the second phase of TP-Decomp, tig operator is a mapping that transforms a cub{ga
RE<ExE into a quadruple. Itis effective becauBg, is theoretically guaranteed by the fact that, for
a 3-way tensor, the property aftational uniqueneskolds for CP decomposition [159], i.e, there

is one and only onpossible combination of rank-one tensors that sungs to

Algorithm 2: Higher-Order Orthogonal Iteration for Third-order Tenghr

input : A query videoQ e RI1*/2xI3 treated as a three-mode tensor
output: Tensor corej € R<1ExE gand three matriced (M) e RIxE AR2) ¢ RI2xEAG) ¢ RIsxR

/* Initialize A® eRI*E for i=1,2,3 usi ng HOSVD */ ;
AWM « R leading left singular vectors @, ;
A®) « R leading left singular vectors @) ;
A®) < R leading left singular vectors @s) ;

/+ Start the iterative fitting on each node */ ;
while |Q -G x; AM xy A®) x5 A®) |, < e do

U< [Q 1, ADT, AGTT;

A « R leading eigenvectors @f(l)bla) ;

YV [QANT I, A®T];

A® « R leading eigenvectors 0*(2>V(€) ;

W < [Q AW AT L]

A® < R leading eigenvectors ob/ s W, ;

end

G« Qxy AMT xy AT xg AGT

Robustness of TP-Decomp under Perturbations

The HOOI procedure involves three tensor unfoldirdgs) € R11*/25s Vo) € RI2<Ils and W, €
R7s>*I112 \We now only analyzéf(,) since the other two are similar. Let us denote the unfoldimg o
the first mode as

Mzbl(l).
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Its counterpart under perturbation is denoted\ijyas follows

M, =M+E,

whereF is a perturbation matrix. 10 is perturbed by nois€y is a Gaussian random matrix with
zero mean and positive variance. HoweveRifs perturbed by Gaussian blurring, thénis the

difference between the convoluted matrix and the original.

By SVD, M can be decomposed as
M=UxVT,

where the left and right singular matricess R/1*/1 andV € R®*!! are orthogonal unitary matrices,

which induce a rotation of the input data. The mattix R has diagonal form:

Z:diag(al,ag,..-,an),

where{o;} are singular values a¥/ and satisfy

012092 ...20R20R+12...20n,

wheres; # 0. Now, by setting all but the firsk singular values inV/ to 0, we obtain a truncated

rank-R matrix My as:

MR = UERVT,ZR zdmg(al,ag,...,UR,O,...,O) e R™",

When R is chosen properly, the condition numiérof M/ will be moderate.

In Algorithm 1, within each iteration, only th& leading eigenvectors of the unfolded matrices

u(l)u(Tl) are considered, implying that only sigular values irt are considered. In fact, according
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to the Eckart-Young theorem [160], this truncated SVD paegithe best rankapproximation in
Frobenius norm [161]:
|M - Mg|r= min |M-X|p.

X:rank(X)=R

For this reason, selecting tlitleft eigenvectors ozt{(l)ug) implies an optimal rankz approxima-

tion for 4, to approximate th& in the first mode. Similarly, the same operationsW@V(g) and
WgW(Tg) are performed, and optimal rark-approximation can be achieved forin the second

and third mode, respectively.

The core is obtained by iteratively alternating one moddenfiking the other two. In this way, the
first phase operatdf,, produces an approximated version@fdenoted byD. As an intermediate

tensor, thed can be further decomposed into a core and three factor st follows:
O~ Q: [g;A(l),A(z),A(B‘)}].

We now show that, the difference betweénand O is equivalent to the difference betweéh
and the corgj. Since A® are orthonormal matrices, i.glA®| = 1, andi = 1,2,3, we have

I[G; AM, A®  AB®)]|2 = |G|2. Then, the difference betwe&handJ is:

|Q- 9

=|Q- [[Q;A(l),A(Q),A(3)]]]|2

= [Q* -2(Q,[G; AW, A® AG]) + |[G; AW A®  AD] 2

= Q)% - 2(Q x; ADT xy AT 53 A®) G) 4+ |G (8.2)
= |QI* - 2(3,G) + 1G]

=[Q[*-2]g]* + |g|*

=[Q[*-1g]?
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This means that, i@ - Q, thenG — Q. Also, after many rounds of iteration until convergence, th
generated tensor cofkis a full/dense tensor, satisfying an all-orthogonalitygperty between all
its slices across three modes [158]. As such, the @aan be viewed as a compressed versio@ of
for two reasons: (1) The dimension @fcould be much smaller tha@ sinceR < min{ Iy, I, I3}.
(2) The core encodes the data variation and internal dyrsaofi@ by the rank# truncated SVD

in each mode during the iteration.

Our second phase operathy, further decomposes the cofeto compact, unique, yet effective
representation, by directly converting a core of dize R x R into a quadruple of sizéR+ 1. This

step leads to huge dimensionality reduction of the core.

Given a query, in terms of the perturbed vide@’, neglecting all but the firsk components
for each unfolded matrix i’ in each mode is justified, since the perturbations introdumeFr
are only of the same order of magnitude asthe R smallest eigenvalues, whereas the fikst

components irt typically capture the underlying structure and primargingl dynamics [162)].

In other words, using the truncated SVD in the Algorithm,sitguaranteed that, the effects of
the perturbations (noise, Gaussian blurring, etc) will drgely filtered out during many rounds
of iterations, because noise perturbationgimffect mostly the small eigenvalues in SVD. The
primary underlying action dynamics are encoded by largereiglues, which are well-preserved
during iterations. This is the underlying reason for theusihess of TP-Decomp. If, however, the
perturbation in¥ is to intense that larger eigenvalues are also affected,itinll lead to degraded

performance in action spotting.
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Figure 8.2: Comparison of the resulting quadrupleskioking actions undefGaussian blurring
perturbation. Thé@nd-4th rows correspond to different blur amount. All curves in thgticolumn
show the dynamics of the resulting tuple.
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Figure 8.3: Comparison of the resulting quadruplesrforning actions undedown-sampling
perturbation. For scaling, th&h — 8th rows correspond to scaling ratios ti%, 8%, and 7%,
respectively. All curves in the last column show the dynanaitthe resulting tuple
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Figure 8.4: Comparison of the resulting quadruplesofemnchswingctions undenoiseperturba-
tion. For noise perturbation, ti@th—12th rows correspond to noise variance value8.of, 0.07,
and0.1, respectively. All curves in the last column show the dyranaf the resulting tuple
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Properties

TP-Decomp has three good properties. We mainly focus onctestness of TP-Decomp stated

in Property3.

Property 1: The TP-Decomp produces very compact repreenta By contrast, the dimension-

ality is reduced fron? x J x K for Q, to k3 for G, and finally to3 R for E%, namely

IJK - R®> > 3R.

Property 2: The TP-Decomp is invariant to spatiotemporateinsion permutation for query video.
Holistically treating video cuboid as tensor, we show no@pty on spatial dimension over tempo-
ral dimension. This is in contrast to the approaches thadlleaspatial and temporal dimensions
separately. By rotational uniqueness property [159], whermutating the spatiotemporal dimen-
sion of a query video, both the tensor core and the factoradaea remain invariant. This leads
to stable quadruples if,,. Practically, this property is useful to spot the cubiods tre rotat-
ed, mirrored, or transposed along certain axis in the tangeto, leading to some level of view

invariance.

Property 3: Under proper rankz, the TP-Decomp is robust to Gaussian blurring, downscaling
and noise perturbationWhat happens when the target video is degraded by intenkiven,
low resolution down-sampling, or drastic noise pertuidna® Many approaches will possibly fail
to answer this due to feature dependency. For example, H@augsian blurring removes high
frequency intensities in image. It may affect optical flowtraxtion that highly depends on pixel
gradients. The low resolution down-sampling removes megtiate pixels in frames. It may affects

the HOG/HOF features whose statistical performance alerstely depends on redundant sub-
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image patches. The heavy noise perturbation adds randa@ncorations in video frames. It may
affect the effective extraction of the silhouettes or ST&tires in space-time. In addition, bag-of-
features or bag-of-words paradigms, which rely on staastlustering of sufficient descriptors,

may also be hard to classify the codebooks under heavilyaoungated situations.

For illustration purposes, we tested TP-Decomg ation classekicking(KTH), running(UCF
Sports), andenchswingUCF Sports), as shown in Fig.8.2,8.3,8.4. We applied TEeD& on

Q under rankR = 20, and plotted the resulting triplets as curves. For the Gandslurring
degradation, under various smoothing kernels, we foundth®aresulting quadruple dicking
largely captures the action dynamics, with merely slighttflations in quadruple. For down-
sampling, we downscaled thranning video into various low resolution ones. Even when over
90% of the frame pixels were missing, thenningdynamics was still well-preserved. For noise
perturbation, we contaminated thenchswingvith Gaussian noises. Even when the frames were

heavily contaminated, the resulting triplets remainediegs to noise.

To fully investigate how the TP-Decomp performs for actipotsing under heavy perturbation,
we create a challenging dataset called Heavily Perturbddo/Arrays (HPVA). We will describe

it in detail in experiment section.

Rank-TCP Descriptor

In this section, we first describle our motivation of why we igerarchical representation of mul-

tiple core. Then, we elaborate the detailed procedure oftbdwild the pyramid representations.
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Motivation

The core dimension is solely decided by the rdtkyet the final quadruple is solely decided by

the core. Hence, the rarkis the ultimate factor that affects both core and quadrupfanics.

Algorithm 3: Rank-TCP descriptor construction

input : A query videoQ € R/*/*K wherel and.J correspond to spatial dimension of frames, and
K corresponds to temporal dimension

output: Tuple{U,V, W}.

Initialize U, V, W to empty vectors;

for indexe from2 to 7 do

RankR = 2¢;

if R <min{I,J, K} then

Apply F};, operator toQ using rankR;

Compute cor&r = Q x; AT xo BT x5 CT ;

Apply F., operator tagp;

Compute quadruplp\g; Ugr, Vi, Wr] ;

Concatenaté/ to the rear olJ ;

Concatenaté’ to the rear ol ;

Concatenatél’; to the rear oWV ;

end

end

However, there is no prior that we can count on about wiidleads to good representation for
action dynamics in core/quadruple, because determinimgpteank is NP-hard [163], and the be-
havior of higher-order SVD is far beyond well-understood][3n the extreme cases, for instance,
if Ristoo small R < 3), the core will be too small to capture sufficient informatiovhereas i

is too large, the, operator may become undefinedlbymma 1and theF ., operator may not be

unique byLemma 2as shown in the Appendix.

For this reason, we experimentally validate how ranks affiee TP-Decomp on a realistic big
dataset called CCWebVideo, as stated in Seciiddur results on five classe®4(/1 videos) show
that, combining quadruples from multiple ranks outperfdinat of individual ranks (Fig.8.6). This

is what motivates us to establish a Rank-based Tensor Coaeyto fully characterize an action.
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Construction Procedure

We establish a new tensorial coarse-to-fine pyramid usingjpteicores under multiple ranks. S-
maller ranks correspond to cores of smaller size, lying altbg larger ones in the pyramid. Under
each candidate rank, we apply the TP-Decomp on the query teng€pyielding its corresponding

quadrupleE® = [\ US, V.2, W2

Cores with lower ranks coarsely encode dynamicg@jmwhereas cores with higher ranks encode
dynamicsQ more precisely. But in terms of computational burden, thgdatheR, the longer the

TP-Decomp takes. Practically, we consider the followingdidate ranks
R ={4,8,16,32,64,128}.

This choice stems from practical concerns. Altanks are unevenly distributed in a sense that
we lean towards lower rank spectrum while not losing higlaeks. This choice can weight the

computational burden of TP-Decomp.

For the6 pyramid layers, there are totaltyx 3 = 18 vectors generated. At théh layer, the size
of the quadruple i8 = 2/ + 1. Our final feature descriptor is the concatenation of thedguale in

all pyramid layers. We concatenate thiel, 1V vectors at each level, yielding three long vectors
U,V,W, namely

U =[Uy,Us, ..., Upas]

V = [‘/217‘/87 "'7‘/128]

W = [W47 W87 ) W128]-

The triplet{U, V, W}, with each element of sizg, 2¢ = 252,i = [2,---, 7], will be fed into the final

template matching phase. If a candidate rdhks larger than the size of query tensor, namely
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R >min{l, J, K}, then we letR,,,, be the largest candidate rank, which is smaller than theyquer

tensor size. Then each element in the triglétV, W} is of size}; 2¢,i = {2, loga Rinas } -

Experimental results in CCWebVideo dataset shows that aundmultiple ranks outperforms s-
ingle rank representations (Fig.8.6). Intuitively, by dmmng multiple cores, the pyramid achieves

a rich and redundant representation for video.

The procedure to build the Rank-TCP descriptor is showAlgorithm 1. The storage space
saved in TP-Decomp is frothx J x K to 3R + 1. For Rank-TCP descriptor, the space complexity
of the final quadruple i&™ """} (3 x 2¢ + 1). In the case thahin{/,J, K} > 128, the total size

for the pyramid is756.
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Figure 8.5: (st) The point cloud formed by the dense trajectories extrafrtad a video of M-

SR | dataset. Red points map to top trajectories by len@ihd)(Top trajectories thresholded by
the mean length of all trajectories3r{/) Top trajectories thresholded by the mean unsigned total
curvature of all trajectories4{h) Our filtered trajectories. The red dots denote the averacg |
tions of trajectories. The red, green, and blue boxes dehetground truth volume fazlapping,
waving andboxing respectively (zoom in for better view)

Boosting Strategies for matching

Although costly, template matching can avoid problemat&ppocessing operations in localiza-
tion, tracking, and segmentation [164]. The computatidnaldlen can be reduced by various

techniques such as branch-and-bound [165] or voting dlgos [166].

In our framework, two strategies are adopted to boost thelae matching: (1) to reduce the
space complexity, we employ the dense trajectory in [167, @une the search space using cues
derived from trajectories. (2) to reduce the time complexite use a coarse-to-fine strategy as-

sisted by the Rank-TCP descriptor.
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Trajectory-assisted Space Reduction

Motion is the most reliable and informative source of infatran for action analysis [168]. The
method using dense trajectories to compute local desciip{d68] is one of the state-of-the-art
approaches for action recognition. The work in [167] furiingoroves the work of [168] and shows

high reliability and robustness in handling motion.

Given a target video, we first extract its dense trajectdmiethe method in [167] using default
parameters. Instead of being used in codebooks for k-méasteng as in [168, 167], the dense
trajectories are treated as reliable cues to prune the hagghing space. Our underlying intuition
of this trajectory-assisted matching agrees with that 68]1 despite the huge number of candi-
date cuboids needing search, only very few contain the trotom of interest (MOI). Instead of

exhaustively evaluating them all, we target only the best fe
Inspecting thoroughly, we observe the motion annotateddpgdtories can be roughly divided into

8 categories:

1. (a) limb movement around MOI, such as the hands in handwavirggh#ad and feet in

jumping, etc.

N

. (b) camera motion, such as zoom, pan, translation, vibration, e

w

. (¢) non-MOI motion inside blobs.

SN

. (d) patch motion inside MOI, such as motion caused by appear@ngecloth) in bending

or jumping, non-limb body region motion, etc.

5. (e) background clutter, such as cars on street, crowd, remaiese pedestrians, etc.

(o2}

. (f) foreground motion, such as a pedestrian moving from lefigiot iacross the scene, etc.
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7. (g) local motion propagation, such as a fountain in backgroatd,

8. (h) regional random movement of noisy patches.

Out of those 8 categories, we are especially interesteckifirgt. The categoryd) is effectively
canceled out by method in [167], and few trajectories arpaesible for it. Further observation
reveals that, short trajectories stem frary,,,: = {c,d,e}, long trajectories stem fror@},,, =
{a,d,e, f}, curved trajectories stem frof...,.... = {a, e, g, h}, and relatively straight trajectories

stem fromCl,.qigne = {c, d, €, f}. Notice that

C(long m Ccurved = {CL}

This observation suggests that, a long curved trajectalicates a possible MOI around this tra-
jectory. This inspires us that, the length and the curvat@iteajectory is possibly a very good cue

to spot the MOI.

In practice, given a trajectory denoted By {p;},i = 1,...,n and a neighborhooa, we calculate

its tangent orientation based discrete curvature [170patp; by

k(p) = 2 (Di-mPi; PiPism)
|pi—mpi| + |pipz‘+m|

Since curvature is signed, the total curvature Stshaped trajectory is possibly zero. We then use
unsigned total curvature =Y. |k(p;)| to reflect the total “bendness” of a trajectory. Along with it
total lengthl = ¥ |p;y1 — pi|, we define

¢ =kl

as our metric to measure the trajectories, and define thehbie ast = mean(s;),j = 1,....t,

wheret is the total number of extracted trajectories. This mesiumnsupervised, simple, yet
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powerful enough to prune a significant amount of irreleveajettories, as shown in Fig.8.5. The

mean position of all survived trajectories are used as bdacations in template matching.

Actually, our metric is somehow connected with the flow fiejshamics. Let us call the motion
annotated by a dense trajectory as “motionlet”, the sntathegion unit inside a spatialtemporal
volume. Each motionlet involves a transmission of energshanform of trajectory flow. If we
regard the spatialtemporal video volume as a fluid energy, fiekn long trajectories reflect those
motionlets that traverse long distances, and carry more énergy than that of short trajectories.
But the energy itself does not necessarily suggest a true @duse noise or clutters also carry

energy.

On the other hand, curved trajectories correspond to théomiets that carry curl (or vorticity)
information. The curl around the flow field suggests the rotatdensity, or magnitude of the
flow. Given the same flow energy, the curl can provide a cue of the energy flows, in which
direction, and in what speed. Our treatment of the curvegediaries using unsigned total curvature
is a natural quantization for the curl of flow field, becaugalttbendness” of a trajectory provides

a good way to simulate its curl.

To illustrate the effectiveness of this metric, we plot &k ttrajectory cloud information for6

videos in MSR | dataset, as shown in Fig.8.7,8.8,8.9,8.10.
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Figure 8.6: The Precision-Recall Curve for CCWebVidedg (ow) and CMU Action datase®fid
row). For CCWebVideo dataset, each figure denotes the casopaesults between using a single
rank and multiple ranks. From left to right, the action céssareThe lion sleep tonight, Evolution

of dance, Fold shirt, | will survive JespandLittle superstar Note that our PR curves fdiittle
superstaris more jagged than others because there is dfground truths available out Gf77
videos 4% are outliers). For CMU Action, we compare our method withaseline methods,
namely, the holistic flow [95], the part-based shape plus flbB¢], and the spacetime oriented
energy measurements [87]. Thesubfigures correspond jamping jacks pickup push button
one-handed waveandtwo-handed waverespectively. Red curves correspond to our proposed
method (better be viewed by zooming in and in color)

Coarse-to-fine Matching

The trajectory-assisted strategy prunes a consideraldei@nof search locations. Let the set of
survived search locations He= {L;},i = 1..n. Due to the coarse-to-fine structure in Rank-TCP

descriptor, we can further accelerate the matching in aatite coarse-to-fine manner.

Since the descriptor with lower rank coarsely represenctmaidate volume, we first match all
locations inL using the lowest ranik = 4. Within the resulting3D score map, we set a loose
thresholdfx-,, filtrating all matched candidate cuboids below this thoégh For the survived
candidates”'z_4, we apply the second round of matching under a higher rank 8. Under a

proper second threshofig_s, a smaller portion of the survived candidates from last dydienoted
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by Cr-s, survives, and participates in the next level whBre 16. We iterate this process times

(m <= 6). Under lower ranksR = {4,8}), there could be numerous false alarms, because lower
ranks correspond to far more cuboids needing match. As nawksgR = {16, 32,64,128}), many
false alarms will be filtered out. To ensure true positivesdtions around MOI) are not falsely
filtered out, the thresholds under lower ranks, #g., andfz_g, will not be set too tight; but as
rank grows, more strict thresholds will be enforced to atiaté false positives. In practice, this

strategy can reducks% — 30% matching time.

Matching Measure

To define the similarity measure between the query te@samd candidate sub-volum&in search

videoS, we extract the Rank-TCP descriptor out of b@landV, resulting in two quadruples

=R = DR UR Vi, Wi

=% = DR V2R

We define the matching measure function as
D(E3,2%) = 6(UR Up) + 6(Vi2 Vi) + 6(WZ, W),

where the function is the Euclidean distance measure function.

We define the similarity score betweéhand)’ under rankR as
&r = ~log(D(2F,ZR)).
The score is inversely proportional to the measure fundtioi high score means the two tensors
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are similar while a low score implies dissimilarity. The ge@f the similarity score across tB®

score volume indicates potential match locations.

Experimental Evaluation

We extensively experiment dnbenchmarks. For CCWebVideo, the retrieval requires no aind

sliding, since we holistically match query and target. lartemainingt datasets, following [164],

we match at a single scale instead of multiple scales sirtoe sizes are stable. We use exhaustive

search as our baseline denoted by “RTCP-Exha”, and thetoayeassisted matching is denoted

by “RTCP-Traj".

Table 8.1: Average Precision (AP) comparison for CCWeb¥jdeMU, MSR |, and MSR I

datasets
CCWebVideo| “The lion sleep tonight”| “Evolution of dance”| “Fold shirt” | “I will survive Jesus” | “Little superstar”
Total video # 792 483 436 416 377

Outlier # 458 361 253 29 318
Outlier % 58% 75% 58% 7% 84%

Wu [171] 0.95 0.90 0.86 0.88 0.78
Song [172] 0.94 0.79 0.92 0.94 0.94
RTCP-Traj 0.97 0.94 0.93 0.98 0.81

Dataset CMuU MSR | MSR I
Actions jjacks | pickup | pushbutton| 1-h wave| 2-h wave | clapping| waving | boxing | clapping| waving | boxing
Video instance # 16 20 14 18 34 14 24 25 51 71 81
Deerpanis [87] 050 | 0.95 0.80 0.55 0.48 - - - - - -
Ke [164] 0.30 0.45 0.50 0.40 0.60 -
Yuan [165] - - - - 0.75 - - -
Yu [173] - 0.30 0.84 0.60
Boyraz [174] - - - - - - - - 0.35 0.40 0.50
RTCP-Exha (baseline)| 0.55 0.59 0.35 0.40 0.57 0.19 0.43 0.25 - - -
RTCP-Traj 0.75 0.92 0.74 0.69 0.78 0.63 0.82 0.70 0.57 0.73 0.64
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Figure 8.7: Video numberetito 4 of MSR | dataset. 1(st column) The point cloud formed by
the dense trajectories. Red points map to top trajectottesefil by our metric. Ind column)
Top trajectories thresholded by the mean length of all ¢ttajées. ¢rd column) Top trajectories
thresholded by the mean unsigned total curvature of akdtajies. {¢th column) Our filtered
trajectories. The red dots denote the average locationsjeictories. The red, green, and blue
boxes denote the ground truth volume éapping, wavingandboxing respectively (zoom in for
better view)
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Figure 8.8: (Cont.) Video numberédo 8 of MSR | dataset
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Figure 8.9: (Cont.) Video numberé&do 12 of MSR | dataset
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Figure 8.10: (Cont.) Video numberéd to 16 of MSR | dataset
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Figure 8.11: Our HPVA dataset14t) The 6 seed videos. We udgoxing, clapping, wavin@s
gueries, and the rest as outlieran{) One frame of a video grid perturbed by random heavy noise;
(3rd) One frame of a video grid affected by random degree of bigrrdti) A random mixture of
noise and bluring perturbation#:) The 3D tiled cuboid grid of size300 x 300 x 180. Each cell

is filled with a random seed video6t(:) The exhaustive matching on a randomly generated grid.
Blue/red cuboids denote the ground truth position of qsgeg.boxing, clapping, waving while
green cuboids denote sliding windows
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CCWebVideo Dataset

This huge dataset [171] contai$ set 0f13129 videos. For each seed video, there are hundreds
of different versions, with considerable amount of inttass variation (such as photometric varia-
tions, lighting change, unrelated frames, text overlay,)etVe use this dataset to verify how our
Rank-TCP descriptor performs given huge intra-class maga We select classes, totallp471
videos. Since action spotting is analogous to video redfjeve treat the seed as query video,
and spot all videos that matche the seed. We dedescriptors, of whicht use a single rank

(4,8,16,32), and1 combines these multiple ranks.

Table 8.2: Average precision for HPVA results

HPVA Noise | Blur | Mixed
RTCP-Exha (baseline) 0.44 | 0.37| 0.21

Table 8.3: Time (hours) spent itemplate matching scenarios fotbenchmarks. “c2f” means
using coarse-to-fine matching strategy

CCWebVideo| CMU | MSR | | MSR Il | HPVA
RTCP-Exha (baseline 23 18 15 n/a 0.8
RTCP-Traj wo/ c2f n/a 2.0 2.3 7.2 n/a
RTCP-Traj w/ c2f n/a 1.2 15 6.3 n/a

CMU Action Spotting Dataset

The CMU action dataset [164] consistsaction classes4g videos,6 subjects):jumping jacks
pickup push buttonone-handed waveandtwo-handed wave Videos are recorded in crowded

environments such as streets, restaurants, and bus stogoMfere with3 baseline methods:
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the holistic flow [95], the part-based shape plus flow [164f] ¢he space-time oriented energy

measurements [87].

MSR Action Dataset | and Il

TheMSR Action Dataset | [165] contains3 classes 6 video sequence$() subjects). The video
sequences and has in total 63 actions: 14 hand clapping,r#ivisaving, and 25 boxing. Each
sequence contains multiple types of actions. There areibdtior and outdoor scenes with clutter
and moving backgrounds. TIMSR Action Dataset Il is an extended version of the MSR . It
contains3 classes{4 video sequences): hand waving, hand clapping, and boxmgotal 203
action instances. Since instances of a query often do noh laegl end at the same time span

[164], we preserve only the best in each frame.

Heavily Perturbed Video Arrays (HPVA) Dataset

We created a new challenging dataset to test the robusthess framework under heavily per-
turbed situations. We chooseseed videoshoxing, clapping, wavingl-handed wave, pickup,
pushbuttoiy, each of siz&0 x 60 x 60. We form a300 x 300 x 180 3D tiled cuboid gridin space-
time, as shown in Fig.8.11 (Each cell contains a random se8t)ce down-sampling can be
regarded as a variant of Gaussian blurring, we apply oneeofvito operatorsF,,;s. Of Fyr, ON
seeds. The degree 6},,;,. and F,,,. are randomly specified, and which cell maps to which seed is
also randomly generated. We creaseslich grids in HPVA, of whicl2 are enforced by),,;.. and
Fy.., respectively, and the other one by mixing s@abperations. In other words, our benchmark
has three videos3(0 x 300 x 180). The first is under randomly perturbed noise. The second is
degraded by random intensive blurring. The last is a randaxtune of noise and blurring. We

chooseboxing, clapping, wavings queries and the rest as outliers.
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Analysis

Average Precision (AP)For CCWebVideo, despite the large amount of outliers anc-ioiass
variations, the PR curves of our spotted (or retrieved)lteshow remarkably high precisions.
The precision of higher rank8%) is often higher than lower rankg,®). The combination shows
highest AP amongst all cases. Fot out of 5 seeds, our AP outperform the state-of-the-art (Table
8.1). The results foB out of 5 actions in CMU data outperforms previous works. Higher seank

indeed lead to richer representations, and combining pteltanks is better than a single one.

Using RTCP-Exha, our AP on CMU data outperfo2nout of 5 actions. Using RTCP-Exha, our
AP improves for all5 actions. Especially, we observe that APmékup action increase85%
compared to baseline. This action involved a large body anotvhen the person’s upper body
approaches to the ground. By inspecting the filtered trajexs of pickup we observed that a
considerable amount of irrelevant trajectories were &lievut, leading to largely reduced number

of false alarms.

The MSR | and MSR 1l are challenging because of their longtittma and dynamic backgrounds.
Some previous works did not provide AP per action, so theyuaeyailable in Table 8.1. Note
that, we observe the hands of ttlappingin some videos often overlap the inner region of human
body, and lead to some level of intensity confusions. Thuscfapping our AP is relatively
low using exhaustive matching without pruning. Becauseéhefrhatching timex 40 hours), the
exhaustive matching results for MSR Il is unavailable in mst. Our reported trajectory-assisted
matching for MSR Il took about.3 hours with coarse-to-fine boosting (Table 8.3). Overalt, ou
AP is comparable to that of [173]. Across all test scenaRICP-Traj largely outperforms RTCP-

Exha, showing that our trajectory-assisted pruning iseadeffective.

We perform only exhaustive matching on HPVA, because theaetad trajectories on HPVA can
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hardly represent motion dynamics due to heavy contaminatioideos. The results are shown in
Table 8.2. Due to the robustness of TP-Decomp stated inddettour method still spotted many

true positives, regardless of the randomness and contdamnatroduced in HPVA.

Matching Time In practice, we parallelized template matching on a clussang multiple cores.
We compare the time spent in matching in Table 8.3. Along whth AP analyzed above, our
trajectory-assisted space reduction is an effective wagdoce search space and boost the spotting
precision. The adaptation of coarse-to-fine (c2f) can redaroundl5% - 30% of the matching

time on average compared to that of without c2f.
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

Conclusions

We use the recurrence plot theory to define a tensor repegganof the dynamics of an action in
video data, which we refer to as a Joint Self-Similarity okt We show that for the purpose of
action recognition the Joint SSV is sparse. In other wotdsn be for the most part characterized
by its rank-1 subspace representation. Therefore, by exmgadhis sparseness, we reduce the
high-dimensional recognition problem to a linear low-dme@nal matching problem in a rank-1
subspace, without compromising our recognition accurAggarticular feature of our approach is
that it leads to a generic solution to this problem in the sehat our solution is independent of
the type of input features, i.e. tracked points in a motiqrteae dataset, manually marked points,

automatically extracted silhouettes, Histogram of GnatjeloG) feature vectors, optical flow, etc.

For reducing the dimensionality of the Joint SSV, we introetli a new rank-1 tensor approxi-
mation algorithm that relies on an alternating least squapproach to find the optimal rank-1
decomposition. We demonstrate that in the case of Joint ®8\groposed decomposition largely
preserve the salient characteristics of the scene dynaf@icthe other hand, it leads to significant
saving in both memory and computational time, since onlyliection of rank-1 tensors is needed
as the reference database for action class representatdamaching. The algorithm also allows
one to recognize actions without explicitly aligning theewos in temporal dimension. To validate
our method, we devised three types of volume constructibemees, and performed experiments

on five different public datasets.

For action recognition in incomplete videos, we study to idwent sparse unlabeled data can

affect the action classification problem, and we proposeifiednframework for handling the
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sparsity problem. We experimented with an exhaustive spos$ible situations, and recover the
complete version of the sparse videos by a CP-based decdmpadgorithm. Then, with the
help of a semi-supervised learning, we demonstrate thelplitysof classifying actions under
high or even severe sparsity. Our test results on two bendtsnshow that it is feasible to include
incomplete videos rather than simply discarding them. Véa pb create benchmarks from other
challenging datasets to better scrutinize this problerhtiba a direct application in the popular

area of compressive sensing.

For motion retrieval, our technique transforms the initredtion sequences into three vectors that
are discriminating the motion manifold based on its dynamga whole rather than on frame-by-
frame basis. The advantage of this approach lies in theviollp aspectsFirst, no alignment for
individual poses is required when matching the query posie thve one in the reference database.
Secondfor comparing poses, which may be represented by a large&xmditen the motion time is
large, our generated vectors are merely three low dimeaku@ators. This leads to huge saving in
motion sequence storage and processirgrd, as discussed earlier, our method resolves motion
sequences while preserving non-linear characteristiod, aaoids confusions due to inter-class
similarity, or intra-class dissimilarity. This chaptershthus presented an efficient method for
retrieval of motion capture data that in particular sohNesproblem in cases when other methods
typically get confused. One main contribution of this waslainew framework for motion retrieval
without explicit time alignment compared to the traditibngethods. Also, compared with the
traditional DTW-based approaches, our technique onlyiregistoring a collection of compact
reference vectors generated by our iterative algorithimerathan complete sequences of motion.
Of course, our method can be adopted as an efficient comptemére DTW-based approaches

in scenarios where exact frame-wise alignment is also redui

For action spotting, we propose a framework that is feaitndependent and does not rely on hu-

man localization, segmentation, or frame-wise trackinge 8tart by treating all involved video
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cuboids as multilinear tensors, and theoretically and exymntally show that, the internal dynam-
ics of an action can be effectively encoded by our new TwosBl2ecomposition technique. We
further verify that combining multiple cores under muléplnks lead to enhanced performance
compared to a single rank. This inspires us to devise hiei@kcrank-based descriptors to fully
represent action dynamics. We boost the costly templatetnmag by two strategies, which reduce
the size of of search space and the matching time. The expetatresults orby benchmarks,
including our newly-created HPVA dataset, show that oumfrvork is very effective in spot-
ting actions under various challenging conditions. We aate that, (1) Our TP-Decomp method
yields compact, discriminative, and robust features. @)KRTCP is effective in yielding richer
and reliable representations. (3) Filtering out irrelé\@urtliers in matching volume, targeting only
the best few, indeed leads to largely boosted speed and@thprecisions. (4) A robust descriptor

that preserves action dynamics is critical to spot actiorteuheavily perturbed situations.

Future Work

In our third major topic, namely, the action spotting, we éaglwree further observations. (1) We
observe that, in our action spotting framework, althoughtthjectory-assisted boosting strategy
filters out a large amount of irrelevant search locationmesoutliers still remain in the survived
locations. (2) For some actions, the motion of interest (M@&hds to be clustered, while for other
actions, they might distribute sparsely in the search velu(®) By comparing the center of MOI
(denoted byC'....+.) with the centroids of the ground truth action volumes (ded®yC'....tr0id),

we noticed that, sometimes there are a certain amount odmments between those two. This
displacement affects the interaction ratio if we want tapet threshold between candidate vol-

umes and the ground truths.

We believe that, finding the corresponding explanation tutgm for the above three observations,
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has significance if we want to further enhance our actiontsppperformance. For this reason, in

our future work, we plan to tackle them as follows.

First, we plan to derive more intuitive yet useful cues from thgettories. For example, the
curl (or vorticity) might be a more accurate quantity conguhto our “total unsigned curvature”.
Indeed, if we can filter out more irrelevant locations whitegerving true positives, the precision

can be enhanced because the true negatives are reduced.

Secongdwe will explore the connection between the sparseness @mhalynamics in terms of

MOI.

Third, we will explore the possibility of using Voronoi Graph (V®Based technique to boost the
template matching in action spotting. The reason is that,NéGonly has good properties in
describing the 3D structure of a point cloud, it also hakistg connection with fluid (or particle)
flow dynamics in a 3D dynamic system. which shares commorackeristics with the problem of

video flow and dynamics in action spotting.
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Multilinear tensor fundamentals

We summarize some necessary preliminaries for multiliaégebra in this section. A tensor is a
higher order generalization of a vector and a matrix. amode tensofl’ € RI1x/2x-xIn is rank

oneif it can be written as the outer product &t vectors, i.e.,
X =a®oa® o.q™

wherel,,---, Iy are the dimensions of each mode, and the syml@notes the vector outer prod-

uct. The scalar product of two tensodsB € R/~ is defined as
(A, B) = Z Z ail...iNbil...iN,
71 IN

and the Frobenius norm of a tenséiis | A| = \/(A, A).

The rank of a tensak’, denotedrank(X'), is defined as the smallest number of rank-one tensors
that generatet’ as their sum [143]. The definition of tensor rank is an exaetlayue to the
definition of the matrix rank. There are different types afger rank, namely thenaximum rank

typical rank andborder rank The problem of determining tensor rank is NP-hard [163].
We provide two Lemmas that are used for our Two-Phase Decsitigoo(TP-Decomp) technique.

Lemma 1: For a3-order tenso®’ e R/*/*K only the following weak upper bound on its maximum

rank is known [159]rank(X) < min{IJ, I K, JK}.

Lemma 2 For a3-order tensotX € R”*/*K the CP decomposition is generically unique if the
following two conditions hold [175]: (1R < K; (2) R(R-1) < I(I-1)J(J-1)/2, whereR is
the rank oft’.
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