
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2013 

Interdiffusion Reaction Between Uranium-zirconium And Iron Interdiffusion Reaction Between Uranium-zirconium And Iron 

Young Joo Park 
University of Central Florida 

 Part of the Materials Science and Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Park, Young Joo, "Interdiffusion Reaction Between Uranium-zirconium And Iron" (2013). Electronic Theses 
and Dissertations, 2004-2019. 2675. 
https://stars.library.ucf.edu/etd/2675 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/285?utm_source=stars.library.ucf.edu%2Fetd%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2675?utm_source=stars.library.ucf.edu%2Fetd%2F2675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

INTERDIFFUSION REACTION BETWEEN URANIUM-ZIRCONIUM 
ALLOY AND IRON 

 
 
 
 
 
 

by 
 
 

YOUNG JOO PARK 
B.S.Hanyang University, 2003 
M.S. Hanyang University, 2005 

 
 
 

 
A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 
in the Department of Materials Science and Engineering 

in the College of Engineering and Computer Science 
at the University of Central Florida 

Orlando, Florida 

 

 

Summer Term 
2013 

 

Major Professor: Yongho Sohn 

 

 



 

 

 

 

 

 

 

 

© 2013Young Joo Park  

 

 

ii 



ABSTRACT 

U-Zr metallic fuels cladded in Fe-alloys are being considered for application in an 

advanced Sodium-Cooled Fast Reactor (SFR) that can recycle the U-Zr fuels and minimize the 

long-lived actinide waste. To understand the complex fuel-cladding chemical interaction of the 

U-Zr metallic fuel with Fe-alloys, a systematic multicomponent diffusion study was carried out 

using solid-to-solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were 

assembled and annealed at temperatures, 630, 650 and 680°C for 96 hours. Development of 

microstructure, phase constituents, and compositions developed during the thermal anneals were 

examined by scanning electron microscopy, transmission electron microscopy and X-ray energy 

dispersive spectroscopy. A complex microstructure consisting of several layers that include 

phases such as U6Fe, UFe2, ZrFe2, α-U, β-U, Zr-precipitates, χ, ε, and λ was observed. Multi-

phase layers were grouped based on phase constituents and microstructure, and the layer 

thicknesses were measured to calculate the growth constant and activation energy. The local 

average compositions through the interaction layer were systematically determined, and 

employed to construct semi-quantitative diffusion paths on isothermal U-Zr-Fe ternary phase 

diagrams at respective temperatures. The diffusion paths were examined to qualitatively estimate 

the diffusional behavior of individual components and their interactions. Furthermore, selected 

area diffraction analyses were carried out to determine, for the first time, the exact crystal 

structure and composition of the χ, ε and λ-phases. The χ, ε and λ-phases were identified as 

Pnma(62) Fe(Zr,U), I4/mcm(140) Fe(Zr,U)2, and I4/mcm(140) U3(Zr,Fe), respectively. 
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CHAPTER 1: INTRODUCTION 

Uranium (U) – Zirconium (Zr) metallic fuel with Plutonium (Pu) and minor actinides has 

been considered as the main fuel alloy for the Generation IV (Gen-IV) Nuclear Energy systems 

[1]. The goals of the Gen-IV system include reducing radiotoxicity in the repositories and the 

amount of radioactive waste. Another goal is to utilize the energy content of the spent nuclear 

fuel. To meet these goals, the Sodium-Cooled Fast Reactor (SFR) is utilized. The SFR is one of 

several models for the Gen-IV systems [2] [3]. The SFR, which is normally operated at the high 

temperature of approximately 550°C, employs liquid sodium (Na) as the main coolant. The SFR 

minimizes long-lived actinide waste through treatment, and re-uses the spent uranium resources. 

U-Zr alloys have been considered for SFR fuels. When Zr is alloyed in U for the metallic nuclear 

fuel, it mitigates the chemical interaction between the fuel and cladding materials (e.g., typically 

Fe-based alloys), and elevates the alloy solidus temperature [4]. However, during irradiation, the 

U-Zr alloy can swell and make contact with the cladding, causing metallurgical interactions to 

occur at the fuel-cladding interface, termed fuel-cladding chemical interaction (FCCI). The FCCI 

can change the microstructure, phase constituents and composition near the vicinity of the fuel-

cladding interface, and can adversely affect the fuel performance and structural integrity of the 

cladding alloy. Addition consideration must be given to the constituent redistribution within the 

fuel alloy due to temperature gradient that leads to the reduction of Zr content towards the center 

of the fuel [5].  

A thorough understanding of the interdiffusion and reaction between the fuel alloy and 
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the cladding materials is necessary to optimize and predict the reactor performance. This thesis 

therefore examines the interdiffusion behavior between the U-10 wt.% Zr fuel and pure Fe 

cladding in terms of microstructure, diffusion paths, and phase constituents by using solid-to-

solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were assembled, 

annealed at temperatures, 630, 650 and 680°C for 96 hours and examined by scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive 

spectroscopy (XEDS). Analyses were carried out to determine the growth rate of interdiffusion 

microstructure and diffusion paths on isothermal U-Zr-Fe ternary phase diagrams at respective 

temperatures. Furthermore, for the first time, the exact crystal structure and composition of χ, ε 

and λ-phases were identified as Pnma(62) Fe(Zr,U), I4/mcm(140) Fe(Zr,U)2, and I4/mcm(140) 

U3(Zr,Fe), respectively. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Sodium-Cooled Fast Reactor 

The SFR system is one of Gen-IV reactors to be designed as an advanced fast neutron 

reactor, and has the fuel breeding capability [6]. Liquid Na contained in the SFR reactor vessel is 

used to cool the reactor and to exchange the thermal energy to generate the electricity. Na has 

appropriate properties [6] to be the coolant for fast reactors as listed below: 

• Thermal conductivity (142 W/m/K) 

• Relatively low density (0.927 g/cm3 at 1atm) 

• Relatively large liquid range (97.72 ~ 883°C) 

• Relatively low thermal neutron capture cross section (0.53 barns) 

In order to cool the core of a fast reactor, coolant with higher thermal conductivity than 

water is required, because the fast reactor’s power density of ~250 kW/l is much larger than the 

widely-accepted light water reactor with power density of 50 ~ 100 kW/l. The fact that liquid Na 

has lower density than water makes it easy to circulate and exchange the heat generated by 

fission. The general operating temperature of 550°C for SFR is between the melting point 

Tm=97.72°C and boiling point Tb=883°C of Na. Also, the thermal neutron capture cross section 

of Na is relatively low among the potential liquid coolant for fast reactor as listed in Table 1. A 

small module SFR produces 50 MWe, and large size SFR can generate up to 1,500 MWe. 

Metallic fuel or oxide fuels have been considered as the main fuel. 
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Table 1. Thermal neutron capture cross sections for potential coolants of fast reactors. [7] 

Element Thermal neutron capture cross section (barns) 

Hg 372.3±4.0 

K 2.1 ± 0.1 

Rb 0.38 ± 0.04 

Na 0.53 ± 0.005 

Pb 0.138 ± 0.004 

Li 0.0449 ± 0.003 

Bi 0.0338 ± 0.0007 
 

 

The reactor vessel utilizes almost all energy in the natural U. U, as found in nature, is a 

mixture of three types of isotopes, 99.284% 238U, 0.711% 235U and 0.0055% 234U. Generally, 

fissible reactor fuel consists of 235U, but unfortunately, non-fissible 238U is the most common 

naturally occurring isotope. The 238U cannot sustain the chain reaction needed for nuclear energy 

generation using commercial reactors. Figure 1 shows the main sequence of breeding reaction for 

sustaining fission within the SFR. The neutrons caused by fission reactions breed more fuel from 

non-fissionable isotopes. The 238U, which absorbs the neutron, is converted to 239U, and then the 

two β-decay eventually converts the non-fissionable 238U to fissionable 239Pu. Figure 2 shows a 

schematic diagram of a SFR nuclear system. 
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Figure 1. The sequence of breeding reaction that converts 238U to fissionable 239Pu. 

 

 

 

Figure 2. A schematic diagram of a SFR system [3]. 
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2.2. Fuel Cladding Chemical Interaction 

Although metallic fuels have been considered as an ideal fuel for fast reactors, few 

potential disadvantages have been reported for application in fast reactors. Among them, the fuel 

cladding chemical interaction (FCCI) has been identified as a critical factor that can adversely 

affect the performance and reliability of the fuels. During the operation, metallic fuels can swell 

(i.e., volumetric expansion) due to neutron irradiation, and contact the cladding alloys, typically 

Fe-base alloys. This contact between the fuel and cladding can then induce the interdiffusion [8-

13], alter the composition, microstructure and properties of both the fuel and cladding, and can 

cause a premature breach of a fuel element including formation of low-melting phases. Therefore, 

in order to design and implement fast reactors with metallic fuels, it is important to understand 

the diffusion behavior between the metallic fuels and various cladding alloys based on Fe. An 

ideal cladding material for metallic fuel system requires: 

• Good thermal conductivity 

• Low neutron absorption cross section 

• Good chemical resistant 

• High melting point 

• Low thermal expansion coefficient 

• Low diffusivity between fuel and cladding  
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2.2.1. Interdiffusion and Reaction in Binary U vs. Fe 

Previous investigation by Huang et al. [8] on the U-Fe binary system serves as the basis 

for quantitative and qualitative effects of alloying additions, Zr in the U, and assist in 

understanding the FCCI process between the U-Zr metallic nuclear fuels and Fe-cladding alloy. 

There were four phases observed in the U vs. Fe diffusion couples annealed in the temperature 

range of 580°C to 700°C, which were U (<668°C, α-U; 668-776°C, β-U; >776°C, γ-U), 

U6Fe(tI28), UFe2(cF24) and α-Fe (cI2) [14]. The interfaces between phases had uniform 

thicknesses and the solubility ranges of the two intermetallic phases, U6Fe and UFe2, were 

negligible. The difference between the extrinsic and intrinsic growth constants of the UFe2 phase 

indicated that the growth of UFe2 was impeded by the faster growing U6Fe phase, but U6Fe was 

hardly affected by the growth of the UFe2 phase. Also, in Huang’s study [8] it is suggested that 

the allotropic transformation of U from α-U (orthorhombic) to β-U (tetragonal) slightly affected 

the growth of the U6Fe phase. 

 

2.2.2. Interdiffusion and Reaction in U-Zr-Fe Tenary System 

Ogata [10] carried out interdiffusion experiments isothermally using diffusion couples of 

U-Zr vs. Fe annealed at 923 K as a function of time. The diffusion-controlled reaction zone 

between the U-Zr and Fe alloys were distinguished into several layers: layer A (UFe2), layer B 

(U6Fe+UFe2), layer C (ZrFe2), layer D (U6Fe+ZrFe2), layer E (U6Fe+ε) and layer F (α-U+λ). 

Ogata [10] reported unknown ternary intermediate phases, named ε and λ, from the 
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microstructural analyses of the diffusion zone. Also, Ogata [10] explained that these layers are 

similar to Keiser’s observations [11, 12] on interdiffusion layers between U-Pu-Zr and HT9: 

(U,Pu,Zr)(Fe,Cr)2, (U,Pu,Zr)6(Fe,Cr) + (U,Pu,Zr)(Fe,Cr)2, (Zr,U,Pu)(Fe,Cr)2, (Zr,U,Pu)(Fe,Cr)2 + 

(U,Pu,Zr)6(Fe,Cr). Keiser concluded that presence of Ni and Cr significantly influences the 

diffusional interaction between U-Zr alloy and HT9. In particular U was observed to diffuse 

much faster within the intermetallics containing Ni than those without Ni, and the Cr was 

associated with formation of Zr-rich precipitates. 

Nakamura [13] investigated the isothermal solid-state reactions in the U-Zr-Fe system 

using solid-to-solid diffusion couples of U-Zr vs. Fe. The microstructure shows the multi-layer 

reaction zone. Each layer consisted of one or two phases: UFe2, U6Fe+UFe2, ZrFe2, U6Fe+χ, 

U6Fe+ε, α-U+ε and α-U+λ at 908K and 923K; UFe2, U6Fe+UFe2, ZrFe2, U6Fe+χ, U6Fe+ε, β-U+ε 

and β-U+λ at 973K. The χ (U-32Zr-50Fe), ε (U-(30~50)Zr-33Fe) and λ (U-(21~25)Zr-6Fe) 

phases reported by Nakamura [13] were ternary compounds. The thickness of the interdiffusion 

layers increased approximately in proportion to the parabolic time, as in the case of diffusion-

controlled process. On the U-Zr side of the interdiffusion reaction zone, the estimated diffusion 

path remained the same regardless of annealing temperatures. It means the constitution, phases, 

and diffusional behavior of U, Zr and Fe did not change significantly from 908K to 988K. On the 

other hand, the estimated diffusion paths varied as a function of annealing temperature for the Fe 

side. The composition of diffusion paths at 908K and 923K went through the three-phase (U6Fe, 

UFe2 and ZrFe2) region on the ternary isotherm, but the diffusion paths of above 973K were 

estimated to pass through the two-phase (UFe2 and ZrFe2) region. Nakamura explained the 
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potential variation in the formation energy of the U6Fe, UFe2 and ZrFe2 phases to discuss this 

difference in diffusion paths.  
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

3.1. Laboratory Facility 

All alloys were continuously handled under an Ar atmosphere in a glove box shown in 

Figure 3 to minimize oxidation of U-10 wt.% Zr alloys and to prevent contamination of the 

laboratory facility. Figure 4 shows a schematic diagram of the Ar-gas flow. The inert atmosphere 

is maintained by Ar-gas injected into the glove box through an outlet. The Ar-gas exited the 

glove box through oil in a flask and an air filter to trap potential airborne particles, and exhausted 

through a fume hood. The high vacuum system shown in Figure 5 was utilized for evacuating 

quartz capsules and flushing H2-gas and Ar-gas to be presented in Section 3.2. The 

Lindberg/BlueTM three-zone tube furnace shown in Figure 6 was used to anneal at homogeneous 

temperatures for predetermined times to be presented in Section 3.2. 
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Figure 3. Glove box under a controlled Ar atmosphere. 

 

AtmosphereGlove BoxUHP
Ar

Filter

Chemical
Hood

Oil

 

Figure 4. A schematic diagram of gas flow for alloy handling. 
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Figure 5. High vacuum system for evacuating quartz capsules. 

 

 

Figure 6. Lindberg/BlueTM three-zone tube furnace 
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3.2. Alloy Preparation and Diffusion Experiment 

The U-10 wt.% Zr alloys were cast via arc melting by Idaho National Laboratory. They 

were melted three times to ensure homogeneity and then drop-cast to form rods with 12.7 mm 

diameter. All U-Zr alloys were handled in the glove box as described before. Fe rods of 99.99% 

purity were obtained from a commercial source (Alpha-AesarTM). Figure 7 shows average 

composition of U-10 wt.% Zr alloys before and after diffusion anneal experiments at various 

temperatures. The composition remains uniform. 

 

 

Figure 7. The compositional evaluation of U-10 wt.% Zr alloy before and after diffusion 
experiments. 
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U-Zr alloys and pure Fe were sectioned into disks of about 3mm in thickness, and the 

surface of disks designated to form diffusion interface were polished using silicon carbide papers 

(240, 600, 800 and 1200 grit) with ethanol as a lubricant for minimizing oxidation.  

Figure 8 shows the U-Zr alloy vs. Fe alloy couples clamped by a steel jig with alumina 

disks to prevent interaction between the diffusion couple disks and the steel jig set. The 

assembled diffusion couples were encapsulated in quartz capsules with a piece of Ta foil, and 

then were repeatedly flushed with H2-gas and Ar-gas. The tubes were then sealed under vacuum 

(~106 torr) by using an oxygen-propane torch. Figure 8 shows diffusion couples before and after 

being sealed in quartz tubes. Each sealed couple was annealed in a Lindberg/BlueTM three-zone 

tube furnace at 630, 650 and 680°C for 96 hours. After heat treatment, each couple was pulled 

out of the furnace, and then immediately quenched by breaking the quartz capsule in cold water. 

Each couple was submerged for about 1 minute in water, and then the diffusion couples were 

extracted from the quartz capsule. The diffusion couples were mounted in epoxy and cross-

sectioned. The surface of each cross-sectioned couple was polished using a 1μm diamond paste 

as the final step to ensure an even surface for microstructural and compositional analysis. 
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Figure 8. Quartz capsules for heat treatment of diffusion couples. 

 

3.3 Characterization 

For each diffusion couple, SEM (Zeiss ULTRA-55 FEG SEM) with an accelerating 

voltage of 20.0 kV was used to examine the quality of diffusion bonding and the thickness of the 

reaction layer. The BSE and SE micrographs were employed to observe metallurgical 

microstructures. The EDS was utilized for the semi-quantitative compositional analysis. A point-

to-point counting measurement technique and ZAF correction were employed to determine 

compositional variation. TEM (FEI/TecnaTM F30) equipped with a HAADF detector 

(FischioneTM) and XEDS was used to examine specified phases of the interdiffusion zone. 

Photographs of the SEM, FIB and TEM instruments are presented in Figure 9. Samples were 

prepared by FIB (FEI TEM200) as presented in Figure 10 for transmissions of electrons to be 

examined by TEM. SAED patterns were collected from selected regions of HAADF images and 

DF images to carry out crystallographic identification of intermetallic phases. In order to index 

the diffraction patterns, Digital MicrographTM, Microsoft ExcelTM, Microsoft Visual StudioTM 
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and PhotoshopTM were used. 

 

 

Figure 9. (a) Zeiss ULTRA-55 FEG SEM (b) FEI TEM200 FIB (c) FEI TECNAI F30 TEM. 
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Figure 10. FIB sample preparation: (a) initial milling completion (b) in-situ lift-out (c) insertion 
of sample onto the pre-slotted Cu-grid (d) welding the sample on Cu-grid. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Microstructural and Compositional Development  

The Interdiffusion microstructure development between diffusion couples U-Zr vs. Fe 

annealed at 630, 650 and 680°C for 96 hours is presented in Figure 11, Figure 12 and Figure 13, 

respectively. They all show a significant thickness with complex layered microstructural 

development. 

Figure 11 presents the microstructure of the couple annealed at 630°C for 96 hours that 

contains the ZrFe2, ε, and λ phases with highly DU-rich phase and U6Fe phase as labeled. 

Although Nakamura reported the presence of χ phase below 895 ± 10°C [9], the couple annealed 

at 630°C had no χ phase. The total thickness of the reaction zone is around 53 μm. 

The couples annealed at 650°C for 96 hours presented a larger interdiffusion reaction 

zone up to 94 μm. The ZrFe2, χ, ε, and λ phases on the highly DU-rich and U6Fe matrixes existed 

in the interdiffusion layers as presented in Figure 12. The χ phase, absent in the 630°C couple, 

was observed. 

The couple annealed at 680°C for 96 hours had the largest interdiffusion reaction zone of 

152 μm. The multi-phase layers, consisting of ZrFe2, χ, ε, and λ phases with the highly DU-rich 

and U6Fe matrixes, were observed in the interdiffusion layers as presented in Figure 13. The 

allotropic transformation of U between α-U(Orthorhombic) and β-U(Tetragonal) is predicted 

based on the U-Zr binary phase diagram.  
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Figure 11. BSE micrographs of U-10 wt.% Zr vs. Fe diffusion couple annealed at 630°C for 96 
hours. 
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Figure 12. BSE micrographs of U-10 wt.% Zr vs. Fe diffusion couple annealed at 650°C for 96 
hours. 
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Figure 13. BSE micrographs of U-10 wt.% Zr vs. Fe diffusion couple annealed at 680°C for 96 
hours. 
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Table 2 presents average composition of each phase observed in diffusion couple 

annealed at 680°C in this study. The couple annealed at 680°C is chosen for SEM-XEDS 

analysis since this couple at highest temperature produced the largest thickness and features for 

due consideration of SEM-XEDS resolution. 

 

Table 2. Average composition of each phase observed in diffusion couple annealed at 680°C in 
this study (Unit: at.%). 

Phase Fe Zr U 

UFe2 65.51 0 34.49 

UFe6 14.94 1.38 83.67 

ε 32.95 44.07 22.98 

χ 50.07 32.71 17.23 

λ 6.42 22.10 71.48 

γ-U+βZr 0 64.40 ~57.04 42.96 ~ 35.61 

Rich U 0.17 2.37 97.46 

Rich Zr 0 95.65 4.35 

 

 

Figure 14 presents isothermal ternary phase diagram of U-Zr-Fe system at 700°C with 

relevant phases of this diffusion study including intermetallic compounds such as U6Fe, UFe2, 

ZrFe2, χ, ε and λ phases. Some of the layers adjacent to Fe were too thin for an accurate 

quantitative analysis due to the limits of XEDS resolution. Therefore, the compositions have 
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been estimated from correlating the BSE contrast and XEDS mapping shown in Figure 15. 

Particularly near the pure Fe, there are localized regions of Fe-depletion between the 

discontinuous ZrFe2 phases, through which U appeared to have diffused preferentially to form 

U6Fe in the matrix of UFe2 phase. Overall, Zr-enriched regions corresponded to U-depleted 

region.  
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Figure 14. The isothermal ternary phase diagram of U-Zr-Fe system at 700°C [14]. 
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Figure 15. XEDS mapping for U, Zr and Fe in the U-10 wt.% Zr vs. Fe diffusion couple 

annealed at 680°C for 96 hours. 

 

4.2. Diffusion Path of U-Zr vs. Fe System 

The microstructural development of the reaction zone can be explained by the semi-

quantitative diffusion path drawn on the isothermal phase diagram as shown in Figure 16, Figure 

17, and Figure 18. In order to construct the diffusion path, the average compositions of the layers 

were estimated from the area fractions of each phase having approximate composition estimated 
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by SEM-XEDS. Overall, the estimated diffusion paths were similar for the temperature range 

investigated in this study. The layers of the microstructure labeled “a” through “f” in Figure 11, 

“a” through “g” in Figure 12, and “a” through “h” in Figure 13 correspond to the labeling “a” 

through “f” in Figure 16, “a” through “g” in Figure 17 and “a” through “h” in Figure 18, 

respectively. Details of phases present in each section of the diffusion path, corresponding to the 

microstructure, are reported in Table 3, Table 4 and Table 5. The estimated diffusion paths on the 

isothermal ternary phase diagram of U-Zr-Fe system demonstrated that Zr is a slower moving 

component because a significant interdiffusion occurs for U and Fe along the U-Fe binary side of 

the ternary triangle, before any diffusion of Zr is observed. 
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Figure 16. Estimated diffusion path of U-Zr vs. Fe diffusion couple annealed at 630°C for 96 
hours plotted on the isothermal ternary phase diagram of the U-Zr-Fe system. 
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Figure 17. Estimated diffusion path of U-Zr vs. Fe diffusion couple annealed at 650°C for 96 
hours plotted on the isothermal ternary phase diagram of the U-Zr-Fe system. 
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Figure 18. Estimated diffusion path of U-Zr vs. Fe diffusion couple annealed at 680°C for 96 
hours plotted on the isothermal ternary phase diagram of the U-Zr-Fe system. 
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Table 3. Phases and phase number for each section of the diffusion path corresponding to the 
microstructure annealed at 630°C for 96 hours. 

Section Number of phases Phases 

a – b 4 Fe, Fe + UFe2+ U6Fe + ZrFe2 

b – c 1 ZrFe2 

c – d 2 U6Fe + ε 

d – e 2 U-rich phase + ε 

e – f 2 U-rich phase + λ 

 

 

Table 4. Phases and phase number for each section of the diffusion path corresponding to the 
microstructure annealed at 650°C for 96 hours. 

Section Number of phases Phases 

a – b 4 Fe, Fe + UFe2+ U6Fe + ZrFe2 

b – c 3 UFe2+ U6Fe + ZrFe2 

c – d 3 ZrFe2 + U6Fe + χ 

d – e 2 U6Fe + ε 

e – f 2 U-rich phase + ε 

f – g 2 U-rich phase + λ 
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Table 5. Phases and phase number for each section of the diffusion path corresponding to the 
microstructure annealed at 680°C for 96 hours. 

Section Number of phases Phases 

a – b 4 Fe, Fe + UFe2+ U6Fe + ZrFe2 

b – c 3 UFe2+ U6Fe + ZrFe2 

c – d 3 ZrFe2 

d– e 2 U6Fe + χ 

e– f 2 U6Fe + ε 

f– g 2 U-rich phase + ε 

g– h 2 U-rich phase + λ 

 

 

4.3. Growth of Interdiffusion Microstructure in U-10 wt.% Zr vs. Fe Diffusion Couples 

The interdiffusion zone was distinguished into three layers, A, B and C, to calculate the 

growth constants and activation energies. Layer A includes the several thin reaction layers 

adjacent to Fe. Layer B includes the χ and ε phases in the matrix of U6Fe and U solid solution. 

Layer C includes the λ phase in the matrix of U solid solution. The identified phases in each 

layer are summarized in Table 6 and Figure 19. It should be note that at 680°C, U solid solution 

should exist as β-U (tP30) as indicated in Table 6. 
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Table 6. Phases in reaction layers distinguished for determination of growth constants. 

Layer 630°C 650°C 680°C 

Fe α-Fe α-Fe α-Fe 

Layer A U6Fe + UFe2 + ZrFe2 U6Fe + UFe2 + ZrFe2 U6Fe + UFe2 + ZrFe2 

Layer B α-U + U6Fe + ε α-U + U6Fe + χ + ε β-U + U6Fe + χ + ε 

Layer C α-U + λ α-U + λ β-U + λ 

U-10 wt.% Zr α-U + γ2 α-U + γ2 β-U + γ2 

 

 

 

Figure 19. Thicknesses of each distinguished layer developed in diffusion couples, U-10 wt.% Zr 
vs. Fe diffusion couples annealed at 630, 650 and 680°C for 96 hours. 
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Table 7 reports the thickness for each layer as a function of temperature. These 

thicknesses were averaged from at least 12 random location measurements for each layer. The 

growth constant was calculated by assuming diffusion controlled parabolic growth using the 

relation: 

 

x = �2 ∙ t ∙ kp ( 1 ) 

 

where x (m) is the thickness of the layer, t (s) is the annealed time and kp(m2s-1) is the growth 

constant. The parabolic growth constants obey the Arrhenius relationship. Therefore, the 

activation energy for each layer was calculated using the relation: 

 

kp = k0e�−
Q
RT� ( 2 ) 

 

where k0 is a constant, Q (kJ∙mol-1) is the activation energy, R (J∙mol-1∙K-1) is the ideal gas 

constant and T (K) is the anneal temperature. Table 8 shows the growth constants and the 

activation energy for each layer. Layer A has the highest activation energy and Layer C has the 

lowest activation energy. 
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Table 7. Thicknesses of each interdiffusion layer measured from diffusion couples, U-10 wt.% Zr 
vs. Fe diffusion couples annealed at 630, 650 and 680°C for 96 hours. 

T(°C) Anneal time 
(hours) 

Layer A 
(μm) 

Layer B 
(μm) 

Layer C 
(μm) 

Total 
(μm) 

630 96 3.81 23.50 27.40 52.95 

650 96 8.34 47.69 38.54 94.17 

680 96 17.22 79.39 56.36 151.68 

 

 

Figure 20. Arrhenius plot of parabolic growth constant for each interdiffusion layer from 
diffusion couples, U-10 wt.% Zr vs. Fe diffusion couples annealed at 630, 650  and 680°C for 96 

hours. 
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Table 8. The growth constants and activation energies of each interdiffusion layer from diffusion 
couples, U-10 wt.% Zr vs. Fe diffusion couples annealed at 630, 650 and 680°C for 96 hours. 

Layer  630°C 650°C 680°C 

Layer A  
k (m

2
/s)  2.1 × 10

-17 
 8.0 × 10

-16
 1.1 × 10

-15
 

Q (kJ/mol)  431.7  

Layer B  
k (m

2
/s)  1.0 × 10

-16
 3.3 × 10

-15
 2.2 × 10

-15
 

Q (kJ/mol)  348.4  

Layer C  
k (m

2
/s)  4.3 × 10

-16
 9.1 × 10

-15
 4.6 × 10

-15
 

Q (kJ/mol)  205.8  

Total  
k (m

2
/s)  4.1 × 10

-15
 1.3 × 10

-14
 3.3 × 10

-14
 

Q (kJ/mol)  301.2 

 

4.4. Crystallographic Analysis of Ternary Intermetallic Phases 

Although the χ, ε and λ phases in the interdiffusion microstructure have been reported by 

several investigators, their crystal structures and potential stoichiometry have not been reported. 

Based on BSE of diffusion couple annealed at 680°C shown in Figure 21(a), FIB-INLO was 

carried out on several samples as shown in Figure 21(b ~ d) that to contained one or two phases 

of the ternary intermetallic χ, ε and λ phases.  
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Figure 21. U-Zr vs. Fe diffusion couples annealed at 680°C for 96 hours: (a) typical BSE 
micrograph and FIB preparations for TEM studies (b) for χ phase and several layers near Fe side, 

(c) for χ and ε phase, and (d) ε and λ phase. 

 

 

The HAADF STEM, DF and SAED from the χ, ε and λ phases are presented in Figure 

22, Figure 23 and Figure 24 respectively. Each HAADF STEM micrograph in Figure 22(a), 

Figure 23(a) and Figure 24(a) was specifically prepared by FIB-INLO to contain one or two 

phases of the three intermetallics. The red circles in HAADF STEM and DF of Figure 22(a and 

b), Figure 23(a and b) and Figure 24(a and b) indicate the positions at which the electron 
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diffraction pattern presented in Figure 22(c and d), Figure 23(c and d) and Figure 24(c and d) 

were collected using multiple zone-axes. Based on the electron diffraction patterns, the three 

phases were identified as orthorhombic χ, tetragonal ε and tetragonal λ as listed in Table 9. The 

crystal structure and the lattice parameters of χ, ε and λ phases were analogous to FeZr, FeZr2 

and U3Si phases, respectively. Composition of each phase was also measured by TEM-XEDS 

with better resolution as reported in Table 10. Therefore, the chemical formulae were estimated 

as extended solid solution of binary intermetallics, namely Fe(Zr,U), Fe(Zr,U)2 and U3(Zr,Fe), 

for the χ, ε and λ phases, respectively. 
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Figure 22. The χ phase developed in the U-Zr vs. Fe diffusion couple annealed at 680°C: (a) 
HAADF STEM micrograph, (b) DF micrograph, and (c) SAED along the [1 1 1�], and (d) �5� 1 3� 

beam directions. 
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Figure 23. The ε phase developed in the U-Zr vs. Fe diffusion couple annealed at 680°C: (a) 
HAADF STEM micrograph, (b) DF micrograph, and (c) SAED along the [1�  1 1�] and (d) [0 1� 2] 

beam directions. 
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Figure 24. The λ phase developed in the U-Zr vs. Fe diffusion couple annealed at 680°C: (a) 
HAADF STEM micrograph, (b) DF micrograph, and (c) SAED along the [2�  1 2] and (d) [1� 1 0] 

beam directions. 
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Table 9. Crystallographic information of the χ, ε and λ phases. 

χ 

Pearson Symbol oP8 

a × b × c (Å) 4.854 × 7.062 × 5.376 

α × β × γ (°) 90 × 90 × 90 

Space group Pnma (62) 

Chemical formula Fe(Zr,U) 

ε 

Pearson Symbol tI12 

a × b × c (Å) 6.385 × 6.385 × 5.596 

α × β × γ (°) 90 × 90 × 90 

Space group I4/mcm (140) 

Chemical formula Fe(Zr,U)
2
 

λ 

Pearson Symbol tI16 

a × b × c (Å) 7.264 × 7.264 × 10.537 

α × β × γ (°) 90 × 90 × 90 

Space group  I4/mcm (140) 

Chemical formula U3(Zr,Fe)  

 

 

 

 

41 



Table 10. Chemical composition measured by SEM-XEDS and TEM-XEDS for the χ, ε and λ 
phases (unit: at.%). 

 
χ ε Λ 

U Zr Fe U Zr Fe U Zr Fe 

TEM-
XEDS 22 34 44 30 43 27 76 19 5 

SEM-
XEDS 17 33 50 23 44 33 72 22 6 

Previous 
study[15] 18 32 50 17~34 33~50 33 69~73 21~25 6 
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CHAPTER 5: SUMMARY 

Microstructures and phase constituents within the diffusional interaction layer of the 

diffusion couple, U-10 wt.% Zr vs. Fe, annealed at 630, 650, and 680°C, were examined by BSE 

and XEDS. In addition, the analyses of HAADF, DF and SAED via TEM were employed for the 

crystallographic determination of χ, ε and λ phases for the first time. 

• The interdiffusion microstructure of U-10 wt.% Zr vs. Fe diffusion couples consisted of 

multiple layers containing several phases such as χ, ε, λ, ZrFe2, UFe2 with U6Fe and DU-

rich matrixes. 

• The average compositions through the interaction layer were systematically determined, 

and employed to construct a semi-quantitative diffusion path on isothermal U-Zr-Fe 

ternary phase diagrams. They showed qualitatively the diffusional behavior of elements. 

U was a faster moving component on the Fe side than Zr. Zr was the slow diffusion 

specie in the U-Zr vs. Fe diffusion couples.  

• The reaction zone was distinguished into layer A (U6Fe + UFe2 + ZrFe2), layer B (DU-

rich + U6Fe + χ + ε) and layer C (DU-rich + λ). The thickness for each layer was 

measured at each temperature, and employed to calculate the parabolic growth constant. 

From the parabolic growth constants determined, the activation energy of growth for each 

layer was calculated using Arrhenius relationship as given below: 

o Layer A = 431.7 kJ/mol 

o Layer B = 348.4 kJ/mol 
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o Layer C = 205.8 kJ/mol. 

• For the first time, the crystallographic identifications of orthorhombic-χ, tetragonal-ε and 

tetragonal-λ, were carried out from several electron diffraction patterns with multiple 

zone-axes. The exact crystal structure and composition of χ, ε and λ-phases were 

identified as oP8 Pnma(62) Fe(Zr,U), tI12 I4/mcm(140) Fe(Zr,U)2, and tI16 I4/mcm(140) 

U3(Zr,Fe), respectively. 
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APPENDIX: MATHEMATICAL THEOREM FOR RECIPROCAL 
LATTICE 
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In order to complete the crystallographic identification for χ, ε and λ, the comparisons of 

theoretical results with experimental results were used in this research. The theoretical results 

were derived from calculating the spacing and angle of the reciprocal lattice. Otherwise, the 

experimental results were derived from measurement of the spacing and angle of the reciprocal 

lattice in the electron diffraction patterns. Figure 25 shows computational mechanism, which was 

used in this research for identification of these phases. 

The original interplanar spacing (dhkl) can be expressed by the reciprocal lattice vectors, 

a*, b* and c*: 

 

dhkl =
1

|h𝐚𝐚∗ + k𝐛𝐛∗ + l𝐜𝐜∗| ( A.1 ) 

 

|h𝐚𝐚∗ + k𝐛𝐛∗ + l𝐜𝐜∗|2

= (h2𝐚𝐚∗𝟐𝟐 + k2𝐛𝐛∗𝟐𝟐 + l2𝐜𝐜∗𝟐𝟐 + 2kl𝑏𝑏∗𝑐𝑐∗cosα∗ + 2lh𝑐𝑐∗𝑎𝑎∗cosβ∗

+ 2hk𝑎𝑎∗𝑏𝑏∗cosγ∗ 

 

The original interplanar angle is: 

( A.2 ) 
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cos φ = dhkldh′k′l′[hh′𝑎𝑎∗2 + kk′𝑏𝑏∗2 + ll′𝑐𝑐∗2 + (kl′ + lk′)𝑏𝑏∗𝑐𝑐∗cosα∗

+ (hl′ + lh′)𝑎𝑎∗𝑐𝑐∗cosβ∗ + (hk′ + kh′)𝑎𝑎∗𝑏𝑏∗cosγ∗] 
( A.3 ) 

 

Orthorhombic:  

Orthorhombic interplanar spacing square is derived from (A.1) and (A.2): 

 

dhkl2 =
1

h2𝑎𝑎∗2 + k2𝑏𝑏∗2 + l2𝑐𝑐∗2
 ( A.4 ) 

 

Orthorhombic interplanar angle is derived from (A.3): 

 

cos φ = dhkldh′k′l′[hh′𝑎𝑎∗2 + kk′𝑏𝑏∗2 + ll′𝑐𝑐∗2] ( A.5 ) 

 

where: 

α∗ = β∗ = γ∗ = 90° 

𝑎𝑎∗ =
1
𝑎𝑎

, 𝑏𝑏∗ =
1
𝑏𝑏

, 𝑐𝑐∗ =
1
𝑐𝑐
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Tetragonal: 

Tetragonal interplanar spacing square is derived from (A.1) and (A.2): 

 

dhkl2 =
1

(h2 + k2) 𝑎𝑎∗2 + l2𝑐𝑐∗2
 ( A.6 ) 

 

Tetragonal interplanar angle is derived from (A3): 

 

cos φ = dhkldh′k′l′[(hh′ + kk′) 𝑏𝑏∗2 + ll′𝑐𝑐∗2] ( A.7 ) 

 

where:  

α∗ = β∗ = γ∗ = 90° 

𝑎𝑎∗ = 𝑏𝑏∗ 

𝑎𝑎∗ =
1
𝑎𝑎

, 𝑐𝑐∗ =
1
𝑐𝑐
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Figure 25. The procedure C++ coding for the identification of crystal structure and indexing 
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