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ABSTRACT  

Error related negativity (ERN) is a pronounced negative evoked response potential (ERP) 

that follows a known error.  This neural pattern has the potential to communicate user awareness 

of incorrect actions within milliseconds.  While the implications for human-machine interface 

and augmented cognition are exciting, the ERN has historically been evoked only in the 

laboratory using complex equipment while presenting simple visual stimuli such as letters and 

symbols.  To effectively harness the applied potential of the ERN, detection must be 

accomplished in complex environments using simple, preferably single-electrode, EEG systems 

feasible for integration into field and workplace-ready equipment.  

The present project attempted to use static photographs to evoke and successfully detect 

the ERN in a complex visual search task:  motorcycle conspicuity. Drivers regularly fail to see 

motorcycles, with tragic results.  To reproduce the issue in the lab, static pictures of traffic were 

presented, either including or not including motorcycles. A standard flanker letter task replicated 

from a classic ERN study (Gehring et al., 1993) was run alongside, with both studies requiring a 

binary response.  Results showed that the ERN could be clearly detected in both tasks, even 

when limiting data to a single electrode in the absence of artifact correction.  These results 

support the feasibility of applied ERN detection in complex visual search in static images.   

Implications and opportunities will be discussed, limitations of the study explained, and future 

directions explored. 
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CHAPTER ONE: INTRODUCTION 

Error related negativity (ERN) is an evoked response potential (ERP) that occurs when a 

human actor becomes aware of an error.  ERPs are electroencephalographic responses of the 

brain that occur in direct relation to a motor or sensory event. Relative to the time of an 

erroneous action, the response-locked ERN appears within 100ms as pronounced negativity in 

the EEG pattern for error trials as compared to non-error trials.  The pattern is centered in the 

frontal scalp closest to the 10-20 system electrode Cz, (for information on the 10-20 system see 

Homan, Herman & Purdy, 1987) and so is most commonly measured at Cz, and sometimes at Fz 

and Pz (Luck & Kappenman, 2011). The ERN is a subjective response, informed by the 

individual brain’s present model of what is ‘correct’ (Luck & Kappenman, 2011; Hester, 

Fassbender, & Garavan, 2004).  For example, presenting feedback classifying any response an 

‘error’, irrespective of the truth, can elicit feedback related negativity (FRN), which is similar in 

location and configuration to the ERN, but some 2-300ms greater in latency (Miltner, Braun, & 

Coles, 1997). Additionally, incidental errors and correction may occur within an overarching 

task at hand.  For example consider that motor corrections during the action of pressing the 

button which results in a correct response might elicit an ERN on a correct trial (Carter et al., 

1998).  A participant may detect errors at multiple levels beyond the context of the experiment at 

hand (Luck & Kappenman, 2011); social errors, ‘errors’ recalled mid-task, or the error of 

inattention to the task itself might masquerade as the errors of experimental interest. It is 

therefore unsurprising that most ERN work is carried out in unambiguous paradigms. Simple 

visual stimuli such as letters and symbols are the standard, and the most complex visual stimuli 
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used to date are icon-like images of tools and guns (see Figure 1) (Amodio et al., 2004; Fleming, 

Brady, & Kimble, 2010).  

 

  
 

Figure 1: Stimuli used in evoking the ERN 

A) The flaker task used in Gehring et al. (1993) elicited errors by asking for a binary decision as 

to the center letter in an array.  When the target was flanked by non-target stimuli, participants 

show greater reaction time and are more likely to make errors, especially in a speeded task.      

B) Tools and guns from Amodio and colleagues’ 2004 shoot/don’t shoot racial bias in decision 

making study represent the most complex visual stimuli yet used to evoke the ERN. 

 

 

The ERN was first observed in speed trials of forced choice reaction time tasks (Renault, 

Regot, & Lesèvre, 1979).  Forced choice tasks paired with simple stimuli continues to be a 

feature of the majority of contemporary studies. Gehring et al. (1993) presented participants with 

a letter based flanker task (Eriksen & Eriksen, 1974; Eriksen, 1995, see Figure 1).  Gehring’s 

experiment manipulated participant goals between accuracy and speed, and he found the ERN to 

be greater in magnitude for the accuracy-tasked participants.  This suggested the ERN was not 

just the signature of a neural system for detection of errors, but that that magnitude of the ERP 

response was linked to perceived contextual severity of a given incorrect response.  Gehring 

suggested that the anterior cingulate cortex (ACC) as the neural structure primarily responsible 

for the ERN, and the resultant neurophysiological localization and mechanism debate comprises 

much of the subsequent ERN literature.  Notably absent from this literature is substantial work 

exploring applied uses of ERN.   
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Applied ERN 

What is the use of a noninvasive electroencephalographic psychophysiological marker for 

errors?  Clinical psychopathological work seeking to diagnostically use individual differences in 

the ERN shows promise (for an overview see Olvet & Hajcak, 2008).  This approach may have 

application outside of pathology; one team has found that the ERN magnitude correlates 

positively with academic performance (Hirsh & Inzlicht, 2010).  These applications, while 

promising, all use the simple forced-choice paradigms of earlier work; the ERN is analyzed as a 

bellwether for performance in the ‘real world’.  The potential of ERN outside these boundaries is 

considerable. 

For example, consider the ERN in the context of human-machine interface.  When 

humans and machines work together, the machine has minimal information regarding the state of 

the human.  As such, automation waits to be invoked by human action, plays a constant passive 

role, or in technology such as automotive autonomous emergency braking systems, watches the 

environment for evidence that the human needs assistance.  It is worth considering that this one-

sided relationship is responsible for some part of the dysfunctional patterns humans and 

automated systems can fall into (for a focused discussion, see Parasuraman & Riley, 1997). As 

automation is increasingly able to make decisions on the human’s behalf, the knowledge that a 

human has made an error in the task at hand will become a powerful piece of information.  While 

humans can communicate their errors through presently available interfaces, as in the ubiquitous 

‘undo’ command, the time required to do so can bleed into seconds. This is a detrimental 

timescale in tasks such as piloting, combat and surgery, where the line between life and death 

can be measured in milliseconds.   The concept of an ‘undo’ command in these high time-
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pressure tasks is laughable largely because the human lacks reasonable time, and indeed the 

physical capacity, to request it. The ERN holds the possibility of detecting human errors in 

something much closer to real-time, 150ms in one current implementation (Vi & Subramanian, 

2012).  Such speed would allow human machine systems to be informed quickly of perceived 

error, allowing automated delay of the offending move, a confirmation check, or the reduction of 

system thresholds for automated corrective action.  However, to effectively harness the applied 

potential of the ERN, the detection of human error must be moved away artificially simple 

laboratory conditions in favor of the complexity of real-world environments. 

A primary challenge to moving the ERN EEG out of the lab is the difficulty of extracting 

ERP information in interference filled, but environmentally valid environments. Happily, the 

bulky and easily disrupted equipment traditionally used in the laboratory is already evolving 

toward more robust, portable systems.  There is evidence that these EEGs are capable of 

providing data the workplace, battlefield or cockpit (Davis et al., 2009).    ‘Noise’ common in 

such contexts include ambient electrical activity, movement of electrodes relative to the scalp, 

and skeletal muscular electrical activity such as eyeblinks, saccadic activity, neck movements 

and stabilization (Luck, 2005).  Even with robust hardware, post-processing to mitigate these 

rouge signals is a likely necessity. 

Post-processing tools signal range in complexity and utility.   For example, a relatively 

simple technique ‘moving window peak-to-peak amplitude detection’ (P2PW) uses differences 

between the highest and lowest voltages within successive windows of time to flag artifacts for 

removal.  A more complex approach, independent component analysis (ICA), relies on the 

statistical independence of variance accounted for by artifacts to separate them from variance 

accounted for by brain activity and ‘clean’ them from the signal.  ICA benefits from larger 
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variance-covariance matricies; more data is better.  Specifically, the more channels an EEG 

recording has within a session, the better ICA can isolate components from brain activity.   

Careful consideration of the trade-offs various data post-processing approaches is necessary, as 

all have the potential to impact the signal negatively.  For example, the above P2PW rejection 

approach eliminates undesirable sections of data outright.  While ICA preserves data, it can be 

difficult to know if a component identified and ‘cleaned’ by these blind source separation 

algorithms is in fact independent of the brain activity of interest. It is a practical question with 

philosophical undertones as to whether certain deletion or potential distortion is the greater evil.    

There are further purely practical considerations to applied use of data ‘cleaning’ tools.  

P2PW rejection requires relatively few computational resources, and might be used in something 

approaching real-time. ICA approaches require a delayed or fully post hoc approach; 

computational intensity and pre-processing requirements presently limit real-time approaches 

(for a practical example see Lin et al., 2005). The Swartz Center for Computational 

Neuroscience’s Mobile Brain Imaging (MoBI) (Gramann et al., 2011) is investigating ICA 

applications to contextually identify and separate brain data from artifactual noise related to 

specific activities, like walking. Such targeted approaches may eventually reduce or eliminate the 

trade-offs associated with the current EEG post-processing toolset.  For the present, the divide 

between the kind of information that can be recorded in a seated laboratory configuration and an 

active applied setting is significant (for a directed discussion of the present trade-offs and 

opportunities see Makeig et al., 2009). 

In moving the ERN out of the laboratory a concern directly related to post-processing is 

the practical design question of the number of leads to provide.  More leads means greater 

redundancy and enhances artifact filtering, especially via ICA.  Still, a piece of field-ready gear 
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should be designed to be taken on and off repeatedly, with minimal attention to setup.  As each 

lead must be checked for impedance issues which would prevent or degrade a signal, the optimal 

number of EEG sensors for detecting ERN is the lowest possible number the human might have 

to devote precious attention to.  Single lead EEG has been investigated in applied contexts 

including emergency room detection of seizure activity (Brenner et al., 2012; Rubin et al., 2014 ) 

and clinical psychopathological diagnosis (Martino, Simon, & Devilbiss, 2014; Ghorbanian et 

al., 2013). These applications, however, all rely on spectral EEG changes, while ERN requires 

detection of a time-locked ERP.  The single-lead detection of such ERP events has been 

attempted in only a few instances (ex. Saletu et al., 2002), and remains uncommon. 

Even assuming the coming availability of robust mobile single-lead EEG data, ERN 

detection must be available in complex visual environments.  Previous tasks such as identifying 

letters and icons fall short.  ERN in the identification of images of tools (as in Amodio et al., 

2004; Fleming, Brady, & Kimble, 2010) presents photographs of objects as stimuli, a level of 

visual complexity unseen in the ERN literature.  Still, for applied exploitation of the ERN to 

have broad utility, the ERP must be detectable in tasks undertaken in complex environments.  

Presently, no such task has been attempted.  

Is the ERN itself robust enough to be detected in tasks in complex environments?  When 

robust mobile EEG devices evolve, can the ERN be detected in a single electrode’s available 

data?  To answer these questions, an applied task equivalent to a known, replicable ERN task 

needed to be identified.  The task needed to take place in a complex visual environment.  

Because of the previously identified issue of subjectivity in the ERN, it had to be a task that 

involved as unambiguous a goal as possible.  Ideally, it would take place in an applied setting 

with which participants might already have experience.  After evaluating and rejecting a number 
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of candidate options, a motorcycle conspicuity task was chosen as best fulfilling these 

requirements. 

Motorcycle Conspicuity 

Motorcycle conspicuity refers to the ability of motorcycles to attract the attention of other 

roadway vehicle operators, relative to other vehicles in the traffic stream (Engel, 1971; Engel, 

1977).  This is a safety issue; in a disproportionate number of motorcycle accidents one party to 

the collision reports not having seen the motorcycle (Hurt, Oullet, & Thom, 1981; Wulf, 

Hancock, & Rahimi, 1989).  Indeed, the size, shape, color, sound and lighting arrays of 

motorcycles have all been investigated and successful configurations adapted as remedies to this 

problem, with limited success (Cole & Hughes, 1984; Cole & Jenkins, 1984; Hendtlass, 1992; 

Thomson, 1980; Wulf, Hancock, & Rahimi, 1989). In the context of the present study, the 

unsolved human factors problem of motorcycle conspicuity provides an excellent parallel to the 

flanker letter task.  It too provides a binary decision:  motorcycle or no motorcycle, and the 

traffic stream provides distractors in the form of other roadway vehicles.  Indeed, navigating 

traffic is itself a series of speed trials with forced choice reaction time tasks, adding to the 

environmental validity of the task in the experimental context.  Finally, participants with a 

driver’s license can be assumed to be familiar with the task, which they hopefully perform 

successfully each time they drive. 
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Present Study 

As a manipulation check, overall error rates and subjective workload via the NASA TLX 

were collected for each task.  It was certain that if the error rate differed greatly, the resultant 

unbalanced design would influence the outcome.  It was further suspected that if the tasks 

differed greatly in workload, it might affect the EEG context of the ERN. 

The present work sought to address three questions, alluded to above.  First, could the 

ERN be detected in the flanker letter task used by Gehring et al. (1993)?  Second, could the ERN 

likewise be detected in the motorcycle conspicuity task, an applied task involving complex visual 

scenes?  Finally, given that the roadway images chosen necessarily involved participant saccadic 

activity and resultant artifacts, could the ERN ERP be distinguished in single-channel 

recordings?  Data was post-processed first with ICA using all nine channels of data, then P2PW 

rejection in a single channel, and finally raw EEG collected from a single channel as well.  As 

the site closest to the focus of the ERN signal, Cz was chosen as the single channel.  

The result was a 2(task: flanker, motorcycle) x 2(response: correct, incorrect) design, 

conducted on ICA(9), P2PW(1) and raw data(1).  It was predicted that the EEG voltage level at 

Cz would vary significantly between response types, such that incorrect responses would result 

in lower voltage.  It was further expected this pattern would not be significantly affected by task 

type. No significant interaction was predicted.  Finally, it was expected the main effect of 

response to be significant only in ICA(9) and P2PW(1) data type, but not in the raw(1) data type.  

This pattern was expected to be consistent with the ERN being detectable in both the flanker 

letter task and the motorcycle conspicuity task, but only in filtered data.   
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CHAPTER TWO: METHODOLOGY 

Participants 

 Twenty participants were sourced from UCF’s SONA system and provided three hours of 

participation in return for class credit.  An additional five participants were recruited by 

advertisement on a volunteer basis.   Two participants were removed from the study due to hair 

that would not allow the attachment of our EEG leads, one with elaborate braiding and another 

with a stitched skullcap that could not be removed.  An additional participant was removed due 

to seasonal allergies so severe as to prohibit effective EEG recording, and indeed basic 

laboratory hygiene.  As a result, our final sample included 22 participants, 13 male and 9 female, 

ranging in age from 18 to 59 years (mean = 20.00, SD = 10.36).  

All participants were required to have 20/20 or corrected to 20/20 vision, a valid driver’s 

license, and no history of neurological disorders (see Appendix B for a copy of the survey used). 

All participants were right handed, and no participant had a motorcycle endorsement on their 

license or reported any history of motorcycle or scooter use.  The sample contained a mix of 

novice and experienced drivers; omitting two very experienced drivers (19 and 27 years 

experience) the average experience reported was 4.5 years.  

 

Apparatus 

An Advanced Brain Monitoring (ABM) X-10 nine wireless channel EEG collected data 

at 256hz from sensors over prefrontal, ventral, parietal and occipital regions (sites F3/F4, C3/C4, 

Cz/PO, F3-Cz, Fz-C3 and Fz-PO). An External Sync Unit (ESU) connected wirelessly to the 
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ABM EEG providing time-stamping of EEG data packets and response signals. It is important to 

note that this unit applied a hardware 0.1 Hz high bandpass filter and the 5th order low bandpass 

100Hz filter to all data. 

Presentation of informed consent and collection of demographic data were performed on 

an internet connected Celeron laptop using Qualtrics (2013).  A researcher script and schedules 

coordinating researchers were kept in Google Docs.   

Experimental data collection and stimuli were handled by a single i7 Windows 8 laptop 

with 8GB of RAM and a 512GB SSD.   To minimize interference, this machine was separated 

from the EEG collection area.  Visual stimuli was presented on an external Dell LCD monitor at 

1024x768 resolution.  Participant responses were recorded on a Dell QWERTY keyboard with 

all keys removed except ‘a’ and ‘apostrophe’, both of which were blacked out.  The result was an 

input device with left and right hand keys. Both tasks were built in ePrime (Schneider, Eschman, 

& Zuccolotto, 2002), which presented stimuli, recorded user responses and transmitted response 

signals to the ESU for time-stamping.  EEG data was recorded through B-Alert, which also 

received externally time-stamped event markers from ePrime by way of a USB serial adapter.  

The intent of this ESU time-stamping was to minimize operating system induced delay, which 

can introduce significant latency (Guger et al., 2001).  The necessary inclusion of a serial to USB 

adapter on our modern laptop may have limited these benefits by introducing its own delay.  

Task 

 Both tasks and training were built in ePrime.  Before every trial an asterix appeared in the 

center of the screen for 1 second.  Participants were instructed to orient on the cross and wait for 

the stimuli.  In the flanker letter task participants were presented an array of five letters and 
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instructed to respond only to the center letter (see Figure 1, and also Appendix A).  If the letter 

was an ‘H’ they were to press the right key, and if the letter was an ‘S’ they were to press the left 

key. In the motorcycle conspicuity task participants were presented with a photo of a traffic 

scene.  These pictures were stills from filmed stimuli sourced, with permission, from a previous 

motorcycle conspicuity experiment (Smither & Torrez, 2010).  If a motorcycle was present 

participants were asked to press the left key, and if no motorcycle was present they were to press 

the right key.  In both tasks an incorrect responses resulted in a red X being displayed at screen 

center for 1 second, while a correct response displayed a blank screen for the same period.  Trials 

of each tasks were presented in alternating blocks of 64 such trials. 

Procedure 

 After informed consent participants were asked to power off and remove all electronics, 

which were held outside the experimental area.  Each participant sat in a chair facing the stimuli 

LCD while a research assistant wiped down the nine sensor sites and area behind the ears with 

alcohol, then fitted the EEG cap.  Care was taken not to tighten the attachment straps too tightly.  

A dual lead ground was attached over the mastoid bones and impedance was checked at all 

electrode sites.  During trials, no experimenter was in the room.  Participants were instructed to 

read on-screen instruction, not to speak unless necessary. An initial training block consisting of 

simple on-screen instructions followed by 16 practice trials of each task. This was followed by 4 

experimental blocks of 64 trials of each task, for a total of 512 experimental trials, 256 of each 

task type.  Between blocks the experimenter entered the room and asked the participant to get up 

and move.  Upon the participant’s return the researcher again checked impedance levels on the 

EEG and made any necessary corrections.  Participants were then verbally advised to beat their 
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previous speed.  On-screen instructions before each block further instructed participants to go as 

fast as they were able.  Upon completing all trials participants were provided a demographic 

survey (see Appendix B) while the EEG headset was removed.  After disclosure participants 

were thanked for their time and released. 

Post-processing & Analysis 

 All EEG data was converted to standard EDF format using B-alert Lab and imported into 

MATLAB (2012b) using EEGLAB 12.0.1.0b (Delorme & Makeig, 2004).  Three data types 

were constructed in post-processing.  An unedited copy of the EEG data was saved as the raw(1) 

output.  P2PW(1) analysis was processed by the ERPLAB 4.0.2.3 (Lopez-Calderon & Luck, 

2014) pop_artmwppth function.  Artifacts flagged by this process were rejected, and a copy of 

the data was saved as the P2PW(1) output.  To produce the ICA(9) output, individual 

participant’s EEG recordings were first hand-trimmed of spans of time irrelevant to the 

experiment, such as sneezes (the data was recorded during allergy season) and times when the 

headset was left running. The result was submitted to the EEGLAB runica function.  This 

implementation of Bell & Sejnowski’s infomax ICA (1995) is beyond the scope of this writing 

(for a full explanation, see Delorme & Makeig, 2004).  The returned components were hand 

sorted with the goal of identifying for removal only those components representing eyeblinks, 

saccades or EMG.  When in doubt, components were retained.  The result was saved as the 

ICA(9) output. 

 Each of the three data types was imported into ERPLAB and individual time-stamped 

event markers were assigned to bins based upon task (flanker letter or motorcycle conspicuity) 

and response (correct or incorrect). All data was then segmented into epochs of one second, from 
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-400ms before the time-stamped event to 600ms after.  The final number of epochs at this point 

varied by data type, as some types of post processing had removed data and at times the EEG 

data was not recorded (see Table 1).   In each epoch, mean amplitude between 0 and 100ms was 

calculated at the Cz electrode.  The values were averaged by bin within each participant.  These 

mean amplitude data were transferred to R 3.1.0 for statistical analysis, where the three ERP data 

types (raw data(1), P2PW(1), and ICA(9)) were submitted to a 2(response type: correct, 

incorrect) x 2(task type: flanker , motorcycle) within-subjects repeated measures ANOVA.  

Visualization was accomplished by running the ERPLAB pop_gaverager function against 

all participant data sets and submitting the result to the ERPLAB pop_ploterps function. Many of 

these processes were automated (for scripts see in Appendix C).  The output was saved as an .eps 

file and final adjustments were made with Adobe Illustrator.   

 

Table 1  

Task data loss by post-processing type 

 Flanker Letter Motorcycle Conspicuity 

Data type correct incorrect total error% correct incorrect total error% 

         

All* 5848 488 6336 7.7% 5942 394 6336 6.2% 

Raw output 5394 463 5857 7.9% 5427 380 5807 6.5% 

ICA output 5350 460 5810 7.9% 5349 373 5722 6.5% 

P2PW output 2888 161 3049 5.3% 2946 144 3090 4.7% 

         

Raw data loss 7.8% 5.1% 7.6%  8.7% 3.6% 8.3%  

ICA data loss 8.5% 5.7% 8.3%  10.0% 5.3% 9.7%  

P2PW data loss 51% 67% 52%  50% 64% 51%  

 

Note. The final number of epochs by data type, by post-processing type.  

* “All” shows original trials recorded in ePrime. At times, due to technical failure, EEG data was 

not recorded. This loss is reflected in differences between “All” and “Raw”.  Data loss 

percentages are relative to “All”. 
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CHAPTER THREE: RESULTS 

Manipulation Check Results 

As a manipulation check, error rates and subjective workload were collected for each 

task.  Across participants, the error rates for the flanker letter task was 7.7%, as compared to 

6.2% for the motorcycle conspicuity task. The two tasks had comparable rates of error.  

Likewise, across participants the TLX composite workload score for the flanker letter task was 

49, and 48 for the motorcycle conspicuity task.  The two tasks had very comparable subjective 

workload. 

Experimental Results 

No significant interaction between task type and response type was shown, Wilk’s Lamda 

=.86, F(3, 11) = .62, p = .62, η2
p =0.14. 

A large and significant main effect of response type was shown Wilk’s Lamda =.426, 

F(3, 11) = 4.94, p = .02, η2
p =0.57.  This effect was significant in all three data types: raw data, 

F(1, 13) = 13.57, p = 0.003, η2
p = 0.51, P2PW, F(1, 13) = 15.75, p = 0.002, η2

p = 0.55, and ICA, 

F(1, 13) = 13.35, p = 0.003, η2
p = 0.50 .  

No significant main effect of task type was shown, Wilk’s Lamda =.76, F(3, 11) = 1.14, p 

= .38, η2
p =0.24. 

Taken together these data suggest that ERN can be successfully discriminated in all three 

data types, including the raw signal, and that the task type did not significantly impact ability to 

discriminate ERN. 
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Figure 2: Grand average time-locked ERP waveforms for three data types. 

Negitive is plotted down, and all waveforms are plotted relative to a 50ms baseline time-locked 

against participant response by keypress.  A full 100ms of pre response activity is shown here for 

evaluative purposes.  Bin numbers are included in the key for reference (see the MATLAB code 

in Appendix C). The waveforms for ICA(9) in part (A) show the clearest ERN pattern, but the 

negative trend of erroneous results and separation between correct and error trials can be clearly 

seen in the P2PW(1) and raw data (1) waveforms in (B) and (C), respectively.   
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CHAPTER FOUR: DISCUSSION 

As hypothesized, the ERN was detectable in the flanker letter task (for a visual 

representation, see Figure 2), a successful evocation of this ERP using the methodology of 

Gehrig et al., (1993). Despite the muscular and cognitive ‘noise’ of searching a complex image, a 

clear ERN pattern emerged in the motorcycle conspicuity task as well (Figure 2). The ERN as an 

ERP seems robust enough to be detected in complex visual search, and so joins ERPs such as the 

N2pc and P300 (Woodman & Luck, 1999).  This important new evidence can be immediately 

applied to new experimental and applied concepts, with the caution that the motorcycle 

conspicuity task provided an exceptionally controlled context for errors and a binary response.  

Also, while our stimuli is more complex than that in previous studies, it was nonetheless an 

image presented on a monitor.  A participant asked to perform search in a larger scene might 

incur a greater number of artifacts.  

It was hypothesized that single lead detection of the ERN would be possible only in the 

P2PW data, much of which was removed due to artifacts, and that ICA, with its requirement of 

multiple EEG sensors, would be a likely alternative.  Surprisingly, the ERN pattern was easily 

detected in raw EEG data from a single lead, Cz.  Although the ICA filtered data provided 

slightly tighter confidence intervals, the performance of the raw data was impressive, given that 

it had been processed only by hardware applied and computationally cheap high and low 

bandpass filters. These filters may in fact have hampered the present effort by introducing 

artifactual noise in the baseline (Gehring et al., 2012). Such filters can nonetheless be quite 

beneficial, and the results at hand leave little current room for complaint.  In fact, taken together 
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these results suggest that single-lead applied uses of the ERN may lie within the reach of present 

EEG technologies.   

Next Steps 

 Given the above findings, a number of new questions present themselves.  The present 

experiment detected ERN in averaged data, but that applied systems will likely need to detect it 

in real time.  Real time ERP classification has been investigated for some time (Vidal, 1977), and 

efforts to classify the ERN in simple stimuli have approached sensitivity and specificity of over 

85% in under 150ms (Ventouras et al., 2011; Vi & Subramanian, 2012).  Trials of real-time 

ability to detect the ERN in complex visual stimuli seem a logical progression from this effort, 

and are necessary to understand the viability of many potential applications. 

From detecting ERN in a static scene it is a short step to attempting detection in a 

dynamic environment.  There are, however, some theoretical complications.  The ERN is a time-

locked ERP, and so there may be out-of-context ERNs that arise from tasks where the stimuli is 

constantly changing.  For example, in some dynamic tasks, responses about the stimuli could be 

errors due either to a quality judgment or temporally missing a window or cue.  For a subjective 

ERP like the ERN, time opens a Pandora’s Box of perceived errors that may fall outside of 

experimenters’ expectations.   

Indeed, should the ERN be used in human-machine pairings, context and subjectivity will 

undoubtedly be the greatest and last challenge faced. This should be an area of immediate 

investigation, for preponderance as to the nature of acceptable jobs for the ERN can usefully 

come before the technology to facilitate them. The ERN would seem certainly to have a place in 

training and intelligent tutoring systems, where the ground truth is known but the human’s 
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metacognitive evaluation of their performance is not. From this example it seems likely that 

ERN enabled automation would be appropriate in contexts where the human makes a time-

specific, unambiguous action, and knowledge of their evaluation of success could influence a 

system-level decision.  Making an error in a voice command, deleting a message, pulling a 

trigger … all could fit this description.  A future in which brain activity affects how technology 

interacts is coming.  The present work sheds light on what may be expected from it.  It is 

imperative that Engineers and Psychologists begin understanding tools like ERN detection now, 

that they may be intelligently applied later. 

  



19 

 

APPENDIX A: STIMULI 
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APPENDIX B: DEMOGRAPHIC SURVEY 
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APPENDIX C: MATLAB CODE 
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% eeg_Path_n_Name_v1.m 

%Matlab script for setting file paths 

%Version 1.0 : 1st run EEG ICA before ERP processing(Bin, Epoch, 

Computing) 

 

%% Paths  

pStart='C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'; 

pData=strcat(pStart,'All_Data_edf',filesep); %location of all data.edf 

files 

pEvent=strcat(pStart,'~Event_list',filesep); %location of all event_list 

files 

pDset_ind=strcat(pStart,'~1.Dataset_EEG_individual',filesep); %Individual 

datasetS 

pDset_mer=strcat(pStart,'~2.Dataset_EEG_merged',filesep); %Merged datasets 

pDset_cln=strcat(pStart,'~3.Dataset_Clean',filesep); %Cleaned datasets ** 

pDset_ICA=strcat(pStart,'~4.Dataset_ICA',filesep); %ICA-processed datasets 

(**NOT YET PRUNED**) 

pDset_ICA_pruned=strcat(pStart,'~5.Dataset_ICA_pruned',filesep); %ICA-

pruned datasets 

pDset_ICA_bin=strcat(pStart,'~6.Dataset_ICA_Bin',filesep); %ICA-pruned 

datasets with BINLISTER 

pDset_ICA_epoch=strcat(pStart,'~7.Dataset_ICA_Epoch',filesep); %ICA-pruned 

datasets with Epoching 

pERPset_ICA=strcat(pStart,'~8.ERPset_ICA',filesep); %ICA-pruned ERP sets 

pERPset_no_ICA=strcat(pStart,'~9.ERPset_no_ICA',filesep); % ERP sets with 

NO filters 

pDset_P2P_epoch_ar=strcat(pStart,'1st_run_P2P_artifact_noICA_06122014\~5.D

ataset_Artifact',filesep); 

pERPset_P2P=strcat(pStart,'1st_run_P2P_artifact_noICA_06122014\~6.ERPset',

filesep); 

 

 

%% Files 

fChannel=strcat(pStart,'9_channels.ced'); %channel location file 

fBin=strcat(pStart,'binlister.txt'); %Binlister file 

fLog=strcat(pStart,'eeg_result_log.csv'); 

 

chan=1:9; %channels 

epoch_pre=-400; %window for epoching in msec 

epoch_post=600; %window for epoching in msec 

 

cd(pStart); 
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% eeg_DataImport_merge_run.m 

% Matlab script for EEG: 

%   (1)running the main script for importing individual data(.edf) 

%   (2)merging(appending) datasets by selecting Ss# (single or multiple) 

 

clear all % clear all objects in Workspace 

close all % delete all unhidden figures 

clc       % clear Command Window 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 

 

cd('C:\\Users\\Karwowski X-10 PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'); 

 

Path_n_Name='eeg_Path_n_Name_v1'; %Path and Name definition script *in the 

same folder* 

open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',Path_n_Name,'.m')); 

run(Path_n_Name); 

 

choice = questdlg('Which task would  you like to run?', 'Task', 'Import 

individual data.edf file(s)','Merge(append) datasets', 'Import individual 

data.edf file(s)'); 

switch choice 

    %% import individual data.edf file(s) 

    case 'Import individual data.edf file(s)' 

         

        cd(pData); 

        main_import='eeg_DataImport_main'; %data import main script *in 

the same folder* 

        open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',main_import,'.m')); 

         

        choice = questdlg('Which data file(s) would you like to import?', 

'Data Processing Methods', 'Choose one file','Run all files','Run all 

newly-added file(s)', 'Choose one file'); 

        switch choice 

        case 'Choose one file' 

            fName=uigetfile('*.edf'); 

            EEG = pop_biosig(fullfile(pData,fName), 

'channels',[1:9] ,'importevent','off','importannot','off','blockepoch','of

f'); 

             

            cd(pStart); 

            run(main_import); 

 

            fprintf('Subject = %s\n', Ss); 

            fprintf('Session = %s\n', Sn); 

            fprintf('Sampling Rate = %d\n', EEG.srate); 

            fprintf('# of Channel = %d\n', EEG.nbchan); 

            fprintf('# of events = %d\n', event_no); 

 

            msgbox(strcat(EEG.filename,' is saved.  # of events = 

',num2str(event_no))); 
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        case 'Run all files' 

            fNames = dir( fullfile(pData,'*.edf') ); 

            fNames={fNames.name}; 

 

            for f=1:length(fNames) 

                fName=fNames{f}; 

                EEG = pop_biosig(fullfile(pData,fName), 

'channels',[1:9] ,'importevent','off','importannot','off','blockepoch','of

f'); 

                cd(pStart); 

                run(main_import); 

 

            end 

            fprintf('Number of files processed: %d\n', f); 

 

            save('fNames.mat','fNames'); 

            msgbox(strcat('Number of files processed:  ', num2str(f))); 

 

        case 'Run all newly-added file(s)' 

            load('fNames.mat'); 

            fNames_re = dir( fullfile(pData,'*.edf') ); 

            %fNames_re = strcat(pData, filesep, {fNames_re.name}); 

            fNames_re={fNames_re.name}; 

            fNames_chk=~ismember(fNames_re,fNames); 

            fNames_new=fNames_re(fNames_chk); 

            f_diff=numel(fNames_re)-numel(fNames); 

 

            for f=1:length(fNames_new) 

                fName=fNames_new{f}; 

                EEG = pop_biosig(fullfile(pData,fName), 

'channels',[1:9] ,'importevent','off','importannot','off','blockepoch','of

f'); 

                 

                cd(pStart); 

                run(main_import); 

 

            end 

            fprintf('Number of files processed: %d\n', f); 

            fprintf('Number of files difference: %d\n', f_diff); 

 

            fNames=fNames_re; 

            save('fNames.mat','fNames'); 

            msgbox(strcat('Number of files processed:  ', num2str(f), '. 

Number of files difference: ', num2str(f_diff))); 

 

 

        end 

         

        eeglab redraw; 

        erplab redraw; 
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        cd(pStart); 

 

     

    %% Merge(append) datasets 

        case 'Merge(append) datasets' 

            fTemp=csvread(fLog); 

            Ss_list=fTemp(1:length(fTemp)); 

            Ss_list=unique(Ss_list); 

            Ss_list=arrayfun(@num2str,Ss_list,'unif',0); 

 

            clear fTemp 

 

            cd(pDset_ind); 

            Ss_select=listdlg('PromptString','Select Subject 

# :','SelectionMode','mutiple','ListString',Ss_list); 

            Ss_select=Ss_list(Ss_select); 

 

             for m=1:length(Ss_select); 

                Ss=Ss_select{m}; 

                if length(Ss)==1; Ss=strcat('S0',Ss); else 

Ss=strcat('S',Ss); end 

                Dset_list=dir(fullfile(pDset_ind,strcat(Ss,'n*.set'))); 

                Dset_list={Dset_list.name}; 

 

                for n=1:length(Dset_list); 

                    Dset=Dset_list{n}; 

                    EEG = 

pop_loadset('filename',Dset,'filepath',pDset_ind); 

                    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 

0 ); 

                end 

            %     n=length(Dset_list); 

            %     EEG = 

pop_loadset('filename',{Dset_list},'filepath',pDataset_ind); 

 

                EEG = eeg_checkset( EEG ); 

                EEG = pop_mergeset( ALLEEG, [1:n], 0); 

                [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+1,'setname',Ss,'savenew',strcat(pDset_mer,Ss),'gui','off'); 

                ALLEEG = pop_delset( ALLEEG, [1:n+1] ); 

                 

                eeglab redraw; 

                erplab redraw; 

 

             end 

              

            msgbox('Done.'); 

        

            cd(pStart); 

end 
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% eeg_DataImport_main.m 

% Matlab main script for EEG- importing individual data(.edf) 

 

Ss=strcat('S',fName(3:4)); 

Sn=strcat('n',fName(length(fName)-4)); 

fName=strcat(Ss,Sn); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

0,'setname',fName,'gui','off');  

 

%import channel 

EEG=pop_chanedit(EEG, 'load',{fChannel 'filetype' 'autodetect'}); 

[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); 

 

%import event list 

EEG = eeg_checkset( EEG ); 

fEvent=strcat(pEvent,'elist_',fName,'.txt'); 

EEG = pop_importevent( EEG, 'event',fEvent,'fields',{'latency' 

'type'},'skipline',1,... 

    'timeunit',1,'append', 'no'); 

event_no=length(EEG.urevent); 

[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); 

 

%save dataset 

EEG = eeg_checkset( EEG ); 

EEG = pop_saveset( EEG, 

'filename',strcat(fName,'.set'),'filepath',pDset_ind); 

[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); 

 

Log=[str2double(fName(2:3)),str2double(fName(length(fName))),event_no,EEG.

pnts,EEG.srate,EEG.nbchan]; 

dlmwrite(fLog,Log,'-append'); 
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% eeg_EEG2ERP_no_ICA.m 

% Matlab script for ERP(all "merged" datasets) : 

%   (1)ERP- BINSLISTER 

%   (2)ERP- Epoching 

%   (3)ERP- Computing and saving ERP 

 

cd('C:\\Users\\Karwowski X-10 PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'); 

 

clear all % clear all objects in Workspace %*turn on/off when necessary 

close all % delete all unhidden figures %*turn on/off when necessary 

clc       % clear Command Window %*turn on/off when necessary 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; %*turn on/off when necessary 

 

Path_n_Name='eeg_Path_n_Name_v1'; %Path and Name definition script *in the 

same folder* 

open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',Path_n_Name,'.m')); 

run(Path_n_Name); 

 

%% Bins+Epoch+ERP 

 

cd(pDset_mer); 

 

fNames = dir( fullfile(pwd,'*.set') ); 

fNames_list={fNames.name}; 

 

fNames=listdlg('PromptString','Select 

File :','SelectionMode','mutiple','ListString',fNames_list); 

fNames=fNames_list(fNames); 

 

for f=1:length(fNames) 

     

    fName=fNames{f}; 

    Ss=fName(1:3); 

    EEG = pop_loadset('filename',fName,'filepath',pwd); 

    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 

    EEG = eeg_checkset( EEG ); 

    n=1; 

     

    EEG  = pop_creabasiceventlist( EEG , 'AlphanumericCleaning', 'on', 

'BoundaryNumeric', { -99 }, 'BoundaryString', { 'boundary' } ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+1,'setname',strcat(Ss,'_elist'),'gui','off');  

      

    EEG  = pop_binlister( EEG , 'BDF', fBin, 'ExportEL', 

strcat(pERPset_no_ICA,'elist_erp_',Ss,'_bin_no_ICA.txt'), 'IndexEL',  1, 

'SendEL2', 'EEG&Text', 'Voutput', 'EEG' ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+2,'setname',strcat(Ss,'_elist_bins'),'savenew',strcat(pERPset_no_ICA,Ss,

'_elist_bins'),'gui','off'); 

    EEG = pop_epochbin( EEG , [epoch_pre  epoch_post],  'pre'); 
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    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+3,'setname',strcat(Ss,'_elist_bins_be'),'savenew',strcat(pERPset_no_ICA,

Ss,'_elist_bins_be'),'gui','off');  

    EEG = eeg_checkset( EEG ); 

    ERP = pop_averager( EEG , 'Criterion', 'good', 'DSindex',1, 

'ExcludeBoundary', 'on', 'SEM', 'on' ); 

    ERP = pop_savemyerp(ERP, 'erpname', strcat(Ss,'_ERP_no_ICA'), 

'filename', strcat(Ss,'_ERP_no_ICA.erp'), 'filepath', pERPset_no_ICA, 

'Warning', 'on'); 

         

    ALLEEG = pop_delset( ALLEEG, [1:n+3] ); 

    eeglab redraw; 

    erplab redraw; 

     

    clear n 

         

end 

 

msgbox('Done.'); 

 

cd(pStart); 
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% eeg_ICA.m 

% Matlab script for EEG running ICA (all "Clean" datasets) : 

 

cd('C:\\Users\\Karwowski X-10 PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'); 

 

clear all % clear all objects in Workspace 

close all % delete all unhidden figures 

clc       % clear Command Window 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 

 

Path_n_Name='eeg_Path_n_Name_v1'; %Path and Name definition script *in the 

same folder* 

open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',Path_n_Name,'.m')); 

run(Path_n_Name); 

 

%% Run ICA 

cd(pDset_cln); 

 

fNames = dir( fullfile(pwd,'*.set') ); 

fNames={fNames.name}; 

 

for f=1:length(fNames) 

     

    fName=fNames{f}; 

    Ss=fName(1:3); 

    EEG = pop_loadset('filename',fName,'filepath',pwd); 

    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 

    EEG = eeg_checkset( EEG ); 

    EEG = pop_runica(EEG, 'extended',3,'interupt','on'); 

    [ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); 

     

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

1,'setname',strcat(Ss,'Clean_ICA'),'gui','off'); 

    EEG = pop_saveset( EEG, 

'filename',strcat(Ss,'Clean_ICA.set'),'filepath',pDset_ICA); 

    [ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); 

     

    eeglab redraw; 

    erplab redraw; 

     

end 

 

msgbox('Done.'); 

 

 

cd(pStart); 
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% eeg_ICA2ERP.m 

% Matlab script for ERP(all "ICA-pruned" datasets) : 

%   (1)ERP- BINSLISTER 

%   (2)ERP- Epoching 

%   (3)ERP- Computing and saving ERP 

 

cd('C:\\Users\\Karwowski X-10 PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'); 

 

clear all % clear all objects in Workspace %*turn on/off when necessary 

close all % delete all unhidden figures %*turn on/off when necessary 

clc       % clear Command Window %*turn on/off when necessary 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; %*turn on/off when necessary 

 

Path_n_Name='eeg_Path_n_Name_v1'; %Path and Name definition script *in the 

same folder* 

open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',Path_n_Name,'.m')); 

run(Path_n_Name); 

 

%% Bins+Epoch+ERP 

 

cd(pDset_ICA_pruned); 

 

fNames = dir( fullfile(pwd,'*pruned.set') ); 

fNames_list={fNames.name}; 

 

fNames=listdlg('PromptString','Select 

File :','SelectionMode','mutiple','ListString',fNames_list); 

fNames=fNames_list(fNames); 

 

for f=1:length(fNames) 

     

    fName=fNames{f}; 

    Ss=fName(1:3); 

    EEG = pop_loadset('filename',fName,'filepath',pwd); 

    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 

    EEG = eeg_checkset( EEG ); 

    n=1; 

     

    EEG  = pop_creabasiceventlist( EEG , 'AlphanumericCleaning', 'on', 

'BoundaryNumeric', { -99 }, 'BoundaryString', { 'boundary' } ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+1,'setname',strcat(Ss,'Clean_ICA_elist'),'gui','off');  

      

    EEG  = pop_binlister( EEG , 'BDF', fBin, 'ExportEL', 

strcat(pEvent,'elist_erp_',Ss,'_bin_ICA.txt'), 'IndexEL',  1, 'SendEL2', 

'EEG&Text', 'Voutput', 'EEG' ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+2,'setname',strcat(Ss,'Clean_ICA_elist_bins'),'savenew',strcat(pDset_ICA

_bin,Ss,'Clean_ICA_elist_bins'),'gui','off'); 

    EEG = pop_epochbin( EEG , [epoch_pre  epoch_post],  'pre'); 
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    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+3,'setname',strcat(Ss,'Clean_ICA_elist_bins_be'),'savenew',strcat(pDset_

ICA_epoch,Ss,'Clean_ICA_elist_bins_be'),'gui','off');  

    EEG = eeg_checkset( EEG ); 

    ERP = pop_averager( EEG , 'Criterion', 'good', 'DSindex',1, 

'ExcludeBoundary', 'on', 'SEM', 'on' ); 

    ERP = pop_savemyerp(ERP, 'erpname', strcat(Ss,'_ERP_ICA'), 'filename', 

strcat(Ss,'_ERP_ICA.erp'), 'filepath', pERPset_ICA, 'Warning', 'on'); 

         

    ALLEEG = pop_delset( ALLEEG, [1:n+3] ); 

    eeglab redraw; 

    erplab redraw; 

     

    clear n 

         

end 

 

msgbox('Done.'); 

 

cd(pStart); 
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% eeg_DataMerge_P2P_ERP.m 

% Matlab script for EEG+ERP: (***file pathes are NOT UPDATED!!!) 

%   (1)EEG- mergeing(appending) datasets by selecting Ss# 

%   (2)ERP- BINSLISTER 

%   (3)ERP- Epoching 

%   **(4)ERP- Detect artifacts with "Peak to Peak" 

%   (5)ERP- Computing and saving ERP 

 

 

clear all % clear all objects in Workspace 

close all % delete all unhidden figures 

clc       % clear Command Window 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 

 

cd('C:\\Users\\Karwowski X-10 PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\'); 

 

Path_n_Name='eeg_Path_n_Name_v1'; %Path and Name definition script *in the 

same folder* 

open(strcat('C:\\Users\\Karwowski X-10 

PC\\Dropbox\\Szuhui2Ben\\~DATA\\NeEEg\\',Path_n_Name,'.m')); 

run(Path_n_Name); 

 

fTemp=csvread(fLog); 

Ss_list=fTemp(1:length(fTemp)); 

Ss_list=unique(Ss_list); 

Ss_list=arrayfun(@num2str,Ss_list,'unif',0); 

 

clear fTemp 

 

cd(pDset_ind); 

Ss_select=listdlg('PromptString','Select Subject 

# :','SelectionMode','mutiple','ListString',Ss_list); 

Ss_select=Ss_list(Ss_select); 

 

 for m=1:length(Ss_select); 

    Ss=Ss_select{m}; 

    if length(Ss)==1; Ss=strcat('S0',Ss); else Ss=strcat('S',Ss); end 

    Dset_list=dir(fullfile(pDset_ind,strcat(Ss,'n*.set'))); 

    Dset_list={Dset_list.name}; 

     

    for n=1:length(Dset_list); 

        Dset=Dset_list{n}; 

        EEG = pop_loadset('filename',Dset,'filepath',pDset_ind); 

        [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 

    end 

 

 

    EEG = eeg_checkset( EEG ); 

    EEG = pop_mergeset( ALLEEG, [1:n], 0); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+1,'setname',Ss,'savenew',strcat(pDset_mer,Ss),'gui','off'); 
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    EEG  = pop_creabasiceventlist( EEG , 'AlphanumericCleaning', 'on', 

'BoundaryNumeric', { -99 }, 'BoundaryString', { 'boundary' } ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+2,'setname',strcat(Ss,'_elist'),'gui','off');  

      

    EEG  = pop_binlister( EEG , 'BDF', fBin, 'ExportEL', 

strcat(pEvent,'elist_erp_',Ss,'_bin.txt'), 'IndexEL',  1, 'SendEL2', 

'EEG&Text', 'Voutput', 'EEG' ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+3,'setname',strcat(Ss,'_elist_bins'),'savenew',strcat(Ss,'_elist_bins'),

'gui','off'); 

    EEG = pop_epochbin( EEG , [epoch_pre  epoch_post],  'pre'); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+4,'setname',strcat(Ss,'_elist_bins_be'),'savenew',strcat(Ss,'_elist_bins

_be'),'gui','off');  

    EEG  = pop_artmwppth( EEG , 'Channel',  chan, 'Flag',  1, 'Threshold',  

100, 'Twindow', [ -398.4 597.7], 'Windowsize',  200, 'Windowstep',  100 ); 

    [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 

n+5,'setname',strcat(Ss,'_elist_bins_be_ar'),'savenew',strcat(Ss,'_elist_b

ins_be_ar'),'gui','off');  

     

    EEG = eeg_checkset( EEG ); 

    ERP = pop_averager( EEG , 'Criterion', 'good', 'DSindex',1, 

'ExcludeBoundary', 'on', 'SEM', 'on' ); 

    ERP = pop_savemyerp(ERP, 'erpname', strcat(Ss,'_ERP'), 'filename', 

strcat(Ss,'_ERP.erp'), 'filepath', pERPset_ICA, 'Warning', 'on'); 

     

    ALLEEG = pop_delset( ALLEEG, [1:n+5] ); 

    eeglab redraw; 

    erplab redraw; 

         

 end 

 

msgbox('Done.'); 

 

cd(pStart); 
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