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ABSTRACT

In this thesis, a weighted least squares approach is initially presented to estimate the

parameters of an adaptive quadratic neuronal model. By casting the discontinuities in the

state variables at the spiking instants as an impulse train driving the system dynamics, the

neuronal output is represented as a linearly parameterized model that depends on filtered

versions of the input current and the output voltage at the cell membrane. A prediction error-

based weighted least squares method is formulated for the model. This method allows for

rapid estimation of model parameters under a persistently exciting input current injection.

Simulation results show the feasibility of this approach to predict multiple neuronal firing

patterns. Results of the method using data from a detailed ion-channel based model showed

issues that served as the basis for the more robust resonate-and-fire model presented.

A second method is proposed to overcome some of the issues found in the adaptive

quadratic model presented. The original quadratic model is replaced by a linear resonate-

and-fire model -with stochastic threshold- that is both computational efficient and suitable

for larger network simulations. The parameter estimation method presented here consists of

different stages where the set of parameters is divided in to two. The first set of parameters

is assumed to represent the subthreshold dynamics of the model, and it is estimated using a

nonlinear least squares algorithm, while the second set is associated with the threshold and
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reset parameters as its estimated using maximum likelihood formulations. The validity of

the estimation method is then tested using detailed Hodgkin-Huxley model data as well as

experimental voltage recordings from rat motoneurons.
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CHAPTER 1

INTRODUCTION

A fundamental issue in computational neuroscience is to characterize the relationship be-

tween the neural output recording and the input current to the cell [1], and for this reason

many biologically feasible models have been proposed in literature. Spiking neural models

have been extensively reasearched during the last few years, and many such models have

been proposed that are highly accurate in representing the dynamics of spiking neurons. A

detailed Hodgkin-Huxley model for one, can reproduce almost all types of firing patters in

spiking cells, but it has one mayor drawback. Due to the fact that such a model has hundreds

of parameters, it is highly inefficient to fit said parameters to experimental data. The high

cost in efficieny caused by the highly detailed dynamics of the model also limits the number

of cells that can be simulated in a network [2]. To overcome the defficiencies of the Hodgkin-

Huxley model, many simpler models have been proposed, such as the Integrate-and-Fire (IF)

model that is often used in cases where high computational efficiency is needed [3]. However,

the IF model has its own issues. Because of the oversimplified nature of the model, which

only has one variable, it cannot reproduce various firing patters, e.g., bursting [4]. In [2], an

additional variable is employed to capture the adaptation by accounting for the activation of
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K+ and inactivation of Na+ ionic currents. This model’s ability to qualitatively reproduce

major firing patterns while remaining computationally efficient [5] is shown in [4, 6].

In order to fit experimental data to a particular neuronal model, selecting the right pa-

rameter estimation method is of key importance. Generally speaking, there are two base

approaches to estimate the model parameters, hand tuning or computerized estimation [7].

When using the first approach, hand tuning, the model can be manually tuned to reproduce

the desired biological behavior, such as in [8], where an adaptive exponential IF neuronal

model is tuned to fit a detailed Hodgkin-Huxley model by hand tuning each parameter

individually. Although this approach shows good results in this case, the successful imple-

mentation of such trial-and-error approach highly depends on the expertise of the researcher

hand tuning the parameters and is thus labor intensive and probably inefficient when com-

pared to an automated approach. As a results of this, it is clear to see that automated

parameter estimation methods are necessary because it is unrealistic to process all the data

comparisons by manual procedures [9]. In [10], a number of automated methods are dis-

cussed, including conjugate gradient, simulated annealing, and stochastic search amongst

others. However these methods require large numbers of evaluations of the model, which

carries a high computational cost. In [11], a database of single-compartment model neurons

was constructed by exploring the entire parameter space, something that is only feasible

when such a space has low dimensions. In [12], a compartment model was enhanced by

using simulated annealing, a technique that will be ultimately used here, to estimate the

model’s parameters. A series of estimation methods for both stochastic and deterministic IF
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models were presented in [1, 13, 14]. In [15], an expression for the probability distribution

of a leaky integrate-and-fire (LIF) model was derived and a maximum likelihood estimate

(MLE) of the input information for a LIF neuron from a set of recorded spike trains was

developed.

Motivated by the computational efficiency and versatility of the adaptive quadratic model

presented in [2], an estimation method is proposed in Chapter 2 to automatically estimate

the parameters of the model using both input and ouput reference data. The neuronal

output can be represented as a linear in the parameters (unknown parameters) model by

casting the discontinuities in the state variables at the spiking instants as an impulse driving

the system dynamics. Such model will depend on filtered versions of the input and output

data. Furthermore, the idea of persistent excitation is used to design input signals that are

able to generate rich excitation in the model such that an adequately weighted least squares

based approach drives the parameter estimation errors to asymptotically converge to zero

even under the presence of measurement noise.

An assumption made in the model of [2] prevented the approach proposed in Chap-

ter 2 from being applicable to arbitrary experimental data. While the quadratic model is

known to be able to reproduce biologically meaningful firing patterns, it can only reproduce

these patterns qualitatively, not quantitatively – specifically, the model cannot quantita-

tively reproduce the upstroke/downstroke of the spike unless the parameters are assumed

to be voltage-dependent [5]. Since the main interest is only in reproducing a spiking pat-

tern and not the shape of the spike itself, a method is proposed in Chapter 3, where the
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spike shape-related quadratic term was dropped so that the resulting ‘resonate-and-fire’

model only described the subthreshold dynamics of the system. This made it possible to

narrow down the interest zone to the now-linear subthreshold region, thus making the up-

stroke/downstroke irrelevant to the identification of the system. Furthermore, the resulting

linearity of the subthreshold model allowed for it to be treated analytically, which was useful

for deriving closed form solutions and computing the update law. However, an additional

challenge introduced was the requirement for separate estimation of the threshold and the

post-spike reset parameters.

Here, the unknown threshold of the resonate-and-fire model is considered to be a stochas-

tic variable. By considering the threshold to be the only stochastic component, the membrane

potential at subthreshold levels is thus deterministic and solvable from which an estimate of

the subthreshold parameters can be made. Under the assumption that both the input to the

cell and the resulting membrane potential trace are known for characterization, the param-

eters for the subthreshold dynamics are estimated using a nonlinear least squares approach

while the parameters associated with the threshold distribution as well as the post-spike reset

of the state variables are estimated using simulated annealing to maximize the likelihood of

the observed spiking pattern. Simulation and experimental results using in-vitro motoneuron

data show that the two stage estimation process is able to find a set of parameters for the

resonate-and-fire model such that there is a good match between the target and predicted

spike patterns.

4



The remainder of this document is organized as follows. In Chapter 2, the adaptive

quadratic model is presented and the following are discussed on different sections within the

chapter: problem statement, technical details, identification procedure, and the results of

the simulations and the use of experimental data. The maximum likelihood estimator for

the stochastic resonate-and-fire neuronal model is discussed in Chapter 3. Appropriately,

conclusions for the work presented are drawn and discussed in Chapter 4.
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CHAPTER 2

WEIGHTED LEAST SQUARES

2.1 Problem Formulation

A simple adaptive quadratic spiking model can be described by the state equations [2]

dv

dt
= k1v

2 + k2v + k3 − k4 (u− i) (2.1)

du

dt
= a(bv − u) (2.2)

and the post-spike resetting

if v = Vp, then


v → c

u→ u+ d

. (2.3)

Here, v denotes the membrane potential and is the only system output, u is a membrane

recovery state variable which provides a negative feedback to v, while i denotes injected

current and/or synaptic current. At the peak Vp of the membrane potential, the state

variables are reset according to (2.3) – here, c denotes the post-spike reset value of the

membrane potential while d denotes the amount of spike adaptation of the recovery variable.

The parameters k4 and a denote the time scale of the two state variables, the parameter b
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is the level of subthreshold adaptation, while the parameters k1, k2, and k3 are linked to the

spike initiation behavior of the neuron.

The peak membrane potential Vp is directly observable from experimental data, thus,

it is considered to be known. However, the remaining set of eight parameters denoted by

θo = (k1, k2, k3, k4,a, b, c, d) is considered to be unknown. The goal is to estimate these

parameters such that the spiking pattern of the quadratic spiking model with the estimated

parameters can replicate (a) the spiking pattern of the exact-knowledge model (2.1)–(2.3),

(b) the spiking pattern of the exact-knowledge model (2.1)–(2.3) under measurement noise,

and (c) the firing pattern of a Hodgkin-Huxley type detailed reference model; specifically,

a model of a spiking pyramidal cell with voltage-dependent currents [17] with parameter

values used in [18] (code for this model available at [19]).

2.2 Technical Details

2.2.1 Discontinuities at Spike Times

Motivated by the desire to utilize a prediction error based automatic estimation method, we

first integrate the discontinuities given by (2.3) into the state equations of (2.1) and (2.2).

Since the resetting of the membrane potential in (2.3) always happens at the time when v

equals to the peak value Vp, the resetting can be considered as a jump with interval of c−Vp,
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which can be modeled as a step input as follows

v → v + (c− Vp)s(t− tsj) (2.4)

where s(t− tsj) denotes a unit step at the occurrence of the jth spike at time tsj . By taking

the time derivative of (2.4), and combining with (2.1), one obtains

dv

dt
= k1v

2 + k2v + k3 − k4 (u− i) + (c− Vp)δ(t− tsj) (2.5)

where δ(t− tsj) denotes a unit impulse at time tsj . Note that (2.5) correctly represents the

v dynamics ∀ tsj−1
< t < tsj+1

. It is easy to see that the v dynamics valid over all spiking

instants can be obtained by introducing a train of impulses into the dynamics as follows

dv

dt
= k1v

2 + k2v + k3 − k4 (u− i) + (c− Vp)
∑
j

δ(t− tsj). (2.6)

Similarly, the discontinuity in u at a spike instant tsj can also be modeled as a step input as

follows

u→ u+ ds(t− tsj). (2.7)

Following arguments similar to those made above, the u dynamics valid over all spiking

instants can be compactly described in the following manner

du

dt
= −au+ abv + d

∑
j

δ(t− tsj) (2.8)

where (2.2) and (2.7) have been utilized. Thus, the dynamics of (2.1)–(2.3) have been

compactly recast into the dynamics of (2.6) and (2.8) – a form that is amenable to linear

parameterized (LP) model development.
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2.2.2 LP Model Development

By substituting the Laplace transformation of (2.8) into that of (2.6) and conveniently re-

arranging terms, one can obtain

s(s+ a)V = k1(s+ a)L(v2) + k2(s+ a)V

+
k3a

s
− k4abV + k4(s+ a)I

+(s+ a)[v(0) + (c− Vp)
∑
j

exp(−stsj)]

+k3 − k4u(0)− k4d
∑
j

exp(−stsj)

(2.9)

where L(·) denotes the Laplace operator, s denotes the Laplace variable, V and I are are the

Laplace transform of v and i, respectively. In order to develop a model that is independent

of the derivatives of the input and the output, a low pass filter of the form [20]

1

A
=

1

s2 + β1s+ β0
(2.10)

is applied to the dynamics represented by (2.9). After conveniently rearranging terms, one

can obtain

V =
k1(s+ a)L(V 2)

A

+
[(k2 + β1 − a)s+ k2a+ β0 − k4ab]V

A

+
k4(s+ a)I

A

+

[(c− Vp)(s+ a)− k4d]
∑
j

exp(−stsj)

A

+
(s+ a)v(0)

A
+
k3
A
− k4u(0)

A
.

(2.11)

It is clear to see that the last row of (2.11) denotes signals that do not persist beyond

an initial transient and hence can be excluded from further analysis. By a slight abuse
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of notion (specifically, the use of mixed notation), a compact representation for a linearly

parameterized realizable model is obtained as follows

v = W
(
v, i, tsj

)
θ (2.12)

where W
(
v, i, tsj

)
∈ <1×9 is a realizable regression vector which is defined as follows

W =

[
s

A
L(v2),

1

A
L(v2),

s

A
V,

1

A
V,

1

sA
,
s

A
I,

1

A
I,

s

A

∑
j

exp(−stsj),
1

A

∑
j

exp(−stsj)

] (2.13)

while θ ∈ <9 is an unknown parameter vector which is defined as follows

θ = [k1, k1a, k2 + β1 − a, k2a+ β0 − k4ab,

k3a, k4, k4a, c− Vp, a(c− Vp)− k4d]T .

(2.14)

Note that the derived parameter vector θ is an over-parameterized (by 1) function of the

original parameter set θo.

2.2.3 Weighted Least Squares Algorithm

Based on the LP model derived above in (2.12), a prediction error based estimation algorithm

can be developed. Although a gradient-based law is known to achieve a greater rate of

convergence, it is highly sensitive to measurement noise. However, estimation based on

least squares is robust to presence of noise and thus is considered for implementation. The

instantaneous prediction error is defined as follows

e = v̂ − v = W (·)θ̂ − v (2.15)
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where v̂ = W (·)θ̂ denotes the predicted output. A standard objective function for least

squares estimation is given as follows

J =

∫ t

0

e2(r)dr =

∫ t

0

∥∥∥v(r)−W (r)θ̂(t)
∥∥∥2 dr. (2.16)

It is important to consider the fact that the objective here is to estimate parameters such

that the spiking pattern of a neuron can be reproduced by the proposed model – thus,

the behavior of the neuron around the time of spike initiation is much more important

than its behavior at all other times. However, since the contribution of spike in the above

objective function J is rather small due to its short interval of occurrence compared with

the time of occurrence of pre- and post-spiking activity, the objective function above needs

to be weighted appropriately in order to achieve the research objective. Thus, the objective

function is redefined as follows

J =

∫ t

0

k(r)e2(r)dr =

∫ t

0

k(r)
∥∥∥v(r)−W (r)θ̂(t)

∥∥∥2 dr (2.17)

where k(t) denotes a weight term which can be chosen to be larger during spike occurrence.

After taking the derivative of the objective function of (2.17), we obtain

dJ

dθ̂
= −2

∫ t

0

k(r)W T (r)[v(r)−W (r)θ̂(t)]dr. (2.18)

When the objective function is minimized, one can obtain∫ t

0

k(r)W T (r)W (r)drθ̂(t) =

∫ t

0

k(r)W T (r)v(r)dr.

By defining

P =

[∫ t

0

k(r)W T (r)W (r)dr

]−1
, (2.19)
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one can easily obtain the dynamics for parameter estimation as follows

.

θ̂ = −k(t)P (t)W T (t)e (2.20)

Ṗ = −k(t)PW T (t)W (t)P. (2.21)

By solving (2.19), (2.20) and (2.21), one can easily show that

θ̃(t) = P (t)P−1(0)θ̃(0) (2.22)

where θ̃ = θ̂ − θ ∈ <9 denotes the parameter estimation error. It is well known that the

estimated parameters will asymptotically converge to the true parameters, i.e., lim
t→∞

θ̃(t) = 0

as long as W (·) is persistently exciting [20].

2.3 Procedure

2.3.1 Reference Data Generation

Three types of reference data are generated for use during system identification. The first

type of reference data is output data from the adaptive quadratic model itself. This is used

to test the validity of the approach as well as the capability to replicate several types of

biologically relevant firing patterns. In the second set of reference data, measurement noise

is considered, which is common in biological systems – this is used to test the robustness

of the proposed approach. The last type of reference data is output data from the detailed

ion-channel based spiking model (Hodgkin-Huxley model) of [17] with parameters from [18].
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For asymptotic convergence of the parameter estimation error, the injected current input

i needs to be properly designed in order to ensure the persistent excitation of the regression

matrixW (·) of (2.13). Given the fact that a reference containing a single sinusoidal frequency

can be utilized to estimate two parameters for linear system dynamics [20], a combination

of sinusoids at four different frequencies has been utilized to estimate the parameter vector

θ ∈ <9 of (2.14) – here, the fact that the square nonlinearity in the output generates extra

excitation in the system is being utilized. Specifically, the waveform type employed for

generating the input i is given as follows

i = I1 sin(ω1t) + I2 sin(ω2t) + I3 sin(ω3t) + I4 sin(ω4t) (2.23)

where Ii and ωi ∀ i = 1, 2, 3, 4, respectively, denote the amplitudes and frequencies of the

underlying sinusoids.

2.3.2 Parameter Estimation

Given the reference data generated through (2.23) and the recorded output v, the data is

processed to determine Vp, the spike instants tsj , and the corresponding impulse train. To

obtain the regression vector (2.13), the parameters for the low-pass filter (2.10) need to be

selected. The cutoff frequency of the low-pass filter is lower-bounded by the highest frequency

of the input current and is upper-bounded by the measurement noise in the system. Based
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on the aforementioned choices, the estimation algorithm is implemented according to (2.15),

(2.20), and (2.21).

After estimation, the original parameters θo = (k1, k2, k3, k4,a, b, c, d) need to be retrieved

from the estimated derived parameter vector θ̂. According to (2.14), the relationship between

the original parameter and derived parameter θ can be represented as a nonlinear function

θ = θ(θo). A nonlinear optimization algorithm (e.g., nonlinear optimization toolbox in

MATLAB) can be utilized to select the best value for θo that minimizes the difference

between θ(θo) and estimated θ̂. Finally, to evaluate the validity of the estimated model

parameters, either step or periodic input currents are utilized to compare membrane voltage

data from actual and estimated system models.

2.4 Results and Discussion

The simulation of the quadratic model is run in MATLAB/SIMULINK environment while

the detailed model of the cell is run in the NEURON environment [21]. All estimation code

is run in MATLAB/SIMULINK. The low pass filter parameters defined in (2.10) are chosen

as β1 = 2 and β0 = 1. In what follows, the results obtained from the three types of reference

data previously described are discussed in detail.
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2.4.1 Results for Quadratic Reference Data

To generate this type of reference data, the injected current (2.23) is chosen as follows

I1 = 3.9 I2 = 13 I3 = 9.1 I4 = 15.6

ω1 = 0.5 ω2 = 2.25 ω3 = 2.0 ω4 = 2.5

where the currents have the units of pA while the frequencies are expressed in rad ·ms−1.

Given this reference input signal, various sets of model parameters are utilized from [4] to

generate corresponding membrane potential output waveforms. First, a rapidly adapting

receptor is simulated (i.e., receptor initially fires and then quickly stops firing in response to

steady input) using the following set of parameters from [4]

θo = (0.04, 5, 140, 1, 0.02, 0.2,−65,−0.5).

Fig. 2.1 (a) shows the output of the exact model to the injected reference sinusoidal input

current with parameters described above. Fig.2.1 (b) shows the parameter estimation errors

(only two sample parameter estimates are presented here) which rapidly converge toward

zero. Specifically, the parameter estimation converges towards its true value quickly and

then shows tiny oscillations around its true value. The estimation is run much longer after

the errors are under 5% to ensure enough data points exist to exactly retrieve the original

parameters θo. The estimate of v is shown in Fig. 2.1 (c). From Figs. 2.1 (a) and (c), the

convergence of the prediction error can be clearly seen. To validate the effectiveness of the

system identification, a step current i = 3.5pA is applied to the exact and the estimated

quadratic models. Fig. 2.2 shows that the prediction achieves the expected rapid adaptation
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Figure 2.1: (A) Reference data used to identify the parameter of the quickly-adapting recep-

tor. (B) Rapid convergence of of estimation error (in percentage) of two sample parameters

is shown. The least squares algorithm does not apply until 20ms, when the impact of the

initial conditions in (2.9) goes to 0. (C) Estimated behavior from identification mechanism.

behavior of the exact model; in fact, prediction exactly locates the first three spikes. Fig.

2.3 shows the most common type of excitatory neuron in mammalian neocortex which fires

with decreasing frequency. The following parameters were utilized

θo = (0.04, 5, 140, 1, 0.01, 0.2,−65, 8)

to generate the reference data in such a type of pattern and a step input current i = 30pA was

injected to evaluate the efficacy of the identification. The result shows that the prediction
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Figure 2.2: Voltage trace of prediction and target data for a rapidl adapting neuron. Both

subthreshold traces and spikes are superimposed at the beginning.

curve almost exactly follows the target data initially but over-adapts gradually. Another

important firing pattern is tonic bursting as shown in Fig. 2.4, which can be found in the

chattering neurons in the cat neocortex [22]. To generate the reference data for identification,

the model parameters are chosen as follows

θo = (0.04, 5, 140, 1, 0.02, 0.2,−50, 2).

For validation, injected currents were chosen to be i = 15pA. The prediction in the Figs. 2.4

shows a phase shift compared with the target data. However, the result is still successful in

17



0 10 20 30 40 50 60 70 80 90 100
-80

-60

-40

-20

0

20

40

 

 

Target

Prediction

ms

m
V

Figure 2.3: Target and predicted voltage traces of a neuron firing with decreasing frequency.

The prediction follows the spike frequency adaptation behavior, but shows over adaptation.

following the pattern of target data, thus the information encoded in the inter-spike frequency

is not lost.

2.4.2 Results for Noisy Quadratic Reference Data

When generating this type of reference data, the injected current is chosen identical to Section

2.4.1. To simulate measurement noise, the reference membrane potential data obtained are

corrupted by adding white noise with a signal-to-noise ratio of 40dB. Results are shown in
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Figure 2.4: Target and Predicted spike trains. The prediction replicates the firing patten

(tonic bursting) with a small constant delay with respect to the target data.

Fig. 2.5 - 2.6. In Fig. 2.5, results for estimates of two sample parameters are shown. It can be

seen that one of the parameters converges quickly while the other one shows some oscillation

about its true value on account of noise in the measurement – however, such oscillations can

be accounted for through an averaging process during retrieval of the original parameters

via the nonlinear optimization procedure discussed in the previous section. Fig. 2.6 shows

a tonic spiking pattern obtained by using

θo = (0.04 5 140 1 0.02 0.2 − 65 2)
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Figure 2.5: The estimation error (in percentage) of two parameters under noisy reference

data.

to generate the reference data. To validate the identification, a step input of i = 12pA is

injected. While Fig. 2.6 shows a slight amount of under-adaptation, it can be concluded

that the proposed approach is robust to the presence of noise.
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Figure 2.6: Voltage trace of prediction and target data under step input. Prediction shows

under adaptation.

2.4.3 Results for Detailed (Hodgkin-Huxley) Model Data

The injected current for generating this type of reference data is chosen as follows

I1 = 0.21 I2 = 0.7 I3 = 0.49 I4 = 0.84

ω1 = 0.1 ω2 = 0.45 ω3 = 0.4 ω4 = 0.5

where the currents have the units of pA while the frequencies are expressed in rad ·ms−1.

The weight term k is chosen to be 2 during the upstroke of the spike and 1 everywhere

else, thereby, weighting the instantaneous error higher during the upstroke of the spike than

elsewhere in the voltage trace. Under periodic input of the type given by (2.23), the match
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Figure 2.7: Spike trains of prediction and target data from detailed (Hodgkin-Huxley type)

regular spiking model. Spikes from the two trains have similar firing rates.

between adaptive quadratic model and detailed regular spiking model is shown in Fig 2.7.

Although the prediction misses one spike at the beginning, the firing rates between the

prediction and the reference are close. However, replicating the experimental behavior with

the estimated parameters under a step input was not possible. This issue is discussed at

length in Chapter 4.
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2.4.4 Comparison with Existing Techniques

In this section, we compare the result from the proposed method with an existing estimation

technique, e.g., the CAPTAIN Toolbox [23] which consists of several Matlab functions for

system identification. Since the LP model (2.12) is linear in parameters, function dlr (Dy-

namic Linear Regression) is employed to identify the parameters, given the same reference

data as used in Section 2.4.1. The evaluation result is shown in Fig. 2.8. Comparing with

Fig. 2.3, one will find that the proposed method outperforms the CAPTAIN in that the

prediction as shown in Fig. 2.3 is tighter than in Fig. 2.8. Finally, we note here that we

were unable to compare the proposed approach with functions from the CONTSID toolbox

[24] (also available in Matlab) because CONTSID is only applicable to linear models while

the model given by (2.1)–(2.3) (or the equivalent model given by (2.6) and (2.8)) is clearly

nonlinear because of the square nonlinearity associated with the output voltage.
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CHAPTER 3

TWO-STAGE ESTIMATION STRATEGY

3.1 System Model

A resonate-and-fire neuronal spiking model can be described by the state equations [30]

dv

dt
= k1v + k2 − k3u+ k3i (3.1)

du

dt
= a(bu− v) (3.2)

where v denotes the membrane potential and is the only system output, u is an immeasurable

membrane recovery state variable which provides a negative feedback to v, while i denotes

injected current and/or synaptic current. The parameters k3 and a denote the time scale

of the two state variables, the parameter b is the level of subthreshold adaptation, while

the parameters k1 and k2 are linked to the subthreshold behavior of the neuron. When the

membrane potential v hits the threshold, the neuron is said to fire a spike, and the state

variables are reset according to

if v = Vt, then


v → c

u→ u+ d

(3.3)
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where Vt is the threshold, c denotes the post-spike reset value of the membrane potential,

while d denotes the amount of spike adaptation of the recovery variable. Note that the

post threshold dynamics of the cell are not described by the model of (3.1) and (3.2); these

equations only describe the subthreshold behavior. Unlike the triangular pulse used by [31]

to mimic the shape of the spike, here the entire spiking behavior is ignored, using only a

straight line to indicate the occurrence of a spike.

Since the model above is only valid in the subthreshold region, a voltage threshold needs

to be defined to indicate the initiation of a spike. A fixed threshold is used by [30]. However,

empirical evidence suggests that the voltage threshold for a spike depends not only on the

instantaneous value of the voltage, but also on the rate of voltage change. The variation

in the spike threshold could also be a function of the instantaneous firing rate [32]. Using

a detailed ion-channel based spiking model [17] with parameters by [18], the probability of

firing as a function of membrane potential [33] was used to identify a specific value that

could be considered as a fixed threshold, but no such value could be clearly identified, i.e.,

we could not determine an obvious “jump point” in firing probability which can be defined

as a “threshold”. Thus, there is an indication that a more realistic model should consider

a threshold distribution rather than a deterministic value. Stochastic spike thresholds have

been previously proposed and proved [34, 35]. Others have used a stochastic term in the

membrane dynamics to represent signal noise, e.g., see [14]. In fact this is computationally

identical to subtracting the noise from the potential and adding it to the threshold [36]. The
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threshold is considered to be a random variable and its distribution is assumed to be i.i.d.

and Gaussian, i.e., Vt ∼ N(m,σ).

3.2 The Estimation Problem

The goal is to estimate the following set of unknown parameters associated with the resonate-

and-fire neuron model

θ , (k1, k2, k3, a, b, c, d,m, σ) = (θl, θt)

where the partitions θl and θt will be explicitly defined below. It is assumed that the input

excitation and membrane potential depolarization recordings are available for measurement.

Given the membrane potential trace, it is possible to obtain the spike locations and infer

the inter-spike intervals (ISIs). Given the model of (3.1)-(3.3), the system parameters to be

estimated are divided into two sets; specifically, a set

θl , (k1, k2, k3, a, b)

which is associated with the linear dynamics of (3.1) and (3.2), and another set

θt , (c, d,m, σ)

which is linked to the after-spike resetting and threshold distribution parameters. Thus,

the two-stage estimation problem solved here consists of both matching the subthreshold

voltage recording to estimate θl and utilizing those estimates as well as the measurements

to maximize the likelihood of the observed spiking pattern to estimate θt.
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3.2.1 Subthreshold Estimation (Stage I)

The linear system represented by (3.1) and (3.2) can be analytically treated and solved,

which is particularly useful when using gradient based or least squares based estimation

techniques, since these require the derivative of the objective function with respect to the

parameters. Based on (3.1) and (3.2), the solution for the subthreshold membrane potential

can be expressed as

v (t) = [k2 − k3u(t0)]f1(θl, t) + k3(f2 (θl, t) ∗ i) + v(t0)f2(θl, t) + k2af3(θl, t) (3.4)

where where u (t0) and v (t0) are initial values for u and v, the symbol ∗ denotes the con-

volution operator, while the functions f1 (θl, t) , f2 (θl, t), and f3 (θl, t) in the solution have

explicitly been defined in Appendix A. Because of the dependence of v (t) on u (t0) and

v (t0) as can be seen in (3.4), v (t) depends not only on the parameter set θl but also on the

reset values c and d. However, at this stage, the effect of c and d is set aside by utilizing a

spike-free continuous subsequence of the measured data that lies beyond an initial transient

period; functionally, this is equivalent to setting u(t0) = v (t0) = 0 in (3.4). This results in

voltage dynamics that are independent of θt in the subthreshold region, depending only on θl

such that v (t) can be compactly expressed as v = f(t, i, θl). Given input i, f is a nonlinear

function on the parameter set θl. The estimate for θl is made via a nonlinear least squares

estimation based technique by [37]. Nonlinear least squares is a form of least squares used

to fit observations to a model that is nonlinear in the parameters. Given a discrete observed
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data sequence of length N , the objective function to be minimized is

S =
N∑
i=1

(vi − v̂i)2

where v̂i , f(i, t; θ̂l) denotes the estimated voltage at time i. The parameter is updated

using the following iterative scheme

θ̂t+1
l = θ̂tl + J ′−1J ′∆v (3.5)

where ∆v = v− v̂ is a n×1 vector defining the error between the measured and the estimated

voltage while J is the N ×M Jacobian matrix, with elements given by

Jik =
∂v̂i

∂θ̂lk
. (3.6)

Here, M = 5, being the number of parameters in the set θl. Furthermore, θ̂lk denotes

the estimate of the kth element of the parameter vector θl. Note that the Jacobian matrix

J is a function of the estimated parameters and updates from one iteration to the next.

The convergence of the parameter estimates to their actual values is ensured by utilizing a

persistently exciting input current injection as it has been demonstrated in earlier work [16].

3.2.2 Threshold Distribution and Reset Parameters Estimation (Stage II)

3.2.2.1 Strategy

During this stage, the subthreshold parameters θ̂l estimated from the previous step are

utilized in the reconstruction of the subthreshold membrane potential. Based on (3.4), we
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can explicitly write the dependencies of the reconstructed potential v̂ (·) as follows

v̂ = g
(
t, i, θ̂l, c, d

)
. (3.7)

Conditional upon i and θ̂l, it can be seen that v̂ is a linear function of the unknown reset

parameters c and d. We remark that in Stage II, the reset parameters (i.e., the initial

conditions post spiking) cannot be ignored because these parameters strongly determine the

rate of occurrence of spikes. The insight here is that the reconstructed membrane potential

is allowed to evolve according to (3.7) and spikes are generated when the reconstructed

membrane potential reaches threshold Vt ∼ N(m,σ); the unknown parameters c, d,m, and

σ are adjusted so as to maximize the likelihood of occurrence of the observed firing pattern.

During this stage, it is assumed that the the only output measured from the cells is the

location of the spikes. Since the spikes from real neurons have finite width, the spike time

tj is defined to be the time of the peak of each spike. During the interval t ∈ (tj−1, tj), the

cell is not firing. All data points during the intervals
⋃
j

(tj−1, tj) can be denoted as ti, since

the data being examined has been discretized. The likelihood function for the parameter

set θt can therefore be defined as the probability that the stochastic threshold Vt is below

the reconstructed membrane potential v̂ at spike times tj and above v̂ at non-spike times ti.

Mathematically, the likelihood function can be expressed as follows

L(θt) = log

((∏
i

∫∞
v̂i
G(Vt;m,σ)dVt

)(∏
j

∫ v̂j
−∞G(Vt;m,σ)dVt

))
=
∑
i

log
∫∞
v̂i
G(Vt;m,σ)dVt +

∑
j

log
∫ v̂j
−∞G(Vt;m,σ)dVt

(3.8)

where G(Vt;m,σ) is the Gaussian probability density function of the threshold Vt with mean

m and variance σ2. L(θt) could be referred to as “log-likelihood” as a more appropriate term,
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but for simplicity reasons, it is referred to simply as “likelihood”. Since v̂ is a function of c and

d, a new voltage trace is generated using (3.7) for each set of parameters θt. The Maximum

Likelihood Estimation (MLE) parameters θ̂t are given by the maximizing argument of the

likelihood function L(θt) of (3.8).

3.2.2.2 Existence of Local Maxima

Before choosing a technique to solve (3.8), it is prudent to first study the uniqueness of the

maximum of (3.8). Since the likelihood function is the log multiplication of a series of basic

functions, a sufficient condition for the log concavity of the overall function of (3.8) is for each

of the underlying functions to be log concave. If this condition is met, then the likelihood

function has a unique maximum. To show that
∫ vi
−∞G (Vt;m,σ) dVt is not log-concave, we

begin by defining

I =

∫ v

−∞
G (Vt;m,σ) dVt

F = log I

The Hessian matrix of F is

H =



∂2F

∂x21

∂2F

∂x1∂x2

∂2F

∂x1∂x3

∂2F

∂x1∂x4
∂2F
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∂2F

∂x22

∂2F

∂x2∂x3

∂2F
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∂x3∂x1
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where xi denotes the ith component of the vector x which is defined as follows

x = θt = [c, d,m, σ]T .

The unique elements of the symmetric matrix H have been explicitly defined in Appendix

B. By appropriately choosing an invertible matrix C, we can diagonalize H to obtain the

matrix D as follows

D = CTHC =



(
I v−m

σ2 +G
)

0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0


.

It is clear to see that D has both positive and negative eigenvalues; thus, it is indefinite which

implies that
∫ v
−∞G (Vt;m,σ) dVt is not log-concave. We note here that it is not essential

to explicitly find the matrix C. In fact, the diagonal matrix D was obtained through an

appropriate sequence of row and column operations.

Being unable to rule out the possibility that the likelihood function has multiple local

maxima, it is imprudent to utilize a method such as gradient ascent, which is very likely

to get stuck at a local maximum. Therefore, we choose to utilize the simulated annealing

method [38, 39] to find the maximum of the previously formulated likelihood function of

(3.8).
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3.2.2.3 Implementation

Unlike a gradient based law which might get stuck at a local maximum, simulated annealing

(SA) is designed for global optimization. This particular technique has its origin in the

metallurgic industry where an annealing technique that involves the controlled heating and

cooling of a material is used to minimize the energy of its crystals. After selecting an initial

point, the algorithm randomly selects a point s′ in the neighborhood of the old point s at

each iteration. The newly selected point is consider or rejected as a “better” point depending

on the probability function P , defined as

P =


1 if L(s′) > L(s)

e−1/T otherwise

(3.9)

where T is denoted as the “temperature”. The possibility to accept the worse point provides

the algorithm the capability of getting away from the local maximum. The SA algorithm is

allowed to move randomly in the entire parameter space by initializing the “temperature”

with a large value T0. Then the parameter gradually decreases. The “cooling” algorithm for

the temperature T used here is given by

T = T0(1− n/N)2

where n is the current iteration, and N is the maximum number of iterations, after which

the algorithm will stop. A detailed description of the algorithm is as follows.
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• Step 0. Initialize the algorithm by selecting a starting point so, a starting temperature

To, and a maximum number of iterations N . Set a boundary for each direction if

needed. Then compute the likelihood for the initial point.

• Step 1. A new point s′ in the neighborhood of s is generated. Projection applies if the

new point exceeds the preset boundary.

• Step 2. The likelihood of the new point s′ is computed. The probability function (3.9)

is called, and s is replaced with s′ if P is larger than a randomly picked up number

between 0 and 1. Otherwise, s remains untouched.

• Step 3. The current iteration n is increased and the temperature T is updated.

• Step 4. If n < N , go back to Step 2, otherwise stop the search.

3.3 Results and Discussion

We applied the aforementioned two-stage estimation strategy to two types of data, namely,

simulated data and in-vitro recording from embryonic rat motoneurons. In what follows,

we describe the data acquisition and processing methods and results obtained from the two

types of data.
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3.3.1 Synthetic Data

The reference data for the simulations was generated from two sources, namely, an exact

resonate and fire model and a detailed Hodgkin-Huxley model. The reason for applying the

method initially to reference data generated by the exact model was to validate the ability

of the formulation to achieve small parameter estimation error – it is possible to do so in

this case because the exact parameters are known. Next, detailed model simulation data

was generated in the NEURON [21] simulation environment by using an ion-channel based

spiking model [17] with parameters by [18]. Using the current clamp mode of the simulation,

we injected pre-generated white noise current to stimulate the cell and collected membrane

potential data sampled at 50Khz.

3.3.1.1 Results from Exact Model Data

A parameter set for the reference model of (3.1)–(3.3) was chosen to simulate a rapidly

adapting receptor (i.e., receptor initially responds and then quickly stops firing in response

to steady input). Fig. 3.1A shows how the estimation follows the subthreshold region of the

reference data. Fig. 3.1B(top) shows the output of the exact model to an injected white

noise input current stream; these input and output data streams are utilized to estimate

the model parameters. The predicted output sequence generated from the estimated model

under white noise injection is shown in Fig. 3.1B(bottom). It is clear to see from the two
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Figure 3.1: (A) The predicted subthreshold dynamics for the rapidly adapting receptor

closely follow the dynamics of the reference data. (B) Comparison of spike trains. Target

data is generated by white noise input to the exact model.

plots in Fig. 3.1B that the target and the predicted spiking rates track closely. In Fig. 3.2, a

different spiking behavior, namely, regular-spiking, is considered by choosing an appropriate

set of parameters for the model of (3.1)–(3.3). As it can be seen in Fig. 3.2A, the prediction

closely follows the subthreshold region of the reference data which vouches for the success of

the subthreshold estimation. Success of the Stage II estimation can be demonstrated from

the results obtained from the predicted spike train, which correctly estimates the original

number of spikes in the target data, as shown in Fig. 3.2B. In Fig. 3.3, a pure step input is

injected to both the exact model and the estimated model to replicate the spiking behavior

of a rapidly adapting receptor (Fig. 3.3A) and regular-spiking cortical neuron (Fig. 3.3B),

where it can be seen in both cases that the firing pattern is correctly predicted.
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Figure 3.2: Regular-spiking Pyramidal Cell. (A) Target and predicted subthreshold dynam-

ics. (B) Comparison of spike trains. Target data is generated by white noise input to the

exact model.

3.3.1.2 Results from Hodgkin-Huxley Model Data

After employing the two-stage estimation strategy using reference data generated from a

detailed ion-channel based model [17] for a regular-spiking cortical cell, the ability of the

estimated resonate-and-fire model to represent the detailed model data is evaluated by com-

paring the predicted output of the estimated model to previously unseen input data. From

the subsequence of data streams shown in Fig. 3.4A, one can see that the subthreshold

traces of the target and predicted data are very close, showing that dynamics (3.1) and (3.2)

yield good approximations in the subthreshold region. Fig. 3.4B shows that the predicted

spike trains closely follow the target with the same adaptation rate. The proposed method

was evaluated 10 times. It was seen that the estimated parameters led to 14.7 spikes on
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Figure 3.3: Step input response for different cells under the exact (top) and estimated

(bottom) models. (A) Target and predicted spike trains for a rapidly adapting receptor,

where the prediction replicates the reference firing pattern. (B) The proposed model correctly

predicts the spike pattern for a regular-spiking cortical neuron.

average, while the target train had 15 spikes under the same input stimulus, thus, there was

an average under-prediction of 0.3 spikes. The predicted number of spikes never deviated

from the number of spikes in the reference data by more than 2 spikes during these trials.

The two-stage estimation process was also applied to reference data from a fast-spiking (FS)

cortical neuron generated by the previously mentioned model [17] using noisy current as the

input. Fig. 3.5A shows that the estimated parameters produced by the proposed estimation

process were able to generate subthreshold dynamics that closely follow the target data. Fig.

3.5B shows the reference spike train (top), and the predicted spike train (bottom), in which it

can be seen that the proposed method was able to accurately replicate the number of spikes

and the rate at which these occurred. 10 validation runs were utilized to quantify the accu-
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Figure 3.4: (A) Comparison of subthreshold dynamics. (B) Comparison of spike trains.

Target data for both (A) and (B) is generated by white noise input to the detailed ion-channel

based model [17] for a regular-spiking cortical cell.

racy of the prediction. While the reference data used presented 37 spikes during a 2s period

of time, the prediction estimated an average 37.2 spikes, resulting in an over-prediction of

only 0.2 spikes. During the validation process, the difference between the number of spikes

in the target data, and the predicted ones differed at most by 3 spikes.

3.3.2 Experimental Data

For the experimental part of the research, primary cultures of embryonic rat motoneurons

were prepared according to NIH guidelines and in agreement with the Institutional Animal

Care and Use Committee (IACUC) approved protocol. Rat spinal motoneurons were dis-
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Figure 3.5: Target data generated from a detailed ion-channel based model for a fast-spiking

cortical neuron [17]. (A) Target and predicted subthreshold dynamics. (B) Target v.s.

predicted spike trains under noisy input.

sected from day 14 (E14) embryos as published earlier [40] . Cells were dissociated with

trypsin (Invitrogen, 0.05%) and centrifuged for 15min at 500g. Motoneurons were purified

with immunopanning using antibodies (antibody 192, 1:2 dilution, ICN Biomedicals, Akron,

OH) recognizing the low affinity NGF receptor expressed only by ventral motoneurons at this

age. Purified motoneurons were plated on 22x22mm2 ornithine/laminin coated coverslips at

a density of 200 cells/mm2 in Neurobasal (Gibco-BRL) medium supplemented with B27 (2%

v/v; Invitrogen), L-glutamine (0.5 mM), 2-mercaptoethanol (25 µM), glial cell line-derived

neurotrophic factor (1ng/ml CNTF; Cell Sciences) L-glutamate (25 µM) was added to the

culture medium during the first 5 days of growth.

Conventional whole-cell path clamp recordings were performed on the culture cells be-

tween day 7 and 14 in culture. The extracellular solution was Neurobasal culture medium,
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the pH was adjusted to 7.3 with HEPES. Patch pipets were prepared from borosilicate glass

(BF150-86-10; Sutter, Novato, CA) with a Sutter P97 pipet puller and filled with intracel-

lular solution (in mM : K-gluconate 140, EGTA 1, MgC12 2, Na2ATP 2, phosphocreatine

5, phosphocreatine kinase 2.4 mg, Hepes 10; pH:7.2). The resistance of the electrodes was

6-8MΩ. Current clamp experiments were performed with the Multiclamp 700A amplifier

(Axon, Union City, CA). Signals were digitized at 10kHz with an Axon Digidata 1322A in-

terface. Data recording and initial analysis were performed with pClamp 10 software (Axon).

White noise current was injected in current clamp mode from stimulus files at resting mem-

brane potential. The amplitude of the current signal was adjusted to evoke subthreshold and

suprathreshold (action potential) responses from the cells. The experimental data contained

noise which might be the result of the measurements, the environment, or a combination

thereof. Therefore, before subjecting the data to the estimation algorithms, the noisy data

was first run through a low-pass filter. Specifically, an 8th order Butterworth low pass filter

with a cut-off frequency of 600Hz was utilized. The filtered data was then processed to deter-

mine the location of spikes in the spike train. A sufficiently long piece of subthreshold data

(i.e., a data subsequence without any spikes) was also selected for Stage I of the proposed

two-stage estimation strategy.
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Figure 3.6: (A) Comparison of subthreshold dynamics. (B) Comparison of spike trains.

Target data for both (A) and (B) is generated by white noise input injected into embryonic

rat motoneurons.

3.3.2.1 Experimental Results

As in the case of the detailed Hodgkin-Huxley model, the results presented here for evaluation

use previously unseen data, i.e., the data stream utilized for model evaluation is different

from that utilized for generating the estimated model. Fig. 3.6A shows the subthreshold

approximation using the estimated parameters from which it is clear to see that the linear

model dynamics of (3.1) and (3.2) are a good approximation in the subthreshold regime.

Fig. 3.6B shows a subsequence of the target and predicted spike trains, where the prediction

misses one spike but locates the remaining spikes correctly. The statistics after 10 evaluations

of the experimental data revealed that 16 spikes were predicted while the target data had

14 spikes, i.e., the mean prediction error was 2 spikes.
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CHAPTER 4

CONCLUSIONS

A weighted least squares approach to estimate parameters in a simple adaptive quadratic

spiking neuron model has been proposed. It was shown that the discontinuity in the resetting

can be cast as an impulse train in the system dynamics. By developing a linear-in-the-

parameters model, a prediction error-based weighted least squares method was formulated

that allows for estimation of model parameters through measurements of injected current

and membrane potential only. Several tests were run to demonstrate the validity as well

as robustness of this approach to noise. Preliminary results using data from a detailed ion

channel based model suggest directions for further improvement. Future work will focus on

adequately modeling detailed simulation and experimental data.

While the results for prediction of reference data generated from the quadratic model

itself show good prediction and robustness under noise, the prediction of data obtained

from the detailed ion-channel (i.e., Hodgkin-Huxley type model) merits more discussion.

Specifically, there are differences between data obtained from the detailed ion-channel model

and the assumptions made by the quadratic model. For example, the downstroke of the

action potential (i.e., spike) in the detailed ion-channel based model is not a discontinuity as
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assumed in the quadratic model; instead, the downstroke is akin to a downhill ramp which

descends in about 2ms to its resting value in this model. In fact, the observations of the

estimates suggests that the penultimate term in (2.13) is appropriate to model the upstroke

of the spike whereas its intended purpose in the quadratic model is to capture the falling

edge of the spike. Similarly, the final term in (2.13) is appropriated to model the downstroke

of the spike whereas its intended purpose is to capture the adaptation in the model due

to spike occurrence. This suggests the need to do one of the following: (1) to pre-process

the output of the detailed model to replace the ramp like downstroke with a hard reset –

this is acceptable because we are interested merely in replicating firing patterns and not

action potential shapes, however, this requires a priori knowledge of the reset voltage. (2)

to replace the hard reset term in (2.13) with a ramp like term, however, this would require

an adjustment to suspend the original system dynamics during that interval. Moreover, in

addition to utilization of weights to enforce good estimation of the behavior around the spike

instants, hard bounds need to be enforced on estimates for those parameters that are known

to be positive or negative in order to ensure better prediction, e.g., the parameter encoding

for reset after a spike should be upper-bounded by 0.

It should be noted that the exact spike time is highly sensitive to parameter estimation

error, i.e., the results suggest that a small error in parameter estimation might cause the

prediction and the reference to be mismatched; however, the firing rate and patterns remain

similar. Since mean firing rate carries information about experimental conditions and specific

firing pattern may convey significant behavioral information [25] and, for large networks of
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spiking neurons, the firing rate of each neuron in the network is a function of the firing rates

of all the other neurons [26], it is much more important to replicate the rate of firing and

the firing pattern. In any case, due to the inherent noise in an experimental environment,

accurate parameter estimation is nearly impossible. Furthermore, it is more practical and

useful to determine a distribution of the parameters since the experimental data under

different conditions suggest that there is a stochastic variable in neuronal activity [14].

To overcome some of the issues of the proposed adaptive quadratic model, a stochastic

resonate-and-fire model was studied. Based on evidence from empirical data and existing

literature, the voltage threshold for the resonate-and-fire model was assumed to be ran-

dom and normal. By formulating the estimation of parameters as a two-stage problem, an

estimation mechanism based on nonlinear least squares subthreshold estimation and max-

imum likelihood spike pattern estimation was presented. The estimation mechanism was

fed with simulated data as well as in vitro experimental data obtained from embryonic rat

motoneurons to obtain results that corroborated the validity of the mechanism. The data

used for parameter estimation was different from that used to validate the results given by

the prediction resonate-and-fire model based on the estimated parameters. The simulation

and experimental results presented show a very good match between the prediction and the

target.

In the presented formulation, it was assumed that the subthreshold trace could be defined

as a “linear zone” where the dynamics (3.1) and (3.2) are a good approximation. This

subthreshold region is upper-bounded by the variable threshold. Results shown in the last
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section indicate the validity of this assumption, since the error between the prediction and the

target in Figs. 3.4, 3.5, and 3.6 is below 5%. Since the linear model is capable of replicating

only the subthreshold dynamics, the reference voltage trace used for the nonlinear least

squares estimation should not contain any spikes. This is ensured by choosing a sufficiently

long data subsequence between spikes, with starting and ending points far away from the

nearest spike. By sufficiently long subsequence, it is meant that the input output data

should be long enough to lead to subthreshold parameter convergence – this is a standard

assumption made in system identification. Furthermore, by ensuring that the starting point

of the data is far away from a spike, one can ignore the transient artifacts related to the

initial conditions (i.e., reset) immediately following a spike.

Another assumption made in this formulation is that all the stochastic components in the

system, including system noise (either caused by measurement noise or by the environment

of the cell) as well as the variability of the threshold, can be captured by the threshold

distribution that has been employed. Results suggest that such a simplification leads to a

small over-prediction of the firing rate on average. However, the results are still acceptable

- the errors are small in percentage and the predicted spike trains have remarkably similar

spiking patterns as the targets that they are intended to emulate. A model with more

sophisticated assumptions or additional components could most likely address the over-

prediction issue, yet this would result in a larger computation cost.

Computation of the likelihood function (3.8) is the major cost of computation in the

proposed two-stage estimation strategy. The original likelihood function is defined over
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all time instants. The simulated data is sampled at 50kHz and the experimental data is

sampled at 10kHz. This results in a large size of {ti} as defined in Section 3.2.2. In practice,

considering the fact that G(Vt;m,σ) is a Gaussian probability density function which is

practically zero beyond 3σ distance from the mean m, the voltage trace is preprocessed to

make {ti} only contain points that are not too far away from the mean. This requires some a

priori knowledge about the parameters before we delve into the estimation. This is deemed

acceptable since one can easily draw reasonable bounds for the parameters m and σ from an

examination of the reference spike train.
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