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ABSTRACT

Recent advances in biological research point out that many ribonucleic acids (RNAs) are

transcribed from the genome to perform a variety of cellular functions, rather than merely

acting as information carriers for protein synthesis. These RNAs are usually referred to as

the non-coding RNAs (ncRNAs). The versatile regulation mechanisms and functionalities

of the ncRNAs contribute to the amazing complexity of the biological system.

The ncRNAs perform their biological functions by folding into specific structures. In this

case, the comparative study of the ncRNA structures is key to the inference of their molec-

ular and cellular functions. We are especially interested in two computational problems for

the comparative analysis of ncRNA structures: the alignment of ncRNA structures and their

classification. Specifically, we aim to develop algorithms to align and cluster RNA structural

motifs (recurrent RNA 3D fragments), as well as RNA secondary structures. Thorough

understanding of RNA structural motifs will help us to disassemble the huge RNA 3D struc-

tures into functional modules, which can significantly facilitate the analysis of the detailed

molecular functions. On the other hand, efficient alignment and clustering of the RNA sec-

ondary structures will provide insights for the understanding of the ncRNA expression and

interaction in a genomic scale.

In this dissertation, we will present a suite of computational algorithms and software packages

to solve the RNA structural motif alignment and clustering problem, as well as the RNA
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secondary structure alignment and clustering problem. The summary of the contributions

of this dissertation is as follows.

(1) We developed RNAMotifScan for comparing and searching RNA structural motifs. Re-

cent studies have shown that RNA structural motifs play an essential role in RNA folding

and interaction with other molecules. Computational identification and analysis of RNA

structural motifs remain to be challenging tasks. Existing motif identification methods

based on 3D structure may not properly compare motifs with high structural variations.

We present a novel RNA structural alignment method for RNA structural motif identi-

fication, RNAMotifScan, which takes into consideration the isosteric (both canonical and

non-canonical) base-pairs and multi-pairings in RNA structural motifs. The utility and ac-

curacy of RNAMotifScan are demonstrated by searching for Kink-turn, C-loop, Sarcin-ricin,

Reverse Kink-turn and E-loop motifs against a 23s rRNA (PDBid: 1S72), which is well

characterized for the occurrences of these motifs.

(2) We improved upon RNAMotifScan by incorporating base-stacking information and de-

vising a new branch-and-bound algorithm called RNAMotifScanX. Model-based search of

RNA structural motif has been focused on finding instances with similar 3D geometry and

base-pairing patterns. Although these methods have successfully identified many of the true

motif instances, each of them has its own limitations and their accuracy and sensitivity can

be further improved. We introduce a novel approach to model the RNA structural motifs,

which incorporates both base-pairing and base-stacking information. We also develop a new

algorithm to search for known motif instances with the consideration of both base-pairing

and base-stacking information. Benchmarking of RNAMotifScanX on searching known RNA

structural motifs including kink-turn, C-loop, sarcin-ricin, reverse kink-turn, and E-loop
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clearly show improved performances compared to its predecessor RNAMotifScan and other

state-of-the-art RNA structural motif search tools.

(3) We develop an RNA structural motif clustering and de novo identification pipeline called

RNAMSC. RNA structural motifs are the building blocks of the complex RNA architecture.

Identification of non-coding RNA structural motifs is a critical step towards understanding

of their structures and functionalities. We present a clustering approach for de novo RNA

structural motif identification. We applied our approach on a data set containing 5S, 16S

and 23S rRNAs and rediscovered many known motifs including GNRA tetraloop, kink-turn,

C-loop, sarcin-ricin, reverse kink-turn, hook-turn, E-loop and tandem-sheared motifs, with

higher accuracy than the currently state-of-the-art clustering method. More importantly,

several novel structural motif families have been revealed by our novel clustering analysis.

(4) We propose an improved RNA structural clustering pipeline that takes into account

the length-dependent distribution of the structural similarity measure. We also devise a

more efficient and robust CLique finding CLustering algorithm (CLCL), to replace the tradi-

tional hierarchical clustering approach. Benchmark of the proposed pipeline on Rfam data

clearly demonstrates over 10% performance gain, when compared to a traditional hierar-

chical clustering pipeline. We applied this new computational pipeline to cluster the post-

transcriptional control elements in fly 3’-UTR. The ncRNA elements in the 3’ untranslated

regions (3’-UTRs) are known to participate in the genes’ post-transcriptional regulation, such

as their stability, translation efficiency, and subcellular localization. Inferring co-expression

patterns of the genes by clustering their 3’-UTR ncRNA elements will provide invaluable

knowledge for further studies of their functionalities and interactions under specific physio-

logical processes.
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(5) We develop an ultra-efficient RNA secondary structure alignment algorithm ERA by using

a sparse dynamic programming technique. Current advances of the next-generation sequenc-

ing technology have revealed a large number of un-annotated RNA transcripts. Comparative

study of the RNA structurome is an important approach to assess the biological functionali-

ties of these RNA transcripts. Due to the large sizes and abundance of the RNA transcripts,

an efficient and accurate RNA structure-structure alignment algorithm is in urgent need to

facilitate the comparative study. By using the sparse dynamic programming technique, we

devised a new alignment algorithm that is as efficient as the tree-based alignment algorithms,

and as accurate as the general edit-distance alignment algorithms. We implemented the new

algorithm into a program called ERA (Efficient RNA Alignment). Benchmark results indicate

that ERA can significantly speedup RNA structure-structure alignments compared to other

state-of-the-art RNA alignment tools, while maintaining high alignment accuracy.

These novel algorithms have led to the discovery of many novel RNA structural motif in-

stances, which have significantly deepened our understanding to the RNA molecular func-

tions. The genome-wide clustering of ncRNA elements in fly 3’-UTR has predicted a cluster

of genes that are responsible for the spermatogenesis process. More importantly, these genes

are very likely to be co-regulated by their common 3’-UTR elements. We anticipate that

these algorithms and the corresponding software tools will significantly promote the com-

parative ncRNA research in the future.
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CHAPTER 1: INTRODUCTION

1.1 Non-coding RNAs and Their Structures

The central dogma dictates that the genetic information of a living organism is encoded in

deoxyribonucleic acid (DNA), transcribed to ribonucleic acid (RNA), and then translated

into protein. The RNAs transcribed from the protein-coding genes are called messenger

RNAs (mRNAs), and were once considered as the major form of RNAs in the biological

system. Another important type of RNAs that have long been recognized is the transfer

RNA (tRNA), which is used to carry amino acids into the ribosome for protein synthesis.

As the tRNAs do not code for proteins, they are classified as non-coding RNAs (ncRNAs)

to make the distinction from protein-coding RNAs. Together, the mRNAs and tRNAs are

enough to complete the central dogma hypothesis, and explain the essential operation of the

biological system.

However, as more complex biological systems are being studied, it is difficult to explain

two major observations when we recognize the genome as primarily a collection of protein-

coding genes. First, the genes that have been studied seem not enough to build up such

biological systems with their amazingly high complexity. Second, the function of a large

fraction (>95% in human, while much less in bacteria) of the genome is unclear, as it

appears to be transcribed but not code for any proteins. Combining these two questions, it
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is natural to come up with a hypothesis that the ‘junk’ regions of the genome are in fact

very important to the very complexity of the biological system.

Indeed, recent research advances have discovered many ncRNAs with a variety of function-

alities [45, 121]. Most importantly, the discoveries of these ncRNAs open a new direction for

us to understand the regulation of the biological systems. For example, microRNA [14] is

able to recognize its target mRNA through sequence complementarity, and direct the degra-

dation of the mRNA. Second, the riboswitch [132] elements can alter their structures while

under different physiological conditions (mostly by binding to small metabolites), and thus

control the transcription or translation of their downstream genes. With the discovery of

more ncRNAs, their different functionalities other than regulation are revealed (for example,

catalysis (ribozyme) [40], signaling (SRP) [51], and modification (snoRNA) [88] etc.). While

the ncRNAs are taken into consideration, a much larger fraction of the genome appears to

be annotated (it is estimated that the fraction of genome that codes for ncRNAs is at least

as large as that which codes for proteins [18]). The versatile functions of the ncRNAs also

contribute to the deeper understanding of the biological systems.

The ultimate goal for ncRNA research is to annotate their locations in the genome, elu-

cidate their individual functionalities, and model their interactions. In this dissertation,

we approach this ultimate goal through comparative studies of ncRNA structures, as their

structures are hypothesized to determine their specific functions. The structure of an ncRNA

can be represented using three different levels. First, we would like to know the order of

the nucleotides, with which they form the ncRNA chain. We call it the sequence or the pri-

mary structure of the ncRNA. Similar to DNA, the RNA nucleotide residues can also form

strong hydrogen bonding interaction with each other through their bases, with a rule that

A (adenine) binds to U (uracil) and C (cytosine) binds to G (guanine). The strong hydrogen
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bonding interactions (canonical base pairs) determine the scaffold of the ncRNA, and we call

the interaction pattern for these types of interaction the secondary structure of the ncRNA.

Besides these two types of strong base interactions, other types of base interactions (non-

canonical base pairs), or even interactions between the sugar rings or between bases and

sugar rings, may also occur in an ncRNA. In this case, a full collection of atomic coordinates

in the three-dimensional (3D) space is desired to completely represent all interactions, and

we call it the tertiary structure of the ncRNA.

These three types of ncRNA structures facilitate the understanding of their functions on

different levels. The primary structure tells the general size of the ncRNA and indicates its

genomic location. The secondary structure further depicts a high-level backbone configu-

ration of the ncRNA, and allows us to roughly infer their cellular functions. The tertiary

structure contains the most complete information, and can be used to study the detailed

molecular functions of the RNA and determine its specific operational mechanisms. Un-

fortunately, the difficulty in obtaining and analyzing these three types of structures also

increases with the information contained in them. For example, to obtain the primary struc-

ture, we can directly sequence the corresponding ncRNA (e.g. the whole transcriptome can

be probed using the RNA-seq technology). To obtain the secondary structure, we may ap-

ply various chemical probing methods followed by electrophoresis. However, to obtain the

tertiary structure, we need to use the much more expensive experimental techniques such

as X-ray diffraction or NMR (Nuclear Magnetic Resonance). Computationally, the compar-

ison of ncRNA primary structures takes O(l2) time [98] (where l is the average length of

the ncRNA sequences), while the comparison of ncRNA secondary structures takes O(l4)

time [68]. The problem of comparing the ncRNA tertiary structures, however, appears to be

computationally intractable.
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We are interested in the comparative analysis of ncRNA secondary and tertiary structures.

This is because there is little information that can be identified from the primary sequence

to distinguish structured RNA from random genomic sequences. It is also observed that ran-

dom sequences can fold into thermodynamically stable structures under the current RNA

structure prediction rules [46]. In this case, the secondary and tertiary structure will pro-

vide us enough information to estimate the structural conservation and infer the molecular

functions of the ncRNAs. Nevertheless, it is also highly desirable that we can utilize the

knowledge learned from studying ncRNA secondary and tertiary structures to improve the

ncRNA structure prediction rules, and identify ncRNA genes from genomic sequences with

a higher accuracy.

1.2 RNA Structural Motifs and Isosteric Base Pairs

Despite the importance in analyzing RNA tertiary structures, computational estimation of

their structural similarity is still an open problem. First of all, as shown by Jiang et al. [68],

the comparison of RNA tertiary structures (or even RNA secondary structure with crossing

base pairs) is unlikely to be solvable within polynomial time. Second, the ncRNA structures

have different structural flexibility in different domains, i.e. the functional domains require

high structural conservation to maintain their proper functions. However, such information

is usually unavailable unless the ncRNA structure is well annotated. The different structural

flexibility limits the application of the generalized (without assigning weight to specific re-

gions of interest) RNA tertiary structure comparison method. As a result, manual inspection

is still the most popular and reliable approach in analyzing ncRNA tertiary structures.
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However, it is very difficult for a human to analyze large RNA structures, such as the

large ribosomal RNAs subunits. It is highly desirable that we can study the large RNA

structures in a modulated manner. In other words, it would greatly improve ncRNA tertiary

structure analysis if we can decompose the ncRNA structure into recurrent fragments, while

these fragments have relatively rigid 3D structures and predictable functionalities. These

structural fragments are referred to as the RNA structural motifs [62, 78, 95]. RNA structural

motifs are usually small in size (5 - 20 bps) and found in the junction regions between regular

A-form helices [37]. Their functionalities are still not fully understood; however, current

knowledge indicates that they are either ultra thermodynamically stable, or are required for

the inter or intra molecular interactions (between itself and other DNA, RNA, proteins, or

small metabolite molecules) that are associated with the ncRNA.

Even we have now reduced our problem of analyzing the entire RNA tertiary structure into

the study of the much smaller RNA structural motifs, there exist potential drawbacks in

direct comparisons of the RNA tertiary structures based on their 3D coordinates. Specifi-

cally, we must consider potential structural variations in the RNA structural motifs which

are functionally conserved. Therefore, comparing a full set of atomic coordinates of the RNA

structural motifs is not theoretically sound. Existing computational methods for RNA ter-

tiary structure comparison tackle this problem by representing the RNA 3D structure with

means of abstractions. For example, representing a nucleotide using its key atoms [59, 113] or

representing the overall structure using its backbone trajectory [44], are used by a variety of

3D geometry-based RNA structural motif analysis methods to consider potential structural

variations. Apparently, this research progress has greatly relieved the computational burden

and led to numerous significant discoveries about ncRNA tertiary structures. However, it

is still questionable whether the abstraction methods that have been used here are the best
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way to model ncRNA structures. And the identification performances of these methods,

when compared to the manual analysis results, need further improvements.

An alternative approach for representing an RNA structural motif is to use its base-pairing

pattern that includes non-canonical base pairs [79, 80]. The non-canonical base pairs are

base-pairing interactions other than the canonical Watson-Crick base pairs. The non-canonical

base pairs are summarized into different isosteric groups based on their C1’-C1’ distance,

where the base-pair substitutions within the same isosteric group are considered to be struc-

turally conserved [80]. The summarization of isosteric base pairs opens a new direction

for analyzing RNA structural motifs. First, it provides a natural way for us to model the

RNA structural motifs using their base-pairing patterns (including both canonical and non-

canonical base pairs), which reduces computational complexity significantly and takes into

account potential structural variations. Second, the isosteric group serves as a theoretical

foundation for us to derive ad hoc scoring functions, which can help to determine whether

the base-pair substitutions are structurally conserved.

1.3 Identification and Classification of RNA Structural Motifs

A direct application of comparative analysis of the RNA structural motifs is the prediction

of its occurrences in a given RNA structure of interest. Such information, when coupled

with the molecular function of each structural motif, can provide invaluable insight for us to

understand the RNA structures of interest. We refer to this problem as the RNA structural

motif identification problem. We are also interested in the structural classification of the

RNA structural motifs, especially for the purpose of de novo discovery of new RNA structural
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motif families. We refer to this problem as the RNA structural motif classification problem.

What lies in the center of these two problems is the comparison (or alignment) of RNA

structural motifs. For the RNA structural motif identification problem, all candidate regions

are compared with the query model (usually the consensus structure), and the high-score

hits are reported as potential instances. For the RNA structural motif classification problem,

all-against-all alignments are performed on the candidate motif instances, and subsequently

a clustering algorithm is applied to define groups of closely related motif instances. In both

cases, alignments of the RNA structural motifs (specifically, their base-pairing patterns)

become the central problem for RNA 3D structure analysis.

The base-pairing pattern of a given RNA structural motif can be summarized into a graph,

where the vertices in the graph correspond to the nucleotides in the RNA structural motif,

and the edges indicate the base-pair interactions. The edges in the graph can be labeled

to indicate which isosteric group the base-pair interaction belongs to. Because the graph

isomorphism is a computationally hard problem, the naive comparison of RNA structural

motif graphs is computationally demanding. However, due to their limited sizes, it would

be feasible to devise a branch-and-bound algorithm to optimally align RNA structural motif

graphs. These observations leave us with two options: either reduce the RNA structural motif

base-pairing patterns into planer graphs such that they are solvable using polynomial time

solutions, or develop a branch-and-bond algorithm to compute more accurate alignments

with a higher computational overhead. The choice between these two strategies should be

made according to the purpose of the study.

When we only focus on the base-pair patterns (both canonical and non-canonical), it is

observed that the majority of the base pairs are nested, and only a small number of them

cross with each other. In this case, if we temporarily remove the crossing base pairs in the

7



motif instances, the remaining base pairs become fully nested, and then the motif instances

can be compared in polynomial time. Because the majority of the base pairs will remain, it

is expected that the corresponding alignment will be generated with satisfying quality. After

producing the alignments with nested base pairs, the crossing base pairs can be added back

to potentially recover alignment errors. To compare two RNA structures without crossing,

the algorithm framework of RNAscf [10] is borrowed (modified by incorporating an ad hoc

scoring function that describes base-pair isostericity), which can run in O(l4) time. The

strategy is implemented into an RNA structural motif search tool named RNAMotifScan.

RNAMotifScan can align RNA structural motif instances with high computational efficiency,

and therefore is suitable for large-scale analysis such as database search or clustering analysis.

The details of this work will be discussed in Chapter 2.

However, although RNAMotifScan has shown significant improvement over the other 3D

geometry-based methods in RNA structural motif identification accuracy, its performance

can still be further improved. First, RNAMotifScan only considers base-pairing information,

while another important type of base interaction, the base-stacking interaction, is completely

ignored. Second, the heuristic assumption made on crossing base pairs does not always corre-

spond to the optimal scenario, and will sometimes lead to incorrect alignments. Therefore, we

incorporate the base-stacking information and consider both base-stacking and base-pairing

interactions when modeling the RNA structural motif. An optimal solution for aligning

motif instances with crossing interactions is necessary, because there will be many more

crossing interactions in the motif instances when base-stacking information is considered.

Note that an exponential solution is feasible as long as the algorithm is elegantly developed

to efficiently prune the search space. This algorithm has been implemented into a program

called RNAMotifScanX. RNAMotifScanX can align RNA structural motif instances with high
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accuracy, and therefore is suitable for detailed study of a few RNA structures. The details

related to this work will be discussed in Chapter 3.

Finally, empowered by these RNA structural motif comparison tools, we are able to cluster

the RNA structural motifs in ribosomal RNAs (including 5S, 16S, and 23S). Our major

goal for this study is to define a structural classification for the structural motif instances,

and at the same time identify novel motif families. Because the clustering analysis re-

quires all-against-all comparison of the motif instances, it is desirable to use a more efficient

version of the RNA structural motif comparison tool, i.e. RNAMotifScan. Correspond-

ingly, we have developed a clustering pipeline for RNA structural motif clustering called

RNAMSC (RNAMotifScan-based Clustering). By applying such clustering pipeline to candi-

date motif instances from the ribosomal RNAs, we have been able to identify many new

occurrence of the known motif families, and more importantly, two completely novel motif

families. The details for the design of the clustering pipeline and the biological discoveries

will be discussed in Chapter 4.

1.4 Generalized Non-coding RNA Classification for the Genome

After developing the clustering pipeline for RNA structural motif instances, it is also desirable

to apply it to genome-wide ncRNA classification. To make this step forward, we have to solve

three central problems that are specific to the genome-wide ncRNA classification. First, the

identification of ncRNAs from the genome is itself a difficult problem, as the information

contained in the sequence alone is insufficient for accurate prediction of ncRNA genes [46].

Second, the comparison between ncRNA structures, although can be finished in a polynomial
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time O(l4), is still of relatively high complexity when performing all-against-all alignments on

candidate ncRNA elements from the entire genome. Third, as the majority of the ncRNAs

from the genome are not yet annotated, there is little inference we can make, even if we had

discovered any interesting structure clusters. To solve these problems, we decided to focus

on ncRNA elements from the 3’-UTR of the fly (Drosophila melanogaster) genome.

Focusing on clustering the post-transcriptional control ncRNA elements from the 3’-UTR of

the fly genome solves these three problems. Biologically, it is more likely that the ncRNA ele-

ments will reside in the untranslated regions (UTR) instead of the protein coding regions [67].

Computationally, such an observation indicates that the candidates discovered in the UTR

are more likely to be real ncRNA elements. Thus, this strategy indirectly improves the de

novo ncRNA gene prediction accuracy, and, to a certain degree, solves the first problem.

It is also clear that restricting our study focus to subregions of the genome will reduce the

number of candidate ncRNAs, and relieve the computational burden for the all-against-all

structural alignment step. In this case, this strategy solves the second problem. At last,

as we have associated these ncRNA elements with their upstream protein coding regions,

this strategy solves the third problem by allowing functional inference of potential ncRNA

clusters by referring to their upstream genes’ functions.

Finally, a key technical challenge for the ncRNA clustering problem is how to estimate

the cutoff to define the individual clusters. It is well known that the raw RNA structure

alignment scores are length biased, i.e. larger RNA structures tend to result in higher

alignment scores. In this case, the raw alignment score cannot be used as a direct measure

for the structure similarity, and it must be normalized before being used. To accomplish

this task, we devised a simulation-based statistical framework to estimate the p-values for

the structure alignment scores. We randomly generate a large number of RNA sequences by
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preserving the original di-nucleotide frequency of a given RNA template, and then predict

their secondary structures using RNAfold [66]. These random structures are subject to

alignment with the template RNA structure, and the corresponding alignment scores are

taken as the background scores distribution for the template RNA structure. Based on

this score normalization strategy, we further design a more accurate and robust CLique

CLustering (CLCL) algorithm (compared to the hierarchical clustering algorithm), which

predicts ncRNA clusters from the normalized p-values for alignment scores. The entire

clustering pipeline is applied to the candidate ncRNA elements predicted (using RNAz [137])

from the fly 3’-UTR. The details for the design of the clustering pipeline and corresponding

biological discoveries will be discussed in Chapter 5.

1.5 Speeding Up the Genome-wide RNA Classification

One of the potential problem of the previously discussed CLCL pipeline is that the time to

to align candidate structures is too slow for analyzing long ncRNAs or large data sets. As

more long ncRNAs are being discovered [140], a faster alignment tool for their alignments

is in urgent demand. In addition, RNA structure chemical probing experiments have been

coupled with the next-generation sequencing (NGS) technology to predict accurate RNA

secondary structures in a high-throughput manner [72, 85, 134]. Specifically, our major

objective is to devise a novel RNA secondary structure alignment algorithm, which can run

more efficiently and at the same time produce high-quality alignments (not heuristics).

We adopt the idea of sparse dynamic programming technique to solve this problem. The

sparse dynamic programming is a technique that aims to prune the search space of the
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algorithm by exploring the triangular inequality of the scoring functions. Once a scenario

is determined to be suboptimal, it will be marked for deletion and such a scenario will not

be considered in the future. The sparse dynamic programming technique has been applied

in many problems that are related with RNA structure analysis, including RNA structure

folding, co-folding, and RNA-RNA interaction. In this work, our goal is to incorporate

the sparse dynamic programming technique into RNA structure alignment algorithm. By

careful redesign of the algorithm and the incorporation of a new online pruning technique,

the resulting new algorithm ERA is capable of speeding up the RNA structure alignment

by approximately 5 - 100 fold, with an average speedup of 10 fold. Meanwhile, benchmark

results show that the alignment quality of ERA is as good as the one with a guaranteed

optimal solution. The details of the algorithm design and benchmark experiments will be

discussed in Chapter 6.

1.6 Overview of the Dissertation

In summary, we have developed a suite of computational methods for the central problems

of RNA structure analysis and functional inference: the alignments and classification of

the RNA structures. We have developed computational methods to analyze both 3D RNA

structural motifs and general RNA secondary structures. We have also developed a clustering

pipeline that integrates our alignment tool for de novo RNA structural motif discovery and

genome-wide RNA secondary structure survey. Specifically, Chapters 2 - 6 of this dissertation

will be dedicated to the discussion of these computational methods. The brief overviews of

these chapters are listed as follows.
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In Chapter 2, we will describe RNAMotifScan, an alignment algorithm to compare 3D RNA

structural motifs using the comparison of their base-pairing patterns which include non-

canonical base pairs and their isostericty. Chapter 2, in part, is a reprint of the article,

‘RNAMotifScan: Automatic Identification of RNA Structural Motifs using Secondary Struc-

tural Alignment’, co-authored with Haixu Tang and Shaojie Zhang in Nucleic Acids Research,

38 (18), pp 1−11.

In Chapter 3, we will describe RNAMotifScanX, an improved version of RNAMotifScan due

to its consideration of the base-stacking information and its new branch-and-bound algo-

rithm that is able to handle crossing base interactions. Chapter 3, in part, is a reprint of

the manuscript, ‘RNA structural motif identification through incorporating base-stacking

information’, co-authored with Shaojie Zhang.

In Chapter 4, we will describe RNAMSC, a clustering pipeline for analyzing RNA structural

motifs based on the motif alignment tool RNAMotifScan. We will also present its application

to clustering RNA structural motifs from ribosomal RNAs. Chapter 4, in part, is a reprint of

the article, ‘Clustering RNA structural motifs in ribosomal RNAs using secondary structural

alignment’, co-authored with Shaojie Zhang in Nucleic Acids Research, 40 (3), pp 1307−1317.

In Chapter 5, we will describe CLCL, a clustering pipeline for genome-wide classification

of RNA secondary structures. We will also present its application to the 3’-UTR of the D.

melanogaster genome. Chapter 5, in part, is a reprint of the article, “Discovering non-coding

RNA elements in Drosophila 3’ un-translated regions”, co-authored with Justen Andrews

and Shaojie Zhang in IEEE International Conference on Computational Advances in Bio

and Medical Sciences, 2012, Feb 23−25, Las Vegas, Nevada, USA, 2012, and is also a reprint
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of the manuscript, “Discovering non-coding RNA elements in Drosophila 3’ un-translated

regions”, accepted by BMC Genomics.

In Chapter 6, we will describe ERA, an efficient RNA secondary structure alignment algorithm

developed using a sparse dynamic programming technique. Chapter 6, in part, is a reprint

of the manuscript, ‘Efficient alignment of RNA secondary structures using sparse dynamic

programming’, co-authored with Shaojie Zhang.

All of the computational tools (except the computational pipelines RNAMSC and CLCL, which

are presented descriptively) will be made publicly available at the supporting website upon

the publication of the corresponding manuscripts (http://genome.ucf.edu). We anticipate

that the computational methods developed by us will significantly promote and improve

RNA structural analysis and functional inference in the future.
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CHAPTER 2: SEARCHING RNA STRUCTURAL MOTIFS

USING NON-CANONICAL BASEPAIRS

Non-coding RNAs (ncRNAs) play important functional roles in the biological system, and

recent discoveries point to many of their novel cellular functions [45, 121]. The cellular

functions of the ncRNAs are determined by their specific structures. Unlike DNAs, which

usually exhibit regular double helical structures due to the interactions with the complemen-

tary strands, RNAs are single strand molecules and can fold into irregular three dimensional

(3D) structures. Among the complex structures, there exist many conserved and recurrent

segments whose arrangement, abundance and interaction largely determine the folding be-

haviors and functionalities of the RNA structures. These segments, viewed as the ‘building

blocks’ of RNA architecture, are usually referred to as RNA structural motifs [62, 78, 95].

The identification and analysis of these RNA structural motifs will significantly deepen our

understanding of ncRNA structures and help us to elucidate the structure-function relation-

ship.

In this chapter, we set our focus on developing algorithms to align two RNA structural motif

instances. By using the non-canonical base pairs and their associated isostericty, we develop

a new RNA structural motif alignment and search tool named RNAMotifScan. The new

tool is benchmarked against other three state-of-the-art RNA structural motif identification

tools. The benchmark results clearly show the improvements of RNAMotifScan in terms of

both accuracy and sensitivity.
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2.1 Novel Modeling Method of RNA Structural Motif

The common approach for RNA structural motif identification is to represent the RNA

structural motifs by different 3D properties (i.e., torsion angles or atomic distances) of the key

nucleotides and then apply heuristics to searching for the topological occurrences of the motif

in the 3D RNA structures (similar to the methods for 3D protein structure comparison [3]).

Computer program, such as PRIMOS [44] and COMPADRES [136], represents and searches certain

backbone conformations using pseudotorsion angles. On the other hand, NASSAM encodes the

3D motif by using a graph to store pairwise atomic distances between key nucleotides [59].

To reduce the information contained in pairwise atomic distances, ARTS builds approximated

anchors based on a set of seed points before detailed matching [42]. Recent progress uses

shape histograms, which are also computed from pairwise atomic distances, to summarize the

structural motifs [6]. This method has identified the occurrences of many structural motifs in

ribosomal RNAs [112]. Instead of considering solely torsion angles or atomic distances, FR3D,

which searches for recurrent motifs considering a combination of geometric, symbolic, and

sequence information, achieves the most satisfying performance [113]. Although the existing

methods have successfully identified many occurrences of several known RNA structural

motifs, most of them require the accurate 3D coordinates of the query motif, and thus

are limited to structural motifs with rigid 3D topologies. However, it is known that many

motifs exhibit certain structural variation and thus cannot be well characterized by their 3D

topologies [83]. Therefore, the more conserved base-pairing pattern should be considered

when searching for RNA structural motifs [87, 101].

It was observed that many non-canonical base-pairs in RNA structural motifs are isosteric

and these base-pairs can interchange with each other without affecting the overall RNA
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structure [80]. Generally, a base-pair should have three properties: (a) the two nucleotides

interacting through hydrogen bonds; (b) nucleotide edges participating in the interaction;

and (c) the relative orientation of the glycosidic bonds which is either ‘cis ’ or ‘trans ’. Each

nucleotide has three edges that can interact with another nucleotide to form a base-pair,

namely the Watson-Crick edge (denoted as ‘WC’ edge), Hoogsteen edge (denoted as ‘H’

edge) and Sugar edge (denoted as ‘SE’ edge). Given the three properties, it is sufficient

to classify all base-pairs into one of the isosteric groups [80]. Modeling RNA structural

motifs through non-canonical base-pairs is theoretically sound and can largely reduce the

complexity of 3D RNA motifs. First, the definition of isostericity serves as the foundation

of relating tertiary structure with non-canonical base-pairs. Second, some motifs are defined

by their characterized non-canonical base-pairing patterns, instead of their 3D structures.

Finally, modeling RNA structural motifs by their base-pairing pattern is easier to understand

comparing to by their atomic coordinates.

C G

G C

GA

G A

G A

G C

5’ 3’

3’ 5’

G

A
A

G G G A G C G C G A A G A A C G C G A A G A A C G G G A G C

(a) (c)(b) (d)

Figure 2.1: Three different representations of the kink-turn motif. (a) 3D structure. (b) 2D diagram for

base-pairing patterns (notation is the same as proposed in [82]). (c) and (d) Arc representations built by

concatenating the two strands of the motif with two different orders. For (c) and (d), the arcs rest above

on the horizontal line represents the base-pairs that are optimally aligned in the first step, while the arcs

below are processed in the second step. The motif is from a 23S rRNA in H. marismortui (1S72, chain ‘0’,

location 77-82/92-100).
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Djelloul and Denise [37] modeled the RNA structural motifs through graph representation of

these non-canonical base-pairs. They extracted structural segments containing non-canonical

base-pairs from the annotated RNA 3D structure. By constructing clusters through the

measurement of pairwise maximum isomorphic base-pairing cores, they characterized the

recurrent base-pairing patterns among these structural segments. This method has led to

the rediscovery of many structural motifs, which shows the potential power of utilization of

non-canonical base-pairs in modeling RNA structural motifs. However, this method is not

optimized for structural motif identification, for the isomorphic condition is not suitable to

identify the motifs that exhibit variations in non-canonical base-pairs.

Therefore, well developed algorithms for comparing the non-canonical base-pair patterns

between two RNA tertiary structural segments are in urgent demand. However, most existing

methods model and compare RNA structures only through canonical base-pairs. In a typical

approach, free energy values are assigned to the canonical base-pairs, and secondary structure

with minimum free energy are computed to model the structure [64, 128, 139, 154, 155].

Comparative genomics approaches aim at the identification of consensus canonical base-pairs

from a set of synthetic genomic sequences of multiple species that are previously aligned [102,

137] or even unaligned [10, 21, 34, 55]. The RNA homolog search approaches attempt

to find genome sequences that match a query RNA in sequence and a model secondary

structure annotated with canonical base-pairs [76, 149, 150]. RNA canonical base-pairs are

also modeled into tree structures, and the edit distance between two tree structures is then

computed [63, 68]. Recently, variants of Sankoff’s algorithm [111] are also used to compare

the canonical base-pairs between two RNA structures [129, 142].

These computational methods can be extended to comparing RNA structures with non-

canonical base-pairs. We need to address the following issues raised by the inclusion of
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non-canonical base-pairs. Most importantly, the similarity between two non-canonical base-

pairs should be measured. The reason is that canonical base-pairs can interchange with each

other while maintaining the tertiary structure, but such possibility is not guaranteed for

non-canonical base-pairs as defined in the isosteric matrices. In addition, canonical base-

pairs are usually nested stacked in forming the A-form helical regions, while RNA structural

motifs usually include many multi-pairings (interactions involves more than two nucleotide

residues, i.e base-triples) and pseudoknots (crossing base-pairs), see Figure 2.3. Therefore,

non-canonical base-pairs, multi-pairing and crossing base-pairs must be handled in order to

properly compare the structural motifs.

2.2 Materials and Methods

The query RNA structural motif base-pairing patterns are adopted from related publica-

tions (see Data processing Section). We concatenate two strands of the query RNA motif

into one sequence for the alignment (see Figure 2.1 (c) and (d), there are two ways to con-

catenate the query and both are searched against the target). For the target RNA segments,

we first use annotation software (see Data processing Section) to translate the RNA 3D

coordinates into base-pair patterns that contain sufficient information for isosteric group

classification (i.e. pairing nucleotides, interacting edges, and relative glycosidic bond ori-

entations). We then cut the annotated target RNA structure into many local (interactions

within two strands, long range interactions are ignored) RNA structural segments. Similarly,

we concatenate two strands of the target RNA structural segments into one sequence. To

identify RNA motif instances, we use a dynamic programming procedure to compute the
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similarity between the query RNA motif and all structural segments in the target RNA and

report the significant hits.

The recursive functions of the alignment procedure need to address three major issues.

First, the isostericity of the base-pairs should be incorporated into the scoring functions

such that only base-pairs belong to the same isosteric group [80] can be matched to each

other. Second, there are many multi-pairings occurring in the RNA structural motif and

the target RNA, which is introduced by one nucleotide simultaneously paired with two or

more other nucleotides. This can be observed since each nucleotide has three edges, thus the

nucleotide is able to participate in at most three base-pairs. We discuss the multi-pairing

issue in the next section for the alignment procedure. Finally, both the query RNA motif

and the target RNA segments may contain crossing base-pairs.

We divide the alignment into two steps. We first align non-crossing base-pairs in the query.

(Crossing base-pairs in query are removed temporarily and processed in the second step,

while the crossing base-pairs in target structure are retained.) We then try to reinsert

the removed crossing base-pairs based on the resulting alignment. Note that we select the

minimum number of base-pairs to be matched in the second step so that most of the base-

pairs can be aligned optimally in the first step. Because the structural motifs are likely to

be well represented by its major part of nested base-pairs, which are matched optimally, it

should work in most practical cases. Also, users can select the base-pairs to form the query

motif for the first step searching.
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2.2.1 Base-pairing Relations in RNA Structural Motifs

Multi-pairings are not only frequently occurred, but also important in forming the RNA

structural motifs. Here we formally define the classifications and relations of base-parings

including multi-pairings. We denote the indices of the left and right nucleotides of a base-pair

P as Pl, Pr. Generally, two base-pairs PA and PA′
may have one of the following relations:

(1) PA and PA′
are interleaving; (2) PA′

is enclosed with PA (denoted by PA′
<I PA); (3)

PA′
is juxtapose to PA and before PA (denoted by PA′

<p P
A). Specifically, RNA structural

motifs may contain multi-pairings. To handle these situations, we need to redefine the above

definition. We extend the enclosing relation (<I) to three subgroups (see Figure 2.2 (c)):

PA′
<I1 PA (PA

l < PA′

l < PA′
r < PA

r ), PA′
<I2 PA (PA

l = PA′

l < PA′
r < PA

r ) and

PA′
<I3 PA (PA

l < PA′

l < PA′
r = PA

r ). We also extend the juxtaposing relation (<p) to

two subgroups (see Figure 2.2 (d)): PA′
<p1 PA (PA′

l < PA′
r < PA

l < PA
r ) and PA′

<p2

PA (PA′

l < PA′
r = PA

l < PA
r ).

2.2.2 Aligning two RNA Structural Motifs

We can use a dynamic programming algorithm to compute an optimal alignment between two

RNA structural segments [10]. There are three major contributions in this algorithm. First,

the dynamic programming algorithm is guided by the partial order base-pairs. Second, we

consider non-canonical base-pairs and their isostericity. Finally, we also allow non-crossing

multi-pairings for the query and target structure.
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Figure 2.2: An artificial RNA structural motif containing all base-pairing relations including multi-pairing.

(a) The base-pairing pattern of the motif. (b) The arc representation of the motif. (c) Base-pairs relation

subgroups in the motif belong to enclosing relation. (d) Base-pairs relation subgroups in the motif belong

to the juxtaposing relation.

Given an RNA structural motif A and a target RNA structural segment B with concate-

nated strands and m and n base-pairs respectively. Dummy base-pairs were added be-

tween nucleotides A[0] and A[|A| + 1] and between nucleotides B[0] and B[|B| + 1]. Let

PA = PA
1 , PA

2 , ..., PA
m and PB = PB

1 , PB
2 , ..., PB

n denote the two sets of base-pairs, ordered

according to increasing values of the right-most base. Define the following terms:

1. Seq(PA): The two nucleotides that form the base-pair PA, given by A[PA
l ] and A[PA

r ].

2. Loop(PA): The sub-sequence covered by the two nucleotides of the base-pair PA ex-

cluding the two nucleotides themselves. In other words, the sequence A[PA
l +1 . . . PA

r −

1].

3. Loop(PA, PA′
): The term is defined if and only if PA′

is completely juxtaposing to the

left of PA, as the loop region corresponding to A[PA′
r + 1 . . . PA

l − 1].
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The score of the optimal alignment between two RNA sequences consists of three parts: the

score of matching base-pairs, the score of matching paired bases, and the score of matching

unpaired subsequences (including gaps). These scores are assigned with different weights (w1,

w2 and w3, respectively) to distinguish the importance of them in building an RNA motif.

Define the following terms:

1. I(PA, PB): The matching score between two base-pairs PA and PB. The score is

evaluated by the isostericity between two PA and PB. Base-pairs within the same

isostericity group are considered to have similar structural contribution to the motifs,

and their matching is given higher bonus score. Non-isosteric matching is also allowed,

but with less bonus score.

2. S(A[i...j], B[k...l]): The matching score between two subsequences A[i...j] and B[k...l].

The score is evaluated through the optimal global alignment between the two subse-

quences.

3. Gap(k): The gap penalty of inserting/deleting a sequence of length k.

4. M [PA, PB]: The score of the optimal alignment of the regions enclosed by base-pairs

PA and PB, given that PA and PB are aligned to each other. Entry M [PA
m , PB

n ] records

the score of the optimal alignment between two structures A and B.

All the weights and scores defined above are fixed for all searches conducted in this work.

We can compute M [PA, PB] for all pairs in PA×PB, which would take O(m2n2) time, where

m and n are the number of base-pairs in A and B, respectively. While many RNA structural

alignment algorithms have biquadratic time complexity in terms of sequence length, our
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algorithm is relatively efficient since the number of base-pairs in an RNA structure is much

smaller than its length in sequence. In computing M [PA, PB], we have two choices for

matching the subsequences inside PA and PB, as they could either form consensus hairpin

loops (the terminal case) or there are base-pairs to be matched inside (nested base-pairs,

internal loop, or multi-loop). Therefore,

M [PA, PB] = Ms[P
A, PB] + max

 Mh[P
A, PB],

Ml[P
A, PB].

(2.1)

Here, Ms[P
A, PB] is the score of matching base-pairs PA and PB based on both structure

isostericity and sequence conservation, and thus can be computed by:

Ms[P
A, PB] = w1I

 PA,

PB

+ w2S

 Seq(PA),

Seq(PB)

 . (2.2)

Mh[P
A, PB] is the score of matching the loop regions of PA and PB, assuming that no

consensus base-pair is included by PA and PB. (For example, these regions form matched

hairpin loops.) It can be computed by:

Mh[P
A, PB] = w3S

 Loop(PA),

Loop(PB)

 . (2.3)

For the nested base-pairs, internal loop, or multi-loop case, we need to define some addi-

tional terms. A sequence of base-pairs P1, P2, . . . , Pk form a chain if P1 <p P2 <p . . . <p Pk.

Ml[P
A, PB] represents the matching score between PA, and PB, given that there is a pair

of chains included by PA and PB which form the loop. Let PA
1 , PA

2 , . . . ( PB
1 , PB

2 , . . ., re-

spectively) denote base-pairs enclosed by PA (PB, respectively), and ordered according to
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increasing values of the last coordinate. For two base-pairs PA′
, PA that PA′

<I PA,

Loop(PA) is separated into three major regions: left region, Loop(PA′
) and right region.

We denote the left region as LoopL(PA, PA′
) (A[PA

l +1 . . . PA′

l − 1]) and the right region as

LoopR(PA, PA′
) (A[PA′

r + 1 . . . PA
r − 1]). Then, we will have

Ml[P
A, PB] = max

i,j

Mc[P
A
i , PB

j ] + w3S

 LoopR(PA
i , PA),

LoopR(PB
j , PB)


 . (2.4)

To enforce the matched base-pairs have the same multi-pairing pattern, we must ensure that

PA
i and PA, PB

j and PB are in the same enclosing subgroup (<I1 , <I2 , or <I3 , see Figure 2).

Here, Mc[P
A
i , PB

j ] is defined as the score of two chains of the optimal matching configurations

that end at PA
i , and PB

j , and begin at some PA
i′ <p P

A
i , and PB

j′ <p P
B
j . Denote PA

i1
∈ F (PA

i2
)

if PA
i1
<p P

A
i2

and there is no base-pair PA
j such that PA

i1
<p P

A
j <p P

A
i2
. Then,

Mc[P
A
i , PB

j ] =

max

PA
x ∈ F (PA

i )

PB
y ∈ F (PB

j )



w3S

 LoopL(PA
i , PA),

LoopL(PB
j , PB)

 ,

Mc[P
A
x , PB

y ] +M [PA
i , PB

j ] + w3S

 Loop(PA
x , PA

i ),

Loop(PB
y , PB

j )

 ,

Mc[P
A
i , PB

y ] + w3Gap(|Loop(PB
y , PB

j )|+ |Loop(PB
j )|),

Mc[P
A
x , PB

j ] + w3Gap(|Loop(PA
x , PA

i )|+ |Loop(PA
i )|).

(2.5)

The Gap means the corresponding sequences are matched to nothing (i.e., they are deleted).

Similarly, to enforce the matched base-pairs have the same multi-pairing constraint, we must

ensure that PA
x and PA, PB

y and PB are in the same enclosing subgroup, and PA
x and PA

i ,

PB
y and PB

j are in the same juxtaposing subgroup.
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2.2.3 P -value Computation

To compute the p-value for the probability that an RNA motif hits a random substructure in

the database, we used the non-parametric Chebyshev’s inequality. In future research, we will

optimize these parameters by fitting the distribution of the overall alignment scores between

pairs of RNA structures into a Gumbel-like distribution to get more accurate p-value. To

obtain the mean and variance, the query is aligned against the background segments, which

are generated by randomly picking base-pairs from real RNA structures while maintaining

the similar GC content, as well as frequencies of the interacting edges and glycosidic bonds

orientations. We applied this approach on Kink-turn motif, and observed Gumbel’s distri-

bution of the alignment scores (see supplementary website). Since each motif has its own

base-pairing patterns and degree of tolerance against base-pair variations, we suggest differ-

ent p-value cutoffs for different motifs based on tested results (see Table 2.3 for the cutoffs).

Additionally, False Positive Rates (FPR) are computed through simulation and available on

the supplementary website.

2.2.4 Data Processing

Base-pair interactions of all RNA 3D structures from PDB [17] (released on August 2008)

were first annotated by using MC-Annotate [53]. RNAVIEW [147] generates similar results

based on our experiments, and RNAMotifScan provides interfaces for both annotation tools.

After annotation, 1445 RNA structures were generated from PDB (including incomplete

RNA chains in the raw PDB file). Five RNA structural motifs were used as queries to
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test our method: the Kink-turn, C-loop, Sarcin-ricin, Reverse Kink-turn and E-loop motifs.

Because they are well characterized, documented and important for many RNA folding

behaviors or functionalities. The query base-pairing patterns for these motifs come from the

following references: Kink-turn [84], C-loop [83], Sarcin-ricin [79], Reverse Kink-turn [78] and

E-loop [83]. The two dimensional (2D) diagrams for query base-pairing patterns of these

motifs are shown in Figure 2.3. RNAMotifScan was implemented in ANSI C. All experiments

were carried out on an Intel Xeon 2.66GHz workstation. The tertiary structure figures were

generated using PyMol (http://www.pymol.org).
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Figure 2.3: Base-pairing patterns of the query motif structures in 2D diagrams. (a) Kink-turn motif. (b)

C-loop motif. (c) Sarcin-ricin motif (d) Reverse Kink-turn motif. (e) E-loop motif query structures.

2.3 Results

To assess the performance of RNAMotifScan, we searched the five RNA motifs against a 23S

rRNA structure from H. marismortui (1S72, resolution 2.40 Å). We compared our results

with three latest methods: FR3D [113], a de novo clustering method developed by Djelloul

and Denise [37], and the shape histogram method developed by Apostolico et.al [6]. Since

the clustering method mainly aims at the de novo motif discovery, the method may miss

27



some true instances. We also used RNAMotifScan to search the five motifs against the entire

PDB for new motif occurrences.

2.3.1 Kink-turn

The Kink-turn motif is an asymmetric internal loop serving as an important site for protein

recognition and RNA tertiary interactions [75, 135]. The ‘kink’ can be observed in the longer

strand of the loop, which is stabilized by the two cross-strand stacking adenine residues. It

brings together the two minor groove edges, and, consequently, produces a sharp turn of the

two supporting helices [83, 84].

RNAMotifScan has identified 6 local motifs (motifs involve 2 or less strands) following by 1

composite motif (motifs involve 3 or more strands) from 1S72 (see Table 4.1). FR3D finds all

these 7 motifs but introducing several ‘related motifs’ using the same query (see Table 5 of

FR3D results [113]). FR3D also retrieves 2 more composite motifs. (The reason is that FR3D

produces target segment structure based on spacial frame instead of sequence order.) The

current version of RNAMotifScan does not focus on identifying composite motifs, but this

feature can be included in the future (see Discussion Section). The shape histogram method

finds all the 6 local motifs, but missing all the composite motifs. The de novo clustering

method successfully rediscovers the motif, however, it misses 4 out of the 6 local motifs and

all composite motifs. The results suggest that RNAMotifScan has higher sensitivity than

shape histogram method and de novo clustering method in identifying Kink-turn motifs.
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Table 2.1: Top hits obtained by searching the five motifs against 1S72 using RNAMotifScan

Ranking Chain Location Score p-value FR3D
de novo

Clustering
Shape

Histogram

KT
1 0 77-82/92-100 70.2 0.009 * * *
2 0 1211-1217/1146-1156 62.1 0.014 * *
3 0 936-941/1025-1034 55.8 0.022 * * *
4 0 1338-1343/1311-1319 54.7 0.024 * *
5 0 1586-1593/1601-1609 45.4 0.062 (*) *
6 0 244-250/259-267 44.4 0.072 (*) *
7 0 2903-2906/2845-2855 43.8 0.078 (*)

CL
1 0 1436-1440/1424-1430 40.9 0.033 - * -
2 0 2760-2764/2716-2722 39.1 0.041 - * -
3 0 1939-1945/1892-1898 38.4 0.044 - -
4 0 1004-1009/957-964 34.4 0.081 - -

SR
1 0 211-215/225-228 42.8 0.007 * * -
2 0 1368-1372/2053-2056 42.8 0.007 * * -
3 0 2690-2694/2701-2704 42.8 0.007 * * -
4 9 76-80/102-105 42.0 0.007 * -
5 0 461-466/475-478 37.5 0.010 * * -
6 0 380-383/406-408 34.4 0.013 * -
7 0 951-955/1012-1016 33.4 0.015 -

8 0 173-177/159-162 29.8 0.022 * * -
9 0 2090-2094/2651-2654 26.2 0.037 -
10 0 1775-1779/1765-1768 25.5 0.042 -
11 0 1542-1545/1640-1643 21.0 0.117 -
12 0 585-590/568-572 20.8 0.126 * -
13 0 355-360/292-296 20.8 0.126 * -

RK
1 0 1661-1666/1520-1530 48.6 0.114 - * -
2 0 1530-1536/1649-1661 46.8 0.145 - * -

EL
1 0 706-708/720-722 21.2 0.052 - *
2 0 1543-1545/1640-1642 20.6 0.061 - *
3 0 174-177/159-161 18.7 0.098 - *
4 0 663-666/680-683 18.6 0.100 -

5 0 586-590/568-571 18.0 0.120 - *
6 0 356-360/292-295 18.0 0.120 - *
7 0 2691-2694/2701-2703 17.8 0.130 - *
8 0 1369-1372/2053-2055 17.8 0.130 - *
9 0 463-466/475-477 17.8 0.130 - *
10 0 380-383/406-408 17.8 0.130 - *

KT: kink-turn, CL: C-loop, SR: sarcin-ricin, RK: reverse kink-turn, EL: E-loop. Symbol notations: ‘*’:

identified; ‘(*)’: identified after other related instances; ‘-’: not studied. Bold typeface: bona fide motifs.

Underlined: de novo found by RNAMotifScan.
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2.3.2 C-loop

The C-loop motif is an RNA-protein binding site, and characterized by the unique multi-

pairings formed by its two cytosine residues [83]. The two interleaving non-canonical base-

pairs from the two multi-pairings bring together the interacting nucleotides, leaving the

unpaired adenine residue at the minor groove and fully accessible [130].

RNAMotifScan has identified 3 C-loop motifs in 1S72 (see Table 4.1). The de novo clustering

method can also classify the first 2 C-loop motifs. (FR3D and shape histogram methods were

not used to search C-loop motifs. Because it is difficult for these 3D structure based meth-

ods to identify motifs that are small and usually exhibit high structural variations, such

as C-loops.) The first 2 C-loop motifs exhibit high conservation comparing to the query

motif (isomorphic as defined in the de novo clustering method), such that they can be easily

detected by de novo clustering method. The 4th C-loop motif (supported by Lescoute et

al. [84]) has one nucleotide inserted between the two multi-paired cytosine residues. There-

fore, it cannot be found by the de novo clustering method but still can be detected by

RNAMotifScan in which insertions (deletions) are taken into account. The results suggest

that RNAMotifScan has higher sensitivity than the de novo clustering method. At the same

time, we expect that our specificity can also be raised by carefully distinguishing the effects

of different variations (see ‘Discussion’ Section).
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2.3.3 Sarcin-ricin

The Sarcin-ricin motif in the ribosomal RNAs is involved in the interaction with elongation

factors [125]. This interaction can be inhibited while the motif is bounded and modified by

ribotoxins such as α-sarcin (ribonuclease) and ricin (RNA N-glycosidase) [118]. The base-

pair pattern is highly conserved in 23S-28S rRNA from large ribosomal subunit, producing

an ‘S’ shape bend in most of the Sarcin-ricin motifs.

RNAMotifScan has identified 9 known Sarcin-ricin motifs, whereas 8 were identified by FR3D

and 6 were classified by de novo clustering method. RNAMotifScan identified 1 new Sarcin-

ricin motif which was also observed by St-Onge et al. [119]. Three other motifs found by

RNAMotifScan rank at low places in the results, showing a satisfactory specificity for our

method (see Table 4.1). Even though these instances show higher structural variation from

the query structure, we suggest that they should be further inspected as they show interesting

conservations in base-pairing pattern comparing to the known Sarcin-ricin motifs.

2.3.4 Reverse Kink-turn

The Reverse Kink-turn is also an asymmetric internal loop that produces sharp bend as the

Kink-turn motif, however, towards the opposite direction [78]. Another difference is that

the longer strand of the Kink-turn motif makes a tight bend, while in the Reverse Kink-turn

motif, the tight bend is observed in the shorter strand as the longer strand gradually turns

to the major/deep groove [122].
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Figure 2.4: The superimposition of the new E-loop motif found by RNAMoitfScan (red), a segment of

regular A-form helix (green), and a well characterized E-loop motif (blue). The new E-loop is found at

1S72, chain ‘0’, 662-669/677-684, the A-form helix is found at 1S72, chain ‘0’, 13-20/523-530, and the

well-characterized E-loop motif is found at 1S72, chain ‘0’, 1639-1646/1539-1546. The RMSD resulting from

superimposing the new motif (red) and the model (blue) is 2.496Å; while the RMSD for superimposing the

regular A-form helix (green) and the model (blue) is 4.807Å.
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The de novo clustering method suggests 6 Reverse Kink-turn occurrences. (FR3D and shape

histogram method were not used to search Reverse Kink-turn motifs either.) We noticed

that 3 of these 6 motifs given by clustering are false positives (2397-2399/2389-2391, 2307-

2310/2298-2300 and 1132-1134/1228-1230), as they either come from the irregular pairing

regions near hairpin loop regions instead of being the junction regions between two helical

regions, or do not produce significant sharp turns. RNAMotifScan has identified 2 of the

3 true Reverse Kink-turn motifs (see Table 4.1). The 1 motif missed is due to its higher

structural variation. Even though RNAMotifScan may miss several occurrences, it has much

higher specificity and thus more reliable is practical applications.

2.3.5 E-loop

The E-loop was originally defined as the symmetric internal loop region in the 5S rRNA

that separates its helical regions IV and V [28, 81]. The motif can be decomposed into two

isosteric submotifs, which are positioned with relative 180◦ rotation [79, 81]. The submotif

is usually referred to as ‘bacterial E-loop’, and its base-pair pattern was summarized as a

trans H/SE base-pair, a trans WC/H or trans SE/H base-pair, and a cis bifurcated or trans

SE/H base-pair by Leontis et al. [79]. Since the isostericity related with bifurcated base-pair

is not defined, we consider only the trans SE/H as the third base-pair in the query.

There are 2 E-loop motifs classified by de novo clustering method and 8 identified by shape

histogram method. The two sets of results show no overlap and the union of them gives

totally 10 E-loop motifs. RNAMotifScan has successfully identified 9 of them (see Table 4.1),

and 1 new E-loop occurrence. This new E-loop occurrence, as well as a segment of regular
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A-form helix, are superimposed with a well characterized E-loop motif (see Figure 2.4). The

superimposition of the new E-loop instance results much smaller RMSD than the superim-

position of the A-form helix, indicating that this E-loop occurrence cannot be expected to

find randomly. RNAMotifScan has missed 1 E-loop motif that has both high sequence and

base-pair variations. Note that E-loop motifs can tolerate higher variations comparing to

other motifs. (They were clustered into 3 families using the de novo clustering method [37].)

Therefore, the results generated by searching only one of its variants could be limited. How-

ever, RNAMotifScan outperforms both methods when given only one query, and the E-loop

identification can be further optimized by including other variants of E-loop motifs as query.
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Figure 2.5: The 2D diagrams and 3D structures of newly identified motifs with sequence or base-pair

variations. (a) Kink-turn motif from 23S rRNA in H. marismortui (PDBid: 1QVF, chain ‘0’, location

936-941/1025-1034). (b) C-loop motif from 5.8S/28S rRNA in S. cerevisiae (PDBid: 1S1I, chain 3, location

1436-1440/1424-1430). (c) Sarcin-ricin motif from 16S rRNA in E. coli (PDBid: 1VS7, chain A, location

888-892/906-909). (d) Reverse Kink-turn motif from 23S rRNA in H. marismortui (PDBid: 1QVF, chain

‘0’, location 1661-1666/1520-1530). (e) E-loop motif from 23S rRNA in S. oleracea (PDBid: 3BBO, chain

A, location 1392-1394/1379-1381).
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2.3.6 3D Resolution Affects Identification Accuracy

We observe that the identification results of RNAMotifScan is dependent on the quality of

the annotation program, which turns out to be dependent on the resolution of the 3D RNA

structure. To demonstrate this, we selected three PDB entries with different resolutions

for the same 16S rRNA structure from T. thermophilus (PDBid: 2VQE, 1J5E, and 1I95),

and used RNAMotifScan to identify the five motifs in them. Only hits with p-value less

than the defined cutoffs (see Table 2.3) are counted. Since the RNA structure from 2VQE

contains three RNA chains while the other two structures contain only one RNA chain,

we only consider their common RNA chain (chain A in the comparison). The results are

shown in Table 2.2. In the table we can find that MC-Annotate tends to annotate fewer

base-pairs in the low resolution RNA structures. Among those missed base-pairs, most of

them are non-canonical base-pairs, which are critical for the structural motif identification.

Even if the numbers of annotated base-pairs are comparable for two structures with different

resolutions, their qualities differ. For example, 2VQE and 1J5E have almost the same number

of annotated base-pairs, but one kink-turn that can be identified in 2VQE is missed in 1J5E.

2.3.7 Scanning PDB

Finally, we searched the entire PDB for the five query motifs. The running time for scanning

PDB is 64m35s for Kink-turn, 74m29s for C-loop, 51m49s for sarcin-ricin, 77m59s for Reverse

Kink-turn and 72m55s for E-loop motif. The results are summarized in Table 2.3. The motifs

identified by RNAMotifScan are several times more than the current known instances (p-value
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cutoffs are shown in Table 2.3, the estimated FPR is less than 0.01). Still, we expect the

numbers are underestimated since our cutoffs are set to be rather stringent. Although the

large difference between the identified motifs and the currently known ones may due to the

fast growing of RNA structures deposited in PDB, we still find new RNA motif occurrences

in non-ribosomal RNAs, such as riboswitches, ribozymes, and protein-mRNA complexes.

The complete results can be found at the supplementary website.

Table 2.2: The performance of RNAMotifScan with different resolutions of RNA structures

PDB ID Resolution Length #bp #Can. #Non-can. #KT #CL #SR #RK #EL

2VQE 2.50Å 1522 766 433 333 3 0 2 0 6
1J5E 3.05Å 1522 761 434 327 2 0 2 0 6
1I95 4.50Å 1514 699 422 277 1 0 0 0 3

The columns in the tables represent PDB codes of the RNA structures, the resolution, the length, the num-

ber of base-pairs (bp) annotated by MC-Annotate, the number of annotated canonical base-pairs (Can.),

the number of annotated non-canonical base-pairs (Non-can.), the number of Kink-turn (KT), C-loop (CL),

Sarcin-ricin (SR), Reverse Kink-turn (RK) and E-loop (EL) being identified. All structures are T. ther-

mophilus 16S rRNA structures. The p-value cutoffs are the same as those shown in Table 2.3.

Table 2.3: Summary of the RNAMotifScan search results against the entire PDB comparing with SCOR

Motif p-value cutoff PDB NR PDB SCOR

Kink-turn 0.07 553 39 195
C-loop 0.04 167 18 -
Sarcin-ricin 0.02 633 46 107
Reverse Kink-turn 0.14 56 3 -
E-loop 0.13 1356 148 37

C-loop and Reverse Kink-turn are not included in SCOR. Motifs characterized in SCOR were from the entire

PDB released by Oct. 24, 2004. The non-redundant set (NR PDB) is constructed by removing entries with

sequence identities greater than 90%.

To demonstrate the advantages of RNAMotifScan, we compared five query motifs (Figure 2.3)

with five different newly identified motifs (Figure 2.5). For C-loop motif, we observed that

the sequence identity is 66% between the C-loop query (Figure 2.3 (b)) and the new iden-

tified C-loop motif (Figure 2.5 (b)), which sequence-based search methods may miss. The
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Sarcin-ricin motif (Figure 2.3 (c)) and the E-loop motif (Figure 2.3 (e)) consist of all non-

canonical base-pairs, such that they cannot be searched by methods that are restricted to

canonical base-pairs. The newly identified Sarcin-ricin motif and E-loop motifs also have

three isosteric base-pair changes (Figure 2.5 (c) and (e)). The newly identified Kink-turn

motif (Figure 2.5 (a)) shows two base-pair variations (trans SE-H to cis SE-SE, and trans

SE-H to cis WC-WC), which would be missed by the strict base-pair graph isomorphism

search. More importantly, we found that the newly identified Kink-turn (Figure 2.5 (a))

and Reverse Kink-turn motifs (Figure 2.5 (d)) show structural variations comparing to the

query motifs. One nucleotide is inserted at the ‘kink’ region of the newly identified Kink-

turn motif, resulting an ‘U’ shape ‘kink’ rather than the ‘V’ shape ‘kink’ in the query (see

Figure 2.6 (a)). For the newly identified Reverse Kink-turn motif, the structural variation

is observed at the longer strand of its junction between two helices. Two nucleotides are

inserted at this region, relaxing the turn significantly (Figure 2.5 (d)). At the same time,

a sharp bend is created at this region (see Figure 2.6 (b)), in order to accommodate the

insertions and maintain the proper structure of the motif.

2.4 Discussion

The base-pairs from the RNA 3D structures are extracted and classified by various annotation

tools. The annotations of base-pairs are produced based on the geometric constraints among

atoms involving the hydrogen bond interactions. In another word, the accurate coordinates

of atoms are critical for the classification of base-pairs. Therefore, the quality of annotation

results, and consequently the accuracy of RNAMotifScan, depends largely on the resolution

of the RNA 3D structure (see Table 2.2). We anticipate that with the advances of RNA
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structure determination techniques, more and more high quality data can be produced and

the RNA motif identification can be more reliable.

(a) (b)

Figure 2.6: The Superimposition between the newly identified motifs (red) and the queries (blue) at the

regions where nucleotide insertion(s) are observed. (a) The ‘kink’ regions in Kink-turn motifs (red structure:

1QVF, chain ‘0’, 1027-1031; blue structure: 1S72, chain ‘0’, 94-97). (b) The longer strands at the junctions

between helices in Reverse Kink-turn motif (red structure: 1QVF, chain ‘0’, 1522-1526; blue structure:

1ZZN, chain B, 198-200).

It is mentioned that FR3D is capable of discovering composite motifs while RNAMotifScan

mainly focuses on local motifs. However, RNAMotifScan can be easily extended to include

RNA composite motifs. If the motif consists of n strands, there are in total n! combinations

of orders that these strands can be concatenated. Theoretically, it is possible to include

any number of strands with the compensation of running time. In practice, there is only

a small number of strands in RNA structural motifs. Therefore, it is feasible to enumerate

all possible strand concatenations. We plan to include this feature in the future versions of

RNAMotifScan.

Currently, RNAMotifScan uses a scoring function that does not distinguish substitutions

between different isosteric groups. Recently, Stombaugh et al. studied the frequencies of

non-canonical base-pair substitution among different isosteric groups and proposed a more
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sophisticated scoring function [120]. We plan to incorporate such scoring function into our

method. Moreover, the scoring function should also be position dependent (similar as the

Position Specific Scoring Matrix). For example, the determination of C-loop motif relies

on the two multi-paired cytosine residues. We should assign heavy penalty to the muta-

tions on these nucleotides. Similarly, for E-loop motifs, we should give heavy weight to the

conserved trans H/SE base-pair according to the E-loop motif definition. With the incorpo-

ration of more sophisticated base-pair substitution scoring function and position dependent

weights, we anticipate that RNAMotifScan will become much more accurate in identifying

RNA structural motifs.
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CHAPTER 3: SEARCHING RNA STRUCTURAL MOTIFS BY

ADDING BASE-STACKING INFORMATION

In Chapter 2, we have described RNAMotifScan, a new RNA structural motif alignment tool

based on the non-canonical base-pairing patterns of the motifs. Although this work is of

great success compared to the current state-of-the-art RNA structural motif identification

tools, improvements can still be expected to further increase its accuracy. In this chap-

ter, we will discuss RNAMotifScanX, an enhanced version of RNAMotifScan by incorporating

base-stacking information, which is extremely important for the folding of RNA structures.

Benchmark experiments between RNAMotifScanX and RNAMotifScan clearly show the im-

provement of RNAMotifScanX in both accuracy and sensitivity.

One should note that, however, RNAMotifScanX cannot fully replace RNAMotifScan. This is

because RNAMotifScanX is developed using a graph alignment algorithm, which requires ex-

ponential time to run. In this case, when computational efficiency is of high importance (such

as searching the entire PDB or clustering a large number of motif instances), RNAMotifScan

should be used. On the other hand, when the detailed analysis of one or several RNA struc-

tures is the major purpose, we recommend RNAMotifScanX for its improved accuracy and

sensitivity.
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Figure 3.1: An example showing that base-stacking information can distinguish structure-conserved mu-

tations from other mutations. Structure components from 1S72, chain ‘0’, (a) 79-80/97-98 (a real kink-turn

motif instance), (b) 2905-2906/2851-2853 (a real motif instance with non-isosteric base-pair variation), and

(c) 48-49/112-114 (a unrelated motif instance). Left panels: base-interaction patterns of the structure compo-

nents. Nomenclature for base pairs follows Leontis et al. [82] and for base-stacking interactions follows Major

et al. [89]. Middle panels: the 3D structure of the structure components. The two stacking nucleotides (or

the corresponding nucleotides in (c)) are colored. Right panels: the trajectories of the right-hand side strands

of the structure components. The backbone trajectories of (a) and (b) are similar, as they share conserved

base-stacking interactions.
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3.1 Intuition of Incorporating Base-stacking Information

Different RNA structural motif search tools model RNA structural motif from different

perspectives, and tools developed based on 3D geometry and base-pairing pattern have their

own advantages and limitations. The 3D geometry-based methods are highly specific, as the

conserved 3D geometry is a direct and strong indication of true motif occurrence. On the

other hand, the base-pairing pattern-based methods are highly sensitive, because of its more

flexible modeling of RNA structural motif that takes into account of the possible structural

variations, or the plasticity [5, 32], of the RNA structural motifs. Tools that consider both

information, e.g. FR3D, usually prioritize one type of these information over the other, for

that it is difficult to simultaneously optimize both of them using a computational approach.

In this case, to improve the RNA structural motif identification accuracy, we may either

relax the 3D geometry information or incorporate additional constraint to the base-pairing

information. The first strategy has been tried out by a number of existing methods, such

as representing a nucleotide with its key atoms [59] or its geometric center [105, 113], or

characterizing the backbone trajectory using the dihedral angles formed between different

key atoms of the nucleotides [42, 44, 49]. Although improvements have been made by using

these means of abstraction, further improvements can still be expected. In this case, we

turn to the second strategy and pose the following question: instead of generalizing the 3D

geometric information, can we find a way to enrich the base-pairing information, so as to

maintain the original high sensitivity and at the same time increase the specificity?

We propose to incorporate the base-stacking [22] information into the original base-pairing

modeling of RNA structural motif for an improved specificity. Contemporary RNA secondary
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structure prediction tools such as Mfold [153, 155] and RNAfold [66] rely on the experimen-

tally determined base-stacking energy parameters [20, 133] to predict the thermodynamically

stable RNA structure(s). Meanwhile, base-stacking interactions are also important when de-

scribing the formation and characteristics of RNA structural motifs [78, 79]. Previously,

Leontis et al. have categorized the non-canonical base pairs into isostericity groups based on

the C1’-C1’ distance of the pairing bases [80, 120]. Similarly, the base-stacking interactions

can also be categorized based on the directions of the normal vectors to the base planes

that are being stacked. Major and Thibault defined four categories of base-stacking inter-

actions, namely upward (>>), downward (<<), inward (><), and outward (<>) [89, 101].

Using the classification of both non-canonical base pairs and base-stacking interactions, we

can estimate the conservation of both base-pairing and base-stacking patterns between RNA

structural motif instances.

We now show a real example to demonstrate the importance of base-stacking information in

RNA structural motif identification. The base-stacking information can provide additional

evidence for structure conservation, while the information regarding sequence and base-

pairing pattern is vague and inadequate. In Figure 3.1 we show a tandem-sheared non-

canonical base-pair core found in the kink-turn motif (Figure 3.1a), as well as two structure

components found in 1S72 with exactly one nucleotide insertion and one base-pair variation

in each (Figure 3.1b and c). The first structure component (Figure 3.1b) contains a base-pair

mutation that changes the original sheared base pair (trans S/H G79-A98 in Figure 3.1a)

into a canonical A2905-U2853 base pair. The corresponding base-pair mutation found in the

second structural component (Figure 3.1c) alters the sheared pair into a trans H/H A48-

A114 pair. Because both structural components contain the same degree of sequence and

base-pair variation, it is difficult to distinguish which one is structurally conserved comparing
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to the true kink-turn motif instance. In fact, RNAMotifScan (discussed in Chapter 2), which

considers the sequence and base-pairing information, favors the second structure component.

This is because the base-pair mutation found in the second structural component is also a

non-canonical base pair, and at the same time it adopts the trans orientation (while the

orientation of the canonical base pair A2905-U853 in Figure 3.1b is cis).

When base-stacking information is considered, we found a conserved base-stacking inter-

action from the true kink-turn motif instance (Figure 3.1a) in the first structural compo-

nent (Figure 3.1b), but not in the second (Figure 3.1c). The conservation of the base-stacking

interaction can be seen from the middle panels in Figure 3.1. In this sense, the first struc-

tural component is more similar to the true kink-turn instance than the second structure

component. Indeed, in Figure 3.1, right panels, we show that the backbone trajectory of

the first structure component is highly similar to the kink-turn instance, while the second

structural component exhibits a large degree of structural variation. In order to preserve the

base-stacking interaction, the right-hand side strands (in the left panels) of both the true

kink-turn instance and the first structural component adopt a slight clockwise bend (see the

right panels), so as to bring together the nucleotides that form the base stacking. In contrast,

without the pressure of forming such base-stacking interaction, the right-hand side strand

of the second structure component adopts a sever anti-clockwise bend, which is completely

different from the true kink-turn motif instance. In fact, the first structural component

is taken from another real kink-turn motif instance with non-isosteric base-pair mutation,

while the second structure component is an unrelated motif instance. This example clearly

shows that the base-stacking information can be used to improve the RNA structure motif

identification accuracy.
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Figure 3.2: Summary of the RNAMotifScanX algorithm shown by aligning two artificial motif instances.

The inputs of the algorithm are two RNA structural motif graphs of the motif instances to be aligned.

The RNA structural motif graph are generated based on the base interaction patterns generated by using

MC-Annotate [53] or RNAVIEW [147]. Step 1: The base interactions in the RNA structural motif graphs

are then sorted based on the increasing order of their starting nucleotide (ties are broken by the decreasing

order of their ending nucleotide). The base interactions in the first motif instance are sorted and labeled in

order as α, β, χ, δ, and those for the second motif instance are labeled in order as I, II, III, IV. Step 2: The

compatibility graph is generated to account for all base-interaction matchings and their compatibility. A

base-interaction matching is represented using a vertex in the compatibility graph. The base-pair matchings

are indicated using rounds and the base-stacking matchings are indicated using triangles. Note that a

base-pairing interaction cannot match with a base-stacking interaction. Step 3: A branch-and-bound

version of the Bron and Kerbosch algorithm [23] is used to traverse all cliques in the compatibility graph

and finds the optimal clique that corresponds to the highest alignment score. Step 4: The optimal clique is

identified, and the corresponding alignment is generated based on such optimal clique.
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The above example shows the importance of base-stacking information in RNA structural

motif modeling and identification. Based on the intuition, we developed RNAMotifScanX,

which considers all sequence similarity, base-pair isostericity, and base-stacking conservation

when identifying RNA structural motifs. Benchmark results on RNAMotifScanX against its

predecessor RNAMotifScan (where base-stacking information is not considered) on five well-

characterized motifs (kink-turn, C-loop, sarcin-ricin, reverse kink-turn, and E-loop) show

significantly improved accuracy. We have also found a novel kink-turn-like motif instance

whose non-canonical helix turns to the opposite direction of its canonical helix. In this case,

we have shown the utility of base-stacking interaction in modeling RNA structural motifs,

and suggest that it should be considered by future motif search tools. We also anticipate

RNAMotifScanX will significantly benefit related RNA structural motif research.

3.2 Materials and Methods

In this section, we will present the core algorithm of RNAMotifScanX and related technical

details. We will first introduce the RNA structural motif graph alignment problem and

discuss how to solve it by reformulating it into a clique finding problem. Then, a branch-and-

bound solution will be presented to find the optimal alignment between the RNA structural

motif instances. The main algorithm behind RNAMotifScanX is summarized in Figure 3.2.

We will then present how base-stacking information is used by RNAMotifScanX, and finally a

new approach to compute P -value with higher efficiency and more realistic universal cutoff

for automatic motif identification.
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3.2.1 Alignment of RNA Structural Motif Graphs

RNA structural motifs are naturally modeled as graphs, where the nucleotides are repre-

sented by the vertices and the base interactions are represented by the edges. We refer to

these graphs as the RNA structural motif graphs. For example, Djellou et al. used graph iso-

morphism algorithm to evaluate the conservation between two RNA structural motif graphs

and implemented the algorithm in their motif clustering method LENCS [37]. However, the

isomorphism algorithm makes the evaluation of nucleotide insertion/deletion and base-pair

substitution in different isosteric [80] groups rather difficult. In addition, the LENCS method

does not consider complete base-stacking information. In this work, our objective is to devise

a graph alignment algorithm that can more accurately compare two RNA structural motif

instances by resolving these issues.

enclosing enclosing with shared
nucleotide (left)

enclosing with shared
nucleotide (right)

juxtaposing justaposing with
shared nucleotide

crossing

Figure 3.3: Six relation categories that can be formed between two base interactions. The horizontal

lines indicate the RNA sequences and the arcs represent the corresponding base interactions. The base

interactions indicated with the solid arcs are ordered before the ones indicated with the broken arcs.

Here we briefly define an alignment between two RNA structural motif instances as a list of

one-to-one correspondence and well-ordered matchings between the two sets of nucleotides

in the instances. By one-to-one correspondence we mean that each nucleotide in a motif

instance can be matched to at most one nucleotide in the other motif instance. And by

well-ordering we mean that the matchings of nucleotides cannot cross with each other (i.e.,
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if the nucleotide i is matched to i′ and the nucleotide j is matched to j′, then i′ < j′ if and

only if i < j). The alignment maximizes an object function, which combines the base-pair

similarity, base-stacking similarity (both adjacent and non-adjacent), and sequence similarity

between the two RNA structural motif instances. The object function can be computed as

follows:

S(MA,MB) =

w1 ∗
∑

i S
BP (pAi , p

B
i ) + w2 ∗

∑
i S

NAT (tAi , t
B
i )+

w3 ∗
∑

i S
AT (t̄Ai , t̄

B
i ) + w4 ∗

∑
i S

SEQ(LA
i , L

B
i ).

(3.1)

Here, SBP is the base-pair similarity between base pairs pA and pB (including the sequence

similarity for the nucleotides that form the base pairs), SNAT is the similarity between non-

adjacent base-stacking interactions tA and tB, and SAT is the similarity between adjacent

base-stacking interactions t̄A and t̄B (we will discuss the handling of base-stacking inter-

actions later), finally SSEQ is the sequence similarity (computed by using the Needleman-

Wunsch algorithm [98]) between the loop regions LA and LB. A loop region is defined as a set

of continuous nucleotides that none of them participates in a base-pairing or a non-adjacent

base-stacking interaction. The associated weights w1 to w4 are used to model the different

impacts made by these structural features in defining the RNA structural motif of interest.

3.2.2 Reformulation of the RNA Structural Motif Alignment Problem into a Clique

Finding Problem

The naive solution to the graph alignment problem is to enumerate all possible matchings

of the vertices in the RNA structural motif graphs, which will likely lead to an inefficient

implementation. To improve the computational efficiency, we observe that the base inter-
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actions in the RNA structural motif graphs can be ordered, and they only form a limited

number of pairwise relations in a given motif graph. These observations are key to the

branch-and-bound algorithm that will be discussed in the next section. We order the base

interactions according to the increasing order (from 5’ to 3’) of their first nucleotides, and

break ties based on the decreasing order of their second nucleotides (see Figure 3.2). Given

such ordering, we can categorize the relation between all pairwise base interactions into six

groups (see Figure 3.3). In Figure 3.3, the base interactions indicated by the solid arcs are

ordered before the interactions indicated by the broken arcs. To ensure a valid alignment, we

claim that (1) the relation group of any aligned base interactions in the first motif instance

must be the same as those in the second motif instance, and (2) the relative ordering of any

aligned base interactions in the first motif instance must be consistent to that in the second

motif instance.

With these two constraints, we can summarize the two input RNA structural motif graphs

into one compatibility graph (Figure 3.2). Each vertex in the compatibility graph represents

a base-interaction matching. Consider that the RNA structural motif A contains |PA| base

pairs and |T A| non-adjacent base-stacking interactions. (|PB| and |T B| are defined accord-

ingly.) The total number of vertices in the compatibility graph is |PA| ∗ |PB|+ |T A| ∗ |T B|.

For example, in Figure 3.2, the first motif instance contains 3 base-pairing and a single

base-stacking interactions, while the second motif instance contains 2 base-pairing and 2

base-stacking interactions. The corresponding compatibility graph thus have 3 * 2 + 1 * 2

= 8 vertices. Two base-interaction matchings are compatible if the two constraints stated

in the previous paragraph are satisfied. In this case, we add an edge between the two cor-

responding vertices. For any valid alignment, all of its base-interaction matchings must be

compatible with each other, which would form a clique (completely connected graph) in the
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compatibility graph. Therefore, finding the optimal alignment between two RNA structural

motif instances is equivalent to identifying the optimal clique in the compatibility graph that

corresponds to the highest alignment score (Equation 3.1).

Previously, Rahrig et al. formulated the RNA 3D structure alignment problem into a maxi-

mum clique finding problem, and implemented its solution into a tool called R3D Align [105].

This algorithm shares the high-level objective with our RNA structural motif graph align-

ment problem, but differs significantly in the following two aspects. First, R3D Align aims

to identify the maximum clique in the local alignment graph to include as many matchings as

possible, while the optimal clique for RNAMotifScanX can be neither maximum nor maximal.

This is because RNAMotifScanX aims to find the local alignment between two RNA structural

motif instances by optimizing a more sophisticated object function (Equation 3.1). For exam-

ple, an isosteric base-pair matching may result in much higher score than several matchings

of non-isosteric or canonical base pairs. In this case, all cliques in the compatibility graph

must be systematically traversed to guarantee optimality. Second, R3D Align implements a

greedy algorithm to find the maximum clique for the sake of computational efficiency, while

RNAMotifScanX adopts a branch-and-bound algorithm that guarantees the global optimal

solution. The branch-and-bound solution is appropriate for aligning RNA structural motifs

for that their sizes are usually small. In this case, RNAMotifScanX is different from R3D

Align in terms of both problem formulation and algorithm design.
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3.2.3 Identification of the Optimal Alignment Clique

Bron and Kerbosch [23] devised an algorithm to enumerate all possible cliques in a given

graph, and we adopt the major idea of this algorithm to find the optimal clique in the

compatibility graph. The algorithm maintains two vertex sets R and C, for holding the

vertices that have already been included in the current clique and the candidate vertices that

will potentially be included in the optimal clique, respectively. Each vertex in the candidate

set C is required to connect with all vertices in the identified set R, so as to fulfill the

complete-connection definition of clique. This constraint avoids unnecessary computations

by only considering vertices in the set C. The algorithm proceeds by picking a vertex in C

and adding it to R, and updating the set C with the complete-connection constraint based

on the updated R. This procedure is recursively executed with the updated sets R and C

until C is exhausted. For each identified clique, we evaluate the corresponding alignment

score using the object function described in Equation 3.1 and record the maximum score

that have achieved so far. The optimal alignment for the two RNA structural motif instance

can be identified after the traversal of all possible cliques.

We devise a branch-and-bound technique to speedup the naive Bron and Kerbosch algorithm.

Observe that for the candidate set C, if k vertices in C are finally added to R, there should

be at least k(k − 1)/2 edges formed by the vertices in C (complete-connection definition of

clique). Conversely, if we simply count how many edges are formed between the candidate

vertices, we will be able to determine the size of the maximal clique for this branch. As we

also know the matching score for all base-interaction matchings (which can be directly looked

up from the scoring matrix), we can compute the corresponding upper bound by assuming

that the high-score base-interaction matchings are taken as parts of the optimal clique. The
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initial lower bound is computed using a heuristic algorithm called CLCL (will be discussed

in Chapter 5) that finds the maximum clique in a graph, and is updated whenever a higher

score is achieved as the algorithm proceeds.
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Figure 3.4: The revised consensus base-interaction patterns used by RNAMotifScanX to search for related

motif instances.

3.2.4 Comparison of Base-stacking Interactions

In this section, we discuss how the base-stacking interactions are handled in RNAMotifScanX.

Recall that the comparison of non-canonical base pairs is based on evaluating their isosteric-

ity [80, 120]. A base-pair substitution scoring function can be devised (similar to those used

by RNAMotifScan) to prioritize isosteric base-pair matchings. Similarly, the conservation of

base-stacking interactions can also be evaluated using the classification proposed by Major

and Thibault [89, 101] as we have outlined in the Introduction section. Correspondingly,

we can devise an ad hoc scoring matrix to evaluate the substitution between base-stacking

interactions in the four different categories (upward, downward, inward, and outward). The
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setup of the base-stacking substitution matrix is generic, where the substitution between the

same category is given a universal (for all four categories) bonus score, and the substitution

between different categories is given a universal (for all combinations of any two different

categories) penalty score. We use this generic scoring setup to demonstrate the importance

of base-stacking information, rather than emphasizing parameter tuning. Nevertheless, more

realistic scoring functions are strongly encouraged.

We distinguish the base-stacking interactions in a given RNA structural motif instance as

either non-adjacent or adjacent. We are more interested in evaluating the substitution of non-

adjacent base-stacking interactions, as they might suggest unusually structural configurations

at the corresponding region. The non-adjacent base stacking are processed as general base

pairs, but with their specific substitution scoring function. Also, note that a base-stacking

interaction can only be matched with another base-stacking interaction (see Figure 3.2).

For the adjacent base-stacking interactions, we evaluate their substitution effects during

the sequence alignment process. That is, if two consecutive nucleotides are aligned, and

they happen to form a conserved base-stacking interaction in both motif instances, then a

corresponding bonus score will be assigned to prioritize such sequence alignment.

3.2.5 P -value Computation

The estimation of statistical significance for the alignment scores is critical towards automatic

detection of RNA structural motif instances. We expect to improve the P -value computation

strategy of RNAMotifScan by the following two aspects. First, the P -value estimation of

RNAMotifScan makes it difficult to find a universal cutoff that performs well on all types of
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motifs, and different cutoffs were suggested for each specific motif. This is because each motif

adopts highly different structural configurations, and allows different degrees of variation.

Second, the original strategy requires massive execution of the program on the randomly

generated data set to simulate the distribution of alignment scores. This is computationally

infeasible for RNAMotifScanX, as it is a branch-and-bound algorithm that runs slower than

RNAMotifScan.

To solve these two problems, we observe that under the current scoring setup, randomly

generated motif instances that have high degree of structural variation often result in low

alignment scores. Also, the alignment scores on random motif instances with conserved

structural configuration but un-conserved base-interaction substitutions and nucleotide in-

sertions/deletions appears to fit the hypothesized extreme value distribution better. This

observation suggests that we might be able to compute more universal P -values estimates

by taking random motifs with conserved structural configuration as the background. Note

that this strategy also helps to solve the second problem. As we ensure that the random

instances have the same structural configuration with the query motif, we can assess the

corresponding alignment score immediately without actually running the program. In this

case, online estimation of the P -value becomes feasible. We will show the comparison of

the P -value estimation strategy between RNAMotifScan and RNAMotifScanX in the Results

Section.
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Table 3.1: Comparison between RNAMotifScan and RNAMotifScanX in identifying Kink-turn motifs from ribosomal RNA 1S72

RNAMotifScan RNAMotifScanX

Ranking chain Location Score P -value chain Location Score P -value

1 ‘0’ 77-82/92-100 70.2 0.009 ‘0’ 77-82/92-100 167.4 0.009
2 ‘0’ 1211-1217/1146-1156 62.1 0.014 ‘0’ 936-941/1025-1034 138.4 0.014
3 ‘0’ 936-941/1025-1034 55.8 0.022 ‘0’ 2911-2914/2667-2669/2820-2829 130.6 0.017

4 ‘0’ 1338-1343/1311-1319 54.7 0.024 ‘0’ 1211-1217/1146-1156 128.0 0.018
5 ‘0’ 1586-1593/1601-1609 45.4 0.062 ‘0’ 1338-1343/1311-1319 126.6 0.019
6 ‘0’ 244-250/259-267 44.4 0.072 ‘0’ 1586-1593/1601-1609 92.6 0.050
7 ‘0’ 2903-2906/2845-2855 43.8 0.078 ‘0’ 244-250/259-267 88.0 0.060
8 ‘0’ 815-822/792-798 43.0 0.088 ‘0’ 111-113/148-149/42-50 70.0 0.151

9 - - - - ‘0’ 2903-2906/2845-2855 67.6 0.178
10 - - - - ‘0’ 1068-1075/1084-1088/1045-1046 63.8 0.238

11 - - - - ‘9’ 815-822/792-798 56.9 0.463

True motif instances are bolded.
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Table 3.2: Comparison between RNAMotifScan and RNAMotifScanX in identifying C-loop motifs from ribosomal RNA 1S72

RNAMotifScan RNAMotifScanX

Ranking chain Location Score P -value chain Location Score P -value

1 ‘0’ 1436-1440/1424-1430 40.9 0.033 ‘0’ 2760-2764/2716-2722 90.8 0.014
2 ‘0’ 2760-2764/2716-2722 39.1 0.041 ‘0’ 1004-1009/957-964 83.8 0.018
3 ‘0’ 1939-1945/1892-1898 38.4 0.044 ‘0’ 1436-1440/1424-1430 71.6 0.034
4 ‘0’ 1004-1009/957-964 34.4 0.081 ‘0’ 1939-1945/1892-1898 44.7 1.000

True motif instances are bolded.
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Table 3.3: Comparison between RNAMotifScan and RNAMotifScanX in identifying Sarcin-ricin motifs from ribosomal RNA 1S72

RNAMotifScan RNAMotifScanX

Ranking chain Location Score P -value chain Location Score P -value

1 ‘0’ 211-215/225-228 42.8 0.007 ‘0’ 211-215/225-228 141.0 0.005
2 ‘0’ 1368-1372/2053-2056 42.8 0.007 ‘0’ 1368-1372/2053-2056 141.0 0.005
3 ‘0’ 2690-2694/2701-2704 42.8 0.007 ‘0’ 2690-2694/2701-2704 141.0 0.005
4 ‘9’ 76-80/102-105 42.0 0.007 ‘9’ 76-80/102-105 127.6 0.006
5 ‘0’ 461-466/475-478 37.5 0.010 ‘0’ 173-177/159-162 118.6 0.008
6 ‘0’ 380-383/406-408 34.4 0.013 ‘0’ 380-383/406-408 115.2 0.008
7 ‘0’ 951-955/1012-1016 33.4 0.015 ‘0’ 461-466/475-478 114.6 0.008
8 ‘0’ 173-177/159-162 29.8 0.022 ‘0’ 951-955/1012-1016 84.8 0.019
9 ‘0’ 2090-2094/2651-2654 26.2 0.037 ‘0’ 585-590/568-572 84.4 0.019
10 ‘0’ 1775-1779/1765-1768 25.5 0.042 ‘0’ 355-360/292-296 83.8 0.019
11 ‘0’ 1542-1545/1640-1643 21.0 0.117 ‘0’ 1971-1973/2009-2010 83.4 0.020

12 ‘0’ 585-590/568-572 20.8 0.126 ‘0’ 1292-1294/911-912 81.8 0.021

13 ‘0’ 355-360/292-296 20.8 0.126 ‘0’ 1775-1779/1765-1768 47.2 0.144

True motif instances are bolded.
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Table 3.4: Comparison between RNAMotifScan and RNAMotifScanX in identifying Reverse kink-turn motifs from ribosomal RNA 1S72

RNAMotifScan RNAMotifScanX

Ranking chain Location Score P -value chain Location Score P -value

1 ‘0’ 1661-1666/1520-1530 48.6 0.114 ‘0’ 1661-1666/1520-1530 94.7 0.014
2 ‘0’ 1530-1536/1649-1661 46.8 0.145 ‘0’ 1530-1536/1649-1661 84.1 0.021
3 ‘9’ 74-82/100-107 46.2 0.160 ‘9’ 74-82/100-107 82.9 0.022

True motif instances are bolded.
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Table 3.5: Comparison between RNAMotifScan and RNAMotifScanX in identifying E-loop motifs from ribosomal RNA 1S72

RNAMotifScan RNAMotifScanX

Ranking chain Location Score P -value chain Location Score P -value

1 ‘0’ 706-708/720-722 21.2 0.052 ‘0’ 1543-1545/1640-1642 64.6 0.010
2 ‘0’ 1543-1545/1640-1642 20.6 0.061 ‘0’ 706-708/720-722 64.4 0.010
3 ‘0’ 174-177/159-161 18.7 0.098 ‘9’ 100-104/77-82 54.0 0.016
4 ‘0’ 663-666/680-683 18.6 0.100 ‘0’ 1369-1372/2053-2055 53.6 0.016
5 ‘0’ 586-590/568-571 18.0 0.120 ‘0’ 214-215/225-226 53.6 0.016

6 ‘0’ 356-360/292-295 18.0 0.120 ‘0’ 2691-2694/2701-2703 53.6 0.016
7 ‘0’ 2691-2694/2701-2703 17.8 0.130 ‘0’ 356-360/292-295 52.9 0.016
8 ‘0’ 1369-1372/2053-2055 17.8 0.130 ‘0’ 952-955/1012-1015 52.5 0.017

9 ‘0’ 463-466/475-477 17.8 0.130 ‘0’ 1293-1294/911-912 52.3 0.017

10 ‘0’ 380-383/406-408 17.8 0.130 ‘0’ 174-177/159-161 52.3 0.017
11 ‘9’ 77-82/100-104 17.8 0.130 ‘0’ 586-590/568-571 52.3 0.017
12 ‘0’ 2773-2776/2799-2801 17.8 0.133 ‘0’ 1972-1973/2009-2010 52.3 0.017

13 - - - - ‘0’ 380-383/406-408 52.3 0.017
14 - - - - ‘0’ 463-466/475-477 49.6 0.019
15 - - - - ‘0’ 663-666/680-683 48.0 0.021
16 - - - - ‘0’ 2782-2784/2788-2792 46.0 0.023

True motif instances are bolded.
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3.3 Results

We have benchmarked the performance of RNAMotifScanX by searching five important

RNA structural motifs, including the kink-turn [75], C-loop [11, 27, 130, 144], sarcin-

ricin [60, 94, 118, 125], reverse kink-turn [1, 2, 122], and E-loop [28, 81] motif, against

the H. marismortui 50S rRNA [74]. We manually examined the known instances for these

motifs, and revised their base-interaction patterns by adding the conserved base-stacking in-

teractions (see Figure 3.4). The 3D structure of the H. marismortui 50S is downloaded from

PDB [17], with the accession number of 1S72. This 50S rRNA contains a 23S rRNA (chain

‘0’) and a 5S rRNA (chain ‘9’). The base-interaction annotation for this 50S rRNA is gen-

erated by MC-Annotate [53] and RNAVIEW [147].

The search results of RNAMotifScan and RNAMotifScanX on the five RNA structural motif

families are summarized in Table 3.1 - Table 3.5. In this table, the bona fide motif instances

are shown in bold, and the motif instances that are newly detected by RNAMotifScanX

are underlined. Here we give a brief reasoning for accepting these new instances as true

predictions. For the kink-turn motif family (Table 3.1), the instances ranked in the 3rd

and the 8th place are known motif instances, as identified and described by FR3D [113].

We will discuss the 10th motif instance for more details in later sections. For the sarcin-

ricin motif family (Table 3.3), the two instances (the 11th and 12th) have been discovered

through a de novo clustering approach as partial sarcin-ricin motif instances with ultra

conserved structure at the bulged-G region (will be discussed in Chapter 4). For the E-loop

motif family (Table 3.5), all newly identified motif instances (the 5th, 8th, 9th, and 12th) are

overlapped with known sarcin-ricin motif instances. This is because the E-loop motif family

and the sarcin-ricin motif family share significant similarities in both base-interaction pattern
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and 3D geometry. For example, the 9th E-loop motif instance was identified as E-loop by

LENCS (reference [37], a base-pairing pattern-based approach), and it is overlapped with the

12th sarcin-ricin motif instance. The 5th E-loop instance was identified as E-loop by the

shape histogram method (reference [6], a 3D geometry-based approach), and it is overlapped

with the 1st sarcin-ricin motif instance. Therefore, we consider these motif instances are

E-loop related motif instances.

In the following sections, we will show the improvement of RNAMotifScanX over its prede-

cessor RNAMotifScan. We will first show that RNAMotifScanX is able to rank known motif

instances on top without including any unrelated motif instances. We will then show that

by using the improved P -value estimation, we are able to suggest a universal P -value cutoff

that performs well (over 90% of F-measure) on all RNA structural motifs that have been

tested. Finally, we will discuss a tandem kink-turn motif instance and a novel kink-turn-like

motif instance found by RNAMotifScanX, which provide new insights into the understanding

of the kink-turn motif family.

3.3.1 Prioritizing the Rankings of True RNA Structural Motif Instances

We summarize the benchmark results of searching kink-turn, C-loop, sarcin-ricin, reverse

kink-turn and E-loop motifs in Table 3.1 - Table 3.5, respectively. We can observe that

RNAMotifScanX is able to prioritize the rankings of the real motif instances before other

unrelated motif instances, especially for the C-loop and the sarcin-ricin motif families. Orig-

inally, RNAMotifScan ranked an unrelated motif instance chain ‘0’, 1939-1945/1892-1898

before a real motif instance chain ‘0’, 1004-1009/957-964, while RNAMotifScanX is able to
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remove the unrelated motif instance from its top list. Similarly, RNAMotifScan included

three unrelated motif instances in its sarcin-ricin motif search results (which are ranked 9th,

10th, and 11th), while RNAMotifScanX has also removed these unrelated motif instances. In

this case, RNAMotifScanX has significantly improved the identification accuracy upon its

predecessor RNAMotifScan.
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Figure 3.5: A real example showing that the base-stacking information and the optimal alignment of cross-

ing base pairs help to improve C-loop motif identification accuracy. The base-interaction pattern (left panel)

and 3D structure (right panel) of a C-loop motif instance found in (a) 1S72, chain ‘0’, 1004-1009/957-964

and an unrelated motif instance found in (b) 1S72, chain ‘0’, 1939-1945/1892-1898. In the left panels, the

boxed base interactions are newly detected by RNAMotifScanX (but not RNAMotifScan). In the right panels,

the nucleotides in green are the stacking nucleotides in (a), or their corresponding nucleotides in (b). The red

measurements indicate the distances (3.5 Å in (a) and 7.0 Å in (b)) between the corresponding nucleotides.

The nucleotides in purple correspond to the adenine residues that should be positioned in the minor groove.
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Figure 3.6: A real example showing that the base-stacking information is capable of improving sarcin-ricin

motif identification accuracy. The base-interaction pattern (left panel) and 3D structure (right panel) of a

sarcin-ricin motif instance found in (a) 1S72, chain ‘0’, 1971-1973/2009-2010 and an unrelated motif instance

found in (b) 1S72, chain ‘0’, 1775-1779/1765-1768. In the left panels, the boxed base interactions are newly

detected by RNAMotifScanX (but not RNAMotifScan). In the right panels, the nucleotides in green color are

the stacking nucleotides in (a), or their corresponding nucleotides in (b). The red measurements indicate

the dihedral angles (29.7◦ in (a) and 79.4◦ in (b)) formed between the two vectors defined by the C1’ atom

and its bonding nitrogen atoms of two consecutive nucleotides (U1972, A1973 in (a) and A1778, A1779 in

(b)). The nucleotides in purple correspond to the bulged guanine residues.
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Table 3.6: The optimal performance of RNAMotifScan and RNAMotifScanX with a universal P -value cutoff

RNAMotifScan RNAMotifScanX

Motif Specificity Sensitivity F-measure Specificity Sensitivity F-measure

Kink-turn 0.875 (7/8) 1.000 (7/7) 0.933 1.000 (4/4) 0.571 (4/7) 0.727
C-loop 0.375 (3/8) 1.000 (3/3) 0.545 1.000 (2/2) 0.667 (2/3) 0.800
Sarcin-ricin 0.769 (10/13) 1.000 (10/10) 0.869 1.000 (10/10) 1.000 (10/10) 1.000
Reverse kink-turn 1.000 (1/1) 0.500 (1/2) 0.667 1.000 (2/2) 1.000 (2/2) 1.000
E-loop 1.000 (11/11) 1.000 (11/11) 1.000 1.000 (11/11) 1.000 (11/11) 1.000

Average performance 0.780 (32/41) 0.970 (32/33) 0.865 1.000 (29/29) 0.879 (29/33) 0.935

The P -value cutoff for RNAMotifScan is 0.130, and for RNAMotifScan is 0.021.

F-measure is computed as the follow: F-measure = 2 * Specificity * Sensitivity
Sensitivity + Specificity . The higher performance of F-measure is bolded.

The novel motif instance found by RNAMotifScanX is not considered for the performances shown in this table.
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The identification improvement is made by the inclusion of base-stacking information and the

new branch-and-bound algorithm that optimally align the crossing base interactions. We use

examples of the C-loop and the sarcin-ricin motif search to demonstrate these two advantages

of RNAMotifScanX. In Figure 3.5, we show the true C-loop instance chain ‘0’, 1004-1009/957-

964 that was ranked 4th by RNAMotifScan (Figure 3.5a), and the unrelated instance chain

‘0’, 1939-1945/1892-1898 that was ranked 3rd by RNAMotifScan (Figure 3.5b). Originally,

RNAMotifScan identified four isosteric base pairs (three canonical and one non-canonical) in

the first instance, but five isosteric base pairs (four canonical and one non-canonical) in the

second instance. Therefore, the first instance is ranked below the second instance. While

base-stacking information is incorporated, and the crossing base interactions are optimally

aligned, RNAMotifScanX identified two more conserved base-stacking interactions and one

more isosteric non-canonical base pair from the first instance, but only one more conserved

base-stacking interaction from the second (see the boxed base interactions in left panels of

Figure 3.5).

The base-stacking interaction (outward A1005-C1008) and the non-canonical base pair (cis

S/W C1008-C962) aligned in the first instance but not in the second instance are critical

for the formation of the C-loop motif instance. The presence of the base-stacking interac-

tion in the first instance indicates that the spatial distance between A1005 and C1008 is

small (3.5Å as shown in Figure 3.5a, right panel). The small distance between these two

nucleotides facilitates the formation of the two crossing base pairs (trans H/W A1005-C959

and cis S/W C1008-C962, as shown by the green nucleotides in Figure 3.5a, right panel).

Notice that one of these crossing base pairs cis S/W C1008-C962) happens to be the base

pair that only conserves in the first instance. The crossing base pairs position the adenine

base (A961, as shown in purple) within the minor groove (below the green nucleotides, as
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shown in Figure 3.5a, right panel), which is critical for the molecular function of the C-loop

motif [130]. On the other hand, the absence of the base-stacking interaction in the second

motif instance indicates that the distance between the two corresponding nucleotides (A1942-

G1944) is large (7.0Å as shown in Figure 3.5b, right panel). In this case, one of the two

crossing base pairs is missing, and the corresponding adenine base (A1895, as shown in pur-

ple) is not properly positioned in the minor groove (above the green nucleotides, as shown

in Figure 3.5b, right panel). In this case, RNAMotifScanX has distinguished true and unre-

lated motif instances through the consideration of base-stacking information and the optimal

alignment of crossing base pairs.

Similarly, the following example shows how RNAMotifScanX improves the identification ac-

curacy of the sarcin-ricin motif through the incorporation of base-stacking information. We

show a true instance that is newly identified by RNAMotifScanX in Figure 3.6a, and an

unrelated motif instance that was ranked higher than two true sarcin-ricin instance in Fig-

ure 3.6b. Originally, RNAMotifScan aligned only three non-canonical base pairs in the first

instance (all are isosteric) in the first instance, but four (three isosteric and one non-isosteric)

in the second instance. Therefore, RNAMotifScan ranks the second instance before the first

instance. When the base-stacking information is incorporated, RNAMotifScanX is able to

identify one more conserved base-stacking interaction (A1973-A2010, see Figure 3.6a, left

panel) from the first instance. In this case, the true motif instance is ranked higher than the

unrelated motif instance by RNAMotifScanX.

The identified base-stacking interaction is also important in defining the sarcin-ricin motif.

In the first motif instance, two non-canonical base pairs (trans W/H U1972-A2010 and trans

H/S A1973-G2009) are formed consecutively. The base-stacking interaction is formed by

two nucleotides A2010 and A1973, each from one of these two base pairs. In order to form
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such interaction, the relative rotation of the two consecutive nucleotides (U1972 and A1973)

around the backbone should be small. We measured the dihedral angle between the two

vectors defined by the two nucleotides’ C1’ atoms and their bonding nitrogen atoms in the

bases. The dihedral angle in the first instance is 29.7◦ (see Figure 3.6a, right panel), which is

consistent with our conjecture. On the other hand, without the pressure to form such base-

stacking interaction, the corresponding dihedral angle in the second instance is 79.4◦(see

Figure 3.6b, right panel). The significant difference in the torsion angles between the two

instances also affect the positioning of its directly adjacent guanine residues (G1971 and

G1777). In this first instance, G1971 is folded inward to form the cis S/H base pair with

U1972. While in the second instance, G1777 is flipped outward, as shown in Figure 3.6b, right

panel. The guanine nucleotide is critical for the molecular function of the sarcin-ricin motif,

as indicated by its alternative name: the G-bulge motif. As a result, the second instance is

unlikely to be a real sarcin-ricin motif instance. Such example shows the importance of the

base-stacking information in modeling the sarcin-ricin motif families.

3.3.2 Universal P -value Cutoff Towards Automatic Identification of RNA Structural

Motif Instances

Besides the performance improvement through prioritizing the ranking of related motif in-

stances, we also expect to show the new P -value estimation is more reasonable, and a

universal P -value cutoff will generate satisfying results for all types of RNA structural motif

families.
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We summarize the optimal performances of RNAMotifScan and RNAMotifScanX under a

universal P -value cutoff in Table 3.6. The optimal performance of RNAMotifScan is achieved

at a P -value cutoff of 0.130, and that of RNAMotifScanX is achieved at a P -value cutoff of

0.021. Note that the reference data set we used to compute the sensitivity and specificity was

generated based on the search results of RNAMotifScan, and the related motif instances that

are newly detected by RNAMotifScanX were not counted. In this case, the final benchmark

results will favor RNAMotifScan. Even with such benchmark design, we can still observe a

significant improvement on the overall F-measure (see Table 3.6).

Notably, RNAMotifScanX is able to achieve over 93% of average accuracy with universal

P -value cutoff, and at the same time achieve 100% specificity. This means that when the

correct P -value cutoff is provided, RNAMotifScanX will identify motif instances with high

confidence. In this case, the time-consuming manual validation can be avoided, and such

advantage is highly desirable for full automatic identification of RNA structural motifs.

On the other hand, the universal P -value cutoff for RNAMotifScan still includes several

unrelated motifs, making the manual validation step inevitable. Note that we are unable to

apply a more stringent cutoff to RNAMotifScan search results without dramatic decreasing

the overall performance (using any P -value cutoff less than 0.130 will miss at least 5 true

E-loop motif instances, as shown in Table 3.5). In summary, the P -value estimation strategy

used by RNAMotifScanX is capable of providing a universal P -value cutoff for all types of

RNA structural motif families with high sensitivity and specificity.
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Figure 3.7: A tandem kink-turn motif instance found at 1S72, chain ‘0’, 2818-2856/2901-2930/2667-2671.

The two ‘kink’ regions in both kink-turn motif instances are colored orange. The tandem kink-turn motif

instance form RNA-protein interaction with the ribosomal protein L3P (1S72, chain B), which is shown in

blue. Both individual kink-turn motif instances interact with the L3P protein, suggesting the aggregation

of these two motif instances is necessary for the binding of L3P.
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3.3.3 New Insights into the Kink-turn Motif Family

3.3.3.1 Tandem Kink-turn Motif Instance

We identified a tandem kink-turn motif instance from the kink-turn search results gener-

ated by RNAMotifScanX. Two individual kink-turn motif instances found at locations 1S72,

chain ‘0’, 2911-2914/2667-2669/2820-2829 and 1S72, chain ‘0’, 2903-2906/2845-2855 forms a

tandem instance, with their NC helices (non-canonical helix [75]) connecting to each other

coaxially (Figure 3.7). The C helices (canonical helix [75]) of the individual kink-turn mo-

tif instances rotate around the NC helix axis in different directions, leaving a ∼90◦ torsion

angle between them. The majority of the nucleotide residues in the two C helices form

RNA-protein interaction with the ribosomal protein L3P (1S72, chain B, see Figure 3.7).

In addition, 27.6% (21/76) of total nucleotide residues that interact with L3P can be found

within the two C helices, indicating an important role of this tandem kink-turn motif in-

stance in the binding of the L3P ribosomal protein (RNA-protein interaction annotation is

taken from the Comparative RNA Website (CRW), reference [24]). Similar tandem motif

instance has also been observed for the reverse kink-turn motif, suggesting that such motif

aggregation phenomenon may not be random. Nevertheless, whether the cooperation of the

individual motif instances will lead to novel molecular function requires further experimental

studies.
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Figure 3.8: The new kink-turn-like motif instance found at 1S72, chain ‘0’,

1068-1075/1081-1088/1045-1046. (a) The base-interaction pattern and the 3D structure of this mo-

tif instance. Different colors in the base-interaction pattern and 3D structure depicts different regions of

this motif instances: Green - the NC helix where the cross-strand A-A stacking is found; Red - the bulge

loop that corresponds to the kink region of the motif instance; Blue - the C helix where two A-minor

interactions are found (a type I and a type II A-minor interaction); Purple - the adenine residues that

participate in the two A-minor interactions. (b) Superimposition of the C helices of a kink-turn (blue), a

reverse kink-turn (red), and the new kink-turn-like motif instance (orange). The NC helix of the kink-turn

turns leftwards, while that of the reverse kink-turn turns rightwards and that of the new kink-turn-like turns

downwards. (c) The new kink-turn-like motif instance interacts with two ribosomal proteins, L30P (1S72,

chain W) and L32E (1S72, chain Y), simultaneously. The nucleic acid residues that interact with the

ribosomal proteins are colored orange.
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3.3.3.2 The New Kink-turn-like Motif: Opposite Kink-turn

During the search of kink-turn motif instances in 1S72, we discovered a kink-turn-like motif

instance at 1S72, chain ‘0’, 1068-1075/1084-1088/1045-1046. The motif instance is ranked in

the 10th place, indicating its large structural variance compared to regular kink-turn motif

instances. However, several key features of the kink-turn motif is preserved in this instance,

and according to which we consider this motif as a related motif instance. First, both the C

helix (colored blue in Figure 3.8a) and NC helix (colored green in Figure 3.8a) can be found

in this motif instance. As shown in Figure 3.8a, the C helix contains two G-C canonical

base pairs and the NC helix contains two G-A sheared base pairs, and both of which are

consistent with the kink-turn consensus structure. Second, similar to the kink-turn motif,

this motif instance is also stabilized through the cross-strand A-A stacking in the NC helix

and A-minor interaction in the C helix. The difference is that the new kink-turn-like motif

instance forms two A-minor interactions (a type I A-minor interaction, as shown by the trans

S/S A1082-G1046 base pair in Figure 3.8a, and a type II A-minor interaction, as shown by

the hydrogen bond interaction between A1081 and C1069 in Figure 3.8a), instead of only one

in the regular kink-turn motif instances. Third, the kink region is formed by two unpaired

nucleotides (A1070 and G1071, the red residues in Figure 3.8a). The kink region of the

kink-turn-like motif is, however, not found in the asymmetric internal loop motif as regular

kink-turn motif, as the shorter strand of the asymmetric internal loop is interrupted by the

discontinuity of the corresponding strands.

The superimposition of the C helices of a kink-turn, a reverse kink-turn, and the kink-turn-

like motif instance clearly depicts the direction of the turn of its two helices. In Figure 3.8b,

the kink-turn motif instance is colored blue, the reverse kink-turn motif instance is colored
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red, and the new kink-turn-like motif instance is colored orange. Surprisingly, the turn of

the new kink-turn-like motif instance neither follows that of the kink-turn motif nor the

reverse kink-turn motif. Instead of turning to the left like the reverse kink-turn (red arrow

in Figure 3.8b) or to the right like the kink-turn motif (blue arrow in Figure 3.8b), the NC

helix of the new kink-turn-like motif turns downwards (orange arrow in Figure 3.8b), and

to the opposite direction of its C helix. In this sense, we name the new kink-turn-like motif

the ‘opposite kink-turn’ motif.

Similar to the kink-turn motif, the opposite kink-turn motif also exhibit potential molecu-

lar function in protein binding. The opposite kink-turn motif instance interacts with two

ribosomal protein simultaneously, i.e. the ribosomal protein L30P (1S72, chain W) and

L32E (1S72, chain Y) (Figure 3.8c). Interestingly, the nucleotide residues that participate

in the RNA-protein interactions are mostly found near the NC helix where the cross-strand

A-A stacking interaction is present. For example, C1084, C1085 and A1086 interact with

the L30P protein, and G1072, G1074 and G1075 interact with the L32E protein. In this

case, the protein binding scheme of this opposite kink-turn motif instance is consistent with

that of the kink-turn motif, which may facilitate the RNA-protein interaction through its

fattened minor groove of the NC helix [75].

These evidences suggest the strong similarity between the opposite kink-turn motif and

the kink-turn motif. The large structural variation of the opposite kink-turn motif can

be explained using the plasticity of the kink-turn motif [5, 32]. In this case, it would be

interesting to experimentally verify the molecular function of the opposite kink-turn motif,

and search for other kink-turn-like motifs that exhibit different structural configurations.
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3.4 Discussion

In this chapter, we have developed a new RNA structural motif search tool RNAMotifScanX by

incorporating the base-stacking information. The current implementation of RNAMotifScanX

adopts a branch-and-bound technique to maintain its execution in a reasonable time. Our

test on searching the kink-turn motif consensus structure against the 50S rRNA 1S72 took

less than 1 hour to finish (single-core configuration). We expect to improve the running time

of RNAMotifScanX for future online service purpose using the following strategies. First, we

will apply a filtering step, where the candidate motif instances that share no isosteric base

pair or conserved base-stacking interaction will be discarded without detailed alignment. Sec-

ond, as the alignment between the consensus structure and the candidate instances are inde-

pendent, we will introduce a multi-threaded feature to the future version of RNAMotifScanX

so as to process the candidates in parallel. Once these two speedup techniques are imple-

mented, we will use RNAMoitfScanX to scan the PDB [17] and update our registration of

motif instances.

More importantly, we have proved the importance of base-stacking information in modeling

RNA structural motifs. As we have shown in Table 3.1 - Table 3.5 in the Results section, the

score difference between the last true motif instance and the first unrelated motif instance

has also been significantly increased as compared to RNAMotifScan. In addition to the

advantage of easy separation of true and unrelated motif instances, such experimental results

also suggest that the base-stacking interaction is highly specific for the given motif families.

Otherwise, we should observe concurrent alignment score increment in both of the true

and the unrelated motif instances. We can also see that the score difference for the kink-

turn (Table 3.1), C-loop (Table 3.2), and sarcin-ricin (Table 3.3) motif is large, while the
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difference for reverse kink-turn (Table 3.4) and E-loop (Table 3.5) motif is marginal. This is

because we have not identified any conserved base-stacking interaction in the reverse kink-

turn and E-loop motif families, and their search models are not revised (see Figure 3.4). We

can also observe that the score difference is highly correlated with the number of base-

stacking interactions that have been incorporated into the search model. For example,

one base-stacking interaction is introduced into the kink-turn consensus structure and the

score difference is 6.9. When two base-stacking interactions are introduced into the C-loop

and sarcin-ricin consensus structures, the score difference is increased to 26.9 and 34.6,

respectively. These evidences suggest that base-stacking information is highly specific in

defining RNA structural motif families, and is perhaps more powerful in distinguishing true

and unrelated motif instances than the base-pairing information.
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CHAPTER 4: DE NOVO CLUSTERING OF RNA

STRUCTURAL MOTIFS

In Chapter 3, we have presented RNAMotifScanX, an enhanced version of RNAMotifScan

which considers both base-pairing and base-stacking information. Using RNAMotifScanX,

we can search query RNA structural motifs with much higher accuracy and sensitivity.

However, a limitation of the query-based search approach is that it heavily relies on the query

model, thus it cannot identify novel RNA structural motif families. To address this issue, we

introduce the de novo RNA structural motif clustering problem in this chapter, which has

the ability to discover novel RNA structural motif families. We devise a clustering pipeline

called RNAMSC based on RNAMotifScan (for its higher computational efficiency compared to

RNAMotifScanX). Novel RNA structural motif families that have been discovered through

the clustering analysis of ribosomal RNAs (5S, 16S, and 23S) will also be discussed in details.

4.1 RNA Structural Motif Identification without Explicit Query

The computational identification of RNA structural motifs can become much more diffi-

cult when there is no explicitly defined query. This problem, also referred as the de novo

motif identification problem, is usually solved using clustering approaches that require no

explicit query information. COMPADRES [136], a de novo clustering method developed based
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on PRIMOS [44], has successfully identified four new structural motif families from the re-

solved RNA 3D structures in Protein Data Bank (PDB) [17]. However, the motif families

identified by COMPADRES are mostly short motifs with rigid 3D topologies, while larger and

more complicated motifs were not considered. In addition, the lack of conserved base inter-

action pattern for the newly identified motifs makes further modeling, search and functional

inference of these motifs rather difficult [37]. As a result, base-pairing patterns should also

be considered in de novo structural motif identification.

Recently, Djelloul and Denise have devised a clustering approach that purely considers base-

pairing pattern for de novo RNA structural motif identification [37]. In this chapter, we

refer this method as the LENCS (Longest Extensible Non-Canonical Substructure) method.

They transformed each candidate structural motif instance into a base-pairing graph, and

applied graph isomorphism algorithm to identify maximum common subgraphs. After pair-

wise comparison, the structural fragments were organized using hierarchical clustering, and

potential motif clusters were extracted by applying a universal cutoff. Although LENCS has

successfully rediscovered many known motifs and suggested potential novel motifs, the graph

isomorphism restriction makes it impossible to consider RNA structural motifs with base-

pair variations. Besides, the LENCS method completely ignored the sequences of the motifs,

hence difficult to correctly incorporate base-pair isostericity information [80].

We have developed RNAMotifScan to account for these problems (discussed in Chapter 2),

and expect to develop a more accurate clustering framework by incorporating RNAMotifScan.

In addition, we also try to tackle three important issues in RNA structural motif clustering.

First, it is well known that the annotation tools may make mistakes in base-pair prediction

due to inadequate resolution. Although this may not be an issue in model-based search

application (as the query model is hand-curated and thus can represent the complete base-
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pairing pattern), it can significantly affect clustering analysis since the erroneous base-pair

predictions may happen in both motif instances that are being compared. Second, the LENCS

method only considers the fraction of matched base pairs between motif instances, but does

not distinguish the importance of the matching. For example, the trans H/SE pair can be

found in many motifs such as kink-turn, sarcin-ricin and tandem-sheared motifs, while the

cis H/SE pair is much less frequent. In this case, matching cis H/SE pairs should be more

informative than matching trans H/SE pairs. Finally, the hierarchical clustering approach

applied by the LENCS method is not suitable for large-sized data sets, since it would be

difficult to manually examine the huge hierarchical tree to determine the optimal cutting

level.

To account for the first issue, we combined the base-pair predictions made by two popular

annotation tools: RNAVIEW [147] and MC-Annotate [53]. In this way, we were likely to include

all true base-pairing interactions into the compiled candidate motif instances. RNAMotifScan

is then responsible for identifying the optimal matching between these predictions and dis-

carding additional base pairs with moderate penalty. To solve the second issue, we developed

a statistical inference framework that can be used to measure the significance of the match-

ings. Each candidate motif instance was aligned to a set of artificial motif instances that

simulate random structural segments from ribosomal RNAs. Consider the example in the

previous paragraph, although we do not distinguish the alignment score between matching

trans and cis H/SE pairs, we can expect lower P -value assigned to the matching of cis H/SE

pairs. This is because cis H/SE pairs are much less frequently found, resulting in lower back-

ground alignment scores associated with the motif instances that contain this base pair and,

therefore, more significant P -values for a match. Finally, to make the clustering analysis

extensible to large-size data sets, we applied the CAST (Cluster Affinity Search Technique)-
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like [16] clique finding algorithm that can automatically generate individual clusters given

only a universal P -value cutoff.

We applied our new clustering framework on two data sets (one for hairpin loop instances and

the other for internal loop, bulge loop and junction loop instances, see Materials and Methods

section) that contain 5S (Haloarcula marismortui, PDBid: 1S72, chain ‘9’), 16S (Thermus

thermophilus, PDBid: 1J5E, chain A) and 23S (Haloarcula marismortui, PDBid: 1S72,

chain ‘0’) ribosomal RNAs. We have identified totally 44 clusters (8 from the hairpin loop

data set and 36 from the internal loop data set). These clusters define many known RNA

structural motifs such as GNRA tetraloop [145], kink-turn [75], C-loop [11, 27, 130, 144],

sarcin-ricin [60, 94, 118, 125], reverse kink-turn [122], hook-turn [124], E-loop [28, 81] and

tandem-sheared [31] motifs. The performance of our clustering framework shows significant

improvement over the LENCS method. Specifically, the F-measure has been increased from

69.1% to 82.6%. Besides, we also identified several new occurrences of these known motifs.

Finally, we also present three clusters corresponding to novel motif families that have not

been characterized before. All clusters are sorted based on average P -values that indicate

the in-cluster structural similarities.

4.2 Materials and Methods

4.2.1 Data Preparation

The resolved ribosomal RNA subunit structures (1S72 and 1J5E) were downloaded from

PDB [17]. The base pairs were annotated by RNAVIEW [147] and MC-Annotate [53]. We com-
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bined (union) the annotations from both tools to generate the final annotation. The conflict

predictions (different edge or orientation annotations for the same base pair) were resolved

by taking the annotations from MC-Annotate. All non-canonical base pairs were temporarily

discarded to reveal the general sketch of the A-form helices in the structures. Pseudo-knots

were then removed using K2N web server [117]. Lone pairs were further removed to avoid

accidental destruction of potential motifs. Finally, regions corresponding to hairpin loops,

internal loops, bulge loops or junction loops [84] were identified from the resulting nested

structures and all base pairs within these regions were recovered to construct candidate mo-

tif instances (similar to LENCS [37]). The candidate instances that contain no non-canonical

base pair were removed.

Candidate motif instances from 5S, 16S and 23S rRNAs were compiled into two data sets,

one for hairpin loops and the other for internal loops, bulge loops and junction loops (we

will call this data set internal loop data set for short). Since sequence conservation in

hairpin loop motifs is also very important in defining their functionalities, higher sequence

weight should be applied for this data set. The hairpin loop data set contains 33 candidate

instances and the internal loop data set contains 157 candidate instances. To account for

different concatenation orders the strands, the symmetric counterpart of each motif instance

in internal loop data set is also included.

4.2.2 Aligning Structural Components using RNAMotifScan

We applied RNAMotifScan to measure the structural similarity between two candidate motif

instances. RNAMotifScanmatches two motifs instances by a dynamic programming approach
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which takes into account base-pair isostericity. For the internal loop data set, the sequence

weight was set to 0.2 and the structure weight was set to 0.8. while for the hairpin loop data

set, we raised the sequence weight to 0.4 and lowered the structure weight to 0.6. Because

the hairpin loop motifs are usually defined by their lengths (e.g., tetraloop and hexaloop),

we also doubled the default gap penalty for hairpin loop clustering. Other parameters were

set to default.

4.2.3 Generating Random Structural Motif Instances

Given a candidate instance, we aim at generating a number of random motif instances that

have similar length (allowing±20% fluctuation) with the candidate instance and base-pairing

pattern with the ribosomal RNAs background. Our statistics indicate that in ribosomal

RNAs, the base pair ratio (the number of canonical and non-canonical base pairs over the

length of the sequence) is ∼50% (specifically, 51.7% for 5S rRNA, 50.0% for 16S rRNA, and

50.2% for 23S rRNA). Among these base pairs, ∼15% of them correspond to non-nested base

pairs (specifically, 15.5% for 5S rRNA, 14.6% for 16S rRNA and 16.9% for 23S rRNA), while

the others form nested base pairs. (This statistic is solely based on MC-Annotate predicted

base pairs.)

Since random sampling of existing structural segments from database may not result in

enough randomness and sometimes introduce bias [61], we developed the following method

to generate random motif instances. Given the base-pair distribution for the ribosomal

RNAs and assume the length of the random motif instance is n (predetermined based on

the length of the candidate instance), we first build a perfectly stacked helix with 85% ∗n/2
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base pairs (with the same base-pair frequency as the background). Then we randomly insert

15% ∗ n unpaired nucleotides into the helix (with the same nucleotide frequency as the

background). Finally, we add 15% ∗n/2 non-nested base pairs (also with the same base-pair

frequency as the background) by randomly selecting two nucleotides from the constructed

motif instance.

4.2.4 Extracting Significant Clusters

Upon the finishing of all-against-all pairwise alignments, a P -value was assigned for each

alignment score. Alignment score distribution regarding each candidate instance was simu-

lated by aligning it to a number of random instances generated using the method described

above. The P -values were computed using optimal fitting that assumed general extreme

value distribution (with MATLAB built-in function ‘gevfit’). Since each alignment score is

associated with two P -values (that are computed from both candidate instances’ background

score distributions), the higher P -value was assigned to ensure specificity.

After the computation of P -values, the all-against-all alignment scores were summarized

into a graph, where the nodes represent the candidate motif instances and the edges indicate

pairwise structural similarities (denoted by P -values). We extracted all strongly connected

subgraphs by applying a CAST-like clique finding algorithm [16]. The P -value cutoff was set

to 10−3.5 (empirically determined) for both hairpin loop data set and internal loop data set.
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4.3 Results

We have identified 8 clusters from the hairpin loop data set and 36 clusters from the internal

loop data set. (If two clusters are completely symmetric due to the inclusion of both strand

orientations, only one of them is retained.) The clusters are sorted by their average P -

values. To describe the results more clearly, we represent each cluster with a label of the

data set (‘CH’ for the hairpin loop data set and ‘CL’ for the internal loop data set) followed

by its ranking. For example, the kink-turn cluster, CL15, indicates that it was identified

from the internal loop data set and ranked 15th by its average P -value. All naming and

representation of base pairs follow the fashion proposed by Leontis and Westhof [82]. The

3D structure figures were prepared using PyMol (http://www.pymol.org).

In this section, we will first discuss the clustering results regarding currently known motifs

and present discovery of their new instances. We will then show three potential novel motif

families revealed by our clustering analysis. Due to the limitation of space, many meaningful

clusters were not discussed in this section. For instance, cluster CH2 represents the UUCG

tetraloop motif [47], and cluster CL3 represents an extremely complex base-pairing pattern

where four base pairs are formed within only four nucleotides. We anticipate that these

clusters can also provide useful information for RNA structural motif studies.
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Table 4.1: Comparison between two base-pairing pattern based clustering methods: RNAMSC (RNAMotifScan based Clustering) and LENCS

RNAMSC LENCS

Motif Cluster ID Novel1 Sensitivity2 Specificity3 F-m.4 Sensitivity Specificity F-m.

GNGA Tetraloop CH1 0 72.7% (8/11) 100% (8/8) 84.2% - - -
GNAA Tetraloop CH3 1 63.6% (14/22) 93.3% (14/15) 75.7% - - -

Kink-turn CL15 0 50.0% (5/10) 100% (5/5) 66.7% 20.0% (2/10) 100% (2/2) 33.3%
C-loop CL24 0 75.0% (3/4) 100% (3/3) 85.7% 50.0% (2/4) 100% (2/2) 66.7%
Sarcin-ricin CL13 3 100% (12/12) 100% (12/12) 100% 66.7% (8/12) 100% (8/8) 80.0%
Reverse Kink-turn CL18 0 100% (3/3) 100% (3/3) 100% 100% (3/3) 42.8% (3/7) 59.9%
Hook-turn CL17 0 66.7% (2/3) 100% (2/2) 80.2% 100% (3/3) 60.0% (3/5) 75.0%
E-loop CL19 0 100% (4/4) 66.7% (4/6) 80.0% 100% (4/4) 57.1% (4/7) 72.7%
Tandem-sheared CL23 1 33.3% (2/6) 100% (2/2) 49.6% 100% (6/6) 75.0% (6/8) 85.7%

Average performance5 73.8% (31/42) 93.9% (31/33) 82.6% 66.7% (28/42) 71.8% (28/39) 69.1%

1: The novel instances are discussed in detail in corresponding sections. These instances are not counted for performance assessment.

2: Expression in parenthesis corresponds to number of true positive over all known instances.

3: Expression in parenthesis corresponds to number of true positive over cluster size.

4: F-m. (F-measure) = 2 ∗ Sensitivity ∗ Specificity / (Sensitivity + Specificity). The higher performance is bolded.

5: The average performance assessment does not include GNGA and GNAA tetraloop, since they were not identified by LENCS method.
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4.3.1 Clustering of Known Motifs and Their New Instances

We have identified several clusters that correspond to known motifs including GNRA tetraloop,

kink-turn, C-loop, sarcin-ricin, reversed kink-turn, hook-turn, E-loop and tandem sheared

motifs. The clustering results of these known motifs and corresponding results generated by

LENCS method are summarized in Table 4.1. Our clustering method, RNAMSC (RNAMotifScan

based Clustering), shows generally higher performance comparing to the LENCS method. The

clustering results for these known motif families will be discussed separately below.

4.3.1.1 GNRA tetraloop

The GNRA tetraloop is an RNA structural motif in the hairpin loop region featured by its

consensus sequence. The motif is found to interact with proteins [146] or other RNA struc-

tural elements [39, 99]. FR3D identified 21 GNRA tetraloop motif instances from 1S72 23S

rRNA and 12 from 1J5E 16S rRNA. Our clustering method separates the GNRA tetraloop

into two clusters: CH1 and CH3. The cluster CH1 contains tetraloops with consensus se-

quence ‘GNGA’ and the cluster CH3 contains tetraloops with consensus sequence ‘GNAA’.

The separation of the GNRA tetraloop motif is due to the strict universal P -value cutoff

applied. The clustering performances of the two sets of GNRA tetraloop motif are sum-

marized in Table 4.1. One potential novel GNAA tetraloop instance has been identified in

cluster CH3. This novel instance and a well-established GNRA tetraloop instance are shown

in Figure 4.1. The base-pairing patterns and 3D geometries of these two instances are very

similar.
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Figure 4.1: The base-pairing patterns and superimposition of two GNRA tetraloop motif instances clus-

tered in CH3. (a) A known GNRA tetraloop instance in 1S72, chain ‘0’, 252-257. (b) The novel GNRA

tetraloop instance in 1S72, chain ‘0’, 733-738. (c) The superimposition between these two motif instances

(red: (a); blue: (b)).

Several GNRA instances were missed due to two major reasons: unusual base-pair replace-

ment and nucleotide insertion. For example, the GNRA tetraloop instance 1S72, chain ‘0’,

1326-1331 was missed due to the fact that the G1327-A1330 sheared pair is replaced by trans

W/H pair, while the instances 1S72, chain ‘0’, 1706-1712 and 1J5E, chain A, 691-696 were

missed because the closing canonical pair is replaced by sheared pairs. Furthermore, the in-

stance 1J5E, chain A, 726-731 was missed due to the deletion of base pair G727-A729. The

GNRA tetraloop instances 1S72, chain ‘0’, 481-487, 493-499, 1054-1060, 1275-1281, 1468-

1474 and 1793-1799 were missed due to one nucleotide insertion within the hairpin loop. The

other missed instances, 1J5E, chain A, 1030A-1030D, was not included into the candidate

set for its irregular nucleotide indexing.
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Figure 4.2: The base-pairing patterns and structures of the two kink-turn motif instances clustered in

CL7. (a) A known kink-turn instance found in 1S72, chain ‘0’, 1147-1155/1212-1216. (b) The potential

novel kink-turn instance found in 1J5E, chain A, 242-247/277-284. The dashed edges in the base-pairing

patterns (both in this figure and in the remaining figures of this chapter) correspond to additional base pairs

annotated but not included into the consensus structure. The regions that are not part of the motif are

colored gray (both in this figure and in the remaining figures of this chapter).
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Figure 4.3: The base-pairing patterns and structures of the two kink-turn motif instances clustered in CL6.

(a) A novel kink-turn instance found in 1J5E, chain A, 515-521/528-536. (b) A novel kink-turn instance

found in 1J5E, chain A, 826-861/868-874.
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4.3.1.2 Kink-turn

The kink-turn motif is an asymmetric internal loop characterized by the ‘kink’ observed in

its longer strand which causes a sharp turn between its two supporting helices [83, 84]. It

is known to be an important recognition site for interaction with proteins or other RNA

elements [75, 135]. We have identified four out of nine known kink-turn instances in 1S72

23S rRNA and the known instance in 1J5E 16S rRNA in cluster CL15 with no false positive

prediction (see Table 4.1). Base-pair variations are frequently observed in kink-turn motif

instances, making the sensitivity of both base-pairing pattern based clustering methods

relatively low. Therefore, some potential novel kink-turn instances can also be found in

other clusters besides cluster CL15, as we will describe in details below.

One potential novel kink-turn motif instance is clustered with a known kink-turn motif

instance in CL7. The highly conserved bulged nucleotides that correspond to the ‘kink’ can

be found at U1149-A1150 in Figure 4.2 (a) and A279-C280 in Figure 4.2 (b). Interestingly,

two nucleotides (U244, C245) are inserted in the novel instance, which induces an ‘S’ shaped

bend at the opposite strand of the ‘kink’ (see Figure 4.2 (b)). The insertion has altered both

base-pairing pattern and geometry of the instance with unknown corresponding biological

impact. However, we can still categorize this instance as kink-turn motif based on its base-

pairing and geometric similarity with the known kink-turn instance.

Another kink-turn cluster, CL6, contains two potential novel kink-turn instances. The base-

pairing patterns and 3D geometries of both instances are very similar to known kink-turn

instances. However, both instances contain two pairs of cross-strand base-triples (see Fig-

ure 4.3). These base-triples form two ‘Z’ shaped interactions (G515-C536-G521-C528, U516-
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A533-A520-G529 in Figure 4.3 (a) and C826-G874-G861-C868, U827-A872-A860-G869 in

Figure 4.3 (b)). Unlike regular kink-turn instances, the two pairs of cross-strand base-triples

extrude two bulge regions, one at each strand. In the first instance, G517-C519 are also

bulged out in addition to G530-A532 that corresponds to the ‘kink’, making a much more

severe turn at the companion strand comparing to regular kink-turn instances (see Fig-

ure 4.3 (a)). More interestingly, in the second instance, an A-form helix of ten canonical

base pairs is inserted at this region and interrupts the kink-turn instance (see Figure 4.3 (b)).

These two motif instances reveal a potential new form of kink-turn motif where two bulges

are extruded. It is also interesting to study the impact of the insertions on the binding

activity of kink-turn motif.

4.3.1.3 C-loop

The C-loop motif is an asymmetric internal loop characterized by the base triple induced

from the cytosine residue [83]. We clustered two out of three known C-loop motif instances

in 1S72 23S rRNA and the only known C-loop motif in 1J5E 16S rRNA in cluster CL24 (see

Table 4.1). We missed one known C-loop motif instance in 1S72, chain ‘0’, 958-963/1005-

1008 because of two nucleotide insertions, one at each strand (G960 and A1006). Also, four

additional base-pairs are annotated in this instance, which indicates unusual properties of

this C-loop motif instance.
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Figure 4.4: The base-pairing patterns, structures and superimposition of the three base pairs formed near

the bulged ‘G’ of four sarcin-ricin motif instances clustered in CL13. (a) A known sarcin-ricin instance

found in 1S72, chain ‘0’, 1368-1372/2053-2056. Three novel sarcin-ricin instances: (b) 1J5E, chain A,

483-487/447-450, (c) 1S72, chain ‘0’, 1971-1974/2009-2010 and (d) 1S72, chain ‘0’, 1251-1254/911-912. (e)

The superimposition of three base pairs that characterize the sarcin-ricin motif in these four motif instances

(red: (a); blue: (b); green: (c); magenta: (d)).

4.3.1.4 Sarcin-ricin

The sarcin-ricin motif (or sometimes referred as the G-bulge motif) is an asymmetric inter-

nal loop that is known to be involved in the interaction between the ribosomal RNA and

elongation factors [125]. There are ten known sarcin-ricin motif instances in 1S72 (nine

in 23S and one in 5S rRNA) and two in 1J5E. We have successfully clustered all twelve

known sarcin-ricin instances in cluster CL13, while the LENCS method only clustered eight

of them (six in 1S72 and two in 1J5E, see Table 4.1). Three potential novel instances are

also included in cluster CL13, which are presented in Figure 4.4.

Figure 4.4 (a) shows a well-established sarcin-ricin motif instance in CL13. In its base-

pairing pattern, we can observe that the characterized bulged G1370 is interacting with

its consecutive nucleotide U1371 using cis SE/H pair, followed by two non-canonical base
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pairs: trans W/H U1371-A2054 and trans W/SE A1372-G2053. These three base pairs

have been used to characterize the sarcin-ricin motif [28, 33, 116]. Figure 4.4 (b) shows

the first potential novel sarcin-ricin instance found in cluster CL13. This potential instance

shows base-pair variations in the two pairs before the bulged G (cis W/W C483-G450 and

cis W/H G484-C459) comparing to the known instance. However, it is conserved for the

three characteristic base pairs. The 3D geometry of this potential instance also shows high

similarity comparing to the known sarcin-ricin motif instance, where an ‘S’ shape turn can

be observed.

The two potential sarcin-ricin motif instances, shown in Figure 4.4(c) and (d), were identified

from the junction loop regions instead of internal loop regions (where sarcin-ricin motif

instances are usually found). It is worth noting that some known sarcin-ricin motif instances

can also be found in the junction loop regions (e.g., the known sarcin-ricin motif instance at

1S72, chain ’0’, 380-384/405-408). These two potential sarcin-ricin instances are conserved in

the three characteristic base pairs but without the other two base pairs. The absence of the

other two base pairs makes the two instances smaller than regular sarcin-ricin motif instances

and results in large geometric variations (i.e., the ‘S’ shape turn cannot be observed for these

two instances). However, the local geometries associated with the three characteristic base

pairs are still highly conserved in these two motif instances (see Figure 4.4 (e)), suggesting

potential functional similarity between these two motif instances and regular sarcin-ricin

motif instances. Nevertheless, the specific functions of these potential motif instances still

need to be experimentally investigated.
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4.3.1.5 Reverse Kink-turn

The reverse kink-turn motif is also an asymmetric internal loop that produces a turn between

two supporting helices such as kink-turn motif but towards the opposite direction [78]. There

are three known reverse kink-turn motif instances in 1S72. We have clustered all three known

instances in cluster CL18 with no false positive predictions (see Table 4.1). The LENCS

method has also clustered these three known reverse kink-turn instances, however, with four

unrelated instances. The reason for the false positive predictions is that the LENCS method

does not consider nucleotide when determining base-pair isostericity. For example, a false

prediction made by LENCS in 1S72, chain ‘0’, 2307-2310/2298-2300 contains a trans H/SE

U2308-G2299 base pair. This base pair is matched to the trans H/SE A-C or A-G pair in

the true reverse kink-turn instances. Although these base pairs have the same orientation

and interacting edges, trans H/SE U-G pair is not isosteric with trans H/SE A-C or A-G

pair. In our clustering framework, strict definition of base-pair isostericity is applied to avoid

such unexpected false predictions.

Interestingly, two of the known reverse kink-turn instances (1S72, chain ‘0’ 1527-1529/1662-

1664 and 1531-1533/1658-1660) appear to be located close to each other, and manual in-

spection of the region suggests an instance of tandem reverse kink-turn (see Figure 4.5). As

there are only three known reverse kink-turn instances in the entire 23S rRNA, the chance

of finding a tandem case is extremely low. Therefore, the tandem reverse kink-turn is likely

to be required for certain biological functions. On the other hand, we investigated the other

known reverse kink-turn instance (1S72, chain ‘0’ 1132-1134/1228-1230) but did not found

a tandem counterpart, which implies different functional roles played by single and tandem

reverse kink-turn motif instances.
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Figure 4.5: The tandem reverse kink-turn motif instance found in 1S72, chain ‘0’, 1515-1540/1645-1670.

The two reverse kink-turn instances are colored. The ‘kink’ regions are indicated by the two boxes.

4.3.1.6 Hook-turn

The hook-turn motif is found at regular A-form helix regions, where one of the nucleotide

chain sharply folds back towards the opposite direction [124]. We identified two out of

three known hook-turn motif instances in 1S72 23S rRNA with no false prediction (see

Table 4.1). The LENCS method identified all three known hook-turn instances but include

two unrelated motif instances. Figure 4.6 shows the two known hook-turn motif instances

clustered in CL17, where conserved base-triples can be observed in both instances (G2267-

C2243-A2244 and G2810-G2674-A2675). These two base-triples are both annotated solely

by MC-Annotate, which indicates that these base-triples are likely to be real instead of

being artifacts of combining RNAVIEW and MC-Annotate annotations (see Figure 4.6 (c) for

94



their superimposition). However, RNAVIEW does not predict these base-triples, making the

LENCS method (which solely considers RNAVIEW annotations) include the two unrelated motif

instances. This base-triple is not predicted by either RNAVIEW or MC-Annotate in the other

known hook-turn motif instance, 1S72, chain ‘0’, 1457-1460/1483-1485, hence it was missed

by our clustering method.
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Figure 4.6: The base-pairing patterns and superimposition of the base-triple interactions of the two known

hook-turn instances identified in cluster CL17. (a) 1S72, chain ‘0’, 2242-2245/2256-2258. (b) 1S72, chain

‘0’, 2673-2676/2809-2811. (c) The superimposition of the base triples in these two motif instances shown in

(a) and (b) (red: (a); blue: (b)).

4.3.1.7 E-loop

The E-loop motif is a symmetric internal loop that contains the following base pairs: a

trans H/SE base pair, a trans W/H or trans SE/H base pair, and a cis bifurcated or trans

SE/H base pair as summarized by Leontis et al. [79]. We notice that there are confusions
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in distinguishing E-loop and sarcin-ricin motifs since they share similar base-pairing pat-

tern (i.e., the three base pairs that define the E-loop motif). Another reason can be that

bacterial 5S rRNA contains an E-loop motif while the corresponding region in H. marismor-

tui appears to be sarcin-ricin motif. In this chapter, we consider an instance without the

bulged G (and the base pair formed with its consecutive nucleotide) to be E-loop motif and

otherwise sarcin-ricin motif.

Using this criterion, there are two E-loop motif instances in 1S72 23S rRNA and two in

1J5E 16S rRNA. We clustered all four instances in cluster CL19, with two false positive

predictions that appear to be tandem-sheared motif instances (see Table 4.1). The LENCS

method has also successfully identified all four instances, but include three other unrelated

motif instances, where one of them appears to be a sarcin-ricin motif instance (1J5E, chain

A, 446-450/483-488) and the other two are kink-turn motif instances (1S72, chain ‘0’, 241-

244/267-270 and 1J5E, chain A, 683-687/703-707). The inclusion of false positive prediction

by both methods even under strict P -value cutoff and graph isomorphism indicates that

the universal cutoff which can optimize the overall clustering performance may not be strict

enough for E-loop motif.

4.3.1.8 Tandem-sheared

The tandem-sheared motif consists of two consecutive sheared base pairs and is frequently

observed in regular helix regions [31]. There are four known tandem sheared motif instances

in 1S72 23S rRNA and two in 1J5E 16S rRNA. The LENCSmethod has identified all six known

tandem sheared motif instances but included two kink-turn motif instances. We identified
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two out of six known instances but with no false positive prediction in cluster CL23 (see

Table 4.1). The tandem-sheared instances identified by us are strictly closed by canonical

base pairs at both ends, while the other missed instances are surrounded by additional non-

canonical base pairs. We have also identified a potential novel tandem-sheared motif instance

(also strictly closed by canonical base pairs) in cluster CL23. The base-pairing patterns and

structures of a known tandem-sheared motif instance and the potential novel instance are

shown in Figure 4.7. The colored backbone regions correspond to the tandem-sheared base

pairs, and slight inward turns can be observed in these regions from both instances.
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Figure 4.7: The base-pairing patterns and structures of two tandem-sheared instances identified in cluster

CL23. (a) A known tandem-sheared instance found in 1S72, chain ‘0’, 2874-2875/2882-2883. (b) The novel

tandem-sheared instance found in 1J5E, chain A, 1260-1261/1274-1275.
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4.3.2 Novel RNA Structural Motif Families

4.3.2.1 The ‘Rope Sling’ Motif
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Figure 4.8: Potential novel motif family that resembles the rope sling. (a) and (b) The base pairing patterns

of structural components found in 1S72, chain ‘0’, 1254-1255/1101-1108 and 1J5E, chain A, 880-881/569-575,

respectively. (c) and (d) Local structures around motif instances shown in (a) and (b), respectively. (e) The

superimposition between these two motif instances (red: (a); blue: (b)).

We have discovered a highly asymmetric bulge loop motif family that resembles the rope

sling. The corresponding motif cluster (CL1), which has the lowest average P -value, consists

of two motif instances: one from 1S72 23S rRNA and the other from 1J5E 16S rRNA. The

base-pairing patterns and structures of these two motif instances are shown in Figure 4.8.

Both motif instances consist of two highly asymmetric strands, where the longer ones have

seven to eight nucleotides while the shorter ones have only two nucleotides. The first and

last nucleotides of the longer strands form canonical base pairs with the two nucleotides in

the shorter strands, leaving the other nucleotides in the longer strands bulged out from the

main helix and resulting in a loop similar to rope sling (see Figure 4.8). Two consecutive

nucleotides (C1105-A1106 and A572-A573) within the bulged chains form cis SE/H non-

canonical interactions.
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Several evidences indicate that the functionalities of the rope sling motif are carried out

by its longer strand. First, a non-canonical cis SE/H base pair can observed in the longer

stand of both motif instances (C1105-A1106 and A572-A573). The nucleotide mutation

(C1105 to A572) in these two base pairs is compensated by their isostericity. Second, two

nucleotides in the longer strand of both motif instances also participate in non-nested canon-

ical interactions (C1102-G1241 and C1103-G1240 in the first motif instance and G570-C866

and U571-A865 in the second motif instance). These conserved non-nested interactions also

indicate the structural importance of these regions. Finally, high geometric similarity of the

longer strands can also be observed from the superimposition between these two motif in-

stances (see Figure 4.8 (e)). Therefore, we conjecture that the longer strands may determine

the functionalities of the rope sling motif. Using RNAMotifScan, we also identified this motif

from both 16S and 23S rRNA in H. marismortui, T. thermophilus and E. coli. The recur-

rence of this motif further indicates its structural or functional importance for ribosomal

RNAs.

4.3.2.2 Motif that Increases the Twist at the Helical Region

Two internal loop motif instances, both closed by an A-U and a C-G canonical base pairs,

were clustered in CL2. The conserved non-canonical base pairs between the two motif

instances are the cis W/SE pairs formed at C1383-A935 and C36-A47 (see Figure 4.9 (a)

and (b)). The sequences are highly conserved at the left strand, where only one nucleotide

substitution at the unpaired region can be observed (U1381 mutated to A34). On the other

hand, a two-nucleotide deletion (between G933 and C934) is found at the right strand in

the first motif instance. The nucleotide deletion alters the interaction between G933 and the
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left strand, violating the trans SE/H U33-G43 pair that can be observed in the second motif

instance. The trans SE/W G43-C46 pair cannot be formed either, since G933 and C934 are

too close to each other.
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Figure 4.9: Potential novel motif family that increases the twists at the helical region. (a) and (b) The

base pairing patterns of structural components found in 1J5E, chain A, 933-935/1380-1384 and 1S72, chain

‘9’, 33-37/43-47, respectively. (c) and (d) Local structures around the motif instances shown in (a) and (b),

respectively. (e) The superimposition between these two motif instances (red: (a); blue: (b)).

Superimposition of the two motif instances clearly reveals high structural similarity between

the left strands (see Figure 4.9 (e)), where two nucleotides (U1380, C1383 in the first motif

and U33, C36 in the second motif) participate in the conserved base triple. The base triple

indicates that the two nucleotides in the left strand are spatially close to each other. As a

result, the left strand is likely to exhibit an unusual backbone conformation, such as a tight

bend that can bring these two nucleotides together. Visualization of the local structures

around the motif instances clearly shows increased twists at the corresponding regions (see

Figure 4.9 (c) and (d)). The two strands of the motif instances are nearly parallel to each

other and form planes that are perpendicular to the main helical axes, suggesting rather

acute twists induced by this motif.
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The functionalities of this motif family remain unclear without further experimental investi-

gations. However, some evidences suggest potential binding activity of the motif. The twists

deepen the groove where the potentially bound biomolecules can reside. At the same time,

they also narrow down the helix, which can tightly clip the biomolecules that would have

been embedded. Moreover, both motif instances are located at the surfaces of the ribosomal

RNAs, which further suggests binding potentials.

4.3.2.3 New Subfamily of Hexaloop Motif
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Figure 4.10: A novel type of hexaloop motif subfamily detected by our clustering method. (a) and (b)

Base pairing pattern of the two hexaloop motif instances identified in CH6: 1S72, chain ‘0’, 1196-1203 and

1S72, chain ‘0’, 1916-1923, respectively. (c) Superimposition between the motif instances shown in (a) and

(b) (red: (a), blue: (b)). (d) and (e) Base pairing pattern of the two hexaloop motif instances identified in

CH8: 1S72, chain ‘0’, 312-319 and 1J5E, chain A, 1314-1323, respectively. (f) Superimposition between the

motif instances shown in (d) and (e) (green: (d), magenta: (e)). (g) Superimposition of the four hexaloop

motif instances.

We have identified two clusters that correspond to the hexaloop motif (CH6 and CH8).

Cluster CH6 contains two hexaloop instances from 1S72 23S rRNA, both of which share the

common base-pairing pattern that two trans SE/H base pairs stack together. The nucleotide
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U1198 in the first motif instance is also annotated to be pairing with A1200, while this base

pair is absent in the second motif instance (see Figure 4.10 (a) and (b)). This base-pairing

variation results in the geometric difference that A1199 in the first motif and A1919 in the

second motif are extruded towards different directions (see Figure 4.10 (c)). Other than this

difference, the backbones and the rest of nucleotides can be well superimposed, indicating

true motif recurrence.

Cluster CH8 contains one motif instance from 1J5E 16S rRNA and one from 1S72 23S rRNA,

both of which share the base-pairing pattern that trans SE/H G-A pair (G314-A316 and

G1316-A1318) stacks on trans W/H U-A pair (U313-A317 and U1315-A1319). The second

motif instance contains two inserted cytosine residues between C1320 and G1323, which

likely destruct the trans SE/H A-A pair (A317-A319) that can be observed in the first motif

instance (see Figure 4.10 (d) and (e)). However, superimposition between the two motif

instances reveals that the nucleotide insertions are well accommodated (see Figure 4.10 (f)).

Therefore, although the insertion increases the hairpin loop length and the motif instance

cannot be literally called ‘hexaloop’, we consider this instance to be true hexaloop motif due

to its conservation in both base pairing pattern and 3D geometry.

The hexaloop motif family has been previously registered in the SCOR database [127], which

defines only one hexaloop cluster in contrast to two subfamilies of hexaloop motif as suggested

by our clustering results. SCOR identified all hexaloop motif instances found by us except

the one with eight nucleotides. We consider that the two clusters of hexaloop motif have

different sequence signatures and more importantly, different base pairing patterns (the trans

SE/H G-A pair in CH6 comparing to the trans W/H U-A pair in CH8), therefore, should be

classified into two different subfamilies. Indeed, superimposition of the four hexaloop motif

instances clearly reveals two subfamilies of the motif that are consistent with our clustering
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predictions (see Figure 4.10 (g)). In this case, motif characterization should involve thorough

consideration of both base pairing pattern and geometry, and classification of motif solely

based on their sizes should be revised to incorporate such information.

4.4 Discussion

In this chapter, we studied RNA structural motifs in ribosomal RNAs using a de novo

clustering method based on base-pairing patterns. The similarities between RNA structural

motifs were evaluated by RNAMotifScan, which is a secondary structural alignment tool that

considers non-canonical base pairs and their isostericity. We have significantly improved

the existing clustering performance (see Table 4.1) achieved by the LENCS method through

addressing the three issues raised in the Introduction section. The clustering framework can

benefit future RNA structural motif analysis.

The newly identified motif instances were not discovered by previous base-pairing pattern

based search methods since they contain base-pair variations. The base pairs that are con-

served in these instances can be critical in forming the motifs, and further studies should be

conducted to elucidate their roles in maintaining proper functionalities of the motifs. On the

other hand, the base-pair variations should also be investigated to study functional evolution.

Finally, more comprehensive consensus models can be built to facilitate future model-based

searches by combining both information. The discoveries of novel motif families are also

exciting. These new motifs may lead to the discovery of unknown structure-function rela-

tionships and define new building blocks for the RNA architecture, significantly improving

our understanding of the RNA structural motifs.
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CHAPTER 5: GENOME-WIDE STRUCTURAL CLUSTERING

OF RNA SECONDARY STRUCTURES

In Chapter 4, we present an RNA structural motif clustering pipeline called RNAMSC. The

new pipeline is highly accurate and robust, and has significantly improved over the existing

hierarchical clustering methods. In this case, it is desirable that we can take advantage

of this clustering pipeline, and conduct a genome-wide clustering analysis of the ncRNA

elements. To achieve this goal, we replace RNAMotifScan with an RNA secondary structure

alignment tool. We apply this new RNA secondary structure clustering pipeline to analyze

the post-transcriptional control elements from fly 3’-UTR.

Post-transcriptional control elements regulate the expression of genes after the transcription

of the genes, and such mechanism is considered to offer an additional layer of regulation to

fine-tune the gene expressions in the biological system. Many of the post-transcriptional con-

trols elements locate at the 3’-UTR of the mRNA, and recruit corresponding protein factors

through their sequence motif or secondary structures (i.e. Nanos [30] and Histone [143]). In

this case, clustering the secondary structures from the 3’-UTRs has a great potential to find

co-regulated or co-expressed gene clusters whose expressions are controlled by their 3’-UTR

elements. These gene clusters will provide invaluable information for us to further understand

the cellular functions of these genes. In this chapter, we present the work flow of the new

RNA secondary structure clustering pipeline, its application on the Drosophila melanogaster

3’-UTR elements, and detailed functional analysis of the resulting gene clusters.
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5.1 Limitation of Clustering Analysis of Post-transcriptional Control Elements

Post-transcriptional control is the regulation at the protein level through the existing mR-

NAs by modifying their stability, translation efficiency and subcellular locations. Many of

the regulations are found to be triggered by RNA-protein or RNA-RNA interaction, which

usually occur in the 3’ untranslated regions (3’-UTRs) of the mRNA [19, 90, 92]. In eu-

karyotes, the sequence or structural elements in the 3’-UTR of some genes under regulation

serve as ‘zip-code’, determining the fate of their corresponding mRNAs through interaction

with transportation or entrapment proteins, or signalling molecules [67]. For instance, the

NOS translational control element, cis-regulates the expression of Nanos protein through

binding with the Smaug protein, which in turn determines the proper morphogenesis of the

Drosophila embryo [30]. The sequence and structure features of the translational control

elements, which determine the fate of the corresponding mRNA through specific recogni-

tion of partner RNAs or proteins, are thus critical in understanding the expression pattern

and functionalities of the corresponding genes. For example, the conserved histone 3’-UTR

stem loop [41] suggests that the histone genes are co-regulated and co-expressed, which im-

plies their potential collaborations in nucleosome packing. In this work, we are particularly

interested in identifying common non-coding RNA (ncRNA) elements from the 3’-UTRs,

and using such information to infer the corresponding genes’ co-regulation or co-expression

patterns.

Recently, Rabani et al. identified a number of 3’-UTR ncRNA elements from Drosophila

melanogaster genome [104] using improved stochastic context-free grammar (SCFG) [46].

They detected several structured ncRNA elements from experimentally verified co-localized

genes [77]. Because experimental determination of the gene expression patterns (both tem-
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poral and spatial) can be expensive, we propose to computationally infer the genes’ potential

co-regulation pattern through structural clustering before conducting real experiments. Cur-

rently, there exist many computational tools for de novo identification of ncRNA elements

from multiple alignments, such as RNAz [137], Evofold [103], MSARI [29], QRNA [108] and

ddbRNA [36] etc. We will first use these ncRNA identification tools to reveal the candidate

structured regions in the 3’-UTRs, and then use pairwise structural alignment tools such as

LocARNA [142], which implements the alignment of pairing-probability matrices [65, 93], to

compute the structural similarities between the candidate ncRNA elements. Finally, we will

cluster the candidate ncRNA elements from 3’-UTRs based on their sequence and structural

similarity, and predict the co-expression patterns of the genes whose 3’-UTR RNA elements

are clustered.

However, the clustering performance, despite the fact that high-quality pairwise alignments

can be generated by many state-of-the-art alignment tools (i.e. LocARNA achieves over 80%

sum-of-pair score even for RNA sequences with <40% identity), remain relatively low (the

F-measure for clustering pipeline based on LocARNA is only 64.8%). We conjecture that the

performance bottleneck may exist in the clustering algorithm itself, rather than the structural

alignment quality. Specifically, we notice that the local structural alignment scores, which

appear to be length-dependent, are fed into the hierarchical clustering algorithm without

normalization. The consequence is that hierarchical clustering may merge longer ncRNA

candidates with higher priority, rather than those with higher structural similarity. Such

problems also exist in many of the existing clustering pipelines, such as [69, 107, 129, 131].

To normalize the structural alignment scores, we simulate the RNA structure alignment score

distribution through a number of randomly generated alignment scores. We then compute

statistically meaningful P -values for the structural similarity scores. We also take advantage
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of the normalized measures, and devise a more efficient and robust CLique finding CLustering

algorithm (CLCL), to replace the traditional hierarchical clustering. In addition, CLCL is also

capable of outputting disjoint clusters without further human interaction, which is a highly

desirable feature when analyzing a large data set.

We have conducted benchmark experiments against the LocARNA clustering pipeline on

Rfam [57] to demonstrate the performance gains made by our proposed clustering method

improvement. We chose the same data set (see Materials and methods section) and struc-

tural alignment tool (LocARNA) for the comparison. We have seen that by incorporating the

clique clustering method, we are able to increase the F-measure, a comprehensive measure-

ment for recall and precision, from 64.8% to 74.9%. A more detailed analysis suggests that

the score normalization is responsible for ∼ 70% of the performance gain, and the applica-

tion of CLCL is responsible for ∼ 30% of the performance gain. Note that in order to reach

the LocARNA clustering performance, the correct Rfam classification is required to parse the

hierarchical tree and determine the optimal cutting level with the specified recall rate. Such

information is not usually available, and the optimal cutting level for the benchmark data

set is not necessarily optimal for the data set of interest. On the other hand, our results can

be achieved completely automatically and require no additional information. As a result, we

have provided a novel clustering pipeline which is more efficient, automatic, and accurate.

We then have applied our clique clustering method to the 3’-UTR of D. melanogaster genes

and have found 184 3’-UTR ncRNA families, among which 91.3% are predicted to contain

a structural element by RNAz. It implies that most clusters identified in this study contain

RNA elements with conserved sequences and structures, which further implies that they can

possibly be co-regulated. The histone stem-loop are rediscovered among these clusters with

high accuracy, in addition to many other gene clusters whose cooperations under certain
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physiological processes are suggested by existing studies. In addition, we also present two

other gene clusters, where one cluster contains genes that are highly expressed in male

Drosophila, and the other contains genes that are essential for septate junction function in

Drosophila.

5.2 Methods

5.2.1 Generating Random RNA Structural Alignment Scores

We propose that the valid random ncRNA structures should have the following two prop-

erties: (1) low free energy such that they can be considered to be stable under natural

conditions, and (2) the same length to rule out the length bias. Therefore, given the ncRNA

sequence of interest, we generate the random RNA sequences that preserve the original di-

nucleotide frequency and length using the Altschul-Erickson algorithm [4]. Then, we use

RNAfold [66] to compute the base-pairing probabilities of the random ncRNA sequences. Fi-

nally, we aligned pairing probability matrices of the random sequences with the probability

matrix of the sequence of interest using LocARNA. We consider the resulting alignment scores

as the background score distribution associated with the sequence of interest.
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Figure 5.1: Four distributions that have been used to model the RNA structure alignment scores. (a)

Gumbel’s distribution. (b) general extreme value distribution. (c) Gamma distribution. (d) normal distri-

bution. The mean square error (MSE) is used to measure the goodness of fit. The general extreme value

distribution can optimally model the local structural alignment scores.
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5.2.2 Optimal Parameters Fitting

We intend to find a distribution that can be used to model the simulated background align-

ment scores. Note that the local sequence alignment scores have been shown to follow the

extreme value distribution [70] while the behavior of local structural alignment score has not

yet been studied. To investigate the local structural alignment score distribution, we tested

two forms of extreme value distributions. The first one is the widely used two-parameter

Gumbel’s distribution, and the second one is the three-parameter general extreme value dis-

tribution (using MATLAB built-in functions evfit and gevfit). We also fit the observed

alignment score frequency with Gamma distribution and normal distribution (using MAT-

LAB built-in functions gamfit and normfit), as they have also been previously used to

model sequence alignment scores [100]. The fitting results of these four distributions with

background alignment scores associated with the Rfam 5S rRNA consensus structure, are

shown in Figure 5.1.

The goodness of fit is calculated using the mean square error (MSE) between the sampled

alignment score frequencies and the theoretical frequencies under certain distribution as-

sumptions. The experiment results suggest that Gumbel’s distribution may not be a model

for the local sequence alignment score distribution. Therefore, the more sophisticated three-

parameter general extreme value distribution is used for all successive analysis.
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5.2.3 Extracting ncRNA Clusters

After curve fitting, we can estimate the statistical significance of the pairwise alignment

scores through the computation of their P -values. We denote the alignment score distribution

associated with the ncRNA element i as Di. Given the two-dimensional matrix S, where Si,j

is the pairwise structural alignment score between ncRNA element i and j, denote P (Si,j|Di)

as the P -value of the alignment score Si,j when assuming Di as background. Let Pc be an

empirical P -value cutoff, we can convert S into a boolean matrix I, where Ii,j indicates

whether the ncRNA elements i and j are significantly structurally similar to each other:

Ii,j =

 1 if max(P (Si,j|Di), P (Si,j|Dj)) ≤ Pc,

0 otherwise.
(5.1)

Using this conversion, we are able to remove most of the insignificant edges between candi-

date structures and speedup the successive clustering analysis. The traditional hierarchical

clustering generates a hierarchical tree and requires human intervention to output disjoint

clusters. Since the number of candidate RNA elements in genome-wide analysis can be

large, it is desirable to devise an algorithm that can automatically output disjoint clusters

without human intervention. We formulate the cluster extraction problem into a clique-

finding problem. Inspired by Bron-Kerbosch’s algorithm [23] and Cluster Affinity Search

Technique (CAST) algorithm [16], we devised a heuristic algorithm named CLique finding for

CLustering (CLCL) to solve this problem. The pseudo-code for each stage of the CLCL algo-

rithm, which finds the potential maximum clique in a given graph, is outlined in Figure 5.2.
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The major idea of the algorithm is the following. We keep a set (the set C in Figure 5.2)

which stores vertices that form a clique (i.e each vertex in the set is connected to all other

vertices in the set). As the algorithm proceeds, we add a new vertex (vi) to C at each phase.

The new vertex has to connect to all vertices in C. To ensure this property, we associate

each vertex with its clique connectivity (cc(vi) in Figure 5.2), which depicts the number of

edges between vi and the vertices in C. If vi connects to all vertices in C, it will be a valid

candidate for expanding C. Since we try to identify a clique that is as large as possible, we

will select the candidate vertex that has the largest degree, which implies higher potential

of connecting to other vertices that have not yet been added. The algorithm will terminate

when no candidate vertex is found.

To analyze the time efficiency of this algorithm, denote the number of vertices in the graph

as |V |, the edges in the graph as |E|, the size of the maximum clique as z. We claim that the

algorithm outlined in Figure 5.2 can be finished in O(z|E|) time. To see the time complexity,

we can divide the algorithm into phases, with each phase corresponding to an execution of the

‘while’ loop. Each phase contains two ‘for’ loops, and both ‘for’ loops are indexed by existing

edges in the graph. Therefore the running time for each phase is bounded by O(|E|). Since

each phase includes exactly one vertex into the clique, the total number of phases is clearly

O(z). As a result, the time complexity of the algorithm shown in Figure 5.2 is O(z|E|).

After analyzing the time complexity for extracting one clique from a given graph, we can

extend the analysis to the algorithm’s application in extracting all cliques from a given graph.

As soon as a clique has been identified, the corresponding vertices will be removed from the

original graph, and the same algorithm will be applied to the remaining graph to identify

the next clique. Let the size of the ith clique be zi, and the time required for extracting the
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ith clique is Ti, the total time T that is required for extracting all cliques can be written as:

T =
∑

Ti =
∑

O(zi|E|) = O(
∑

zi|E|) = O(|V ||E|). (5.2)

Since most of the biological graphs are scale-free [12], we can expect that O(|E|) = O(|V |),

and CLCL will be finished in quadratic time. The CLCL algorithm thus outperforms the

traditional hierarchical clustering algorithm with respect to both the running time and the

capability of automatically generating disjoint clusters.

The algorithm will output disjoint cliques in the graph. However, the complete connection

restriction of clique definition may be too stringent, such that in some cases it separates an

RNA family into many subfamilies. To compensate for this drawback, we merged the output

cliques which have high connectivity. Similar to clustering coefficient, the connectivity kU,V

between cliques U and V can be written as:

kU,V =

∑
i,j IsConnect(v

U
i , v

V
j )

|U | ∗ |V |
, (5.3)

where vUi is ith vertex in clique U , and |U | is the size of the clique U . IsConnect is a boolean

function defined as the following:

IsConnect(vi, vj) =

 1 if vertex vi connects with vertex vj,

0 otherwise.
(5.4)

kU,V is empirically set to 0.4 for all experiments.
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Figure 5.2: An overview of the CLCL algorithm. At each stage, the heuristic algorithm tries to identify the

clique with largest size from the given unit-weighted, undirected graph. Notation: (vi, vj) denotes an edge

connecting the vertices vi and vj ; adj(v) denotes the set of vertices that are adjacent to vertex v.

114



5.2.4 Rfam Data Set

We generated two data sets to investigate the performance of the clique clustering method.

The first data set is exactly the same as the one used in the LocARNA clustering benchmark.

It contains 3,901 individual RNA structures from 499 families in the Rfam [57] seed align-

ment (with sequences longer than 400 bp and having >80% sequence identities filtered out).

This data set is referred to as ‘Rfam’ data set in the following sections. The second data set

contains 263 individual RNA structures from seven families in Rfam seed alignment whose

average sequence identities are <50%. These families include 6S, RNase MRP, RNaseP nuc,

SECIS, T-box, tmRNA and yybp-ykoy. We compiled this data set to confirm that the clique

clustering pipeline will also work well on ncRNA families with low sequence identity. This

data set is referred to as ‘Rfam LowID ’ data set in the following sections.

5.2.5 D. Melanogaster 3’-UTR Candidate ncRNA Elements

The D. melanogaster genome and multiple alignments were downloaded from UCSC genome

browser (version dm3). The gene annotation was taken from FlyBase (D. melanogaster

version 5.12) [43]. The multiple alignments of the 3’-UTR of each gene were cut and fed

into standard RNAz [137] analysis pipeline (using 120 bp window size and 40 bp step size).

Sequences with RNAz RNA class probability value greater then 0.5 were taken as potential

candidate regions. In total, 3,657 candidate regions were collected. Their base-pairing

probability matrices were computed using RNAfold [66].
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5.3 Results

5.3.1 Benchmarking using Rfam Database

Here we compare the clustering performance of our clique clustering method, to the tra-

ditional hierarchical clustering method (as used in the LocARNA pipeline). The F-measure,

which is the harmonic mean of recall and precision, are compared between the two cluster-

ing experiments. Figure 5.3 (a) shows the F-measure for LocARNA hierarchical clustering on

Rfam data set (red) and the clique clustering on Rfam (green). It is observed that the clique

clustering pipeline outperforms the hierarchical clustering by over 10% of F-measure (74.9%

compared to 64.8%). The peak performance of the clique clustering method is observed

around P -value cutoff 0.01. This P -value cutoff is then used in the real-world application

of this clustering pipeline in analyzing Drosophila 3’-UTR. The benchmark results confirm

our conjecture that improving the clustering performance itself is as important as developing

accurate pairwise structural alignment methods.

Table 5.1: Detailed clustering results on Rfam LowID data set

Rfam ID Family Ave. Identity Ave. Length Count # Clusters Sensitivity Specificity

RF00013 6S 45% 180.10 5 1 100% 71.4%
RF00030 RNase MRP 42% 321.70 18 1 72.2% 100%
RF00009 RNaseP nuc 45% 312.40 38 2 84.2% 100%
RF00031 SECIS 1 45% 64.50 44 2 95.5% 100%
RF00230 T-box 49% 225.70 40 1 99.8% 97.5%
RF00023 tmRNA 48% 356.60 61 2 90.2% 100%
RF00080 yybp-ykoy 49% 121.80 57 1 91.2% 94.5%

Ave. Identity: average sequence identity of the ncRNA family. Count: total number of individual ncRNAs

in the family that have been included in the benchmark experiment. Ave. Length: average sequence length

of the ncRNA family. # Clusters: number of major clusters for the ncRNA family. Sensitivity: number of

clustered ncRNAs over total size of the family. Specificity: number of ncRNAs of the same family over total

size of the cluster.
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Figure 5.3: Comparison of the clustering performance between CLCL and hierarchical clustering. Red

series: hierarchical clustering with Rfam data set by Will et al. [142]. Green series: clique clustering pipeline

with Rfam data set. Blue series: clique clustering pipeline with Rfam LowID data set. (a) F-measure of

the clustering performance on different data sets. The peak performances of the three series are 64.8%,

74.9% and 86.4%, respectively (denoted by broken lines). Note that the cutoff used by Will et al. [142]

is recall rate, for which the corresponding P -value cutoff is difficult to estimate. Therefore, only the peak

performance is presented. (b) ROC curves of clique and hierarchical clustering pipelines for different data

sets. The term ‘before cluster’ refers to the performance of clustering before clique extraction (only score

normalization has been applied). The term ‘after cluster’ refers to the performance of clustering after

clique extraction (both score normalization and clique extraction have been applied). When the best overall

performance is achieved (with corresponding FPR 8∗10−3), the score normalization contributes to the ∼ 70%

of the performance gain, while the clique extraction contributes the other ∼ 30%.
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Surprisingly, the performance of the clique clustering pipeline on the Rfam LowID data set

is even better than that on the Rfam data set. Figure 5.3 (a) shows the F-measure of clique

clustering on Rfam LowID (blue) data set, which has achieved 86.4% for its peak perfor-

mance. Table 5.1 shows the more detailed family-wise performance of the clique clustering.

The results indicate that our clique clustering method is capable of handling low-identity

ncRNA families with high accuracy. We have carefully examined the clustering results and

conclude that the high performance of the Rfam LowID (blue) data set is due to the exclusion

of ncRNAs families that are highly similar to each other. For example, the microRNAs and

snoRNAs are divided into tens of subfamilies in Rfam, which greatly reduces the clustering

performance if those belonging to different subfamilies are clustered together.

The improvement of our clustering pipeline is made by normalizing the structure alignment

scores and incorporating the clique finding algorithm in clustering. It is important to under-

stand the contribution of each step to the improvement of overall performance, as the answer

may provide insights of this problem and lead to more desirable applications of the pipeline.

To separate the contributions of these two steps, we use the ROC (Receiver Operating Char-

acteristic) curves, which is generated by plotting true positive rate versus false positive rate,

to represent the clustering performances that are: 1) after structure alignment score normal-

ization; and 2) after score normalization and clique finding clustering. We named the first

performance as ‘before cluster’, and the second performance as ‘after cluster’. To draw the

ROC curve, we define true positive for ‘before cluster’ as the number of edges that connects

two vertices whose corresponding ncRNAs are clustered in the same RNA family (as defined

by Rfam) in the original graph, and for ‘after cluster’ as the number of ncRNA pairs that

are clustered (by us) in the same group and in the same RNA family (as defined by Rfam).

The false positive, true negative, and false negative are defined correspondingly.
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We show the ROC curves in Figure 5.3 (b). In Figure 5.3 (b), we can observe that when

the best overall performance is achieved (where the FPR is 8 ∗ 10−3), the score normal-

ization contributes ∼ 70% of the performance gain (subtracting the value of the red line

with triangular labels from the value of the green line with round labels), while the clique

extraction contributes the other ∼ 30% of the performance gain (subtracting the value of

the green line with round labels from the value of the green line with triangular labels). We

can also observe that the performances for ‘after cluster’ are higher than ‘before cluster’ at

the low false positive rate range for both Rfam and Rfam LowID data sets. This is because

with stringent P -value cutoff, the merging step of the CLCL algorithm can correct some false

negatives. On the other hand, with a loose P -value cutoff, the merging step will produce

more false positives than the false negatives which it may reduce. As a result, it is more

desirable to apply relatively strict P -value cutoff to the clustering pipeline.

5.3.2 Finding ncRNA Elements in D. melanogaster 3’-UTR

After benchmarking the clique clustering pipeline on the Rfam data sets, we applied it to

the real ncRNA candidates generated from D. melanogaster 3’-UTR (with P -value cutoff

0.01). We identified 524 significant clusters that contain at least three structural elements

at the beginning. To further assure the clusters’ quality, we first removed the overlapping

sequences, which are included by the candidate screening strategy used by RNAz discovery

pipeline. We also ensured that the local region aligned within each cluster is consistent. To

extract the consistently aligned local regions, we re-performed the pairwise alignments on the

clustered ncRNA candidates. We represented each candidate by its longest local region that

was commonly (aligned to all other candidates in the cluster) and structurally (annotated
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as structured region) aligned. If such region is too short (<60% of the longest local common

structural region within the cluster) or does not exist, we removed the corresponding candi-

date from the cluster. This process was carried out iteratively until a high quality consensus

local structural region was identified, or the number of potential candidates dropped below

three. Finally, we collected 184 ncRNA clusters with high confidence.

We sorted the 184 clusters based on their average in-cluster P -values. For each cluster, we

used mLocARNA to generate the corresponding multiple alignments on their commonly aligned

local regions without structural constraint. We also used RNAz to evaluate the quality of the

multiple alignments. Since the multiple alignments were generated using a structural align-

ment approach, we chose a di-nucleotide background model and a structural RNA alignment

quality decision model of the RNAz for evaluation [58]. We identified 168 (91.3% of all identi-

fied clusters) clusters that have RNAz RNA class probability value >0.95, indicating potential

true structural elements in these clusters. (For more detailed information including consensus

structures of the clusters and GO term analysis please refer to our supplementary website:

http://genome.ucf.edu/fly3UTRcluster.) In addition, we have also provided the differ-

entiated expression information of each cluster of genes in terms of different tissues, based

on the experimental results and T-test performed by FlyAtlas [26].

5.3.2.1 Histone Stem-loop Clusters

The two clusters that are ranked top among all 184 clusters correspond to the histone 3’-

UTR stem-loop structures [41]. The histone genes are divided into five major subfamilies:

His1, His2A, His2B, His3 and His4. There are 23, 20, 23, 23 and 22 genes annotated as the
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five subfamilies by FlyBase, respectively. Only 13 His1 genes’ and 18 His2A genes’ 3’-UTR

were included in the candidate regions after RNAz screening (possibly due to the flanking

sequence contamination). The first cluster (C1) contains 10 out of 13 annotated His1 genes

and one other gene, while the second cluster (C2) contains 18 out of 18 annotated His2A

genes and three other genes. The three missed His1 genes are clustered together in cluster

C7.

While the known histone 3’-UTR structural elements have been rediscovered with high ac-

curacy, the annotation of the remaining clusters is more challenging as they contain many

un-annotated genes. However, we were still able to identify several interesting clusters with

significant functional enrichments, as we will present in the following.

5.3.2.2 Cluster of Genes that are Preferentially Expressed in Drosophila Testis

Gene cluster C19 is a striking example of a cluster of 20 transcripts with functionally related

genes (see Table 5.2). Many of the genes in this cluster show either a male-biased and/or

testes-enriched expression pattern (see Figure 5.4 (a)), and/or localized expression in post-

meiotic spermatids. Of the genes for which data is available, 65% (11/17) show male biased

expression (fold enrichment: min 5-fold, max 6,762-fold, median 734-fold), 69% (9/13) show

expression enriched in testes compared to ovaries (fold enrichment: min 3-fold, max 772-fold,

median 175-fold), and 80% (4/5) show a highly specific expression pattern in spermatids (see

Table 5.2). The spermatid expression is very specific with transcription occurring in post-

meiotic spermatids and subcellular localization of the mRNA (described as either ‘cup’ or

‘comet’) to the distal region of spermatids [13]. This expression pattern is also highly un-
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usual and was only observed in 24 testes-expressed genes (among 529 genes that have been

investigated). Given the fact that our cluster contains only five genes which have been investi-

gated, and four of them exhibit the ‘cup’ or ‘comet’ localization pattern (see Figure 5.4 (b)),

hypergeometric test indicates that the probability to observe this result by chance is less

than 1.6 ∗ 10−5. The enrichment of genes with male-biased expression pattern in this clus-

ter and their highly specific localization patterns, suggest the potential post-transcriptional

regulation induced by their common 3’-UTR ncRNA elements.

To further confirm the correlation between the 3’-UTR ncRNA element and the genes’ ex-

pression patterns, we conducted a search for genes with similar 3’-UTR elements. We used

cmsearch [97] to search the 3’-UTR ncRNA element profile against the entire 3’-UTR of the

D. Melanogaster genome. We identified two candidate genes: CG12993 and CG15059. The

first ncRNA element lies in 105bp downstream of the translational ending site of CG12993.

The gene CG12993 is called presidents-cup, which also shows the ‘cup’ expression pattern

in spermatids [13]. The expression of the gene is highly male-biased as well, with 1,549

expression level for adult male of 5 days, and 2 for adult female of 5 days. Furthermore, this

gene is annotated to be highly expressed in testis by FlyBase. The second ncRNA element

strides over the translational ending site of CG15059. The gene CG15059 is also highly

male-biased expressed, showing expression level of 1,497 for adult male of 5 days, and 0 for

adult female of 5 days. These evidences further support the correlation between the 3’-UTR

ncRNA element and these genes’ expressions and functionalities. The multiple structural

alignment of the 3’-UTR structured elements of these genes, and the consensus secondary

structure, are shown in Figure 5.4 (c).
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Figure 5.4: Functional inferences of the genes clustered in C19. (a) FlyAtlas expression levels of the genes

clustered in C19 in different tissues. (This figure is generated by searching FlyMine [86] with all genes that

are clustered in C19.) A majority (eleven) of these genes are highly expressed in fly testis, while no similar

pattern can be observed for the other tissues. (b) The ‘cup’ or ‘comet’ localization patterns of four genes

identified by 3’-UTR RNA clustering in fly testes. These four images were created in the laboratory of

Dr. Helen White-Cooper, are copyright c⃝ Helen White-Cooper, and were first published in FlyTED, the

Drosophila Testis gene Expression Database (http://flyted.zoo.ox.ac.uk/), from which these copies were

obtained [151]. (c) The consensus secondary structure and multiple alignments of the 3’-UTR RNA elements

of the four genes that are shown in (b), and two high-score hits that have been identified by searching the

secondary structure profile against 3’-UTR of Drosophila melanogaster genome using cmsearch [97].
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Table 5.2: The expression profile of genes clustered in C19 and the consensus structure and multiple alignments of their conserved 3’-UTR

RNA elements

FlyBase ID CG ID Symbol
Expression Profile

modENCODE1 FlyAtlas2 FlyTED3

Adult males
5 days

Adult females
5 days

Testis Ovary Spermatogenesis

FBgn0004403 CG1524 RpS14a 32115 53897 705 2785 nd
FBgn0010316 CG1772 dap 309 1813 45 1117 nd
FBgn0028487 CG9611 f-cup 5786 755 1419 148 cup
FBgn0029809 CG15767 CG15767 734 0 134* 1 nd
FBgn0031142 CG10998 r-cup 2008 14 nd nd cup
FBgn0031546 CG8851 CG8851 4241 2 nd nd nd
FBgn0032176 CG13127 CG13127 360 0 175* 1 nd
FBgn0033848 CG13330 CG13330 nd nd 895* 3 nd
FBgn0034374 CG15086 CG15086 5501 0 1237* 2 nd
FBgn0036687 CG6652 CG6652 9250 6 1544* 2 spermatocytes
FBgn0038170 CG14367 CG14367 1889 364 29 11 nd
FBgn0038225 CG8489 soti 6762 0 143* 2 comet
FBgn0038499 CG31256 Brf 470 932 9 94 nd
FBgn0038683 CG11779 CG11779 4905 2739 nd nd nd
FBgn0062517 CG16984 CG16984 6630 230 1393* 3 nd
FBgn0086358 CG7417 Tab2 1554 3470 87 382 nd
FBgn0250827 CG34218 whip 5358 1 nd nd comet
FBgn0261799 CG32159 dsx-c73A nd nd nd nd nd
FBgn0262515 CG8029 VhaAC45 nd nd nd nd nd
FBgn0262740 CG11727 CG11727 nd nd nd nd nd

1modENCODE RNA-Seq data were downloaded from Flybase (average RNA-Seq RPKM reported in FlyBase Annotation Release 5.26) [56].
2FlyAtlas microarray expression data was downloaded from FlyBase (Annotation Release 5.26) [26]. *Genes with strong expression are

confined to the testis and low expression in the fat body. 3RNA tissue in situ hybridization data obtained from Fly-TED [151].
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Table 5.3: Expression profile of the gene cluster C37

FlyBase ID CG ID Symbol
mRNA signal level (fold enrichment to whole fly)

Head Eye Crop Male acc.1 Virgin sp.2 Mated sp.3

FBgn0083975 CG34139 CG34139 4 (2.4) 2 (1.5) 2 (1.3) 3 (2.3) 1 (0.7) 1 (0.7)
FBgn0001987 CG3903 Gli 234 (2.6) 378 (4.2) 311 (3.4) 157 (1.7) 219 (2.4) 343 (3.8)
FBgn0260659 CG4196 CG4196 481 (1.3) 749 (2.1) 398 (1.1) 694 (1.9) 412 (1.1) 416 (1.2)
FBgn0001219 CG4264 Hsc70-4 3873 (1.0) 6556 (1.7) 6037 (1.5) 4610 (1.2) 4690 (1.2) 4930 (1.3)
FBgn0035914 CG6282 CG6282 278 (8.5) 611 (18.6) 31 (0.9) 72 (2.2) 6 (0.2) 7 (0.2)
FBgn0031515 CG9664 CG9664 74 (2.8) 55 (2.1) 78 (2.9) 9 (0.4) 115 (4.3) 73 (2.7)

The shaded cells in the table indicate the genes that are significantly (based on FlyAtlas T-test) enriched in the specific tissues. FlyAtlas

microarray expression data was downloaded from FlyBase (Annotation Release 5.26) [26]. 1Male accessory gland. 2Virgin spermetheca.
3Mated spermetheca.
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5.3.2.3 Clusters of Genes that are Essential for the Functions of Septate Junction

Gene cluster C37 contains six genes that share a common 3’-UTR element shown in Fig-

ure 5.5. These genes may play important roles for maintaining the proper function of septate

junction in Drosophila, which is responsible for the formation of paracellular diffusion bar-

rier. The first gene CG34139 is suggested to code for a transmembrane protein neuroligin by

FlyBase report, based on its sequence homology to human neuroligin gene. Neuroligin acts

as ligands for neurexin, which is also a transmembrane protein that is known to glue together

neurons at the synapse. Alternations of these two genes will cause a cognitive disease in hu-

man [123]. The second gene CG3903 (also known as Gli), codes for gliotactin protein, which

is critical in forming blood-nerve barrier [7]. This protein is almost exclusively expressed

in neuroglia cells which maintain the proper external environment and provide support and

protection for the neurons in the brain. The third gene CG9664 is annotated with the bio-

logical function of lipid metabolic process and lipid transport [110]. The gene has also been

suggested by OrthoDB [138] to code for a membrane protein that has ATP binding potential

and ATPase activity. These genes (i.e. neurexin, gliotactin, and ATPase) are responsible

for maintaining the extracellular environment through the formation of paracellular diffu-

sion barrier, and are essential for septate junction function in Drosophila [54]. The fourth

protein CG4264 (Heat shock 70-kDa protein cognate 4 or Hsc70-4) has also been found to

express in neuroglia cells [114]. This gene is responsible for the protection of synapse under

high temperature [71], and it is possible that the protein is also responsible for protection

paracellular diffusion barrier in other tissues. The functions of other two genes, CG4196 and

CG6282, are not annotated, but they are inferred as membrane and lipid metabolic process

related proteins by FlyAtlas curators, which are possibly also responsible for maintaining

the paracellular diffusion barrier.
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(((((((((((((......)))))))))))))

CG34139 UUUUCCCCUCUCCUGCGAAACGGAGGGGAGAA
CG3903 -CUCUCUAAGCGCAG-GAUGCGCUUAGGGAGU
CG4196 GCGCACUGUCACCAUUGUGGGUGGCAUUGUGU
CG4264 GCUGGCGCUGCCGGA-G-CCGGCGGUGCUGGC
CG6282 GGCCCACUCCAGCAGUGCAGCUGGGGUGGGUC
CG9664 -AGGGAGUACUACAACG-GAUGGUACUCC---

.........10........20........30.

Figure 5.5: The consensus secondary structure and multiple alignments of the 3’-UTR RNA elements of

all six genes that have been clustered in C37.

We investigated the expression profiles of the genes in C37 from FlyAtlas [26], and outline

their expressions in head, eye, crop, male accessory gland, and spermetheca (both virgin and

mated) in Table 5.3. The gene CG34139 has extremely low expressions in all tissues, whose

exact expression level may be difficult to measure by microarray technique. Therefore, we

exclude this gene from our studies. We found that 80% (4/5) of the genes in this cluster

show enriched expression in head. On the other hand, only 40% (2/5) of them show in-

creased expressions in brain. This indicates that the genes in this cluster may participate in

the maintenance of paracellular diffusion barrier in the head rather than the central nervous

system, for example, in the eye where all genes (5/5) show significant enrichment. Besides its

important functions in the nervous system, paracellular diffusion barrier is also known to be

required for proper nutrition absorption or secretion [48, 50]. Indeed, these genes also show

enriched expression in crop, male accessory gland, and spermetheca (both virgin and mated)

where secretion appear to be important for maintaining the proper physiological environ-

ment (see Table 5.3). Investigating the commonalities of the physiological environments in

these tissues may help to elucidate these gene’s specific functions and interactions.
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5.4 Conclusions

In this work, we are particularly interested in finding 3’-UTR ncRNA elements that may

direct post-transcriptional regulation in the D. melanogaster genome. We have improved

the existing clustering pipeline by normalizing the structural alignment scores through simu-

lation and adopting the clique-finding style clustering algorithm. We performed benchmark

tests against the LocARNA hierarchical clustering pipeline to demonstrate the performance

improvement made by our new clustering method. Then we applied the improved clustering

pipeline to 3’-UTR of the D. melanogaster genome and revealed 184 ncRNA element clus-

ters. We identified two interesting clusters, where one cluster contains genes that are highly

expressed in male Drosophila, and the other contains genes that are essential for septate

junction function in Drosophila. These findings have significantly enriched our current un-

derstanding of the 3’-UTR ncRNA elements and their correlation with post-transcriptional

regulation.

Although structural conservation scored by RNAz indicates high clustering accuracy, it re-

mains challenging to conduct functional analysis for the identified clusters. The mechanism

of localization can be very sophisticated, and 3’-UTR element may not be the only one that

directs the regulation. For example, in Rabani et al.’s study [104], only 9 conserved 3’-UTR

RNA elements were identified from 94 sets of genes that are experimentally verified to be

co-localized. We plan to apply this clustering pipeline to other genomic locations that may

affect localization, for example 5’-UTR, to discover more RNA elements. The difficulty of

annotation is also due to the presence of many un-annotated genes. For example, we tried

to use functional enrichment analysis tools such as g:profiler [106] and Ontologizer [15],

and pathway searching tools such as IPA (Ingenuity Pathway Analysis), to reveal poten-
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tial correlations between the genes within a cluster. But most of the queries failed due to

incomplete gene annotation. We also tried to map the gene clusters using experimental co-

localization data [77], yet similarly, only a few of the genes appear to be well studied. As

the functionalities of these genes are elucidated, we expect that more clusters can also be

biologically explained. We also expect that researchers will refer and design experiments to

confirm our predictions.

Finally, we observed that two issues still await to be solved to improve the existing clustering

pipeline. First, the candidate regions for ncRNAs may be mis-predicted, which will likely

reduce the clustering accuracy. For example, RNAz is known to have a high false positive

rate [58], which may include many non-RNA elements in the candidate set and contaminate

the clustering analysis. We can improve the clustering pipeline at this point by incorpo-

rating next-generation sequencing data, where the regions in the genome that are actively

transcribed can be experimentally detected. Second, the computational bottleneck of the

entire clustering process lies at the pairwise alignment of all candidate RNA elements. Ex-

isting alignment tools either have limited accuracy, or satisfying accuracy but with a high

computational overhead. To resolve this issue, we propose to incorporate the sparse dynamic

programming technique used in RNA folding [141] and co-folding [8, 152] to speedup existing

alignment algorithms with high accuracy, and devise a more efficient alignment algorithm for

clustering analysis. We anticipate that these improvements will enable clustering analysis

on larger and more sophisticated data sets, and lead to further interesting discoveries.
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CHAPTER 6: EFFICIENT ALIGNMENT OF RNA

SECONDARY STRUCTURES

In Chapter 5, we have described a clustering pipeline for genome-wide clustering of RNA

secondary structure elements, and developed the clique extraction algorithm called CLCL. The

bottleneck for this clustering pipeline lies on the all-against-all pairwise alignments of the

candidate RNA secondary structures. The computational efficiency of the RNA secondary

structure alignment algorithm is thus of high importance for applying this clustering pipeline

to long ncRNAs and large data sets.

In this chapter, we describe an efficient RNA secondary structure alignment algorithm to

solve this issue. The new algorithm is developed using a sparse dynamic programming

technique. Importantly, the speedup is achieved without sacrificing the alignment quality.

We benchmark our new RNA secondary structure alignment tool, called ERA, with other

state-of-the-art RNA secondary structure alignment algorithms. The benchmark results

indicate that ERA is capable of producing high-quality alignment with significantly improved

computational efficiency.
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Figure 6.1: Comparison between the tree-based alignment approach and the SAF-style alignment approach

in handling mis-predicted base pairs. (a) The tree-based alignment algorithm in handling mis-predicted base

pairs. Row 1: The arcs on the sequences indicate the base pairs (solid arc indicates real base pairs, while

dashed arc indicates mis-predicted base pairs). The structure regions indicated by the boxes are being

aligned. Row 2: The two RNA structures are modeled into trees according to RNAforester [63]. The ‘P’

node was introduced to represent a base pair. Row 3: Either the bond breaking or the base-pair deletion

operation is taken. The blue boxes indicate the aligned nucleotides in the bond-breaking case. The red

box indicates the base pair (including its nucleotides) being deleted in the base-pair deletion case. Row

4: The corresponding alignments resulted from both operations. The boxes in the alignments correspond

to those in the RNA structure trees. Neither of the alignments is correct. (b) The SAF-style alignment

algorithm in handling mis-predicted base pairs. Row 1: The same RNA structures are being aligned. Row

2: The base-pair interaction is deleted (red cross), leaving two free nucleotides. Row 3: The sequence

similarity between the boxed regions is assessed using a traditional sequence alignment algorithm [98]. Row

4: The corresponding alignment is generated correctly. The boxes correspond to nucleotides that form the

mis-predicted base pair.
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6.1 General Edit-Distance RNA Secondary Structure Alignment with Sparse

Dynamic Programming

Existing computational approaches for RNA structure-structure alignment can be classified

into two major categories: the tree-based alignment algorithms [63, 68, 126, 148] and the

structure alignment application of the simultaneously alignment and folding (SAF) algo-

rithms [10, 38, 65, 73, 91, 111, 129, 142]. Despite their original intention of solving the SAF

problem, many of the SAF algorithms can align fixed RNA structures by simply modifying

the inputs. Therefore, we refer to these SAF algorithms as the SAF-style alignment algo-

rithms throughout this chapter to emphasize their structure alignment applications. The

tree-based alignment algorithms model each RNA structure into a tree, and adopt the tree

edit-distance algorithm to find the optimal alignment between the RNA structure trees. The

time complexity of this category of algorithm is O(l3) (where l is the average sequence length

of the RNA structures). Such complexity is shown by the optimal decomposition technique

proposed by Demaine et al [35]. On the other hand, the SAF-style alignment algorithms

generate the RNA structure-structure alignment by simply restricting the inputs to fixed

RNA structures instead of RNA structure ensembles. The time complexity of these algo-

rithms is O(l4) [9], and is achieved by assuming n = O(l) (where n is the average number of

base pairs in the structures). Depending on specific implementations, some of the SAF align-

ment algorithms have a O(l4 + n2l2) time complexity (such as PMcomp [65], LocARNA [142],

and FOLDALIGNM [129]), while the others have a O(n4 + n2l2) time complexity (such as

RNAscf [10]).

Despite their higher time complexities, the SAF-style alignment algorithms usually generate

high-quality alignment results compared to the tree-based alignment algorithms. This is
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because the tree-based RNA alignment algorithms are sensitive to the mis-predicted base

pairs. Recall that the RNA structure trees are built prior to the application of the tree

edit-distance DP algorithm. In this case, once the RNA structure trees are built, they are

impossible to repair under the DP scheme (which assumes subproblem optimality). We

demonstrate such a problem with an artificial example, shown as follows.

Consider that the two RNA structures shown in Figure 6.1 (a) are being aligned using a

tree-based alignment algorithm. In the first structure, due to the insertion of a uracil (U),

an additional base pair is predicted (dashed arc, Row 1). Both structures are enclosed by

G-C base pairs, and we focus on the alignment of their inner regions (boxed regions, Row 1).

Following RNAforester’s extended tree representation [63], the two RNA structures can be

transformed into two trees (Row 2). The ‘P’ node represents a base pair formed between the

two corresponding nucleotides. Because there is no base pair in the second structure, the only

allowed operations are bond breaking and base-pair deletion (Row 3). For the bond breaking

operation, the base pair formed between A and U is broken, leaving them aligned to A and

G in the second structure, respectively (blue boxes, Row 3). The alignment between the

U (first structure) and G (second structure) introduces an unnecessary mismatch, making

the alignment incorrect (blue boxes, Row 4). For the base-pair deletion operation, the entire

base pair (including the two nucleotides A and U) is deleted (red box, Row 3). This operation

opens two unnecessary gaps in the alignment (red boxes, Row 4), making it underestimate

the real structural similarity.

In contrary, the SAF-style alignment algorithms handle the mis-predicted base pairs in a

more straightforward way. As shown in Figure 6.1 (b), they simply break the the base pair

interaction and disassociate the two corresponding nucleotides completely (red cross, Row

2). These two nucleotides are then treated as regular unpaired nucleotides. The SAF-style
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alignment algorithm uses the standard sequence alignment algorithm [98] to evaluate the pure

sequence similarity between the boxed hairpin-loop regions (Row 3). The resulting alignment

contains only one gap, and correctly interprets the true structural difference between the two

RNA structures (red boxes, Row 4).

The above example shows that the SAF-style alignment algorithms can produce more ac-

curate alignments than the tree-based alignment algorithms. However, they do trade such

advantage with higher time complexity (O(l4) compared to O(l3)). In this case, an ideal

scenario to devise an O(l3) SAF-style algorithm that can generate accurate alignment re-

sults. To achieve this goal, we incorporate the sparse DP technique into the SAF algorithm

RNAscf [10]. Using this technique, we can reduce the original time complexity by a factor

of n2 to z, where n < z ≪ n2 under the assumption of the polymer-zeta property of RNA

molecules [141]. In this case, the new SAF-style RNA structure-structure alignment algo-

rithm will have a time complexity of O(zn2+zl2). The new time complexity has an expected

cubic (z = O(n) = O(l)) growth behavior, and is similar to those of the tree-based alignment

algorithms. In addition, we also devise a novel online pruning technique to further speedup

the new algorithm, which deletes obsolete candidates on-the-fly. By combining both speedup

techniques, the new SAF-style RNA structure alignment algorithm is capable of comparing

RNA secondary structures efficiently and accurately.

We have implemented the proposed RNA structure alignment algorithm into a program

called ERA (Efficient RNA Alignment). The benchmark results showed that ERA has the

expected O(zl2) time complexity. We showed the O(zl2) time complexity of ERA through

aligning Rfam [57] RNA structures that were carefully chosen to represent a wide rage of

input sizes. We also used BraliBase II [52] to benchmark the alignment quality between

ERA, LocARNA and RNAforester. Nearly identical alignment quality can be observed for
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the SAF-style alignment tools ERA and LocARNA, while both of them are more accurate

than the tree-based alignment algorithm RNAforester. Finally, we also concluded that

ERA is efficiently implemented by observing an average of 10 fold speedup over LocARNA,

and RNAforester in terms of real RNA structure alignments. Based on these results, we

confirmed that the sparse DP technique and the online pruning technique are successfully

incorporated into the original RNAscf algorithm. We also anticipate that ERA will become

an important bioinformatics tool for comparative RNA structure analysis.

6.2 Methods

In this section, we will present a novel SAF-style RNA structure alignment algorithm by

incorporating the sparse DP technique into the RNAscf algorithm. RNAscf was originally de-

signed to identify the consensus structure between two RNA sequences. It guides the DP pro-

cess though stacks and has a time complexity of O(n4+n2l2). Comparing to LocARNA (which

has a time complexity of O(l4 + n2l2)), the indexing scheme used by RNAscf makes it easier

to incorporate the sparse DP technique, which aims to reduce the size of n instead of l.

In addition to the sparse DP technique, we will also present an online pruning technique,

which tries to reduce the search space of the algorithm as the DP proceeds. Through com-

bining these two speedup techniques, the novel algorithm will have an expected O(zl2) time

complexity, where n < z ≪ n2.

The Methods section is organized as follows: In Section 6.2.1, we will give the basic definition

of RNA structures and the RNA alignment problem. In Section 6.2.2, we will reintroduce

the RNAscf algorithm as a basis to understand the novel algorithm that is developed in this
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work. In Section 6.2.3, we will present the triangular inequality in RNA alignment with

necessary proofs, which serves as a theoretical foundation for the sparse DP technique. In

Section 6.2.4, we will further discuss the implementation details of incorporating the sparse

DP technique. In Section 6.2.5, we will present the novel RNA alignment algorithm with the

incorporation of the sparse DP technique. In Section 6.2.6, we will present the online pruning

technique as an additional speedup step to the novel algorithm. Finally, in Section 6.2.7, we

will summarize the new algorithm using pseudo-code that can be directed implemented.

6.2.1 Preliminaries and Definitions

We will begin with the introduction of the basic symbols and notations. The secondary

structure of an RNA A of length lA is represented by a set of base pairs in A, denoted as

PA. A base pair pA ∈ PA is an interaction formed between two nucleotides in the sequence

of A, whose positions are denoted by l(pA) and r(pA) (without loss of generality, we assume

l(pA) < r(pA)). The base pair pA can also be represented as (l(pA), r(pA)). The base pairs

are partially ordered by the increasing order of their ending nucleotides, i.e. pAi < pAj if and

only if r(pAi ) < r(pAj ). Since we do not consider RNA ensembles, no crossing base pair is

allowed. That is, we do not allow l(pAi ) < l(pAj ) < r(pAi ) < r(pAj ). The two base pairs pAi

and pAj are either enclosing or juxtaposing to each other. The base pair pAj encloses pAi if

l(pAj ) < l(pAi ) < r(pAi ) < r(pAj ), denoted as pAi <I pAj . The base pair pAi juxtaposes to and

before pAj if r(pAi ) < l(pAj ), and is denoted by pAi <J pAj .

We also define loop regions (i.e. hairpin loop, internal/bulge loop, and multi-branch loop)

whose sequence similarities are assessed by the alignment. The loop regions can be viewed as
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the unpaired regions in the RNA sequence that are segregated by the paired nucleotides. Let

A[i...j] denote a continuous sequence region in RNA A, which begins with the ith nucleotide

and ends with the jth nucleotide. Define L(pA) as the sequence A[l(pA)+1...r(pA)−1] (hair-

pin loop). If pAi <I p
A
j , define Ll(p

A
i , p

A
j ) as the sequence A[l(p

A
j )+1...l(pAi )−1], and Lr(p

A
i , p

A
j )

as the sequence A[r(pAi )+1...r(pAj )−1] (internal or bulge loop). If pAi <J pAj , define L(p
A
i , p

A
j )

as the sequence A[r(pAi ) + 1...l(pAj )− 1] (multi-branch loop).

The structure alignment between RNA A and B is the optimal matching between their base-

pair sets PA and PB and the corresponding loop similarities. In other words, the alignment

between RNAs A and B is a one-to-one binary relation A on the base-pair sets PA and

PB. To ensure that the alignment will not lead to conflicting base-pair matchings, for any

(pAi , p
B
i′ ) ∈ A and (pAj , p

B
j′) ∈ A, either pAi <I pAj and pBi′ <I p

B
j′ , or p

A
i <J pAj and pBi′ <J pBj′ .

Given the alignment A, the matched base pairs in A will partition the RNA sequences A and

B into two sets of loop regions, LA
A and LB

A, respectively. The sequence similarity between

these two sets of loop regions is added to compute the overall alignment score. The optimal

alignment is the relation A that maximizes overall alignment score M that combines both

structure and sequence similarities:

M = w1 ∗
∑

(pA,pB)∈A

Sstr(p
A, pB) + w2 ∗

∑
Sseq(LA

A,LB
A). (6.1)

Here, the first term is the summation of all structural similarities (Sstr) between the anno-

tated base pairs. The structural similarity score for base-pair substitution is set using the

RIBOSUM matrix [76], denoting such base-pair substitution matrix as R. We do not give

penalty for base-pair deletion or insertion, as we may expect incorrectly predicted base pairs

in the input RNA structures. The second term is the summation of the sequence similari-

ties (Sseq) on all loop (unpaired) regions that are determined by base-pair matchings in A.
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The sequence similarity between two sequence regions is computed as traditional sequence

alignment, with D as a 4-by-4 matrix that accounts for nucleotide substitution (set using the

RIBOSUM matrix), g as the gap opening penalty, and e as the gap extension penalty [96] (g

and e are both set to negative values and g < e). The weights w1 and w2 are used to balance

the structural and sequence contribution to the overall alignment score, and we set w1 > w2

to emphasize structural similarity. To simplify the expressions, in the rest of this chapter,

we assume that w1 has been multiplied by all structural similarity terms (R), and w2 has

been multiplied by all sequence similarity terms (D, g, and e).

We will now define the matrices that are used by the DP algorithm. Denote M [pA, pB] as

the optimal structure alignment score between the regions enclosed by pA and pB, given

that pA is matched with pB. Denote Mh[p
A, pB] as the optimal alignment score when the

matching of pA and pB corresponds to a hairpin loop in the consensus structure. Similarly,

Ml[p
A, pB] stores the optimal alignment score when the matching of pA and pB corresponds to

an internal, a bulge, or a multi loop in the consensus structure. Assume that pAi <I p
A, and

pBi′ <I pB, Ml[p
A, pB] can be computed by referring to the matrix Mc[p

A
i , p

B
i′ ], which stores

the optimal alignment score between the juxtaposed base-pair chains (each chain contains at

least one base pair) that end with pAi and pBi′ , respectively. The optimal alignment between

A and B can be retrieved from M [pA0 , p
B
0 ], where p

A
0 and pB0 are pseudo base pairs such that

pA0 = (0, |A| − 1), pB0 = (0, |B| − 1), and Sstr(p
A
0 , p

B
0 ) = 0 [10].
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6.2.2 The Original O(n4 + n2l2) Algorithm

In this section, we briefly reintroduce the RNAscf [10] algorithm for RNA consensus structure

prediction as a basis for understanding the novel algorithm developed in this work. The

recursive functions for the RNAscf algorithm are outlined as follows:

M [pA, pB] = max

 Mh[p
A, pB],

Ml[p
A, pB].

(6.2)

Mh[p
A, pB] = Sstr(p

A, pB) + Sseq(L(p
A), L(pB)). (6.3)

Ml[p
A, pB] = Sstr(p

A, pB) + maxi,i′
{
Mc[p

A
i , p

B
i′ ] + Sseq(Lr(p

A
i , p

A), Lr(p
B
i′ , p

B))
}
. (6.4)

Mc[p
A
i , p

B
i′ ] = max

pAj ∈ F(pAi )

pBj′ ∈ F(pBi′ )



M [pAi , p
B
i′ ] + Sseq(Ll(p

A
i , p

A), Ll(p
B
i′ , p

B)),

Mc[p
A
j , p

B
j′ ] +M [pAi , p

B
i′ ] + Sseq(L(p

A
j , p

A
i ), L(p

B
j′ , p

B
i′ )),

Mc[p
A
i , p

B
j′ ] +G(|L(pBj′ , pBi′ )|+ |L(pBi′ )|),

Mc[p
A
j , p

B
i′ ] +G(|L(pAj , pAi )|+ |L(pAi )|).

(6.5)

In these recursive functions, Sstr denotes the structural similarity between two base pairs

pA and pB, Sseq denotes the sequence similarity between two unpaired regions, and G indi-

cates the gap penalty for completely deleting the corresponding unpaired region. Note that

G(|L|) = g + |L| ∗ e if |L| > 0, and G(|L|) = 0 otherwise. The base pair set F(pAi ) contains

all base pairs that are directly before and juxtaposed to pAi . In other words, if pAj ∈ F(pAi ),

then there is no such base pair pAk , such that pAj <J pAk <J pAi . In most real scenarios, |F|

is considered as a constant [10]. This chaining technique based on the F set enables us to

handle the multi-loop case efficiently, by only considering |F| cases when computing Mc.
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Recall that the input RNA sequences have an average length of l and form an average

of n base pairs. This algorithm can be computed with an expected time complexity of

O(n4 + n2l2). To see the time complexity, first note that all sequence similarity scores that

are referred in the recursive functions can be computed within O(n2l2) time. Because all loop

regions are segregated by base pairs, the number of loop regions is clearly bounded by O(n).

Therefore, there are O(n2) combinations of loop matchings, and computing each matching

requires O(l2) time using a standard sequence alignment algorithm [96]. To this point, we

assume all sequence similarities are computed using O(n2l2) time, and are stored in a matrix

for constant-time lookup. Now, observe that this algorithm computes the optimal alignment

by filling up the DP table M , which contains O(n2) values. Computing each value in the

matrix M depends on the corresponding values of Mh, Ml, and Mc. The computation of

values in matrix Mh can be finished in a constant time due to the pre-computed sequence

similarities. The computation of Ml requires O(n2) time, as determined by the necessity

of traversing all possible combinations i and i′ (see Equation 6.4). Finally, Mc can also be

expected to be computed in a constant time, as |F| is assumed to be a constant. In this

case, the computation of matrix M requires O(n4) time. Adding up the time required to pre-

compute all sequence similarities of the loops, the overall time complexity for this algorithm

thus becomes O(n4 + n2l2).

6.2.3 Triangular Inequality and Optimal Pair Matchings

The triangular inequality property servers as the theoretical foundation for the sparse DP

technique, which saves search space while maintaining the global optimality. For compu-

tational RNA studies, this technique has been used in RNA folding [141], RNA consensus
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folding (SAF) [8, 152], as well as RNA-RNA interaction prediction [109] applications. In

this work, our aim is to bring this technique into the RNA structure alignment application,

where fixed RNA structures are considered instead of RNA structure ensembles.
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Figure 6.2: Illustration of the triangular inequality property. (a) Triangular inequality property of RNA

secondary structure alignment. The horizontal lines indicate RNA sequences A and B. The dashed arcs are

the pseudo base pairs added to the specific nucleotides, while the shaded areas define the correspondence

between regions that are being aligned. (b) Alternative paths that go through either pA and pB , or pAχ and

pBχ′ . The two shadings (dark and light gray) along the arcs represent the two alternative paths.

Consider the alignment between the RNA secondary structures within the two regions A[i...j]

and B[i′...j′] (see Figure 6.2 (a)). Denote M [i, j; i′, j′] as the optimal alignment score for such

alignment. The triangular inequality can be summarized using the following inequality:

M [i, j; i′, j′] ≥ M [i, k; i′, k′] +M [k + 1, j; k′ + 1, j′],

where i ≤ k < j and i′ ≤ k′ < j′. This is because the partitions of the regions A[i...j] and

B[i′...j′] at positions k and k′, respectively, do not necessarily compatible with the optimal

alignment.
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To simplify the expression of the triangular inequality property, we define a number of pseudo

base pairs to indicate specific regions of interest. A pseudo base pair is a void interaction,

such that the structural similarity between any two pseudo base pairs is defined to be 0.

For instance, let p and p′ be two arbitrary pseudo base pairs, we will have Sstr(p, p
′) = 0.

The pseudo base pairs are only used for the sake of representational simplicity, and are not

required for the implementation of the algorithm. Define a pseudo base pair pA = (i, j)

and a pseudo base pair pB = (i′, j′). In this case, the optimal alignment score between

the regions A[i...j] and B[i′...j′], i.e. M [i, j; i′, j′], can be rewritten as M [pA, pB]. Similarly,

define pseudo base pairs pAl = (i, k), pAr = (k + 1, j), pBl′ = (i′, k′), and pBr′ = (k′ + 1, j′) (see

Figure 6.2 (a)). The triangular inequality can be simplified using the following observation:

Observation 1: M [pA, pB] ≥ M [pAl , p
B
l′ ] +M [pAr , p

B
r′ ].

Using Observation 1, we can detect potential redundant computations in the original algo-

rithm. Consider the structural configurations shown in Figure 6.2 (b), and assume that the

base pairs pA and pB are being aligned at the current stage. Let pA∗ and pAχ be arbitrary

base pairs such that pAχ <I pA <I pA∗ . Note that pAχ may also represent a pseudo base

pair in order to consider an arbitrary subregion enclosed by pA. Define pseudo base pairs

pAα = (l(pA∗ ), l(p
A)−1), pAβ = (l(pA), l(pAχ )−1), pAδ = (r(pAχ )+1, r(pA)), pAϵ = (r(pA)+1, r(pA∗ )),

pAλ = (l(pA∗ ), l(p
A
χ )− 1), and pAθ = (r(pAχ ) + 1, r(pA∗ )). Pseudo base pairs are also added to B

symmetrically (see Figure 6.2 (b)). We can then prove Lemma 1 using Observation 1:

Lemma 1: If ∃ pAχ and pBχ′ , such that M [pAβ , p
B
β′ ]+M [pAχ , p

B
χ′ ]+M [pAδ , p

B
δ′ ] ≥ M [pA, pB], then

M [pAλ , p
B
λ′ ] +M [pAχ , p

B
χ′ ] +M [pAθ , p

B
θ′ ] ≥ M [pAα , p

B
α′ ] +M [pA, pB] +M [pAϵ , p

B
ϵ′ ].
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Proof :

M [pAλ , p
B
λ′ ] +M [pAχ , p

B
χ′ ] +M [pAθ , p

B
θ′ ]

≥ M [pAα , p
B
α′ ] +M [pAβ , p

B
β′ ] +M [pAχ , p

B
χ′ ] +M [pAδ , p

B
δ′ ] +M [pAϵ , p

B
ϵ′ ]

≥ M [pAα , p
B
α′ ] +M [pA, pB] +M [pAϵ , p

B
ϵ′ ].

�

The first inequality is a direct application of Observation 1, and the second inequality is

specified in the condition of Lemma 1.

Because pA∗ and pB∗′ are arbitrary base pairs, Lemma 1 implies that the matching between pA

and pB is guaranteed to be suboptimal. That is, the overall alignment score, given that pA

matches with pB, is always lower than when assuming they do not match (as the matching

of pA and pB is conflicted with the matching of pAλ and pBλ′ , as well as the matching of pAθ

and pBθ′). In this case, we can devise the DP algorithm to bypass the redundant references to

the scenarios where pA matches pB. Conversely, for the implementation of this idea, the DP

algorithm will refer to the scenarios of matching pA and pB only when the condition specified

in Lemma 1 is NOT satisfied. These necessary base-pair matchings are called the Optimal

Pair Matchings (OPMs). If the matching of pA and pB is an OPM, we denote this OPM as

oA,B. Similarly, we represent the OPM formed by base pairs pAi and pBi′ as oA,B
i,i′ . The new

RNA alignment algorithm will maintain an OPM list O, which is modified online as the DP

proceeds, so as to included newly identified OPMs and remove obsolete OPMs (which will

be discussed in Section 2.6). If we assume that the RNA molecules have the polymer-zeta

property [141], restricting the search space of the DP using the OPM list O will reduce the

time complexity of the RNA alignment algorithm to O(zl2) (as will be discussed in Section

2.5).
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6.2.4 Detection of Optimal Pair Matchings

In the previous section, we have proved that Lemma 1 can be used to detect the OPMs and

save redundant computations. In this section, we will briefly discuss how it will be imple-

mented. Lemma 1 states that if the alignment score assuming pA matches pB (M [pA, pB])

is higher than the alignment score assuming pA does not match pB, the matching between

pA and pB is an OPM. Therefore, to detect the OPMs, we need to compute two alignment

scores, i.e. the one when assuming pA matches pB and the one when assuming pA does not

match pB.

Based on previous definition, the first alignment score is computed as M [pA, pB]. In this

case, we only need to compute the second alignment score. However, computing the second

alignment score (assuming pA does not match pB) is difficult. Instead, we can compute the

overall alignment score without assuming any restrictions. Apparently, the overall alignment

score includes both cases disregarding whether pA matches with pB. Therefore, if M [pA, pB]

is greater than or equal to such an overall optimal alignment, it is guaranteed to be greater

than the alignment score when assuming pA does not match pB, and ipso facto the matching

of pA and pB is an OPM.

Recall that the alignment score M [pA, pB] corresponds to the case where pA matches with

pB, and therefore it can be decomposed as the sum of two parts: the structure similarity

between the two base pairs themselves Sstr(p
A, pB), and the optimal alignment score between

the regions A[l(pA)+1...r(pA)−1] and B[l(pB)+1...r(pB)−1] without any restrictions. In this

case, define two pseudo base pairs p̄A = (l(pA)−1, r(pA)+1) and p̄B = (l(pB)−1, r(pB)+1),

then M [p̄A, p̄B] can also be decomposed as the sum of two parts: Sstr(p̄
A, p̄B), and the
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optimal alignment score between the regions A[l(pA)...r(pA)] and B[l(pB)...r(pB)] without

any restrictions. Note that p̄A and p̄B are both pseudo base pairs, and thus based on the

definition, we have Sstr(p̄
A, p̄B) = 0. Therefore, M [p̄A, p̄B] is exactly the overall alignment

score we need to detect the OPMs.

In this case, based on Lemma 1, if M [pA, pB] ≥ M [p̄A, p̄B], we will consider the matching

of pA and pB as an OPM, and add the OPM oA,B to the OPM list O. The overhead for

detecting the OPM is that we need to double the computation for each combination of pA

and pB. However, such overhead will not raise the time complexity, and it is worthy as it

will lead to a more significant speedup of the algorithm. In the following section, we will

devise a new algorithm by assuming that the OPM list O is available.

6.2.5 A New Algorithm with Cubic Time Complexity

In this section, we introduce a new SAF-style RNA structure alignment algorithm, which

improves the original RNAscf algorithm based on Lemma 1 and has a time complexity of

O(z(n2 + l2)). Here, z is the size of the OPM list O, and we expect that n < z ≪ n2 when

assuming polymer-zeta property [141]. If we also assume O(n) = O(l) (with fixed input RNA

structures or efficiently pruned RNA structure ensembles), the overall time complexity of

the new algorithm becomes O(zl2).

The new algorithm is developed based on the RNAscf algorithm [10]. Therefore, we adopt

the same definition and notation as introduced in Section 2.1, as well as the similar recursive

functions style used in Section 2.2. Because the computations of M [pA, pB] and Mh[p
A, pB]
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are boundary cases for the algorithm and are directly computed without referring to previous

alignment results, the recursive functions for computing them are exactly the same as in the

original algorithm:

M [pA, pB] = max

 Mh[p
A, pB],

Ml[p
A, pB].

(6.6)

Mh[p
A, pB] = Sstr(p

A, pB) + Sseq(L(p
A), L(pB)). (6.7)

The computation of Ml[p
A, pB], on the other hand, refers to the previous alignment results

that assumes pAi matches pBi′ (see Equation 6.4). Using Lemma 1, it is clear to see that

instead of traversing all combinations of pAi and pBi′ , we only need to consider the cases when

the matching of pAi and pBi′ is an OPM:

Ml[p
A, pB] = Sstr(p

A, pB) + max

oA,B
i,i′ ∈ O

{
Mc[p

A
i , p

B
i′ ] + Sseq(Lr(p

A
i , p

A), Lr(p
B
i′ , p

B))
}
.
(6.8)

Similarly, for the computation of Mc[p
A
i , p

B
i′ ], we need to refer to the scenarios where pAi

matches pBi′ and pAj matches pBj′ . The matching of pAi and pBi′ is guaranteed to be an OPM,

as ensured by Equation 6.8. Therefore, we only need to modify Equation 6.5 to ensure that

the matching of pAj and pBj′ is an OPM:

Mc[p
A
i , p

B
i′ ] = max

oA,B

j,j′ ∈F(oA,B

i,i′ )


M [pAi , p

B
i′ ] + Sseq(Ll(p

A
i , p

A), Ll(p
B
i′ , p

B)),

Mc[p
A
j , p

B
j′ ] +M [pAi , p

B
i′ ] + Sseq(L(p

A
j , p

A
i ), L(p

B
j′ , p

B
i′ )),

Mc[p
A
j , p

B
j′ ] + Sseq(L(p

A
j , p

A
i ), L(p

B
j′ , p

B
i′ )) + Sseq(L(p

A
i ), L(p

B
i′ )).

(6.9)
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Here, the set F(oA,B
i,i′ ) contains all OPMs that are directly before the OPM oA,B

i,i′ . The F

set regarding the OPMs is defined as the follows. If an OPM oA,B
j,j′ ∈ F(oA,B

i,i′ ), then either

pAj ∈ F(pAi ) or p
B
j′ ∈ F(pBi′ ).

Recall that the time complexity of the original algorithm is O(n4 + n2l2). The first term

O(n4) results from O(n2) computations by traversing all combinations of pA and pB (see

Equation 6.2) and O(n2) time for computing Ml (see Equation 6.4). In the new algorithm,

we introduce the OPM constraint to Equation 6.8 and Equation 6.9, and thus reduce the

time complexity for computing Ml from O(n2) to O(z). In this case, the first term O(n4) of

the original time complexity can be reduced to O(zn2).

The second term O(n2l2) in the original time complexity results from computing the sequence

similarities between all loop regions. Note that all loop similarities required for computing

Ml (Equation 6.8) and Mc (Equation 6.9) are associated with OPMs. For example, in

Equation 6.8, all the loops are defined according to pAi and pAi′ , whose matching is expected

to be an OPM. And in Equation 6.9, all the loops are defined according to pAi and pAi′ , as

well as pAj and pBj′ , where both of these matchings are assumed to be OPMs. In this case,

we do not need to compute loop similarities for all O(n2) base-pair combinations, instead

we only need to compute the loop similarities that are associated with the OPMs. In this

case, the time complexity for computing the sequence similarities between all loops that are

required by the computation of Ml and Mc can be finished in O(zl2).

The only exception for the sequence similarity computation is the hairpin loop similarity

Sseq(L(p
A), L(pB)), which is required for computing Mh (Equation 6.7). The computation

of Mh is not constrained by the OPM list, and therefore O(n2l2) time is still required.

To resolve this issue, we observe that most RNA structure alignment algorithms empha-
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size the structure similarity other than sequence similarity (w1 > w2 in Equation 6.1). In

this case, if there exist some base pairs within the regions enclosed by pA and pB to be

matched, we can expect that Ml[p
A, pB] > Mh[p

A, pB] in Equation 6.6. In this case, to

avoid the unnecessary computation of Mh[p
A, pB], we can derive an upper bound M̂h[p

A, pB],

which satisfies M̂h[p
A, pB] > Mh[p

A, pB] and can be estimated in unit time. Note that if

Ml[p
A, pB] > M̂h[p

A, pB], we are sure that Ml[p
A, pB] > Mh[p

A, pB] by transition, and thus

can save the computation of Mh[p
A, pB]. The upper bound M̂h[p

A, pB] can be easily derived

by assuming maximum number of nucleotide matchings and minimum number of gaps:

M̂h[p
A, pB] = Sstr(p

A, pB) + min(|L(pA)|, |L(pB)|) ∗ dmax + I ∗ g + (||L(pA)| − |L(pB)||) ∗ e,

(6.10)

where dmax is the highest score in the 4-by-4 nucleotide substitution matrix D, and I is

a boolean variable that is set to 1 if |L(pA)| ̸= |L(pB)| and set to 0 otherwise. For the

computation of each M [pA, pB], we first estimate the upper bound M̂h[p
A, pB] in a unit time,

and then computeMl[p
A, pB] in O(z) time. By comparing these two values, we will determine

whether the computation of Mh[p
A, pB] is necessary. The computation of Mh[p

A, pB] is only

necessary when there are only a few base pair enclosed by pA and pB to be matched. Such

condition implies the scenarios that either pA or pB is a real hairpin loop in the RNA

structures, whose number is bounded by O(n). Overall, the hairpin loop similarity matrix

Mh can be computed in O(nl2) time, and the overall time complexity of this algorithm is

thus O(z(n2 + l2)).
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6.2.6 Online Pruning of Optimal Pair Matchings

In the previous sections, we have presented our approaches for detecting OPMs and building

an OPM list O, as well as a more efficient algorithm that is developed based on O. Time

complexity analysis of the algorithm claims that O(z(n2 + l2)) time is sufficient for this

new algorithm. The size of the OPM list O, i.e. z, thus becomes an important factor that

determines the efficiency of the novel algorithm. Under the current algorithmic setup, as well

as other similar works that implement a candidate list [8, 141], z continuously grows as the

algorithm proceeds. In this case, it is desirable to devise an online pruning technique, which

can remove the obsolete OPMs from O, and thus achieve further speedup of the algorithm.

In this section, we will present such an online pruning technique to reduce the size of the OPM

list O. The intuition of this online pruning technique comes from the following observation.

The RNA structures are primarily stabilized by a number of helices, or perfectly stacked

base pairs. If pAj is perfectly stacked on pAi , then l(pAj ) = l(pAi )− 1, and r(pAj ) = r(pAi ) + 1.

Consider the alignment between two helices, where each one of them contains m perfectly

stacked base pairs. Assume that the first helix contains base pairs pAi , p
A
i+1, ..., p

A
i+m, and

the second helix contains base pairs pBi′ , p
B
i′+1, ..., p

B
i′+m. Based on Lemma 1, there will be at

least m OPMs detected from such alignment, i.e. oA,B
i,i′ , o

A,B
i+1,i′+1, ..., o

A,B
i+m,i′+m. Apparently,

maintaining all these m OPMs is unnecessary, as these base pairs should be aligned together

as two complete helices, rather than be aligned separately as two sets of individual base

pairs. In this case, maintaining only one OPM, i.e. oA,B
i+m,i′+m, is sufficient to represent such

an alignment. The other m − 1 OPMs become obsolete as soon as the OPM oA,B
i+m,i′+m is

detected, and can be removed from the OPM list O to improve computational efficiency. In

the following paragraphs, we will extend this idea to consider all situations in addition to the
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perfectly stacked scenario, as well as give formal description of this technique and related

proofs.

We will demonstrate the major idea of our novel online OPM pruning technique using Fig-

ure 6.2 (b). Imagine that at the current stage, M [pA, pB] has just been computed and oA,B

has been identified as an OPM, where oA,B
χ,χ′ is an arbitrary OPM that has been previously

identified and is enclosed by oA,B (pAχ <I p
A and pBχ′ <I p

B). Our aim is to estimate whether

the detection of the OPM oA,B will make oA,B
χ,χ′ obsolete. Let pA∗ and pB∗′ be arbitrary base

pairs such that pA <I pA∗ and pB <I pB∗′ . The regions enclosed by pA∗ and pB∗′ can be parti-

tioned using at least one of the following ways: M [pAα , p
B
α′ ] +M [pA, pB] +M [pAϵ , p

B
ϵ′ ] (which

is indicated by dark gray in Figure 6.2 (b)) and M [pAλ , p
B
λ′ ] +M [pAχ , p

B
χ′ ] +M [pAθ , p

B
θ′ ] (which

is indicated by light gray in Figure 6.2 (b)). If the corresponding score for the first path is

higher than the second, M [pAχ , p
B
χ′ ] will not be referred to by any future matching between

arbitrary base pairs pA∗ and pB∗′ , and thus making the OPM oA,B
χ,χ′obsolete. In this case, the

OPM oA,B
χ,χ′ can be removed from O.

We can summarize the criterion for removing oA,B
χ,χ′ as an obsolete OPM using the following

inequality:

M [pAα , p
B
α′ ] +M [pA, pB] +M [pAϵ , p

B
ϵ′ ] ≥ M [pAλ , p

B
λ′ ] +M [pAχ , p

B
χ′ ] +M [pAθ , p

B
θ′ ],

which can be rewritten as:

M [pA, pB]−M [pAχ , p
B
χ′ ] ≥ (M [pAλ , p

B
λ′ ]−M [pAα , p

B
α′ ]) + (M [pAθ , p

B
θ′ ]−M [pAϵ , p

B
ϵ′ ]).
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To utilize such criterion, we need to have access to all values included in the above inequal-

ity. However, we only know the values at the left hand side of the inequality (M [pA, pB] and

M [pAχ , p
B
χ′ ]), while the other values at the right hand side are unknown. This is because the

definitions of these pseudo base pairs are determined by pA∗ and pB∗′ , which are arbitrary base

pairs that have not yet been computed by the DP algorithm. To solve this issue, observe

that the score M [pAλ , p
B
λ′ ]−M [pAα , p

B
α′ ] is strongly related to the regions A[l(pAβ )...r(p

A
β )] and

B[l(pBβ′)...r(pBβ′)], and M [pAθ , p
B
θ′ ]−M [pAϵ , p

B
ϵ′ ] is strongly related to the regions A[l(pAδ )...r(p

A
δ )]

and B[l(pBδ′)...r(p
B
δ′)]. Note that the regions A[l(pAβ )...r(p

A
β )] and A[l(pAδ )...r(p

A
δ )] can be de-

termined when pA and pAχ are known, which makes the estimation of their impact on future

alignments possible (similarly for the regions B[l(pBβ′)...r(pBβ′)] and B[l(pBδ′)...r(p
B
δ′)]). In this

case, we can develop two upper bounds Ûβ and Ûδ, such that:

Ûβ ≥ M [pAλ , p
B
λ′ ]−M [pAα , p

B
α′ ],

Ûδ ≥ M [pAθ , p
B
θ′ ]−M [pAϵ , p

B
ϵ′ ].

In this case, if M [pA, pB]−M [pAχ , p
B
χ′ ] ≥ Ûβ + Ûδ, we are sure that the criterion for charac-

terizing oA,B
χ,χ′ as an obsolete OPM will be satisfied, and we will be able to remove oA,B

χ,χ′ from

O immediately.

Now, we can discuss the details for setting up the upper bounds Ûβ and Ûδ. Because Ûβ and

Ûδ are defined symmetrically, we only discuss the computation of Ûβ. Note that the upper

bound Ûβ needs to satisfy the condition Ûβ ≥ M [pAλ , p
B
λ′ ]−M [pAα , p

B
α′ ]. Clearly, the difference

betweenM [pAλ , p
B
λ′ ]−M [pAα , p

B
α′ ] directly comes from concatenating the region A[l(pAβ )...r(p

A
β )]

to the region A[l(pAα )...r(p
A
α )], as well as concatenating the region B[l(pBβ′)...r(pBβ′)] to the

region B[l(pBα′)...r(pBα′)]. The best case scenario for such an operation, is to assume that the
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concatenation of the regions A[l(pAβ )...r(p
A
β )] and B[l(pBβ′)...r(pBβ′)] will result in as many new

base-pair and nucleotide matches as possible.

Assume that there are mA
β base pairs that are annotated in the region A[l(pAβ )...r(p

A
β )], and

mB
β′ base pairs that are annotated in the region B[l(pBβ′)...r(pBβ′)]. Also assume the maximum

base-pair substitution score in the RIBOSUMmatrix R is rmax. By concatenating the regions

A[l(pAβ )...r(p
A
β )] and B[l(pBβ′)...r(pBβ′)], we introduce at most max(mA

β ,m
B
β′) more base-pair

matchings to the alignment indicated by M [pAα , p
B
α′ ]. This implies the maximum structure

alignment score increment of max(mA
β ,m

B
β′) ∗ rmax. Similarly, at most max(|L(pAβ )|, |L(pBβ′|))

more nucleotide matches, or gap fill-ups, are possible, compared to the existing alignment

indicated by the score M [pAα , p
B
α′ ]. The corresponding alignment score for such case is thus:

max(|L(pAβ )|, |L(pBβ′ |))∗(dmax−g−e). To explicitly represent the upper bound using only the

identified OPMs, we rename Ûβ as Ûl[o
A,B
χ,χ′ , oA,B] (similarly, we rename Ûδ as Ûr[o

A,B
χ,χ′ , oA,B]).

Therefore, Ûl[o
A,B
χ,χ′ , oA,B] and Ûr[o

A,B
χ,χ′ , oA,B] can be computed using the following equations:

Ûl[o
A,B
χ,χ′ , oA,B] = max(mA

β ,m
B
β′) ∗ rmax +max(|L(pAβ )|, |L(pBβ′)|) ∗ (dmax − g − e),

Ûr[o
A,B
χ,χ′ , oA,B] = max(mA

δ ,m
B
δ′) ∗ rmax +max(|L(pAδ )|, |L(pBδ′)|) ∗ (dmax − g − e).

(6.11)

With the upper bounds Ûl[o
A,B
χ,χ′ , oA,B] and Ûr[o

A,B
χ,χ′ , oA,B], we are able to formally prove the

correctness of the online OPM pruning technique:

Lemma 2: If M [pA, pB]−M [pAχ , p
B
χ′ ] ≥ Ûl[o

A,B
χ,χ′ , oA,B]+ Ûr[o

A,B
χ,χ′ , oA,B], where Ûl[o

A,B
χ,χ′ , oA,B] ≥

M [pAλ , p
B
λ′ ]−M [pAα , p

B
α′ ] and Ûr[o

A,B
χ,χ′ , oA,B] ≥ M [pAθ , p

B
θ′ ]−M [pAϵ , p

B
ϵ′ ], thenM [pA, pB]+M [pAα , p

B
α′ ]+

M [pAϵ , p
B
ϵ′ ] ≥ M [pAχ , p

B
χ′ ] +M [pAλ , p

B
λ′ ] +M [pAθ , p

B
θ′ ].
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Proof :

M [pA, pB] ≥ M [pAχ , p
B
χ′ ] + Ûl[o

A,B
χ,χ′ , oA,B] + Ûr[o

A,B
χ,χ′ , oA,B]

⇒ M [pA, pB] +M [pAα , p
B
α′ ] +M [pAϵ , p

B
ϵ′ ]

≥ M [pAχ , p
B
χ′ ] + Ûl[o

A,B
χ,χ′ , oA,B] + Ûr[o

A,B
χ,χ′ , oA,B] +M [pAα , p

B
α′ ] +M [pAϵ , p

B
ϵ′ ]

⇒ M [pA, pB] +M [pAα , p
B
α′ ] +M [pAϵ , p

B
ϵ′ ] ≥ M [pAχ , p

B
χ′ ] +M [pAλ , p

B
λ′ ] +M [pAθ , p

B
θ′ ].

�

As a result, when the condition given in Lemma 2 is satisfied, the enclosed OPM oA,B
χ,χ′ can

be readily removed.

6.2.7 Pseudo-code

The pseudo-code for the new RNA secondary structure alignment algorithm that implements

both speedup techniques is summarized in Figure 6.3.
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Figure 6.3: Pseudo-code for the implementation of the speedup techniques.

6.3 Results

We implemented the proposed SAF-style RNA structural alignment algorithm into a program

called ERA (Efficient RNA Alignment) using GNU C++. In this section, we will show that

(1) ERA has the expected O(zl2) time complexity; (2) ERA is as accurate as the other state-of-

the-art RNA alignment tools; and (3) ERA runs much faster than the other RNA alignment
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tools. In addition to these goals, we have also benchmarked ERA to demonstrate its O(l2)

space complexity.

We benchmarked the ERA with two other state-of-the-art RNA alignment tools: LocARNA as

a representative of the SAF-style RNA structure alignment algorithms and RNAforester as

a representative of the tree-based RNA structure alignment algorithms. Note that although

LocARNA is developed to compare RNA structure ensembles, its flexible parameter setup

makes it easy to prune its input RNA ensembles (see Section 3.1 for more details). We

do not compare ERA with its predecessor RNAscf, because RNAscf is implemented to find

consensus helical configurations that do not include individual base pairs [10]. Both LocARNA

and RNAforester were invoked using their default parameters.

6.3.1 Running LocARNA

Note that LocARNA was originally developed to compare two RNA structure ensembles [142].

Due to the recent technical advances in experimental RNA structure probing, we anticipate

that RNA structures can be predicted with much higher accuracy. Therefore, we develop

ERA to compare two fixed RNA structures. In this case, we need to prune the original inputs

of LocARNA, so as to ensure that they only represent the fixed structures rather than any

additional information.

The input RNA ensembles for LocARNA are represented using the base-pairing probability

matrices, which can be computed using the McCaskill’s algorithm [66, 93]. In a base-pairing

probability matrix, each base pair (possibly crossing) is assigned with a probability to indi-
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cate its thermodynamic stability. Our goal is to prune such a base-pair probability matrix,

such that it only contains information regarding the fixed RNA structure (in our experiment,

we take the Rfam [57] annotation or the BraliBase II [52] annotation as the fixed structure

for an RNA sequence). For each base pair in the matrix, if it is not presented in the an-

notated structure, its corresponding probability is reset to 0. On the other hand, if it is

included in the annotated structure, its probability is reset to 1. In this case, the pruned

base-pairing probability matrix contains only the information regarding the fixed RNA struc-

ture. All LocARNA inputs for experiments mentioned in this chapter are preprocessed using

this strategy.

6.3.2 Time Complexity

In this section, we expect to show that the proposed sparsification is successfully imple-

mented, and ERA has the expected O(zl2) time complexity. To show the O(zl2) time com-

plexity, we chose a number of RNA families from Rfam that have a wide range of sequence

lengths. We then randomly selected two individual RNA structures from each family to

run ERA alignment. The running time for their alignments, versus n3 (note that n < l for

annotated structures and O(n) = O(l)), is plotted in Figure 6.4 (a). We can clearly observe

the expected O(zl2) time complexity from the figure. In addition, we are also able to show

that the speedup ratio, when comparing to the O(l4 + n2l2) LocARNA algorithm, is strongly

correlated with the efficiency of pair matching reduction due to the sparse DP technique (the

ratio n2/z, see Figure 6.4 (b)). The relatively large deviations are observed for biocoid 3UTR

and snR86 RNA structures. This is because they contain a large number of base pairs and

have a high base pair to sequence length ratio. In this case, the overhead for maintaining the
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OPM list becomes apparent and makes the speedup less significant. In summary, we have

shown that the sparse DP technique is successfully implemented, ERA has an expected time

complexity of O(zl2).

6.3.3 Alignment Quality

In addition to time complexity improvement, we also expect to show that ERA is as accurate

as the other state-of-the-art SAF-style RNA structure alignment tools. We used BraliBase

II [52] as the reference data set, and used its corresponding structure annotations as the

fixed input structures. We adopted two measures to indicate the alignment quality, i.e.,

the Sum-of-Pair Score (SPS) [52] and the Structure Conservation Index (SCI) [137]. The

benchmark results are shown in Figure 6.5. The alignment qualities of ERA and LocARNA

are nearly identical, since incorporating the sparse DP technique will not compromise global

optimality. The benchmark results also show that ERA and LocARNA can produce more

accurate alignments when compared to RNAforester. This is because ERA and LocARNA are

both SAF-style RNA alignment algorithms that are capable of flexibly handling incorrectly

predicted base-pairs, while RNAforester is a tree-based RNA alignment algorithm that is

sensitive to such errors.
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Table 6.1: Comparison on running time of ERA, LocARNA, and RNAforester

RNA family
length
(bp)

num.
pairs

ERA

(sec)
LocARNA

(sec)

ERA vs.
LocARNA

(fold)

RNAforester

(sec)

ERA vs.
RNAforester

(fold)

tRNA 78 21 0.017 0.100 5.882 0.047 2.765
Gly riboswitch 105 22 0.015 0.277 18.46 0.162 10.80
U12 spliceosome 160 42 0.035 0.311 8.886 0.657 18.77
Phage pRNA 244 43 0.124 0.647 5.218 6.935 55.93
tmRNA 367 64 0.929 22.45 24.16 225.4 242.6
biocoid 3UTR 549 155 4.898 170.3 34.77 13.99 2.856
snR86 1004 333 53.15 4862 91.48 5.579 -9.527*
Sacc telomerase 1162 181 23.93 522.3 21.82 3697 154.5

ERA is slower than RNAforester when aligning snR86 RNA structures.
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Figure 6.4: Time complexity and OPM reduction of ERA. (a) Running time versus n3, where n is the

average number of base pairs in the RNA structures. (b) OPM reduction ratio versus running time speedup

ratio. The OPM reduction ratio is computed by n2/z, where z is the number of OPMs.
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Figure 6.5: Alignment quality comparison of ERA, LocARNA and RNAforester. The comparison of (a)

Sum-of-Pair Score and (b) Structure Conservation Index between ERA, LocARNA and RNAforester on Bral-

iBase II data set. The sequence identity range is between 0.37 to 0.99. The curves are generated using

LOWESS smoothing with a smoothing factor of 0.3.
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6.3.4 Running Time Speedup

Finally, after benchmarking the time complexity and alignment accuracy of ERA, we also

expect to show that ERA is an efficient implementation and can run faster than other state-

of-the-art RNA alignment tools. We compared the real running time of ERA, LocARNA, and

RNAforester on the selected RNA structures from Rfam. The benchmark results are summa-

rized in Table 6.1. We can observe that ERA is capable of speeding up LocARNA by a minimum

of 5.2 fold and a maximum of 91.5 fold. ERA can also speedup RNAforester by a minimum

of 2.8 fold and a maximum of 242.6 fold, with only one exception in which RNAforester is

9.6 times faster than ERA. This is because the RNA structures being aligned (snR86) contain

only one stem-loop structure; and in such a special case, the time complexity of RNAforester

becomes O(l2) [63].

To further investigate the real running time speedup of ERA on randomly selected RNA struc-

tures, we compiled a much larger data set that contains 1,000 pairs of randomly selected

RNA structures from Rfam. The benchmark results on this large data set are summarized

in Figure 6.6. In Figure 6.6, we can see that ERA (blue triangle) runs much faster than

LocARNA (red cross) and RNAforester (green star). In addition, we can also observe that

the running time of ERA grows slower than those of LocARNA and RNAforester, which further

confirms our previous time complexity analysis (see Figure 6.4 (a)). This speedup is signifi-

cant, and renders ERA with the power of aligning long ncRNAs that are revealed by recent

research advances. In summary, ERA is an efficient and accurate RNA structure alignment

tool as compared to its state-of-the-art counterparts LocARNA and RNAforester.
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Figure 6.6: Computational efficiency comparison between ERA, LocARNA and RNAforester on aligning

randomly selected RNA structures from Rfam. The running time for ERA (blue triangles), LocARNA (red

crosses) and RNAforester (green stars) on aligning 1,000 pairs of randomly selected RNA structures from

the Rfam database. The x-axis corresponds to the average sizes of the RNA structures being aligned, which

is computed as the product of their average length (l) and their average number of base pairs (n). The y-axis

corresponds to the actual running time in the unit of second. We can see that ERA is significantly faster than

the other two tools.
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6.4 Conclusions and Discussion

In this chapter, we have presented a novel algorithm for efficient alignment of RNA secondary

structures by incorporating the sparse DP technique. The major theoretical contribution of

this work lies in two parts. First, to our knowledge, this is the first application of the sparse

DP technique to RNA structure-structure alignment. Second, the novel online OPM pruning

technique can provide insights for future algorithm designs that need to maintain a candidate

list. The implementation of this novel algorithm is a tool called ERA, which can run in O(zl2)

time and O(l2). Such time and space complexity make ERA one of the most efficient RNA

structure alignment tools that are currently available.

The online OPM pruning technique is newly developed from this work, which aims at delet-

ing obsolete candidates as the DP proceeds. Although this technique cannot improve the

computational complexity, it is efficient in reducing the real running time. We observed that

by incorporating this technique, the running time of ERA was reduced by an average of 2.3

fold. Meanwhile, the speedup ratio is highly uniform (with 1.7 fold as the lowest and 3.1 fold

as the highest) across RNA structures with different sizes, meaning that it reduces running

time by a constant factor. The online OPM pruning technique can also be modified and

incorporated into other related algorithms that implement the candidate list, such as the

sparse DP algorithms for RNA folding [141], RNA consensus folding [8, 152], and RNA-RNA

interaction [109].

With the completion of the ENCODE [18] and modENCODE [25] projects, more and more

RNA transcripts will be experimentally revealed. At the same time, with the advance of

high-throughput RNA structure probing techniques [72, 85, 134], the secondary structures
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of these RNA transcripts will also be predicted with a much higher accuracy. In this case,

ERA, which can compare fixed RNA structure efficiently and accurately, becomes an ideal

computational tool to evaluate the structural similarities of these RNA transcripts. ERA can

be used to perform all-against-all alignments on these RNA transcripts, which will then be

subsequently summarized as the distance matrix for clustering purposes. Various clustering

algorithms [142] can then be applied to identify ncRNA families with similar secondary

structures and infer their amazing cellular and molecular functionalities.
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CHAPTER 7: CONCLUSIONS AND DISCUSSION

7.1 RNA Structural Motif Identification

The importance of ncRNAs has recently been highly appreciated due to the discovery of their

amazing cellular functions. The molecular functions of the ncRNAs are usually determined

by their specific structures. Therefore, analyzing their structures will provide invaluable

insight in understanding their functions. In this dissertation, we have developed a suite of

computational methods for the comparative analysis of their secondary structures, with an

aim to facilitate the corresponding functional annotations. We begin with the comparison of

RNA structural motifs, and end with the genome-wide clustering survey of general ncRNA

secondary structures. Our computational methods span a wide-range of scales in RNA

structures, and will likely promote and improve the research in related areas.

In Chapter 2 and Chapter 3, we present two computational methods for comparative analysis

of RNA structural motifs. The resulting tools, RNAMotifScan and RNAMotifScanX, have been

implemented using C and C++ and benchmarked with the other state-of-the-art motif search

tools. Our benchmark results for RNAMotifScan indicate that modeling RNA structural

motifs using base-pair isostericity is superior to the existing abstraction methods that are

based on RNA 3D structure geometries. By incorporating the base-stacking information into

the non-canonical base-pairing patterns, RNAMotifScanX has made further improvements
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over RNAMotifScan in terms of identification accuracy. In addition, a universal p-value

cutoff is predicted using RNAMotifScanX to facilitate fully automated motif identification.

RNAMotifScan implements the polynomial-time algorithm framework of RNAscf [10] by incor-

porating specific features for non-canonical base pairs and structural motifs (as we have dis-

cussed in Chapter 2). Since the size of RNA structural motif is usually small, the polynomial-

time complexity algorithm is very efficient in aligning RNA structural motif instances. For

example, scanning the entire PDB with the largest motif as query (kink-turn motif) using

RNAMotifScan takes less than two hours (using single-core configuration). In this case, we

design a new algorithm which is more computationally demanding, but can produce much

more accurate identification results. For this new algorithm, we model RNA structural motif

as a graph, and develop a branch-and-bound algorithm, called RNAMotifScanX, to optimally

align the motif graphs with the consideration of both base-pairing and base-stacking informa-

tion. Benchmarking RNAMotifScanX against RNAMotifScan clearly shows the improvement

on accuracy, with RNAMotifScanX producing nearly perfect search results on five (kink-turn,

C-loop, sarcin-ricin, reverse kink-turn, and E-loop) important RNA structural motif fami-

lies. The computational overhead for RNAMotifScanX is moderate and can be handled using

current personal computers. For example, searching the largest motif kink-turn against

a 50S ribosomal RNA using RNAMotifScanX takes less than 50 mins (using a single-core

configuration).

Our experiment of scanning the PDB using RNAMotifScan led to the discovery of many novel

motif instances. The RNA structural motif instances identified in this study, even under a

very stringent p-value cutoff, significantly outnumber what we have previously known (for

example, compared to the motif instances that have been registered in the SCOR [127]

database). The prevalence of RNA structural motif instances in RNA structures motivates
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us to develop a corresponding database for archiving the discoveries and disseminating the an-

notations for the registered motif instances. The RNA structural motif database will contain

comprehensive annotation of the motif instances like the kink-turn database [115]. Instead of

focusing on their 3D structures, we will emphasize their base-pairing and base-stacking inter-

action patterns. The database, upon its release, will download the new structures deposited

to the PDB automatically and update its archive periodically.

By incorporating non-canonical base pairs and the base-stacking interactions, we have pro-

posed a new modeling for RNA structural motifs. We have also developed two computa-

tional methods, RNAMotifScan and RNAMotifScanX, to search for the RNA structural motif

instances based on such modeling. While both tools produce highly accurate search re-

sults on RNA structures with high resolution, their performance is limited when it comes

to low-quality RNA structures. Both of the computational methods assume that the base-

pair and base-stacking annotation for the RNA 3D structures are accurate (annotated using

MC-Annotate [53] of RNAVIEW [147]). However, such an assumption is not always true when

RNA structures are resolved with limited resolution. The potential annotation errors of

MC-Annotate and RNAVIEW on low-quality RNA structures will be inherited by the motif

alignment tools, where incorrect alignments may be produced. In this case, one of our fu-

ture directions is to incorporate base-pairing probabilities into the representation of RNA

structural motif, which is similar to the base-pairing matrix that has been used to represent

the RNA secondary structures [65].

Another type of the RNA structural motif identification problem we have revisited in this

dissertation is de novo RNA structural motif identification. The problem is an important

complement to the model-based RNA structural motif identification problem (as we have

covered in Chapter 2 and 3 with the search tools RNAMotifScan and RNAMotifScanX). The de
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novo motif identification does not presume an explicitly defined query model, but classifies

the candidate motif instances based on their mutual structural similarity using a clustering

approach. Therefore, it is able to discover novel RNA structural motif families. It may

also discover motif instances that do not resemble the query consensus but resemble an

individual instance. We have demonstrated the importance of this problem by clustering

RNA structural motif elements in ribosomal RNAs (details covered in Chapter 4). In this

study, we have discovered two novel RNA structural motif families and many novel instances.

These findings have significantly enriched our understanding of the RNA structural motifs,

and also suggest that there are more novel instances to be discovered. We conjecture that the

novel motif families can be important for protein-binding, and we are seeking collaborators

to experimentally verify their specific molecular functions.

The initial candidate motif instances selection step is of great importance to the final per-

formance of the de novo identification analysis. It has been observed that RNA structural

motifs are usually found in the junctions between the regular A-form helices (internal or

bulge loops, and multi-branch loops) or the hairpin loop regions. It is a common practice

to fetch candidate RNA structural motifs from these regions [37]. However, incorrect pre-

dictions of the base-pairing pattern due to the inadequate RNA 3D structure resolution will

obscure the definition of the junctions. To solve this issue, one may use a scanning-window

approach to exhaustively generate all possible candidates. The drawback of this approach is

that it will generate many overlapping segments and complicates the post-processing step.

It is highly recommended that the initial candidate motif instance should be selected with

enough attention to ensure well-balanced specificity and sensitivity (or depending on the

specific purpose of the analysis).
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7.2 Genome-wide Non-coding RNA Classification

In this dissertation, we have also systematically improved a standard clustering pipeline for

structural classification of ncRNAs in the genome. In Chapter 5, we present an optimization

for the pipeline itself by normalizing the alignment scores and designing an accurate and a

fully automatic clustering algorithm. We have normalized the length-biased alignment score

using a simulation-based method. After the normalization of the alignment scores, we further

apply the CLCL algorithm to extract individual ncRNA clusters from the resulting p-values.

Benchmark results of this new pipeline against the traditional hierarchical clustering method

clearly show significant improvements for both sensitivity and specificity. This clustering

pipeline is also highly automated, which makes the pipeline more robust as compared to the

hierarchical clustering approach.

In Chapter 5, we demonstrate the utility of this novel clustering pipeline by clustering the

post-transcriptional control elements in the fly 3’-UTR. We have discovered two important

clusters of ncRNA elements, where one is responsible for the preferential expression of a

cluster of genes in male flies, and regulates the expressions of several genes at the fly sep-

tate junction. These discoveries lead to new insights in the functionalities of these ncRNA

elements, and have significantly enriched our knowledge about their regulation mechanisms.

This genome-wide analysis of ncRNA elements in the fly 3’-UTR points to two conclusions:

First, there exist more potential interesting ncRNA families to be discovered in the genome.

Second, the functional annotation of these ncRNA families remains difficult, not to men-

tion the prediction of their interactions with other biological molecules. This is because the

majority of the genomes are not fully annotated. Experimental verification, in most of the

cases, is still the only approach that we can use to confirm the biological discoveries.
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As important biological discoveries are made by applying this clustering pipeline to fly 3’-

UTR, we also expect to apply this pipeline to other regions of the genome, such as 5’-UTR

or even the entire genome. We also propose cross-species clustering, which can provide

evolutionary insights for the ncRNAs. However, direct application of this pipeline to large

data sets is infeasible, because the all-against-all alignment step is extremely slow. To

solve this problem, in Chapter 6, we describe an algorithmic improvement for the RNA

secondary structure alignment algorithm. The new alignment algorithm is called ERA, which

is developed by incorporating the sparse dynamic programming technique. An average of

10 fold speedup in terms of alignment running time is observed when comparing ERA with

other alignment tools such as LocARNA and RNAforester. More over, this improvement

is made without sacrificing the global optimality of the dynamic programming, and high-

quality alignment results are still guaranteed. These advantages make ERA an ideal tool to

be incorporated in the new clustering pipeline. We expect that with ERA, the new clustering

pipeline will be more applicable to larger data sets and the clustering of long ncRNAs.

169



LIST OF REFERENCES

[1] P. L. Adams, M. R. Stahley, M. L. Gill, A. B. Kosek, J. Wang, and S. A. Strobel.
Crystal structure of a group I intron splicing intermediate. RNA, 10:1867–1887, 2004.

[2] P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, and S. A. Strobel. Crystal structure
of a self-splicing group I intron with both exons. Nature, 430:45–50, 2004.

[3] V. Alesker, R. Nussinov, and H.J. Wolfson. Detection of non-topological motifs in
protein structures. Protein Eng., 9:1103–1119, 1996.

[4] S. F. Altschul and B. W. Erickson. Significance of nucleotide sequence alignments: a
method for random sequence permutation that preserves dinucleotide and codon usage.
Mol. Biol. Evol., 2:526–538, 1985.

[5] A. H. Antonioli, J. C. Cochrane, S. V. Lipchock, and S. A. Strobel. Plasticity of the
RNA kink turn structural motif. RNA, 16(4):762–768, 2010.

[6] A. Apostolico, G. Ciriello, C. Guerra, C. E. Heitsch, C. Hsiao, and L. D. Williams.
Finding 3D motifs in ribosomal RNA structures. Nucleic Acids Res., 37:e29, 2009.

[7] V. J. Auld, R. D. Fetter, K. Broadie, and C. S. Goodman. Gliotactin, a novel trans-
membrane protein on peripheral glia, is required to form the blood-nerve barrier in
Drosophila. Cell, 81:757–767, 1995.

[8] R. Backofen, D. Tsur, S. Zakov, and M. Ziv-Ukelson. Sparse RNA folding: Time and
space efficient algorithms. J. of Discrete Algorithms, 9:12–31, 2011.

[9] V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA strings.
In Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching,
pages 1–16, Espoo, Finland, 1995. Springer-Verlag, Berlin.

[10] V. Bafna, H. Tang, and S. Zhang. Consensus folding of unaligned RNA sequences
revisited. J. Comput. Biol., 13:283–295, 2006.

[11] N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. The complete atomic
structure of the large ribosomal subunit at 2.4 A resolution. Science, 289:905–920,
2000.

170



[12] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

[13] C. Barreau, E. Benson, E. Gudmannsdottir, F. Newton, and H. White-Cooper. Post-
meiotic transcription in Drosophila testes. Development, 135:1897–1902, 2008.

[14] D. P. Bartel. MicroRNAs: target recognition and regulatory functions. Cell, 136:215–
233, 2009.

[15] S. Bauer, J. Gagneur, and P. N. Robinson. GOing Bayesian: model-based gene set
analysis of genome-scale data. Nucleic Acids Res., 38:3523–3532, 2010.

[16] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. J.
Comput. Biol., 6:281–297, 1999.

[17] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Res., 28:235–
242, 2000.

[18] B. E. Bernstein, E. Birney, and I. Dunham. An integrated encyclopedia of DNA
elements in the human genome. Nature, 489(7414):57–74, 2012.

[19] F. Besse and A. Ephrussi. Translational control of localized mRNAs: restricting pro-
tein synthesis in space and time. Nat. Rev. Mol. Cell Biol., 9:971–980, 2008.

[20] P. N. Borer, B. Dengler, I. Tinoco, and O. C. Uhlenbeck. Stability of ribonucleic acid
double-stranded helices. J. Mol. Biol., 86:843–853, 1974.

[21] D. Bouthinon and H. Soldano. A new method to predict the consensus secondary
structure of a set of unaligned RNA sequences. Bioinformatics, 15(10):785–798, 1999.
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