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ABSTRACT 

The Left Ventricular Assist Device (LVAD) is a rotary mechanical pump that is implanted in 

patients with congestive heart failure to help the left ventricle in pumping blood in the 

circulatory system. The rotary type pumps are controlled by varying the pump motor current to 

adjust the amount of blood flowing through the LVAD. One important challenge in using such a 

device is the desire to provide the patient with as close to a normal lifestyle as possible until a 

donor heart becomes available. The development of an appropriate feedback controller that is 

capable of automatically adjusting the pump current is therefore a crucial step in meeting this 

challenge. In addition to being able to adapt to changes in the patient's daily activities, the 

controller must be able to prevent the occurrence of excessive pumping of blood from the left 

ventricle (a phenomenon known as ventricular suction) that may cause collapse of the left 

ventricle and damage to the heart muscle and tissues.  

In this dissertation, we present a new suction detection system that can precisely classify pump 

flow patterns, based on a Lagrangian Support Vector Machine (LSVM) model that combines six 

suction indices extracted from the pump flow signal to make a decision about whether the pump 

is not in suction, approaching suction, or in suction. The proposed method has been tested using 

in vivo experimental data based on two different LVAD pumps. The results show that the system 

can produce superior performance in terms of classification accuracy, stability, learning speed, 
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and good robustness compared to three other existing suction detection methods and the original 

SVM-based algorithm. The ability of the proposed algorithm to detect suction provides a reliable 

platform for the development of a feedback control system to control the current of the pump 

(input variable) while at the same time ensuring that suction is avoided. 

Based on the proposed suction detector, a new control system for the rotary LVAD was 

developed to automatically regulate the pump current of the device to avoid ventricular suction. 

The control system consists of an LSVM suction detector and a feedback controller. The LSVM 

suction detector is activated first so as to correctly classify the pump status as No Suction (NS) 

or Suction (S). When the detection is “No Suction”, the feedback controller is activated so as to 

automatically adjust the pump current in order that the blood flow requirements of the patient’s 

body at different physiological states are met according to the patient’s activity level. When the 

detection is “Suction”, the pump current is immediately decreased in order to drive the pump 

back to a normal No Suction operating condition. The performance of the control system was 

tested in simulations over a wide range of physiological conditions. 
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CHAPTER 1: INTRODUCTION 

According to a survey from World Health Organization, recently cardiovascular disease is a 

major problem in the United States and it occupies around one third of all types of diseases. 

Many cardiovascular diseases could affect the left ventricle of the heart [1] and then lead to 

congestive heart failure in which the heart cannot pump enough blood to support the body's other 

organs. Although drug treatments have positive effects to ensure that the patients are able to live 

normally, a high mortality is still inevitable since this pharmacological therapy often fails in 

long-term use. Hence, heart transplantation has been an acceptable method to treat serious cases 

of congestive heart failure. 

However, such potential recipients often need to wait a long time (300 days or more on average) 

until a donor heart becomes available. During this waiting period, the patients’ sick hearts may 

get worse and 20% - 30% of the patients will die. Therefore, one alternative is to use a 

mechanical support device (a blood pump) that can assist the natural weak heart in performing its 

functions. A Left Ventricular Assist Device (LVAD) is such a device as a bridge for 

transplantation to help a weak heart and “buy time” for the patients.  

Based on the patterns of the blood flow pumped by the device, LVADs can be classified into two 

types: positive displacement (pulsatile) and turbo-dynamic (rotary) LVADs. The first generation 
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LVADs are built using pulsatile pumps that work in a beat-like style to create natural heart flow. 

The latest generation of the LVADs is built with rotary pumps, which generate continuous blood 

flow. Furthermore, the LVAD can be either used in the in vitro placement, which is 

percutaneously connected to the patient’s heart and artery through the drainage catheter, or 

implanted in the patient’s body (usually in the peritoneal cavity or extra-peritoneal space) [1]. In 

recently years, congestive heart failure patients have enjoyed many benefits from the rotary 

LVAD, which has been widely applied in clinical practice due to its smaller size, lighter weight, 

better durability [2], and higher efficiency compared to the conventional pulsatile LVAD. 

The rotary LVAD is a mechanical pump surgically implanted in the patient as a bridge from the 

left ventricle to the aorta to help maintain the flow of blood from the patient’s heart, which 

cannot effectively work on its own. In general, the most important objective of a LVAD is to 

assist the native weak heart in providing required blood flow for the patient until a donor heart 

becomes available. Therefore, in order to meet the circulatory demand of the patient, developing 

an appropriate pump control mechanism to adjust the blood flow through the pump by 

controlling the pump motor current is an important challenge facing the increased use of such 

devices [3]-[5].  

Such a controller, in addition to being robust and reliable, must satisfy two important criteria. 

First, in order to meet the circulatory requirement of the patient, it must be able to adapt to the 
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different levels of activity and physiological changes of the patient by adjusting the pump 

current. Second, an important constraint that should be taken into consideration is to ensure that 

the pump current should stay below a value beyond which the pump will attempt to draw more 

blood from the left ventricle than available causing an event called ventricular suction. This 

event could cause ventricular collapse which could easily damage the heart muscles. It therefore 

needs to be detected and corrected quickly by lowering the pump current.  

The detection of ventricular suction has been a hot topic in recent studies by a number of 

research groups worldwide. The common way of solving this problem is to extract several 

features from the pump variables, which are the only easily measureable signals. These features 

are called Suction Indices (SI). The differences among these studies are (1) the types of pump 

signals used such as pump speed, pump flow, or pump current, (2) the definition of pump states 

(no suction, or suction, etc.), and (3) the number of suction indices derived based on time or 

frequency domain. Based on several derived indices from the pump signals, an appropriate 

classification method is typically adopted to identify different pump states that may vary from 

threshold comparisons [6]-[9], to methods such as Classification and Regression Tree (CART) 

[10], Discriminant Analysis (DA) [11], and Neural Networks (NN) [12] implemented with in 

vitro, in vivo, or human data. While each of these methods has produced satisfactory results, 

each also has limitations in its practical application. Examples of these limitations include the 
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weakness at capturing strong linear structure in the CART-based algorithm, poor performance 

with complicated data structure and non-Gaussian distributed data in the DA-based method, slow 

learning speed in the NN-based approach, and unstable performance caused by local minima in 

both the CART and NN-based algorithms. 

To achieve avoidance of suction, in this dissertation, we introduce and test a new suction 

detection and classification method for the LVAD based on the Lagrangian Support Vector 

Machine (LSVM) approach in pattern recognition [13]-[15]. The LSVM is a modified standard 

Support Vector Machine (SVM) and has high accuracy, stable performance, and fast learning 

speed (training time). This is the first time that an LSVM-based algorithm for suction detection is 

proposed and systemically and quantitatively compared to other existing pattern 

recognition-based suction detection algorithms for their performance (including training/test 

time) under the same conditions. The ability of the proposed algorithm to detect and classify 

suction will provide an alternative approach for treating the problem of suction detection and 

more importantly will facilitate an important step in the development of a feedback control 

system for the pump that has the capability of safeguarding against the occurrence of suction. 

Furthermore, different control strategies for rotary LVADs have been developed. These 

approaches adopt varying pump signals and different principles. For instance, Giridharan et al. 

[16] developed an effective way to control LVADs by maintaining an average pressure 
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difference between the left heart and aorta. However, keeping a constant pressure difference does 

not guarantee required cardiac output in some cases and the suction detector is needed for this 

method as well. 

A combined model of the cardiovascular-LVAD system and the baroreflex mechanism was 

proposed in [17]. Although the combined model could reproduce human responses and respond 

to change in the physiological states of congestive heart failure patients, it is acknowledged that 

in order to avoid the adverse suction phenomenon, a suction detector should be incorporated into 

the controller as a safeguard. 

A rule-based controller for the rotary LVAD was developed to automatically regulate the pump 

speed without introducing suction [18]. The suction detector in the system was based on 

DA-based algorithm and generated two discriminant scores as the outputs of the suction detector, 

which were also used as the inputs of the Fuzzy Logic Controller (FLC). The performance of this 

control system was tested in the simulations, showing that the control system can automatically 

regulate the pump speed to avoid suction and demonstrate its feasibility. However, the suction 

detector does not provide a very high accuracy when compared to the other existing suction 

detection algorithms. In addition, the author mentioned that the inclusion of a baroreflex in the 

system would better represent the behavior of such a controller. 
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Simaan et al. [19] proposed a feedback controller using an extremum tracking method to adjust 

the pump speed based on the slope of the envelope of the minimum pump flow signal within 

every cardiac cycle. With the onset of suction, the slope of the minimum pump flow envelope 

was near zero. However, there was no embedded suction detector in the proposed system as the 

safeguard.  

In this dissertation, a new patient-adaptive feedback controller based on a current-based control 

of the LVAD is presented, which extends the results of the LVAD model reported in [20]. The 

controller could automatically regulate the pump current in order to guarantee the physiological 

demand of the patient under different levels of the patient’s activity when suction is absent 

ensured by the suction detection subsystem at the same time. When suction occurs, the suction 

case can be quickly detected by the suction detection subsystem and the controller can decrease 

the pump current immediately to avoid the occurrence of suction. 

This dissertation is organized as follows. Chapter 2 reviews the basic concepts of cardiovascular 

physiology. Chapter 3 introduces the cardiovascular circuit model and presents a new 

current-based control model of the combined cardiovascular and rotary LVAD system. Chapter 4 

introduces suction phenomenon and describes suction indices. In Chapter 5, an effective 

LSVM-based suction detection algorithm is proposed. Chapter 6 presents a new feedback 
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controller of the rotary LVAD supporting a failing cardiovascular system. Conclusion and future 

work is discussed in Chapter 7. 
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CHAPTER 2: CARDIOVASCULAR PHYSIOLOGY 

In this chapter, the basic concepts regarding the heart and cardiovascular physiology that are 

important to further understand the model of the combined cardiovascular and rotary LVAD are 

reviewed. This chapter is organized as follows. Heart and circulatory system are introduced in 

Section 2.1. Section 2.2 describes the cardiac cycle in details. 

2.1 Heart and Circulatory System 

2.1.1 Heart 

The heart is an important organ in the circulatory system. It is in the thoracic cavity between left 

and right lungs. While contracting its size is close to that of the personal fist. The breastbone and 

costal cartilage are adjacent to the anterior-superior surface of the heart; the esophagus and the 

thoracic aorta are on the posterior surface of the heart; the inferior surface of the heart is close to 

the diaphragm muscle; the superior vena cava, aorta, and pulmonary artery are on the superior 

surface of the heart. Three sulci are on the surface of the heart. The coronary sulcus is the surface 

demarcation between atria and ventricles; the anterior-posterior longitudinal sulci are surface 

demarcations between left and right ventricles. Figure 2.1 shows the anterior and posterior 

aspects of the heart. 
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(a) 

 

 

(b) 

Figure 2.1 Anterior and Posterior Aspects of the Heart [21] [22] 

The heart is a hollow organ, which is divided into four chambers: the upper two chambers are 

atria separated by the atrial septum as left and right atria, respectively; the lower two chambers 

are ventricles separated by the inter-ventricular septum as left and right ventricles, respectively. 

Figure 2.2 illustrates the basic structure of the heart.  
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Figure 2.2 Basic Structure of the Heart [23] 

2.1.2 Circulatory System 

The circulatory system consists of the heart and blood vessels (arteries, arterioles, and blood), 

whose function is to provide the oxygen and nutrient products to tissues in the body and carry 

away the byproducts of metabolism. Figure 2.3 describes the block diagram of the circulation 

process in human’s body that is made up of two circulations: systemic circulation and pulmonary 

circulation. 
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Figure 2.3 Block Diagram of Human Circulation Process 

Systemic circulation, known as the major cycle, starts at the left ventricle. When the left ventricle 

contracts, the arterial blood, including oxygen and nutrient substance, is pumped into the aorta 

then enters the capillaries via various artery branches. The arterial blood changes into the venous 

blood that contains carbon dioxide and metabolic products by means of gas and substance 

exchange in the capillaries with tissues and cells. The venous blood enters the venules through 

the capillaries and flows into the superior-inferior vena cava and coronary sinus via 

different-level venous return then goes into the right atrium. After the venous blood flows into 

the right ventricle from the right atrium, pulmonary circulation begins. 

Pulmonary circulation, known as the minor cycle, starts at the right ventricle. With the 

contraction of the right ventricle, the venous blood is pumped into the pulmonary artery and 
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flows into the capillaries in the alveolar wall with all branches of pulmonary arteries, and then 

the venous blood becomes the arterial blood with oxygen saturation by gas exchange between the 

blood vessels and alveolar. The arterial blood then enters the venules through the capillaries and 

flows into left and right pulmonary veins through venous return at various levels then goes into 

the left atrium. Finally the arterial blood flows into the left ventricle from the left atrium, another 

systemic circulation will start. 

2.2 Cardiac Cycle 

2.2.1 Review of Some Basic Concepts 

In this section, before introducing the cardiac cycle, some important concepts related to the 

cardiac cycle are introduced first. 

Heart Rate (HR): heart rate is the number of heartbeats per unit of time, typically expressed as 

beats per minute (bpm) that varies depending on the human’s age, gender, or body's other 

physiological demand. 

Systole: systole is a phase of the cardiac cycle when the heart is contracting, during which the 

pressure is generated within the atria and ventricles of the heart pumping blood flow.  
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Diastole: diastole is a phase of the cardiac cycle when the heart is filled with blood after systole. 

Figure 2.4 shows the ventricular systole and diastole, respectively. 

 

Figure 2.4 Ventricular Systole (Left) and Diastole (Right) [24] 

Stroke Volume (SV): stroke volume is the volume of blood pumped from one ventricle of the 

heart with each beat. It is equally available for both the left and right ventricles of the heart. The 

expression is as follows: 

                                           (2.1) 

where EDV is the end-diastolic volume, the volume of blood in the ventricle prior to a beat and 

ESV is the end-systolic volume, the volume of blood at the end of a beat. 

Cardiac Output (CO): cardiac output is the volume of blood pumped by the ventricle in a minute, 

it is the product of stroke volume and heart rate such that 

                                          (2.2) 
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Preload: known as the volume load, is thought of as the “load” before the cardiac muscle starts 

contracting. 

Afterload: known as the pressure load, is defined as the "resistance" that the heart begins to 

contract and eject blood against. 

2.2.2 Heart Cycle 

The cardiac cycle is a period of time between two consecutive heart beats. For example, for a 

normal heart, if the heart rate is 75 bpm, the heart cycle would be 0.8 s. One cardiac cycle 

contains two main phases: systole (contraction) and diastole (relaxation) for both atrium and 

ventricle. However, during the cardiac pumping, the ventricle can play a major role compared to 

the atrium. Therefore, the cardiac cycle often means the activity cycle for the ventricle. 

Figure 2.5 illustrates the changes of several important hemodynamic variables: Left Ventricular 

Pressure (LVP), Aortic Pressure (AoP), Left Atrial Pressure (LAP), and Left Ventricular Volume 

(LVV) during one cardiac cycle and takes into account the left ventricle as an example. In order 

to discuss a complete cardiac cycle in details, one cardiac cycle can be divided into 8 phases (see 

Figure 2.5): 
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Figure 2.5 Events of the Cardiac Cycle for Left Ventricular Function [25] 

Phase 1: isovolumic contraction. The left ventricle starts contracting when R wave of QRS 

complex that represents the potential and time changes in the ventricular depolarization and most 

primitive repolarization in the electrocardiogram (see Figure 2.5) reaches its peak value. LVP 

sharply increases due to the powerful contraction of the ventricular myocardium. When LVP 

overcomes LAP, blood in the left ventricle impels the corresponding mitral valve in the left 

atrio-ventricular orifice to make it closed. The mitral valve is tightened due to the papillary 
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muscle and chordae tendineae, and the contraction of the circular muscle decreases the caliber in 

the atrio-ventricular junction area, hence blood in the left ventricle is prevented from 

regurgitating into the left atrium. At this point, LVP increases fast but when it doesn’t exceed 

AoP (around 80 mmHg in end-systole), the aortic valve in the aorta orifice is still closed. During 

this short period (around 0.05 s), both mitral and aortic valves are not open, the size between the 

apex and the base of the heart decreases, the left ventricle turns round, the tension of the 

ventricular myocardium enhances but LVV is not changed, this is called isovolumic contraction. 

Phase 2: rapid ejection. The ventricular myocardium keeps contracting and its tension continues 

to rise, causing LVP to exceed AoP shortly then the aortic valve is blown out, blood is ejected 

into the aorta and reaches its maximum flow velocity fast. During end-rapid ejection LVP can 

reach its peak value (around 120 mmHg in the left ventricle). In this phase it takes only 0.09 s 

but the volume of ejected blood occupies 80%-85% of SV. 

Phase 3: slow ejection. During this period, the contractility of the left ventricle is weak, LVP 

decreases, the ejection velocity becomes slow. Although LVP is slightly less than AoP (only 

several mmHg), the total energy in the left ventricle (pressure energy plus kinetic energy) is still 

higher than that in the aorta due to the ventricular contraction. Therefore, blood can still be 

ejected from the left ventricle. This phase uses 0.13 s on average then the cardiac cycle goes into 

the phase of diastole (relaxation). 
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Phase 4: pre-diastole. The left ventricle begins to relax and the ejection stops, LVP suddenly 

drops. LVP is less than AoP and the aortic valve is quickly shut down to stop blood regurgitating 

into the left ventricle, hence the period from the onset of the ventricular diastole to the closure of 

the aortic valve is called pre-diastole with the duration of 0.04 s. 

Phase 5: isovolumic relaxation. When the aortic valve is closed, LVP still overcomes LAP, so 

the mitral valve remains closed, which will not be open until LVP keeps dropping to be less than 

LAP. During this short phase (0.08 s), LVP sharply decreases but LVV is basically constant, 

which is the phase of isovolumic relaxation. 

Phase 6: rapid filling. With the mitral valve opening, LVV increases fast and LVP is lower than 

LAP, making blood in the left atrium and great cardiac veins rapidly flow into the left ventricle 

with a period of 0.11 s. During this period two-thirds of blood in the left ventricle is filling. 

Phase 7: slow filling (end diastole). With blood in the left ventricle rapidly filling, the velocity of 

blood flow in veins entering back to the left ventricle via the left atrium gradually decreases, the 

pressure difference between the left atrium and the left ventricle decreases but LVV is still 

increasing. This phase is called slow filling that takes about 0.19 s then the left atrium starts 

contracting. 
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Phase 8: atrium contraction. The left atrium contracts by the end of the ventricle diastole; the 

remaining blood in the left atrium is ejected into the left ventricle due to the increasing LAP, 

improving the fullness degree of the left ventricle and increasing LVP. When the left atrium 

contracts, it makes LAP decrease and the mitral valve closed, hence, before the left ventricle 

contracts, the mitral valve has the trend of closure. Therefore, before next isovolumic 

contraction, the aforementioned eight phases form a complete cardiac cycle. 
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CHAPTER 3: THE COMBINED CARDIOVASCULAR-LVAD MODEL 

The heart is known as a complex dynamic, time-varying, and nonlinear system that is difficult to 

model mathematically. In order to simulate the heart, numerous simplified and complex 

mathematical models of the cardiovascular system have been studied for several years. Wu et al. 

[26] modeled a complicated bi-ventricular human cardiovascular system. Chen [17] used a 

simplified uni-ventricular model of the cardiovascular system in state space form that was 

developed by using a minimal number of state variables to make the system identification as 

simple as possible; Simaan et al. [19] proposed a modified cardiovascular model, consisting of 

five state variables with the assumption that both pulmonary circulation and the right ventricle 

can work normally, hence their effect can be neglected.  

In this research, Simaan’s model [19] is adopted as the cardiovascular system. This chapter is 

organized as follows: In Section 3.1 the cardiovascular model is described. Section 3.2 presents 

the current-based cardiovascular-LVAD model and analyzes its open-loop response. 

3.1 Cardiovascular Model 

In this section, the cardiovascular equivalent circuit model and its state equations are introduced. 

Then the simulation results of corresponding hemodynamic variables for a normal heart are 

presented.  
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3.1.1 Cardiovascular Circuit Model 

A cardiovascular equivalent circuit model is shown in Figure 3.1. In this model, preload and 

pulmonary circulations are represented by a single capacitor CR, and afterload is described as a 

four-element windkessel model that consists of RS, RC, CS, and LS. Notice that in [17] there was 

no capatitor CA, representing the aortic compliance used in this model. The mitral valve is 

described as a resistor RM and an ideal diode DM, and the aortic valve is represented by a resistor 

RA and an ideal diode DA. Table 3.1 lists the state variables and Table 3.2 lists all the system 

parameters in the cardiovascular model and their corresponding values [17]-[19]. 

 

Figure 3.1 Cardiovascular Circuit Model 

In this model, the left ventricle is represented by a time-varying compliance C(t). In order to 

model its response, one way is to use the ventricle’s elastance function E(t), which is the 

reciprocal of C(t) and associated with the contractility of the heart. The elastance theory was 

LAP(t)
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DM RA DA RC LSLVP(t) AoP(t)
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C(t) CA CSx1x2 x3x4

x5
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presented by Suga and Sagawa [27]. It is defined as the ratio of LVP to LVV, which means to 

describe the relationship between pressure and volume of the left ventricle such that 
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 (3.1) 

where V0 is a reference volume, the theoretical volume in the ventricle at zero pressure (10 ml 

for a normal heart). 

Some mathematical derivations have been used to describe the elastance function E(t). In this 

model, a so called “double hill” function [28] is used. The expression is as follows: 
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Table 3.1 State Variables of the Cardiovascular Model 

Variables Name Physiological Meaning (units) 

x1(t) LVP(t) Left Ventricular Pressure (mmHg) 

x2(t) LAP(t) Left Atrial Pressure (mmHg) 

x3(t) AP(t) Arterial Pressure (mmHg) 

x4(t) AoP(t) Aortic Pressure (mmHg) 

x5(t) QT(t) Total Flow (ml/s) 
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Table 3.2 Parameters of the Cardiovascular Model 

Parameters Value Physiological Meaning 

RS (mmHg∙s/ml) 1.0 Systemic Vascular Resistance (SVR) 

RM (mmHg∙s/ml) 0.005 Mitral Value Resistance 

RA (mmHg∙s/ml) 0.001 Aortic Value Resistance 

RC (mmHg∙s/ml) 0.0398 Characteristic Resistance 

C(t) (ml/mmHg) Time-varying Left Ventricular Compliance 

CR (ml/mmHg) 4.4 Left Atrial Compliance 

CS (ml/mmHg) 1.33 Systemic Compliance 

CA (ml/mmHg) 0.08 Aortic Compliance 

LS (mmHg∙s
2
/ml) 0.0005 Inertance of Blood in Aorta 

DM  Mitral Value 

DA  Aortic Value 

 

The scaled elastance function is defined as follows: 

                        ( )  (         )    (  )       (3.3) 
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where the constant Emax and Emin are related to the End-Systolic Pressure Volume Relationship 

(ESPVR) and the End-Diastolic Pressure Volume Relationship (EDPVR), respectively, E(t) is a 

re-scaled version of En(tn), the normalized elastance. In addition, tn = t/Tmax, Tmax = 0.2 + 0.15∙tc, 

and tc is the cardiac cycle interval (i.e., tc = 60/HR). Also, Figure 3.2 shows the elastance E(t) 

with Emax = 2 mmHg/ml, Emin = 0.06 mmHg/ml, and HR = 75 bpm as a normal heart. 

 

Figure 3.2 Elastance Function E(t) 

According to the analysis of the cardiac cycle in Section 2.2.2, the mitral and aortic valves can 

determine the phases of the cardiac cycle. In view of this work, the phases can be divided into 

three different modes (isovolumic contraction and relaxation, ejection, and filling) with the open 

and closed states of the mitral and aortic valves. Notice that it is not feasible to open both mitral 

and aortic valves. Table 3.3 lists the phases of the cardiac cycle. 
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Table 3.3 Phases of the Cardiac Cycle 

Modes 

Valves 

Phases 

DM DA 

1 closed closed Isovolumic contraction 

2 closed open Ejection 

1 closed closed Isovolumic relaxation 

3 open closed Filling 

- open open Not feasible 

 

3.1.2 State Equations 

According to Table 3.3, since there are three available modes, three sets of differential equations 

for describing the cardiovascular model for every mode can be derived. However, as the 

nonlinear elements of the two diodes, one feasible way to describe this model is to write only one 

set of state equations by using some basic circuit analysis methods such as KVL, KCL, etc., 

hence the state equations for this time-varying and nonlinear cardiovascular circuit model shown 

in Figure 3.1 can be derived as follows: 

                          ̇   (   )    ( )    ( ) ( ) (3.4) 
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where Ac(t) and Pc(t) are (5×5) and (5×2) time-varying matrices, respectively, and P(x) is a (2×1) 

vector, used to model the nonlinear behavior of the two diodes previously mentioned. Note that 

the expression of Pc(t) is not associated with the three modes such that 
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Both Ac(t) and P(x) are changed with respect to the three different modes of the cardiac cycle 

previously discussed. 

Mode 1: Isovolumic phase. In this phase, both mitral and aortic valves are closed; therefore, the 

two corresponding diodes in Figure 3.1 are the open circuits as shown in Figure 3.3. 

 

Figure 3.3 Isovolumic Phase for a Cardiovascular Circuit Model 
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Ac(t) and P(x) in this phase are as followed: 
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Mode 2: Ejection phase. In this phase, since blood is ejected from the left ventricle to the aorta, 

as a result, the mitral valve is still closed but the aortic valve is open. In Figure 3.4, it is shown 

that at this time, DM is still an open circuit but DA is a short circuit. 

 

Figure 3.4 Ejection Phase for a Cardiovascular Circuit Model 
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Ac(t) and P(x) are rewritten as follows: 
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Mode 3: Filling phase. In this phase, blood is filled from the left atrium into the left ventricle, the 

mitral valves turns to be open and the aortic valve is closed. The corresponding Figure 3.5 shows 

that DM is a short circuit and DA is an open circuit. 

 

Figure 3.5 Ejection Phase for a Cardiovascular Circuit Model 

RS

RM DM RA DA RC LSLVP(t) AoP(t)

CR

LAP(t) AP(t)

C(t) CA CSx1x2 x3x4

x5



 28 

Ac(t) and P(x) are rewritten as below: 
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where r(x) is the ramp function: 

                               ( )  {
               
               

 (3.12) 

3.1.3 Simulation Results 

In order to check the performance of the cardiovascular circuit model, simulation tests have been 

implemented by MATLAB
1
. Figure 3.6 illustrates the simulation results of several hemodynamic 

variables in the model such as LVP, LAP, AoP, LVV, and QT (cardiac cycle is 0.8 s). The model 

validation can be found in [19].  

 

                                                 

 
1 The MathWorks Inc., Natick, MA. 



 29 

 

Figure 3.6 Simulation of Main Hemodynamic Parameters for a Normal Heart 
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3.2 The Combined Cardiovascular-Pump Model 

In this section, the 1
st
 LVAD model is described, and the current-based model of the combined 

cardiovascular and rotary LVAD system is presented with its state equations. Finally the 

simulation results of the open-loop response for a sick heart are discussed.  

3.2.1 Cardiovascular-LVAD Model 

The LVAD considered in this work is a rotary blood pump connected as a bridge between the 

left ventricle and the aorta as illustrated in the schematic in Figure 3.7. A combined 

cardiovascular-LVAD model is shown in Figure 3.8. Table 3.4 lists the state variables of this 

cardiovascular-LVAD model. Table 3.5 lists all parameters with their values for the LVAD. 

 

 

Figure 3.7 Schematic of a Rotary LVAD [19] 
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Figure 3.8 Combined Cardiovascular-LVAD Circuit Model 

Table 3.4 State Variables of the Combined Model 

Variables Name Physiological Meaning (units) 

x1(t) LVP(t) Left Ventricular Pressure (mmHg) 

x2(t) LAP(t) Left Atrial Pressure (mmHg) 

x3(t) AP(t) Arterial Pressure (mmHg) 

x4(t) AoP(t) Aortic Pressure (mmHg) 

x5(t) QT(t) Total Flow (ml/s) 

x6(t) PF(t) Pump Flow (ml/s) 
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Table 3.5 Parameters of the LVAD Model 

Parameters Value Physiological Meaning 

Rk (mmHg∙s/ml) See (3.14) Suction Resistance with parameters 

Ri (mmHg∙s/ml) 0.0677 Inlet Resistance of Cannulae 

Ro (mmHg∙s/ml) 0.0677 Outlet Resistance of Cannulae 

Li (mmHg∙s
2
/ml) 0.0127 Inlet Inertance of Cannulae 

Lo (mmHg∙s
2
/ml) 0.0127 Outlet Inertance of Cannulae 

RP 0.1707 Pressure Difference Parameter 

LP 0.02177 Pressure Difference Parameter 

 

The LVAD pumps blood continuously from the left ventricle to the aorta. Therefore, the pressure 

difference between the left ventricle and the aorta is expressed by the following equation [20]: 

          ( )     ( )        
  

  
       

  

  
       

  

  
        (3.13) 

where Hp is the pressure (head) gain across the pump and Q is the blood flow rate through the 

pump. The parameters Ri, Ro, and Rp represent the flow resistances and Li, Lo, and Lp represent 

the flow inertances of the cannulae
2
 and pump, respectively. The resistance Rk is a special 

                                                 

 
2 The cannula is a plastic rigid tube that connects the rotary pump to the heart. 
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nonlinear time-varying element, called suction element model developed by Schima et al. [29]. It 

is an empirical model such that its resistance varies with the LVP, which is zero when LVP is 

larger than a given threshold  ̅  and linearly increases if LVP is below  ̅  at a given rate α. In 

another word, this suction model is a pressure-dependent resistance. The mathematical 

expression of Rk is given as 

                           {
                                   ( )   ̅ 

 (  ( )   ̅ )          ( )   ̅ 
 (3.14) 

where α is -3.5 s/ml and  ̅  is 1 mmHg. 

The pressure gain across the pump Hp is modeled using the direct relation between the electric 

power supplied to the pump motor Pe and the hydrodynamic power generated by the pump Pp 

scaled by the pump efficiency η as: 

                                          (3.15) 

Additionally, the electric power may be written in terms of the supplied voltage V and the 

supplied current i(t) to the pump motor while the hydrodynamic power may be written in terms 

of the pump head or pressure gain Hp and the Pump Flow (PF) Q as: 

                                        ( ) (3.16) 

                                           (3.17) 
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where ρ is the density of the reference fluid and g is the acceleration of gravity (ρHg = 13600 

kg/m
3
, g = 9.8 m/s

2
). Using Equation (3.16) and (3.17) and then substituting in Equation (3.15) 

yields: 

                                         ( ) (3.18) 

Solving for the pump pressure gain Hp, we obtain the following expressions: 
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Or 
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 (3.20) 

where γ = ηV/ ρg After applying the appropriate conversion factors and assuming a pump motor 

supplied voltage V = 12 volts as well as a pump efficiency of 100% (assuming that most losses 

are accounted for by the pressure losses induced by Rp and Lp), the constant γ can be computed 

to be γ = 89,944 mmHg∙ml/s∙amp. This relation leads to a non-linear state equation governing the 

behavior of the LVAD as: 
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Where R
*
 = Ri + Ro + Rp + Rk and L

*
 = Li + Lo + Lp. Notice that it is crucial to validate the 

numerical solution scheme of the state equations to guarantee that the system does not operate at 

zero (or negative) pump flow Q at any point during the cardiac cycle as the state equation in 

(3.21) exhibits its non-linearity with the pump flow Q in the denominator. 

The rotary LVAD state equation in (3.21) allows forming a combined model where the primary 

control variable is the supplied current to the pump motor. Furthermore, the resulting 

time-varying Pump Speed (PS) – ω(t) may be estimated at a post-processing stage after solving 

for the state variables, using the relation between the pump pressure Hp and the pump speed ω(t) 

such that: 

                                       ( ) (3.22) 

where β = 9.9025∙10
-7

 mmHg/(rpm)
2
. Comparing with Equation (3.20), an expression for the 

pump speed in terms of the Pump Current (PC) can be derived as follows: 

                                  ( )  √
  ( )

  ( )
 (3.23) 

Note that now it is clear how the heart hemodynamics through Q(t) influence directly, in a highly 

nonlinear manner, the pump speed ω(t). 
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3.2.2 State Equations 

According to the state equations in Section 3.1.2, the state equations for the combined 

cardiovascular-LVAD model can be written as follows: 

                      ̇   (     )    ( )    ( ) ( )    ( ) (3.24) 

where Ac(t) and Pc(t) are (6×6) and (6×2) time-varying matrices, respectively. P(x) is the same as 

shown in Section 3.1.2 and Pc(t) is expressed as follows: 
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In addition, note that in Equation (3.24) the pump motor current i(t) is the control variable, and b 

is a (6×1) vector, given as 
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Ac(t) varies according to the three different modes previously mentioned. Figure 3.9, 3.10, and 

3.11 show the combined cardiovascular-LVAD circuit model with three different phases, 

respectively. 

Mode 1: Isovolumic phase. 

 

Figure 3.9 Isovolumic Phase for a Combined Cardiovascular-LVAD Circuit Model 
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 (3.27) 

Mode 2: Ejection phase. 

 

Figure 3.10 Ejection Phase for a Combined Cardiovascular-LVAD Circuit Model 
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 (3.28) 

Mode 3: Filling phase. 

 

Figure 3.11 Filling Phase for a Combined Cardiovascular-LVAD Circuit Model 
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 (3.29) 

3.2.3 Open Loop Simulations 

In the open loop simulations for the LVAD, Emax equals to 1.0 mmHg/ml for a sick heart since 

Emax is considered to be 2.0 mmHg/ml for a healthy heart in the cardiovascular model. In 

addition, note that Equation (2.2) will not be available any more since the pump can replace the 

natural heart to provide continuous blood flow. The actual cardiac output will be the combination 

of the blood flow pumped by the heart and that through the LVAD. 

Figure 3.12 shows the effect of the ramp PC on LVP, AoP, QT, and PF. The ramp pump current 

linearly increases, starting at 0.1 A with the slope of 0.01 over the period of 60 seconds shown in 

Figure 3.12(a). Note that in Figure 3.12(b), AoP is larger than LVP at all time since the aortic 

valve is not open during the ejection, and the phases of the aortic valve (i.e., open or closed) 

depend on the contractility strength of the heart and the values of the control input. In this case, 

since the weak left ventricle is not strong enough to open the aortic valve, the cardiac output 
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(total flow) is equal to the pump flow, meaning that the cardiac output is totally provided by the 

LVAD. This can also be proven in Figure 3.12(c). 

 

Figure 3.12 Simulations of Ramp PC, LVP, AoP, QT, and PF 
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In addition, according to Equation (3.23), it is also important to examine how the pump speed 

signal is affected by the supplied pump motor current. Figure 3.13 shows a plot of the pump 

speed when the model, with a heart rate of 75 bpm, is driven with a linearly increasing pump 

current shown in Figure 3.12(a). There are two important observations that can be made from 

Figure 3.13. First, note that the resulting pump speed ω(t) does not also increase linearly. Instead, 

it increases nonlinearly with a decreasing rate of increase. Second, the pump speed has a 

superposed oscillatory component that has the same pulsatility as the heart rate of 75 bpm. This 

is a very interesting and extremely important new phenomenon that has recently been observed 

in in-vivo data obtained through clinical studies of intensive care patients implanted with 

LVADs [30]. This is the first time that such a phenomenon has been reproduced from a 

combined cardiovascular and LVAD model and represents a breakthrough in accurately 

modeling this complex bio-mechanical system [20]. 

 
 

Figure 3.13 PS as a Function of Time When PC is Increased Linearly 
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CHAPTER 4: SUCTION PHENOMENON AND INDICES 

The suction phenomenon is known as one of the major complications in the development of 

implantable rotary blood pumps. Suction can be defined as the collapse of the ventricle or tissues 

and cells damage. The reason is that the pumped blood outflow exceeds the blood flow to the 

heart, which means the heart is over-pumping more blood than normally needed. Figure 4.1 

shows the normal and collapsed ventricle sacs in a mock loop experiment that simulates a 

healthy ventricle and an auxiliary pump with a pneumatically actuated artificial heart and an 

unsealed centrifugal pump, respectively [6]. 

 

(a)  

 

 

(b) 

Figure 4.1 The Mock Loop Experiment of Normal and Suction Cases [6] 
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In this dissertation, we present a new suction detection and classification method based on the 

Lagrangian Support Vector Machine (LSVM) approach in pattern recognition. The LSVM is a 

modified original Support Vector Machine (SVM) and has high accuracy, stable performance, 

and fast learning speed (i.e., training time). In addition, LSVM is the most widely used 

algorithm, for its well-known mathematical foundation, robustness, and relatively simple 

implementation. 

Figure 4.2 shows a flowchart of the proposed LSVM algorithm for the LVAD. The algorithm is 

composed of four modules [14], [15]: (1) a pre-processing module whose purpose is to filter the 

pump flow signal, eliminating high frequency noise components using a low pass filter. (2) a 

feature extraction module which calculates six suction indices from the filtered pump signal. 

Three of the six indices are based on time domain, two on frequency domain, and one on 

time-frequency domain. Both of the two modules mentioned above are implemented during both 

the training as well as during the test phases. (3) a classifier training module whose purpose is to 

perform the training phase and (4) a classification module whose purpose is to perform the final 

classification. Note that the classifier training module and the classification module must operate 

on two distinct and different sets of data. 
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Figure 4.2 Flow Chart of the Proposed Suction Detection Algorithm 

This chapter is organized as follows. Section 4.1 introduces the data acquisition. Section 4.2 

describes the feature extraction of pump flow in details, including definition of pump states, 

window length issue, and suction indices extracted based on time, frequency, and time-frequency 

domains, respectively.  
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4.1 Data Acquisition 

The in vivo data used in this study were obtained from experiments, as described in Table 4.1, 

performed at the University of Pittsburgh in 1998 and 2005 [31]. One calf of average weight 

(~250Kg) was implanted with a centrifugal MedQuest pump and four calves, also of average 

weight, were implanted with axial Nimbus pumps. The inflow cannulation was achieved via the 

left ventricle and the blood flow was measured using two transonic flow probes; the first placed 

either in the aorta and pulmonary artery to measure cardiac output and the second in the pump 

outflow cannula to measure pump flow. The pump inlet pressure was measured by a pressure 

sensor placed at the inlet of the pump. Suction was induced either by overpumping (most of the 

times) or by clamping the vena cava. Overpumping was achieved by increasing the pump speed 

from 1,000 rpm to 3,100 rpm for the MedQuest pump and from 7,000 rpm to 15,000 rpm for the 

Nimbus pump, respectively. Once suction was encountered the pump speed was decreased to 

avoid any injury to the myocardium. Clamping the vena cava caused less blood to return to the 

calves’ hearts and as a result, the pump drew less blood, causing suction. Note that at the end of 

the experiment, Esmolol (a cardioselective drug that decreases heart rate and contractility) was 

used for the animals to validate how changes in the heart contractility affect the pump flow and 

the occurrence of suction. Additional details on the experiment and data acquisition procedure 

can be found in [31]. 
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Table 4.1 Description of the Study on In-vivo Data for Two Pumps 

Pump name MedQuest
3
 Nimbus

4
 

Pump Type Centrifugal Axial 

Subject used One calf Four calves 

Study type Acute Chronic 

Sampling rate (Hz) 500 135/150 

 

4.2 Feature Extraction of Pump Flow 

Suction could be easily identified if reliable pressure sensors are implanted at some locations in 

the left ventricle to continuously measure hemodynamic variables such as x1 through x5 

(presented in the cardiovascular model in Section 3.1.1), or at the inlet of the pump to evaluate 

the pump inlet pressure. However, currently such implantable sensor technology is not available 

for real-time monitoring. Hence, due to the lack of available information, most suction detection 

methods are tentative and depend on the extraction of features from other available signals, 

which can be continuously measured for a long time. Due to these constraints, most researchers 

use pump flow, pump speed, or pump current to extract features for suction detection. In this 

work, the pump flow signal is adopted to extract features. 

                                                 

 
3 LaunchPoint, LLC (Goleta, CA) and WorldHeart, Inc. 
4 Nimbus, Inc., Rancho Cordova, CA. 
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4.3 Definition of Pump States 

Pump states are usually defined by clinical experts. However, the definition of such states is 

generally not consistent due to the subjectivity of the experts and the complexity of different 

types of pump signals available in real time. In this paper, we will develop the LSVM algorithm 

with two possible classes of pump states. The first is a 3-state classification which admits three 

states of suction patterns: No Suction (NS), Approaching Suction (AS), and Suction (S), and the 

second is a 2-state classification which admits two states of suction patterns: No Suction (NS) 

and Suction (S). Clearly in the 2-state case NS and AS are merged together as NS, and 

consequently this case is simpler to analyze but does not provide a warning that suction is 

approaching. Figure 4.3 and 4.4 show several plots of the in vivo data for MedQuest and Nimbus 

pumps, respectively. These plots include Pump Speed (PS), Left Ventricular Pressure (LVP), 

Pump Inlet Pressure (PIP), and Pump Flow (PF). On these plots three pump states are identified 

and indicated by the three time windows labeled A, B, and C, respectively. 
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Figure 4.3 Example of In Vivo Data Based on MedQuest Pump. (a) PS. (b) LVP, PIP. (c) PF. (d) 

Zoomed PF for NS Case. (e) Zoomed PF for S Case 
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Figure 4.4 Example of In Vivo Data Based on Nimbus Pump. (a) PS. (b) LVP, PIP. (c) PF. (d) 

Zoomed PF for NS Case. (e) Zoomed PF for S Case 

In time window A, No Suction (NS) corresponds to the normal operating condition of the pump. 

Within each cardiac cycle, the Minimum Pump Inlet Pressure (MPIP) is generally close to zero 

and its difference from the Minimum Left Ventricular Pressure (MLVP) is small, (i.e., ΔP = 

MLVP – MPIP ≤ ΔPNS, where ΔPNS is the low No Suction threshold on ΔP). In addition, during 

NS the pump flow signal has a periodic characteristic with a large sinusoidal component [19] 

shown in Figure 4.3(d) and Figure 4.4(d). 

The Approaching Suction (AS) state is shown in time window B. As the pump speed increases, 

MPIP decreases much faster than MLVP causing ΔP to increase (i.e., ΔPNS < ΔP ≤ ΔPS, where 

ΔPS the high Suction threshold on ΔP). In this state, the pump flow signal becomes less pulsatile 

than in the NS state. Furthermore, an optimal PS could be found during AS case since the flow 

drawn by the pump tends to match the flow coming back to the heart (venous return). 
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The third state shown in time window C is the Suction (S) state. In this state, the inlet cannula is 

evidently obstructed, MPIP exhibits very large negative spikes and MLVP is slightly less than 

zero (i.e., ΔP > ΔPS). Furthermore, the pump flow signal loses the periodic with a large 

sinusoidal component characteristic that it had during NS and instead, exhibits a sudden large 

drop in the slope of the envelope of the minimum pump flow signal [19] shown in Figure 4.3(e) 

and Figure 4.4(e). The suction state is quite dangerous in that if it continues for some time, the 

patient may experience extreme discomfort and in some cases may die due to damage in the 

cardiac tissue, ventricular collapse, or ventricular arrhythmia.  

4.4 The Window Length Issue 

In order to effectively extract suction indices, the window length (i.e., the time period over which 

the indices are calculated) should be considered. Most existing suction detection approaches 

reported in the literature extract features using different-size windows that vary from 2 to 6 

seconds [10]-[12], [32], and [33]. Currently, there does not exist a “perfect” method or 

technology for choosing the length of this window. In general, a shorter window length allows 

for faster data processing but the resulting features may not be accurate. On the other hand, a 

longer window will provide more accurate features but may not be appropriate for real-time 

processing. Therefore a tradeoff must be considered among several options that include a 

requirement for the classifier to be both highly accurate and responsive and to have sufficient 
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samples available to estimate the indices and minimize the delay that is inherent in such systems 

since it is necessary to buffer the pump flow before extracting the features. In the final analysis, 

we used a 5-second window as a compromise which is determined to be the most appropriate 

time window for our study. 

In the following three subsections, the time, frequency, and time-frequency indices derived from 

the pump flow signal are described. SI1, SI2, and SI3 are based on time domain, SI4 and SI5 are 

based on frequency domain, and SI6 is based on time-frequency domain, respectively. 

4.5 Time Domain Based Suction Indices 

Our LSVM was designed to work with six Suction Indices, SIi , i=1, 2,…6 covering the 

characteristics of the pump flow signal in three different domains: time, frequency, and 

time-frequency. While in general it is not known a priori which of these domains will provide the 

most discriminating power among the three states of NS, AS and S, the LSVM classifier will 

have the advantage of relying on all three domains simultaneously by using these six indices. 

The time index SI1 is defined based on the mean, minimum, and maximum values of the pump 

flow [32] according to the expression: 

                            
     (  ) (   (  )    (  ))

   (  )     (  )
 (4.1) 
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When suction is absent, the mean pump flow value is approximately half of the sum of the 

maximum and minimum values of PF, which shifts slightly towards minimum PF while 

approaching suction. When suction occurs, the mean pump flow value is close to the maximum 

pump flow value. Hence, SI1 increases dramatically.  

Time indices SI2 and SI3 are calculated with respect to the derivative of the pump flow signal as 

follows: 

                                  
   [

 (  )

  
]

   (  )     (  )
 (4.2) 

                                  
   [

 (  )

  
]

   (  )     (  )
 (4.3) 

where    [
 (  )

  
] is the maximum derivative of PF and    [

 (  )

  
] is the minimum derivative 

of PF, respectively. SI2 increases obviously during suction, whereas SI3 decreases at the 

beginning of suction. 

4.6 Frequency Domain Based Suction Indices 

The frequency domain indices can detect the changes in the harmonic and subharmonic energy 

content of the pump flow. Let QP(ω) as the Fourier transform of the pump flow signal and ω0 as 

the fundamental frequency. Also, let ω1 = ω0 – ωc and ω2 = ω0 + ωc, where 2ωc is a threshold (in 

radians/sec) that defines an interval centered at ω0. In this study, ω0 = 1.0 Hz and ωc = 0.5 Hz. 
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The harmonic index SI4 is defined as the ratio of the signal’s total energy in the fundamental 

component frequency band to the total energy in the harmonic component frequency band [33], 

given by the following expression 

                                   
∫ |  ( )|  

  
  

∫ |  ( )|  
 
  

 (4.4) 

Another frequency index SI5 is defined [33] as the ratio of the subharmonic energy to the 

fundamental energy as follows: 

                                   
∫ |  ( )|  

  
 

∫ |  ( )|  
  
  

 (4.5) 

When approaching suction, SI4 starts to decrease and SI5 starts to increase. In the case of suction 

event, SI4 decreases and SI5 increases abruptly due to the shift of energy from the fundamental 

band to both harmonic and subharmonic bands, indicating the occurrence of suction. 

4.7 Time-Frequency Domain Based Suction Index 

This method is used to supplement the frequency-domain approach. The index SI6 is defined [33] 

as the standard deviation of instantaneous mean frequency of PF, expressed as 

                                   √   (〈 〉 
  ) (4.6) 

In Equation (4.6), the instantaneous frequency is defined as the average frequency at a given 
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time [34] such that 

                              〈 〉 
   

∫    (   )  

∫   (   )  
 (4.7) 

where PSP(ω,t) is the squared magnitude of the Short-Time Fourier Transform (STFT) defined as 

follows: 

                         (   )  |∫   ( )  (   )       |
 
 (4.8) 

In Equation (4.8), f(t) can be considered as a window that chooses a local section of the signal 

qp(t) for Fourier analysis. Two extreme cases can occur, depending on the selection of the 

window. If f(t) is a very long window, a high resolution spectrogram can be obtained, but time 

resolution is reduced. On the contrary, if f(t) is a very short window, Equation (4.8) gives a low 

resolution spectrogram [31]. 

As previously discussed, we assume that under desired circumstances PF is approximately 

periodic and its fundamental frequency ω0 is the patient’s cardiac frequency. If the window f(t) is 

selected such that the spectrogram of pump flow presents “good” resolution in frequency, we 

expect to see a line parallel to the time axis in the “time × frequency” plane [31]. In other words, 

the spectrogram of the pump flow is similar to that of a pure tone signal. This implies that the 

average frequency at a given time 〈 〉 
   ω  [31]. 
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The value of SI6 is small without suction and increases slightly when suction is approaching, and 

it increases abruptly during a suction event. 

The six indices described above are the final inputs to the LSVM classifier, which will be 

discussed in the next chapter. 
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CHAPTER 5: SUCTION DETECTION FOR THE ROTARY LVADS 

The purpose of the decision system (i.e., consists of classifier training and classification modules 

in Figure 4.2) is to combine the six features described in the previous section in order to classify 

the pump states. Therefore, a learning system required. Several methods in statistical pattern 

recognition have been proposed to design learning systems, such as Discriminant Analysis, 

Neural Networks and, more recently, Support Vector Machines (SVM). Among these, Support 

Vector Machines are the most widely used algorithms for the advantages of its classification 

performance over other pattern recognition algorithms. Furthermore, there is a modified SVM, 

called LSVM, whose performances are better than the standard SVM. These reasons motivated 

us to use LSVM to design a classifier for the suction detection.  

5.1 Support Vector Machine 

The Support Vector Machine algorithm was first proposed by Vapnik [35] in 1998, as a reliable 

and powerful classification technology that has been successfully applied to various pattern 

recognition problems [36]-[39]. Figure 5.1 shows the main idea of the standard SVM for a 

two-dimension, two-class linearly separable pattern. The squares and circles represent two 

different classes. H is the classification line that correctly classifies the two-class samples. H1 

and H2 are two lines, which pass the samples of every class that are closest to H. Furthermore, 

both H1 and H2 are parallel to H. Therefore, the distance between H1 and H2 is the classification 
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margin. The optimal classification line is required such that it cannot only correctly classify the 

samples, but maximize the margin. Extending to the high dimension space, the optimal 

classification line becomes the optimal hyperplane. 

 

Figure 5.1 The Structure of a Simple SVM 

Consider a training set (xi, yi), i = 1,…,n, where xi   R
n
 and yi   {+1, -1}, where +1 and -1 

represent the classification identification of the two classes. Assume that the equation of 

classification face is as follows: 

                                         (5.1) 

where ω and b are the weight vector and constant bias, respectively. To correctly classify all the 

samples, there exists the following expression such that: 

                (      )        {
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Thus, the classification margin can be calculated as follows: 

                      ⟨  |    ⟩
      

‖ ‖
    ⟨  |     ⟩
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‖ ‖
 (5.3) 

Now the question is to maximize the margin, which means to minimize its reciprocal, hence 

Equation (5.3) can be considered as a quadratic programming problem such that: 

 ( )  
 

 
‖ ‖  

Subject to                   (      )                   (5.4) 

In order to solve the above quadratic programming problem, we can use Lagrange multiplier 

method as follows: 

                       
 

 
‖ ‖  ∑     (      )  ∑   

 
   

 
    (5.5) 

where αi > 0 the Lagrange parameter. Now the question is to minimize L with respect to ω and b. 

By calculating partial differential with respect to ω and b and let the results be 0, the problem in 

Equation (5.4) is transformed to a simple dual problem: maximize L with the constraints such 

that the gradients of L with respect to both ω and b would be 0, and the Lagrange parameter αi is 

non-negative, which means under the following constraints: 

                                 ∑        
    (5.6) 
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                                                 (5.7) 

Maximize the following function with respect to α such that 

                       ( )  ∑    
 

 
∑         (     )

 
     

 
    (5.8) 

If   
  is the optimal solution then 

                                   ∑   
     

 
    (5.9) 

That means the weight vector ω of the optimal hyperplane is a linear combination of the sample 

vector. 

The problem above is the quadratic programming with inequality constraints. According to the 

optimality condition—Karush-Kühn-Tucher (KKT) condition, the solution of the quadratic 

programming problem can satisfy the following condition: 

                       {[(    )   ]    }                  (5.10) 

Therefore, for many samples, αi is 0, and the non-zero αi corresponds to the special samples that 

make the equality hold in Equation (5.2). They are called support vectors. In addition, b
*
 can be 

calculated from any support vector using Equation (5.2) such that: 

                                   
 

  
       (5.11) 
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where xs is a support vector. 

Finally the optimal classification decision function is as follows: 

                         ( )     {∑     
 (    )     

   } (5.12) 

When the samples are linearly separable, the decision function can be obtained using Equation 

(5.12). However, if the data are linearly inseparable, the constraint in Equation (5.2) cannot be 

satisfied. Thus, a non-negative slack variable will be added in Equation (5.2) in order to widen 

the constraint condition such that: 

                        [(    )   ]                     (5.13) 

When the classification error occurs,     , therefore, ∑     is the upper bound of the number 

of incorrectly classified samples in the dataset. Then it is necessary to add an extra cost term in 

the objective function (5.4) such that: 

                          (   )  
 

 
(   )   (∑   

 
   ) (5.14) 

where the positive C is a constant cost parameter that controls the tradeoffs between the margin 

and error penalty. Now, the problem is to find the minimum in Equation (5.14) with the 

constraint in Equation (5.13). By balancing the maximum margin and the least number of the 

incorrectly classified samples, the optimal hyperplane with linearly inseparable samples can be 
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obtained. Note that the difference between linear separable and linear inseparable cases is that 

Equation (5.7) is the constraint for the linear separable case, which is considered as 0 ≤ αi ≤ C for 

the linear inseparable case. 

The previous discussions are under the assumption that the data samples are linear. However, in 

real time, in most cases the data samples are nonlinear. To correctly identify the nonlinear 

samples, the input vectors can be mapped into a high-dimension eigenvector space, where the 

optimal hyperplane can be made. That is the SVM-based algorithm for the nonlinear data. 

Furthermore, with the appropriate mapping function, most linear inseparable samples in the input 

space can be solved by transforming them to linear separable samples. 

However, while mapping data from the low-dimension input space to the high-dimension feature 

space, in most cases it is impossible to obtain the optimal hyperplane in the high-dimension 

feature space due to the rapid increase of the space dimension. SVM can solve this problem in 

the input space by defining Kernel Function [40], the theory is as follows: 

Since the previous discussions in this section only involve inner product, therefore, assume that 

there exists a nonlinear mapping        that maps samples from the input space to high 

dimension feature space H, the optimal hyperplane can be established in the feature space by 

only using dot product (i.e.,  (xi)∙  (xj)). Therefore, if there exists a function K to satisfy the 



 64 

condition such that K(xi, xj) =  (xi)∙  (xj), then in the high dimension space only dot-product 

operation is required.  

According to functional theory, if a certain function K satisfies Mercer condition [41], it can 

correspond to dot-product in a certain transformed space; hence the linear classification after a 

certain nonlinear transform can be implemented using the dot-product function K(xi, xj) that 

satisfies Mercer condition in the optimal hyperplane, and the computational complexity is not 

increased. Therefore, the final decision function is summarized as follows: 

                         ( )     (∑     
  (    )     

   ) (5.15) 

where K(xi, xj) is the kernel function [40]. Several popular models of kernel include linear, 

polynomial, and radial basis function, etc. In this study, a linear kernel is selected since using 

other kernels didn’t result in any improvement in performance of the suction detection issue for 

our study. 

Figure 5.2 shows a schematic diagram of SVM. The decision function of SVM is formally 

similar to a Neural Networks. The output is the linear combination of several interlayer nodes, 

and every interlayer node corresponds to an inner product of an input sample and a support 

vector. Therefore, SVM is also called support vector network. 
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Figure 5.2 The Schematic Diagram of SVM 

Although SVM-based algorithm has been proven to be effective in many practical applications, it 

still has some disadvantages in computation such as slow learning speed (training time), complex 

computation, and great arithmetic demand, etc. To solve these limitations, a Lagrangian Support 

Vector Machine could be adopted.  

5.2 Lagrangian Support Vector Machine 

The Lagrangian Support Vector Machine (LSVM) was first proposed by Mangasarian et al. [42] 

in 2001, as a modified SVM. Compared to the standard SVM and many of other existing pattern 

recognition approaches, the LSVM is a very fast and simple algorithm, based on an implicit 

Lagrangian formulation of the dual of a simple reformulation of the standard quadratic problem 
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of SVM [43]. In general, the LSVM requires inversion of a single matrix whose much smaller 

dimensions are of the order of the original input space plus only one. 

Consider an m×n matrix A representing m data points in the  -dimensional real space and an 

m×m diagonal matrix D with plus ones or minus ones along its diagonal, also assume that e is an 

m×1 vector of ones and I is an m×m identity matrix, and then two matrices are defined as 

follows: 

                             [   ]       
 

 
     (5.16) 

where Q is a symmetric positive definite matrix and γ equals to C in Equation (5.14). With these 

definitions in Equation (5.16), the corresponding dual problem becomes 

                                   ( )  
 

 
         (5.17) 

where u equals to α in the equations in Section 5.1. Same as SVM, the LSVM algorithm is also 

based on KKT necessary and sufficient optimality conditions for the dual problem such that: 

                                 (    )    (5.18) 

With the simply established identity between any two real numbers (or vectors) p and q, we can 

obtain the following expression: 
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                               (    )      (5.19) 

Hence Equation (5.18) can be rewritten as followed with any positive τ 

                                ((    )    )  (5.20) 

The iterative scheme that forms the LSVM algorithm is as follows: 

                          {  [(     )     ]
 
}               (5.21) 

The global linear convergence from any starting point could be established under the following 

condition such that 

                                       
 

 
 (5.22) 

where τ is set as 1.9/γ in all the experiments. In addition, the optimality condition (5.20) is also 

the necessary and sufficient condition for the unconstrained minimum of the implicit Lagrangian 

associated with the dual problem (5.17) such that: 

                (   )          ( )  
 

  
(‖(        ) ‖  ‖    ‖ ) (5.23) 

Setting the gradient with respect to u of Equation (5.23) to zero gives 

                    (    ) [(    )  ((    )   )
 
]    (5.24) 
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where Equation (5.24) is equivalent to the Equation (5.20) under the assumption that τ is positive 

and not an eigenvalue of Q. Mangasarian et al. established the LSVM algorithm and its global 

linear convergence of the iteration (5.21) under condition (5.22) such that starting with an 

arbitrary u
0
   R

m
, the optimal solution ū will converge at the following linear rate [42] 

                     ‖        ̅‖  ‖      ‖  ‖      ̅‖ (5.25) 

Details on the LSVM algorithm and the proof of Equation (5.25) can be found in [42]. 

Similar to the original SVM algorithm, although both the SVM and LSVM algorithms are 

originally designed as binary classifiers, classification into additional classes is possible. In this 

work, a decision tree method is adopted for the multiclass problem. In general, at the top of the 

decision tree, the hyperplane is made to separate one or some classes from the remaining classes 

in the feature space. If plural classes are in the separated subspace, at the node connected to the 

top node, we determine the hyperplane that separates the classes. This procedure is repeated until 

there is only one-class data in the separated regions. This method only needs to construct k–1 (k 

is the total number of classes) classifiers. Therefore, in this work, a 2-step LSVM decision tree 

method is adopted for the 3-state case. First, we separate the S state from the NS and AS states 

and then the NS and AS states are classified by another LSVM.  
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5.3 Classification Performance Evaluation Criteria 

In order to evaluate the performance of our suction detection algorithm, we will use seven 

criteria. Three of these criteria relate to the sensitivity, specificity, and accuracy of the algorithm 

[44]. The expressions for these criteria are given as follows: 

                                    (  )  
  

     
      (5.26) 
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      (5.27) 
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where the definitions of TP, TN, FP, FN, and AC are as follows:  

True Positive rate (TP): the proportion of positive cases that were correctly classified. 

True Negative rate (TN): the proportion of correctly identified negative cases. 

False Positive rate (FP): the proportion of negative cases that were incorrectly identified as 

positive. 

False Negative rate (FN): the proportion of positive cases that were incorrectly classified as 

negative. 
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Accuracy (AC): the proportion of the total number of predictions that were correctly identified. 

The fourth and fifth criteria relate to the training and test times of the algorithm. The last two 

criteria are the Receiver Operating Characteristic (ROC) curve and the Area under ROC Curve 

(AUC). The ROC curve is a technique for visualizing, analyzing, and choosing classifiers based 

on their performance. ROC curves have been extensively applied in medical decision making, 

radiology, and other areas for several decades, and more recently they have been used in 

machine learning and data mining. The ROC curve is a two-dimensional graphical plot of a 

binary classifier system in which sensitivity is plotted on the y-axis and 1-specificity is plotted 

on the x-axis. The ROC describes the relative tradeoffs between benefits (sensitivity) and costs 

(1-specificity) [45]. Once ROC is determined, the AUC, which is an index of the quantitative 

measure of the overall performance of the classifiers, can be easily calculated [45]. 

5.4 In Vivo Data Analysis 

This section describes how experimental data were used for the proposed suction detection 

system. These data were analyzed off-line. 

Figure 5.3(a) shows an example of the pump flow signal from the MedQuest pump experiment. 

The six suction indices derived from this signal are calculated and plotted on the same figure. 
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The changes in these indices as the pump flow signal transitions from NS to AS and from AS to 

S are clearly evident in Figure 5.3(b)-(g).  
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Figure 5.3 Suction Indices Extracted from PF Based on MedQuest pump. (a) PF. (b) SI1. (c) SI2. (d) 

SI3. (e) SI4. (f) SI5. (g) SI6 

A total of 11 in-vivo data files were recorded for the MedQuest pump, and a total of 23 in vivo 

data files were adopted for the Nimbus pump, respectively. The data were previously classified 

by three human experts into three states, (i.e., NS, AS, and S) according to the three pump states 

previously defined. This classification procedure was based on the analysis of PF, PS, LVP, and 
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PIP, resulting in a total number of 1527 samples of the pump flow signal for the MedQuest pump 

and a total number of 1432 samples for the Nimbus pump in a data base. Table 5.1 and Table 5.2 

show the data statistics, including Mean Values (Mean) and Standard Deviations (SD) of each 

feature variable for each type of indices for the two pumps. For the MedQuest pump, nearly half 

of the samples, 759 (49.7%), belongs to NS, whereas AS and S present 646 (42.3%) and 122 

(8.0%), respectively, of the data. For the Nimbus pump, the number of the samples for NS, AS, 

and S is 784 (54.75%), 310 (21.65%), and 338 (23.6%), respectively.  

Table 5.1 In-Vivo Data Statistics for the MedQuest Pump 

 

Samples 

NS 

759 (49.7%) 

AS 

646 (42.3%) 

S 

122 (8.0%) 

Feature Mean SD Mean SD Mean SD 

SI1 -0.16 0.07 -0.26 0.13 0.46 0.17 

SI2 7.95 1.05 6.25 1.31 10.40 2.11 

SI3 -7.76 0.52 -9.03 3.37 -14.44 3.83 

SI4 1.47 0.25 1.01 0.23 0.42 0.14 

SI5 0.09 0.05 0.22 0.24 0.77 0.56 

SI6 0.03 0.03 0.08 0.08 0.36 0.14 
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Table 5.2 In-Vivo Data Statistics for the Nimbus Pump 

 

Samples 

NS 

784 (54.75%) 

AS 

310 (21.65%) 

S 

338 (23.6%) 

Feature Mean SD Mean SD Mean SD 

SI1 -0.03 0.08 -0.08 0.12 0.25 0.10 

SI2 9.73 1.48 8.55 1.33 9.46 1.58 

SI3 -7.97 0.81 -8.40 0.98 -11.37 2.04 

SI4 2.12 0.44 1.44 0.52 0.56 0.27 

SI5 0.08 0.05 0.19 0.25 1.77 1.94 

SI6 0.02 0.02 0.05 0.05 0.17 0.11 

 

Table 5.1 and Table 5.2 also show that the difference among the three pump states is numerically 

significant, except for SI2 of the Nimbus pump. Also note that, due to the similarities from a 

physiologic stand point between NS and AS, the mean values of all six indices between NS and 

AS for both pumps are reasonably close (as expected) and are closest in the cases of SI5 and SI6, 

which also can be illustrated by using box-plots in Figure 5.4. 
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Figure 5.4 Box Plots of the Features per Pump State for MedQuest Pump. (a) SI1. (b) SI2. (c) SI3. (d) 

SI4. (e) SI5. (f) SI6 
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states, for the MedQuest pump data (similar plots can also be obtained for the Nimbus pump 

data). Note that the median values (the red lines in each box) are different across the three states 

(meaning that each state has distinct distributions compared to the other states) and are almost 

identical to the mean values in Table 5.1, for each feature. Also note that the separation between 

NS and AS is slightly difficult to distinguish for indices SI5 and SI6 as observed earlier. 

Table 5.3 and Table 5.4 show the correlation among the six derived indices for both pumps. In 

our data base, none of the indices are very strongly correlated; the strongest correlation (0.69) is 

between SI3 and SI4 for the MedQuest pump and the strongest correlation (-0.71) is also between 

SI3 and SI4 for the Nimbus pump, respectively. 

Table 5.3 Correlation Coefficients from Six Indices for MedQuest Pump 

 SI1 SI2 SI3 SI4 SI5 SI6 

SI1 1      

SI2 -0.54 1     

SI3 -0.34 0.51 1    

SI4 0.03 0.29 0.69 1   

SI5 0.51 -0.36 -0.48 -0.28 1  

SI6 -0.66 0.63 0.66 0.39 -0.66 1 
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Table 5.4 Correlation Coefficients from Six Indices for Nimbus Pump 

 SI1 SI2 SI3 SI4 SI5 SI6 

SI1 1      

SI2 -0.56 1     

SI3 -0.38 0.42 1    

SI4 0.53 -0.40 -0.71 1   

SI5 -0.63 0.40 0.47 -0.62 1  

SI6 0.26 0.03 0.21 -0.34 0.05 1 

 

In this work, the LSVM classifier is trained on a randomly selected set of 50% of the in vivo data 

samples and then tested on the remaining 50% of the samples in the same data set for both the 

2-state and 3-state classifications. Due to the random selection of samples, the classification is 

repeated 500 times. The two thresholds on ΔP used in the classifier, as mentioned in Section 4.3, 

are chosen as ΔPNS = 10 mmHg and ΔPS = 35 mmHg for the MedQuest pump and ΔPNS = 25 

mmHg and ΔPS = 50 mmHg for the Nimbus pump, respectively due to the different nature of the 

two pumps. The mean values and standard deviations of all the results reported in this study (i.e., 

performance criteria ST, SF, AC, training and test times, ROC and AUC) are averaged over 500 
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runs. All experimental procedures are implemented using MATLAB implemented on a 2-GHz 

Intel Pentium Dual CPU desktop computer with 3 gigabytes of memory. 

5.5 Two-State Classification Task for the MedQuest Pump 

For the MedQuest pump 763 total samples (379 NS, 323 AS and 61 S) were available for 

classification. The 2-state (the AS samples are considered as NS) classification results of the 

LSVM algorithm over 500 runs on the test set are shown in Table 5.5. On average, only 6.35 of 

the 702 NS samples (i.e., 0.90%) are incorrectly classified as S and 3.02 of the 61 S samples (i.e., 

4.95%) are incorrectly classified as NS. 

Table 5.5 Classification Results of the LSVM Classifier on the Test Set for 2-State Problem Based 

on MedQuest Pump 
a
 

 NS S Total 

NS 695.65 6.35 702 

S 3.02 57.98 61 

   a 
Actual classes are in rows, predicted in columns. 

Table 5.6 shows the performance analysis of the LSVM classifier on the test set for the 2-state 

case. It indicates that a sensitivity of 99.10% is achieved with the related standard deviation of 

0.35% in classifying NS cases, while for suction state the sensitivity and standard deviation are 
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95.05% and 2.71%, respectively. Therefore, the overall accuracy is 98.77% with the standard 

deviation of 0.29%. The training and test times are 0.008 s and 0.009 s, respectively. 

Table 5.6 Performance Analysis of the LSVM Classifier on the Test Set for 2-State Problem Based 

on MedQuest Pump (Numbers Inside the Parenthesis is SD in %) 

 NS S 

Sensitivity (%) 99.10 (0.35) 95.05 (2.71) 

Specificity (%) 95.05 (2.71) 99.10 (0.35) 

Accuracy (%) 98.77 (0.29) 98.77 (0.29) 

 

5.6 Three-State Classification Task for the MedQuest Pump 

For the 3-state case, the average correct classification results for each pump state together with 

the spread of the erroneous classifications into the other states are shown in Table 5.7. For NS, 

on average, there are 27.85 NS samples misclassified as AS (7.35%) and only 0.24 samples are 

wrongly classified as S (0.06%). For AS, 18.72 samples are misclassified as NS (5.79%) and 

only 6.16 samples are incorrectly classified as S (1.91%). Finally for S, the mean erroneous 

number of samples misclassified as NS and AS are as low as 0 (0%) and 3.05 (5%), respectively.  
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Furthermore, the detailed performance analysis of the LSVM algorithm over 500 runs on the test 

set is shown in Table 5.8. The proposed method can discriminate NS with sensitivity, specificity, 

accuracy of 92.59%, 95.13%, 93.87%, AS with 92.30%, 92.98%, 92.69%, and S with 95.00%, 

99.09%, 98.76%, respectively. The training and test times are 0.031 s and 0.016 s, respectively. 

Table 5.7 Classification Results of the LSVM Classifier on the Test Set for 3-State Problem Based 

on MedQuest Pump 
a
 

 NS AS S Total 

NS 350.91 27.85 0.24 379 

AS 18.72 298.12 6.16 323 

S 0 3.05 57.95 61 

   a 
Actual classes are in rows, predicted in columns. 

Table 5.8 Performance Analysis of the LSVM Classifier on the Test Set for 3-State Problem Based 

on MedQuest Pump (Numbers Inside the Parenthesis is SD in %) 

 NS AS S 

Sensitivity (%) 92.59 (1.13) 92.30 (1.45) 95.00 (2.76) 

Specificity (%) 95.13 (1.12) 92.98 (1.04) 99.09 (0.34) 

Accuracy (%) 93.87 (0.55) 92.69 (0.59) 98.76 (0.30) 
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5.7 Two-State Classification Task for the Nimbus Pump 

For the Nimbus pump 716 total samples (392 NS, 155 AS and 169 S) were available for 

classification. Table 5.9 shows the 2-state (the AS samples are considered as NS) classification 

results of the proposed algorithm over 500 runs on the test set. On average, only 2.25 of the 547 

NS samples are misclassified as S (0.41%) and 2.25 of 169 suction samples are incorrectly 

classified as NS (1.33%). In addition, Table 5.10 shows that for the NS case the sensitivity and 

the related SD is 99.59% and 0.29%, respectively. For the S case, a sensitivity of 98.67% is 

obtained and the corresponding standard deviation is 0.84%, giving an overall hit-rate of 99.37% 

with the standard deviation of 0.20%. Moreover, the training and test times are 0.007 s and 0.009 

s, respectively. 

Table 5.9 Classification Results of the LSVM Classifier on the Test Set for 2-State Problem Based 

on Nimbus Pump 
a
 

 NS S Total 

NS 544.75 2.25 547 

S 2.25 166.75 169 

   a 
Actual classes are in rows, predicted in columns. 
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Table 5.10 Performance Analysis of the LSVM Classifier on the Test Set for 2-State Problem 

Based on Nimbus Pump (Numbers Inside the Parenthesis is SD in %) 

 NS S 

Sensitivity (%) 99.59 (0.29) 98.67 (0.84) 

Specificity (%) 98.67 (0.84) 99.59 (0.29) 

Accuracy (%) 99.37 (0.20) 99.37 (0.20) 

 

5.8 Three-State Classification Task for the Nimbus Pump 

Correspondingly, for the 3-state classification, Table 5.11 shows the detailed classification 

results over 500 runs on the test set. For NS, on average, there are 19.78 NS samples incorrectly 

classified as AS (5.05%) and only 0.17 samples wrongly classified as S (0.04%). For AS 32.64 

samples are incorrectly identified as NS (21.06%) and only 2.01 samples are misclassified as S 

(1.29%). For S, the mean erroneous number of samples incorrectly classified as NS and AS are 

as low as 0.31 (0.18%) and 2.04 (1.21%), respectively.  

In addition, the performance analysis of the LSVM algorithm over 500 runs on the test set is 

shown in Table 5.12. From Table 5.12, we can conclude that NS has the sensitivity, specificity, 

accuracy of 94.91%, 89.83%, 92.61%. The related ST, SF, and AC are 77.65%, 96.11%, 92.11% 

for AS and 98.61%, 99.60%, 99.37% for S, respectively. The training and test times are 0.031 s 
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and 0.013 s, respectively. These results based on two different pumps demonstrate the 

effectiveness of the proposed pump status classification algorithm in discriminating three 

different pump states. 

Table 5.11 Classification Results of the LSVM Classifier on the Test Set for 3-State Problem 

Based on Nimbus Pump 
a
 

 NS AS S Total 

NS 372.05 19.78 0.17 392 

AS 32.64 120.35 2.01 155 

S 0.31 2.04 166.65 169 

   a 
Actual classes are in rows, predicted in columns. 

Table 5.12 Performance Analysis of the LSVM Classifier on the Test Set for 3-State Problem 

Based on Nimbus Pump (Numbers Inside the Parenthesis is SD in %) 

 NS AS S 

Sensitivity (%) 94.91 (1.26) 77.65 (3.38) 98.61 (0.77) 

Specificity (%) 89.83 (1.75) 96.11 (0.91) 99.60 (0.27) 

Accuracy (%) 92.61 (0.75) 92.11 (0.76) 99.37 (0.20) 
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5.9 Comparison with Other Classifiers 

As mentioned earlier, extensive studies for suction detection have been conducted by a number 

of research groups using different classification methods. Most efforts concentrate on signal 

processing and feature extraction of available pump signals such as PC, PS, or PF waveform. 

Therefore, considering most of earlier studies, the spread of classification accuracies obtained 

appears to be large. This is attributed to either the information content of the extracted features 

from the pump signals or the increasing complexity and effectiveness of computational 

technologies applied. However, it should be noticed that no quantitative, qualitative, or statistical 

comparisons among these suction detection methods have been made.  

In this section, we will compare the performance of the LSVM classification algorithm with 

some recently existing suction detection algorithms: CART [10], DA [11], NN [12], and the 

original SVM-based algorithm for both 2-state and 3-state classification tasks based on the same 

two pumps. The classification procedures for CART, DA, NN, and SVM are also repeated 500 

times with the same dataset and suction indices as used in the LSVM algorithm. The results of 

the comparison for both pumps are summarized in Figures 5.5 and 5.6, and Table 5.13 for the 

2-state classification and in Figures 5.7, 5.8, 5.9, and Table 5.14 for the 3-state classification. 

Figure 5.5 shows the means and standard deviations of the sensitivity, specificity and accuracy 

for all five classification methods for the 2-state classification. Generally, the LSVM algorithm 
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appears to outperform the other four approaches in terms of sensitivity, specificity and accuracy. 

Note also that because the standard deviations of these criteria are smallest in the LSVM 

algorithm, this may be interpreted that the LSVM algorithm is more stable than the other four. 

The only three exceptions are in the original SVM algorithm having the smallest standard 

deviation for accuracy for the MedQuest pump and the DA method having the highest NS 

sensitivity and the smallest standard deviation for NS sensitivity for the Nimbus pump. 

 

      (a) MedQuest pump 

 

         (b) Nimbus pump 

Figure 5.5 Comparison of Classification Accuracy for 2-State Task (The Brackets Indicate the 

Standard Deviations) 

85

90

95

100

NS Sensitivity

(S Specificity)

NS Specificity

(S Sensitivity)

Accuracy

P
er

ce
n
ta

g
e 

CART DA NN SVM LSVM

90

95

100

NS Sensitivity

(S Specificity)

NS Specificity

(S Sensitivity)

Accuracy

P
er

ce
n
ta

g
e 

CART DA NN SVM LSVM



 86 

 

Figure 5.6 Comparison of ROC Curves for 2-State Problem 

The related ROC curves and AUC values of the DA, NN, SVM, and LSVM algorithms for the 

two pumps for 2-state problem are shown in Figure 5.6 (the plots are zoomed to show only the 

regions of interest). Note that ROC curve is not made for the CART algorithm due to the discrete 

nature of this classifier. Based on these plots it is clear that the overall performance of the LSVM 

(b) Nimbus pump

(a) MedQuest pump

1-Specificity

1-Specificity

S
en

si
ti

v
it

y
S

en
si

ti
v
it

y



 87 

algorithm is better than DA, NN, and SVM algorithms since the closer the ROC curve is to the 

upper left corner in the plot (i.e., the larger AUC) the higher the overall accuracy of the 

classifier. Comparisons of the training and test times for the five methods are shown in Table 

5.13. The DA and LSVM algorithms appear to require the least training time compared to the 

remaining three. 

Table 5.13 Comparison of Training/Test Time for 2-State Problem 

 CART DA NN SVM LSVM 

Training Time (s) 
a
 0.016 0.009 1.413 4.080 0.008 

Test Time (s) 
a
 0.002 0.004 0.020 0.019 0.009 

Training Time (s) 
b
 0.019 0.008 1.419 5.913 0.007 

Test Time (s) 
b
 0.002 0.004 0.021 0.024 0.009 

   a
MedQuest Pump, 

b
Nimbus Pump. 

Figure 5.7 and Figure 5.8 illustrate the means and standard deviations of the sensitivity, 

specificity and accuracy for all five classifiers for the 3-state classification. As can be seen, for 

both two pumps, the LSVM-based algorithm outperforms the other four classifiers in 5 out of 9 

performance indices (sensitivity, specificity, and accuracy of three states, respectively). It also 

outperforms the other four classifiers in 4 out of 9 when it comes to stability of performance (i.e., 

smallest standard deviations). Note that for the Nimbus pump, the sensitivity of AS for all five 
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classifiers is lower than that of the other two states (NS and S). This may be due to the nature of 

the Nimbus pump design and the pump signal condition.  

 
     (a) 

 
     (b) 

 
     (c) 

Figure 5.7 Comparison of Classification Accuracy for 3-State Problem for MedQuest Pump. (a) 

NS. (b) AS. (c) S. (The Brackets Indicate the Standard Deviations) 
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     (a) 

 

     (b) 

 

     (c) 

Figure 5.8 Comparison of Classification Accuracy for 3-State Problem for Nimbus Pump. (a) NS 

(b) AS (c) S (The Brackets Indicate the Standard Deviations) 
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Figure 5.9 Comparison of ROC Curves for 3-State Problem 

The related ROC curves and AUC values of the DA, NN, SVM, and LSVM algorithms for the 

two pumps for 3-state problem are shown in Figure 5.9 (the plots are zoomed to show only the 

regions of interest). Note that since the ROC curve is a graphical plot for a binary classifier, it is 

implemented only for the NS and AS cases (the suction case has already been implemented in 
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Figure 5.6). As can be seen from Figure 5.9, for both pumps, the overall performance of NN and 

DA algorithms is obviously lower than that of SVM and LSVM algorithms, and the SVM 

algorithm performs slightly better than the LSVM algorithm. Furthermore, as can be seen in 

Table 5.14, the training time of the LSVM algorithm is longer than that of the DA algorithm but 

shorter than any other remaining algorithm for the two pumps. 

Finally, we should note at this stage that the LSVM classifier appears to perform far better than 

the original SVM classifier for the 2-state classification and slightly better than SVM for the 

3-state classification. From a clinical perspective, the more accurate the classification results are 

for suction detection, the more beneficial the method will be for the patients.  

Table 5.14 Comparison of Training/Test Time for 3-State Problem 

 CART DA NN SVM LSVM 

Training Time (s) 
a
 0.052 0.010 2.531 6.679 0.031 

Test Time (s) 
a
 0.002 0.004 0.027 0.047 0.016 

Training Time (s) 
b
 0.043 0.009 2.830 9.079 0.031 

Test Time (s) 
b
 0.002 0.004 0.023 0.047 0.013 

   a
MedQuest Pump, 

b
Nimbus Pump. 
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5.10 Robustness Analysis 

Experimental validation on different pumps is the ultimate test for the robustness of such a 

detection system. In this research, the proposed method has been tested on two different pumps 

where in vivo data was available in an attempt to test its robustness. Figure 5.5, Figure 5.7, and 

Figure 5.8 show several performance indices for both 2-state and 3-state classifications for both 

pumps. Clearly despite differences between the two pumps, the LVSM-based algorithm 

demonstrates superior performance over all other algorithms. For the performance of all other 

algorithms, however, no significant conclusion can be drawn, which means generally the other 

four algorithms perform better for one pump but worse for the other, and generally all other four 

algorithms perform worse than the LSVM-based algorithm. Therefore, based on the above 

analysis, it is possible to conclude that the LSVM-based method shows not only best 

classification performance, but also best robustness for different blood pumps. This suggests that 

our suction detection method may be used in a clinical environment independent of the type or 

manufacturer of the rotary pump.  

5.11 Statistical Significance Test 

A statistical significance test regarding the significance of the classification results between the 

LSVM algorithm and the other four algorithms has been implemented based on the significance 

level of p-value [46]. According to Figure 5.5, Figure 5.7, and Figure 5.8 there are 24 correct 

classification performances yielding 96 paired significance tests for the LSVM algorithm against 

each of the remaining four. The p-values based on t-tests [46] for 2-state and 3-state 
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classification for both pumps are shown in Table 5.15-5.18. As can be seen, 80 out of the 96 tests 

are highly statistically significant (i.e., p < 0.001), 6 are very statistically significant (i.e., 0.001 ≤ 

p < 0.01), 3 are statistically significant (i.e., 0.01 ≤ p < 0.05), and only 7 are not statistically 

significant (i.e., p ≥ 0.05).  

Furthermore, as shown in Figure 5.5, Figure 5.7, and Figure 5.8, the LSVM algorithm occupied 

14 out of 24 classifications as best correct classifications. Thus, the corresponding number of 

paired significance t-tests would be 56. The results of these tests also show that 53 out of 56 are 

highly statistically significant, 2 tests are statistically significant, and only 1 test is not 

statistically significant. These tests demonstrate the statistical significance of the superior 

performance of the LSVM classification algorithm as compared to the other four.  

Table 5.15 P-Value of T-Test for 2-State Problem for the MedQuest Pump 

LSVM Versus CART DA NN SVM 

NS Sensitivity  0.0072 0.0017 0.0016 0 

NS Sensitivity 0 0 0 0 

Accuracy 0 0 0 0 
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Table 5.16 P-Value of T-Test for 2-State Problem for the Nimbus Pump 

LSVM Versus CART DA NN SVM 

NS Sensitivity  0 0 0.0017 0 

NS Sensitivity 0 0 0 0 

Accuracy 0 0 0 0 

 

Table 5.17 P-Value of T-Test for 3-State Problem for the MedQuest Pump 

LSVM Versus CART DA NN SVM 

NS Sensitivity  0 0 0 0.4633 

NS Specificity 0 0 0 0.169 

NS Accuracy 0 0 0 0.615 

AS Sensitivity 0 0 0 0 

AS Specificity 0 0 0 0 

AS Accuracy 0 0 0 0 

S Sensitivity 0 0 0 0 

S Specificity 0.0108 0.1519 0.2207 0 

S Accuracy 0 0 0 0 
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Table 5.18 P-Value of T-Test for 3-State Problem for the Nimbus Pump 

LSVM Versus CART DA NN SVM 

NS Sensitivity  0 0 0 0.025 

NS Specificity 0.0025 0.0036 0 0 

NS Accuracy 0 0 0 0 

AS Sensitivity 0.2568 0 0 0 

AS Specificity 0 0 0 0 

AS Accuracy 0 0 0 0.0446 

S Sensitivity 0 0 0 0 

S Specificity 0 0.2944 0 0 

S Accuracy 0 0 0 0 
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CHAPTER 6: FEEDBACK CONTROL SYSTEM OF A ROTARY LVAD 

Employing the proposed LSVM algorithm for suction detection has been shown to be effective. 

A very important use for such a suction detector is to be a part of a pump control strategy. The 

long-term need for a pump controller that automatically responds to the patient’s physiological 

requirements would require a mechanism to detect the occurrence of suction, and hence establish 

the appropriate pump flow setting that allows for safe device operation. Practical considerations 

in developing such an intelligent controller are the hardware and computational requirements in 

real time. For a patient implanted with the LVAD, suction must be identified in the order of 

seconds, and the six suction indices examined in this paper can be computed at a high rate of 40 

Hz and 50 Hz for the MedQuest and Nimbus pumps, respectively, which means that it can meet 

the LVAD requirements. Furthermore, with the current technology in batch processors, most 

conceivable features should be easy enough to extract in real time as some SVM-based real-time 

applications in different fields have already demonstrated [47]-[49]. In general, the proposed 

method is a valuable tool for suction detection. 

In this chapter, we will discuss the control strategy for the rotary LVAD based on suction 

detection. This is a new patient-adaptive feedback controller for the rotary LVAD developed to 

automatically regulate the pump current of the device without introducing suction. This chapter 
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is organized as follows. Section 6.1 describes the development details of the feedback controller. 

Section 6.2 shows the simulation results. Discussion is presented in Section 6.3. 

6.1 Feedback Control Design 

The available mechanism to control a rotary LVAD is to adjust the pump motor current (control 

input) in order to meet certain goals typically related to the patient implanted with the LVAD. 

The objective of the feedback controller for the LVAD is to ensure that suction does not occur by 

unnecessary, excessive pumping, while at the same time to provide the patient with the amount 

of blood flow within acceptable range depending on the different levels of the patient’s activity. 

This achievement has been a major challenge for the LVAD researchers for around 20 years and 

is considered as one of the most serious limitations of this technology at this time [19]. As 

previously discussed, a manual open-loop controller maybe a feasible way to achieve the above 

objectives; however, this method will not be able to achieve the above goals without the clinician 

or physician’s ability to observe the pump flow and accordingly adjust the pump current. A full 

state feedback controller, on the other hand, may be available if the hemodynamic variables (x1 

through x5 in Chapter 3) can be measurable continuously in real time; however, because of 

difficulties in measuring hemodynamic variables with current implantable sensors technology, 

this goal cannot be implemented. The pump flow (x6), on the other hand, is the available state 

variable that can be measured in real time. This can be done, for example, by using the transonic 
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flow probes in the aorta and pulmonary artery or in the outflow cannula of the pump as 

mentioned previously. Therefore, the proposed control system will use the pump flow of the 

combined cardiovascular-LVAD model as the feedback variable. A general block diagram of the 

feedback controller is illustrated in Figure 6.1. 

 

Figure 6.1 Block Diagram of the Proposed Control System 

The controller mainly consists of two parts. The suction detection subsystem can determine 

which part is taking action, meaning that the suction detector could determine the pump status as 

NS or S. The first part, including four stages, will tack action when the pump is operating 

normally (i.e., in NS case) ensured by the suction detector. During the first stage, labeled “Detect 

Change in Mean Pump Flow”, the mean pump flow signal is continuously read until a change is 

detected. This change means that the patient’s activity level is varying. Therefore, regulating the 

pump current is required to respond to the new physiological demand. 
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As mentioned above, the change in the mean pump flow is an indication of a change in the level 

of activity of the patient, which is modeled in terms of Systemic Vascular Resistance (SVR) 

denoted by RS. If other conditions are not changed, as labeled “Estimate New RS” in the second 

stage, before calculating needed mean pump flow, the new RS needs to be estimated using the 

approach proposed in [50]. Since changing RS could cause obvious change in the mean pump 

flow if the values of other parameters in the cardiovascular-LVAD model are unchanged, 

therefore, the system will receive a signal as a response to change in the mean pump flow. As a 

result, the new RS will be estimated by running the 6
th

 order model under the same conditions as 

the Cardiovascular-LVAD system of the patient (i.e., using the same contractility of the left 

ventricle, HR, and PC). Initially the RS will be determined based on the following non-linear 

equation: 

                          {

                       

                                

                       

 (6.1) 

where ΔRS a preselected small positive constant. And afterwards a similar criterion will be used 

to determine the RS at stage k+1 from the values at stage k: 

                     (   )  {

  ( )                 

  ( )                         

  ( )                 

 (6.2) 

According to the rule above, the feedback controller will keep trying different values for RS until 
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the mean pump flow generated by the 6
th

 order model is equal to the new measurement of the 

actual mean pump flow of the patient. At this point the feedback controller determines that the 

final RS is the same RS for the patient. 

Once RS is determined, in the third stage labeled “Get Physiological Demand”, the required 

mean pump flow (physiological demand) under the current RS could be easily calculated by 

using this RS. In this dissertation, we assume that the physiological demand is a linear function of 

RS, such that when RS decreases (i.e., the patient’s activity level rises); the related mean pump 

flow is linearly increased. 

Finally, in the fourth stage labeled as “Update Pump Current”, the pump motor current  ( ) will 

be adjusted until the mean pump flow reaches the physiological demand obtained in the third 

stage. 

However, when the suction detector identified that suction occurs, the controller will lower the 

pump motor current immediately as follows: 

                                          (  ) (6.3) 

where K represents the adjustment step size for adjusting the control variable. This procedure is 

labeled as “Decrease Pump Current” in Figure 6.1. 
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Figure 6.2 Relationships among PC, PF, and PS Described by Circle Symbols. Solid Circle 

Symbols Indicate PS When Suction Occurred 
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6.2 Simulation Studies 

As mentioned earlier, one of the main aims of the controller is to regulate the pump current so 

that it remains below the level at which suction occurs. The suction current, however, varies 

depending on the level of activity of the patient. Thus, in order to assess the performance of the 

proposed controller, we need to determine the suction current as a function of RS. This has been 

done by exciting the cardiovascular-LVAD model with an open-loop ramp current control and 

shown in Figure 6.2 (as the solid circle symbols). Figure 6.2 also shows the relationship among 

pump current, pump flow, and pump speed with different levels of activity of the patient. With 

each specific value of the pump current, when the level of the patient’s activity increases, the 

corresponding values of both pump flow and pump speed increases. And clearly, the pump 

current should be controlled in the safe region (out of suction, on the left of the related solid 

symbols line in Figure 6.2) under each level of activity of the patient in order to ensure that the 

patient is not exposed to the suction event.  

In addition, to assess the performance of the controller, we performed the following simulations. 

In all the simulations, the contractility of the left ventricle (Emax) is set at 1.0 mmHg/ml. In the 

first 25 s of the simulation period, the initial pump current is set at 0.146 amps to provide the 

required physiological demand. The corresponding initial RS is set at 1.0 mmHg∙s/ml 

representing a normal level of activity [3]-[5], [17]-[19]. After 25 s, the patient’s activity level is 



 103 

changed and the controller will take action. The simulations contain two different parts. In the 

first part we deactivate the suction detection subsystem. In the second part, we keep it active in 

the control system. This is done in order to assess the performance and the importance of the 

feedback controller without and with the embedded suction detector. 

The simulations are to mimic a condition representing a patient with a changing level of activity. 

To accomplish this, we set RS = 1.0 mmHg∙s/ml for the first 25 s (i.e., the patient’s level of 

activity is normal). Then we decreased RS gradually in the next 10 s to RS = 0.5 mmHg∙s/ml so 

as to represent a changing level of activity from normal to active. For the remainder of the time 

interval RS was kept at 0.5 mmHg∙s/ml (i.e., the patient was very active). A plot of RS as it was 

changed versus time is shown in Figure 6.3. 

 

Figure 6.3 Changing RS from 1.0 to 0.5 mmHg∙s/ml 
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Figure 6.4 shows the simulation results of the feedback controller without the suction detector 

for the patient whose level of activity is represented by Figure 6.3. At first, the pump current is 

constant since all the conditions are not changed. After 25 s, due to the change in the patient’s 

activity level, the pump current, pump flow, and pump speed have been increased by the 

controller in order to meet the physiological demand. Then at a certain point (around 60 s), 

ventricular suction occurred at the high values of the pump signals. Since there is no suction 

detector, the pump current will keep increasing until the physiological demand is met. However, 

once suction occurs, matching physiological demand will no longer meaningful because at this 

point, the patient is in danger due to suction. Furthermore, if this phenomenon lasts for some 

time, it will cause permanent damage to the cells and tissues of the heart and may result in death 

of the patient. Therefore, ventricular suction must be prevented from occurring by the suction 

detection subsystem by reducing the pump current. 

Figure 6.5 shows the simulation results of the feedback controller with the suction detector. As 

can be seen in Figure 6.5, at around 60 s, ventricular suction occurred briefly at the high values 

of the pump signals; however, since the suction detector was active, the controller lowered the 

pump current immediately, meaning that ventricular suction at the high pump speed was 

prevented from occurring. After that, the pump current was kept at a constant level meeting as 

much of the patient’s cardiac demand while at the same time preventing suction. 
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Figure 6.4 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.5 without Suction Detector 
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Figure 6.5 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.5 with Suction Detector 
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By comparison, Figure 6.6, 6.7, and 6.8 show the varying patient’s activity level from 1.0 to 0.6 

mmHg∙s/ml and the corresponding simulation results generated by the feedback controller 

without and with the suction detector, The simulation results also demonstrate that without 

suction detection subsystem, ventricular suction occurred and cannot be avoided. However, when 

the suction detector is incorporated, suction can be prevented from occurring effectively. 

 

Figure 6.6 Changing RS from 1.0 to 0.6 mmHg∙s/ml 
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Figure 6.7 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.6 without Suction Detector 
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Figure 6.8 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.6 with Suction Detector 
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Furthermore, Figure 6.9, 6.10, and 6.11 show the varying patient’s activity level from 1.0 to 0.7 

mmHg∙s/ml and the related simulation results generated by the feedback controller without and 

with the suction detector, respectively. The results also show that when suction occurred, without 

suction detector embedded, ventricular suction kept lasting and cannot be avoided. 

Comparatively, when the suction detector is embedded, suction can be prevented by lowering the 

pump motor current quickly. 

 

Figure 6.9 Changing RS from 1.0 to 0.7 mmHg∙s/ml 
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Figure 6.10 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.7 without Suction Detector 
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Figure 6.11 Simulation Results Generated by the Feedback Controller with Varying RS from 1.0 to 

0.7 with Suction Detector 

P
C

 (
A

)

(a)

P
F

 (
m

l/
s)

(b)

No SuctionOnset of Suction

Time (s)

P
S

 (
k
rp

m
)

(c)

No Suction

Onset of Suction



 113 

6.3 Discussion 

In this study, the proposed system is a combination of two main subsystems: a suction detector 

and a feedback controller. The control system for the rotary LVAD must be adaptable and safe. 

Adaptability means that the control system could automatically adjust the control variable (pump 

current) according to the level of activity of the patient. Safety means that suction must be 

avoided to protect the muscle, tissues and cells of the heart. With increasing adaptability and 

safety in continuously working LVADs, the demand for the automatic pump motor current 

regulation increases. Therefore, the key requirements of our proposed system are the adaptation 

of LVAD-generated signals to the changing physiological requirements of the patient by 

automatically adjusting the pump current, and avoidance of overpumping of the left ventricle – 

ventricular suction. 

The developed controller provides one answer for the problem of updating PC in a rotary LVAD, 

but it may not be the definitive answer. There may be other developments that can generate 

similar or even better results. For instance, a multi-objective optimization approach could take 

into account all the criteria of interest to clinicians [51], however, more information about the 

patient’s status would be considered to implement such a strategy.  

The suction detection is an important step during the development of a feedback control strategy 

for LVADs. A number of control strategies have been proposed by research groups in the LVAD 
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field. Particular control factors were based on the pulsatility. However, as pointed out in [52], it 

is necessary to embed a suction detection mechanism in the pulsatility-based control system to 

classify between pulsatility in the normal pump status from that identified during the suction case. 

Furthermore, according to [53], only controlling an estimate of the certain pump variables 

without other constraints may lead to ventricular suction or an undesirable CO value under 

certain situations. Comparatively, our proposed suction detection system can classify the 

pumping states with a high degree of accuracy.  

In general, the proposed system accomplished the objective of adapting the controller to 

variations in the physiologic state of the patient, while driving the pump out of the current range 

that would cause suction to the patient. Its main contribution to the LVAD field is to show the 

feasibility and reliability of this method in simulations. One limitation of our proposed controller 

is that the parameter K is an experimentally chosen value. A methodology for an intelligent 

estimation of adaptive values of K is currently under investigation. The other future step is to 

apply this proposed strategy to the in vivo animal experiments before it can be used as an 

alternative for human patients in the clinical study, which remains a significant challenge in real 

time. 
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CHAPTER 7: CONCLUSION 

In this dissertation, a control system based on suction detection for rotary blood pumps was 

presented. The whole system is a combination of three subsystems: a combined 

cardiovascular-LVAD model, a suction detector, and a feedback controller.  

The cardiovascular system model is a circuit analog model by using resistances, inductors, 

capacitors and diodes, respectively. A cardiovascular system model as a healthy heart has been 

introduced by using the data in the literatures as references. An empirical rotary Left Ventricular 

Assist Device model is coupled to the failing cardiovascular system model as a combined new 

sixth order state-space model. These models are capable of reproducing the real data in the 

literatures, such as the experimental data for the healthy people and patients with heart failure. 

The combined model provides a realistic simulation of the interaction between the pump and the 

native cardiovascular system. More useful changes in hemodynamics can be simulated and 

exploited in this model. Furthermore, the control variable in this model is the pump motor 

current instead of the pump speed, which so far has been used as the control variable in the 

currently existing model. This model is much more useful for optimally controlling the LVAD 

since it avoids solving the inverse problem for determining the pump motor current that produces 

an already determined optimized pump speed. The challenges in using this model to design a 

feedback controller for the LVAD motor current are discussed. The characteristics of the pump 
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speed and the pump flow signal, which are the variables that can be directly and accurately 

measured, when the pump is operating normally with no suction and when it is operating in 

suction, are also described based on results obtained from the model. This model can also be 

used to test the performance of a pump controller before the costly and time consuming animal 

experiments. 

An effective LSVM-based suction detection algorithm that can be used as a part of a feedback 

controller for the LVAD was discussed. The algorithm was tested with in vivo LVAD data and 

compared to other existing algorithms. Initially, the pump flow signals from in vivo data were 

pre-processed, to remove the high frequency noise components, and then six features were 

extracted from the signals as suction indices based on time, frequency, and time-frequency 

domains. The LSVM algorithm, combined with the decision tree strategy was used to implement 

2-state and 3-state suction classification tasks for two different pumps. Compared to three 

existing classification methods and the regular SVM algorithm, the proposed LSVM algorithm 

showed superior accuracy with high stability, short learning speed, and good robustness. The 

ability of this system to detect the onset of suction with such a high degree of performance 

allows this method to be used as part of a feedback control strategy to automatically adjust the 

pump speed in rotary LVADs.  
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The development of a control algorithm for an LVAD supporting a patient with heart failure is a 

challenging engineering problem in practical. In this dissertation, we investigated the control 

algorithm for improving the rotary blood pump performance for the congestive heart failure 

patients. A new patient-adaptive feedback controller for the rotary LVAD was proposed. The 

control system can respond to the instantaneous physiological change of the patient under 

different levels of the patient’s activity by automatically regulating the pump motor current of 

the device without introducing suction ensured by the suction detector subsystem. In addition, 

once suction occurred, the suction detector subsystem can quickly detect this case and the control 

system immediately decreased the pump motor current in order to protect the muscles and tissues 

of the patient’s failure heart. The proposed control system could be implemented in an animal 

experiment before applying it to the human patients in real time. 

So far, the work has been done on the model simulation only. In the simulation, the heart rate is 

set as constant, and the patient’s activity level (RS) was estimated. In real life, there may be some 

complexity with the measurement of these variables. Especially, for the case of the heart rate, it 

is possible that there is an irregular cardiac rhythm or missing beats. Therefore, preprocessing or 

measurement condition needs to be considered for the application of this controller. In addition, 

ventricular suction is an extremely complicated case in real time. The patient implanted with an 

LVAD can be easily exposed to suction-critical conditions such as continuous coughing, 

Vasalva-Maneuver, sudden movement, and exercise starts and stops, making the suction 
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detection algorithm complicated and there may be some limitations regarding suction detection. 

Also, as to the selection of the pump current update gains in the controller, some more 

complicated algorithms based on a certain objective may be considered to enhance the 

performance of the controller. The future work includes further verification of both the proposed 

suction detection algorithm and the control strategy by using a mock loop or an animal 

experiment. 
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