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ABSTRACT 

 

 

Modern radar and communication systems have experienced a tremendous increase in the 

number of antennas onboard, on the ground, and in orbital space.  This places a burden due to the 

confined volume and limited weight requirements especially in space applications.  The 

reconfigurable antenna is a promising and exciting new type of antenna, where through the use 

of appropriate switches the antenna can be structurally reconfigured, to maintain the elements 

near their resonant dimensions for several frequency bands. This increases the bandwidth of the 

antenna dramatically, which enables the use of one antenna for several applications. 

 

Four novel reconfigurable antenna elements were designed to work at 2.45 GHz and at 5.78 

GHz, to cover the transition period when wireless communication will shift to the 5.78 GHz 

band. The four elements designed are:  the reconfigurable Yagi, the reconfigurable corner-fed 

triangular loop antenna, the reconfigurable center-fed equilateral triangular loop antenna and the 

reconfigurable rectangular-spiral antenna.   None of these antennas have been reported in the 

literature.   Simulation results for all four antennas were obtained using IE3D.  Fabrication and 

measurements for the Yagi antenna was done and the measured results agree with simulations.  

All four antennas have very good performance with respect to the 3dB beamwidth and 

directivity.  However the reconfigurable rectangular-spiral antenna is the most compact in size 

among all four antennas.  It is (20 mm x 20 mm) in size.  At 2.45 GHz it has a 3dB beamwidth of 
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870 and directivity of 6.47dB.  As for the 5.78GHz frequency the 3dB beamwidth is 82.50 and 

the directivity is 7.16dB.   

 

This dissertation also introduces the use of reconfigurable antenna elements in adaptive arrays.  

An adaptive array that can null interference and direct its main lobe to the desired signal while 

being reconfigurable to maintain functionality at several frequency bands has the potential to 

revolutionize wireless communications in the future.  Through several examples, at both the 

design frequencies, it is shown that the reconfigurable and adaptive antenna arrays are successful 

in nulling noises incident on the array.  These examples illustrate how reconfigurable elements 

and adaptive arrays can be combined very beneficially for use in wireless communication 

systems. 
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CHAPTER 1:   INTRODUCTION 

 

 

Adaptive Array Antennas 

 

Adaptive array antennas, also known as smart antennas, have the ability to automatically respond 

to an unknown interference environment by steering nulls and reducing sidelobe levels in the 

direction of the interference, while maintaining some desired signal beam characteristics.   They 

consist usually of an array of antenna elements and an adaptive receiver-processor which adjusts 

its element weights toward some optimization of output signal-to-interference-plus-noise ratio 

(SINR) in accordance with selected control algorithms. 

 

  A system consisting of an antenna array and an adaptive processor can perform filtering both in 

the space and the frequency domains, thus reducing the sensitivity of the signal-receiving system 

to an interfering directional noise source.  

 

The first type of smart antenna was the sidelobe canceler developed at GE in the late 1950's 

invented by Paul Howells [1].  A sidelobe canceler consists of loop with a main high gain 

antenna for receiving the desired signal and one or more auxiliary low gain antennas to cancel 

the jamming signals by placing deep nulls in the sidelobe of the main antenna where the jammer 

signal is incident.  The outputs of the antennas are weighted and combined until the jamming 
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signal is eliminated.  The auxiliary antenna gains are designed to approximate the average 

sidelobe level of the main antenna gain pattern.  This means they amplify the jamming signal 

approximately to the same level as the main antenna. Thus when the low gain auxiliary antenna 

signal is subtracted from the main high gain antenna, the jamming signal is canceled while the 

desired signal is not  affected. Combining several of these loops together in an array created the 

adaptive array. 

 

The feedback process needed to calculate the weights was developed by Appelbaum in his 

classic report [2], where he presented the control-law theory, an algorithm that maximizes the 

signal to noise ratio (SNR).  Widrow [3], at the same time, presented the least mean square 

(LMS) algorithm to control the weights of an adaptive RF antenna system. These two algorithms 

are actually similar in that both derive their adaptive weight adjustment control by sensing the 

correlation between element signals, i.e., on the basis of the covariance matrix of the set of 

system inputs, and both converge toward the optimum Wiener solution on the basis of the 

eigenvalues involved.  

 

The LMS was further developed by Griffith [4] and Frost [5], with the result that one can 

maintain a chosen frequency characteristics for the array in a desired direction, while 

discriminating against noise coming from other directions. Riegler and Compton [6] verifed the 

performance of the array experimentally using a laboratory array system oriented toward 
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communication applications.  Zham [7] presented a power equalization technique that was 

shown to permit acquisition of weak signals in the presence of strong jamming. 

 

The maixmum signal-to-noise signal (MSN) algorithm was developed by Brennan and Reed [8]-

[10]. Their group has made significant contributions to the theory of adaptive radar systems, 

particularly those involving simultaneous adaptivity in both the spatial domain and the temporal 

(Doppler filter) domain. They describe in [11] a method of adaptively controlling both the 

angular and Doppler response for an AMTI ( airborne moving target indication) radar .  This 

AMTI technique provided an adaptive  platform motion compensation for clutter cancellation, 

compensation for scattering from aircraft structures near the antenna, and adaptive nulling of 

external interference sources. Three different methods of generating the adaptive weights for 

control of the angular/Doppler response are described and compared. 

 

Widrow and McCool [12] compared the performance characteristics of three algorithms used in 

adjusting the parameters of adaptive systems: the differential (DSD) and least-mean-square 

(LMS) algorithms, both based on the method of steepest descent, and the linear random search 

(LRS) algorithm, based on a random search procedure derived from the Darwinian concept of 

"natural selection." Theoretical and experimental results proved the LMS to be superior followed 

by the DSD and then the LRS. 
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The adaptive nulling methods described above are rather expensive to implement because they 

have a receiver at every element in the array and require calibration of all the receivrs. Baird and 

Rassweiler [13] have examined phase-only weighting as a means of lowering the cost of null-

steering adaptive arrays.  This approach makes use of conventional phased array architecture and 

varies the phase shifters and attenuators to minimize the total output power of the array. 

Mathematical equations for optimal phase weighting were developed and reduced to a simplified 

computational form.  Computer simulations and breadboard array measurements substantiate the 

mathematical development and indicate the practicality of the method. 

 

Applebaum and Chapman [14] examined the problem of incidental cancellations of the desired 

signal returns due to radar sidelobe jamming, returns from extended clutter and/or strong targets 

combined with longer transmitted waveform. They have examined some techniques in which the 

adaptive processor can be constrained from responding to desired main lobe target returns while 

maintaining good cancellation of interference in the sidelobes. Time, frequency and angle 

domain techniques are discussed and examples are given to show the effects of these constraints. 

 

In [15] Tako et al. present the concept of the adaptive system working on the principle of 

minimizing the output power under directional constraint.  A detailed theoretical analysis is 

presented and verified through computer simulation experiments on this system.  
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White [16] introduced an adaptive preprocessing network placed ahead of the main adaptation 

circuits of an adaptive antenna to speed the convergence rate by resolving the input signals into 

their eigenvector components. He showed that the preprocessor also achieves an improvement in 

the signal to interference ratio. 

 

Chapman [17] has examined partial adaptivity in large arrays.  As opposed to full adaptive arrays 

where each element of the array is individually controlled adaptively, in a partially adaptive 

array the elements are controlled in groups or only certain elements called auxiliary elements are 

made controllable. The problem of configuring such large arrays to provide partial adaptivity is 

examined. 

 

The experimental pattern behavior of a four-element adaptive array based on the steepest-descent 

feedback algorithm is described in [18] by Compton. The operational patterns are measured 

versus several parameters and performance characteristics of the array are described. 

 

Griffiths [19] and Washburn et. al. [20] have demonstrated experimentally that the adaptive 

beamforming improves the SNR by 10 dB to 20 dB when compared to conventional 

beamforming algorithms. 

 

In 1986 Shmidt developed the Multiple Signal Classification (MUSIC ) algorithm , which 

provides asymptotically unbiased estimates of  1) number of incident wavefronts present, 2) 
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directions of arrival (DOA) (or emitter location), 3) strength and cross correlation among 

incident waveforms and 4) noise/interference strength [21].  The MUSIC algorithm provides 

asymptotically unbiased estimates of a general set of signal parameters approaching the Cramer-

Rao bound. Shmidt and Frank [22]  report on the performance of an experimental system based 

on the signal subspace approach to multiple signal direction finding (DF) and source parameter 

estimation. 

 

The application of spectral estimation techniques in adaptive array antennas is investigated in 

[23].  These techniques provide considerable amount of additional useful information about the 

interference environment, which is beyond that ordinarily available in conventional adaptive 

arrays.  Two conceptual application area examples for using such techniques are discussed; 

partially adaptive low sidelobe arrays, and fully adaptive tracking arrays. Examples discussed 

include "superresoultion" effects, relative power level determination, estimation of coherent 

sources, and tracking/ cataloging/ranking of sources. 

 

Gupta and Ksienski [24] , [25]  have shown that the performance of an adaptive antenna array is 

strongly affected by the electromagnetic characteristics of the antenna array, The mutual 

coupling effect was however ignored. They assumed that the elements of the receiving array are 

isolated sources that sample but do not reradiate the incident field and that the array is isolated 

from its surrounding. However in a practical situation the elements do have mutual coupling, 

which affects the overall performance. In [26] the authors studied the effect of mutual coupling 
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on adaptive array performance.  They define the mutual coupling as the mutual impedance of 

two thin half-wavelength dipoles and demonstrated that the effects of mutual coupling are 

significant even for large interelement spacing.  Their study is focused on Applebaum-type 

arrays and on LMS-arrays.  

 

Adve and Sarkar [27] have investigated the effects of mutual coupling between the elements of 

an array on direct data domain algorithms. They found that the mutual coupling severely 

undermines the interference suppression capabilities of direct data domain algorithms. The 

method of moments (MoM) was used to evaluate the mutual coupling between the elements. The 

MOM admittance matrix was then used to eliminate the effects of the mutual coupling and it was 

shown that performance was improved when mutual coupling effects were eliminated. 

 

Reconfigurable Antennas 

 

Modern radar and communication systems have experienced a tremendous increase in the 

number of antennas onboard, on the ground and in orbital space.  Modern ships, airplanes and 

spacecraft require several antennas for broadband communication, radar, direction finding etc. 

This causes a problem due to the limited volume and weight constraints, especially in space 

applications. In addition, demands on reducing antenna size have become more and more 

pressing in order to reduce payload costs.  Therefore it becomes highly beneficial to develop 

antennas that cover multiple frequency bands and serve different functionalities while sharing the 
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same physical aperture without sacrificing performance.  Recently, reconfigurable antennas have 

been introduced to address these needs.  These antennas have variable aperture sizes which can 

be obtained through the use of appropriate switching mechanism, e.g. by using MEMS 

(microelectromechanical systems) or PIN switches.  Thus one antenna could be used for several 

applications, which saves space, weight and money.  This is a new concept with many promising 

applications.  

 

In one of the early papers on reconfigurable antennas, Schaffner et al [28] describe RF MEMS 

switches. The switch is based on a suspended cantilever structure, which minimizes the effects of 

residual stress on the mechanical performances. Schaffner introduces some ideas to use this 

switch to reconfigure printed circuit dipole and slot elements for frequency tuning and 

beamsteering. The length of the dipole can be lengthened or shorted by closing or opening the 

MEMS switch allowing for a change in the operational frequency.  An array of these 

reconfigurable dipoles could be used in beam steering.   The MEMS switch can also be placed 

across a slot antenna element to change its resonant properties.  He also introduces the use of the 

switch in a reflective flared-notch element. By placing several MEMS switches across the 

coplanar strip transmission line that feeds the broadband flared aperture, appropriate time delays  

can be introduced to allow beam steering. 
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K.C. Gupta et al [29] introduced the idea of a frequency-reconfigurable rectangular ring slot  

antenna fed by a single slotline.  MEMS switches were used to reconfigure the ring as shown in 

Figure 1. The periphery of the outer loop determines the lower frequency. 

 

 

 

 

 

 

 

Figure 1: A single rectangular slot antenna reconfigured for operation at different frequencies by 
use of eight switches. 
 

 

A reconfigurable aperture concept derived from fragmented aperture design is proposed by 

Maloney et al [30].  The reconfigurable aperture consists of a matrix of conducting patches with 

switches between some or all the patches. By opening or closing the switches functionality, like 

instantaneous bandwidth and steering angles can be changed.  

 

Fathy et al [31] used the solid-state plasmas generated by PIN junctions to effectively implement 

various reconfigurable antennas. Injecting high dc currents into these PIN junctions in high 

resistivity silicon creates a plasma region with high conductivity. This defined metallic like 
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pattern can include the radiating element and the feeds as well. As an example they implemented 

a simple reconfigurable dipole to work in the 1-20GHz frequency range. 

 

A new architecture for a MEMS reconfigurable VEE-antenna was designed and implemented by 

Chiao et al [32]. The planar Vee-antenna can be dynamically reconfigured for beam shaping and 

steering using electrically controlled micro-actuators.  Theoretical and experimental beam 

patterns were investigated to demonstrate the beam steering and shaping capabilities of a 17.5 

GHz MEMS Vee-antenna. 

 

Elamaran et al [33] have investigated fixed frequency beam-steering arrays using reconfigurable 

periodic structures in the ground plane without solid-state phase shifters.  Beam-steering is 

achieved by linearly varying the phase between adjacent elements of an antenna array using 

reconfigurable photonic band gaps (PBG) on ground plane. The experimental work was done 

using conducting tape to cover a number of selected PBG periods to obtain a discrete beam 

steering pattern. The beam steering angle varies linearly as the number of PBG periods is varied.  

A linearly discrete beam-steering of 35 degrees in steps of six degrees has been achieved at a 

fixed frequency of 5.6 GHz. 

 

Weedon et. al [34] have investigated the design and fabrication of a dual L/X-band 

reconfigurable patch module (RPM) They used RT/duroid 5880 material with dielectric constant 

of 2.2 and loss tangent 0f 0.0009 at 10 GHz and they investigated the antenna for two different 
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thickness 0.062" and 0.125".  The reconfigurable antenna was fabricated as two separate 

prototypes (open and closed configuration). They achieved 1.2% impedance bandwidth for the 

L-band configuration and greater than 7% bandwidth at X- band. The simulation results agreed 

well with the measurements. 

 

VanBlaricum [35],  presents the history of using photonic controlled switches in  antenna design, 

which have been used mainly in the development of link and beam steering techniques. 

VanBlaricum also highlights the advantages of using photonically controlled switches in 

reconfigurable antennas. 

 

Brown [36] discusses the first theoretical analysis on reconfigurable antennas. He conducts a 

full-wave analysis based on the method of moments on a reconfigurable-aperture antenna 

consisting of a two-dimensional array of filamentary microstrip dipoles interconnected by lossy 

MEMS switches.  His primary purpose was to analyze the gain and impedance characteristics of 

a reconfigurable antenna and to compare them to those of a fixed-element antenna having 

identical architecture and material properties but lacking reconfigurabilty.  A two-dimensional 

planar microstrip dipole array was analyzed varying the frequency between 16 and 2 GHz in 

octave increments. Two different array structures were considered. One a fixed-element aperture 

in which the dipole length is constant d≈λ0/2√εeff  at the maximum frequency of 16 GHz and the 

other a reconfigurable antenna in which the dipole length is maintained near λ0/2 over several 

octaves of bandwidth via MEMS switches.  In contrast to the fixed-element antenna, it was 
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shown that the reconfigurable antenna maintains a high gain with reduced frequency because its 

dipole lengths are maintained near the resonant length. 

 

Adaptive and Reconfigurable Antennas 

 

The combination of the advantages of both reconfigurability and adaptivity in a single antenna 

array has not yet been reported in the literature.  It is our goal to pursue this task. An antenna that 

can null interference and steer its main beam towards desired signal and at the same time be 

reconfigurable to maintain functionality at several frequency bands is of great demand.  In 

Chapter 2 adaptive array antennas are studied and the effect of mutual coupling is examined 

closely using the MoM.  In Chapter 3 four novel reconfigurable antenna elements are introduced:  

The reconfigurable Yagi array antenna, the reconfigurable corner-fed equilateral triangle 

antenna, the center-fed equilateral triangle antenna and the reconfigurable rectangular-spiral 

antenna.  None of these antennas have been reported before in the literature.  They are designed 

to work in the transition period when wireless communication will shift to the higher 5.78 GHz 

band.   In Chapter 4 we introduce the first antenna array of its kind, which is the adaptive and 

reconfigurable antenna array.  Several examples show the feasibility of this idea.  Chapter 5 

includes conclusion and future work. 
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CHAPTER 2:  ADAPTIVE ARRAY ANTENNAS 

 

 

Introduction 

 

Adaptive array antennas have the ability to automatically respond to an unknown interference 

environment by steering nulls and reducing sidelobe levels in the direction of the interference, 

while maintaining some desired signal beam characteristics.   As shown in Figure 2, they consist 

usually of an array of antenna elements and an adaptive receiver-processor which adjusts its 

element weights toward some optimization of output signal-to-interference-plus-noise ratio 

(SINR).  A system consisting of an antenna array and an adaptive processor can perform filtering 

both in the space and the frequency domains, thus reducing the sensitivity of the signal-receiving 

system to interfering directional noise source. 
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Figure 2:  Adaptive array configuration 

 

 

It has been shown [3], [24], [25] that the performance of an adaptive antenna array is strongly 

affected by the electromagnetic characteristics of the array.  An important electromagnetic 

characteristic, namely the mutual coupling between the antenna element, has however been 

ignored.  Mutual coupling becomes particularly significant as the interelement spacing is 

decreased. 

 

In [26], it was shown that the mutual coupling between the elements of an adaptive array causes 

significant degradation in the signal-to-interference-plus-noise ratio and that it  also slows the 

response of the array. These effects are significant even for large interelement spacing, i.e. for 

spacing more than half a wavelength.  In [26] the mutual coupling effect was calculated by 

considering the N-element array as an N+1 terminal linear, bilateral network responding to an 

 14



outside source. Results show an improved performance of the adaptive array when the mutual 

coupling was accounted for and then eliminated. 

 

In this chapter the method of moments (MOM) will be used to model the mutual coupling for 

signals arriving from a given direction of arrival (DOA) and to try to eliminate its effect by 

proper adjustment of the element weights.  As a specific example, the method of moments will 

be used to analyze the response of a linear array of M thin, parallel, equispaced, identical wires, 

to an arbitrary incident field.  The integral equation to solve for the unknown currents will be 

derived.  This equation will then be approximately solved by dividing each wire into N 

subsections and using suitable basis functions and weighting functions, to convert the integral 

equation into a matrix equation.  This matrix equation will then be solved to obtain the unknown 

currents. 

 

The LMS Algorithm 

 

The variable weights of a signal processor can be automatically adjusted by a simple adaptive 

technique based on the least-mean-square (LMS) algorithm. During the adaptive process an 

injected pilot signal simulates a received signal from a desired look direction. This allows the 

array to be trained so that its directivity pattern has a main lobe in the previously specified look 

direction. At the same time, the array processing system can reject any incident noises, whose 

direction of propagation are different from the desired look direction, by forming appropriate 
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nulls in the antenna directivity pattern. The array adapts itself to form a main lobe, with its 

direction and bandwidth determined by the pilot signal, and reject signals or noises occurring 

outside the main lobe as well as possible in the minimum mean square sense. 

 

The output signal Y(j) in Figure 2 is the weighted sum displayed in Equation  2.1. 

 

y j x j wi i

i

n

( ) ( )=

=
∑

1

  (2. 1) 

 

where n is the number of weights and j indicates the jth sampling instant. This can be written in 

vector notation as: 

 

y j W X jT( ) ( )=  (2. 2) 

 

where T denotes transpose and 
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The difference between the desired response and the output response is the error signal ε(j) and is 

defined as:  

 

ε( ) ( ) ( )j d j W X jT= −   (2. 5) 

 

The purpose of the adaptation or weight changing procedure is to find a set of weights that will 

adjust the output response of the adaptive element at each instant of time to be equal to or as 

close as possible to the desired response.  In other words for each input vector X(j), the error ε(j) 

should be made as small as possible.  A number of weight-adjustment procedures or algorithms 

exist which minimize the mean-square error.  Minimization is usually accomplished by gradient-

search techniques.  One of those methods is the LMS algorithm.  This algorithm is based on the 

method of steepest descent. Changes in the weight vector are made along the direction of the 

estimated gradient vector.  Using this algorithm, the weight-adaptation formula is given by [3] 

 

W j W j k j X js( ) ( ) ( ) ( )+ = −1 2 ε  (2. 6) 
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where 

W(j)     = weight vector before adaptation 

W(j+1) = weight vector after adaptation 

ks             = scalar constant controlling rate of convergence and stability (ks<0) 

 

Theory and Derivation 

 

In this section the integral equation of thin wire antennas will be derived and solved using the 

moment method. The result will then be used to calculate the mutual coupling for an array of 

parallel thin wire antennas. 

 

Derivation of the Integral Equation 

 

A field incident on the surface S of an antenna or scatterer induces an electric current density Js 

which in turn radiates the scattered field. If Js is known, the scattered field everywhere that is due 

to Js can be found using: 

 

E jwAs = − − ∇Φ   (2. 7) 

 

where A is the magnetic vector potential, defined in  Equation (2.8)  and φ is the scalar potential 

and is given in Equation (2.9). 

 18



A J
e

Rs

jkR

s

=
−

∫µ π4
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Φ = ∇ ⋅ A   (2. 9) 

 

For a thin wire antenna we can make the following approximations [37] 

1. The current is assumed to flow only in the direction of the wire axis. 

2. The current density is approximated by a filament of current I on the wire axis. 

3. The boundary condition is applied only to the axial component of E at the wire surface. 

 

So, assuming the wire antenna is parallel to the z-axis the above equations become: 
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Taking the derivative of the above equation and substituting in the scattered field equation we 

get 

 

E r j k A
A

zz
s

z
z( ) ( )= − +

1
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2
2

2ωµε
∂

∂   (2. 13) 

The z-component of the scattered field at the surface of the wire with length l is[38]  
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Applying the boundary condition that the total electric field at the wire vanishes at the wire 

surface, 

 

E r a E r a E r az
t

z
i

z
s( ) ( ) ( )= = = + = = 0   (2. 15) 

 

Thus 

 

E r a E r az
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s( ) (= = − =   (2. 16) 
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Substituting this in the above equation and interchanging integration with differentiation, we can 

write 
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This equation is called Pocklington's integral equation.  It can be expressed in a more convenient 

form as [39] 
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where R for observation points on the same wire is 

 

R a z z= + −2 2( ' )     (2. 19) 

 

For observation points on the other antenna element of the array R becomes: 

 

R d z z≈ + −2 2( ' )   (2. 20) 
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where d is the distance between the array elements and a is replaced by d in the final form of 

Pocklington's equation given above. 

 

Method of Moments 

 

Pocklington integral equation relates the unknown total axial current I(z') on the wire to the 

known incident electric field.  This equation is solved using the method of moments.  To solve 

for the unknown current I(z') the wire of length L is divided into n subintervals of length ∆=l/n as 

shown in Figure 3. I(z') is then represented by a linear combination of known elements gn(z') of a 

basis set { gn(z')  } selected to approximate the current as 

 

I z I g zn n

n

( ' ) ( ' )=∑   (2. 21) 

 

 where In are the unknown coefficients. 

 

 

 22



2a

L
z

y
x

 

n 
 
. 
 
. 
. 
 
3 
 
2 
 
1 

Figure 3  n segments on the wire antenna 

 

 

Here, Galerkin's method is used, in which both the basis and weighting functions are set equal, 

i.e. gn = wn.  Piecewise sinusoidal subdomain functions are selected as the basis functions giving 
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where 

 

∆ = l/n = z'n+1-z'n   (2. 23)                                    
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Figure 4:  Piecewise sinusoidal subdomain basis function 

 

 

With I(z') in the integral equation replaced by its approximation, Pocklington's equation becomes 
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This gives one equation in n unknowns. To solve this equation we apply the method of weighted 

residual. We define the residual "Res" to be the sum of the tangential components of the 

scattered and incident fields 

 

Re ( ) ( )s E r a E r az
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Clearly we want this residual to be zero. In the method of weighted residuals the In's are found 

such that the residual is forced to zero in a weighted average sense.  So we choose n-weighting 

or testing functions, such that 
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We define a set of weighting functions wm(z) on each subinterval as 
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and interchanging summation with integration we have 
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We now have n equations in n unknowns. This equation can be written in matrix form as:   

 

[Vm] = [Zmn] [In]  (2. 30) 

 

where 
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This matrix equation can now be solved for the unknown coefficients In through matrix inversion 

as follows 
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[ ]I Ymn Vn = [ ][ m]   (2. 33) 

 

where [Ymn] is the MOM admittance matrix of order n × n , where as mentioned above, n is 

number of sections in the wire. [In] and [Vm] are column matrices of order n and m respectively. 

 

This procedure can be easily extended to calculate the current for an array of M wires as shown 

in Figure 5 
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Figure 5 Array of M parallel wire antenna  

 

 

The above equation can be written as 
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[ ]I Y VMOM MOM MOM= [ ][ ]   (2. 34) 

 

In this equation [YMOM] is of order N × N, where N is the total number of unknowns in the MOM 

solution.  In other words N = n × M , where M is the total number of array elements and n is the 

number of subsections in each wire.   The admittance matrix [YMOM] contains all the information 

about the mutual coupling between the elements of the array. 

 

Elimination of the Mutual Coupling Effect in Adaptive Array Antennas 

 

In this section, the method proposed in [40] to eliminate the effect of mutual coupling is 

presented and implemented in a two element dipole array. 

 

The voltages measured at the ports of the array are related to the currents at the ports by 

 

[Vmeas] = [ZL] [Iport]  (2. 35) 

   

where [ZL] is the diagonal load matrix, whose elements are usually chosen to be the complex 

conjugate of the self impedance of each array element. The entries in [Vmeas] correspond to the 

entries of [X] in the weight-adjustment formula of the LMS algorithm. These are the signals fed 

to the processor for weight adjustment.  If the processor is not programmed to take the mutual 

coupling into account, the calculated weights will be erroneous, because Vmeas is the actual 

 28



voltage measured at the ports and is affected by mutual coupling.  Thus the array will not 

perform as expected. 

 

The entries of [Iport] are just selected entries of [IMOM] that correspond to a port. Thus the above 

equation can be written as: 

 

[ ] [ ][ ][V Z Y Vmeas L MOM MOM= 1 ]  (2. 36) 

 

where [Y1MOM] is an  M×N matrix with only the rows of [YMOM] that correspond to a port.  

Given the directional of arrival of the signal (θ,ϕ) and the fact that the entries of [VMOM] are 

directly related to the incident field, we can write 

 

V V eMOM
q p m

MOM
q m jkp z+ ±=, , cos∆ θ   (2. 37) 

 

where ∆z is the subsection length, k the wave-number, q the subsection number in wire number 

m.  Thus we can write the equation for [Vmeas] as 

 

[Vmeas] = [ZL][Y2][Vinc]  (2. 38) 

 

where the M×N matrix of [Y1MOM ] is reduced to a M×M matrix [Y2] by incorporating the 

exponential factor given above.  [Vinc] is the matrix with entries of [VMOM] that correspond to the 
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ports of the array. They correspond directly to the incident field.  The voltages given in [Vinc] 

are free of mutual coupling for signals arriving from the given direction of arrival.  Thus if the 

adaptive processor is programmed to solve for [Vinc] using [Vmeas] as given in the above 

equation, and use [Vinc] instead of [Vmeas] to adjust the weights, it will overcome the problem of 

mutual coupling.  This is illustrated by an example in the next section. 

 

Results  

 

The equations derived above are implemented by computer codes written in C.   One program 

computes the mutual coupling of the array and the measured voltage at the ports. Another 

program uses the measured voltage and adjusts the weights of the array elements, using the LMS 

algorithm, to get the desired response. 

 

A simple example of a two element array was considered and implemented to test the method 

proposed above to eliminate mutual coupling in an adaptive array.  In this example it was be 

assumed that the desired signal is arriving from the direction Φ = 0 and the noise signal is 

incident on the receiving array at an angle Φ = π/6. The array consists of a two half wavelength 

dipoles separated by distance d = λ/2 as shown Figure 6. Using the mutual coupling C- program, 

the voltage measured at the ports was computed for both the signal and noise. These voltages 

were then used to adjust the weights of the array to extract the desired signal and reject the noise 

using the LMS program. 
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Figure 6:  Array configuration for noise elimination example 
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Figure 7:  Directivity pattern of the non-adaptive two-element half wavelength dipole array. 
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Figure 8: Directivity pattern of a two-element half wavelength adaptive dipole array with the 
effect of mutual coupling. 
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Figure 9 :  Directivity pattern of two-element half wave length adaptive dipole array.  The 
mutual coupling effect have been taken into account and eliminated. 
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Figure 7 shows the directivity pattern of a two-element half wavelength non-adaptive dipole 

array, i.e. in Figure 6 the weights, w1= w3=1 and w2 = w4 =0.   When initially the weights are 

adaptively adjusted using the LMS algorithm to reject the noise incident at Φ = π/6 without 

correcting for the mutual coupling effect, the results shown in Figure 8 are obtained. As can be 

seen, the noise has not been nulled completely. This will certainly degrade the performance of 

the array. Using the method described above [40] to eliminate the mutual coupling effects, we 

get the results of Figure 9.  Now the noise at Φ = π/6 has been successfully nulled out as desired. 

 

Conclusion 

 

In this chapter the mutual coupling effect on the behavior of adaptive array antennas was 

analyzed using the moment method. A C-program was developed to model the mutual coupling 

and the weights of the adaptive array were adjusted using a C-program based on the Least Mean 

Square algorithm. Through an example of a two-element half wavelength adaptive dipole array, 

it was shown that the mutual coupling between the elements of an adaptive array causes 

significant degradation in the performance of the array and thus should not be neglected. A 

method to eliminate the mutual coupling effect was presented and it was demonstrated that this 

algorithm successfully eliminates the effects of mutual coupling on adaptive arrays.  
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CHAPTER 3:  RECONFIGURABLE ANTENNAS 

 

 

Introduction 

 

A reconfigurable antenna is a revolutionary new type of an antenna. Using MEMS switches, PIN 

switches, or other switching mechanisms, a reconfigurable antenna can be structurally 

reconfigured to operate at different frequency bands. Thus one antenna could be used for several 

applications, which saves space, weight and money.  In this chapter, reconfigurable antennas are 

presented and their advantages are discussed.  Four novel reconfigurable antennas, which have 

not been reported in the literature, are presented. 

 

Reconfigurable Antennas 

 

The distinguishing feature of a reconfigurable antenna is that it can alter the RF current 

distribution within a planar-radiating aperture. As opposed to a phased array it can change its 

element pattern in addition to its complex array factor.  The far field from traditional-phased 

array can be written as displayed in Equation 3.1 [41] 
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where,  fe(θ,φ) is the element factor and fa(θ,φ) is the array factor. 

 

In traditional phased array antennas, the element factor is fixed by design and cannot be altered.  

The far field pattern is changed only by variation of the complex coefficients in the array factor. 

In a reconfigurable antenna the element factor can also be changed by altering the physical 

aperture of the antenna. Reconfigurable antennas with the antenna aperture controlled using PIN 

junctions [31,42] or using photonically controlled devices [35] have been reported.  Many 

researchers have incorporated microelectromechanical (MEMS) switches in their antenna 

designs to attain reconfigurability with microstrip patch antennas [28,34,43]. 

 

In [36] it was shown that a reconfigurable array of resonant elements can maintain a high gain 

over a wide (reconfiguration) bandwidth by varying the element length and interelement 

separation such that they are maintained at or near resonance at each frequency.  The 

performance of fixed-element aperture in which the dipole length was fixed at d ≈λ0/2(εeff)0.5 at 

the maximum frequency of 16GHz was compared with a reconfigurable aperture array in which 

the dipole length is maintained near λ0/2 over several octaves of bandwidth by judicious 

activation of MEMS switches between the elements. For the fixed element aperture, the gain and 

aperture efficiency was found to decrease rapidly with frequency because of a rapid increase in 

the return loss arising from impedance mismatch between the generators and dipole elements.  In 
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contrast, for low MEMS switch insertion loss, the reconfigurable array maintains high gain with 

reduced frequency that nearly tracks the diffraction limit (4πA/λ0
2).  This is because the switches 

maintain the dipole length near the λ0/2 resonance length.  

 

Reconfigurable Antennas for Wireless LAN Communication 

 

In general, antennas that can be used in wireless LAN communication applications should 

maintain certain specifications.  The antenna size is very important.  The antenna element should 

be compact enough to be placed, for example, on laptop computers or to fit on a PCS card.  In 

addition the antenna should have a broad beam and nearly omni-directional coverage to be able 

to receive signals from any direction the user desires.    

 

In wireless communications applications reconfigurability of the antennas used will instill 

extreme advantages.  For example, using switches the antenna can be reconfigured to receive 

video, audio, or internet signal.   Four different reconfigurable elements, designed to work at 

both the 2.4GHz and the 5.78GHz frequencies, are presented here.  They are intended to be used 

in the transition period where wireless communications shifts to the higher 5.78GHz frequency 

range. 
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Reconfigurable Yagi Array Antenna 

 

A reconfigurable planar Yagi array was designed to work at both the 5.78 GHz and 2.4 GHz 

frequencies.    The Yagi was designed using a basic reconfigurable dipole to work at the two 

frequencies with double the number of reflectors and directors at the higher frequency than the 

lower one. Using a reconfigurable antenna element in an array requires adjusting the distance 

between the elements to operate at the different frequency bands.  Figure 10 shows the 

reconfigurable Yagi with the switches in the open state where it operates at the higher frequency 

and Figure 11 shows it with the switches in the closed state where it operates at the lower 

frequency.  Simulation results for this antenna were obtained using IE3D.   Fabrication of the 

microstrip Yagi was done using RT Duroid 5880 with εr = 2.2 and a substrate thickness of 5 mils 

with no ground plane.  The antenna was tested as two separate prototypes for the open and closed 

states of the switches to illustrate the feasibility of the design.  In both simulation and 

measurement, the MEMS switches were considered ideal open/closed switches. 

 

Figure 12 and Figure 13 show measured results compared to the simulation results obtained 

using IE3D.  At the 2.4 GHz frequency the antenna has a 3db beamwidth of 57.60 and a 

directivity of 8.62 db.  At 5.78 GHz the antenna has a 3db beamwidth of 37.40 and a directivity 

of 11.49 db.   
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Figure 10:  The reconfigurable Yagi array at 5.78 GHz, with the switches open. 

 

 

 
 
 

 

Figure 11: The reconfigurable Yagi array at 2.4 GHz, with the switches closed. 
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Figure 12:  Simulated and measured radiation pattern, with the switches closed, f = 2.4GHz 
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Figure 13: Simulated and measured radiation pattern, with the switches open, f = 5.78GHz 
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Reconfigurable Equilateral Triangular Loop Antenna 

 

The reconfigurable Yagi antenna presented above with dimensions of (60mm X 175.01mm) can 

still be used on laptops for wireless LAN communication.  Using it as an element in an array 

though, would make the array dimensions too big for practical application.  In addition it uses 12 

MEMS switches which will be expensive to manufacture and operate. This has led us to the 

design of other more compact reconfigurable elements.  In this section, two types of the 

reconfigurable equilateral triangular loop antenna are presented, the corner-fed and the center-

fed.  In general loop antennas are designed with perimeter close to one wavelength at the 

operating frequencies to maintain good radiation pattern and input impedance.  The equilateral 

triangular loop is chosen because of its smaller area size compared to the rectangular and circular 

loop with same perimeter and similar radiation characteristics at a given frequency.  This makes 

it a good candidate for compact antenna design.  Four switches are used to configure the antenna 

to operate at either the 2.45GHz or at 5.78GHz.   Simulation results were again obtained using 

IE3D with the MEMS switches modeled as ideal open/closed switches.  The substrate had 

εr=2.55 and thickness of 1.59mm. An infinite ground plane was assumed.   

 

Reconfigurable Corner-fed Equilateral Triangular Loop Antenna 

 

This antenna is fed in the corner of the triangle using a coaxial cable.  Through four switches the 

antenna can be reconfigured to work at either 2.45GHz or at 5.78GHz.  The reconfigurable 
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equilateral triangular loop antenna with all the four switches open is shown in Figure 14.   The 

triangle perimeter is maintained near one wavelength for each of the operating frequencies.   The 

side lengths for the two triangles are 40.8mm and 17.4 mm respectively.  The bigger dimension 

equilateral triangle is designed for the 2.45GHz frequency, while the smaller one is for the 

5.78GHz operation.  Figure 15 shows the reconfigurable antenna with the appropriate switches 

closed for the 2.4GHz operation while Figure 16 shows the switches closed for the 5.78GHz 

frequency operation.      Figure 17 and Figure 18 show the antenna polar elevation radiation 

pattern (φ=0º) for both the 5.78GHz and 2.45GHz operating frequencies respectively, obtained 

through IE3D simulation.   At 2.45GHz the antenna has a 3dB beamwidth of 78.60 and a 

directivity of 8.07 dB.  At 5.78GHz the 3dB beamwidth is 940 and the directivity is 7.175 dB.   

 

Compared to the reconfigurable Yagi antenna shown in Figure 10 with overall dimensions of 

(60mm X 175.01mm), the reconfigurable equilateral triangular loop antenna is clearly much 

more compact in size, uses smaller number of switches which makes it less expensive and has a 

broader beamwidth which makes it more suitable for wireless LAN communication. 
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Figure 14 : The corner-fed reconfigurable equilateral triangular loop antenna with all the 
switches open. 
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Figure 15: The reconfigurable equilateral triangular loop antenna with the switches closed for the 
2.4GHz frequency operation 
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Figure 16: The reconfigurable equilateral triangular loop antenna with the switches closed for 
5.78 GHz frequency operation 
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Figure 17 : Simulated radiation pattern in the elevation plane (φ=0º) for the reconfigurable 
corner-fed equilateral triangular loop antenna at 2.45GHz 
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Figure 18:  Simulated radiation pattern in the elevation plane (φ=0º) for the reconfigurable 
corner-fed equilateral triangular loop antenna at 5.78 GHz 
 

 

Reconfigurable Center-fed Equilateral Triangle Loop Antenna 

 

As a variation to the corner-fed equilateral triangular antenna presented above, the center-fed 

equilateral triangular loop antenna was designed.  As shown in Figure 19, the coaxial line 

feeding this antenna is located in the center of its base for the two operating frequencies.  With 

the same dimensions as the corner-fed type, this antenna is designed to work at the 2.45GHz and 

at the 5.78GHz frequencies.  It also uses 4 MEMS switches for reconfiguration. Figure 20 and 

Figure 21 show the switching for each frequency respectively.  IE3D simulation results of the 
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radiation pattern are shown in Figure 22 for the 2.45GHz and in Figure 23 for the 5.78GHZ 

frequency.  The antenna has 3dB beamwidth of 89.250 and directivity of 7.1 dB at the 2.45 GHz 

operating frequency.  For the 5.78GHz configuration it has 94.7º beamwidth and the directivity is 

6.8 dB.  

 

As compared to the corner-fed reconfigurable equilateral triangular loop, the center-fed element 

has a similar radiation pattern with a slightly wider beamwidth making it more suitable for 

wireless LAN applications. 
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Figure 19 : The reconfigurable center-fed equilateral triangular loop antenna with all the 
switches open 
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Figure 20 : The reconfigurable center-fed equilateral triangular loop antenna with the closed 
switches for the 2.45GHz operation. 
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Figure 21:  The reconfigurable center-fed equilateral triangular loop antenna with the closed 
switches for the 5.78GHz operation. 
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Figure 22:  Radiation pattern in the elevation Plane (φ=0º) for the reconfigurable center-fed 
equilateral triangular loop antenna at 2.45GHz. 
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Figure 23:  Radiation pattern in the elevation plane (φ=0º) for the reconfigurable center-fed 
equilateral triangular loop antenna at 5.78GHz. 
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Reconfigurable Rectangular-spiral Antenna 

 

Both types of reconfigurable equilateral triangular loop antennas presented above have very good 

performance and are much smaller in dimensions compared to the reconfigurable Yagi antenna.  

In our search to find an even more compact reconfigurable antenna, we designed the 

reconfigurable rectangular spiral antenna.  It is about 50% smaller than the reconfigurable 

equilateral triangular loop antenna at each of the frequencies, 2.45GHz and 5.78GHz.   As shown 

in Figure 24, the largest dimensions are 20mm x 20mm, and in addition it requires only one 

switch, which makes it less expensive compared to the other antennas.   It was found that the 

spiral length and the placement of the switch were critical in getting wide beamwidth as desired 

for both the design frequencies.  The optimum beamwidth was obtained at the spiral length of 

120mm for 2.4GHz and 64mm for 5.78GHz, which is around one wavelength at each of the 

operating frequencies.   At 2.45 GHz it has a 3dB beamwidth of 85.60 and directivity of 6.5 dB.  

As for the 5.78GHz frequency the 3dB beamwidth is 82.50 and the directivity is 7.16 dB.   Figure 

25 and Figure 26 show the reconfigurable rectangular spiral antenna for the 2.45GHz and the 

5.78GHz operation respectively.  Simulated radiation patterns in the elevation plane (φ=0º) at the 

two frequencies are shown in Figure 27 and Figure 28 respectively.   
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Figure 24:  The reconfigurable rectangular-spiral antenna with the switch open 

 

 

 

Figure 25:  The reconfigurable rectangular-spiral antenna for the 2.45GHz operation 
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Figure 26:  The reconfigurable rectangular-spiral antenna for the 5.78GHz operation 
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Figure 27:  Simulated radiation pattern in the elevation plane (φ=0º) for the reconfigurable 
rectangular-spiral antenna at 2.45GHz 
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Figure 28:  Simulated radiation pattern in the elevation plane (φ=0º) for the reconfigurable 
rectangular-spiral antenna at 5.78GHz 
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Conclusion 

 

In this chapter reconfigurable antennas and their advantages were discussed.  Four novel 

reconfigurable elements were presented.  The reconfigurable Yagi measures (60mm X 

175.01mm) and uses 12 switches to enable the reconfiguration between the 2.45GHz frequency 

operation and the 5.78GHz frequency operation.  At 2.45 GHz the antenna has a 3db beamwidth 

of 57.60 and a directivity of 8.62 dB.  At 5.78 GHz the antenna has a 3db beamwidth of 37.40 and 

a directivity of 11.49 dB.   

 

Two types of the reconfigurable triangular loop antenna were designed, the corner-fed and the 

center-fed.  Both of them are more suitable for wireless LAN applications than the Yagi antenna.  

With a maximum dimension of 40.8mm, both of them are much more compact,  they also have  

broader beamwidth  and are less expensive because they require only 4 switches for 

reconfiguration.  At 2.4GHz the corner-fed antenna has a 3dB beamwidth of 78.60 and a 

directivity of 8.07 dB.  At 5.78GHz the 3dB beamwidth is 940 and the directivity is 7.175 dB.    

The center-fed exhibits slightly better performance than the corner-fed.   It has a 3dB beamwidth 

of 89.250 and directivity of 7.1 dB at the 2.45 GHz operating frequency.  For the 5.78GHz 

configuration it has 94.7º beamwidth and the directivity is 6.8 dB. 

 

An even more compact antenna was designed which is the reconfigurable rectangular spiral.  Its 

maximum dimension is only 20mm.  It has only one switch which makes it cheaper to fabricate.  
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The reconfigurable rectangular spiral has a 3dB beamwidth of 85.60 and directivity of 6.5 dB at 

2.45GHz.  As for the 5.78GHz frequency the 3dB beamwidth is 82.50 and the directivity is 7.16 

dB.    

 59



CHAPTER 4:  ADAPTIVE AND RECONFIGURABLE ANTENNAS 

 

 

Introduction 

 

An adaptive system consisting of an antenna array and an adaptive processor can perform 

filtering both in the space and the frequency domains, thus reducing the sensitivity of the signal-

receiving system to interfering directional noise source. 

 

Through the use of MEMS switches, PIN switches, or other switching mechanisms, a 

reconfigurable antenna can be structurally reconfigured to maintain its elements near their 

resonant dimensions for several frequency bands. This increases the bandwidth of the antenna 

dramatically, which allows one antenna to be used for several applications such as wireless, radar 

etc.   Reconfigurable antennas can save weight, space and money.  

 

In this chapter we introduce a novel type of antenna that combines adaptivity and 

reconfigurability.  An adaptive antenna that can null interference and steer its main beam 

towards a desired signal and at the same time be reconfigurable to maintain functionality at 

several frequency bands has the potential to revolutionize wireless communication in the future. 

Combining reconfigurability with adaptivity is still not reported in the literature.   Through 
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several examples it is shown that this new type of antennas, namely adaptive and reconfigurable 

arrays, is indeed feasible and show very good results.  

 

Adaptive and Reconfigurable Antenna 

 

We start by a simple example of an adaptive and reconfigurable antenna to demonstrate 

feasibility.  The array shown in Figure 29 is a two element reconfigurable half wavelength 

antenna operating at frequency f1 and f2 = 2 f1.  With the switches open the dipoles operate at f2, 

and when closed the dipoles operate at f1.  The distance between the elements is fixed at d = λ2/2 

= λ1/4. 

 

 

 

Figure 29: Two-element reconfigurable dipole antenna array 
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The adaptive configuration is shown in Figure 30.  It is the same configuration as that used in the 

example in Chapter 2. 

 

 

 

Figure 30:  The adaptive configuration to eliminate the noise incident on the array at 30º. 

 

 

We want to have the antenna adaptively eliminate a noise signal incident on the array at 30° at 

both the operating frequencies.  Before adaptation the weights are w1 = w3 = 1 and w2 = w4 = 0.  

At the higher frequency, ignoring the mutual coupling effects the adaptive weights obtained are: 

w1 = w2 = w3 = 0.495, w4 = -0.496 whereas at the lower frequency the weights are: w1 = 0.51, 

w2 = 1.18, w3 = 0.48 and  w4 = -1.184. 
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Figure 31 and Figure 32 show that the adaptive algorithm seems to successfully eliminate the 

noise incident at 30° on the reconfigurable array. 
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Figure 31 :  The directivity pattern for the reconfigurable adaptive antenna at the higher 
frequency, ( i.e. with switches left open) , when mutual coupling is ignored. Figure 31a shows 
the non-adaptive directivity pattern, Figure 31b shows the adaptive antenna successfully nulling 
the noise incident at 30 degrees  
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Figure 32: The directivity pattern for the reconfigurable adaptive antenna at the lower 
frequency,( i.e. with switches closed), when mutual coupling is ignored.   Figure 32a shows the 
(non-adaptive) directivity pattern, Figure 32b shows the adaptive antenna successfully nulling 
the noise incident at 30 degrees  
 
 
 

When the mutual coupling effects are included, the adaptive algorithm deteriorates as shown in          

Figure 33.  We note that the performance is worse for the lower frequency because the distance d 

in terms of wavelengths becomes smaller for the lower frequency, thus the array has more 

mutual coupling due to the reduced interelement spacing.  This shows again how important it is 

to include and compensate the effect of mutual coupling in the adaptive algorithm especially 

when dealing with an adaptive and reconfigurable array as the interelement spacing become 

smaller in terms of wavelength for the lower frequencies of the array. 
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Figure 33: The directivity pattern for the reconfigurable adaptive antenna at the higher 
frequency, Figure 33a, and at the lower frequency, Figure 33b, with mutual coupling effect. 
 
 
 

As the feasibility of the novel idea of combining adaptivity with reconfigurability was 

demonstrated above, the following section will demonstrate using the reconfigurable elements 

presented in Chapter 3 in an array and making this array adaptive.  By doing this we present the 

first antenna array of its kind.  Note that because the reconfigurable elements are in an adaptive 

array, which can direct its main beam towards the desired signal while nulling interferences 

incident on the array from other directions, the radiation pattern of the array is not required to 

have broad beam-width or near omni- directional coverage to be used in WLAN 

communications. 

 

 

 

 65



Adaptive and Reconfigurable Equilateral Triangular Ring Array 

 

 In this section the reconfigurable equilateral triangular loop introduced in chapter 3, will be used 

in an adaptive array.  The LMS adaptive algorithm is used.  In the LMS algorithm the number of 

interferences, “I”, an array of with number of elements “N” can eliminate is given by Equation 

(3.2). 

 

I=N-1  (3.2) 

 

In the following examples it is desired to null noises incident on the array from two different 

directions, therefore three elements are used.  

 

 The 3-element reconfigurable equilateral triangular loop array is shown in Figure 33 (a) and 

Figure 33(b) for the 2.4GHz and the 5.78GHz operation respectively.  The distance between the 

elements is d=61.2 mm which corresponds to a spacing of 0.5λ at 2.45GHz and 1.2λ at 5.78GHz.   

The adaptive configuration used to null the noises incident on the array at +/- 300 is shown in 

Figure 34.  Before applying the adaptive algorithm, the weights attached to the elements are 

w1=w3=w5=1 and w2=w4=w6=0.  Using the LMS algorithm we want to solve for the weights 

values required to eliminate the noise incident on this array while maintaining the desired signal 

incident on the array at 00.   
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                                                    (b) 
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Figure 33:  Array of reconfigurable equilateral triangular loop with d =61.2mm : (a) at the 
2.45GHz frequency , (b) at the 5.78GHz frequency 
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Figure 34 :  Adaptive configuration to eliminate noises incident on the array at +/- 30º 

 

 

In this example the LMS algorithm solution for the weights for f=2.45GHz, d=λ/2:  w1 = w2 = 

w4 = w6 =0, w3 = w5 = 0.5.  Figure 35 shows the array radiation pattern at 2.45GHz before 

implementing the adaptive algorithm.  Figure 36 shows deep nulls at +/- 300 in the radiation 

pattern after the adaptive algorithm is implemented.  This means the noises were successfully 

eliminated.   
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For f=5.78GHz, d=1.2λ, the LMS solution for the weights are:  w2=w6=w4=0, w3=w5=0.2764 

and w1=0.447.  Figure 37 shows the non-adaptive array radiation pattern at 5.78GHz, while 

Figure 38 shows the radiation pattern after noise elimination using the adaptive algorithm.  As 

can be seen, deep nulls were again successfully placed at +/-30º, thus eliminating the incident 

noises as desired, while maintaining the desired signal incident at 0º. 
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Figure 35:  Non-adaptive radiation pattern of the 3-element reconfigurable equilateral triangular 
loop array at 2.4GHz. 
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Figure 36: Adaptive radiation pattern of the 3-element equilateral triangular loop array at 2.4GHz 
after eliminating the noise incident at +/- 30 degrees while maintaining the desired signal at zero 
degrees 
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Figure 37: Non-adaptive radiation pattern of the 3-element reconfigurable equilateral triangular 
loop array at 5.78GHz before noise elimination 
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Figure 38: Adaptive radiation pattern of the 3-element reconfigurable equilateral triangular loop 
array after eliminating the noise incident at +/- 30 degrees, while maintaining the desired signal 
at zero degrees 
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Adaptive and Reconfigurable Rectangular-spiral Array Antenna 

 

As another example of combining adaptivity with reconfigurability, the reconfigurable 

rectangular-spiral antenna element presented in Chapter 3 is used in an adaptive array.   Utilizing 

the advantage of the small dimension of the reconfigurable rectangular-spiral antenna, the 

elements can be placed closer together in the array.  As shown in Figure 39 the 3-element array 

have the distance d=25.95mm between the elements.  This is equivalent to d=0.21 λ for the 2.45 

GHz array configuration and d=0.5λ for f=5.78GHz. 

 

 

 

 

 

 

 

 

 

 74



 

                                                       (a) 

 

 

                                                            (b) 

Figure 39:  3-element reconfigurable rectangular-spiral array configuration: (a) at f=2.45GHz, 
(b) at f=5.78GHz 
 

 

 

The adaptive configuration for this antenna is shown in Figure 40.  The noise to be eliminated is 

incident on the array at +30º/+60º.  The desired signal is again incident at 0º. 
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Figure 40:  Adaptive configuration used to eliminate noises incident at +30º/+60º 

 

 

For the array configuration at 2.45GHz the solution for the weights using the LMS algorithms is:  

w1 =3.03, w2 =0, w3 =-1.015, w4 =-1.18, w5 = w3 and w6 = -w4.  Figure 41 shows the radiation 

pattern of the array at 2.45GHz before noise elimination and Figure 42 after noise has been 

eliminated adaptively.  As can be seen the noise incident at +30/+60 are successfully eliminated. 

Figure 42 show also that value of the desired signal at 0º is reduced in magnitude after the 

adaptive process.  However the array output due to the incident signal at 0º is still much higher 
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than the output due to the noises at +30º/+60º.  The power signal to noise ratio in this case is 

more than 46 dB.  Thus here again the array have successfully eliminated the noise while 

maintaining the reception of the desired signal.   

 

 

 

Figure 41:  Radiation pattern of the reconfigurable rectangular spiral array at 2.45GHz before 
noise elimination. 
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Figure 42:  Radiation pattern of the reconfigurable rectangular spiral array at 2.45GHz after 
noise elimination. 
 

 

For the 5.78GHz array, the LMS algorithm solution for the weights is: w1=0.607, w2=0, 

w3=1.97, w4=-0.303, w5=1.97, w6=0.303.  Figure 43 shows the radiation pattern of the 3-

elemnet reconfigurable rectangular-spiral array at 5.78GHz before adaptation, while  Figure 44 

shows it after successful elimination of noise at +30º/+60º. 
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Figure 43:  Radiation pattern of the adaptive and reconfigurable rectangular-spiral antenna array 
at 5.78GHz before noise elimination. 
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Figure 44:  Radiation pattern of the adaptive and reconfigurable rectangular-spiral antenna array 
at 5.78GHz after noise elimination. 
 

 

As a final example to demonstrate the combination of adaptivity and reconfigurability , the same 

reconfigurable rectangular spiral-array shown in Figure 39 (a) and (b) for the frequencies 2.45 

and 5.78GHz respectively is used in an adaptive configuration  to eliminate noises incident on 

the array from two different directions  +30º/-60º as shown in Figure 45. 
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Figure 45  Adaptive configuration used to eliminate noises at +30º/-60º 

 

 

The LMS algorithm solution for the weights at 2.45GHz is: w1 = -1.723, w2 = 0, w3 = 1.362, w4 

= -0.339, w5 = w3, w6 = -w4.   The noise from +30º/-60º is successfully eliminated as displayed 

in Figure 46. 
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Figure 46:  Radiation pattern of the adaptive and reconfigurable rectangular-spiral antenna array 
at 2.45GHz after elimination of the noise at +30º/-60º 
 

 

The weights required to eliminate the noises at +30º/-60º for the adaptive and reconfigurable 

rectangular-spiral antenna array at 5.78GHz were found using the LMS algorithm to be: 

w1=0.393, w2=0, w3=0.303, w4=-0.197, w5=0.303 and w6=0.197.  Figure 47 shows that the 

noises incident on the array at +30º/-60º were indeed eliminated as desired. 
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Figure 47:  Radiation pattern of the adaptive and reconfigurable rectangular-spiral antenna array 
at 5.78GHz after noise elimination+30º/-60º 
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Conclusion 

 

In this chapter a novel type of antenna array was presented, combining reconfigurable elements 

and an adaptive processor.   This has not been reported before in the literature.  Several example 

demonstrated the feasibility and effectiveness of this type of antenna.  In this chapter the basic 

LMS adaptive algorithm was used.  
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CHAPTER 5:  CONCLUSION 

 

 

Adaptive array antennas with their ability to automatically respond to an unknown interference 

environment by steering nulls and reducing sidelobe levels in the direction of the interference, 

while maintaining some desired signal beam characteristics have been studied.  The effect of 

mutual coupling on adaptive array was analyzed using the method of moments. It was shown that 

the mutual coupling effect on adaptive arrays is detrimental and thus can't be ignored even for 

large interelement spacing.  Ignoring the mutual coupling causes the adaptive algorithm to be 

inaccurate.  A method to compensate for the mutual coupling effect was tested and found to be 

useful.  This method is based on recognizing that the MOM voltage vector is free from mutual 

coupling. Solving for MOM voltage vector using the received voltage and the MOM admittance 

matrix enables the adaptive processor to solve for the adaptive weights correctly and such 

successfully nulling the incident noise.   

 

The reconfigurable antenna is a promising and exciting new type of antenna, where through the 

use of appropriate switches, the antenna can be structurally reconfigured to maintain the 

elements near their resonant dimensions for several frequency bands. This increases the 

bandwidth of the antenna dramatically, which enables the use of one antenna for several 

applications, wireless, radar etc. This is particularly important for satellite application where 

weight and space are limited.  Reconfigurable antennas save weight, space and money.  
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Four novel reconfigurable antenna elements were designed to work in the transition period where 

wireless communication shifts to the 5.7 GHz band:  the reconfigurable Yagi, the reconfigurable 

corner-fed equilateral triangular loop antenna, the center-fed equilateral triangle antenna and the 

reconfigurable rectangular-spiral antenna.   None of these antennas were reported before in the 

literature.   Simulation results for all four antennas were obtained using IE3D.  The 

reconfigurable Yagi antenna has a 3db beamwidth of 57.60 and a directivity of 8.62 db at the 

2.45GHz frequency.  At 5.78 GHz the antenna has a 3db beamwidth of 37.40 and a directivity of 

11.49 db.   The reconfigurable Yagi dimensions are (60mm X 175.01mm).  This antenna was 

fabricated and tested.  The measured results agree well with simulated results.  

 

The largest dimension for the two types of the reconfigurable equilateral triangular loop antennas 

is 40.8mm, which makes them more compact in  size compared to the Yagi antenna and hence 

more suitable for a reconfigurable array configuration. For the corner fed triangular loop antenna 

the IE3D simulation results show that the 3dB beamwidth of the antenna is 78.60 at 2.4 GHz the 

directivity is 8.07 dB.  At 5.78GHz the 3dB beamwidth is 940 and the directivity is 7.175 dB.  

The reconfigurable center-fed rectangular loop antenna has a 3dB beamwidth of 89.250 and 

directivity of 7.1274 dB at the 2.45 GHz operating frequency.  For the 5.78GHz configuration it 

has 94.70 beamwidth and the directivity is 6.9 dB.  
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The reconfigurable rectangular-spiral antenna is the most compact in size of all four antennas.  It 

is (20mm x 20mm) in size.  At 2.45 GHz it has a 3dB beamwidth of 85.60 and directivity of 6.47 

dB.  At 5.78GHz, the 3dB beamwidth is 82.50 and the directivity is 7.16 dB.   

 

Combining reconfigurability with adaptivity is still not reported in the literature. We introduced 

the first antenna array of its kind by using the novel reconfigurable elements designed in this 

work in an adaptive array.   Through several examples it was shown that the reconfigurable and 

adaptive antenna arrays were successful in nulling the noise incident on the array from different 

directions at the two frequencies of operation.   

 

Future Work 

 

In this dissertation we mainly used the Least Mean Square algorithm for the adaptive processor.  

The LMS and other methods that depend on it involve time averages. Thus the filter depends on 

the number of samples used in the computation. The processor cannot handle non-stationary 

environments like blinking jammers and time-varying clutter noise due to multipath signals.   To 

extend this work other adaptive algorithms need to be investigated to improve the performance 

of the adaptive processor.  

 

In the reconfigurable antennas designed in this dissertation we assumed that the MEMS switches 

are ideal open /close switches.  In future work the effect of MEMS switches characteristics and 
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speed of operation needs to be incorporated to study their effect on the overall performance of 

the reconfigurable antenna element and on the array.   Eventually this effect should be included 

in the adaptive processor and the algorithm used. 
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