
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Gauss-newton Based Learning For Fully Recurrent Neural Gauss-newton Based Learning For Fully Recurrent Neural

Networks Networks

Aniket Arun Vartak
University of Central Florida

 Part of the Electrical and Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Vartak, Aniket Arun, "Gauss-newton Based Learning For Fully Recurrent Neural Networks" (2004).
Electronic Theses and Dissertations, 2004-2019. 154.
https://stars.library.ucf.edu/etd/154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/266?utm_source=stars.library.ucf.edu%2Fetd%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/154?utm_source=stars.library.ucf.edu%2Fetd%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

GAUSS-NEWTON BASED LEARNING FOR FULLY RECURRENT NEURAL
NETWORKS

by

ANIKET A. VARTAK
B.S. University of Mumbai, 2002

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2004

ABSTRACT

The thesis discusses a novel off-line and on-line learning approach for Fully Recurrent Neural

Networks (FRNNs). The most popular algorithm for training FRNNs, the Real Time Recurrent

Learning (RTRL) algorithm, employs the gradient descent technique for finding the optimum

weight vectors in the recurrent neural network. Within the framework of the research presented,

a new off-line and on-line variation of RTRL is presented, that is based on the Gauss-Newton

method. The method itself is an approximate Newton’s method tailored to the specific

optimization problem, (non-linear least squares), which aims to speed up the process of FRNN

training. The new approach stands as a robust and effective compromise between the original

gradient-based RTRL (low computational complexity, slow convergence) and Newton-based

variants of RTRL (high computational complexity, fast convergence). By gathering information

over time in order to form Gauss-Newton search vectors, the new learning algorithm, GN-RTRL,

is capable of converging faster to a better quality solution than the original algorithm.

Experimental results reflect these qualities of GN-RTRL, as well as the fact that GN-RTRL may

have in practice lower computational cost in comparison, again, to the original RTRL.

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my academic advisors, Dr. M. Georgiopoulos and Dr. G.

Anagnostopoulos. Their approach to the research process has helped me learn many new things

required to carry out this kind of research. I also want to extend my warmest gratitude for being

patient, and interested in my progress throughout this research effort. I am privileged working

with them in this research effort, and I will always be thankful for this. I would also like to

extend my sincere thanks to my committee members Dr. Kasparis, and Dr. Haralambous for their

time and efforts for reviewing my work and providing with valuable feedback for this document

to be as accurate and as through as possible. Finally I would like to thank my parents Arun

Vartak and Vrushali Vartak and my sister Mrunmayee Vartak for always being a source of

energy and support.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES.. vii

LIST OF ABBREVATIONS ... viii

1: INTRODUCTION ...1

2: ORGANIZATION OF THE THESIS..6

2.1 Literature Review.. 6

2.2 Contribution of the Thesis -Background Information .. 10

2.2.1 Minimization Techniques in non-linear Least Squares Problem................................. 10

2.2.1.1 Steepest Descent ... 12

2.2.1.2 Newton’s method.. 13

2.2.1.3 Gauss-Newton’s method... 13

2.2.2 Example Illustrating Working of Minimization Schemes ... 15

2.2.2.1 Forming the Direction Vector... 16

2.2.2.2 Line Search ... 18

2.3 Off-Line RTRL Algorithm ... 20

2.3.1 Finding the Direction Vector ... 24

2.3.2 Line Searches ... 28

2.3.2.1 Bisection ... 29

2.3.2.2 Parabolic Interpolation (Brent’s Method)... 29

iv

2.4 Off-Line GN-RTRL Algorithm .. 31

3: EXPERIMENTS..37

4: SUMMARY, CONCLUSIONS AND FUTURE RESEARCH...42

LIST OF REFERENCES...44

v

LIST OF FIGURES

Figure 1: Structural differences in the feed forward and recurrent networks 1

Figure 2: Example demonstrating power of RNN to learn temporal tasks......................... 2

Figure 3: Block diagram of a Fully Recurrent Neural Network (FRNN)........................... 4

Figure 4: surface of the function to be minimized.. 16

Figure 5: Direction vectors for different methods of minimization of a sum of squares function

... 18

Figure 6: state of the solution after 4 backtracking steps.. 19

Figure 7: Fully recurrent neural network architecture .. 21

Figure 8: Parabolic interpolation (Brent’s method) .. 30

Figure 9: Santa-Fe time series data set ... 37

Figure 10: Boxplot of KFlops for GN-RTRL and GD-RTRL for the Santa-Fe Time Series40

Figure 11: The SSE versus TSUC results of the FRNN trained with the GD-RTRL....... 41

vi

LIST OF TABLES

Table 1: Results of the line search on the found directions .. 20

Table 2: Performance - Santa-Fe Time Series .. 38

Table 3: Performance - Sunspot Time Series ... 39

vii

LIST OF ABBREVATIONS

J - Jacobian matrix

)(Xg - Gradient vector

)(XG - Hessian matrix

p - Search direction vector

U – Number of nodes in output layer

L – Number of observable nodes

V – Number of input layer nodes

I – Number of input nodes

H – Number of hidden nodes

W – Weight matrix

θ - Column vector of all adaptable parameters

)(⋅φ - Objective function (sum of squared errors)

)(tek - Error between desired and actual outputs of node ‘k’ at time‘t’

)(tdk - Desired output of node ‘k’ at time‘t’

)(tyk - Output of node ‘k’ at time‘t’

)(tr - Residual vector

viii

1: INTRODUCTION

Recurrent neural networks (RNN) are very effective in learning temporal data sequences, due to

their feed back connections. These feed back connections make the RNN different from the feed

forward networks. Due to the use of these recurrent connections we add another dimension to our

network, which is ‘time’. The hidden units, whose output is of no immediate interest, act as

dynamic memory units, and information about the previous time instances is used to calculate

the information at present time instant. The following figure illustrates the structural differences

between recurrent neural networks and their more popular counterparts, feedforward neural

networks.

Input Layer

Hidden Layer

Output Layer

Input Layer

Hidden Layer

Context

Layer

Output Layer

Feed Forward Network Recurrent Network

Figure 1: Structural differences in the feed forward and recurrent networks

In the structure of a recurrent neural network, depicted in Figure 1, the context layer acts as a

1

buffer that stores the past information about the data. Due to this structure the recurrent neural

network is very effective when the data set is a time varying signal.

In the following we present an example, from the experiments with the Real Time Recurrent

Learning (RTRL) paper (Williams, Zipser ‘89B), that demonstrates the power of the recurrent

neural networks to learn a temporal task.

Time a b c d Output

1 1 0 0 0 0

2 0 0 1 0 0

3 0 1 0 0 1

4 0 0 0 1 0

5 0 1 0 0 0

6 1 0 0 0 0

7 0 1 0 0 1

Recurrent Neural Network

Output

dcba

Figure 2: Example demonstrating power of RNN to learn temporal tasks

Consider the above system, whose output becomes 1 only when a particular pattern of lines

appear in a specific order. As shown in the table, the output is 1 when line “b” is turned on after

some time line “a” was on; other wise the output is off. The lines “c” and “d” are distractors.

This task consists of recognizing events in a specific order (that is “a” then “b”), regardless of the

2

number of intervening events (that is “c” or “d”). Due to the feedback structure of the recurrent

neural network, where the inputs consist of the external inputs as well as the delayed outputs, this

task is accomplished efficiently. In order for the same task to be accomplished by a feed forward

neural network a tapped delay line is required to store the past pattern information. Due to the

finite number of tapped delay lines this network will fail to achieve its goal for arbitrary number

of intervening “c”’s and “d”’s .in between a sequence of “a”, then “b”.

In general, recurrent neural networks can effectively address tasks that contain some sort of time

element in them. Examples of these tasks include, but are not limited to, stock market prediction,

speech recognition, learning formal grammar sequences, one-step-ahead prediction.

There are different architectures of recurrent neural networks. These architectures vary in the

way they feed the outputs of the units (nodes) in the network, at a particular time instance, as

inputs to the same units (nodes) in the network, at a future time instance. For example, the

Elman recurrent neural network feeds back from each unit in its hidden layer to each other unit

in the hidden layer. On the other hand, the fully recurrent neural network (FRNN) has the output

of every node in the network connected to all the other nodes in the network (see figure 2 below

for a block diagram of FRNN).

3

W

Input Layer

Output Layer

Z-1 Z-1 Z-1Z-1

y1(t) y2(t)

x1(t) x2(t)+1

Visible Nodes Hidden Nodes

Unit Delay Nodes Input Nodes

Figure 3: Block diagram of a Fully Recurrent Neural Network (FRNN)

The FRNN consists of an input layer and an output layer. The input layer is fully connected to

the output layer via adjustable, weighted connections, which represent the system’s training

parameters (weights). The inputs to the input layer are signals from the external environment or

unit-gain, unit-delay feedback connections from the output layer to the input layer. FRNNs

accomplish their task by learning a mapping between a set of input sequences to another set of

output sequences. In particular, the nodes in the input layer of an FRNN accept input sequences

from the outside world, delayed output activations from the output nodes of the network and a

constant-valued node that helps in serving as the bias node for all the output nodes in the

network. On the other hand, the nodes in the output layer generate the set of output sequences.

Typically, nodes in the output layer are distinguished as output nodes (that produce the desired

outputs) and hidden nodes, whose activations are not related to any of the outputs of the task to

4

be learned, but act as a secondary, dynamic memory of the system. The feedback connections

(from output layer to input layer) in a recurrent neural network is the mechanism that allows the

network to be influenced not only by the currently applied inputs but also by past applied inputs;

this feature gives recurrent networks the power to effectively learn relationships between

temporal sequences.

Simple feed-forward neural networks are usually trained by the popular back-propagation

algorithm (Rumelhart et al. ’86). The recurrent neural networks on the other hand, due to their

dynamic processing require more complex algorithms for learning. An attempt to extend the

back-propagation technique for learning in recurrent networks has led into a learning approach,

termed back-propagation through time (Werbos ‘90). The implementation involved unfolding

the recurrent network in time so that it grows one layer at each time step. This approach has the

disadvantage of a requiring a memory size that grows large, especially for arbitrarily long

training sequences. Another popular algorithm for learning in FRNN is the Real Time Recurrent

Learning (RTRL) algorithm (Williams & Zipser ‘89). The main emphasis of the algorithm is to

learn the temporal sequences by starting from a network topology that takes into consideration

the knowledge about the temporal nature of the problem. RTRL is a gradient descent-based

algorithm that is used for the adjusting the network’s interconnection weights. Williams & Zipser

present two variations of RTRL, one for off-line (batch) and another one for on-line

(incremental) learning. In both of its forms, RTRL has been successfully used to train FRNNs for

a variety of applications, such as speech recognition and controller modeling.

5

2: ORGANIZATION OF THE THESIS

The thesis is organized as follows: The first section (Section 2.1) is the literature review. It

focuses on recurrent neural networks and several approaches for learning the interconnection

weights of recurrent neural networks. It also focuses on different variants of the RTRL

introduced into the literature, as well as successful applications of the RTRL neural networks. In

section 2.2 we discuss the contribution of this thesis in the field of recurrent neural network

learning. It also discusses the motivation behind our approach for training these kinds of

networks. In section 2.3 the theory behind the original RTRL (Williams & Zipser ‘89) is

thoroughly discussed, including the formation of the direction vector, finding the adaptive

learning rate etc. Furthermore, in section 2.4 we discuss the derivation of the RTRL algorithm

based on the Gauss-Newton direction. In section 3 we elaborate on the data sets we used for the

experimentation and the associated experimental results. In the last section of the thesis (section

4) conclusive remarks are provided.

2.1 Literature Review

There are several algorithms that have been developed to training recurrent neural networks, the

principal ones being the real-time recurrent learning (RTRL) (Williams & Zipser ‘89),

backpropagation-through-time (BPTT) (Werbos ’90) and the extended Kalman filter (Williams

’92). All these algorithms make use of the gradient of the error function with respect to the

6

weights to perform the weight updates. The specific method in which the gradient is incorporated

in the weight updates distinguishes the different methods. The RTRL algorithm has several

advantages as the gradient information is computed by integrating forward in time as the network

runs, as apposed to the BPTT algorithm where the computation is done by integrating backward

in time as the network takes a single step forward.

RTRL is a gradient-based algorithm that is used for the modification of the network’s

interconnection weights. Williams & Zipser present two variations of RTRL, one for off-line

(batch) and one for on-line (incremental) learning. Using both variations, RTRL has been used to

train FRNNs in a variety of applications, such as speech recognition, controller modeling,

amongst others. Specifically, RTRL has been used for training a robust, manufacturing process

controller in (Hambaba ‘00). The problem of speech enhancement and recognition is addressed

in (Juang & Lin ‘01), where RTRL is used to construct adaptive fuzzy filters. RTRL has also

been used to train FRNNs for next-symbol prediction in an English text processing application

(Perez-Oritz et al. ‘01). The RTRL/FRNN combination has also been used in applications of

communication systems. (Li, et al. ‘02) use FRNNs, trained by RTRL, for adaptive pre-distortion

linearization of RF amplifiers and they have been shown to attain superior performance, in

comparison with other well-known pre-distortion models. Furthermore, the authors show

significant improvements in the Bit Error Rate (BER) performance as compared with linear

techniques in the field of digital, mobile-radio systems. Finally, RTRL has been used to train

FRNNs to effectively removing artifacts in EEG (Electroencephalograms) signals (Selvan &

7

Srinivasan ‘00).

A plethora of RTRL variants or substitutes have been suggested in the literature that aimed to

enhance different aspects of the training procedure such as its computational complexity,

especially when used in off-line mode, convergence speed/properties, and its sensitivity to the

choice of initial weight values. In (Catfolis ‘93) a technique is presented for reinitializing RTRL

after a specific time interval, so that weight changes depend on fewer past values and weight

updates follow more precisely the error gradient. Also, the relationship between some inherent

parameters, like the slope of the sigmoidal activation functions and the learning rate, has been

taken into account to reduce the degrees of freedom of the associated non-linear optimization

problems (Mandic & Chambers ‘99). In (Schmidhuber ‘92), the gradient calculation has been

decomposed into blocks to produce an algorithm which is an order of magnitude faster than the

original RTRL. Additional constraints have been imposed to the synaptic weight matrix to

achieve reduced learning time, while the network forgetting is reduced (Druaux, et al. ‘98). In

(Chang & Mak ‘98), a conjugate-gradient variation of RTRL has been developed. Other

techniques suggested to improve the convergence rate include use of Normalized RTRL (Mandic

& Chambers ‘00), and use of genetic algorithms (Mak, et al. ‘98) and (Blanco, et al. ‘01). It has

been shown (Atiya & Parlos ‘00) that of the training approaches like backpropagation through

time (BTT), RTRL, fast forward propagation approach (what training approaches?...be specific)

are based on different computational ways to efficiently obtain the gradient of error function and

can be generally grouped into five major groups. Furthermore, these five approaches are only

8

five different ways of solving particular matrix equation. Dynamic sub-grouping of processing

elements has also been proposed to reduce the RTRL’s computational complexity from O(n4) to

O(n2). (Euliano & Principe ‘00). Finally, Newton-based approaches for small FRNNs have also

been used to exploit the Newton’s method quadratic rate of convergence (Coelho ‘00).

In this paper, we present a novel, on-line RTRL variation, namely the GN-RTRL. While the

original RTRL training procedure utilizes gradient information to guide the search towards the

minimum training error (and therefore we are going to refer to it as GD-RTRL), GN-RTRL uses

the Gauss-Newton direction vector for the same purpose. The development of a GN-based

training algorithm for FRNNs was motivated by the very nature of the optimization problem at

hand. The function to be minimized is non-linear squared-error type, which makes it a Non-

linear Least-Squares (NLS) optimization problem. While gradient descent methods are

straightforward and easy to implement for NLS problems, their convergence rate is linear

(Nocedal & Wright ‘99), which typically translates to long training times. The problem is further

worsened when the model size (the number of interconnection weights) increases. On the other

side of the spectrum, Newton-based methods attain a theoretical quadratic rate of convergence

(Dennis & Schnabel ‘83), which makes them appealing from the perspective of achieving

reduced training time. Nevertheless, Newton-based algorithms require second-order derivative

information, such as the associated Hessian matrix or approximations to it. This requirement

implies a high computational cost, which prohibits the usability of Newton-based learning for

moderate or large size FRNN structures. We propose an RTRL scheme based on the Gauss-

Newton method as a compromise between gradient descent and Newton’s methods. The GN-

9

RTRL features a super-linear convergence profile (faster than GD-RTRL) and lower

computational cost to second-order algorithms, which makes it practical for training small to

moderate size FRNNs.

2.2 Contribution of the Thesis -Background Information

The thesis discusses a novel approach to learning in the fully recurrent neural networks. The

most popular algorithm for learning, the RTRL employs the gradient descent technique of

minimization for finding the optimum weight vectors in the recurrent neural network. By using

an approximation to the Newton’s method, i.e. Gauss-Newton method, which is suitable for non-

linear least squares minimization problems we can speed up the process of learning the recurrent

weights.

2.2.1 Minimization Techniques in non-linear Least Squares Problem

If an objective function is expressed as a sum of squares of other non-linear functions:

 , (1) ∑
=

=
m

i
i XfXF

1

2)()(

then it is possible to devise some efficient methods to minimize it.

 If we gather the functions in vector form as: if

 then (2) []TmfffX Λ21)(=f)()()(XXXF T ff=

10

To obtain the gradient vector of the objective function, the first partial derivative with respect to

 can be written as: jx

 ∑
= ∂

∂
=

m

i j

i
ij x

f
fg

1

2 (3)

Now if we define the Jacobian matrix as:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

n

mm

n

x
f

x
f

x
f

x
f

Λ

ΜΜ

Λ

1

1

1

1

J (4)

then the gradient vector can be written as:

 (5))()(2)(XXXg T fJ=

Now, if we differentiate equation (3) with respect to gives the kj-element of the Hessian

matrix:

kx

 ∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
∂

+
∂
∂

∂
∂

=
m

i jk

i
i

j

i

k

i
kj xx

f
f

x
f

x
f

G
1

2
2 (6)

If we denote be the Hessian matrix of function iT if

 (7))()(2 XfX ii ∇=T

Then the complete Hessian matrix can be written as:

 (8))()()(2)(XXXX T SJJG +=

where:

 (9) ∑
=

=
m

i
ii XXfX

1

)()()(TS

11

This concludes our discussion about the basics of formation of various matrices in the case of

least squares problems, needed for the further developments.

2.2.1.1 Steepest Descent

Now, to find minimum of a function iteratively, the function should decrease in value from

iteration to iteration, in other words,

)(XF

)()(1 kk XFXF <+ (10)

Now we need to choose a direction , so that we can move “downhill”. Let us consider the first-

order Taylor series expansion about :

kp

kX

 (11) k
T
kkkkk XgXFXXFXF ∆+≈∆+=+)()()(1

where is the gradient evaluated at the old guess : kg kX

 (12)
kXXk XFg =∇= |)(

It is evident that the steepest descent would occur if we choose:

 (13) kk g−=p

The original RTRL algorithm uses this direction for minimizing the objective function.

12

2.2.1.2 Newton’s method

The steepest descent algorithm considers first-order Taylor’s series expansion. The next method

we will discuss is based on the second-order Taylor’s series expansion:

 kk
T
kk

T
kkkkk XXXgXFXXFXF ∆∆+∆+≈∆+=+ G

2
1)()()(1 (14)

Taking gradient of this quadratic function with respect to kX∆ and set it equal to zero for to

be minimum we get:

1+kX

 (15) kkkkkkk gXXg pGG =−=∆⇒=∆+ −10

if we use equations (5) and (8) to find out the gradient , and Hessian at the old guess ,

and substitute in in equation (15) we get,

kg kG kX

 (16) k
T
kkk

T
kk fJSJJp 1)(−+−=

This is the Newton’s method for the specialized, non-linear least squares objective function. The

Newton’s method involves computation of the term which involves evaluation of kS)1(
2
1

+nmn

terms for an objective function comprising of sum of squares of ‘m’ functions and in ‘n’

dimensional space.

2.2.1.3 Gauss-Newton’s method

By neglecting the term in the Newton’s equation (16) becomes,)(kS

13

 (17) k
T
kk

T
kk fJJJp 1)(−−=

This equation defines the Gauss-Newton method.

It is clear from (8), (9) & (16) that if as , then also , and then the

Gauss-Newton tends to Newton’s method as the minimum is approached, which will have

favorable consequences, such as quadratic convergence.

0)(→Xf *XX → 0)(→XS

It has been shown by (Meyer ’70) that the convergence constant K can be written as:

 [] 1***)()()(
−

≤ XXXK T JJ S (18)

So, the convergence is superlinear as k as 0 ∞→→kS , otherwise it is first-order and

slower the larger kS is. Thus, it can be concluded that Gauss-Newton’s approximation to

Newton’s method would not perform as expected (i.e. with super-linear convergence) if the size

of the term kS)()(XXf ii T is larger than eigen values of . Also atJJT *X , the vector , being

proportional to the gradient vector, must be zero. Therefore if , then is rank

deficient and is singular, so Gauss-Newton cannot be expected to perform

satisfactorily in large residual problems, where the residuals of the errors are going to be

comparatively larger.

fJT

0)(* ≠Xf)(*XJ

)()(** XXT JJ

The original RTRL algorithm uses a steepest descent of gradient for minimization, which has

linear rate of convergence. Our approach is to use the Gauss-Newton method for the

minimization. As the objective function to be minimized is a sum of squares error function, and

14

we assume that the minimization method is already inside the close neighborhood of a local

minimum, where the residuals will be small, and can be considered as a small residual problem.

On the other hand if we are not close the local minimum, Gauss-Newton will be extremely slow

and might produce inaccurate results in some cases.

2.2.2 Example Illustrating Working of Minimization Schemes

Let us take an example of minimization of a function from an initial

guess of [0.5 0.5]

)(sin)(sin)(2
2

1
2 XXXF +=

T. Figure (4) illustrate surface of the function.

15

Figure 4: surface of the function to be minimized

2.2.2.1 Forming the Direction Vector

From equation (2), we can write: []TXXX 21 sinsin)(=f

The Jacobian can be written as: ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

cos0
0cos
X

X
J

Now from equation (5), we can write the gradient as: ⎥
⎦

⎤
⎢
⎣

⎡
==

22

11

cossin
cossin

2)()(2)(
XX
XX

XXXg T fJ

16

The Hessian is)(2)()(2)(XXXX T SJJG +=

The can be written as:)(XS

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡−
==∑

= 2
2

1
2

2
2

1
1

1 sin0
0sin

sin0
00

sin
00
0sin

sin)()()(
X

X
X

X
X

XXXfX
m

i
ii TS

so the Hessian becomes:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2
2

2
2

1
2

1
2

2
2

1
2

2
2

1
2

sincos0
0sincos2

sin0
0sin2

cos0
0cos2)(

XX
XX

X
X

X
XXG

Now,

From a initial guess X0 = [0.5 0.5]T, we get the direction for gradient descent as,

 []TGD 8415.08415.0=p

The Newton’s direction is,

 []TXgX 7787.07787.0)()(00
1 =− −G

 and the Gauss-Newton’s direction is,

 []TT XXXX 5463.05463.0)()()]()([00
1

00 =− − fJJJ

 These Directions are shown is figure (2).

17

Figure 5: Direction vectors for different methods of minimization of a sum of squares function

2.2.2.2 Line Search

Once we find a minimizing direction the next step is to find a learning rate (step length along the

search direction) that minimizes the function along the found direction. This process is called

line search and is nothing else but a uni-dimensional minimization procedure.

18

There are several methods to perform a line search, the simplest being the the bisection method.

In this method we start with a bracket of [a,b] = [0,1], and evaluate the function in the found

direction in this bracket-end points. The function is also evaluated at the mid point c = (a+b)/2.

Now the point with the maximum function value is excluded and a new bracket is formed. This

iterative process is continued until the minimum within acceptable range is found.

Figure 6: state of the solution after 4 backtracking steps.

The bisection performed on the 3 directions found yielded following results:

19

Table 1: Results of the line search on the found directions

Steps Gradient method Newton method GN method
1 F(X0) = 0.2243 F(X0) = 0.1514 F(X0) = 0.0043
2 F(X1) = 0.0125 F(X1) = 0.0244 F(X1) = 0.1012
3 F(X2) = 0.0342 F(X2) = 0.0141 F(X2) = 0.0163
4 F(X3) = 0.0013 F(X3) = 0.000354 F(X3) = 0.000966

It can be seen from table (1) that for equal number of minimization steps the quality of the

solution produced by the Gauss-Newton method is superior to the one provided by the steepest

gradient method. On the other hand, when comparing the Gauss-Newton and Newton’s methods,

both solutions are comparable in accuracy. We have saved the computation of 6)1(
2
1

=+nmn

terms, by omitting the term from the Gauss-Newton calculation.)(XS

2.3 Off-Line RTRL Algorithm

In this section we present an algorithm for off-line training of FRNNs. The algorithm, which

appears in (Williams & Zipser ’89), is based on the Gradient Descent method, when the total

Sum of Squared Errors (SSE) is being used as the objective function to be minimized.

20

0

012 3

1

I

U

Hidden Node

W10

Input Node

+1

O H

U

Output Node

z-1z-1

y1(t)

W03

Unit Delay Nodes Bias Node

1

I1(t)

Input

Layer

Output

Layer

V

Figure 7: Fully recurrent neural network architecture

The above figure shows the notation used for ease of understanding the derivations ahead. The

output layer consists of U nodes, L are the observable nodes and H are the hidden nodes. The

input layer has a total of V nodes, comprising of I input nodes, 1 bias node and U unit-delay

nodes. The indexing as shown inside the nodes is followed for ease of writing the equations. The

weights are denoted as W(‘to’ node index)(‘from’ node index). Note that the recurrent connections do not

have any weights associated with them and they just feed back the current output to the delay

element. The outputs of the output nodes have some initial value at time t=-1, which is denoted

by for k=0…U-1)1(−ky

21

The operations at a node in the output layer are depicted in the following figure:

Figure 8: Operations at the output node

All the weighted inputs converging to the node are summed together and the output of the node

is the output of a nonlinear function applied to that sum. Typical choices for this nonlinear

function include the logistic and hyperbolic tangent functions, as shown below:

-x

-x

e
essf

+

−
=⎟

⎠
⎞

⎜
⎝
⎛=

1
1

2
tanh)(tanh (19)

2

2
tanh1

1
1)(log

⎟
⎠
⎞

⎜
⎝
⎛+

=
+

=
−

s

e
sf

s
 (20)

In the performance phase of the network, let T be the number of test patterns with the first

pattern being presented at time t=0. Let 1..0)(−= Oktyk be the observed outputs and

 be the H unobserved outputs of the context units. 1..)(−= UOktyk

The outputs of the output units can be written as:

 ())()(tsfty kk = (21)

where:

 t=0… T-1, k=0…U-1 (22) ∑ ∑
−

=

−

=
++ −++=

1

0

1

0
1,,,)1()()(

I

l

U

l
lIlkIkllkk tywwtxwts

22

Now, learning in the RNN architecture can be performed by minimizing a suitable objective

function ϕ(). Furthermore, the minimization can be achieved by finding appropriate values for

all the free parameters of the network. While up to this point we have considered only the weight

matrix W as a network parameter, the U initial values 1..0)1(−=− Ukyk are arbitrary and,

therefore, we can consider them too as network parameters that can be tuned during the training

process. These values can be summarized in the output state vector)1(−y . Moreover, both the

output state vector and the weight matrix can be summarized in a single column vector of

U*(U+I+2)=(O+H)*(O+I+H+2) elements

 [] []
⎥
⎦

⎤
⎢
⎣

⎡
−

== −+=)1(1)1(..0 y
W

θ
vec

VUrrθ (23)

here vec(.) is used to indicate the weight matrix W is arranged in a single column vector.

The relationship between θr and wi,j, yk(-1) parameters is given below:

UVkr

jVir
y

w

rUkk

rVjUiji

+=
+=

=−

=

−=

−=−= where
)1(1..0

1..0,1..0,

θ

θ

 (24)

 ⎣ ⎦
UVrk

VirjVri
y

w

kVUUVrr

jiUVrr

−=
−==

−=
=

−+=

−= ,/
 where)1(1)1(..

,1..0
θ
θ

To understand the above mapping let us better consider an example, where we have a network

23

with 3 input nodes (I = 3), 4 hidden nodes (H = 4) and 2 output nodes (O = 2). The weight matrix

will have dimensionality 6x10 and y(-1) will have dimensionality 1x6.

Now the θ vector can be written as follows:

[]

6561605910910 θθθθθθθθ

θ

ΛΛ

ΛΛΛ

↓↓↓↓↓↓↓↓

−−−= ×
Tyyywwwww 6615105910090100)1()1()1(

2.3.1 Finding the Direction Vector

Continuing with our presentation, our objective function (Sum of Squared Errors (SSE)), which

for the RNN is defined as

 (25) () ()∑
−

=

==
1

0
,

T

t
tSSE θθ φφ

where we define the instantaneous SSE ϕ(θ,t) as

 () ∑
−

=

=
1

0

2)(
2
1,

U

k
k tetθφ (26)

From Equation (26) we can see that the SSE is proportional to the average of instantaneous SSE

over the time period t=0..T-1. The instantaneous error ek(t) for output neuron k depends

24

implicitly on θ and is given as

 (27)
⎩
⎨
⎧ −=∃−

=
otherwise

1..0)(if

0
)()(

)(
Oktdtytd

te kkk
k

In other words, ek(t) is zero, if there is no specific desired response dk(t) for output k at time

instance t. We can combine Equations (25) and (26) into

 () ∑∑
−

=

−

=

==
1

0

1

0

2)(
2
1 T

t

U

k
k teSSE θφ (28)

In this section we are going to apply Gradient Descent to minimize the SSE. This is the off-line

learning procedure, since we consider errors over a period of all the time instances

simultaneously. The gradient is given as

 ⎥
⎦

⎤
⎢
⎣

⎡
∇
∇

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=∇
−−+=
φ

φ
θ
φ

φ
)1(1)1(..0 y

W
θ

VUrr
 (29)

where we define the following column vectors

IUjUijiw

vec
+=−=⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=∇
..0 ,1..0,

φ
φW (30)

1..0

)1()1(
−=

− ⎥
⎦

⎤
⎢
⎣

⎡
−∂

∂
=∇

Uiiy
vec φφy (31)

In order to specify the gradient completely we need to find expressions for the partial derivatives

in Equations (30) and (31). From Equation (26) the partial derivative with respect to the

parameter θr (which might be a specific wi,j or a specific yi(-1)) is given as

25

 1)1(..0
)(

)(
1

0

1

0
−+=

∂
∂

=
∂
∂ ∑∑

−

=

−

=

VUr
te

te
T

t

U

k r

k
k

r θθ
φ (32)

Utilizing Equation (27), Equation (32) can be rewritten as

 1)1(..0
)(

)(
1

0

1

0
−+=

∂
∂

−=
∂
∂ ∑∑

−

=

−

=

VUr
ty

te
T

t

U

k r

k
k

r θθ
φ (33)

In order to proceed further we need the expressions for the partial derivatives inside the

summations. These can be calculated via Equation (21).

 () 1)1(..0
)(

)(
)(

−+=
∂
∂

′=
∂
∂

VUr
ts

tsf
ty

r

k
k

r

k

θθ
 (34)

We can express the derivative of the activation function in Equation (19) as

 ()2tanh)(1))((tytsf kk −=′ (35)

 [])(1)())((log tytytsf kkk −=′ (36)

The form of the derivative in Equations (35) and (36) is convenient from an implementation

perspective, since they require only a few floating-point operations. At this point we still need to

find expressions for the partial derivatives in Equation (34). For clarity, we need to differentiate

now between θr being a specific wi,j or a specific yi(-1). Thus, Equation (34) becomes

 () 1..0,1..0,1..0
)(

)(
)(

,,
−=−=−=

∂
∂

′=
∂
∂

VjUiUk
w

ts
tsf

w
ty

ji

k
k

ji

k (37)

 () 1..0,1..0
)1(

)(
)(

)1(
)(

−=−=
−∂

∂
′=

−∂
∂

UiUk
y

ts
tsf

y
ty

i

k
k

i

k (38)

The above partial derivatives can be calculated with the help of Equation (22), so that Equations

(37) and (38) become

26

() 1..0,1..0,1..0
1..1 if

 if
10 if

 1
)(

)1(
)(

)(1

0
1

,
1,

,
−=−=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎩

⎪
⎨

⎧

−+=
=
=

+
∂

−∂
′=

∂
∂ ∑

−

=
−−

++ VjUiUk
VIj

Ij
..I-j

y

tx

w
ty

wtsf
w

ty U

l
Ij

j

ji

l
Ilkk

ji

k

 (39)

() 1..0,1..0
)1(
)1(

)(
)1(
)(1

0
1, −=−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−∂
−∂

′=
−∂

∂ ∑
−

=
++ UiUk

y
ty

wtsf
y

ty U

l i

l
Ilkk

i

k (40)

If we proceed to define the training state quantities

 IUjUiUk
w

ty
tp

ji

kk
ji +=−=−=

∂
∂

= ..0 ,1..0 ,1..0
)(

)(
,

, (41)

 1..0 ,1..0
)1(
)(

)(−=−=
−∂

∂
= UiUk

y
ty

tq
i

kk
i (42)

then we can rewrite Equations (41) and (34) as

() 1..0,1..0,1..0
1..1 if

 if
10 if

 1
)(

)1()()(
1

0
1

,,1,, −=−=−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎩

⎪
⎨

⎧

−+=
=
=

+−′= ∑
−

=
−−

++ VjUiUk
VIj

Ij
..I-j

y

tx
tpwtsftp

U

l
Ij

j

ik
k

jiIlkk
k

ji δ

 (43)

() 1..0,1..0)1()()(
1

0
1, −=−=⎥

⎦

⎤
⎢
⎣

⎡
−′= ∑

−

=
++ UiUktqwtsftq

U

l

k
iIlkk

k
i (44)

where δk,i is the Kronecker delta symbol. Due to their definition in Equations (41) and (42), the

training state quantities are initialized to

 IUjUiUk
w

y
p

ji

kk
ji +=−=−==

∂
−∂

=− ..0 ,1..0 ,1..0 0
)1(

)1(
,

, (45)

 1..0 ,1..0
)1(
)1(

)1(ik, −=−==
−∂
−∂

=− UiUk
y
y

q
i

kk
i δ (46)

By introducing the training state quantities the calculation of the gradient components in

27

Equation (33) is performed as follows

 1..0,1..0 (t))(
1

0

1

0
,

,
−=−=−=

∂
∂ ∑∑

−

=

−

=

VjUipte
w

T

t

U

k

k
jik

ji

φ (47)

 1..0 (t))(
)1(

1

0

1

0
−=−=

−∂
∂ ∑∑

−

=

−

=

Ukqte
y

T

t

U

k

k
ik

k

φ (48)

Up to this point we managed to calculate the gradient vector. Training using the Gradient

Descent method produces parameter updates that are of the form

φλ

φλ

)1()1(−∇−=−∆
∇−=∆

y

W

y
W

 (49)

where λ>0 is the learning rate.

The update equation thus can be written as:

 (50) pWW λ+= oldnew

Where p is an appropriate direction vector and λ is the step length in the direction of p (also

referred to as the learning rate). Our direction vector here is , so φWpp −∇== GD

 (51) φλ WWW ∇−= oldnew

Before training commences it is important to normalize (adjust the range of values) the training

patterns.

2.3.2 Line Searches

After finding the direction vector we need to find the learning rate adaptively, as a constant

28

learning rate would not necessarily minimize the sum of the squared errors. So for the given

direction vector we find the learning rate. The problem of finding the learning rate for

minimizing the SSE becomes a one-dimensional minimization problem, and this problem can be

solved by several methods.

2.3.2.1 Bisection

One of the simplest methods is the backtracking. In backtracking we start with a bracket of

learning rates, such as [0, maximum learning rate]. The function (to be minimized) is evaluated

at the bracket mid point, and the point with the maximum value of function is eliminated, and

this process is continued until we reach to the minimum of the function with the 2 points

separated with the distance of machine’s floating point precision. The bracket of learning rates,

for our case, would be always bounded by [0, maximum learning rate], so our initial guess for

the bracketing minimum would always be this bracket.

2.3.2.2 Parabolic Interpolation (Brent’s Method)

Assuming that our function is parabolic near the minimum, a parabola fitted through any three

points would take us to the minimum in a single step, or at least very near to it.

29

A

B

C

x

)(xψ

x*

Bk+1Ck+1Ak+1

Ck BkAk

F(x)

Figure 8: Parabolic interpolation (Brent’s method)

If we denote equation of the parabola by:

cbxaxx ++= 2)(ψ , (52)

to fit a parabola through out function, we can use the bracket end points to find out the

coefficients a, b and c. In fact we do not need the complete form of)(xψ , as only the position of

the minimum of the parabola x* is required. Differentiating equation (52) with respect to x , and

equating it to 0, we get,

a

bxbaxx
2

02)(** −=⇒=+=′ψ (53)

30

so ratio of b/a is needed. Now we have the bracket as [A,B] and another internal point C such

that)()(and)()(BCAC ψψψψ << .

We solve three simultaneous linear equations:

 (54)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(
)(

1
1
1

2

2

2

C
B
A

c
b
a

CC
BB
AA

ψ
ψ
ψ

The x* is then obtained as:

)()()()()()(

)()()()()()(
2
1 222222

*

CBABACACB
CBABACACBx

ψψψ
ψψψ

−+−+−
−+−+−

= (55)

As shown in figure (8), Ak+1 becomes Ck, Ck+1 becomes the new found point x* for the next

iteration k+1.

2.4 Off-Line GN-RTRL Algorithm

In this section we present our new version of the RTRL algorithm by using the Gauss Newton’s

technique for minimizing the least squares objective function. The Gauss Newton method

replaces the direction method in the original approach described above with the Gauss-

Newton direction. The learning rate is adaptively calculated the same way using the Brent

method (based on parabolic interpolation technique) as described in the last section. The function

to be minimized is the function in equation (20), with respect to the adaptable parameters (i.e. the

weights). Let us first define , where r(t) is the vector

kp

[]TLoLo Ttetetetetet)1(...)1()(...)()()(111 +−−= −−r

31

containing the errors for different (visible) outputs across T consecutive time instances (the

current time instance t and the T-1 previous time instances; so). Also ifTLtr ⋅ℜ∈)([]Wθ vec=̂ , then

the (m,n) entry of the Jacobian matrix can be written as,

n

m tr
nmt

θ∂
∂

=
)(

),;(J (52)

The gradient vector of () ∑∑
−

=

−

=

=
1

0

1

0

2)(
2
1,

T

t

U

k
k tetθφ is then defined as,

 (53))()(),(trtt TJθ =∇φ

and the Hessian of (t,θ)φ as,

 (54) ∑
+−

=

∇+=∇
1

0

22)()()()(),(
Tt

j
jj

T trtrttt JJθφ

Note here that after calculating the gradient g of the objective function, we get the first part of

equation (54) without any further evaluations. The Gauss-Newton method assumes that the

minimization problem at hand is of small residual and, therefore, ignores the second part of the

Hessian calculation.

Let denote the gradient vector of kg ()t,θφ , and denote the Hessian of kG (t,θ)φ ; G is defined in

the following equation

 kk tg θθθφ =∇= |),((55)

 (56) kk tG θθθφ =∇= |),(2

where),(tθφ∇ and are defined in equations (53) & (54).),(2 tθφ∇

32

Now, a Taylor series gives the expansion of the gradient of a quadratic function at

kkk p+=+ θθ 1 as . (57) kkk gg p G+=+1

If we take a the gradient of this quadratic function with respect to and set it to zero we get, kp

 0=+ kkg Gp or (58). kk g1−−= Gp

Now from (53), (54) & (58),

 (59) [])()()()()(1 tttttp TT
k rJSJJ −

+−=

The main problem in applying this method is the computation of the S(t) term. This calculation

involves evaluation of)1(
2
1

+nmn terms. This difficulty leads us to the Gauss-Newton

modification of the Newton’s method. If we ignore the S(t) term in equation (52) we get the

Gauss-Newton equation for the optimal direction vector, defined as,

[])()()()(
1

tttt TTGN rJJJpp
−

−== (60)

This approximation in equation (60) can be viewed as a low computational cost approximation to

the Hessian matrix associated to the SSE minimization, which is sufficiently accurate for small-

residual problems. (Scales ‘85).

In out case, () ∑∑
−

=

−

=

==
1

0

1

0

2)(
2
1,

T

t

U

k
k tetSSE θφ , is to be minimized with respect to the adaptable weight

vector θ .

The residual vector can be written as:)(tr

[]TLLoLL TtyTtdtytdtytdtytdtytdt))1()1((...))1()1(())()((...))()(())()(()(110111100 +−−+−−−−−−−= −−−−r

 (61)

33

so,),;()(
)()(

. nmttp
tytr k

ji
r

k

r
J=−=

∂
∂

−=
∂
∂

θθ
where: ⎣ ⎦ ⎣ ⎦ VinjVniLtmkLmt −==−== ,/,,/ (62)

This equation links the Jacobian matrix to the output sensitivities . This equation also

underlines the fact that GN-RTRL is closely related to GD-RTRL, since both approaches utilize

output sensitivity information for the computation of their corresponding search directions.

Nevertheless, GN-RTRL promises shorter training time without the need of computing second

order derivatives.

)(, tp k
ji

In order to solve the equation to get the Gauss-Newton direction, we avoid the formation of the

term directly as it is prone to considerable, numerical errors during its

computation. Instead we solve:

[])()()(
1

ttt TT JJJ
−

−

 (63) rp TGNT JJJ −=

using a numerically stable approach, namely the Singular Value Decomposition (SVD), as

presented in (Golub & Van Loan, 1996). We decompose the Jacobian matrix so that,

 , (64) TTT SS
SVUVUUVUJ 121 0

][
0

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

Where,

U is m x m orthogonal; U1 contains first n columns of U, U2 the last m-n columns;

V in n x n orthogonal;

S is n x n diagonal, with diagonal elements .021 >≥≥≥ nσσσ Λ for a m x n Jacobian matrix. The

matrices U, V should not be confused with the sizes of the input and output layers of the FRNN.

34

Now using this decomposition we can write,

 . (65))(1
1 tTGN rUVSp −−=

In terms of the left- (ui), right-eigenvectors (vi) and singular values (σi) of the Jacobian matrix

the direction vector can be written as,

 ∑−=
i

i
i

T
iGN t

v
ru

p
σ

)((66)

In the above summation terms that correspond to relatively small singular values are omitted to

increase robustness in the direction vector calculations. This phenomenon may occur when J(t) is

close to being rank deficient and the unaltered search vector may not represent a descent

direction. Another alternative would be using the negative gradient as in GD-RTRL for that

particular time step until J(t) becomes full rank again.

Some of the advantages in using the Gauss-Newton method for the minimization in the least

squares solutions problem can be listed as follows. First, we ignore the second order Hessian

term from the Newton’s method, which saves us the trouble of computing the individual

Hessians. Secondly our minimization task is a small residual problem as the residual vector r(t)

is the error between the desired output and the actual output, and tends to zero as the learning

progresses. In the small residual problems the first term in equation (49) is much more

significant than the second term, and the Gauss-Newton method gives performance similar to the

Newton’s method, with reduced computational effort (Nocedal & Wright, 1999).

The original RTRL algorithm comes in 2 versions: 1) Batch mode (off-line training) and 2)

Continuous mode (on-line learning).

35

In continuous mode the weights are updated as the network is running. The advantage with this

approach is that you don’t have to specify any epoch boundaries and that leads to a conceptual

and implementation-wise simple algorithm. The disadvantage is that now the algorithm is no

longer the exact negative gradient of the total error along the trajectory. In the case of GN-RTRL

for the super-linear convergence, the Jacobian matrix must be full column rank. In an effort to

fulfill the last requirement, GN-RTRL must compute its direction vector based on T ≥UV/L time

instances, which contrasts GD-RTRL that needs only current time instance information.

Although this very fact might be considered as a disadvantage of GN-RTRL from a

computational or memory-storage perspective, utilizing information of T instead of just one time

instance to perform on-line learning may cause a smoothing/averaging effect in time and allow

GN-RTRL to converge faster in an on-line mode.

36

3: EXPERIMENTS

In order to demonstrate the merits of the Gauss-Newton RTRL we have chosen to compare it to

the original algorithm (GD-RTRL) on one-step-ahead prediction problems. For both GN- & GD-

RTRL we used the same parabolic interpolation technique for approximate line minimization,

the same set of initial weights and the same, maximum learning rate. For each dataset the two

algorithms performed training using 100 different initial configurations. Once the algorithms

converged, they were tested on all available data and the produced SSE was measured. The

datasets we considered were:

Santa-Fe Time Series Competition dataset: The dataset consists of a computer-generated, 1-

dimensional temporal sequence of 500 time instances. The data set was generated by numerical

integration of equation of motion of a damped particle. The data set looks as follows:

Figure 9: Santa-Fe time series data set

37

[Link: http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html]

Sunspot dataset: The dataset consists of a temporal sequence representing the annual, average

number of sunspot activity as measured in the interval 1749 to 1915. The sequence is 1-

dimensional and contains 2000 samples. [Link: http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm]

The results obtained are summarized in Tables 1, 2 depicted below. TSUC denotes time steps

until convergence, while KFlops denotes thousands of floating point operations performed

during training. In the online learning case, the condition of convergence is, the L-infinity norm

of the gradient vector must be smaller than an accuracy value ε , for that particular time instant.

 ε<
∞kg where 0>ε is the accuracy threshold. (67)

The experimental results for both datasets verify that GN-RTRL is superior in terms of

convergence as expected. In the first dataset, GN-RTRL achieved convergence (on average) in

only 7% of the time steps required by GD-RTRL, while in the second one in 35%. In terms of

computational effort (Kflops), GN-RTRL seems to be (on the average) better than the GD-RTRL

method for the Santa-Fe series (96 vs. 710 Kflops) and comparable for the Sun-spot series (128

vs. 154 KFlops).

Table 2: Performance - Santa-Fe Time Series

 TSUC KFlops SSE

 Min. Mean Max. Min. Mean Max. Min. Mean Max.

GD-RTRL 163 750.43 1596 153.01 710.74 1517.35 10.86 90.58 1016

GN-RTRL 16 55.92 472 13.72 96.95 941.41 1.86 109.27 1016

38

http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm

Table 3: Performance - Sunspot Time Series

 TSUC KFlops SSE

 Min. Mean Max. Min. Mean Max. Min. Mean Max.

GD-RTRL 39 168.17 186 36.16 153.86 170.37 6.88 35.95 101.44

GN-RTRL 16 58.48 1992 19.28 127.93 5262.52 1.65 18.08 1013.5

Figure 10 shows boxplots describing the distribution of computational effort required by the 2

algorithms in terms of kiloflops for the computer generated dataset. The boxplot has blue lines at

lower and upper quartiles, while the red line indicates the median of the Kflops for each of the

methods. The lines extending from the box indicate the rest of the points. These plots show that

GN-RTRL is relatively more computationally efficient in comparison to GD-RTRL. Despite the

fact that GD-RTRL has small computational overhead per time instance, when compared to GN-

RTRL that incorporates an SVD step, the latter method compensates by performing significantly

less iterations.

39

Figure 10: Boxplot of KFlops for GN-RTRL and GD-RTRL for the Santa-Fe Time Series

In terms of solution quality, Tables 1 and 2 clearly emphasize the superiority of GN-RTRL. The

SSE of GN-RTRL is by almost an order of magnitude smaller than the one achieved by GD-

RTRL. Figure 11 shows a representative plot of SSE computed during the testing phase versus

the TSUC for both methods, which demonstrates that GN-RTRL converges much faster to a

solution and, simultaneously, the solution is of higher quality, when compared to the GD-RTRL

solution. Additionally, Figure 11 indicates cases, where it seems that GN-RTRL may have

terminated training rather prematurely, which resulted in high SSE values. This may be

attributed to the initialization of the weight matrix, and in these cases the algorithm may have

converged to the local minima. To avoid these random initializations which converge to local

minima, a method may be devised where at the initial stages of the algorithm the GN direction is

watched and if it is observed to be diverging away from the steepest descent, this initialization is

40

discarded and another random weight matrix is selected.

Figure 11: The SSE versus TSUC results of the FRNN trained with the GN-RTRL and GD-
RTRL methods

41

4: SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

We have presented a Gauss-Newton variation of the Real Time Recurrent Learning algorithm

(Williams & Zipser, ’89) for the on-line training of Fully Recurrent Neural Networks. The

modified algorithm, GN-RTRL, performs error minimization using Gauss-Newton direction

vectors that are computed from information collected over a period of time rather than only

using instantaneous gradient information. GN-RTRL is a robust and effective compromise

between the original, gradient-based RTRL (low computational complexity, slow

convergence) and Newton-based variants of RTRL (high computational complexity, fast

convergence). Experimental results were reported that reflect the superiority of GN-RTRL

over the original version in terms of speed of convergence and solution quality. Furthermore,

the results indicate that, in practice, GN-RTRL features a lower-than-expected computational

cost due to its fast convergence: GN-RTRL required fewer computations than the original

RTRL to accomplish its learning task. This is indicated by the results obtained on the tests

performed on the sunspot and santa-fe time series data sets.

The formation of the Gauss-Newton direction requires computation of singular value

decomposition of the Jacobian matrix, in order to circumvent the problem of inverting that

matrix. The majority of computational load is due to this computation of the SVD. Now if

the Jacobian matrix is rank deficient the direction vector may not point to the descent

direction, and in that case we have to take the gradient descent direction. This is one of the

42

shortcomings of the method that the quality of the GN direction depends upon the rank of the

Jacobian matrix.

43

LIST OF REFERENCES

 [Werbos ‘90] – Werbos, “Backpropagation through time: What it does and how to do it”,
Proceedings of the IEEE, 78(10), 1990.

[Williams & Zipser ‘89] – Williams R.J., Zipser D., “A learning algorithm for continually

running fully recurrent learning algorithm,” Neural Computation, 1, 270, 1989.

[Williams, Zipser ‘89B] - Williams R.J., Zisper D., “Experimental analysis of the real-time

recurrent learning algorithm”, Connection Science, Vol. 1, No. 1, 87-111, 1989.

[Scales ’85] – Scales, Introduction to Nonlinear Optimization, Springer-Verlag New York Inc.

1985.

[Dennis & Schnabel ‘83] - Dennis J.E., Schnabel R. B., Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, NJ, 1983.

[Nocedal & Wright ‘99] - Nocedal, J., Wright, J.S., Numerical Optimization, Springer-Verlag,

New York, NY, 1999.

[Golub & Van Loan, 1996] - Golub G.H., Van Loan C.F., Matrix Computations, 3rd Ed., John

Hopkins University Press, Baltimore, MD, 1996.

[Williams ’92] – Williams R.J., “Training recurrent networks using the extended Kalman filter,”

in International Joint Conference on Neural Networks, Baltomore, Vol. 4, 241, 1992.

[Catfolis ‘93] - Catfolis T., “a method for improving the real-time recurrent learning algorithm”,

Neural Networks, Vol.6, pp. 807-821, 1993.

[Druaux, et al. ‘98] - Druaux F., Rogue E., Faure A., “Constrained RTRL to reduce learning rate

and forgetting phenomenon”, Neural Processing Letters, 7, 161-167, 1998.

[Mak et al. ‘98] - Mak M.W., Ku K.W., Lu Y.L., “On the improvement of the real time recurrent

learning algorithm for recurrent neural networks”, Neurocomputing, 24: (1-3), 13-26, 1998.

[Mandic & Chambers ‘99] - Mandic D.P., Chambers J.A., “Relating the slope of the activation

function and the learning rate with a recurrent neural network”, Neural Computation, 11,
1069-1077, 1999.

[Mandic & Chambers ‘00] - Mandic D.P., Chambers J.A., “A normalized real time recurrent

44

learning algorithm”, Signal Processing, 80, 1909-1916, 2000.

[Atiya & Parlos ‘00] - Atiya A.F., Parlos A.G., “new results on recurrent network training:

Unifying the algorithms and accelerating convergence”, IEEE Transactions on Neural
Networks, Vol. 11, No. 3, 697-709, 2000.

[Schmidhuber ‘92] - Schmidhuber J., “A Fixed Size Storage O (n3) time complexity learning

algorithm for fully recurrent continually running networks”, Neural Computation, 4, pp. 243-
248, 1992.

[Coelho ‘00] - Coelho P.H.G., “An extended RTRL training algorithm using Hessian Matrix”,

IEEE Proceedings on Neural Networks, Vol. 1, 563-568, 2000.

[Chang & Mak ‘98] - Chang W.F., Mak M.W., “A conjugate gradient learning algorithm for

recurrent neural networks”, NEUROCOMPUTING 24 (1-3): 173-189, 1998.

[Euliano & Principe ‘00] - Euliano N.R., Principe J.C., “Dynamic Sub grouping in RTRL

providing a faster O (N2) algorithm”, Acoustics, Speech, and Signal Processing, Vol. 6,
3418-3421 2000.

[Hambaba ‘00] - Hambaba A, Robust hybrid architecture to signals from manufacturing and

machine monitoring, Journal Of Intelligent & Fuzzy Systems, 9 (1-2): 29-41, 2000.

[Juang & Lin ‘01] - Juang C.F., Lin C.T., Noisy speech processing by recurrently adaptive fuzzy

filters, IEEE Transactions On Fuzzy Systems, 9 (1): 139-152, 2001.

[Perez-Ortiz et al. ‘01] - Perez-Ortiz J.A., Calera-Rubio J., Forcada M.L., Online symbolic-

sequence prediction with discrete-time recurrent neural networks Artifical Nneural
Networks-icann 2001, proceedings lecture notes in computer science, 2130, 719-724, 2001.

[Li et al. ‘02] - Li C.G., He S.B., Liao X.F., Yu J.B.,Using recurrent neural network for adaptive

predistortion linearization of RF amplifiers, International Journal Of Rf And Microwave
Computer-Aided Engineering , 12 (1), 125-130, 2002.

[Rumelhart et al. ‘86] – Rumelhart D.E., Hinton G.E., Williams R.J., “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.

[Selvan & Srinivasan ‘00] - Selvan S., Srinivasan R., “Recurrent neural network based efficient

adaptive filtering technique for the removal of ocular artefacts from EEG”, IETE Technical
Review, 17 (1-2): 73-78, 2000.

45

[Blanco et al. ‘01] - Blanco A, Delgado M, Pegalajar MC, A real-coded genetic algorithm for
training recurrent neural networks, Neural Networks, 14 (1): 93-105, 2001.

[Meyer ‘70] -Meyer, “ Theoretical and computational aspects of nonlinear regression,” in J.B.

Rosen, O.L. Mangasarian and K. Ritter (eds), Nonlinear Programming, Academic Press,
London and New York, 1970.

46

	Gauss-newton Based Learning For Fully Recurrent Neural Networks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVATIONS
	1: INTRODUCTION
	2: ORGANIZATION OF THE THESIS
	2.1 Literature Review
	2.2 Contribution of the Thesis - Background Information
	2.2.1 Minimization Techniques in non-linear Least Squares Problem
	2.2.1.1 Steepest Descent
	2.2.1.2 Newton’s method
	2.2.1.3 Gauss-Newton’s method

	2.2.2 Example Illustrating Working of Minimization Schemes
	2.2.2.1 Forming the Direction Vector
	2.2.2.2 Line Search

	2.3 Off-Line RTRL Algorithm
	2.3.1 Finding the Direction Vector
	2.3.2 Line Searches
	2.3.2.1 Bisection
	2.3.2.2 Parabolic INterpolation (Brent's Method)

	2.4 Off-Line GN-RTRL Algorithm

	3: EXPERIMENTS
	4: SUMMARY, CONCLUSIONS AND FUTURE RESEARCH
	LIST OF REFERENCES

