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ABSTRACT 

 

The thesis discusses a novel off-line and on-line learning approach for Fully Recurrent Neural 

Networks (FRNNs). The most popular algorithm for training FRNNs, the Real Time Recurrent 

Learning (RTRL) algorithm, employs the gradient descent technique for finding the optimum 

weight vectors in the recurrent neural network. Within the framework of the research presented, 

a new off-line and on-line variation of RTRL is presented, that is based on the Gauss-Newton 

method. The method itself is an approximate Newton’s method tailored to the specific 

optimization problem, (non-linear least squares), which aims to speed up the process of FRNN 

training.  The new approach stands as a robust and effective compromise between the original 

gradient-based RTRL (low computational complexity, slow convergence) and Newton-based 

variants of RTRL (high computational complexity, fast convergence). By gathering information 

over time in order to form Gauss-Newton search vectors, the new learning algorithm, GN-RTRL, 

is capable of converging faster to a better quality solution than the original algorithm. 

Experimental results reflect these qualities of GN-RTRL, as well as the fact that GN-RTRL may 

have in practice lower computational cost in comparison, again, to the original RTRL.  
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1: INTRODUCTION 

Recurrent neural networks (RNN) are very effective in learning temporal data sequences, due to 

their feed back connections. These feed back connections make the RNN different from the feed 

forward networks. Due to the use of these recurrent connections we add another dimension to our 

network, which is ‘time’. The hidden units, whose output is of no immediate interest, act as 

dynamic memory units, and information about the previous time instances is used to calculate 

the information at present time instant. The following figure illustrates the structural differences 

between recurrent neural networks and their more popular counterparts, feedforward neural 

networks.  

 

 

Input Layer 

Hidden Layer 

Output Layer 

Input Layer 

Hidden Layer 

Context 

Layer 

Output Layer 
 

 

 

 

 
Feed Forward Network Recurrent Network 

Figure 1: Structural differences in the feed forward and recurrent networks 

 

In the structure of a recurrent neural network, depicted in Figure 1, the context layer acts as a 
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buffer that stores the past information about the data. Due to this structure the recurrent neural 

network is very effective when the data set is a time varying signal.  

In the following we present an example, from the experiments with the Real Time Recurrent 

Learning (RTRL) paper (Williams, Zipser ‘89B), that demonstrates the power of the recurrent 

neural networks to learn a temporal task.  

 

Time a b c d Output 

1 1 0 0 0 0 

2 0 0 1 0 0 

3 0 1 0 0 1 

4 0 0 0 1 0 

5 0 1 0 0 0 

6 1 0 0 0 0 

7 0 1 0 0 1 

 
Recurrent Neural Network 

Output 

dcba   

Figure 2: Example demonstrating power of RNN to learn temporal tasks 

 

Consider the above system, whose output becomes 1 only when a particular pattern of lines 

appear in a specific order. As shown in the table, the output is 1 when line “b” is turned on after 

some time line “a” was on; other wise the output is off. The lines “c” and “d” are distractors. 

This task consists of recognizing events in a specific order (that is “a” then “b”), regardless of the 
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number of intervening events (that is “c” or “d”). Due to the feedback structure of the recurrent 

neural network, where the inputs consist of the external inputs as well as the delayed outputs, this 

task is accomplished efficiently. In order for the same task to be accomplished by a feed forward 

neural network a tapped delay line is required to store the past pattern information. Due to the 

finite number of tapped delay lines this network will fail to achieve its goal for arbitrary number 

of intervening “c”’s and “d”’s .in between a sequence of “a”, then “b”. 

 

In general, recurrent neural networks can effectively address tasks that contain some sort of time 

element in them. Examples of these tasks include, but are not limited to, stock market prediction, 

speech recognition, learning formal grammar sequences, one-step-ahead prediction. 

There are different architectures of recurrent neural networks. These architectures vary in the 

way they feed the outputs of the units (nodes) in the network, at a particular time instance, as 

inputs to the same units (nodes) in the network, at a future time instance.  For example, the 

Elman recurrent neural network feeds back from each unit in its hidden layer to each other unit 

in the hidden layer. On the other hand, the fully recurrent neural network (FRNN) has the output 

of every node in the network connected to all the other nodes in the network (see figure 2 below 

for a block diagram of FRNN). 
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W

Input Layer

Output Layer

Z-1 Z-1 Z-1Z-1

y1(t) y2(t)

x1(t) x2(t)+1

Visible Nodes Hidden Nodes

Unit Delay Nodes Input Nodes

 

Figure 3: Block diagram of a Fully Recurrent Neural Network (FRNN) 

 

The FRNN consists of an input layer and an output layer. The input layer is fully connected to 

the output layer via adjustable, weighted connections, which represent the system’s training 

parameters (weights). The inputs to the input layer are signals from the external environment or 

unit-gain, unit-delay feedback connections from the output layer to the input layer. FRNNs 

accomplish their task by learning a mapping between a set of input sequences to another set of 

output sequences. In particular, the nodes in the input layer of an FRNN accept input sequences 

from the outside world, delayed output activations from the output nodes of the network and a 

constant-valued node that helps in serving as the bias node for all the output nodes in the 

network. On the other hand, the nodes in the output layer generate the set of output sequences. 

Typically, nodes in the output layer are distinguished as output nodes (that produce the desired 

outputs) and hidden nodes, whose activations are not related to any of the outputs of the task to 
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be learned, but act as a secondary, dynamic memory of the system. The feedback connections 

(from output layer to input layer) in a recurrent neural network is the mechanism that allows the 

network to be influenced not only by the currently applied inputs but also by past applied inputs; 

this feature gives recurrent networks the power to effectively learn relationships between 

temporal sequences.  

 

Simple feed-forward neural networks are usually trained by the popular back-propagation 

algorithm (Rumelhart et al. ’86). The recurrent neural networks on the other hand, due to their 

dynamic processing require more complex algorithms for learning. An attempt to extend the 

back-propagation technique for learning in recurrent networks has led into a learning approach, 

termed back-propagation through time (Werbos ‘90). The implementation involved unfolding 

the recurrent network in time so that it grows one layer at each time step. This approach has the 

disadvantage of a requiring a memory size that grows large, especially for arbitrarily long 

training sequences. Another popular algorithm for learning in FRNN is the Real Time Recurrent 

Learning (RTRL) algorithm (Williams & Zipser ‘89). The main emphasis of the algorithm is to 

learn the temporal sequences by starting from a network topology that takes into consideration 

the knowledge about the temporal nature of the problem. RTRL is a gradient descent-based 

algorithm that is used for the adjusting the network’s interconnection weights. Williams & Zipser 

present two variations of RTRL, one for off-line (batch) and another one for on-line 

(incremental) learning. In both of its forms, RTRL has been successfully used to train FRNNs for 

a variety of applications, such as speech recognition and controller modeling. 
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2: ORGANIZATION OF THE THESIS 

The thesis is organized as follows: The first section (Section 2.1) is the literature review. It 

focuses on recurrent neural networks and several approaches for learning the interconnection 

weights of recurrent neural networks. It also focuses on different variants of the RTRL 

introduced into the literature, as well as successful applications of the RTRL neural networks. In 

section 2.2 we discuss the contribution of this thesis in the field of recurrent neural network 

learning. It also discusses the motivation behind our approach for training these kinds of 

networks. In section 2.3 the theory behind the original RTRL (Williams & Zipser ‘89) is 

thoroughly discussed, including the formation of the direction vector, finding the adaptive 

learning rate etc. Furthermore, in section 2.4 we discuss the derivation of the RTRL algorithm 

based on the Gauss-Newton direction. In section 3 we elaborate on the data sets we used for the 

experimentation and the associated experimental results. In the last section of the thesis (section 

4) conclusive remarks are provided.    

 

2.1 Literature Review  

 

There are several algorithms that have been developed to training recurrent neural networks, the 

principal ones being the real-time recurrent learning (RTRL) (Williams & Zipser ‘89), 

backpropagation-through-time (BPTT) (Werbos ’90) and the extended Kalman filter (Williams 

’92). All these algorithms make use of the gradient of the error function with respect to the 
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weights to perform the weight updates. The specific method in which the gradient is incorporated 

in the weight updates distinguishes the different methods. The RTRL algorithm has several 

advantages as the gradient information is computed by integrating forward in time as the network 

runs, as apposed to the BPTT algorithm where the computation is done by integrating backward 

in time as the network takes a single step forward.  

 

RTRL is a gradient-based algorithm that is used for the modification of the network’s 

interconnection weights. Williams & Zipser present two variations of RTRL, one for off-line 

(batch) and one for on-line (incremental) learning. Using both variations, RTRL has been used to 

train FRNNs in a variety of applications, such as speech recognition,  controller modeling, 

amongst others. Specifically, RTRL has been used for training a robust, manufacturing process 

controller in (Hambaba ‘00). The problem of speech enhancement and recognition is addressed 

in (Juang & Lin ‘01), where RTRL is used to construct adaptive fuzzy filters. RTRL has also 

been used to train FRNNs for next-symbol prediction in an English text processing application 

(Perez-Oritz et al. ‘01). The RTRL/FRNN combination has also been used in applications of 

communication systems. (Li, et al. ‘02) use FRNNs, trained by RTRL, for adaptive pre-distortion 

linearization of RF amplifiers and they have been shown to attain superior performance, in 

comparison with other well-known pre-distortion models. Furthermore, the authors show 

significant improvements in the Bit Error Rate (BER) performance as compared with linear 

techniques in the field of digital, mobile-radio systems. Finally, RTRL has been used to train 

FRNNs to effectively removing artifacts in EEG (Electroencephalograms) signals (Selvan & 
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Srinivasan ‘00). 

 

A plethora of RTRL variants or substitutes have been suggested in the literature that aimed to 

enhance different aspects of the training procedure such as its computational complexity, 

especially when used in off-line mode, convergence speed/properties, and its sensitivity to the 

choice of initial weight values. In (Catfolis ‘93) a technique is presented for reinitializing RTRL 

after a specific time interval, so that weight changes depend on fewer past values and weight 

updates follow more precisely the error gradient. Also, the relationship between some inherent 

parameters, like the slope of the sigmoidal activation functions and the learning rate, has been 

taken into account to reduce the degrees of freedom of the associated non-linear optimization 

problems (Mandic & Chambers ‘99). In (Schmidhuber ‘92), the gradient calculation has been 

decomposed into blocks to produce an algorithm which is an order of magnitude faster than the 

original RTRL. Additional constraints have been imposed to the synaptic weight matrix to 

achieve reduced learning time, while the network forgetting is reduced (Druaux, et al. ‘98). In 

(Chang & Mak ‘98), a conjugate-gradient variation of RTRL has been developed. Other 

techniques suggested to improve the convergence rate include use of Normalized RTRL (Mandic 

& Chambers ‘00), and use of genetic algorithms (Mak, et al. ‘98) and (Blanco, et al. ‘01). It has 

been shown (Atiya & Parlos ‘00) that of the training approaches like backpropagation through 

time (BTT), RTRL, fast forward propagation approach (what training approaches?...be specific) 

are based on different computational ways to efficiently obtain the gradient of error function and 

can be generally grouped into five major groups. Furthermore, these five approaches are only 
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five different ways of solving particular matrix equation. Dynamic sub-grouping of processing 

elements has also been proposed to reduce the RTRL’s computational complexity from O(n4) to 

O(n2). (Euliano & Principe ‘00). Finally, Newton-based approaches for small FRNNs have also 

been used to exploit the Newton’s method quadratic rate of convergence (Coelho ‘00). 

In this paper, we present a novel, on-line RTRL variation, namely the GN-RTRL. While the 

original RTRL training procedure utilizes gradient information to guide the search towards the 

minimum training error (and therefore we are going to refer to it as GD-RTRL), GN-RTRL uses 

the Gauss-Newton direction vector for the same purpose. The development of a GN-based 

training algorithm for FRNNs was motivated by the very nature of the optimization problem at 

hand. The function to be minimized is non-linear squared-error type, which makes it a Non-

linear Least-Squares (NLS) optimization problem. While gradient descent methods are 

straightforward and easy to implement for NLS problems, their convergence rate is linear 

(Nocedal & Wright ‘99), which typically translates to long training times. The problem is further 

worsened when the model size (the number of interconnection weights) increases. On the other 

side of the spectrum, Newton-based methods attain a theoretical quadratic rate of convergence 

(Dennis & Schnabel ‘83), which makes them appealing from the perspective of achieving 

reduced training time. Nevertheless, Newton-based algorithms require second-order derivative 

information, such as the associated Hessian matrix or approximations to it. This requirement 

implies a high computational cost, which prohibits the usability of Newton-based learning for 

moderate or large size FRNN structures. We propose an RTRL scheme based on the Gauss-

Newton method as a compromise between gradient descent and Newton’s methods. The GN-
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RTRL features a super-linear convergence profile (faster than GD-RTRL) and lower 

computational cost to second-order algorithms, which makes it practical for training small to 

moderate size FRNNs. 

 

2.2 Contribution of the Thesis -Background Information 

 

The thesis discusses a novel approach to learning in the fully recurrent neural networks. The 

most popular algorithm for learning, the RTRL employs the gradient descent technique of 

minimization for finding the optimum weight vectors in the recurrent neural network. By using 

an approximation to the Newton’s method, i.e. Gauss-Newton method, which is suitable for non-

linear least squares minimization problems we can speed up the process of learning the recurrent 

weights. 

 

2.2.1 Minimization Techniques in non-linear Least Squares Problem 

 

If an objective function is expressed as a sum of squares of other non-linear functions: 

    ,          (1) ∑
=

=
m

i
i XfXF

1

2 )()(

then it is possible to devise some efficient methods to minimize it.  

 If we gather the functions  in vector form as: if

   then     (2) [ ]TmfffX Λ21)( =f )()()( XXXF T ff=
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To obtain the gradient vector of the objective function, the first partial derivative with respect to 

 can be written as: jx

    ∑
= ∂

∂
=

m

i j

i
ij x

f
fg

1

2      (3) 

Now if we define the Jacobian matrix as: 
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then the gradient vector can be written as: 

         (5) )()(2)( XXXg T fJ=

Now, if we differentiate equation (3) with respect to  gives the kj-element of the Hessian 

matrix: 
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If we denote  be the Hessian matrix of function  iT if

         (7) )()( 2 XfX ii ∇=T

Then the complete Hessian matrix can be written as: 

        (8) )()()(2)( XXXX T SJJG +=

where: 

         (9) ∑
=

=
m

i
ii XXfX

1

)()()( TS
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This concludes our discussion about the basics of formation of various matrices in the case of 

least squares problems, needed for the further developments. 

2.2.1.1 Steepest Descent 

Now, to find minimum of a function iteratively, the function should decrease in value from 

iteration to iteration, in other words, 

)(XF

    )()( 1 kk XFXF <+               (10) 

Now we need to choose a direction , so that we can move “downhill”. Let us consider the first-

order Taylor series expansion about : 

kp

kX

               (11) k
T
kkkkk XgXFXXFXF ∆+≈∆+=+ )()()( 1

where  is the gradient evaluated at the old guess : kg kX

                 (12) 
kXXk XFg =∇= |)(

It is evident that the steepest descent would occur if we choose: 

                 (13) kk g−=p

The original RTRL algorithm uses this direction for minimizing the objective function. 
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2.2.1.2 Newton’s method 

The steepest descent algorithm considers first-order Taylor’s series expansion. The next method 

we will discuss is based on the second-order Taylor’s series expansion: 

  kk
T
kk

T
kkkkk XXXgXFXXFXF ∆∆+∆+≈∆+=+ G

2
1)()()( 1              (14) 

Taking gradient of this quadratic function with respect to kX∆  and set it equal to zero for  to 

be minimum we get: 

1+kX

                 (15) kkkkkkk gXXg pGG =−=∆⇒=∆+ −10

if we use equations (5) and (8) to find out the gradient , and Hessian  at the old guess , 

and substitute in in equation (15) we get, 

kg kG kX

                                      (16) k
T
kkk

T
kk fJSJJp 1)( −+−=

This is the Newton’s method for the specialized, non-linear least squares objective function. The 

Newton’s method involves computation of the  term which involves evaluation of kS )1(
2
1

+nmn  

terms for an objective function comprising of sum of squares of ‘m’ functions and in ‘n’ 

dimensional space. 

2.2.1.3 Gauss-Newton’s method 

By neglecting the term in the Newton’s equation (16) becomes, )(kS
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                (17) k
T
kk

T
kk fJJJp 1)( −−=

This equation defines the Gauss-Newton method. 

It is clear from (8), (9) & (16) that if  as , then also , and then the 

Gauss-Newton tends to Newton’s method as the minimum is approached, which will have 

favorable consequences, such as quadratic convergence. 

0)( →Xf *XX → 0)( →XS

It has been shown by (Meyer ’70) that the convergence constant K can be written as: 

    [ ] 1*** )()()(
−

≤ XXXK T JJ  S           (18) 

So, the convergence is superlinear as  k as 0 ∞→→kS , otherwise it is first-order and 

slower the larger kS  is. Thus, it can be concluded that Gauss-Newton’s approximation to 

Newton’s method would not perform as expected (i.e. with super-linear convergence) if the size 

of the  term kS )()( XXf ii T  is larger than eigen values of . Also atJJT *X , the vector , being 

proportional to the gradient vector, must be zero. Therefore if , then  is rank 

deficient and  is singular, so Gauss-Newton cannot be expected to perform 

satisfactorily in large residual problems, where the residuals of the errors are going to be 

comparatively larger. 

fJT

0)( * ≠Xf )( *XJ

)()( ** XXT JJ

 

The original RTRL algorithm uses a steepest descent of gradient for minimization, which has 

linear rate of convergence. Our approach is to use the Gauss-Newton method for the 

minimization. As the objective function to be minimized is a sum of squares error function, and 
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we assume that the minimization method is already inside the close neighborhood of a local 

minimum, where the residuals will be small, and can be considered as a small residual problem. 

On the other hand if we are not close the local minimum, Gauss-Newton will be extremely slow 

and might produce inaccurate results in some cases. 

 
 
2.2.2 Example Illustrating Working of Minimization Schemes 

 

Let us take an example of minimization of a function from an initial 

guess of [0.5 0.5]

)(sin)(sin)( 2
2

1
2 XXXF +=

T.  Figure (4) illustrate surface of the function. 
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Figure 4: surface of the function to be minimized 

2.2.2.1 Forming the Direction Vector 

From equation (2), we can write: [ ]TXXX 21 sinsin)( =f  

 

The Jacobian can be written as:  ⎥
⎦

⎤
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Now from equation (5), we can write the gradient as:  ⎥
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The Hessian is  )(2)()(2)( XXXX T SJJG +=

The  can be written as:  )(XS
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Now,  

From a initial guess X0 = [0.5 0.5]T, we get the direction for gradient descent as, 

    [ ]TGD 8415.08415.0=p

The Newton’s direction is, 

   [ ]TXgX 7787.07787.0)()( 00
1 =− −G  

 and the Gauss-Newton’s direction is, 

   [ ]TT XXXX 5463.05463.0)()()]()([ 00
1

00 =− − fJJJ  

 These Directions are shown is figure (2). 
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Figure 5: Direction vectors for different methods of minimization of a sum of squares function 

2.2.2.2 Line Search 

Once we find a minimizing direction the next step is to find a learning rate (step length along the 

search direction) that minimizes the function along the found direction. This process is called 

line search and is nothing else but a uni-dimensional minimization procedure. 
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There are several methods to perform a line search, the simplest being the the bisection method. 

In this method we start with a bracket of [a,b] = [0,1], and evaluate the function in the found 

direction in this bracket-end points. The function is also evaluated at the mid point c = (a+b)/2. 

Now the point with the maximum function value is excluded and a new bracket is formed. This 

iterative process is continued until the minimum within acceptable range is found. 

 

 

Figure 6: state of the solution after 4 backtracking steps. 

 
The bisection performed on the 3 directions found yielded following results: 

 

19 

 
  
 



 

Table 1: Results of the line search on the found directions 

Steps Gradient method Newton method GN method 
1 F(X0) = 0.2243 F(X0) = 0.1514 F(X0) = 0.0043 
2 F(X1) = 0.0125 F(X1) = 0.0244 F(X1) = 0.1012 
3 F(X2) = 0.0342 F(X2) = 0.0141 F(X2) = 0.0163 
4 F(X3) = 0.0013 F(X3) = 0.000354 F(X3) =  0.000966 
 
 
It can be seen from table (1) that for equal number of minimization steps the quality of the 

solution produced by the Gauss-Newton method is superior to the one provided by the steepest 

gradient method. On the other hand, when comparing the Gauss-Newton and Newton’s methods, 

both solutions are comparable in accuracy. We have saved the computation of 6)1(
2
1

=+nmn  

terms, by omitting the  term from the Gauss-Newton calculation. )(XS

 

2.3 Off-Line RTRL Algorithm 

 

In this section we present an algorithm for off-line training of FRNNs. The algorithm, which 

appears in (Williams & Zipser ’89), is based on the Gradient Descent method, when the total 

Sum of Squared Errors (SSE) is being used as the objective function to be minimized.  
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Figure 7: Fully recurrent neural network architecture 

 

The above figure shows the notation used for ease of understanding the derivations ahead. The 

output layer consists of U nodes, L are the observable nodes and H are the hidden nodes. The 

input layer has a total of V nodes, comprising of I input nodes, 1 bias node and U unit-delay 

nodes. The indexing as shown inside the nodes is followed for ease of writing the equations. The 

weights are denoted as W(‘to’ node index)(‘from’ node index). Note that the recurrent connections do not 

have any weights associated with them and they just feed back the current output to the delay 

element. The outputs of the output nodes have some initial value at time t=-1, which is denoted 

by  for k=0…U-1 )1(−ky
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The operations at a node in the output layer are depicted in the following figure: 

 

 

Figure 8:  Operations at the output node  

All the weighted inputs converging to the node are summed together and the output of the node 

is the output of a nonlinear function applied to that sum. Typical choices for this nonlinear 

function include the logistic and hyperbolic tangent functions, as shown below: 

                                               
-x

-x

e
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In the performance phase of the network, let T be the number of test patterns with the first 

pattern being presented at time t=0.  Let 1..0     )( −= Oktyk  be the observed outputs and 

 be the H unobserved outputs of the context units.  1..     )( −= UOktyk

The outputs of the output units can be written as: 

    ( ))()( tsfty kk =            (21) 

where: 

  t=0… T-1, k=0…U-1     (22) ∑ ∑
−

=

−

=
++ −++=

1

0

1

0
1,,, )1()()(

I

l

U

l
lIlkIkllkk tywwtxwts
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Now, learning in the RNN architecture can be performed by minimizing a suitable objective 

function ϕ( ). Furthermore, the minimization can be achieved by finding appropriate values for 

all the free parameters of the network. While up to this point we have considered only the weight 

matrix W as a network parameter, the U initial values 1..0     )1( −=− Ukyk  are arbitrary and, 

therefore, we can consider them too as network parameters that can be tuned during the training 

process. These values can be summarized in the output state vector )1(−y . Moreover, both the 

output state vector and the weight matrix can be summarized in a single column vector of 

U*(U+I+2)=(O+H)*(O+I+H+2) elements 

 [ ] [ ]
⎥
⎦

⎤
⎢
⎣

⎡
−

== −+= )1(1)1(..0 y
W

θ
vec

VUrrθ     (23) 

here vec(.) is used to indicate the weight matrix W is arranged in a single column vector. 

The relationship between θr and wi,j, yk(-1) parameters is given below: 

 

 
UVkr

jVir
y

w

rUkk

rVjUiji

+=
+=

=−

=

−=

−=−=     where
)1( 1..0

1..0,1..0,

θ

θ
 

 (24) 

 ⎣ ⎦
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VirjVri
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w

kVUUVrr

jiUVrr

−=
−==

−=
=

−+=

−= ,/
    where)1(1)1(..

,1..0
θ
θ

 

 

To understand the above mapping let us better consider an example, where we have a  network 
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with 3 input nodes (I = 3), 4 hidden nodes (H = 4) and 2 output nodes (O = 2). The weight matrix 

will have dimensionality 6x10 and y(-1) will have dimensionality 1x6. 

Now the θ  vector can be written as follows: 

[ ]

 
                                     
                                                                   

  

6561605910910 θθθθθθθθ

θ

ΛΛ

ΛΛΛ

↓↓↓↓↓↓↓↓

−−−= ×
Tyyywwwww 6615105910090100 )1()1()1(

 

 

2.3.1 Finding the Direction Vector 

 

Continuing with our presentation, our objective function (Sum of Squared Errors (SSE)), which 

for the RNN is defined as 

 

  (25) ( ) ( )∑
−

=

==
1

0
,

T

t
tSSE θθ φφ

 

where we define the instantaneous SSE ϕ(θ,t) as 

 

 ( ) ∑
−

=

=
1

0

2 )(
2
1,

U

k
k tetθφ  (26) 

 

From Equation (26) we can see that the SSE is proportional to the average of instantaneous SSE 

over the time period t=0..T-1. The instantaneous error ek(t) for output neuron k depends 
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implicitly on θ and is given as 

  (27) 
⎩
⎨
⎧ −=∃−

=
otherwise

1..0     )(  if
          

0
)()(

)(
Oktdtytd

te kkk
k

In other words, ek(t) is zero, if there is no specific desired response dk(t) for output k at time 

instance t. We can combine Equations (25) and (26) into 
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k teSSE θφ  (28) 

In this section we are going to apply Gradient Descent to minimize the SSE. This is the off-line 

learning procedure, since we consider errors over a period of all the time instances 

simultaneously. The gradient is given as 
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where we define the following column vectors 
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Uiiy
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In order to specify the gradient completely we need to find expressions for the partial derivatives 

in Equations (30) and (31). From Equation (26) the partial derivative with respect to the 

parameter θr (which might be a specific wi,j or a specific yi(-1)) is given as 
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Utilizing Equation (27), Equation (32) can be rewritten as 
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In order to proceed further we need the expressions for the partial derivatives inside the 

summations. These can be calculated via Equation (21). 
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We can express the derivative of the activation function in Equation (19) as 

 ( )2tanh )(1))(( tytsf kk −=′  (35) 

 [ ])(1)())((log tytytsf kkk −=′  (36) 

The form of the derivative in Equations (35) and (36) is convenient from an implementation 

perspective, since they require only a few floating-point operations. At this point we still need to 

find expressions for the partial derivatives in Equation (34). For clarity, we need to differentiate 

now between θr being a specific wi,j or a specific yi(-1). Thus, Equation (34) becomes 
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The above partial derivatives can be calculated with the help of Equation (22), so that Equations 

(37) and (38) become 
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If we proceed to define the training state quantities 
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then we can rewrite Equations (41) and (34) as 
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where δk,i is the Kronecker delta symbol. Due to their definition in Equations (41) and (42), the 

training state quantities are initialized to  
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By introducing the training state quantities the calculation of the gradient components in 
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Equation (33) is performed as follows 

 1..0,1..0          (t))(
1

0

1

0
,

,
−=−=−=

∂
∂ ∑∑

−

=

−

=

VjUipte
w

T

t

U

k

k
jik

ji

φ  (47) 

 1..0          (t))(
)1(

1

0

1

0
−=−=

−∂
∂ ∑∑

−

=

−

=

Ukqte
y

T

t

U

k

k
ik

k

φ  (48) 

Up to this point we managed to calculate the gradient vector. Training using the Gradient 

Descent method produces parameter updates that are of the form 

 
φλ

φλ

)1()1( −∇−=−∆
∇−=∆

y

W

y
W

 (49) 

where λ>0 is the learning rate. 

The update equation thus can be written as: 

                                            (50) pWW λ+= oldnew

Where p is an appropriate direction vector and λ is the step length in the direction of p (also 

referred to as the learning rate). Our direction vector here is , so  φWpp −∇== GD

                                                 (51)      φλ WWW ∇−= oldnew

Before training commences it is important to normalize (adjust the range of values) the training 

patterns.   

 

2.3.2 Line Searches 

 

After finding the direction vector we need to find the learning rate adaptively, as a constant 
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learning rate would not necessarily minimize the sum of the squared errors. So for the given 

direction vector we find the learning rate. The problem of finding the learning rate for 

minimizing the SSE becomes a one-dimensional minimization problem, and this problem can be 

solved by several methods. 

2.3.2.1 Bisection 

One of the simplest methods is the backtracking. In backtracking we start with a bracket of 

learning rates, such as [0, maximum learning rate]. The function (to be minimized) is evaluated 

at the bracket mid point, and the point with the maximum value of function is eliminated, and 

this process is continued until we reach to the minimum of the function with the 2 points 

separated with the distance of machine’s floating point precision. The bracket of learning rates, 

for our case, would be always bounded by [0, maximum learning rate], so our initial guess for 

the bracketing minimum would always be this bracket.  

2.3.2.2 Parabolic Interpolation (Brent’s Method) 

 

Assuming that our function is parabolic near the minimum, a parabola fitted through any three 

points would take us to the minimum in a single step, or at least very near to it.  
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Figure 8: Parabolic interpolation (Brent’s method) 

 
If we denote equation of the parabola by:  

cbxaxx ++= 2)(ψ ,                  (52) 

to fit a parabola through out function, we can use the bracket end points to find out the 

coefficients a, b and c. In fact we do not need the complete form of )(xψ , as only the position of 

the minimum of the parabola x* is required. Differentiating equation (52) with respect to x , and 

equating it to 0, we get, 

    
a

bxbaxx
2

02)( ** −=⇒=+=′ψ    (53) 
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so ratio of b/a is needed. Now we have the bracket as [A,B] and another internal point C such 

that )()( and )()( BCAC ψψψψ << .  

We solve three simultaneous linear equations: 

        (54) 
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The x* is then obtained as: 
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1 222222
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−+−+−
−+−+−

=    (55) 

As shown in figure (8), Ak+1 becomes Ck, Ck+1 becomes the new found point x* for the next 

iteration k+1. 

 

2.4 Off-Line GN-RTRL Algorithm 

 

In this section we present our new version of the RTRL algorithm by using the Gauss Newton’s 

technique for minimizing the least squares objective function. The Gauss Newton method 

replaces the direction method in the original approach described above with the Gauss-

Newton direction. The learning rate is adaptively calculated the same way using the Brent 

method (based on parabolic interpolation technique) as described in the last section. The function 

to be minimized is the function in equation (20), with respect to the adaptable parameters (i.e. the 

weights). Let us first define , where r(t) is the vector 

kp

[ ]TLoLo Ttetetetetet )1(...)1()(...)()()( 111 +−−= −−r
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containing the errors for different (visible) outputs across T consecutive time instances (the 

current time instance t and the T-1 previous time instances; so ). Also ifTLtr ⋅ℜ∈)( [ ]Wθ vec=̂ , then 

the (m,n) entry of the Jacobian matrix can be written as,                                                   

       
n

m tr
nmt

θ∂
∂

=
)(

),;(J                                                 (52) 
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k tetθφ  is then defined as,  

                                                                                             (53) )()(),( trtt TJθ =∇φ

and the Hessian of ( t,θ )φ  as, 

                           (54) ∑
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∇+=∇
1
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22 )()()()(),(
Tt

j
jj

T trtrttt JJθφ

Note here that after calculating the gradient g of the objective function, we get the first part of 

equation (54) without any further evaluations. The Gauss-Newton method assumes that the 

minimization problem at hand is of small residual and, therefore, ignores the second part of the 

Hessian calculation. 

 

Let  denote the gradient vector of kg ( )t,θφ , and  denote the Hessian of kG ( t,θ )φ ; G is defined in 

the following equation 

     kk tg θθθφ =∇= |),(             (55) 

               (56) kk tG θθθφ =∇= |),(2

where ),( tθφ∇ and  are defined in equations (53) & (54). ),(2 tθφ∇
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Now, a Taylor series gives the expansion of the gradient of a quadratic function at     

kkk p+=+ θθ 1  as .                                                      (57)   kkk gg p G+=+1

If we take a the gradient of this quadratic function with respect to  and set it to zero we get, kp

    0=+ kkg Gp  or                      (58).                                    kk g1−−= Gp

Now from (53), (54) & (58), 

                                            (59) [ ] )()()()()( 1 tttttp TT
k rJSJJ −

+−=

The main problem in applying this method is the computation of the S(t) term. This calculation 

involves evaluation of )1(
2
1

+nmn terms. This difficulty leads us to the Gauss-Newton 

modification of the Newton’s method. If we ignore the S(t) term in equation (52) we get the 

Gauss-Newton equation for the optimal direction vector, defined as,  

[ ] )()()()(
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tttt TTGN rJJJpp
−

−==                                                     (60) 

This approximation in equation (60) can be viewed as a low computational cost approximation to 

the Hessian matrix associated to the SSE minimization, which is sufficiently accurate for small-

residual problems. (Scales ‘85). 
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k tetSSE θφ , is to be minimized with respect to the adaptable weight 

vector θ . 

The residual vector can be written as:  )(tr
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This equation links the Jacobian matrix to the output sensitivities . This equation also 

underlines the fact that GN-RTRL is closely related to GD-RTRL, since both approaches utilize 

output sensitivity information for the computation of their corresponding search directions. 

Nevertheless, GN-RTRL promises shorter training time without the need of computing second 

order derivatives. 

)(, tp k
ji

 

In order to solve the equation to get the Gauss-Newton direction, we avoid the formation of the 

term  directly as it is prone to considerable, numerical errors during its 

computation. Instead we solve: 

[ ] )()()(
1

ttt TT JJJ
−

−

          (63) rp TGNT JJJ −=

using a numerically stable approach, namely the Singular Value Decomposition (SVD), as 

presented in (Golub & Van Loan, 1996). We decompose the Jacobian matrix so that, 

    ,     (64) TTT SS
SVUVUUVUJ 121 0
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Where,        

U is m x m orthogonal; U1 contains first n columns of U, U2 the last m-n columns; 

V in n x n orthogonal; 

S is n x n diagonal, with diagonal elements .021 >≥≥≥ nσσσ Λ  for a m x n Jacobian matrix. The 

matrices U, V should not be confused with the sizes of the input and output layers of the FRNN.  
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Now using this decomposition we can write, 

     .                                             (65) )(1
1 tTGN rUVSp −−=

In terms of the left- (ui), right-eigenvectors (vi) and singular values (σi) of the Jacobian matrix 

the direction vector can be written as, 

 ∑−=
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T
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ru
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)(                                                 (66) 

In the above summation terms that correspond to relatively small singular values are omitted to 

increase robustness in the direction vector calculations. This phenomenon may occur when J(t) is 

close to being rank deficient and the unaltered search vector may not represent a descent 

direction. Another alternative would be using the negative gradient as in GD-RTRL for that 

particular time step until J(t) becomes full rank again. 

 

Some of the advantages in using the Gauss-Newton method for the minimization in the least 

squares solutions problem can be listed as follows. First, we ignore the second order Hessian 

term from the Newton’s method, which saves us the trouble of computing the individual 

Hessians. Secondly our minimization task is a small residual problem as the residual vector r(t) 

is the error between the desired output and the actual output, and tends to zero as the learning 

progresses. In the small residual problems the first term in equation (49) is much more 

significant than the second term, and the Gauss-Newton method gives performance similar to the 

Newton’s method, with reduced computational effort (Nocedal & Wright, 1999).                 

The original RTRL algorithm comes in 2 versions: 1) Batch mode (off-line training) and 2) 

Continuous mode (on-line learning). 
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In continuous mode the weights are updated as the network is running. The advantage with this 

approach is that you don’t have to specify any epoch boundaries and that leads to a conceptual 

and implementation-wise simple algorithm. The disadvantage is that now the algorithm is no 

longer the exact negative gradient of the total error along the trajectory. In the case of GN-RTRL 

for the super-linear convergence, the Jacobian matrix must be full column rank. In an effort to 

fulfill the last requirement, GN-RTRL must compute its direction vector based on T ≥UV/L time 

instances, which contrasts GD-RTRL that needs only current time instance information. 

Although this very fact might be considered as a disadvantage of GN-RTRL from a 

computational or memory-storage perspective, utilizing information of T instead of just one time 

instance to perform on-line learning may cause a smoothing/averaging effect in time and allow 

GN-RTRL to converge faster in an on-line mode. 
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3: EXPERIMENTS 

In order to demonstrate the merits of the Gauss-Newton RTRL we have chosen to compare it to 

the original algorithm (GD-RTRL) on one-step-ahead prediction problems. For both GN- & GD-

RTRL we used the same parabolic interpolation technique for approximate line minimization, 

the same set of initial weights and the same, maximum learning rate. For each dataset the two 

algorithms performed training using 100 different initial configurations. Once the algorithms 

converged, they were tested on all available data and the produced SSE was measured. The 

datasets we considered were: 

Santa-Fe Time Series Competition dataset: The dataset consists of a computer-generated, 1-

dimensional temporal sequence of 500 time instances. The data set was generated by numerical 

integration of equation of motion of a damped particle. The data set looks as follows: 

 

 

Figure 9: Santa-Fe time series data set 
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[Link: http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html] 

Sunspot dataset: The dataset consists of a temporal sequence representing the annual, average 

number of sunspot activity as measured in the interval 1749 to 1915.  The sequence is 1-

dimensional and contains 2000 samples. [Link: http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm] 

The results obtained are summarized in Tables 1, 2 depicted below. TSUC denotes time steps 

until convergence, while KFlops denotes thousands of floating point operations performed 

during training. In the online learning case, the condition of convergence is, the L-infinity norm 

of the gradient vector must be smaller than an accuracy value ε , for that particular time instant. 

   ε<
∞kg  where 0>ε is the accuracy threshold.                   (67) 

The experimental results for both datasets verify that GN-RTRL is superior in terms of 

convergence as expected. In the first dataset, GN-RTRL achieved convergence (on average) in 

only 7% of the time steps required by GD-RTRL, while in the second one in 35%. In terms of 

computational effort (Kflops), GN-RTRL seems to be (on the average) better than the GD-RTRL 

method for the Santa-Fe series (96 vs. 710 Kflops) and comparable for the Sun-spot series (128 

vs. 154 KFlops). 

 

Table 2: Performance - Santa-Fe Time Series 

 TSUC KFlops SSE 

 Min. Mean Max. Min. Mean Max. Min. Mean Max. 

GD-RTRL 163 750.43 1596 153.01  710.74 1517.35 10.86 90.58 1016 

GN-RTRL 16 55.92 472 13.72 96.95 941.41 1.86 109.27 1016 
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Table 3: Performance - Sunspot Time Series 

 TSUC KFlops SSE 

 Min. Mean Max. Min. Mean Max. Min. Mean Max. 

GD-RTRL 39 168.17 186 36.16 153.86 170.37 6.88 35.95 101.44 

GN-RTRL 16 58.48 1992 19.28 127.93 5262.52 1.65 18.08 1013.5 

 

Figure 10 shows boxplots describing the distribution of computational effort required by the 2 

algorithms in terms of kiloflops for the computer generated dataset. The boxplot has blue lines at 

lower and upper quartiles, while the red line indicates the median of the Kflops for each of the 

methods. The lines extending from the box indicate the rest of the points. These plots show that 

GN-RTRL is relatively more computationally efficient in comparison to GD-RTRL. Despite the 

fact that GD-RTRL has small computational overhead per time instance, when compared to GN-

RTRL that incorporates an SVD step, the latter method compensates by performing significantly 

less iterations. 
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Figure 10: Boxplot of KFlops for GN-RTRL and GD-RTRL for the Santa-Fe Time Series 

 

In terms of solution quality, Tables 1 and 2 clearly emphasize the superiority of GN-RTRL. The 

SSE of GN-RTRL is by almost an order of magnitude smaller than the one achieved by GD-

RTRL. Figure 11 shows a representative plot of SSE computed during the testing phase versus 

the TSUC for both methods, which demonstrates that GN-RTRL converges much faster to a 

solution and, simultaneously, the solution is of higher quality, when compared to the GD-RTRL 

solution. Additionally, Figure 11 indicates cases, where it seems that GN-RTRL may have 

terminated training rather prematurely, which resulted in high SSE values. This may be 

attributed to the initialization of the weight matrix, and in these cases the algorithm may have 

converged to the local minima. To avoid these random initializations which converge to local 

minima, a method may be devised where at the initial stages of the algorithm the GN direction is 

watched and if it is observed to be diverging away from the steepest descent, this initialization is 

40 

 
  
 



discarded and another random weight matrix is selected. 

 

 

Figure 11: The SSE versus TSUC results of the FRNN trained with the GN-RTRL and GD-
RTRL methods 
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4: SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

We have presented a Gauss-Newton variation of the Real Time Recurrent Learning algorithm 

(Williams & Zipser, ’89) for the on-line training of Fully Recurrent Neural Networks. The 

modified algorithm, GN-RTRL, performs error minimization using Gauss-Newton direction 

vectors that are computed from information collected over a period of time rather than only 

using instantaneous gradient information. GN-RTRL is a robust and effective compromise 

between the original, gradient-based RTRL (low computational complexity, slow 

convergence) and Newton-based variants of RTRL (high computational complexity, fast 

convergence). Experimental results were reported that reflect the superiority of GN-RTRL 

over the original version in terms of speed of convergence and solution quality. Furthermore, 

the results indicate that, in practice, GN-RTRL features a lower-than-expected computational 

cost due to its fast convergence: GN-RTRL required fewer computations than the original 

RTRL to accomplish its learning task. This is indicated by the results obtained on the tests 

performed on the sunspot and santa-fe time series data sets. 

The formation of the Gauss-Newton direction requires computation of singular value 

decomposition of the Jacobian matrix, in order to circumvent the problem of inverting that 

matrix.  The majority of computational load is due to this computation of the SVD. Now if 

the Jacobian matrix is rank deficient the direction vector may not point to the descent 

direction, and in that case we have to take the gradient descent direction. This is one of the 
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shortcomings of the method that the quality of the GN direction depends upon the rank of the 

Jacobian matrix. 
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