
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2009

Control Of Nonh=holonomic Systems Control Of Nonh=holonomic Systems

Hongliang Yuan
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Yuan, Hongliang, "Control Of Nonh=holonomic Systems" (2009). Electronic Theses and Dissertations,
2004-2019. 4017.
https://stars.library.ucf.edu/etd/4017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F4017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4017?utm_source=stars.library.ucf.edu%2Fetd%2F4017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Control of Nonholonomic Systems

by

Hongliang Yuan

B.E. University of Science & Technology of China, 2002
M.S. University of Central Florida, 2007

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

from the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2009

Major Professor: Zhihua Qu

c© 2009 by Hongliang Yuan

Abstract

Many real-world electrical and mechanical systems have velocity-dependent constraints in

their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous

underwater vehicles and hopping robots, etc. Most of these systems can be transformed

into a chained form, which is considered as a canonical form of these nonholonomic sys-

tems. Hence, study of chained systems ensure their wide applicability. This thesis studied

the problem of continuous feed-back control of the chained systems while pursuing inverse

optimality and exponential convergence rates, as well as the feed-back stabilization prob-

lem under input saturation constraints. These studies are based on global singularity-free

state transformations and controls are synthesized from resulting linear systems. Then, the

application of optimal motion planning and dynamic tracking control of nonholonomic au-

tonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary

conditions and the vehicles’ kinematic model, hence it is smooth and feasible. A collision

avoidance criteria is set up to handle the dynamic environments. The resulting controls

are in closed forms and suitable for real-time implementations. Further, dynamic tracking

controls are developed through the Lyapunov second method and back-stepping technique

based on a NPS AUV II model. In what follows, the application of cooperative surveil-

lance and formation control of a group of nonholonomic robots is investigated. A designing

iii

scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary

trajectories. The controllers are decentralized and are able to avoid internal and external

collisions. Computer simulations are provided to verify the effectiveness of these designs.

iv

To My Family.

v

Acknowledgments

I am thankful to Dr. Zhihua Qu, my supervisor, for his supports on this research. I am

also thankful to Dr. Jing Wang and Jian Yang for their suggestions and assistance. I also

give thanks to all the graduate students in the robotics/control lab for helpful discussions.

I thank my family for their patience and love.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xv

CHAPTER 1 INTRODUCTION TO NONHOLONOMIC SYSTEMS . . 1

1.1 Definition Of Nonholonomic Systems . 1

1.2 Some Examples Of Nonholonomic Systems 3

1.2.1 The Unicycle or UAV Kinematic Model 3

1.2.2 Car-like Robots . 4

1.2.3 Hopping Robots . 6

1.2.4 The Origin of Nonholonomy . 7

1.3 Canonical Forms Of Nonholonomic Systems 8

CHAPTER 2 CONTROLLABILITY OF NONHOLONOMIC SYSTEMS 11

2.1 Nonlinear Controllability Analysis Based On Lie Bracket 12

2.2 Interpretation Of Lie Brackets From Control Viewpoint 14

2.3 Controllability Of Chained Systems . 16

vii

2.4 Difficulties In Nonholonomic Controls . 17

CHAPTER 3 REVIEW OF NONHOLONOMIC CONTROLS 19

3.1 Open Loop Controls . 21

3.2 Discontinuous Feedback Controls . 24

3.3 Time-Varying Continuous Controls . 26

CHAPTER 4 SMOOTH PURE FEEDBACK STABILIZATION OF CHAINED

NONHOLONOMIC SYSTEMS . 28

4.1 Problem Formulation . 28

4.2 Global State Scaling Transformation And Control Design Scheme 31

4.2.1 Design of Control Component u1 . 31

4.2.2 A Global State Transformation . 33

4.2.3 Design of Control Component u2 . 35

4.3 Optimal Performance . 39

4.4 Design Examples . 42

4.5 Simulations And Comparisons With Other Existing Controls 43

4.6 Conclusion . 47

CHAPTER 5 SATURATED CONTROL OF CHAINED NONHOLONOMIC

SYSTEMS . 51

viii

5.1 Problem Formulation . 53

5.2 The Saturated Control Design . 54

5.2.1 The Control Design u1 and u2 . 57

5.2.2 Choice of k and d . 62

5.3 Simulations . 64

5.4 Conclusion . 67

CHAPTER 6 OPTIMAL REAL-TIME COLLISION-FREE MOTION PLAN-

NING FOR NONHOLONOMIC AUVS IN A 3D UNDERWATER SPACE

. 68

6.1 Problem Formulation . 73

6.1.1 The Kinematic Model . 73

6.1.2 The Trajectory Planning Problem . 74

6.2 Real-Time Trajectory Planning For AUVs 77

6.2.1 Trajectory Planning without Obstacles 78

6.2.2 Trajectory Planning with Obstacles 81

6.2.3 Optimal Solution of Candidate Trajectories 83

6.2.4 Solution and Solvability . 86

6.3 Simulation Results . 90

ix

6.3.1 Single Obstacle . 90

6.3.2 Multiple Obstacles . 92

6.4 Torque Level Tracking Control Of 3D trajectories 95

6.4.1 The Kinematic Tracking Controller 96

6.4.2 The Dynamic Tracking Control Design 100

6.4.3 Simulation Results . 105

6.5 Conclusion . 106

CHAPTER 7 COORDINATED EXPLORATION AND FORMATION CON-

TROL FOR MULTIPLE UNMANNED AERIAL VEHICLES (UAVS) . . . 109

7.1 Problem Formulation . 110

7.2 Motion Planning . 112

7.2.1 Parametric Feasible Trajectories . 112

7.2.2 Motion Planning for Avoiding Static/Dynamic Obstacles 115

7.3 Cooperative Formation Controls . 118

7.3.1 Formation Control of Multiple UAVs 119

7.3.2 Adaptive Cooperative Formation Controls 121

7.3.3 Circular Trajectories and Arbitrary Trajectories 122

7.3.4 Internal and External Collision Avoidance 124

x

7.4 Simulations . 125

7.4.1 Simulation Settings . 127

7.4.2 Simulation Results . 128

7.5 Conclusion . 131

CHAPTER 8 CONCLUSION AND FUTURE WORK 133

LIST OF REFERENCES . 138

xi

LIST OF FIGURES

1.1 The Unicycle Model . 3

1.2 The Car-like Robot Model . 5

1.3 The Hopping Robot Model . 6

2.1 Lie Bracket Motion Effects . 14

4.1 Simulation Results of The Proposed Controls. (a),(c) State and Control with

u′2 in (4.2.15). (b),(d) State and Control with u2 in (4.2.8). (e) Model Differ-

ence for u′2 and u2. 49

4.2 Control Effects for Various Other Control Designs. (a),(b) State and Con-

trol of Discontinuous Control. (c),(d) States and Controls for The Ordinary

Periodic Time-varying Feedback Design and ρ-exponential Stabilizer. 50

5.1 Two Cases of Controls: (a), t1 ≤ td; (b), t1 > td. 59

5.2 State and Controls for The Case t1 ≤ td. (a), State; (b), Control. 65

5.3 State and Control for The Case t1 > td. (a), State; (b), Control. 66

6.1 A Control Block Diagram for An Underwater Vehicle 69

6.2 One AUV Model . 73

xii

6.3 AUV Moving in an Unknown Environment 75

6.4 Solution of (bk4, c
k
4) . 87

6.5 The Optimal Collision Free Trajectory . 91

6.6 The Linear Velocity . 93

6.7 Angular Velocities . 93

6.8 Orientation Angles . 94

6.9 The Trajectory Avoids Obstacles . 94

6.10 The Simulink Platform for Dynamic Tracking Controls 106

6.11 Trajectory Tracking Simulation Results. (a), Desired and Actual Trajectory.

(b), Tracking of x. (c), Tracking of y. (d), Tracking of z. (e), Tracking of

φ. (f), Tracking of ψ. (g), Tracking of θ. (h), Torque Control. (i), Rudder

Control. (j), Bow Plane Angle. (k), Stern Plane Angle. 108

7.1 Block Diagram of UAS Control Loops. 111

7.2 Control Software Modules. 112

7.3 A UAV in the Presence Obstacles . 116

7.4 A Formation Defined in the Frenet Frame 120

7.5 Collision avoidance for UAV formations . 124

7.6 Flow-chart of the Simulation Platform . 126

7.7 Waypoints for Each UAV . 127

xiii

7.8 UAVs in Searching. 129

7.9 UAVs Traveling through Waypoints with A Two-column Formation. 130

7.10 UAVs Traveling through Waypoints with A Triangular Formation. 130

7.11 UAVs Patrolling in Triangular Formations. 131

xiv

LIST OF TABLES

4.1 Summary of Various Control Approaches . 47

6.1 Settings of Single-Obstacle Scenario . 90

6.2 Settings of Multi-Obstacle Scenario . 95

6.3 Settings of The Obstacles . 96

7.1 Map Coordinates . 128

7.2 Initial Configuration of UAVs . 128

7.3 Static Obstacles . 129

xv

CHAPTER 1
INTRODUCTION TO NONHOLONOMIC SYSTEMS

1.1 Definition Of Nonholonomic Systems

In general, nonholonomic systems are defined to be those systems with nonintegrable con-

straints on their velocities. The configuration of a mechanical or electrical system can be

uniquely described by an n-dimensional vector:

q = [q1 q2 · · · qn]T .

Normally, the configuration space Q is an n-dimensional smooth manifold, locally diffeomor-

phic to the Euclidean space �n. The generalized velocity at a generic point of a trajectory

q(t) ⊂ Q is described by its tangent vector:

q̇ = [q̇1 q̇2 · · · q̇n]T .

Two types of constraints may be applied to the system, one is pure geometric constraints,

which can be described as:

hi(q) = 0, i = 1, 2, · · · , k.

The other type of constraints are velocity-dependent constraints, involving generalized co-

ordinates and their derivatives, e.g. first-order kinematic constraints are:

ai(q, q̇) = 0, i = 1, 2, · · · , k.

1

In most cases, the kinematic constraints are linear in the velocities, which is called affine in

velocity or Praffian, hence they can be described as:

aT
i (q)q̇ = 0, i = 1, 2, · · · , k, or AT (q)q̇ = 0. (1.1.1)

Kinematic constraints may be integrable. That is, there may be k functions hi such that

∂hi(q(t))

∂q
= aT

i (q), i = 1, 2, · · · , k. (1.1.2)

If we put (1.1.2) into (1.1.1), we would have:

∂hi(q(t))

∂q
q̇ = 0, i = 1, 2, · · · , k,

which yields,

hi(q) = ci, i = 1, 2, · · · , k.

It shows that through integration, the kinematic constraints are reduced to pure geometric

constraints. In this case, the kinematic constraints are called to be holonomic. If the solution

to the partial differential equation (1.1.2) does not exists, then the kinematic constraints

can not be integrated, which means these constraints are indeed imposed on generalized

velocities. In this case, these constraints are nonholonomic, and the system is a nonholonomic

system.

A feasible way to check whether the kinematic constraints is nonholonomic can be done

as following:

Suppose h(q) = 0 exists, then ∂h
∂q
q̇ = 0. Denote

(
∂h

∂q
)ij =

∂hi

∂qj
,

2

then we know

∂(∂h
∂q

)ij

∂qk
=

∂2hi

∂qj∂qk
=

∂2hi

∂qk∂qj
=
∂(∂h

∂q
)ik

∂qj
.

Hence for AT (q) in equation (1.1.1), if the following property does not holds, it must be a

nonholonomic system,

∂Aij

∂qk
=
∂Aik

∂qj
. (1.1.3)

1.2 Some Examples Of Nonholonomic Systems

In this section, we will elaborate some mechanical systems that have nonholonomic con-

straints, then we will discuss the origin of nonholonomy and present a commonly used

canonical form that is used for control design.

1.2.1 The Unicycle or UAV Kinematic Model

The following figure shows a Unicycle model:

Figure 1.1: The Unicycle Model

3

On a plane, UAV or Unicycle share the same kinematic model, which is represented by:

ẋ = v1 cos θ

ẏ = v1 sin θ (1.2.1)

θ̇ = v2

where q = [x, y, θ] is the generalized coordinates. (x, y) is the world coordinates and θ is the

heading angle. v1 is forward linear velocity, v2 is turning rate. The model (1.2.1) can be

rewritten as: ⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ

sin θ

0

⎤
⎥⎥⎥⎥⎥⎥⎦
v1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦
v2.

It is straightforward to identify that q̇ = [ẋ ẏ θ̇]T has an one dimensional null space, which

represents a kinematic constraint on the model:

[− sin θ cos θ 0]q̇ = 0,

where AT (q) = [− sin θ cos θ 0]. It is straightforward to verify that equation (1.1.3) does

not hold for this AT (q), thus the model is nonholonomic.

1.2.2 Car-like Robots

Fig. 1.2 illustrated a rear-driven car-like robot model. Its generalized coordinates is

q = [x, y, θ, φ]T ,

4

(x,y)

Figure 1.2: The Car-like Robot Model

where (x, y) is world coordinates, refers to the middle of the rear axle. θ is heading angle, φ

is steering angle. v1 is forward linear velocity, v2 is steering rate.

The kinematic model is represented by:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

φ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ

sin θ

1
l
tanφ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
v1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
v2.

The null space is 2-dimensional, represents 2 kinematic constraints, which are:⎡
⎢⎢⎣ sin θ − cos θ 0 0

sin(θ + φ) − cos(θ + φ) −l cosφ 0

⎤
⎥⎥⎦ q̇ = 0

5

Again, it can be determined that the kinematic constraints are nonholonomic by using equa-

tion (1.1.3). For a front-driven car-like robot, the model is similar except that the term

1
l
tanφ is replaced by 1

l
sinφ, and it is also a nonholonomic model.

1.2.3 Hopping Robots

Fig. 1.3 shows a hopping robot model in flight phase. Its generalized coordinates is:

q = [θ, ll, φ]T ,

where θ is the angle of the hip of the hopping robot with respect to its body, ll is the length

of the lower leg, φ is the angle of leg of the robot with respect to the horizontal axis.

Figure 1.3: The Hopping Robot Model

6

The following kinematics model could be obtained:⎡
⎢⎢⎢⎢⎢⎢⎣

θ̇

l̇l

φ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

I
I+m(lu+ll)2

⎤
⎥⎥⎥⎥⎥⎥⎦
v1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
v2,

where v1 is the rate change of the angle between the body and leg, v2 is the rate change of

the length of the lower leg. I is the moment of inertia for the body, m is the mass for the

leg which is concentrated at the foot, lu is the length for the upper leg. The null space of

the generalized velocity is one dimensional, means it has one kinematic constraint, which is:

[−I 0 I +m(lu + ll)
2]q̇ = 0,

and it is a nonholonomic constraint by checking equation (1.1.3).

1.2.4 The Origin of Nonholonomy

The origin of nonholonomy can be divided into two classes:

• Bodies of motion are in contact with each other and they roll/move without slippage.

• Conservation of moments in a multi-body system associated with under-actuated con-

trol.

For the Unicycle example in section 1.2.1, the nonholonomy arises because at the touching

point between disk and surface, the velocity are confined to be aligned with the heading

angle, no slippage is allowed. For UAV model, since the engine thrust is always aligned

7

with body’s longitudinal direction, it can be considered approximately that there is no side

slippage. For the car-like model presented in section 1.2.2, the two nonholonomic constraints

arise because there are no side slippage at both front and rear wheel. For the hopping robot

model presented in section 1.2.3, the nonholonomy arises because when it flies in the air, the

angular moment is conserved since there is no external force applied to the system.

1.3 Canonical Forms Of Nonholonomic Systems

The existence of a canonical form for nonholonomic systems is essential for the systematic

development of both open-loop and closed-loop controls. The most useful canonical form is

the chained form [49]. Many practical mechanical and electrical systems can be converted into

the following (2, n) driftless model through diffeomorphic state and control transformations:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (1.3.1)

...

ẋn = xn−1u1.

More general study would involve multiple chains, which could be extended from the (2, n)

form.

8

For example, the unicycle model in section 1.2.1 can be converted into:

ż1 = u1

ż2 = u2

ż3 = z2u1,

through the transformation:

z1 = x, z2 = tan θ, z3 = y, v1 = u1 sec θ, v2 = u2 cos2 θ.

And the car-like robot model in section 1.2.2 can be converted into:

ż1 = u1

ż2 = u2

ż3 = z2u1

ż4 = z3u1,

through the transformation:

z1 = x

z2 =
tanφ

l cos3 θ

z3 = tan θ

z4 = y

v1 =
u1

cos θ

v2 = − 3 sin θ

l cos2 θ
sin2 φu1 + l cos3 θ cos2 φu2.

9

Based on chain-form, if we apply another transformation:

ξ1 = x1

ξ2 = x2

ξ3 = −x3 + x1x2

ξ4 = x4 − x1x3 +
1

2
x2

1x2

...

ξn = (−1)nxn +

n−1∑
i=2

(−1)i 1

(n− i)!
ξn−i
1 ξi,

we would get another canonical form named power form, which is:

ξ̇1 = u1

ξ̇2 = u2

ξ̇3 = ξ1u2

ξ̇4 =
1

2
ξ2
1u2 (1.3.2)

...

ξ̇n =
1

(n− 2)!
ξn−2
1 u2

Therefore, design of nonholonomic control usually starts from the canonical form (1.3.1),

which deals with a class of systems, instead of for a specific physical system.

10

CHAPTER 2
CONTROLLABILITY OF NONHOLONOMIC SYSTEMS

For the kinematic constraints given in (1.1.1), their implications can be conveniently studied

through a dual approach. That is to study the directions in which motion is permitted

rather than directions in which motion is prohibited. (1.1.1) essentially implies that motion

of configurations are in the null space of constraints ai(q), i = 1, · · · , k, i.e. a set of vector

fields gj(q) can be defined such that

aT
i (q)gj(q) = 0, i = 1, · · · , k, j = 1, · · · , n− k.

Or in matrix form,

AT (q)G(q) = 0.

The feasible trajectories of the systems are solutions q(t):

q̇(t) =

m∑
j=1

gj(q)uj = G(q)u (2.0.1)

for some input u(t) ∈ Rm, m = n− k. Sometimes u is also called pseudo velocities. System

(2.0.1) sometimes is also called driftless in the sense that when there is no control input, the

states stay at any configuration.

11

2.1 Nonlinear Controllability Analysis Based On Lie Bracket

The controllability of system (2.0.1) is determined by the properties of the set of vector fields

gj(q), j = 1, · · · , m. In order to reveal these properties, lets first introduce some concepts

from differential geometry.

Definition 1. A set of vector fields {g1, · · · , gm} in �n is said to be linearly independent if

α1g1 + · · · + αmgm = 0 implies α1 = α2 = · · · = αm = 0. The set of vector fields is linearly

dependent if it is not linearly independent.

Definition 2. For vector fields f(q) and g(q), the operation of Lie Bracket is defined to be

[f, g] =
∂g

∂q
f − ∂f

∂q
g.

It is straightforward to verify the following identities of Lie Bracket:

[f, g] = −[g, f], (skew − symmetry)

[f, [g, h]] + [h, [f, g]] + [g, [h, f]] = 0, (Jacobi identity)

Definition 3. A set of linearly independent vector fields {g1, · · · , gm} in Rn is said to be

involutive if {g1, · · · , gm, [gi, gj]} is linearly dependent for any choice of gi and gj with i �= j.

Definition 4. For a set of vector fields {gj(q), j = 1, · · · , m}, Δ = span{g1, · · · , gm} is

called the distribution of the set of vector fields.

Definition 5. For a set of vector fields {gj(q), j = 1, · · · , m}, its distribution is regular if

Δ does not change with q.

12

Definition 6. Δ is called the involutive closure of Δ if it is the smallest distribution con-

taining Δ and if f, g ∈ Δ, then [f, g] ∈ Δ. Δq denotes the involutive closure evaluated at a

point q.

Definition 6 implies that:

• Δ is a Lie algebra.

• Δ contains all linear combinations of g1 up to gm, their Lie Brackets, and all combina-

tions of those as well.

The controllability of driftless system (2.0.1) is defined as:

Definition 7. The system is controllable if for any pair of initial condition q0 ∈ �n and

final condition qf ∈ �n, there exists a T > 0 and u : [0, T] ∈ Rm such that q(0) = q0 and

q(T) = qf .

Obviously, for system (2.0.1), if the motion is allowed in every direction of configuration

space, it will be controllable. However, due to the existence of nonholonomic constraints,

motion is confined in the null space of the constraints. Hence, dimension of tangent space is

less than the dimension of configuration space (m < n). In this case, controllability depends

on whether or not new linearly independent control directions can be generated through

maneuvering controls along those allowed directions. Chow’s theorem states that

Theorem 1. If Δq = �n for all q ∈ Q, then system (2.0.1) is controllable on Q.

A straightforward interpretation of Chow’s theorem is that, for the set of vector fields

{g1, · · · , gm} in system (2.0.1), if the union of its distribution and those subspace composed

13

of their Lie Bracket has same dimension as its configuration space at all points in the con-

figuration space, then it is controllable. It implies that the Lie Bracket of the motions on

allowed directions contribute to the motion on those restricted directions, through which

controllability can be recovered. Hence the Lie Bracket operation is important in determine

the controllability of driftless systems.

2.2 Interpretation Of Lie Brackets From Control Viewpoint

A useful interpretation of the effect of Lie Bracket operation on two vector fields is illustrated

in Fig. 2.1.

g1

-g1

g2

-g2

Nonzero
net motion

O

q1

q2

q3

Figure 2.1: Lie Bracket Motion Effects

14

Let φf
t : U → �n denote the flow of a vector field f for time t, and consider the sequence of

flows depicted in Fig. 2.1. The resulting solution is:

q(4ε) = φ−g2
ε ◦ φ−g1

ε ◦ φg2
ε ◦ φg1

ε

It follows that

q(ε) = φg1
ε

= q(0) + εq̇(0) +
1

2
ε2ẍ(0) +O(ε3)

= q(0) + εg1(0) +
1

2
ε2
∂g1

∂q
|x=0 +O(ε3).

Similarly,

q(2ε) = q(ε) + εq̇(ε) +
1

2
ε2q̈(ε) +O(ε3)

= q(0) + εg1(0) +
1

2
ε2
∂g1

∂q
|q=0 + εg2(q(ε)) +

1

2
ε2
∂g2

∂q
|q=q(ε) +O(ε3)

On the other hand, by Taylor’s expansion, we have

g2(q(ε)) = g2(q(0)) +
∂g2

∂q
|q=q(0) × [εg1(0) +

1

2
ε2
∂g1

∂q
|q=q(0)] +O(ε3)

= g2(q(0)) + εg1(0)
∂g2

∂q
|q=q(0) +O(ε3).

Similarly, ∂g2

∂q
|q=q(ε) can be expanded, hence,

q(2ε) = q(0) + ε(g1(0) + g2(0)) +
1

2
ε2[
∂g1

∂q
g1(0) +

∂g2

∂q
g2(0) + 2

∂g2

∂q
g1(0)] +O(ε3).

Accordingly, we have

q(3ε) = q(0) + εg2(0) +
ε2

2
[
∂g2

∂q
g2(0) + 2

∂g2

∂q
g1(0) − 2

∂g1

∂q
g2(0)] +O(ε3)

15

q(4ε) = q(0) + ε2[
∂g2

∂q
g1(0) − ∂g1

∂q
g2(0)] +O(ε3)

= q(0) + ε2[g1, g2]|q=q(0) +O(ε3) (2.2.1)

Equation (2.2.1) shows that after the series of motion described by φ−g2
ε ◦φ−g1

ε ◦φg2
ε ◦φg1

ε ,

the net outcome of the configuration q(t) is moving along a direction that is obtained by

Lie Bracket operation of allowed direction g1 and g2. This implies that the Lie Bracket of

any pair of allowed moving direction potentially contributes to the reachable space as long

as the generated vector fields are linearly independent to those of already exist. Hence, if

the involutive closure of system (2.0.1) has same dimension as its configuration space, the

system is controllable.

2.3 Controllability Of Chained Systems

From the discussion of previous section, the controllability of chained nonholonomic system

can be studied as follows. The results can be extended to m input nonholonomic system.

(1.3.1) can be rewritten as:

ẋ = g1(x)u1 + g2(x)u2

where g1 = [1 0 x2 · · · xn−1]
T and g2 = [0 1 0 · · · 0]T . Denote repeated Lie brackets as

adk
g1
g2 = [g1, ad

k−1
g1

g2], one has

adg1g2 = [g1 g2]

adk
g1
g2 = [g1, ad

k−1
g1

g2]

= [0 · · · (−1)k · · · 0]T , k = 2, 3, · · · , n− 2

16

where subscription k denotes kth entry in the vector field. It shows that the involutive

inclosure of the distribution Δ = {g1, g2, · · · , adk
g1
g2, · · · }, k = 1, 2, · · · , n−2. has dimension

n which is identical to the configuration space, hence the chained nonholonomic system is

nonlinearly controllable, and the degree of nonholonomy is n− 1.

2.4 Difficulties In Nonholonomic Controls

In Section 4.1, we have mentioned the difficulties in designing feedback controls of chained

nonholonomic systems. After discussing its nonlinear controllability and defining the math

tools of Lie brackets, we are able to review these difficulties in a more detailed fashion with

a mathematical viewpoint.

There exists no continuous control u = u(x) that stabilizes the chained system. A

necessary condition for such a control exist was given in [9]. That is, if the system ẋ = f(x, u)

is locally asymptotically C1-stabilizable at xe, then the image of map f : M×U → �n should

contain some neighborhood of xe. For the chained system, 0 is the equilibrium point. Let e0

be a nonzero vector linearly independent from g1(0), g2(0), · · · , gm(0). By continuity, there is

an ε > 0 such that for all (x, u1, · · · , um) with ‖x‖ < ε, the vector
∑m

k=1 ukgk(x) is different

from λe0 for any λ in �. Therefore the map

(x, u1, · · · , um) →
m∑

k=1

ukgk(x)

does not map the neighborhood [−ε, ε]n+m of 0 in �n+m into a neighborhood of 0 in �n.

Hence the necessary condition is violated, therefor a static feedback control does not exist

17

for the chained system. The chained system is not feedback linearizable. Suppose such a

linearization exists then we would have the results ż = Az+Bv, where z = T1(x), v = T2(x, u)

with T1 a diffeomorphism state transformation. However since the original system is driftless,

so must be the transformed system, therefor we have A = 0. And since the states are of

higher dimension than the input u, one would not be able to find a transformation T2 results

in a constant matrix B. Pointwise linearization is not applicable as well, because at the

origin, the system is not linearly controllable.

18

CHAPTER 3
REVIEW OF NONHOLONOMIC CONTROLS

In this chapter, we will brief review the evolution of the nonholonomic control problem.

Controls of chained systems and more general nonholonomic systems are very active fields

of research in the last decades. The topics are on motion planning, tracking and stabiliz-

ing. Both open-loop and close-loop approach are developed. The motion planning problem

was introduced by [37], who proved that a car-like robot with one nonholonomic constraint

is controllable. Open loop planners for low-dimensional mobile robots have been proposed

in [38, 5, 39]. Other open-loop strategies have explored control theoretic approaches us-

ing differential geometry tools. Sinusoids were proposed by [49] to stabilize in open-loop

nonholonomic system on canonical forms. Later on, the sinusoids methods were generalized

through a given level of Lie-brackets of the input vectors in [34, 35, 22, 47]. [22] also proposed

other open-loop controls such as piece-wise constant inputs and polynomial inputs.

In early as 1980’s, feedback linearization technique has been prevailing. Sufficient and

necessary conditions for exact feedback linearization of large classes of affine nonlinear sys-

tems were explicitly set up by using of differential geometry methods [21, 52]. Later on,

the renewed interests on Lyapunov methods become dominant with the invention of the

notion of control Lyapunov function and recursive designs such as backstepping [27, 32] in

order to deal with more large classes of nonlinear systems with unmatched and/or gener-

alized matched uncertainties [55]. While those conventional nonlinear control designs are

19

broadly applicable, there exist some classes of inherently nonlinear systems, such as nonlin-

ear systems with uncontrollable linearization [3], which do not admit any smooth (or even

continuous) pure state feedback controls as observed in the seminal chapter [9]. Therefore

make the standard feedback linearization technique and Lyapunov direct method no longer

straightforwardly applicable. Such a typical class of systems is the nonholonomic systems

[30], which is not feedback linearizable and their feedback stabilization problem is challenging

due to Brockett’s necessary condition [9].

It is well known that chained systems are canonical forms of many nonholonomic mechan-

ical and electrical systems such as autonomous underwater vehicles, car-like mobile robots,

unmanned aerial vehicles and hopping robots, which can be transformed into the chained

form by state and input transformations. Apparently, chained system does not satisfy Brock-

ett’s necessary condition, discontinuous or time-varying feedback controls have to be sought

for its stabilization. During the past decades, extensive studies have been performed and a

great deal of solutions have been obtained following the lines of using discontinuous control

method and time-varying control method [30]. In general, discontinuous controls can render

exponential stability [6, 24, 42, 43], while time-varying controls lead to asymptotic stability

[54, 58, 64, 69]. More recent study has also seen the results of ρ−exponential stability of

chained system using time-varying homogeneous feedback controls [46]. While the exist-

ing controls provide elegant solutions, there is still a desire of searching global singular-free

transformations that map the chained systems into controllable linear systems. The motiva-

tion comes from the simple discontinuous controls proposed in [2, 24, 42] in which σ-process

20

based state scaling transformation is used. In such a method, a state scaling transformation

ξi =
zi

xn−i
1

, 1 ≤ i ≤ n− 1

is defined on a non-singular subspace Ω = {x ∈ �n : x1 �= 0}. The obvious shortcoming is

that the resulting controls are discontinuous by nature, and a switching control is required

to keep the state from the singularity hyperplane of x1 = 0. Improvements were made in

[36, 70], in which dynamic extension for control component u1 was introduced to bypass

the possible singularity due to singular initial conditions. The proposed methods are quasi-

smooth and achieve quasi-exponential stability.

3.1 Open Loop Controls

The open loop control strategies include sinusoidal inputs, piecewise constants, and polyno-

mial inputs. The basic idea of sinusoidal input is to steering every state one by one using

sinusoids. The steps for sinusoidal control are listed as following: 1. Find u1 such that x1

goes from x1(t0) to x1(tf).

2. Find u2 such that x2 goes from x2(t0) to x2(tf).

3. Choose u1 = α1 sinωt and u2 = β1 cosωt to steer x3 from x3(t0) to x3(tf).

4. Choose u1 = α2 sinωt and u2 = β2 cos 2ωt to steer x4 from x4(t0) to x4(tf).

... n. Choose u1 = αn−2 sin(ωt) and u2 = βn−2 cos(n− 2)ωt to steer xn from xn(t0) to xn(tf).

21

Proof. Step 1 and step 2 is quite straightforward, one can simply pick u1 =
x1(tf)−x1(t0)

tf−t0
and

u2 =
x2(tf)−x2(t0)

tf−t0
. For step 3, it follows that,

x1(t) = x1(t0) +

∫ t

t0

α1 sinωτdτ

= x1(t0) +
α1

ω
(cosωt0 − cosωt)

= x1(0) +
α1

ω
(1 − cosωt),

without losing generality, we put t0 = 0 here. Similarly,

x2(t) = x2(0) +

∫ t

0

β1 sinωτdτ

= x2(0) +
β1

ω
sinωt

It indicates that at t = k 2π
ω
, k = 1, 2, · · · , x1(t) = x1(0) and x2(t) = x2(0), which means x1

and x2 won’t be changed. It follows that:

ẋ3 = u1x2 = [x2(0) +
β1

ω
sinωt]α1 sinωt.

Hence at t = k 2π
ω

,

x3(t) = x3(0) +
kα1β1

ω2
.

This shows that while x1 and x2 were unchanged, x3 can be moved to any desired value by

adjust α1, β1.

Similarly, for step 4 to step n, the input would be:

u1 = αl−2 sinωt, u2 = βl−2 cos(l − 2)ωt, l = 4, 5, · · · , n.

At t = k 2π
ω

, we have:

x1(t) = x1(0)

...

xl−1(t) = xl−1(0)

xl(t) = xl(0) +
kαl−2

l−2βl−2

(l − 2)!(2ω)l−2
.

22

It shows that only xl is steered while others are intact. Hence after n steps, all states are

steered.

In the piecewise constant inputs approach, the total maneuvering time T is equally

divided into subintervals. The length of each subinterval is δ, in which constant inputs are

applied.

u1(τ) = u1,k

u2(τ) = u2,k

for τ ∈ [(k − 1)δ, kδ). Without losing generality, u1 can be chosen as a constant such that

u1 =
x1f−x10

T
. Divide the total time T into n− 1 subintervals such that T = (n− 1)δ. Assign

the n− 1 constant values of input u2 as:

u2,1, u2,2, · · · , u2,n−1,

which can be solved from a set of linear algebraic equations resulting from the integration

of the model equations with u2 applied (n− 1 variables, n− 1 equations).

The approach of polynomial inputs is similar to the approach of piecewise constant inputs,

but with improved smoothness properties. The control are chosen as:

u1 = sign(x1f − x10)

u2 = c0 + c1t+ · · · + cn−2t
n−2,

23

where T = x1f − x10. The coefficients c0, · · · , cn−2 can be obtained by solving the set of

linear algebraic equations resulting from the closed-form integration of the model equations

M(T)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

...

cn−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+m(xi, T) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2f

x3f

...

xnf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Because polynomial inputs are smooth, they are more favorable than piecewise constant

inputs. The reason is that the kinematic models are controlled at velocity levels, and if a

torque level control is sought, the control signal needs to be differentiated one more time.

3.2 Discontinuous Feedback Controls

Among the methods to stabilize the chained systems, discontinuous controls are more straight-

forward than their time-varying counterparts. However, these approaches have a singular

manifold because of the transformation they incorporate. The key idea is to switch control

laws after system states leave the singular manifold, hence it avoids the difficulty to design

a single continuous but time-varying control. The σ-process proposed by Astolfi [2] is a

common representative of such a discontinuous control design. Consider the chained system

in (1.3.1), the following state transformation is valid for all x1 �= 0,

ξ1 = x1, ξ2 = x2, ξi =
xi

xi−2
1

, i = 3, · · · , n.

24

Letting u1 = −kξ1, the ξ-system transforms to:

ξ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k 0 0 · · · 0

0 0 0 · · · 0

0 −k k · · · 0

...
...

...
...

...

0 0 0 0 (n− 2)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u2.

It is a stabilizable linear system, and u2 is the new input. Typically, one can choose the

following linear control law

u2 = p2ξ2 + p3ξ3 + · · ·+ pnξn

to assign the eigenvalues in left half of the complex plane, therefore the closed-loop system (in

ξ-coordinates) is globally exponentially stable. However the linear control u2 is not defined

in the set

D = {x ∈ Rn : x1 = 0},

because the transformation is no longer valid in the set. To handle this problem, it is

proposed to first apply some open-loop controls for an apriori fixed time ts in order to steer

the state away from the singularity and then switch back to the linear feedback control law

[2][10][62], hence there is discontinuity in the control.

25

3.3 Time-Varying Continuous Controls

There exist two type of time-varying continuous control. One is periodic, proposed in [54]

and [69]. The periodic control is based on power form (1.3.2). The controller is given by:

u1 = −ξ1 − (

n−2∑
j=1

ξ2
j+2)(sin(t) − cos(t))

u2 = −ξ2 − (

n−2∑
j=1

cjξj+2) cos(jt)

Later on, to improve its convergence rate, [45] proposed homogeneous feedback approach.

The control and simulation results will be discussed in detail lately when compare to our

solution.

On the other hand, design of aperiodic time-varying feedback control was explored in

[58] and [70]. [58] adopted a dynamic control,

u̇1 = −(k1 + ζ)u1 − k1ζx1, u1(t0) = cu‖x(t0)‖.

Based on the dynamic control, a virtual output was constructed

yd
Δ
=
k1x1 + u1

k1 − ζ
.

Using the property ẏd = −ζyd, yd is applied in state scaling. Noting that the solution of yd is

yd = ce−ζt, the undergoing transformation is similar to the transformation proposed in this

chapter. [70] obtained u1 by augmenting the first subsystem to:

ẋ0 = x1, ẋ1 = u1.

26

Let α be the greater eigenvalue and β be the smaller one of the augmented system, then

u1 = e−βtf(t), where

f(t) = β2αx0(0) + x1(0)

α− β
− α2βx0(0) + x1(0)

α− β
e−(α−β)t.

And z(t) = e−βt is used in the state scaling transformation. The advantages of these two

controls are that the state response and controls are all smooth, exponentially converging

fast (similar rate with the approach in this chapter) with no oscillations. However their

disadvantage is, as illustrated in the control equations, the successful control relies on proper

tuning of some controller parameters that related to the system’s initial conditions, making

it fail to be a pure state feedback control, hence is less favorable.

27

CHAPTER 4
SMOOTH PURE FEEDBACK STABILIZATION OF CHAINED

NONHOLONOMIC SYSTEMS

In this chapter, a smooth pure feedback control design is proposed and a novel feedback

design scheme is proposed, which renders a smooth, time-varying, aperiodic, pure feedback

control with exponential convergence rates. There are three main advantages with the pro-

posed design: 1) In general, time-varying designs are mostly periodic and render asymptotic

stability, whereas the proposed approach is aperiodic and have exponential convergent rates;

2) A novel state scaling transformation is proposed. It shows that even though u1 vanishes

in regulation problems, the controllability of chained systems can be regain by judiciously

designing the input u1 and by applying state transformations; 3) A class of memory func-

tions is introduced into the control design, the controller dependency on the system’s initial

conditions in our previous work is removed and the control is a pure feedback. Moreover, the

design is shown to be inversely optimal. Simulations and comparisons are carried through

to verify the effectiveness of the proposed designs.

4.1 Problem Formulation

The feedback control design is to be studied based on the canonical forms obtained in

previous sections. Exponential convergent rate is pursued. The chained system (1.3.1)

can be rewritten into the following form if we reorder the states, with the initial condition

28

x(t0):

ẋ1 = u1, ẋ2 = x3u1, · · · , ẋn−1 = xnu1 ẋn = u2, (4.1.1)

where x = [x1, · · · , xn]T ∈ �n is the state, u = [u1, u2]
T ∈ �2 is the control input.

System (4.1.1) can be partitioned into the following two subsystems:

ẋ1 = u1, (4.1.2)

and

ż = u1Az +Bu2, (4.1.3)

where z = [z1 z2 · · · zn−1]
T �

= [x2 x3 · · · xn]T , and

A
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As has been shown by (4.1.2) and (4.1.3), it is well recognized that the chained systems have

some good properties:

1. Subsystem (4.1.2) is linear, and u1 may be easily designed to stabilize x1.

2. Subsystem (4.1.3) is a linear time-varying system, whose time varying components only

exist in the matrix A. Specifically, it is a chain of integrators with weight u1.

29

3. System (4.1.1) is nonlinearly controllable everywhere because the Lie brackets argu-

ment on its vector fields has full rank.

Although chained systems have the above nice properties, it remains to be interesting re-

search subjects because of the following negative properties.

1. They are not linearly controllable around the origin.

2. Topologically, chained systems cannot be stabilized by any continuous feedback control

u = u(x) because of its nonlinear characteristics.

3. Chained systems are not globally feedback linearizable. Although local feedback in-

carnation is possible such as the σ-process, there is singularity manifold remains in the

neighborhood around the origin.

To overcome these difficulties, discontinuous switching control (resulted from local state

feedback linearization such as σ-process) and time-varying feedback control has been explored

in literature. In general, time-varying feedback controls are periodic and has slow asymptotic

convergence, while discontinuous controls can easily achieve an exponential convergence rate

at the cost of sacrificing its continuity. But are there continuous feedback controls that are

aperiodic and have exponential convergence rates? A straightforward thinking to answer this

question is to search for a global singularity free transformation that transforms the chained

systems into a controllable linear form, then to synthesize the controls in the transformed

domain.

30

4.2 Global State Scaling Transformation And Control Design Scheme

This section presents the feedback design of u1. A global state-scaling transformation is

proposed to overcome the singularity problem of existing transformations. This novel trans-

formation enables the designer to regain uniform controllability of the chained systems and

to design a class of smooth, time-varying, aperiodic, pure feedback controls that are inverse

optimal and have exponential stability.

4.2.1 Design of Control Component u1

Before presenting the design of u1, a set of memory functions is defined as:

Definition 8. For a time set:

T = [t0 t], t ≥ t0 ≥ 0,

a set of memory function is defined to be:

MF = {f : �n × � → �m|f(x(η), η), ∀η ∈ T ; n,m ∈ ℵ}.

From the definition, it is clear that the output of a memory function not only relates to

its current variables, but also relates to the history of its variables.

The proposed control for component u1(t) is:

u1(t) = −αx1 + g(z, t)e−βt, (4.2.1)

where α > β > 0. To be a pure state feedback and non-switching control, g(z, t) is required

to have the following two properties:

31

1. g(z, t) is smooth, uniformly bounded by c > g(z, t) ≥ g ≥ 0 for some constants

c > g ≥ 0.

2. In case of ‖z(t0)‖ = 0, there should be g = 0 and g(z, t) ≡ 0 for all t > t0, i.e. if

the subsystem (4.1.3) is initially at the origin, control u1 reduces to a regular negative

state feedback. In case of ‖z(t0)‖ �= 0, g(z, t) should monotone converge to c from g

and (c− g(z, t)) ∈ L2[t0 ∞).

Property 2 requires that if ‖z(t0)‖ = 0, then g(z, t) ≡ 0. However, in case of ‖z(t0)‖ �= 0,

there is limt→∞ ‖x(t)‖ = 0, which implies limt→∞ ‖z(t)‖ = 0, but now limt→∞ g(z, t) = c �= 0.

From this contradiction, one can conclude that if g(z, t) is to meet the requirements for both

cases, it can only be a memory function, i.e. g(z, t) ∈ MF . The second property also

implies that if x(t0) is in the singular manifold {x|x1 = 0, ‖z‖ �= 0}, then g(z, t) is able

to yield a nonzero number so that x1 and u1 will deviate from zero. Then the controlla-

bility of subsystem (4.1.3) can be recovered in the subsequent design through state scaling

transformations.

Remark 4.2.1. Though the first property sets c > g(z, t) ≥ g ≥ 0, the design scheme is also

valid if c < g(z, t) ≤ g ≤ 0, with g ≤ 0 to be some constant and corresponding changes are

made in property 2.

32

4.2.2 A Global State Transformation

For the subsystem (4.1.3), the following novel state scaling transformation is proposed: for

i = 1, · · · , n− 1,

ξi =

⎧⎪⎪⎨
⎪⎪⎩

0 if ‖z(t0)‖ = 0

zi

e−(n−1−i)βt if else

. (4.2.2)

In the case that ‖z(t0)‖ = 0, the ξ-system wouldn’t move. In the case that ‖z(t0)‖ �= 0, for

i = 1, · · · , n− 2, the new dynamic equations are:

ξ̇i =
żi

e−(n−1−i)βt
− −β(n− 1 − i)e−βt

e−(n−i)βt
zi

=
u1

e−βt
ξi+1 + β(n− 1 − i)ξi. (4.2.3)

For i = n− 1, since ξi = zi, it follows that:

ξ̇n−1 = u2. (4.2.4)

Combine (4.2.3) and (4.2.4) into a matrix form and put together with the case that

‖z(t0)‖ = 0, the following dynamic model in transformed space is established:

ξ̇ =

⎧⎪⎪⎨
⎪⎪⎩

0 if ‖z(t0)‖ = 0

F (z, t)ξ +Bu2 if else

, (4.2.5)

where

F (z, t) = diag{β(n− 2), β(n− 3), · · · , β, 0} + [g(z, t) − α
x1

e−βt
]A.

The uniform complete controllability of the transformed system {F (z, t), B} is established

in the following theorem.

33

Theorem 2. If g(z, t) has the properties given in section 4.2.1, then the transformed system

{F (z, t), B} is uniformly completely controllable.

Proof. Simple derivation shows that:

d

dt

x1(t)

e−βt
= −(α− β)

x1

e−βt
+ g(z, t).

Therefore, x1(t)
e−βt can be solved as:

x1(t)

e−βt
=
x1(t0)

e−βt0
e−(α−β)(t−t0) +

∫ t

t0

e−(α−β)(t−τ)g(z, τ)dτ. (4.2.6)

Since limt−>∞ g(z, t) = c, limt−>∞
x1(t)
e−βt = c

α−β
. therefore, we can obtain:

lim
t−>∞

[g(z, t) − α
x1

e−βt
] = lim

t−>∞
g(z, t) − α lim

t−>∞
x1

e−βt
= − cβ

α− β
.

It follows that the time-varying system {F (z, t), B} can be partitioned into a nominal

component and a time-varying component:

F (z, t) = F0 +
cβ

α− β
A+ [g(z, t) − α

x1

e−βt
]A = F0 + Ft(z, t),

where

F0 = diag{β(n− 2), · · · , β, 0} − cβ

α− β
A,

and

Ft(z, t) = [g(z, t) − α
x1

e−βt
+

cβ

α− β
]A. (4.2.7)

It is clear that the time-varying component Ft(z, t) vanishes, hence the transformed system

{F (z, t), B} converges to its nominal system {F0, B}. By the design properties of g(z, t),

there is c �= 0. Hence the pair {F0, B} is completely controllable, which implies the time-

varying system {F (z, t), B} is uniformly completely controllable.

34

4.2.3 Design of Control Component u2

Control component u2 is designed to be:

u2(t) = −R−1
2 BT P̂ (t)ξ, (4.2.8)

where P̂ (t) > 0 is symmetric, uniformly bounded, and satisfies the following matrix differ-

ential Riccati equation with P̂ (∞) > 0.

˙̂
P (t) + P̂ (t)F̂ (t) + F̂ T (t)P̂ (t) +Q2 − P̂ (t)BR−1

2 BT P̂ (t) = 0, (4.2.9)

where

F̂ (t) = F0 + [g +
βc

α− β
+ α(g − c)(t− t0)]e

−(α−β)(t−t0)A,

and Q2 ∈ �n−1×n−1, R2 ∈ � are constant and positive definite matrices. By a procedure

similar to theorem 2, the uniform complete controllability of the pair {F̂ (t), B} can be

verified, hence such a P̂ (t) can always be found.

Lemma 1. Let

F̂t(t) = [g +
βc

α− β
+ α(g − c)(t− t0)]e

−(α−β)(t−t0)A, (4.2.10)

then the norm of difference ‖Ft(z, t) − F̂t(t)‖ ∈ L2[t0 ∞).

Proof. It follows from (4.2.6) and (4.2.7) that:

Ft(z, t) = [g(z, t) − α
x1(t)

e−βt
+

cβ

α− β
]A

= {[g(z, t) − c] − γe−(α−β)(t−t0)

−α
∫ t

t0

e−(α−β)(t−τ)[g(z, τ) − c]dτ}A, (4.2.11)

35

where γ = α[x1(t0)

e−βt0
− cβ

α−β
]. In the above equation, by the design properties of g(z, t), (g(z, t)−

c) is L2, and the second term is also L2. For the third term, it can be treated as the input

response of an exponential stable, linear time-invariant dynamic system with a L2 input,

hence this term has to be L2 [27]. Therefore ‖Ft(z, t)‖ is L2. Moreover, from (4.2.10),

‖F̂t(t)‖ is L2. Since:

‖Ft(z, t) − F̂t(t)‖ ≤ ‖Ft(z, t)‖ + ‖F̂t(t)‖,

there must be ‖Ft(z, t) − F̂t(t)‖ ∈ L2[t0 ∞).

The convergence property of the closed-loop system (4.1.1) under control (4.2.1) and

(4.2.8) is presented in the following theorem.

Theorem 3. For any g(z, t) that has the properties presented in section 4.2.1, the control

(4.2.1) and (4.2.8) globally asymptotic stabilize the system (4.1.1) with exponential conver-

gence rates.

Proof. It is clear from (4.2.1) and (4.2.8) that if ‖z(t0)‖ = 0, then u2 ≡ 0 and u1 = −x1,

therefore system (4.1.1) is exponentially stabilized. Consider the case that ‖z(t0)‖ �= 0.

For subsystem (4.1.2), take the following Lyapunov function candidates V1(x1) = 1
2
x2

1, and

V2(ξ) = ξT P̂ (t)ξ. It follows that:

V̇ (x1) = x1ẋ1

= −αx2
1 + x1g(z, t)e

−βt

≤ −αx2
1 + ce−βt0 |x1|, (4.2.12)

(4.2.12) shows that x1 is uniformly ultimately bounded by the set

Ω
�
= {x1 : |x1| ≤

ce−βt0

α
}.

36

If x1(t0) ∈ Ω, x1(t) remains in Ω for t ≥ t0. If x1(t0) /∈ Ω, |x1| monotone decreases into Ω.

Therefore, a uniform bound for x1(t) is:

δ
�
= max{|x1(t0)|,

ce−βt0

α
}.

Then, (4.2.12) becomes

V̇1(x1) ≤ −2αV1 + δce−βt.

Hence subsystem (4.1.2) is globally exponentially attractive by lemma 2.19 of [55]. Therefore

subsystem (4.1.2) is asymptotic stable with exponential convergence. The closed loop system

of (4.2.5) is

ξ̇ = F (z, t)ξ −BR−1
2 BT P̂ (t)ξ

= [Fn − BR−1
2 BT P̂ (t) + Ft(z, t)]ξ

= [F̂ (t) − BR−1
2 BT P̂ (t) + Ft(z, t) − F̂t(t)]ξ,

where Ft(z, t) is defined in (4.2.7). It follows that:

V̇2(ξ) = ξT{ ˙̂
P (t) + [F̂ (t) − BR−1

2 BT P̂ (t) + Ft(z, t) − F̂t(t)]
T P̂ (t)

+P̂ (t)[F̂ (t) − BR−1
2 BT P̂ (t) + Ft(z, t) − F̂t(t)]}ξ

= ξT [
˙̂
P (t) + F̂ (t)T P̂ (t) + P̂ (t)F̂ (t) − 2P̂ (t)BR−1

2 BT P̂ (t) +N(z, t)]ξ

= −ξT [Q2 + P̂ (t)BR−1
2 BT P̂ (t) −N(z, t)]ξ

≤ [−c2
c3

+

∑n−1
i=1 |λi(N(z, t))|

c4
]V2, (4.2.13)

where λi(·) denotes the ith eigenvalue of a square matrix, c2, c3, c4 are constants that satisfy:

c1I > Q2 + P̂ (t)BR−1
2 BT P̂ (t) > c2I > 0, c3I > P̂ (t) > c4I > 0,

and

N(z, t) = [P̂ (t)(Ft(z, t) − F̂t(t)) + (Ft(z, t) − F̂t(t))
T P̂ (t)] ∈ �n−1×n−1. (4.2.14)

37

SinceQ2, R2 are constant matrices, hence P̂ (t) is uniformly bounded and constants c1, c2, c3, c4

can be found.

Note that,

|λi(N(z, t))| ≤ ‖N(z, t)‖ ≤ 2‖P̂ (t)‖‖Ft(z, t) − F̂t(t)‖.

Since P̂ (t) is uniformly bounded, and by lemma 1, ‖Ft(z, t) − F̂t(t)‖ ∈ L2[t0 ∞), both

‖N(z, t)‖ and |λi(N(z, t))| are L2. Then treating (4.2.13) as a scalar dynamic system, V2 is

exponentially stabilized by invoking Lemma 2.2 of [51] and comparison principle. It follows

that the ξ-systems is exponentially stabilized, which implies the z-system is exponentially

stabilized according to the transformation (4.2.2). After combining the results for subsystems

(4.1.2) and (4.1.3), it is concluded that the overall system has asymptotic stability with

exponential convergence rates. Since the argument is globally valid, the stability results is

global.

The control u2 in (4.2.8) shows that the underlying idea is that using the pure time

function F̂t(t) in (4.2.10) to approximate the time-varying component Ft(z, t) of F (z, t),

which is given in (4.2.11). The goal is to remove the state variable z from the system matrix,

hence the control u2 could be synthesized from the linear time-varying system {F̂ (t), B}.

This approximation assumes that g(z, t) converges to c exponentially, i.e.

g(z, t) − c ≈ (g − c)e−(α−β)(t−t0).

In this case, the model difference ‖Ft(z, t)− Ft(t)‖ is L2 by Lemma 1, which guarantees the

exponential stability.

38

Note that in limit, both F (z, t) and F̂ (t) reduce to their nominal system F0. Hence by

solving P > 0 from the following algebraic Riccati equation (ARE):

F T
0 P + PF0 +Q2 − PBR−1

2 BTP = 0,

the control

u′2(t) = −R−1
2 BTPξ (4.2.15)

is also a stabilizing control, since this case is equivalent to take F̂t(t) ≡ 0, and the model

difference is ‖Ft(z, t)‖, which by itself is L2 as shown in Lemma 1. In simulations, we

compared control effects for both u2 and u′2. It shows that the performance of u2 with F̂t(t)

in (4.2.10) is much better.

4.3 Optimal Performance

The following theorem indicates that the proposed control (4.2.1) and (4.2.8) is optimal with

respect to some quadratic performance index.

Theorem 4. For system (4.1.1), the feedback controls (4.2.1) and (4.2.8) are optimal with

respect to performance index J = J1 + J2, where

J1(t, u1(t)) =

∫ ∞

t

{
[
x1 y

]
Q1(t)

⎡
⎢⎣ x1

y

⎤
⎥⎦ + u2

1}dt

and

J2(t, u2(t)) =

∫ ∞

t

[ξT Q̂2(t)ξ + u2R2u2]dt,

39

where y = e−βt is the augmented state,

Q1(t) =

⎡
⎢⎣ α2 ġ − (α + β)g

ġ − (α + β)g 2kβ + g2

⎤
⎥⎦ ,

with k chosen to satisfy:

k > max{c
2

α
,
ġ2 + g2β(4α+ β) − 2gġ(β + 2α)

4α2β
,
ġ2 + g2β(2α+ β) − 2gġ(β + α)

2α2β
},

and Q̂2(t) = Q2 −N(z, t), with N(z, t) defined in (4.2.14).

Proof. By design properties of g(z, t), g is monotone and uniformly bounded, therefore g

must be uniformly continuous, hence ġ is uniformly bounded. Therefore, such a k can

always be found and by the specified choice of k, Q1(t) is positive definite.

Under control (4.2.1), the closed loop system of subsystem (4.1.2) is:

ẋ1 = u1 = −αx1 + g(z, t)y. (4.3.1)

We first show that

V ′
1(x1, y)

�
= αx2

1 − 2gx1y + ky2

is a Lyapunov function of the augmented system (4.3.1). It is straightforward that by the

specified choice of k, V ′
1 is positive definite. It follows that:

V̇ ′
1 = 2αx1ẋ1 + 2kyẏ − 2ġx1y − 2gẋ1y − 2gx1ẏ

= −2α2x2
1 − 2(kβ + g2)y2 + (4αg + 2gβ − 2ġ)x1y

= −
[
x1 y

]⎡
⎢⎣ 2α2 ġ − g(2α+ β)

ġ − g(2α+ β) 2kβ + 2g2

⎤
⎥⎦

⎡
⎢⎣ x1

y

⎤
⎥⎦ .

V̇ ′
1 is negative definite, hence V ′

1 is a Lyapunov function of the augmented system. To

show the optimality of u1 w.r.t. J1, substitute control u1 in (4.2.1) with an incremental

40

term Δu1 into J1, i.e. u1(t) = −αx1 + g(z, t)y + Δu1. Evaluate V̇ ′
1 along the system’s new

trajectory with the perturbed control, we have:

V̇ ′
1 = −

[
x1 y

] ⎡
⎢⎣ 2α2 ġ − g(2α+ β)

ġ − g(2α+ β) 2kβ + 2g2

⎤
⎥⎦

⎡
⎢⎣ x1

y

⎤
⎥⎦ + 2u1Δu1.

It follows that the performance index J1 for the perturbed system is:

J1 =

∫ ∞

t

{
[
x1 y

]
Q1(t)

⎡
⎢⎣ x1

y

⎤
⎥⎦ + (u1 + Δu1)

2}dt

=

∫ ∞

t

{
[
x1 y

]
Q1(t)

⎡
⎢⎣ x1

y

⎤
⎥⎦ + u2

1 + 2u1Δu1 + Δu2
1}dt

= −
∫ ∞

t

dV ′
1 +

∫ ∞

t

Δu2
1dt

= V ′
1(x1(t), y(t)) +

∫ ∞

t

Δu2
1dt,

which is minimized by Δu1 = 0, hence u1 is optimal with respect to J1.

For system (4.2.5), it is straightforward to verify that the following matrix differential

equation holds:

˙̂
P (t) + P̂ (t)F (z, t) + F (z, t)P̂ (t) + Q̂2(t) − P̂ (t)BR−1

2 BT P̂ (t) = 0. (4.3.2)

To show the optimality of system (4.2.5) with respect to J2, substituting u2 in (4.2.8) with

an incremental term Δu2 (that is, u2 = −R−1
2 BT P̂ ξ + Δu2) into J2, and evaluate V̇2 along

the new state trajectory and control:

V̇2 = −ξT [Q̂2(t) + P̂ (t)BR−1
2 BT P̂ (t)]ξ + 2ξT P̂ (t)BΔu2.

41

It follows that the performance index J2 for the perturbed system is:

J2 =

∫ ∞

t

[ξT Q̂2(t)ξ + ξT P̂ (t)BR−1
2 BT P̂ (t)ξ − 2ξT P̂ (t)BΔu2 + ΔuT

2R2Δu2]dt

= −
∫ ∞

t

dV2 +

∫ ∞

t

ΔuT
2R2Δu2dt

= V2(ξ(t)) +

∫ ∞

t

ΔuT
2R2Δu2dt.

Here, (4.3.2) is used. It is clear that J2 is minimized by Δu2 = 0. Note that Q2 is positive

definite and in theorem 3, we have shown ‖N(z, t)‖ is L2, therefore N(z, t) vanishes. Hence

in some cases, Q̂2(t) might need a finite period to be positive definite. But by the above

Lyapunov argument, the performance index J2 would be always positive. To this end, the

overall system has been shown to be optimal with respect to J .

4.4 Design Examples

In this section, examples of applying the proposed design scheme are provided. Examples of

nontrivial memory functions in MF include, for instance,

∫ t

t0

l(‖z(τ)‖)dτ, min
t0≤η≤t

l(‖z(η)‖), max
t0≤η≤t

l(‖z(η)‖),

where l(·) is a function. For example, we design g(z, t) to be:

g(z, t) =
t
∫ t

t0
‖z(τ)‖dτ

1 + t
∫ t

t0
‖z(τ)‖dτ

. (4.4.1)

According to theorem 3, to show the stability, one only needs to show that g(z, t) in (4.4.1)

has the three properties given in section 4.2.1.

It is straightforward to verify that the closed loop systems of (4.1.2) and (4.2.5) under

control (4.2.1) and (4.2.8) are globally Lipschitz. Therefore the solution x1 and ξ exists and

42

is unique, hence by transformation (4.2.2), solution z exists. For property 1, clearly g(z, t) is

differentiable everywhere for t ≥ t0 and uniformly bounded by g = 0 and c = 1. For property

2, if ‖z(t0)‖ = 0, then u2(t0) = 0. Subsystem (4.1.3) wouldn’t move, hence z(t) ≡ 0, which in

turn yields g(z, t) ≡ 0. In case of ‖z(t0)‖ �= 0, there is limt→∞ g(z(t), t) = c = 1. Moreover,

c− g(z, t) =
1

1 + t
∫ t

t0
‖z(τ)‖dτ

> 0.

It is clear that whether or not z is exponential convergent, (c− g(z, t)) ∈ L2[t0 ∞).

4.5 Simulations And Comparisons With Other Existing Controls

In the simulation, a 3rd order chained system is studied. g(z, t) in (4.4.1) is used. The design

parameters are set to be α = 1, β = 0.5 , Q2 = I and R2 = 1. To verify the effectiveness of

avoiding singularity, initial condition of the state is set to be x(t0) = [0 0 1]T .

The results in Fig. 4.1 verify that the proposed stabilizing control is successful. Fig.

4.1(a) and Fig. 4.1(c) illustrate the state and control for u′2 in (4.2.15). Fig. 4.1(b) and Fig.

4.1(d) illustrate the control effects for u2 in (4.2.8). Fig. 4.1(e) shows the model difference

for the two cases. Clearly, In both cases, despite of x1(t0) = 0, asymptotic stability and

exponential convergence rates are achieved and both states and controls are aperiodic. When

u′2 is used, F̂t(t) ≡ 0, the model difference is ‖Ft(z, t)‖, its transient is larger and converges

slower. Fig. 4.1(e) shows that by applying (4.2.10), the model difference ‖Ft(z, t) − F̂t(t)‖

is smaller, hence the transient response is improved.

43

For the same system with the same initial condition, simulations for discontinuous con-

trols [43], ordinary periodic time-varying feedback controls [54] and ρ-exponential stabilizer

[46] are also conducted. Fig. 4.2(a) and Fig. 4.2(b) show the state and control of the discon-

tinuous control. Fig. 4.2(c) shows the states for an ordinary periodic time-varying feedback

control and the ρ-exponential stabilizer. Fig. 4.2(d) shows the controls for an ordinary

periodic time-varying feedback control and the ρ-exponential stabilizer.

Fig. 4.2(a) and 4.2(b) illustrate the simulation results for the discontinuous control.

Fig. 4.2(b) shows that the controls are discontinuous when it is switched at time ts (in the

simulation, ts = 0.5). Therefore the state response is not smooth at ts as can be seen in

Fig. 4.2(a). From ts, linear control law were applied, system states and control converge to

origin exponentially. However, with the apriori determined ts, the transitory period and the

open-loop control remains important regardless of the closeness of the initial conditions to

the origin, therefore the closed-loop system is not Lyapunov stable and its performance is

not guaranteed.

In addition to the discontinuous control design, researchers also proposed various types

of smooth time-varying feedback control, either periodic or aperiodic. [54] has proposed the

following design of aperiodic time-varying control. E.g. for the system:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1,

44

[54] proposed the following control:⎧⎪⎪⎨
⎪⎪⎩

u1(t, x) = −x1 + x3 cos(t)

u2(t, x) = −x2 + x2
3 sin(t)

. (4.5.1)

Another time-varying, periodic feedback control is proposed in [69], which is based on power

form (1.3.2). The controller is given by⎧⎪⎪⎨
⎪⎪⎩

u1 = −ξ1 − (
∑n−2

j=1 ξ
2
j+2)(sin(t) − cos(t))

u2 = −ξ2 − (
∑n−2

j=1 cjxj+2) cos(jt)

.

Asymptotic stability of the closed-loop system for the control (4.5.1) can be illustrated

by the following Lyapunov function:

V (t, x) = (x1 −
x3

2
(cos(t) + sin(t)))2 + (x2

−x
2
3

2
(sin(t) − cos(t)))2 + x2

3.

Later on, to improve its convergence rate, [45] introduced so-called ρ-exponential stabilizer

using homogeneous feedback, i.e. the control changes to:⎧⎪⎪⎨
⎪⎪⎩

u1(t, x) = −x1 + λx3 cos(t)

u2(t, x) = −x2 + λ3x2
3 sin(t)

, (4.5.2)

where λ is obtained from

V (t,Δλx) = C, (4.5.3)

with Δλx = (λx1, λx2, λ2x3) and C is a constant.

The simulation results for these two controls are illustrated in Fig. 4.2(c) and Fig.

4.2(d). Fig. 4.2(c)(a) and Fig. 4.2(d) show that the convergent rate of both state response

45

and control of (4.5.1) is unfavorably slow, while the ρ-exponential stabilizer does much better

in Fig. 4.2(c) and Fig. 4.2(d). However its setting time (around 15 sec) is still much larger

than the proposed approach (around 9 sec) and has more oscillations before converging. One

drawback of ρ-exponential stabilizer is its performance is critically determined by the level

set value C in equation (4.5.3), however there is no systematic way to determine what C

should be except numerical tests.

On the other hand, design of aperiodic time-varying feedback control was explored in

[58] and [70]. [58] adopted a dynamic control,

u̇1 = −(k1 + ζ)u1 − k1ζx1, u1(t0) = cu‖x(t0)‖.

Based on the dynamic control, a virtual output was constructed

yd
Δ
=
k1x1 + u1

k1 − ζ
.

Using the property ẏd = −ζyd, yd is applied in state scaling. Noting that the solution of yd

is yd = ce−ζt, the undergoing transformation is similar to the proposed transformation.

In [70], subsystem (4.1.2) is augmented to:

ẋ0 = x1, ẋ1 = u1.

Let α be the greater eigenvalue and β be the smaller one of the augmented system, then

u1 = e−βtf(t), where

f(t) = β2αx0(0) + x1(0)

α− β
− α2βx0(0) + x1(0)

α− β
e−(α−β)t.

46

And z(t) = e−βt is used in the state scaling transformation. The advantages of these two

controls are that the state response and controls are all smooth, exponentially converging

fast (similar rate with the approach in this chapter) with no oscillations. However their

disadvantage is, as illustrated in the control equations, the successful control relies on proper

tuning of some controller parameters that related to the system’s initial conditions, hence is

not a pure feed-back control.

The characteristics of the aforementioned controls and our proposed control are summa-

rized in Table 4.1, and their differences are easily seen.

Table 4.1: Summary of Various Control Approaches

switching ordinary time-varying ρ-exponential our control

continuity discontinuous smooth smooth smooth

convergence exponential asymptotic exponential exponential

oscillation aperiodic periodic periodic aperiodic

stability region global global global global

4.6 Conclusion

In this chapter, feedback stabilization problem of chained nonholonomic systems is studied

by investigating its uniform controllability. It is illustrated that linear controllability does

not hold for stabilizing the chained system but can be reestablished by a state scaling trans-

formation. Based on this idea, we proposed a new design methodology and implemented one

particular control. The procedure is systematic and straightforward. The controls are inverse

47

optimal with respect to some quadratic performance index. By simulations and comparisons

with other existing controls, the proposed control is shown to be effective and exhibited

advantages in smoothness, convergent rates, oscillations, and being pure state feedback.

48

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
State Response of Original System

Time(sec)

S
ta

te
s

x
1

x
2

x
3

(a)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
State Response of Original System

Time(sec)

S
ta

te
s

x
1

x
2

x
3

(b)

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5
Time−Varying Pure Feedback Controls

Time(sec)

C
on

tr
ol

s

u1
u2’

(c)

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5
Time−Varying Pure Feedback Controls

Time(sec)

C
on

tr
ol

s

u1
u2

(d)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Model Difference

Time(sec)

D
iff

er
en

ce

MD for u
2
’

MD for u
2

(e)

Figure 4.1: Simulation Results of The Proposed Controls. (a),(c) State and Control with

u′2 in (4.2.15). (b),(d) State and Control with u2 in (4.2.8). (e) Model Difference for u′2 and

u2.

49

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3
State Response with Discontinuous Control

Time(sec)

S
ta

te
 R

es
po

ns
e

x
1

x
2

x
3

(a)

0 2 4 6 8 10
−5

0

5

10

15

20
Discontinuous Control of σ−Process

Time(sec)

C
on

tr
ol

s

u
1

u
2

(b)

0 10 20 30 40 50
−0.5

0

0.5

1

1.5
State Response of Time−Varying Periodic Control (a)

Time(sec)

S
ta

te
 R

es
po

ns
e

x
1

x
2

x
3

0 10 20 30 40 50
−1

0

1

2
State Response of Rho−Exponential Stabilizer (b)

Time(sec)

S
ta

te
 R

es
po

ns
e

x
1

x
2

x
3

(c)

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Time−Varying Periodic Control (a)

Time(sec)

C
on

tr
ol

s

u1
u2

0 10 20 30 40 50
−1

0

1

2
Control of Rho−Exponential Stabilizer (b)

Time(sec)

C
on

tr
ol

s

u1
u2

(d)

Figure 4.2: Control Effects for Various Other Control Designs. (a),(b) State and Control of

Discontinuous Control. (c),(d) States and Controls for The Ordinary Periodic Time-varying

Feedback Design and ρ-exponential Stabilizer.

50

CHAPTER 5
SATURATED CONTROL OF CHAINED NONHOLONOMIC

SYSTEMS

In past decades, plenty of effort has been devoted to the stabilization and tracking control

of chained systems [2, 43, 54, 45, 57, 58, 70, 79, 25, 42]. It is well known that the chained

form is a canonical form for many nonholonomic mechanical systems, hence control designs

based on chained systems ensure their wide applicability. Since chained systems do not satisfy

Brockett’s necessary condition [9], discontinuous or time-varying feedback controls have to be

sought for their stabilization. In the literature, a great deal of solutions have been obtained

following the lines of using discontinuous control method or time-varying control method

[30]. In general, discontinuous controls can render exponential stability [43, 42, 6, 24], while

time-varying controls lead to asymptotic stability [54, 69, 64]. More recent study has also

seen the results of ρ−exponential stability of chained system using time-varying periodic

feedback controls [45]. In [58, 70, 79], exponential convergence rates are also reported for

continuous time-varying aperiodic design.

Despite these extensive studies on feedback control design, the problem of stabilization

with input saturation effect is rarely addressed. In this section, we focus on designing

such a control with constrained inputs. When actuator saturation is applied to the inputs,

usually, there could be two types of treatments. One is to handle the saturation effect

implicitly (or a posteriori), through the so-called anti-windup strategies [19, 31, 16]. The

51

other treatment is to handle the saturation explicitly (or a priori), pursuing one of the

following two techniques. The first one is the saturation avoidance method which prevents

the saturation from taking place. Therefore the resulted controller always operates in the

linear region of saturation nonlinearities. The second approach is the saturation allowance

approach which allows the saturation to take place and take saturation effects into account

from the outset of control design. The existing designs for nonholonomic systems have been

following the second approach mentioned above. In [25], the saturated stabilization and

tracking controls are directly synthesized from a unicycle-type robot model by using passivity

theory and Lyapunov argument. However, the design was not generalized to nonholonomic

systems in the chained form. In [42], the authors proposed a discontinuous control design,

seeking to remedy the excessively large control inputs near the singular manifold resulting

from the σ-process [2]. The state space is decomposed into two separate ‘good’ or ‘bad’

regions. In the ’good’ region, the control inputs are typically small. In the ‘bad’ region, the

controller uses the so called linear-dominant function (L.D.F) to scale down the magnitude

of the control inputs while forcing the trajectories to get into the ‘good’ region. This section

proposes a novel switching control design. The chained system is divided into two subsystems

controlled by u1 and u2, respectively. The key idea is to make u1 piecewise constant, which

renders the other subsystem a chain of integrators. Then, the multiple-integrator system is

transformed into a linear system with an upper triangular system matrix and control u2 is

synthesized.

52

In this chapter, ‖x‖ denotes the Euclidean norm of a vector x, min{a, b} and max{a, b}

define the minimum and maximum of parameters a and b. The sign functions are defined

as:

sign(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x ≥ 0

−1 x < 0

.

The saturation functions are defined as satφ(x) = sign(x) min{|x|, φ}, where φ is the satura-

tion bound. Moreover, sat1(x) is written as sat(x) for short.

5.1 Problem Formulation

The objective of this chapter is to present a control design strategy which globally stabi-

lizes the chained nonholonomic system under saturation conditions. Consider the nth order

chained system (4.1.1) which is subject to the following saturation constraint:

− δi ≤ ui ≤ δi, i = 1, 2, δi > 0. (5.1.1)

The control design follows the second aforementioned approach, i.e. the saturation effect is

taken into consideration at the design phase. Clearly, subsystem (4.1.2) only contains x1 and

is independent of the rest of the states. It can be easily stabilized with or without saturation.

Subsystem (4.1.3) is a linear time-varying (LTV) system, which is very structurally similar

to a multiple-integrator system, except that it is weighted by one of the control inputs.

Naturally, one would think of manipulating u1 to gain advantages in controlling subsystem

(4.1.3). A straightforward way is to create a piecewise constant u1 that meets the saturation

condition as well as stabilize the subsystem (4.1.2). Then subsystem (4.1.3) becomes a

53

constant-weighted multiple-integrator systems whose saturation control is studied in [68, 67,

44, 81].

5.2 The Saturated Control Design

Before proceeding with the control design, we first study the saturated control of a scalar

system from [81].

Lemma 2. Consider the following scalar system:

ζ̇ = u, u = −ε satδ(
λζ

ε
) + ρ(t), t ≥ t0,

where ρ(t) : [t0, ∞) → � is uniformly bounded, and εδ > |ρ(t)|, t ≥ t0, then there exists

constant T > t0 such that for ∀t > T , |ζ | ≤ ε
λ
δ holds. Moreover, the input u can be simplified

as u = −λζ + ρ(t).

Proof. Choose the Lyapunov function V (ζ) = 1
2
ζ2. It follows that:

V̇ (ζ) = ζζ̇ = ζ [−ε satδ(
λζ

ε
) + ρ(t)].

Since εδ > |ρ(t)|, if |ζ | > ε
λ
δ, it follows that:

sign(−ε satδ(
λζ

ε
) + ρ(t)) = −sign(x),

which implies that V̇ < 0. Consequently, |ζ | is uniformly bounded by ε
λ
δ, in which there is

no saturation and u is simplified.

The result of the above scalar system can be extended to the following vector case:

54

Theorem 5. Let λi, i = 1, · · · , n be a series of positive constants. Consider the follow

linear system with input constraint −umax ≤ u ≤ umax with umax > 0:

ξ̇ = Anξ + bnun, (5.2.1)

where ξ = [ξ1 ξ2 · · · ξn] and

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 λ2 · · · λn−1 λn

0 0
. . .

...
...

...
... · · · λn−1 λn

0 0 · · · 0 λn

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

...

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The nonlinear control:

un = −
n∑

i=1

εi sat(
λiξi
εi

), (5.2.2)

where εi satisfies: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε1 > 0

εj >
∑j−1

i=1 εi, j = 2, 3, · · · , n.∑n
i=1 εi ≤ umax

(5.2.3)

is a globally stabilizing control that satisfies the input constraint. Furthermore, the closed

loop system will operate in a linear region in finite time with eigenvalues −λi, i = 1, · · · , n.

Proof. It follows that:

|un| ≤
n∑

i=1

εi ≤ umax,

Therefore the saturation condition holds. un can be rewritten as:

un = −εn sat(
λnξn
εn

) −
n−1∑
i=1

εi sat(
λiξi
εi

).

If we look at the last state ξn, by applying Lemma 2, we know that ξn will enter a linear

region |ξn| ≤ εn

λn
, The same happens to the other n−1 states one by one from ξn−1 to ξ1, with

55

the linear region |ξi| ≤ εi

λi
, i = 1, · · · , n − 1. After all states get into their linear regions,

the closed loop system matrix becomes:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 0 · · · 0

...
. . .

. . .
...

−λ1
. . . −λn−1 0

−λ1 −λ2 · · · −λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

which is stable and the eigenvalues are: −λi, i = 1, · · · , n.

The following corollary can be obtained from Theorem 5.

Corollary 1. Once control (5.2.2) gets into its linear operate region, its saturation elements

will not be saturated again, i.e. the control becomes a linear control law afterward.

Proof. It can be deduced from (5.2.2) that the linear operate region can be explicitly given

by the following set:

Ω = {ξ : |ξ1| ≤
ε1
λ1
, |ξ2| ≤

ε2
λ2
, · · · , |ξn| ≤

εn
λn

}.

Suppose at certain moment, control (5.2.2) is in its linear region Ω, then it can be rewritten

as:

un = −λnξn + un−1.

Consider the last state equation:

ξ̇n = un = −λnξn + un−1.

Take the Lyapunov function candidate Vn = 1
2
ξ2
n. It follows that:

V̇n = ξnξ̇n

= −λnξ
2
n + ξnun−1

≤ −λn|ξn|2 + |ξn||un−1|

≤ −λn|ξn|2 + |ξn|εn.

56

It shows that ξn is ultimately bounded by |ξn| ≤ εn

λn
. Consider the second to last state

equation:

ξ̇n−1 = λnξn + un = −λn−1ξn−1 + un−2.

Take the Lyapunov function candidate Vn−1 = 1
2
ξ2
n−1. A similar process would show that

ξn−1 is ultimately bounded by |ξn−1| ≤ εn−1

λn−1
. Repeating the same process for the state

ξ1, ξ2, · · · , ξn−2, one would have:

|ξi| ≤
εi
λi
, i = 1, 2, · · · , n− 2.

It shows that the state ξ is confined in the same set of Ω, which indicates that once the state

gets into Ω, it cannot leave Ω, where control (5.2.2) is linear.

5.2.1 The Control Design u1 and u2

For the chained system (4.1.1), we propose the following control of u1:

u1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−sign(x1(t0))kδ1, t0 ≤ t ≤ t1

−sign(x1(t1))kδ1, t1 < t ≤ t2

0, t > t2

, (5.2.4)

where 0 < k ≤ 1 is the control gain, t1 is the moment when the control of subsystem (4.1.3),

i.e. u2, starts working in its linear region, which satisfies either of the following two sets of

conditions: ⎧⎪⎪⎨
⎪⎪⎩

t0 ≤ t1 ≤ td, w(t1) ∈ Ω1, x1(t1) ≥ d

t1 > td, w′(t1) ∈ Ω2, x1(t1) ≤ −d
, (5.2.5)

57

where td, d, w, w′, Ω1, Ω2 will be defined later, and t2 is the time when the control goal is

considered to be accomplished and it can be quantified as:

t2 = t1 +
|x1(t1)|
kδ1

.

The control design of u2 for the case of x1(t0) ≥ 0 is to be discussed and stability results

will be proved. For the case of x1(t0) < 0, one can always make it positive by redefining the

following coordinate system x′i(t) = (−1)ixi(t), i = 1, 2, · · · , n, resulting in a new chained

system. Under this condition, control u2 is proposed to be:

u2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑n−1

i=1 εi sat(kδ1wi

εi
), t0 ≤ t ≤ t1

−
∑n−1

i=1 εi sat(kδ1wi

εi
), t1 < t ≤ t2, t1 ≤ td

−
∑n−1

i=1 εi sat(
kδ1w′

i

εi
), t1 < t ≤ t2, t1 > td

0, t > t2

, (5.2.6)

where

wn−1−i =

i∑
j=0

⎛
⎜⎜⎝ i

j

⎞
⎟⎟⎠ yn−1−j, i = 0, 1, · · · , n− 2, (5.2.7)

with yj = (−1)n−1−jzj , j = 1, 2, · · · , n− 1, and

w′
n−1−i =

i∑
j=0

⎛
⎜⎜⎝ i

j

⎞
⎟⎟⎠ zn−1−j , i = 0, 1, · · · , n− 2. (5.2.8)

Also, εi satisfies condition (5.2.3) with i = 1, 2, · · · , n − 1 and umax = δ2. The definition of

td is illustrated in the following figures.

In Fig. 5.1, a buffer zone −d ≤ x1 ≤ d is created, with d > 0 as a design parameter. The

purpose of creating this buffer zone is to ensure a sufficient amount of time so that subsystem

58

(a) (b)

Figure 5.1: Two Cases of Controls: (a), t1 ≤ td; (b), t1 > td.

(4.1.3) can maneuver after u2 and gets into its linear region. Because in the linear region,

subsystem (4.1.3) converges with fixed eigenvalues. td is defined to be the time when x1 first

gets into the buffer zone, and it is quantified by:

td =

⎧⎪⎪⎨
⎪⎪⎩

x1(t0)−d
kδ1

, x1(t0) > d

0, 0 ≤ x1(t0) ≤ d

.

t1 is determined by the following process. Define two sets:

Ω1 = {w : |w1| ≤
ε1
kδ1

, |w2| ≤
ε2
kδ1

, · · · , |wn−1| ≤
εn−1

kδ1
},

and

Ω2 = {w′ : |w′
1| ≤

ε1
kδ1

, |w′
2| ≤

ε2
kδ1

, · · · , |w′
n−1| ≤

εn−1

kδ1
}.

t1 is defined to be the earliest time when either condition of (5.2.5) is met. If the first

condition of (5.2.5) is satisfied, then the second condition is ignored. Otherwise, continue

to apply the control (4.2.1) and (4.2.8) until the second set of conditions of (5.2.5) are met.

59

The existence of a finite t1 will be proved in Theorem 7. Note that if the initial condition is

0 ≤ x1(t0) < d, then the first condition of (5.2.5) is not possible to be meet. The asymptotic

stability of the proposed control is proved in the following theorem.

Theorem 6. Control (4.2.1) and (4.2.8) are asymptotic stable controls for the chained sys-

tem (4.1.1) while satisfying the bound condition (5.1.1).

Proof. Consider subsystem (4.1.2), since 0 < k ≤ 1, obviously u1 satisfies |u1| ≤ δ1. More-

over, no matter where x1(t1) is,

x1(t2) = x1(t1) + u1 × (t2 − t1)

= x1(t1) − sign(x1(t1))kδ1 ×
|x1(t1)|
kδ1

= 0.

Under the choice of u1 in (4.2.1), subsystem (4.1.3) becomes a chain of constant weighted

integrators: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = −kδ1z2

ż2 = −kδ1z3
...

żn−2 = −kδ1zn−1

żn−1 = u2

.

Or it can be expressed as y-system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = kδ1y2

ẏ2 = kδ1y3

...

ẏn−2 = kδ1yn−1

ẏn−1 = u2

. (5.2.9)

60

For the y-system, by the transformation (5.2.7), the resulted system is:

ẇ = Ayw +Byu2, (5.2.10)

where

Ay =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 kδ1 · · · kδ1
...

. . .
. . .

...

0 · · · 0 kδ1

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, By =

⎡
⎢⎢⎢⎢⎣

1

...

1

⎤
⎥⎥⎥⎥⎦ .

By Theorem 5, u2 for t ∈ [t0 t1] is a stabilizing control for system (5.2.10), which satisfies

|u2| ≤ δ2. Therefore limt→∞ w(t) → 0. If w(t1) ∈ Ω1 for some t1 ∈ [t0 td], it indicates that u2

reaches its linear region before x1(t) gets into the buffer zone, and remains linear thereafter

by Corollary 1. Since the linear system is converging with fixed eigenvalues, by choosing a

relatively large d would ensure subsystem (2) to be stabilized. If w(t) /∈ Ω1 for all t ∈ [t0 td],

this means t1 > td. Then the current controls are kept until x1(t1) ≤ −d and w′(t1) ∈ Ω2.

In this case, control u1 and subsystem (4.1.3) for t1 < t ≤ t2 becomes:

u1 = kδ1, (5.2.11)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = kδ1z2

ż2 = kδ1z3
...

żn−2 = kδ1zn−1

żn−1 = u2

. (5.2.12)

By transformation (5.2.8), subsystem (4.1.3) becomes:

ẇ′ = Ayw
′ +Byu2, (5.2.13)

61

By Theorem 5, control u2 is a stabilizing control and since w′(t1) ∈ Ω2, the control is linear

for t ≥ t1. The choice of d will guarantee the closeness to the origin at t2.

Theorem 7. A finite t1 always exists for the control (4.2.1) and (4.2.8) that satisfies the

condition (5.2.5).

Proof. It is obtained that:

x1(t1) = x1(t0) − kδ1 × (t1 − t0)

= x1(t0) + kδ1 × t0 − kδ1 × t1

Under control (4.2.8), suppose there is no limitation of t1, then limt→∞ ‖w(t)‖ → 0, hence

there is a finite t1 such that w(t1) ∈ Ω1. If this t1 satisfies t0 ≤ t1 ≤ td, then the first set of

conditions of (5.2.5) are satisfied. Otherwise, The condition for x1(t1) ≤ −d is:

t1 ≥ t′d
�
= t0 +

x1(t0) + d

kδ1
.

Since limt→∞ ‖w(t)‖ → 0, therefore limt→∞ ‖z(t)‖ → 0. By transformation (5.2.8), limt→∞ ‖w′(t)‖ →

0, hence there exists a finite time t′w such that w′(t′w) ∈ Ω2. Then t1 can be chosen as:

t1 = max{t′d, t′w}.

5.2.2 Choice of k and d

In order to meet the saturation condition, the design parameter k is restricted by 0 < k ≤ 1.

Intuitively, k should be chosen large. Because with a larger k, the connections among the

states of subsystem (4.1.3) are stronger and the magnitude of control u2 tends to be larger

(within the saturation bound). This contributes to a faster convergence rate before the

controller reaches the linear region. Moreover, in the linear operation region Ω1 and Ω2, the

62

closed loop system of subsystem (4.1.3) in transformed space becomes:

ẇ = Acw, (5.2.14)

where

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kδ1 0 · · · 0

...
. . .

. . .
...

−kδ1
. . . −kδ1 0

−kδ1 −kδ1 · · · −kδ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It shows that −kδ1 is the (n−1)th order eigenvalue, k also decides the convergence rate when

the controls work in the linear operation regions. So, where convergence speed is concerned,

k needs to be chosen as large as possible, i.e. k = 1.

For the choice of d, notice that when |x1| ≤ d, the w or w′-system must be in its linear

region. The primary concern is d should be large enough that when x1 reaches 0, w (or w′) is

small. It follows from (5.2.14) that the Laplace transformation of the state transition matrix

is:

L(eAct) = (sI − Ac)
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s+kδ1

0 · · · 0 0

−kδ1
(s+kδ1)2

1
s+kδ1

· · · 0 0

...
. . .

. . .
...

...

−kδ1sn−4

(s+kδ1)n−2

. . .
. . . 1

s+kδ1
0

−kδ1sn−3

(s+kδ1)n−1
−kδ1sn−4

(s+kδ1)n−2 · · · −kδ1
(s+kδ1)2

1
s+kδ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

63

Therefore,

eAct =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−kδ1t 0 · · · 0 0

−kδ1te−kδ1t e−kδ1t · · · 0 0

...
. . .

. . .
...

...

∑n−2
i=2 (−1)i−1 (kδ1t)i−1

(i−1)!
e−kδ1t . . .

. . . e−kδ1t 0

∑n−1
i=2 (−1)i−1 (kδ1t)i−1

(i−1)!
e−kδ1t

∑n−2
i=2 (−1)i−1 (kδ1t)i−1

(i−1)!
e−kδ1t · · · −kδ1te−kδ1t e−kδ1t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the information of k and δ1, one can solve for the time Tm that is needed for maneu-

vering in the linear region. Then d is obtained by d ≥ kδ1Tm. For example, with the choice

k = 1 and the saturation bound δ1 = δ2 = 1, the state transition matrix for a chained system

with n = 3 is:

eAct =

⎡
⎢⎢⎣ e−t 0

−te−t e−t

⎤
⎥⎥⎦ .

If one chooses Tm = 4 or Tm = 5, the final state is around 7% or 3% of its value when the

state entered in the linear operation region Ω1 and Ω2.

5.3 Simulations

In this section, simulation results for the proposed control are presented. The simulation is

conducted on a chained system with n = 3. The saturation limit is chosen to be δ1 = δ2 = 1,

the gain parameter for u1 is k = 1 and d is set to be d = 4 as discussed in Section 5.2.2.

Satisfying the condition (5.2.3), ε1 and ε2 are chosen to be ε1 = 0.499 and ε2 = 0.5. To

illustrate the two types of control actions, two sets of initial conditions are selected in the

64

simulation. The results for both cases show that the proposed control is successful under

the saturation condition.

In the first case, the initial condition is set to be x(t0) = [12 5 3]. Then, it can be obtained

that td = 8. By running the simulation, it is obtained that t1 = 6.2146 and t2 = 12. The

simulation results for this case are shown in Fig. 5.2. Fig. 5.2(a) shows the state response,

since t1 < td, subsystem (4.1.3) reaches the linear region Ω1 before x1 gets into the buffer

zone [−d d]. Therefore, the controller knows the time for maneuvering subsystem (4.1.3) is

sufficient. Hence when x1 reaches 0, the controls stop.

0 5 10 15 20 25 30

−4

−2

0

2

4

6

8

10

12
State Response

t (sec)

x

x1
x2
x3

d

−d

t
d

(a)

0 5 10 15 20 25 30

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Controls

t (sec)

u
u1
u2

(b)

Figure 5.2: State and Controls for The Case t1 ≤ td. (a), State; (b), Control.

In the second case, the initial condition is set to be x(t0) = [6 5 3]. Therefore td = 2. It

is obtained from the simulation that t1 = 10.0012 and t2 = 14.0024. The simulation results

for this case are shown in Fig. 5.3. Fig. 5.3(a) shows the state response, since t1 > td,

subsystem (4.1.3) reaches the linear region Ω1 later than x1 gets into the buffer zone [−d d].

65

Therefore, the controller thinks the time for maneuvering subsystem (4.1.3) is not sufficient.

Hence it steers x1 cross 0 until w′ gets into the linear region Ω2 then steers x1 back to 0.

0 5 10 15 20 25 30

−4

−2

0

2

4

6

8

10

12
State Response

t (sec)

x

x1
x2
x3

d

−d

t
d

(a)

0 5 10 15 20 25 30

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Controls

t (sec)

u

u1
u2

(b)

Figure 5.3: State and Control for The Case t1 > td. (a), State; (b), Control.

Remark 5.3.1. The controls proposed in (4.2.1) and (4.2.8) can be roughly verified by

the daily experience of parking a car. A car is a 4th order nonholonomic system. x1 is the

displacement from the parking position and u1 relates to its linear velocity. Subsystem (4.1.3)

is its orientation and u2 is its angular control. When the car’s initial position is far away

from the parking position, one usually can drive directly to the parking position. The car’s

body angle can be aligned without difficulties and no more maneuvers are needed. However,

when the car’s initial position is close to the parking position, it might not be feasible to get

to the parking position while aligning the car’s body angle at the same time. Therefore a

straightforward solution would be to slightly get beyond the parking position for aligning the

body angle and then back into the parking position.

66

5.4 Conclusion

In this chapter, we studied the feedback stabilization problem of chained nonholonomic

systems with input constraints, and a switching control design scheme is proposed. The

essential idea is that by making u1 to be piece-wise constant, subsystem (4.1.3) becomes

multiple integrators that have a constant weight u1. Then, a state transformation is applied

to convert the multiple-integrator system into a linear system with an upper triangular

system matrix, based on which the saturated control is obtained. Simulation study shows

the effectiveness of the proposed control.

67

CHAPTER 6
OPTIMAL REAL-TIME COLLISION-FREE MOTION
PLANNING FOR NONHOLONOMIC AUVS IN A 3D

UNDERWATER SPACE

This chapter presents one approach to designing an optimal real-time collision-free trajec-

tory for autonomous underwater vehicles (AUVs) that move in a 3D unknown underwater

space. By explicitly considering the kinematic model of AUVs, a class of feasible trajectories

is derived in a closed form, and is expressed in terms of two adjustable parameters for the

purpose of collision avoidance. Then, a collision avoidance criteria is derived to determine

a class of collision-free trajectories. Finally, a performance index is established to find an

optimal trajectory from the class. All the steps can be implemented in real-time. The ad-

vantages of the proposed approach are: 1) The 3D motion planning problem is reduced to

a 2D problem. Instead of directly searching in a 3D space, one only needs to determine

two parameters in their plane. Therefore, computational efforts are greatly reduced, which

is suitable for real-time implementation; 2) The vehicle’s kinematic model is explicitly con-

sidered, and all boundary conditions are met. After the parameters are determined, the

trajectory and controls are explicitly solved in closed forms.

The study of unmanned, untethered, free-swimming autonomous vehicles has been an

active research topic in recent years due to their wide practical applications, such as ocean

observations, deep-sea rescue, mineral and oil exploration, bathymetric surveys, sunken ship

salvage, protection and cultivation of fishery resources [50, 1, 80, 13, 4, 71].

68

In many practical applications, it is desirable that the vehicles are able to explore within

an uncertain environment, as complete environmental information cannot be assumed a

priori. Under this background, the motion planning is of key importance for vehicles to suc-

cessfully carry out various missions. The goal of motion planning is to generate the desired

trajectory to be fed into the motion control system so that the vehicle executes or tracks

the desired trajectory. Fig. 6.1 illustrates how this functionality can be implemented for an

AUV. The higher level mission management module usually supplies waypoint information

to the motion planner remotely or pre-stores it into the onboard system. The motion planner

retrieves the waypoints, generates a desired trajectory, which includes the desired position

profile Xd and velocity profile Vd. Xd and Vd, is fed into the kinematic controller to obtain

a reference velocity Vr, then the torque-level tracking control can be designed through back-

stepping techniques [71, 60]. In this chapter, we will focus on designing an optimal, real-time,

Motion Planner
(Trajectory
Generator)

Kinematic
tracking

controller

Kinematic
Model

Higher Level
Mission

Management

Waypoints

Xd

X

X+

-

Dynamic/
Torque level

control

Dynamic
Model

Vd

Vr V

V

Figure 6.1: A Control Block Diagram for An Underwater Vehicle

and collision-free motion planner for AUVs that operate in an unknown underwater space.

69

The popular methods for motion planning include reactive approach, trajectory param-

eterizations and exhaustive search.

1. The reactive approach was pioneered in [28], its basic idea is to assign potential fields

to obstacles to expel the trajectory away from obstacles and bring the trajectory to

the final destination. To illustrate this idea, consider the repulsive potential field:

U(r) =
1

r2
.

The attractive potential field is defined as:

U(r′) = r′2,

where r, r′ are the corresponding distances to the obstacle and goal. A robot is to reach

its goal along the gradient direction of its overall potential, that is,

U(r, r′) = U(r) + U(r′) =
1

r2
+ r′2.

This scalar field has local minimums close to the goal point. If the robot approaches the

minima, it will become stuck. When multiple obstacles are injected into the scenario,

the potential becomes more complicated. Follow-up work can be found in [13, 4, 73,

20, 33, 74, 11]. These results only address the 2D problem. While 3D planning can be

similarly done, it requires much more computation efforts. Also, the reactive approach

generally suffers from local minima.

2. The parametric methods includes [26, 56, 75, 76]. In [26], a set of splines are adopted

to form a path through a sequence of waypoints. However, prior information of the

70

waypoints might not be available because the environment could be unknown. More-

over, the kinematic constraints of the robots are not taken into consideration in the

splines. Therefore, a trajectory may not be applicable for a specific robot. A common

cubic spline method, each section of the path could be described by the parametric

equations:

x(u) = axu
3 + bxu

2 + cxu+ dx

y(u) = ayu
3 + byu

2 + cyu+ dy,

where u ∈ [0 1]. This type of parameterization concentrates on the smooth property

at the connection of various segments, rather than the kinematic constraints of the

robot. The trajectory obtained by this method in this situation may not be feasible for

specific types of robots. In [56], trajectories are parameterized by polynomials, then the

coefficients are determined by fitting the kinematic model and boundary conditions.

In [75], an optimal solution of [56] is discussed. Also, only 2D cases are addressed in

[26, 56, 75].

3. In search based methods, A* (proposed in [53]) utilizes a heuristic function to guide the

search direction to the goal, thus making it more efficient than the Dijkstra algorithm

and guarantees an optimal path from the starting position to the ending position

can be found, if one exists. However it requires the complete map information. To

handle the dynamic environments, it needs a complete recalculation every time the

map information is updated, causing it inefficient. A typical heuristic index used in

71

A* is:

f(n) = h(n) + g(n),

where f(n) is the overall cost for a node, h(n) is the cost already spent from the

initial node to the current node, and g(n) is the estimated cost from the current node

to the end node. Generally g(n) can be taken as the Euclidean distance between

the current and end nodes. One improvement of the A* approach is found as D*

(presented in [65] and [66]). The D* searching algorithm does not require the complete

map information. It starts with an apriori map and at each time the map data is

updated, it invokes a localized A* search to make incremental changes to the path.

Its performance is compromised relative to the performance of the A* search. Both

searching algorithms require much computational resources and do not take kinematic

models into consideration.

By acknowledging the limitations of the existing techniques, we can improve on these

methods by leveraging this information and creating a motion planning approach for an

AUV in a 3D space. The trajectories are parameterized by polynomials. By allowing two

parameters to be adjustable, the 3D problem is reduced to a 2D problem. The vehicle’s

kinematic model is explicitly taken into consideration and controls can be solved analytically,

which are suitable for real-time implementation. Moreover, as long as collision does not occur

at the boundary conditions the collision avoidance condition is always solvable.

72

6.1 Problem Formulation

A torpedo-shaped AUV model is shown in Fig. 6.2. Two reference frames are set up, one

is the world frame O − XY Z, the other is a body frame c − xyz which is attached to the

center of gravity (CG) of the AUV with x axis along the longitudinal direction and z axis

pointing along OZ direction. Both frames follow the right-hand rule.

Figure 6.2: One AUV Model

6.1.1 The Kinematic Model

In the inertial frame, the configuration vector q = (x, y, z, φ, θ, ψ) is used to specify the

position and orientation of the AUV where (x, y, z) is the vehicle’s CG and (ψ, θ, φ) are the

Z−Y −X Euler angles, with ψ as the yaw, θ as the pitch, and φ as the roll. The kinematic

model is given by the following two equations:

73

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v cos θ cosψ

v cos θ sinψ

−v sin θ

⎤
⎥⎥⎥⎥⎥⎥⎦
, (6.1.1)

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 sinφ tan θ cosφ tan θ

0 cosφ − sin φ

0 sin φ sec θ cosφ sec θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎦
, (6.1.2)

where θ �= ±π
2

+ hπ, h = 0, 1, · · · . v is the longitudinal velocity, ωx, ωy and ωz are angular

velocities around the body’s three fixed axises. The motion planning is based on the kine-

matic model (6.1.1) and (6.1.2), v, ωx, ωy, and ωz are considered to be the kinematic level

reference controls which are explicitly solved in equations (6.2.4) and (6.2.5).

6.1.2 The Trajectory Planning Problem

Fig. 6.3 shows a 3D underwater space with depth d. One AUV is moving from its initial

condition q0 = (x0, y0, z0, φ0, θ0, ψ0) at time t0 with speed v0 to the terminal condition

qf = (xf , yf , zf , φf , θf , ψf) at time tf with speed vf . In general, the geometrical model of

the AUV can be any shape that can be analytically described or a composite of multiple such

shapes. For simplicity of derivation, we consider it to be the smallest sphere that contains

the AUV. The center of the sphere is at its CG, and the radius is r0. In fact, the size

of the vehicles can be taken into obstacles, by modeling the obstacles to be a little“larger”.

74

Therefore, one only needs the vehicle’s CG position and the obstacles’ positions to determine

whether there will be collisions. The effective range of the onboard sensor is also modeled as

a sphere centered at the CG with radius Rs. The trajectory planning problem is to search for

a collision-free trajectory that satisfies the vehicle’s boundary conditions and its kinematic

model. The following assumptions are made to ensure the solvability and to simplify the

technical development.

Figure 6.3: AUV Moving in an Unknown Environment

Assumption 1. All obstacles have convex shapes.

Assumption 2. Boundary points do not locate inside any obstacle.

Assumption 3. xf > x0, −π
2
< ψ0, ψf <

π
2
, and the pitch angle is maintained in −π

2
+ρ <

θ < π
2
− ρ with 0 < ρ << 1.

75

Assumption 1 is needed because if an obstacle is concave, and a point locates close to

its concave area, it would be equivalent that this point is inside a convex object which is

adopted to model this concave obstacle. Assumption 2 ensures the solvability of collision

avoidance conditions, which will be discussed in Section 6.2.4. In Assumption 3, xf > x0,

−π
2
< ψ0, ψf <

π
2

can always be satisfied by inserting middle points and/or defining new

coordinate systems. −π
2
< θ < π

2
is needed to avoid the representation singularity in (6.1.2),

it is reasonable because it is very rare that an AUV would have its pitch angle exceed ±π
2
.

In underwater environments, an obstacle could be a hill growing from the seabed. It can

be modeled by an elliptical paraboloid. In the inertial frame, the equation is:

z − zp =
(x− xp)

2

m2
+

(y − yp)
2

n2

where (xp, yp, zp) is the peak position and m, n are parameters that could be modified to

change its size. Define:

s(x, y, z) =
(x− xp)

2

m2
+

(y − yp)
2

n2
− (z − zp).

Obviously, s(x, y, z) > 0 indicates that the point (x, y, z) locates outside an obstacle, while

s(x, y, z) ≤ 0 implies it locates inside or on the surface of an obstacle. Hence, a collision

avoidance criterion could be:

s(x, y, z) > 0. (6.1.3)

Suppose the vehicle’s trajectory can be parameterized as q = q(t,w), where w is a deci-

sion vector that can be chosen. Moreover, a performance index J(q, q̇) can be established.

It could be a measure of the length of the trajectory or the energy cost to maneuver on

76

the trajectory, etc. Therefore, the trajectory planning problem is finally formulated as the

following optimization problem:

min
w

J(q, q̇)

s.t. q(t0) = q0, q(tf) = qf

s(x, y, z) > 0, ∀t ∈ [t0 tf]

M(q, q̇) = 0

,

where M(q, q̇) denotes the vehicle’s kinematic model.

6.2 Real-Time Trajectory Planning For AUVs

In this section, the real-time trajectory planning problem is solved in three steps. In Section

6.2.1, trajectory planning is considered without obstacles. In Section 6.2.2, the parameteri-

zation is made piecewise and a condition to avoid the obstacles is developed. Section 6.2.3

gives an optimal solution to the parameters and Section 6.2.4 discusses the solution and

solvability.

77

6.2.1 Trajectory Planning without Obstacles

The kinematic model given by equation (6.1.1) and (6.1.2) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v cos θ cosψ

ẏ = v cos θ sinψ

ż = −v sin θ

φ̇ = ωx + ψ̇ sin θ

θ̇ = ωy cosφ− ωz sinφ

ψ̇ = ωy sinφ sec θ + ωz cosφ sec θ

. (6.2.1)

From boundary conditions, the following quantities can be determined: x(t0), ẋ(t0),

x(tf), ẋ(tf), y(t0),
dy
dx
|t0 , y(tf), dy

dx
|tf , z(t0), ż(t0), z(tf), ż(tf), i.e. there are 4 boundary

conditions available for each of x, y, and z. Hence, when polynomial parameterization is

used, each polynomial at least needs 4 free coefficients (3rd order). If a higher order is chosen,

redundant coefficients can be treated as the decision vector, which provides the freedom to

choose trajectories. We parameterize the desired trajectory to be:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t) = a0 + a1t+ a2t
2 + a3t

3

y(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4

z(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4

. (6.2.2)

78

By meeting the boundary conditions of model (6.2.1), and put the equations into a matrix

form, the coefficients can be solved as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[a0 a1 a2 a3]
T = (B1)

−1Y1

[b0 b1 b2 b3]
T = (B2)

−1(Y2 − A2b4)

[c0 c1 c2 c3]
T = (B3)

−1(Y3 − A3c4)

, (6.2.3)

where

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30

0 1 2t0 3t20

1 tf t2f t3f

0 1 2tf 3t2f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x0)
4

4(x0)
3

(xf)
4

4(xf)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 (x0)
2 (x0)

3

0 1 2x0 3(x0)
2

1 xf (xf)
2 (xf)

3

0 1 2xf 3(xf)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B3 = B1,

Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

v0cosθ0 cosψ0

xf

vfcosθf cosψf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

tanψ0

yf

tanψf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

79

Y3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z0

v0 sin θ0

zf

vf sin θf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(t0)
4

4(t0)
3

(tf)
4

4(tf)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is clear from (6.2.3) that in the parameterization, we have chosen w = (b4, c4) to be

the decision vector. By Assumption 3, x0 �= xf , and in a practical mission, there would be

tf > t0, hence the matrices B1, B2, B3 are all nonsingular and invertible. Therefore the

coefficients of (6.2.2) are solvable.

Theorem 8. The reference controls given by

v =
√
ẋ2 + ẏ2 + ż2 (6.2.4)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωx = −kφ0e
−kt − (ÿẋ−ẏẍ)ż

(ẋ2+ẏ2)
√

ẋ2+ẏ2+ż2

ωy = z̈(ẋ2+ẏ2)−ż(ẋẍ+ẏÿ)√
ẋ2+ẏ2(ẋ2+ẏ2+ż2)

cos(φ0e
−kt)

+ ÿẋ−ẏẍ√
(ẋ2+ẏ2)(ẋ2+ẏ2+ż2)

sin(φ0e
−kt)

ωz = ÿẋ−ẏẍ√
(ẋ2+ẏ2)(ẋ2+ẏ2+ż2)

cos(φ0e
−kt)

− z̈(ẋ2+ẏ2)−ż(ẋẍ+ẏÿ)√
ẋ2+ẏ2(ẋ2+ẏ2+ż2)

sin(φ0e
−kt)

, (6.2.5)

where k > 0 is a constant, steer the AUV along the trajectory (6.2.2).

Proof. It follows from equation (6.2.1) that

v =
√
ẋ2 + ẏ2 + ż2.

80

Let the AUV always restore itself to be upright, then one can design:

φ̇ = −kφ,

hence:

φ = φ0e
−kt. (6.2.6)

Under Assumption 3, the slope of polynomial trajectory y(x) can not exceed ±π
2
, hence

ψ(t) ∈ (−π
2

π
2
), therefore:

ψ = arctan
ẏ

ẋ
. (6.2.7)

The pitch angle is always maintained in (−π
2

π
2
), hence:

θ = arctan
ż√

ẋ2 + ẏ2
. (6.2.8)

Substitute (6.2.6), (6.2.7) and (6.2.8) into (6.2.1) leads to (6.2.5).

6.2.2 Trajectory Planning with Obstacles

Exploring in an unknown environment requires the AUV to implement its trajectory planning

algorithm in real-time to update the controls. This requirement can be implemented by a

piecewise-constant parameterization. Suppose the total operation time is T from the initial

configuration q0 to its final configuration qf , and the sampling period is Ts, so that k̄ = T/Ts

is an integer. For k = 0, the initial condition is q0. For k̄ > k > 0, the initial condition is

qk = (xk, yk, θk, vk), the final condition is always qf . The path planning method described in

the previous subsections can be applied by using the boundary conditions qk, k = 0, 1, · · ·

and qf for real-time replanning as k increases. In the following parts of this chapter, notations

81

with superscript k or subscript k indicate they are versions of the corresponding variables

at the kth sampling period.

In parameterization (6.2.2), x(t) can be determined uniquely by the boundary conditions,

while the coefficients of y(t) and z(t) are in terms of bk4 and ck4, hence a collision free trajec-

tory can be obtained by adjusting the two parameters according to the collision avoidance

criterion.

By substituting the trajectory (6.2.2) into (6.1.3), the collision avoidance criterion be-

comes:

f3c
k
4 ≤ f 2

1

n2
(bk4)

2 +
2f1(f2 − yp)

n2
bk4 +

(f2 − yp)
2

n2

−(x− xp)
2

m2
+ zp − f4, ∀t ∈ [t t̄], (6.2.9)

where

f1 = x4 − [1 x x2 x3](Bk
2)

−1Ak
2,

f2 = [1 x x2 x3](Bk
2)

−1Yk
2,

f3 = t4 − [1 t t2 t3](Bk
3)

−1Ak
3,

f4 = [1 t t2 t3](Bk
3)

−1Yk
3.

It is not necessary to check the collision avoidance condition (6.2.9) in all time domains. By

projecting a 2D image of the obstacle onto the seabed, the largest potential collision region

can be given, which is elliptical:

d− zp =
(x− xp)

2

m2
+

(y − yp)
2

n2
.

82

Its solution is: ⎧⎪⎪⎨
⎪⎪⎩

x = xp +m
√
d− zp cosα

y = yp + n
√
d− zp sinα

,

where α ∈ [0, 2π]. It indicates that x ∈ [xp − m
√
d− zp xp + m

√
d− zp] and y ∈ [yp −

n
√
d− zp yp + n

√
d− zp]. Then the time interval [t t̄] ⊂ [t0 tf] could be solved when

x(t) ∈ [xp − m
√
d− zp xp + m

√
d− zp]. Only in this interval, the collision avoidance

criterion needs to be checked.

Since the AUV cannot go beyond the sea surface or below the seabed, the following

constraint could always be applied,

0 ≤ z(t) ≤ d, ∀t ∈ [t0 tf],

from which, the following inequality about ck4 can be derived:

− f4 ≤ f3c
k
4 ≤ d− f4, ∀t ∈ [tk tf]. (6.2.10)

It shows that if (bk4, c
k
4) is solvable, the choice is not unique, which would yield a family of

trajectories.

6.2.3 Optimal Solution of Candidate Trajectories

Equation (6.2.2) parameterizes a family of trajectories by making (bk4, c
k
4) variable. Never-

theless, some choice of (bk4, c
k
4) may generate long detoured paths. A suitable performance

index (PI) needs to be established to find an optimal choice of (bk4, c
k
4) that minimizes the

83

trajectory length. A straightforward PI is the arc length, which is:

J◦
k (bk4, c

k
4) =

∫ xf

xk

√
1 +

(
dy

dx

)2

+

(
dz

dx

)2

dx (6.2.11)

However, no optimal solution of (bk4, c
k
4) can be solved analytically from (6.2.11). One has to

search the (bk4, c
k
4) plane without any prior information and integrate the arc length numeri-

cally, which requires huge computational efforts. Here, we introduce an ‘initial straight line’

(ISL), which is the line segment that connects the starting position at kth sampling period

and the goal. Its equation in a 3D space is given by:⎧⎪⎪⎨
⎪⎪⎩

yl = Ky(xl − xk) + yk

zl = Kz(xl − xk) + zk

,

where (xl, yl, zl) are coordinates of the ISL, with xk ≤ xl ≤ xf , and

Ky =
yf − yk

xf − xk
, Kz =

zf − zk

xf − xk
.

The PI can be established as:

Jk(b
k
4, c

k
4) =

∫ xf

xk

[(x− xl))
2 + (y − yl)

2 + (z − zl)
2]dx, (6.2.12)

where xl = x(t) is set. In essence, PI (6.2.12) measures the closeness of the trajectory to a

straight line trajectory.

Theorem 9. Under PI (6.2.12), the optimal solution of (bk4, c
k
4) is given by:⎧⎪⎨

⎪⎩
bk∗4 = − p2

2p1

ck∗4 = − p4

2p3

, (6.2.13)

84

and the optimal performance index is:

J∗
k (bk4, c

k
4) = p5 −

p2
2

4p1

− p2
4

4p3

,

where

p1 =

∫ xf

xk

(f1)
2dx,

p2 = 2

∫ xf

xk

[f1f2 − f1yk − f1Ky(x− xk)]dx,

p3 =

∫ xf

xk

(f3)
2dx,

p4 = 2

∫ xf

xk

[f3f4 − f3zk − f3Kz(x− xk)]dx,

p5 =

∫ xf

xk

[f2 −Ky(x− xk) − yk]
2dx

+

∫ xf

xk

[f4 −Kz(x− xk) − zk]
2dx.

Proof. It follows from (6.2.12) that:

Jk(b
k
4, c

k
4) =

∫ xf

xk

(y − yl)
2dx+

∫ xf

xk

(z − zl)
2dx

=

∫ xf

xk

[f1b
k
4 + f2 −Ky(x− xk) − yk]

2dx

+

∫ xf

xk

[f3b
k
4 + f4 −Kz(x− xk) − zk]

2dx

= p1(b
k
4)

2 + p2b
k
4 + p3(c

k
4)

2 + p4c
k
4 + p5

= p1(b
k
4 +

p2

2p1
)2 + p3(c

k
4 +

p4

2p3
)2 + p5 −

p2
2

4p1
− p2

4

4p3
. (6.2.14)

By Assumption 3, xf > x0, therefore p1, p3 > 0 (note that f1, f3 are both polynomials

of finite order, the number of roots to zero is finite, hence f1 ≡ 0 or f3 ≡ 0 would not

happen). Therefore the optimal PI is obtained at bk∗4 = − p2

2p1
, ck∗4 = − p4

2p3
, and its value is

J∗
k (bk4, c

k
4) = p5 − p2

2

4p1
− p2

4

4p3
. Note that by definition of PI (6.2.12), J∗

k (bk4, c
k
4) ≥ 0.

85

More detailed investigation shows that the contour of the PI is a series ellipses centered

at (6.2.13). We already knew that J∗
k(bk4, c

k
4) is the minimum, and it represents the point

(bk∗4 , c
k∗
4). Then for non-optimal (bk4, c

k
4), based on J∗

k (bk4, c
k
4), we can introduce an incremental

term iδ, where i = 1, 2, 3 · · · , and δ > 0 is a step size that can be chosen. It follows that:

J∗
k(bk4, c

k
4) + iδ = p1(b

k
4 +

p2

2p1

)2 + p3(c
k
4 +

p4

2p3

)2 + p5 −
p2

2

4p1

− p2
4

4p3

.

It reduces to:

iδ = p1(b
k
4 +

p2

2p1
)2 + p3(c

k
4 +

p4

2p3
)2. (6.2.15)

Clearly, this is an elliptical equation, and its center is (bk∗4 , c
k∗
4). All points on the ellipse has

the same PI J∗
k + iδ, so we call these ellipses contours, and by increasing i, the contours are

expanded. Equation (6.2.15) can be transformed into the following form to calculate (bk4, c
k
4):⎧⎪⎪⎨

⎪⎪⎩
bk4 = − p2

2p1
+

√
iδ
p1

cosα

ck4 = − p4

2p3
+

√
iδ
p3

sinα

, (6.2.16)

where α ∈ [0 2π) is an angle parameter, for example, in implementation, it can be supplied

as α = jπ
180
, j = 0, 1, 2, · · · , 359.

6.2.4 Solution and Solvability

In summary of the discussions in Section 6.2.1, 6.2.2, and 6.2.3, the steps to obtain a solution

of (bk4, c
k
4) can be given as follows:

• Step 1: By solving equation (6.2.13), obtain the optimal solution of (bk∗4 , c
k∗
4) without

considering obstacles.

86

• Step 2: Consider the obstacle avoidance condition (6.2.9). In the (bk4, c
k
4) plane as

shown in Fig. 6.4, only the points outside the parabola boundary satisfy (6.2.9).

Substitute (bk∗4 , c
k∗
4) in (6.2.9). If it holds, then the given solution is not only optimal,

but also avoids the obstacle. In this case, the optimal point is illustrated by “*” in. If

(6.2.9) does not hold, recall that the contour of the PI is a series of ellipses centered

at (bk∗4 , c
k∗
4), we expand the contour until the first point (bk

′
4 , c

k′
4) that satisfies (6.2.9)

is found, which is a suboptimal point with relatively low PI value. In this case, the

optimal point and suboptimal point are marked by “x” and “+” respectively.

−4 −2 0 2 4 6 8

0

5

10

15

20

25

30

35

40

bk
4

ck 4

Solution of (bk
4
,bk

4
)

boundary

(b
4
k*,c

4
k*)

(b
4
k*,c

4
k*)

(b
4
k’,c

4
k’)

(b
4
k−,c

4
k−)

PI contour

c
4
kl

c
4
ku

Figure 6.4: Solution of (bk4, c
k
4)

• Step 3: Check the constraint (6.2.10). It shows that no matter what sign f3 is, the

solution set of ck4 is a closed interval. The intersection of solution sets over time could

be empty or nonempty. In the case that it is nonempty, let it be [ckl
4 cku

4]. It denotes

87

a strip in the (bk4, c
k
4) plane. If the solution obtained in previous steps, i.e. (bk∗4 , c

k∗
4) or

(bk
′

4 , c
k′
4), locates in the strip, then no further modification is needed. Otherwise the PI

contour needs be enlarged again to find the point (bk−4 , ck−4) which first gets into the

strip. This point is the new solution of (bk4, c
k
4), and is marked by “o” in Fig. 6.4.

On the other hand, if the solution set is empty, then no matter what ck4 is chosen, part

of the trajectory is going to be above the sea surface or below the seabed. The case

happens when the boundary points are above the sea surface or below the seabed, or

the AUV stays too close to the sea surface while pointing upward or too close to the

seabed while pointing downward. The only thing left that can be done is correcting

the boundary conditions before planning a trajectory, i.e. moving the boundary points

into the sea or adjusting the orientation angles so that the AUV points away from the

sea surface or the seabed.

Theorem 10. Under Assumption 2, the collision avoidance condition is always solvable, i.e.

a collision-free trajectory always exists.

Proof. Note that in (6.2.9),
f2
1

n2 ≥ 0. If f1 �= 0, (6.2.9) represents all of the points outside a

parabola in the (bk4 , c
k
4) plane. In this case, a solution to (bk4, c

k
4) always exists for any single

obstacle. In the presence of multiple obstacles, each obstacle imposes a constraint as (6.2.9),

the final solution is the intersection of all solutions to every single object. It always yields

at least one finite solution.

On the other hand, if f1 = 0, bk4 is removed from (6.2.9), then bk4 no longer affects the

collision avoidance. To understand the condition of f1 = 0 and its implications, consider the

88

simpler case that k̄ = 1, it follows that:

y(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4

= [1 x x2 x3]B−1
2 Y2 + b4(x

4 − [1 x x2 x3]B−1
2 A2)

= [1 x x2 x3]B−1
2 Y2 + b4f1.

The equation indicates that no matter what b4 is picked, a trajectory reduces to a fixed

cubic polynomial. This is impossible unless at the boundary points which do not vary

with b4. Hence f1 = 0 only occurs at the boundary points. Also, it can be derived that

z(t) = [1 t t2 t3]B−1
3 Y3 + c4f3. At the boundary points, z(t0) or z(tf) does not change with

c4, hence f3 has to be 0. Then in the case of f1 = 0 (i.e. at boundary points), there are only

constant terms in (6.2.9). Under Assumption 2, the inequality must hold at the boundary

points since there is no collision. Therefore, combined with the discussion for the case f1 �= 0,

we know that collision avoidance condition (6.2.9) is always solvable.

Remark 6.2.1. If multiple obstacles are detected simultaneously, every obstacle imposes

its own version of constraint (6.2.9) on the choice of (bk4, c
k
4). Then if the optimal solution

(bk∗4 , c
k∗
4) locates inside any parabola area, the PI contour needs be expanded to find suboptimal

(bk4, c
k
4), and Theorem 10 guarantees that at least one finite (bk4, c

k
4) can be found to satisfy all

inequalities (6.2.9) imposed by obstacles.

In summary, the point denoted by “*” in Fig. 6.4 represents an ideal solution. It is

optimal, collision free, and stays within the sea all the time. While “+” or “o” represents a

suboptimal solution. It avoids the obstacle, stays within the sea, but the PI is enlarged, i.e.

its trajectory length is longer.

89

6.3 Simulation Results

In this section, simulation results are presented for the proposed approach. The simulation is

conducted for two scenarios, one has a single obstacle while the other has multiple obstacles.

6.3.1 Single Obstacle

A single-obstacle scenario is illustrated in Fig. 6.5. Settings of the single obstacle scenario

are listed in Table 6.1. The simulation results are presented in Fig. 6.5 to Fig. 6.8.

Table 6.1: Settings of Single-Obstacle Scenario

Operation time (sec) 40

Sampling Period (sec) 1

Sensing Range (meter) 20

Scenario Scale (meter) 100 × 100 × 100

Initial Position (x0, y0, z0) (10, 10, 10)

Initial Attitude (φ0, θ0, ψ0) (π/6, π/6, π/4)

Initial Velocity (meter/sec) 5

Final Position (xf , yf , zf) (90, 90, 90)

Final Attitude (φf , θf , ψf) (0,−π/6, π/3)

Final Velocity (meter/sec) 4

The obstacle settings are:

xp = 50, yp = 50, zp = 36, m = 4, n = 2.

90

Fig. 6.5 shows two trajectories. The initial trajectory is planned without the knowledge of

obstacles, hence, it passes through the obstacle. At the 11th second, the obstacle is detected,

and by checking the collision avoidance condition, the AUV knows there will be collisions.

Hence a new trajectory is replanned. The outcome of the proposed algorithm is:⎧⎪⎪⎨
⎪⎪⎩

b0∗4 = 3.217 × 10−6

c0∗4 = −1.0616 × 10−4

,

⎧⎪⎪⎨
⎪⎪⎩

b11
′

4 = 9.4517 × 10−6

c11
′

4 = −7.5544 × 10−4

,

for the initial and replanned trajectories respectively.

Figure 6.5: The Optimal Collision Free Trajectory

Remark 6.3.1. Although the sampling period is 1 second, it does not mean the trajectory has

to be replanned every second. The trajectory needs to be updated only when new obstacles are

91

detected, and by checking the collision avoidance condition (6.2.9) imposed by each obstacle,

a collision will happen if the AUV keeps the current trajectory.

Fig. 6.6 to Fig. 6.8 illustrate the state variables and inputs during the motion. The

AUV successfully moved from its starting position to the ending position. The controls

are piecewise continuous. The discontinuity comes from the second order derivatives in

(6.2.5), as the kinematic model only ensures the continuity of the first order derivatives at

the point when a trajectory is changed. As a result, the orientation angles are continuous

but not differentiable at the moment when the trajectory is switched. The linear velocity

is continuous in all time domains since it only relates to the first order derivatives of the

trajectory. When backstepping technique is applied to find an exponential tracking control

for the reference trajectory, it is anticipated that the torque level control is also a switching

control.

6.3.2 Multiple Obstacles

A multiple-obstacle scenario is shown in Fig. 6.9, scenario settings are listed in Table 6.2.

The obstacles’ information is listed in Table 6.3.

The proposed method yields the trajectory illustrated in Fig. 6.9. It is composed of 3

segments. The AUV initially knew obstacle 1 and planned the first trajectory. While it

was moving along segment 1, at the 12th second, obstacle 2 was detected. By checking the

collision avoidance condition (6.2.9), the AUV knew there was going to be a collision, so it

replanned the second trajectory and switched to segment 2, the rest of the first trajectory

92

0 5 10 15 20 25 30 35 40
2

2.5

3

3.5

4

4.5

5

5.5
Linear Velocity

time, sec

ve
lo

ci
ty

, m
et

er
/s

ec

v

Figure 6.6: The Linear Velocity

0 5 10 15 20 25 30 35 40
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Angular Velocities

time, sec

an
gu

la
r

ra
te

, r
ad

/s
ec

ω
x

ω
y

ω
z

Figure 6.7: Angular Velocities

93

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Body Angles

time, sec

an
gl

e,
 r

ad

φ
ψ
θ

Figure 6.8: Orientation Angles

Figure 6.9: The Trajectory Avoids Obstacles

94

Table 6.2: Settings of Multi-Obstacle Scenario

Operation time (sec) 40

Sampling Period (sec) 1

Sensing Range (meter) 10

Scenario Scale (meter) 100 × 100 × 100

Initial Position (x0, y0, z0) (10, 10, 80)

Initial Attitude (φ0, θ0, ψ0) (π/6, π/6, π/4)

Initial Velocity (meter/sec) 5

Final Position (xf , yf , zf) (90, 90, 90)

Final Attitude (φf , θf , ψf) (0,−π/6, π/3)

Final Velocity (meter/sec) 4

was abandoned. At the 25th second, it detected obstacle 3, also, it decided that a collision

would happen, so it switched to segment 3 and abandoned the rest of the second trajectory.

When obstacle 4 was detected, it decided that there was no threat, so no action was taken.

The three trajectories yielded by the proposed approach are:⎧⎪⎪⎨
⎪⎪⎩

b0
′

4 = −5.8844 × 10−6

c0
′

4 = −1.5321 × 10−4

,

⎧⎪⎪⎨
⎪⎪⎩

b12
′

4 = 2.423 × 10−5

c12
′

4 = −0.0019

,

⎧⎪⎪⎨
⎪⎪⎩

b25
′

4 = 3.1149 × 10−5

c25
′

4 = −1.9185 × 10−4

.

6.4 Torque Level Tracking Control Of 3D trajectories

In this section we will discuss the dynamic trajectory tracking control for the planned optimal

real-time collision free trajectory. The design is divided into two steps. In the first step, we

95

Table 6.3: Settings of The Obstacles

Obstacle xp yp zp m n

1 20 30 64 3 2

2 64 30 75 4 2

3 44 74 51 4 2

4 90 60 36 2 1.5

introduce a kinematic level tracking controller. In the second step, we propose a torque level

control design via backstepping design.

6.4.1 The Kinematic Tracking Controller

In this section, a kinematic trajectory tracking control design is introduced from [50]. The

reference trajectory to be tracked by the AUV is generated by the trajectory planning algo-

rithm presented in Section 6.2. The reference variables are all solved in equations (6.2.2),

(6.2.4), (6.2.5). The kinematic model given in (6.1.1) and (6.1.2) can be reorganized into the

following form: ⎡
⎢⎢⎣ ˙̄x

˙̄θ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ S1(θ̄) 03×3

03×1 S2(θ̄)

⎤
⎥⎥⎦

⎡
⎢⎢⎣ u1

u2

⎤
⎥⎥⎦ , (6.4.1)

96

where x̄ = [x y z]T , θ̄ = [φ θ ψ]T , u1 = v, u2 = [ωx ωy ωz]
T , and

S1(θ̄) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ cosψ

cos θ sinψ

− sin θ

⎤
⎥⎥⎥⎥⎥⎥⎦

S2(θ̄) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 sin φ tan θ cosφ tan θ

0 cosφ − sin φ

0 sin φ sec θ cosφ sec θ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let a feasible reference trajectory given by: x̄d(t) = [xd yd zd]
T , θ̄d(t) = [φd θd ψd]

T , and

u1d, u2d. It is feasible means x̄d, θ̄d, u1d, u2d satisfies the kinematic model (6.4.1). Define

the following error vectors, x̄e is the difference between x̄d and x̄ as seen from the local

frame;whereas θ̄e is simply as the difference between θ̄d(t) and θ̄. Thus:

x̄e = RT (θ̄)(x̄d − x̄)

θ̄e = θ̄d − θ̄ = [φe θe ψe]
T

R(θ̄) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then the error dynamic equations are:

ẋe = RT (θ)ẋd − RT (θ)ẋ+ ṘT (xd − x). (6.4.2)

The following relationship can be easily verified:

RT (θ̄)S1(θ̄) = RT (θ̄e)S1(θ̄e) = RT (θ̄d)S1(θ̄d) = [1 0 0]T .

97

Since R(·) is orthonormal, we have:

S1(θ̄e) = R(θ̄e)R
T (θ̄d)S1(θ̄d) = [R(θ̄e)R

T (θ̄d)R(θ̄)]RT (θ̄)S1(θ̄d).

If the error of attitude angle is small, then R(θ̄e)R
T (θ̄d)R(θ̄) can be approximated by an

identity matrix and we have:

S1(θ̄e) = RT (θ̄)S1(θ̄d). (6.4.3)

The physical implication of this approximation can be interpreted as following: if the desired

vehicle attitude R(θ̄d) is not too different from the vehicle’s current attitude R(θ̄), then the

desired orientation as seen from the body frame (RT (θ̄)RT (θ̄d)) is approximately equal to

the orientation R(θ̄e) obtained from the error of the Euler angles. Note that in a 2D case,

RT (θ̄)RT (θ̄d) is exactly same to R(θ̄e) and hence the relationship expressed by equation

(6.4.3) is exact. From this discussion, and from equation (6.4.2), the error dynamics are:⎧⎪⎪⎨
⎪⎪⎩

˙̄xe = S1(θ̄e)u1d −RT (θ̄)S1(θ̄)u1 − u2 × x̄e

˙̄θe = ˙̄θd − ˙̄θ = S2(θ̄d)u2d − S2(θ̄)u2

(6.4.4)

We propose the following feedback tracking control:⎧⎪⎪⎨
⎪⎪⎩

u1 = u1d + u1d(cosψe cos θe − 1) + γ2xe

u2 = u2d + S−1
2 (θ̄){q + [S2(θ̄d) − S2(θ̄)]u2d + p}

, (6.4.5)

where the constant γ should be chosen appropriately, and

q = [0
−zeu1d

k2

yeu1d cos θe

k3
]T

p = [k1 sin φe k2 sin θe k3 sinψe]
T ,

98

with k1, k2, k3 > 0. To show the convergence under control (6.4.5), take the Lyapunov

function candidate:

V =
1

2
x̄T

e x̄e + k̄Tf(θ̄e),

where k̄ = [k1 k2 k3]
T , and

f(θ̄e) = [1 − cosφe 1 − cos θe 1 − cosψe]
T .

It follows that

V̇ = x̄T
e

˙̄xe + k̄T df

dθ̄e

˙̄θe,

where

df

dθ̄e

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sinφe 0 0

0 sin θe 0

0 0 sinψe

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Noting that x̄e is orthogonal to u2 × x̄e, and RT (θ̄)S1(θ̄) = [1 0 0]T , V̇ becomes:

V̇ = pT{q + S2(θ̄d)u2d − S2(θ̄)u2} − γ2x2
e

= −pT p− γ2x2
e

≤ 0.

The error dynamic system (6.4.4) is time-varying due to the existence of reference signal,

therefore the Lasalle’s invariance theorem can not be directly applied, however it can be

easily made to be time invariant by introducing a new state and the following dynamics.

τ̇ = 1.

99

And all the time varying terms are changed to be the functions of τ . According to the

Lasalle’s invariance theorem, any bounded trajectory must go to the largest invariant set,

which is:

Ω = {x̄e, θ̄e|xe = 0, φe = 0, θe = 0, ψe = 0}.

Then the dynamics for ye, ze are: ⎧⎪⎪⎨
⎪⎪⎩

ẏe = −ωxze

że = ωxye

,

which is stable.

6.4.2 The Dynamic Tracking Control Design

This section presents the dynamic trajectory tracking control design. A dynamic model

of AUVs is given in [14]. It is a simplified model derived for control design purpose, and

captures the main dynamics of a flat-fish shaped AUV. The vehicle is underactuated, i.e., it

has less control inputs than the number of degree of freedom (DOF). Specifically, the three

controls are surge propulsion T , rudder angle δr for yaw rotation, and stern and bow plane

angles δs = −δb for pitch rotation. Since the vehicles are considered to be nonholonomic,

the dynamics of sway and heave are neglected, i.e. the sway velocity and heave velocity are

100

always zero. The dynamic equations of motion are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m− r3Xv̇)v̇ = r2Xvvv
2 + T

(Ix − r5Kω̇x)ω̇x = r5Kωyωzωyωz + r4Kωxvωx + zCBB cos θ sin φ

(Iy − r5Mω̇y)ω̇y = (r5Mωxωz + Iz − Ix)ωxωz + r4Mvωyvωy

+r3v
2(Mdsδs + 2Mdbδb) + zCBB sin θ

(Iz − r5Nω̇z)ω̇z = (r5Nωxωy + Ix − Iy)ωxωy + r4Nωzvωz + r3v
2Ndrδr

. (6.4.6)

An explanation of the terms and the values of the main entries in (6.4.6) is as follows:

m = 5454.54kg is the vehicle’s mass, and Ix = 2038Nms2, Iy = 13587Nms2, and Iz =

13587Nms2 are the moments of inertia about the body axes respectively. The term B is the

buoyancy force applying on the center of buoyancy (CB). The term zCB is the z-coordinate

of the CB in the body frame.

ri =
ρ

2
Li, i = 1, 2, 3, 4, 5,

where ρ is the water density and L = 5.3m the AUVs length. Xv̇ is the added mass term

and Kω̇x , Mω̇y , Nω̇z are added moments of inertia terms. Kωyωz , Mωxωz , and Nωxωy are added

mass cross terms. Xωxωx , Kωx, Mvωy , Mds, Mdb, Nωz , and Ndωz are drag and lift, force and

moment terms. More detailed descriptions and values of the model parameters can be found

in [14].

101

The dynamical error model (6.4.6) can be partially linearized to be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇ = τv

ω̇x = r4Kωx

Ix−r5Kω̇x
vωx + ε

ω̇y = τy

ω̇z = τz

, (6.4.7)

where

T = −r2Xvvv
2 + (m− r3Xv̇)τv

δs = [
1

r3v2
(Mds − 2Mdb)][(Ix − Iz − r5Mωxωz)ωxωz − r4Mvωyvωy

−r3v2(Mdsδs − 2Mdbδb) − zCBB sin θ + (Iy − r5Mω̇y)τy]

δr =
1

r3v2Ndr

[(Iy − Ix − r5Nωxωy)ωxωy − r4Nωzvωz + (Iz − r5Nω̇z)τz]

ε = [r5Kωyωzωyωz + zCBB cos θ sinφ]/(Ix − r5Kω̇x).

We will use backstepping approach to design the torque control τv, τy, and τz. Let the

kinematic control u1, u2 obtained in (6.4.5) be the desired linear and angular velocity to be

tracked, i.e.:

vd = u1, ω̄d = [ωd
x ωd

y ωd
z]

T = u2.

Define the dynamic error states to be:

ve = v − vd, ω̄e = [ωe
x ωe

y ωe
z]

T = [ωx − ωd
x ωy − ωd

y ωz − ωd
z]

T .

102

The error dynamics are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇e = −v̇d + τv

ω̇e
x = r4Kωx

Ix−r5Kω̇x
veωx + ε′

ω̇e
y = −ω̇d

y + τy

ω̇e
z = −ω̇d

z + τz

,

where ε′ = −ω̇d
x + [r4Kωxvdωx + r5Kωyωzωyωz + zCBB cos θ sinφ]/(Ix − r5Kω̇x). Design the

following control: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τv = v̇d − h1ve + τ ′v

τy = ω̇d
y − h2ω

e
y + τ ′y

τz = ω̇d
z − h3ω

e
z + τ ′z

, (6.4.8)

where h1, h2, h3 > 0 are control gains and τ ′v, τ
′
y, τ

′
z are supplemental terms to be determined.

Define the Lyapunov Function Candidate:

Vc = V +
1

2
(v2

e + ωe2
x + ωe2

y + ωe2
y).

103

Then the time derivative along the closed loop system is:

V̇c = −pTp− γ2x2
e − vexe − pTS2(θ̄)ω̄e + vev̇e + ω̄T

e
˙̄ωe

= −pTp− γ2x2
e − h1v

2
e − h2ω

e2
y − h3ω

e2
z + ve(τ

′
v − xe +

r4Kωx

Ix − r5Kω̇x

ωxω
e
x)

+ωe
y(τ

′
y − k1 sinφe sin φ tan θ − k2 sin θe cosφ− k3 sinψe sin φ sec θ)

+(ε′ − k1 sinφe)ω
e
x + ωe

z(τ
′
z − k1 sinφe cosφ tan θ + k2 sin θe sin φ

−k3 sinψe cosφ sec θ)

= −pTp− γ2x2
e − h1v

2
e − h2ω

e2
y − h3ω

e2
z + (ε′ − k1 sinφe)ω

e
x

= −pTp− h1v
2
e − h2ω

e2
y − h3ω

e2
z − [(γ2 − η1)ω

e
x −

η2 − k1 sin φe

2
]2

+(
η2 − k1 sin φe

2
)2, (6.4.9)

where,

η1 = r4KwxVd

η2 = −ω̇d
x + [r4Kωxvdω

d
x + r5Kωyωzωyωz + zCBB cos θ sinφ]/(Ix − r5Kω̇x).

and

τ ′v = xe −
r4Kωx

Ix − r5Kω̇x

ωxω
e
x

τ ′y = k1 sin φe sinφ tan θ + k2 sin θe cosφ+ k3 sinψe sinφ sec θ

τ ′z = k1 sin φe cosφ tan θ − k2 sin θe sinφ+ k3 sinψe cos φ sec θ.

By assumption 3, τ ′y and τ ′z are uniformly bounded, therefore wy, wz are uniformly bounded.

Hence η2 is uniformly bounded. Therefore the right hand side of (6.4.9) shows the tracking

error is bounded, and the bound can be tuned by k1.

104

6.4.3 Simulation Results

The simulation is conducted using Matlab simulink. The simulink platform is shown in the

Fig. 6.10. The AUV dynamic model (6.4.6) and hydrodynamic parameters are taken from

the NPS AUV II model from [14]. Specifically,

m = 5454.54kg, Ix = 2038Nms2, Iy = 13587Nms2, Iz = 13587Nms2,

B = 53.4kN, ρ = 1000kg/m3, L = 5.3m, Xv̇ = −0.0076, Xvv = 0.053,

Kωx = −0.011, Kω̇x = −0.001, Kωyωz = 0.017, Mω̇y = −0.017, zCB = 0,

Mvωy = −0.068, Mds = −0.041, Mdb = 0.0035, Mωxωz = 0.005,

Nωz = −0.016, Nωxωy = −0.021, Nω̇z = −0.0034, Ndωz = −0.013.

Initial conditions of the planned trajectory are:

x0 = 10, y0 = 10, z0 = 10, φ0 = 0, θ0 = π/6, ψ0 = π/4, v0 = 5.

Final conditions of the planned trajectory are:

xf = 90, yf = 90, zf = 90, φf = 0, θf = −π/6, ψf = π/3, vf = 4.

The actual initial position and orientation of the AUV are:

xi = 40, yi = 30, zi = 0, φi = 0, θi = π/6, ψi = π/4, vi = 0.

The choice of control gains are: k1 = k2 = k3 = 1 and h1 = h2 = h3 = 5.

105

Figure 6.10: The Simulink Platform for Dynamic Tracking Controls

The simulation results are illustrated in Fig. 6.11. Fig. 6.11(a) to Fig. 6.11(d) shows

the tracking control is successful, the trajectory of the AUV is able to track the the planned

trajectory. However, there are oscillations in the signals which indicate there exists a bounded

error for the trajectory and control.

6.5 Conclusion

In this chapter, an optimal real-time motion planning approach is proposed for AUVs op-

erating in an unknown 3D underwater space. The 3D planning problem is reduced to a 2D

problem. The vehicle’s kinematic model was explicitly taken into consideration. Collision

avoidance criteria is established based on a piecewise polynomial parameterization of fea-

sible trajectories. By checking the condition in realtime, the proposed approach prevents

106

any collision and renders close-form control solutions with optimal performance. Moreover,

a dynamic tracking controller is proposed which ensures the AUV to track the planned

trajectory.

107

0

50

100

0
20

40
60

80
100

0

20

40

60

80

100

y,(m)

Trajectory tracking

x,(m)

z,
(m

)

initial position
ending position
desired traj
real traj

(a)

0 5 10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

90

100
Tracking of x

Time,(sec)

x
an

d
x d,(

m
)

xd
x

(b)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90
Tracking of y

Time,(sec)

y
an

d
y d,(

m
)

yd
y

(c)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100
Tracking of z

Time,(sec)

z
an

d
z d,(

m
)

zd
z

(d)

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Tracking of φ

Time,(sec)

φ
an

d
φ d,(

ra
d)

φ
d

φ

(e)

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Tracking of ψ

Time,(sec)

ψ
 a

nd
 ψ

d(r
ad

)

ψ
d

ψ

(f)

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Tracking of θ

Time,(sec)

θ
an

d
θ d,(

ra
d)

θ
d

θ

(g)

0 5 10 15 20 25 30 35 40
−4

−3

−2

−1

0

1

2

3

4
x 10

4 Control T

Time,(sec)

T
(N

)

(h)

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control δ
r

Time,(sec)

δ r,(
ra

d)

(i)

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control δ
b

Time,(sec)

δ b,(
ra

d)

(j)

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control δ
s

Time,(sec)

δ s,(
ra

d)

(k)

Figure 6.11: Trajectory Tracking Simulation Results. (a), Desired and Actual Trajectory.

(b), Tracking of x. (c), Tracking of y. (d), Tracking of z. (e), Tracking of φ. (f), Tracking of

ψ. (g), Tracking of θ. (h), Torque Control. (i), Rudder Control. (j), Bow Plane Angle. (k),

Stern Plane Angle.

108

CHAPTER 7
COORDINATED EXPLORATION AND FORMATION
CONTROL FOR MULTIPLE UNMANNED AERIAL

VEHICLES (UAVS)

The study of unmanned aerial vehicles has been an active research topic in recent years due

to the rapid growth of UAS real-world applications driven by the Global War on Terrorism

(GWOT). The UAS is defined as a complete unmanned system including control station,

data links, and vehicle. Currently UAVs operate individually, independent of neighboring

UAVs and used primarily for surveillance. However, UAVs’ tasks are expanding to the

extent where UAV groups will work as cooperative autonomous units. The idea behind is

that cooperatively controlled units have the ability to accomplish complicated missions with

higher efficiency and failure tolerance, such as coordinated navigation, terrain surveillance

and search/rescue tasks.

Inspired by the flocking behavior of flying birds, Reynolds conducted a computer simula-

tion model for cohesion, separation, and alignment in [63]. Subsequently, a straightforward

discrete-time model (Vicsek model) was presented in [72] for the heading adjustment of au-

tonomous particles moving in a plane. Simulation results verified the Vicsek model. More

recently, [23] presented a theoretical explanation of Vicsek’s model by using graph theory

and established conditions on the connectivity of undirected sensor graphs for the conver-

gence of overall system. Later, [41, 48, 61] extended the condition to networks with directed

sensor graphs. One recent result on synthesizing decentralized cooperative control is from

109

matrix theory. Less restrictive results have been established in [59]. Suppose there is a

group of robots which can be feedback linearized and their sensing/communication matrices

satisfy sequentially complete conditions. Then, the production of state transition matrices

of the overall system results in a matrix with identical rows, hence all states of the group

of robots will converge. Therefore, cooperative control objective can be accomplished. The

cooperative control strategy has been widely applied in consensus controls and formation

controls, such as [61, 77, 78, 59].

In this chapter, we consider a mission scenario that involves both motion planning and

cooperative formation controls of UAS and provide our solutions. The motion planing ap-

proach is parametric that adapts to the UAV’s kinematic model as well as achieve obstacle

avoidance. The resulting controls are in closed forms, hence can be implemented easily in

realtime applications. The cooperative formation controls are local decentralized controllers

developed on the matrix theory for each UAV. A virtual leader is introduced into the group

of UAVs to achieve asymptotic trajectory convergence and help interaction between the

human-machine interface (HMI) and operators.

7.1 Problem Formulation

In this study, the following scenario is considered:

1. A predefined area (presumably rectangular) is to be surveilled.

2. A group of UAVs are launched separately from their base locations around the area.

110

3. If any target is found, neighboring UAVs come together as a formation and coopera-

tively fly over target locations.

4. UAVs should be able to avoid flying into some restricted areas (obstacles).

The following nonholonomic kinematic model of a UAV is adopted:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

, (7.1.1)

where (x, y) is the world coordinate of the UAV, θ is the heading angle, v is the longitudinal

velocity, and ω is its rotation velocity. A block diagram of the UAS control scheme is shown

in Fig. 7.1. The innermost loop handles guidance and motion control, the middle loop deals

with navigation and obstacle avoidance, the outmost loop manages mission, payload and

other high level configurations.

Figure 7.1: Block Diagram of UAS Control Loops.

Fig. 7.2 illustrates the modules should be implemented in the control software and its

logic architecture. At top level are human-machine interface and dynamic environment.

Control algorithms are implemented in the middle. The obtained controls are applied on the

UAVs’ kinematic model at the bottom level to achieve specified goals.

111

Human Machine
Interface

Mission and payload
management, route
setting, command

input, display.

Dynamic
Environment

Map Coordinates,
static Obstacle,

Moving obstacle,
targets.

Vehicle kinematic model

Path PlannerObstacle
Avoidance

Cooperative
Control

Figure 7.2: Control Software Modules.

7.2 Motion Planning

In a surveillance mission, each UAV may be required to pass multiple waypoints. The

objective of motion planning is to find a feasible and smooth trajectory that leads a UAV

from a starting waypoint to an ending waypoint. Every pair of consecutive waypoints are

composed of a starting waypoint and an ending waypoint, through which the UAV is able

to navigate all required waypoints.

7.2.1 Parametric Feasible Trajectories

By analyzing the kinematic model (7.1.1), one can establish that a UAV’s path is some

smooth function y = f(x). Given initial and final conditions q0 = (x0, y0, θ0, v0) at t0 and

112

qf = (xf , yf , θf , vf) at tf , the model has four constraints on the path. That is:

y0 = f(x0), tan(θ0) =
dy

dx

∣∣∣
t=t0

, yf = f(xf), tan(θf) =
dy

dx

∣∣∣
t=tf

.

Thus, if a path is to be parameterized by a finite dimensional polynomial, it should have at

least four free coefficients to accommodate these constraints. To achieve a class of paths,

more than four coefficients are needed. In this paper, the path is parameterized by a 4th

order polynomial which has five coefficients. That is,

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4. (7.2.1)

Given the boundary conditions q0 and qf the solution to the coefficients are:

[a0 a1 a2 a3]
T = (B1)

−1(Y1 − A1a4),

where

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 (x0)2 (x0)3

0 1 2x0 3(x0)2

1 xf (xf)2 (xf)3

0 1 2xf 3(xf)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

tan(θ0)

yf

tan(θf)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x0)4

4(x0)3

(xf)4

4(xf)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It shows that the matrices B, Y , A are determined by boundary conditions. As long as

xf �= x0, B1 is invertible, the coefficients a0, a1, a2, a3 are solvable in terms of a4. Therefore

(7.2.1) denotes a class of paths that take a4 as its parameter and any path in the class would

satisfy the boundary condition and is feasible to a UAV. By adjusting a4, it is possible for

one to seek a collision-free path.

113

Polynomial (7.2.1) is still not a trajectory yet since the timing information has not been

incorporated. In order to do so, we propose the following motion:

x = b0 + b1t+ b2t
2 + b3t

3. (7.2.2)

By meeting the boundary conditions, the coefficients can be uniquely determined as:

[b0 b1 b2 b3]
T = (B2)

−1(Y2),

where

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30

0 1 2t0 3t20

1 tf t2f t3f

0 1 2tf 3t2f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

v0 cos(θ0)

xf

vf cos(θf)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As long as tf > t0, B2 is invertible and b0, b1, b2, b3 are solvable.

Theorem 11. The control given by⎧⎪⎨
⎪⎩

v =
√
ẋ2 + ẏ2

ω = (ÿẋ− ẏẍ)/(ẋ2 + ẏ2)
(7.2.3)

steers a UAV modeled by (7.1.1) along the trajectory (7.2.1) and (7.2.2).

Proof. It is directly synthesized from (7.1.1) that

v =
√
ẋ2 + ẏ2.

Moreover, since xf �= x0, the tangent of a polynomial is either in (−π
2

π
2
) or (π

2
3π
2

). Therefore:

θ = arctan
ẏ

ẋ
or θ = arctan

ẏ

ẋ
+ π.

114

It follows that,

ω = θ̇ = (ÿẋ− ẏẍ)/(ẋ2 + ẏ2).

Therefore, trajectories of x and y satisfy the state equation (7.1.1).

7.2.2 Motion Planning for Avoiding Static/Dynamic Obstacles

To handle a dynamic environment, when new obstacles’ information is available, the paramet-

ric trajectory given by equation (7.2.1) may need updates. The update can be accomplished

by a piecewise-constant polynomial parametrization. Suppose the total operation time is T

from the initial configuration q0 to its final configuration qf , and the sampling period is Ts,

so that k̄ = T/Ts is an integer. For k = 0, the initial condition is q0. For k̄ > k > 0, the

initial condition is qk = (xk, yk, θk, vk), the final condition is always qf . The path planning

method described in the previous subsections can be applied by using the boundary condi-

tions qk, k = 0, 1, · · · and qf for real-time replanning as k increases. In the following part

of this paper, notations with superscription k represent the corresponding terms at the kth

sampling period.

Fig. 7.3 illustrates a UAV moving from q0 to qf in the presence of obstacles. The UAV is

represented by the smallest sphere that contains itself. In Fig. 7.3, the small circle with solid

line is the UAV, its radius is r and velocity is vk. The larger circle with solid line centered

at (xk
o , y

k
o) represents the obstacle, its radius is R and velocity is vk

o . The circle with dashed

line represents the sensing range of a UAV, within which, an obstacle can be detected, its

radius is Rs. In kth sampling period, the trajectory equation (7.2.1) is rewritten as:

115

Figure 7.3: A UAV in the Presence Obstacles

y = ak
0 + ak

1x+ ak
2x

2 + ak
3x

3 + ak
4x

4. (7.2.4)

Clearly, for anytime t ∈ [t0 +kTs, t0 +T], it is desirable to have the distance between the

UAV and obstacle greater than r+R to avoid any possible collision. Therefore, the collision

avoidance criterion is:

(y − yk
o − vk

o,yτ)
2 + (x− xk

o − vk
o,xτ)

2 ≥ (r +R)2, (7.2.5)

where vk
o,x and vk

o,y are the obstacle’s velocity along x and y directions, τ = t− (t0 + kTs) for

t ∈ [t0 + kTs, t0 + T].

According to the results in section 7.2.1, the coefficients of (7.2.4) can be solved in terms

of ak
4,

[ak
0 ak

1 ak
2 ak

3]
T = (Bk)−1(Y k − Akak

4), (7.2.6)

116

where

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xk (xk)2 (xk)3

0 1 2xk 3(xk)2

1 xf (xf)2 (xf)3

0 1 2xf 3(xf)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yk

tan(θk)

yf

tan(θf)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xk)4

4(xk)3

(xf)4

4(xf)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Substituting (7.2.4) and (7.2.6) into (7.2.5), one obtains the following inequality:

g2(x, k)(a
k
4)

2 + g1(x, k, τ)a
k
4 + g0(x, k, τ)|τ=t−t0−kTs ≥ 0 (7.2.7)

for all τ ∈ [0, T − kTs], where

g2(x, k) = [x4 − h(x)(Bk)−1Ak]2

g1(x, k, τ) = 2[x4 − h(x)(Bk)−1Ak][h(x)(Bk)−1Y k − yk − vk
o,yτ]

g0(x, k, τ) = [h(x)(Bk)−1Y k − yk − vk
o,yτ]

2 + (x− xk − vk
o,xτ)

2 − (r +R)2

h(x) = [1 x x2 x3]

.

Inequality (7.2.7) is about the adjustable coefficient ak
4, as long as ak

4 is picked to satisfy this

inequality, the obstacle is avoided.

Theorem 12. The collision avoidance condition (7.2.7) is always solvable as long as the

obstacle does not hold the ending position qf infinitely long.

Proof. Note that the left hand side of (7.2.7) is a parabola equation and g2(x, k) ≥ 0. In

the case that g2(x, k) > 0, (7.2.7) is always solvable. So one only needs to study what

happens when g2(x, k) = 0. A simple observation is that when g2(x, k) = 0, there is also

g1(x, k, τ) = 0, therefore ak
4 no longer appears in the inequality (7.2.7), which shows that no

matter what ak
4 is chosen, it can’t affect the collision avoidance. It further implies that the

117

polynomial parameterized trajectory (7.2.4) is not affected by ak
4. This can only happen on

the two boundary points of the trajectory, which are fixed. Other points in between always

vary with respect to the choice of ak
4. These can be verified as:

y = ak
0 + ak

1x+ ak
2x

2 + ak
3x

3 + ak
4x

4

= h(x)(Bk)−1(Y k − Akak
4) + ak

4x
4

= [1 x x2 x3](Bk)−1Y k + ak
4[x

4 − h(x)(Bk)−1Ak]

= [1 x x2 x3](Bk)−1Y k + ak
4g2(x, k), (7.2.8)

(7.2.8) shows that (7.2.4) degenerated to a third-order polynomial no matter what ak
4 is.

This is impossible unless at the boundary points where boundary constraints must hold for

both third- and forth-order polynomials.

Moreover, in the case of g2(x, k) = 0, (7.2.7) reduces to g0(x, k, τ) ≥ 0, which equivalently

requires the boundary points are free of obstacles. For the starting position, it would be

always true. For the ending position, one can extend τ (which means the mission time is

extended) until g0(x, k, τ) ≥ 0 holds. As long as the obstacle does not occupy the ending

position forever, g0(x, k, τ) ≥ 0 would hold for large τ .

If multiple moving obstacles present in the environment, every obstacle would impose a

constraint similar to (7.2.7) on ak
4. When ak

4 satisfies these constraints simultaneously, all

obstacles are avoided.

7.3 Cooperative Formation Controls

The objective for cooperative control is to ensure a group of dynamical systems (or error

systems) converge to the same steady state. In applications of the formation flying control, a

118

group of UAVs converge to a rigid formation when the error systems from a group of desired

trajectories converge to zero.

7.3.1 Formation Control of Multiple UAVs

Consider the problem of controlling a group of q UAVs with model (7.1.1) to form a rigid

formation during its fly. To synthesize the formation control, the first step is to feedback

linearize model (7.1.1). In following paragraphs, subscription i is used to denote the state and

controls of the ith UAV. Define the following diffeomorphic state and control transformations,

for i = 1, 2, · · · , q,

φi1 = xi + L cos(θi), φi2 = yi + L sin(θi),

and ⎡
⎢⎢⎣ γi1

γi2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ cos(θi) −L sin(θi)

sin(θi) L cos(θi)

⎤
⎥⎥⎦

⎡
⎢⎢⎣ vi

ωi

⎤
⎥⎥⎦ .

The UAV model can be casted into the following integrator model with stable internal

dynamics

φ̇i = γi, (7.3.1)

where φi = [φi1 φi2]
T and γi = [γi1 γi2]

T .

Along an arbitrary trajectory H , a formation can be defined by its Frenet frame FH(t),

which moves along the path. Let e1(t) ∈ �2 and e2(t) ∈ �2 be the orthonormal base of

FH(t), and φd(t) = [xd(t) yd(t)]T ∈ �2 be the origin of FH(t) that is on the trajectory. Fig.

7.4 illustrates a formation composed of three UAVs. A formation that is composed of q

119

Figure 7.4: A Formation Defined in the Frenet Frame

UAVs in FH(t) can be denoted by {P1(t), · · · , Pq(t)}, where

Pi(t) = di1(t)e1(t) + di2(t)e2(t), i = 1, · · · , q.

with di(t) = [di1(t), di2(t)] ∈ �2 as the desired coordinates for the ith UAV in FH(t). Ob-

viously, a rigid formation can be achieved by setting di(t) to be constant. Therefore, the

desired trajectory for the ith robot is:

φd
i (t) = φd(t) + Pi(t). (7.3.2)

Further define the following state transformation:

ζi(t) = φi − φd
i , γi = φ̇d

i − φi + φd
i + ui. (7.3.3)

It follows that

ζ̇i = Aiζi +Biui, ηi = Ciζi, (7.3.4)

where ui is the cooperative control for ith UAV, ηi is the output, and

Ai =

⎡
⎢⎢⎣ −1 0

0 −1

⎤
⎥⎥⎦ , Bi =

⎡
⎢⎢⎣ 1 0

0 1

⎤
⎥⎥⎦ , Ci =

⎡
⎢⎢⎣ 1 0

0 1

⎤
⎥⎥⎦ .

120

(7.3.4) is in the canonical form of [59], therefore its cooperative control is given by:

ui =

q∑
j=1

Gij(t)[sij(t)ηj], i = 1, · · · , q, (7.3.5)

where sij(t) is the entry of sensing/communication matrices, Gij is a 2×2 block that reflects

the influence of jth output to the ith control in the gain matrix G. It can be obtained by

the following formula:

Gij(t) =
sij(t)∑q

k=1 sik(t)
Kc, j = 1, · · · , q, (7.3.6)

where the design parameter Kc ∈ �2×2 is a constant, non-negative, and row stochastic

matrix. The sensing/communication matrix is defined as:

S(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1(t)

S2(t)

...

Sq(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12(t) · · · s1q(t)

s21(t) s22 · · · s2q(t)

...
...

...
...

sq1(t) sq2(t) · · · sqq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where sii ≡ 1; sij(t) = 1 if the outputs of jth UAV is known by the ith UAV at time t;

otherwise sij(t) = 0.

7.3.2 Adaptive Cooperative Formation Controls

The formation control (7.3.5) does make the error states ζi converge, but the limit is not

necessarily at the origin, i.e. the formation may be shifted from its desired trajectory [59].

In order to achieve asymptotic convergence to a desired trajectory, a virtual UAV needs be

121

adopted into the group. The virtual UAV possesses the following properties:

ζ0 ≡ 0, η0 ≡ 0,

which indicates the virtual UAV is always on the desired trajectory. The virtual UAV and

other real UAVs interact through the following augmented sensing/communication matrix:

S(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

s10

... S(t)

sq0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the first row/column reflects effects of the virtual vehicle. Correspondingly, the coop-

erative formation controls become:

ui =

q∑
j=0

sij(t)∑q
k=0 sik(t)

Kc[sij(t)ηj], i = 1, · · · , q. (7.3.7)

7.3.3 Circular Trajectories and Arbitrary Trajectories

The formation control design scheme presented in section 7.3.1 and 7.3.2 requires a desired

trajectory to be specified. In this section, the methods of generating the desired trajectories

are discussed.

For the simple case of a circular trajectory, it can be parameterized as:

φd(t) = [xc +R cos(ωt), yc +R sin(ωt)]T ,

122

where (xc, yc) is the center of the trajectory. R is the radius of the trajectory and ω is the

circling rate. The moving frame of the trajectory is:

e1(t) =

⎡
⎢⎢⎣ − sin(ωt)

cos(ωt)

⎤
⎥⎥⎦ , e2(t) =

⎡
⎢⎢⎣ cos(ωt)

sin(ωt)

⎤
⎥⎥⎦ .

Therefore the desired trajectories for the whole formation are given by (7.3.2).

In most cases, it is desired that a group of UAVs fly through a set of specified waypoints.

Suppose there are n waypoints (xw
j , y

w
j), j = 1, · · · , n. The following Lagrange interpolating

polynomial can be adopted to determine a path:

yd(xd) =

n∑
j=1

yw
j

g(xd)

(xd − xw
j)g′(xw

j)
, (7.3.8)

where g(xd) = (xd − xw
1)(xd − xw

2) · · · (xd − xw
n).

Assuming the formation has a desired cruise speed Vs(t), and the desired trajectory starts

from the waypoint (xw
1 , y

w
1) at time t0, then the trajectory of the Frenet frame can be given

as: ⎧⎪⎪⎨
⎪⎪⎩

xd(t) = xw
1 +

∫ t

t0
Vs(t)√

1+(dyd/dxd)2
dt

yd(t) = yw
1 +

∫ t

t0
Vs(t)√

1+(dxd/dyd)2
dt

,

which can be numericly integrated online in computer implementation. The orthonormal

base of the Frenet frame can be given as:

e1(t) =

⎡
⎢⎢⎣

1√
1+(dyd/dxd)2

dyd/dxd√
1+(dyd/dxd)2

⎤
⎥⎥⎦ , e2(t) =

⎡
⎢⎢⎣

−dyd/dxd√
1+(dyd/dxd)2

1√
1+(dyd/dxd)2

⎤
⎥⎥⎦ .

Then (7.3.2) gives the desired trajectories for the whole group of UAVs and the formation

control can be designed through the procedure presented in Section 7.3.1 and Section 7.3.2.

123

7.3.4 Internal and External Collision Avoidance

In the formation flying control, one would always specify the desired position of each UAV in

the formation in a way that they do not collide with each other. However, in transient, control

(7.3.7) by itself cannot guarantee that there is no collision among UAVs. These collisions are

referred as internal collisions in the formation. Also, the UAV formation may collide with

obstacles, which is referred as external collisions. To handle the collision avoidance problem,

the controls need be improved.

The collision avoidance scheme is adding supplemental terms to control (7.3.7). These

terms are going to provide a negative feedback using the distances among all entities. The

basic idea is to think all entities have a layer of elastic massless substance surrounded.

So, when UAVs and obstacles get close, they resist each other to get closer. This can be

illustrated by Fig. 7.5. Denote the collision-free formation control by u′i, i = 1, · · · , q.

Figure 7.5: Collision avoidance for UAV formations

Correspondingly, in (7.3.3), ui needs be replaced by u′i. Consider the scenario of q UAVs

with their radius of envelop ri, i = 1, · · · , q and n obstacles with their radius of envelop

124

Ri, i = 1, · · · , n and center at oi = [xoi yoi]
T . u′i is proposed to be:

u′i = ui +

q∑
k=1,k 	=i

ρ1(‖Dik‖)
Dik

‖Dik‖
+

n∑
k=1

ρ2(‖Eik‖)
Eik

‖Eik‖
, (7.3.9)

with Dik = φi − φk, Eik = φi − ok and

ρ1(‖Dik‖) =

⎧⎪⎪⎨
⎪⎪⎩

αi
li−‖Dik‖

‖Dik‖−(ri+rk)
, ‖Dik‖ < li

0, ‖Dik‖ ≥ li

,

ρ2(‖Eik‖) =

⎧⎪⎪⎨
⎪⎪⎩

αi
li−‖Eik‖

‖Eik‖−(ri+Rk)
, ‖Eik‖ < li

0, ‖Eik‖ ≥ li

,

where αi > 0 is the elastic coefficient of ith UAV, li is the range of ith UAV’s elastic layer

within which the resist force is available. Note that there must be li > ri+rk and li > ri+Rk,

which means the resist force starts work before the UAV’s collision.

7.4 Simulations

The simulation platform is developed by MSVC++ 6. The scenario has six UAVs in a

rectangular region. In the first part of the simulation, the six UAVs coverage search the

entire area. In the second part, The six UAVs will converge to a rigid formation and fly

through some waypoints. Fig. 7.6 is a flow chart of the simulation platform.

In the first part of the simulation (searching), a minimum number of circles are placed

the area. Each circle has the same size as the sensing range [17]. The combination of

the circles covers the whole region. Centers of these circles are considered as waypoints

to be traveled. Each UAV finds a set of waypoints to follow. This is accomplished by a

125

Figure 7.6: Flow-chart of the Simulation Platform

Voronoi diagram, which adds every waypoint to the nearest UAV. Lastly, every UAV selects

the nearest waypoint in its set as its first waypoint to move, then travel to the nearest

unvisited waypoint that is most clockwise relative to its previous one. This method renders

a counterclockwise path. Fig. 7.7 shows the set waypoints assigned to each UAV, and line

segments are connected to show a rough path.

126

Figure 7.7: Waypoints for Each UAV

7.4.1 Simulation Settings

This section illustrates settings of the simulation scenario. The sensing/communication

matrix randomly switch among the following matrices at each sampling period:

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The row stochastic matrix Kc in (7.3.6) is:

Kc =

⎡
⎢⎢⎣ 0 1

1 0

⎤
⎥⎥⎦

127

The coordinates of the operation region are listed in Table 7.1. The initial settings of

UAVs are given in Table 7.2. The positions of static obstacles are given in Table 7.3.

Table 7.1: Map Coordinates

Horizontal(miles) Vertical(miles)

Bottom-left 0 0

Top-left 0 75

Top-right 100 75

Bottom-right 100 0

Table 7.2: Initial Configuration of UAVs

Horizontal(miles) Vertical(miles) Heading(RAD)

UA 1 −3 31 −π/12

UA 2 28 78 −7π/12

UA 3 64 78 −7π/12

UA 4 103 46 11π/12

UA 5 72 −3 5π/12

UA 6 36 −3 5π/12

7.4.2 Simulation Results

Simulation results are illustrated in Fig. 7.8 to Fig. 7.11. Fig. 7.8 shows the searching part.

Every UAV searches a subset of the region and render the region with a distinct color. If a

target is identified, the corresponding circle becomes red and its coordinates are stored. Fig.

128

Table 7.3: Static Obstacles

Static Obs. 1 Static Obs. 2

Vertex 1 29 18 65 64

Vertex 2 19 13 64 52

Vertex 3 21 9 75 58

Vertex 4 29 9 74 64

Vertex 5 30 15 70 66

7.9 shows the UAVs are traveling through a set of waypoints to targets with a two-column

formation. Fig. 7.10 shows the UAVs are traveling through a set of waypoints to targets

with a triangular formation. Fig. 7.11 shows two groups of UAVs are patrolling around

targets in rigid formations.

Figure 7.8: UAVs in Searching.

129

Figure 7.9: UAVs Traveling through Waypoints with A Two-column Formation.

Figure 7.10: UAVs Traveling through Waypoints with A Triangular Formation.

130

Figure 7.11: UAVs Patrolling in Triangular Formations.

7.5 Conclusion

This chapter proposed a solution for real-time motion planning and formation control for

groups of UAVs. The trajectory planning is polynomial parametric. By satisfying boundary

conditions, the trajectories can be expressed in terms of a design parameter, which can

be chosen to find a collision-free trajectory. For the coverage searching mission, firstly,

the operation area is divided into sub-areas according to the Voronoi diagram, i.e. each

circle belongs to the closest UAV. Then each UAV works in its own region by repeat the

trajectory planning approach between every pair of consecutive waypoints until all waypoints

are visited. In the formation control part, for any arbitrary trajectory, its trajectory can

be parameterized by the Lagrangian polynomial (7.3.8) and a formation is defined in local

coordinate systems and the desired trajectory for each UAV are determined by (7.3.2),

and the formation control is given by (7.3.9). Collision avoidance mechanisms are adopted

131

to avoid potential internal or external collisions. Simulations are conducted to verify the

effectiveness of proposed approaches.

132

CHAPTER 8
CONCLUSION AND FUTURE WORK

In this dissertation, we studied nonholonomic systems for its control design and some appli-

cations on robotics. Specifically, the following subjects are investigated:

1. Smooth, time-varying, pure feedback regulation of chained nonholonomic systems. In

this research subject, a new feedback design framework is proposed based on a novel

global state-scaling transformation. The obtained controls are also inverse optimal

with respect to certain quadratic performance index. This design is unique because it

has all of the following nice properties at the same time: smooth, time-varying, pure

feedback, and exponential converging without oscillations.

2. Feedback stabilization problem of chained nonholonomic systems with input constraints.

In this research subject, a novel global asymptotic stable control law is proposed to deal

with the input saturation constraints. In literature, this problem is rarely addressed,

so this design is a contribution to the controls in this category.

3. Optimal, collision-free motion planning and tracking of nonholonomic robots. In this

research subject, parametric trajectories are proposed to searching for an optimal and

collision-free path and back-stepping technique is used to derive dynamic tracking

controls. The merits of this design is to reduce a 3D planning problem to a 2D problem,

133

and a close form solution for trajectory and control can be solved by optimizing certain

performance index.

4. Coordinated exploration and formation control of multiple unmanned aerial vehicles.

In this research subject, coverage searching and formation control algorithms are de-

veloped via feedback linearization of the robot’s dynamic models. Collision avoidance

mechanisms are implemented and verified. The coordinated searching is optimized

in the sense that the searching area is divided according to a Voronoi diagram. The

collision avoidance is achieved by combining conventional controls and potential fields.

However, it is not a closure of this work. The popular topics on robot navigation and

controls have been widely studied and plenty of results are obtained. Generally, motion

planning approaches can be divided into the following classes: 1, Reactive approach based

on potential fields. 2, Heuristic searching. 3, Parametric trajectory. 4, Some searching based

algorithms combined with potential fields. Cooperative control of multi-agent systems is a

relatively new subject, two types of general design framework have been developed in recent

years, one is based on the graph theory and the other is based on the matrix theory. The

two approaches are equivalent in the sense that their necessary and sufficient conditions for

convergence are equivalent. However, most of these discussions are based on simplified system

model and some ideal assumptions. While the solutions are sound in theory, there could be

extra challenges if one considers more practical situations. Some typical such challenges can

be summarized into the following cases:

134

1. A ground robot has a velocity limit and a curvature limit, for an unmanned aerial

vehicle (UAV), it cannot fly backward or even too slow. What is the impact on collision

avoidance tasks?

2. In a formation/consensus control case, how to incorporate a successful collision avoid-

ance mechanism into existing frameworks to avoid collisions inside the formation as

well as avoiding collisions with external obstacles, and based on this, how to deal with

actuator saturation effects?

3. If multiple moving obstacles approach simultaneously, what conditions and strategies

would be sufficed for robots to evade?

4. There could be communication imperfectness, parameter variations, sensor noise, un-

certainties or neglected dynamics in the system, disturbance attenuation and robust-

ness need be considered in practical applications.

My experience from previous researches indicates that the velocity constraint and curva-

ture constraint add significant challenge to the task of real-time collision avoidance. In the

case of navigation tasks, the existing techniques, such as the potential fields approach, has

local minima problem, and if the number of entities is large, this problem becomes headache

even not to consider the constraints. For heuristic searching approach such as A* and D*,

one concern is the computational requirements which might not be met by on-board comput-

ers, the other concern is that robots dynamic models are not considered, therefore a collision

free path may not meet these constraints at all. For some parametric approaches, the control

135

can be obtained in closed form, which is good for real-time implementation. However, there

is no guarantee that the parametric trajectory will meet the constraints either, and the close

form solution is fragile to sensor noises and uncertainties in dynamic models. In the case

of formation or consensus controls, the cooperative controller is in closed form. One could

incorporate the concept of potential fields to the robots and obstacles to obtain additional

terms for the controls to handle the obstacles, however there is no guarantee that the obsta-

cles can be avoided due to the velocity and curvature constraints, especially when multiple

moving obstacles approach simultaneously. As each single existing technique couldn’t solve

the collision avoidance problem satisfactorily, innovative thinking is needed and more com-

plex controllers needs be constructed. A primitive thought is to use them as a combination:

to take advantage of their merits and avoid their weaknesses. Even more, one might take the

artificial intelligence and computational geometry algorithms into the scenario and help to

make decision in realtime. Considering current status of researches in the related fields and

the existing challenges, in the near future, I would like to work on the following subjects:

1. Cooperation and coordination of multi-agent systems.

2. Collision avoidance mechanisms with actuator limitations for complex dynamic envi-

ronments.

3. Design nonlinear and optimal regulation and tracking controllers.

4. Design robust and/or adaptive controllers to handle uncertainties, disturbance, param-

eter variations, neglected dynamics or communication imperfectness.

136

5. Implement optimal state estimation through Kalman filtering, H-infinity filtering or

other nonlinear approaches.

6. Implement software and hardware platforms for experimental verification and valida-

tion purpose.

137

LIST OF REFERENCES

[1] Arinaga S, Nakajima S, Okabe H, Ono A, Kanayama Y. A Motion Planning Method
for an Auv. Proc. Symposium on AUV Technology, Monterey, CA, USA, June 1996, pp.
477-484.

[2] Astolfi A. Discontinuous control of nonholonomic systems. Systems & Control Letters,
1996, 27:37-45.

[3] Bacciotti A. Local Stabilizability of Nonlinear Control Systems. World Scientific, Singa-
pore, 1992.

[4] Barisic M, Vukic Z, Miskovic N. Kinematic Simulative Analysis of Virtual Potential Field
Method for AUV Trajectory Planning. Proc. Mediterranean Conference on Control &
Automation, Athens, Greece, July 2007, pp. 1-6.

[5] Barraquand J, Latombe JC. On nonholonomic mobile robots and optimal maneuvering.
Revue d’Intelligence Artificielle vol.3, no.2, pp. 77-103, 1989.

[6] Bloch A, Reyhanoglu M, McClamroch NH. Control and stabilization of nonholonomic
dynamic systems. IEEE Trans. on Auto Contr., 1992, 37:1746-1757.

[7] Bortoff S. Path planning for UAVs. Proc. 2000 American Control Conference, Chicago,
IL, June 2000, pp. 364-368.

[8] Breivik M, Fossen T. Principles of Guidance-Based Path Following in 2D and 3D. Proc.
44th IEEE International Conference on Decision and Control, and the European Control
Conference, Seville, Spain, Dec. 2005, pp. 627-634

[9] Brockett RW. Asymptotic stability and feedback stabilization. Differential Geometric
Control Theory, 1983, pp. 181-191.

[10] Canudas de Witt C, Khennouf H. Quasi-continuous stabilizing controllers for non-
holonomic systems: Design and robustness considerations. Proceedings of the European
Control Conference, 1995.

[11] Chuang J. Potential-Based Modeling of Three-Dimensional Workspace for Obstacle
Avoidance, IEEE Trans. on Robotics and Automation, 1998, 14, 5:778-785.

[12] Chung C, Saridis G. Path Planning for an Intelligent Robot by The Extended Vgraph
Algorithm. Proc. IEEE international Symposium on Intelligent Control, Albany, NY,
Sept. 1989, pp. 544-549.

138

[13] Ding F, Jiao P, Bian X, Wang H. AUV Local Path Planning Based on Virtual Potential
Field. Proc. IEEE International Conference on Mechatronics and Automation, Niagara
Falls, Canada, July 2006, pp. 1711-1716.

[14] Fossen TI. Guidance and Control of Ocean Vehicles. New York, Wiley, 1994.

[15] Fujimura K. A Hierarchical Strategy for Path Planning Among Moving Obstacles.
IEEE Trans. on Robotics and Automation, 1989, 5:61-69.

[16] Grimm G, Teel AR, Zaccarian L. The l2 anti-windup problem for discrete time linear
systems: Definition and solutions. Systems & Control Letters, 2008; 57:356-364.

[17] Guo Y, Qu Z. Coverage control for a mobile robot patrolling a dynamic and uncertain
environment. 5th World Congress on Intelligent Control and Automation, Hangzhou,
China, Jan.15-19, 2004.

[18] Herman M. Fast, Three-Dimensional, Collision-Free Motion Planning. Proc. IEEE
International Conference on Robotics and Automation, San Francisco, CA, Apr. 1986 ,
pp. 1056-1063.

[19] Hu T, Teel AR, Zaccarian L. Anti-windup synthesis for linear control systems with input
saturation: Achieving regional, nonlinear performance. Automatica, 2008, 44:512-519.

[20] Hwang Y, and Ahuja N. A Potential Field Approach to Path Planning, IEEE Trans.
on Robotics and Automation, 1992, 8, 1:23-32.

[21] Isidori A. Nonlinear Control Systems. Springer-Verlag, Berlin, 1995.

[22] Jacob G. Motion planning by piecewise constant or polynomial inputs. Proc. Nonlinear
Contr. Syst. Design Symp., Bordeaux, France, June 1992, pp. 628-633.

[23] Jadbabaie A, Lin J, Morse, AS. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Trans. on Automatic Control, 48:988-1001.

[24] Jiang ZP. Robust exponential regulation of nonholonomic systems with uncertainties.
Automatica, 2000, 36:189-209.

[25] Jiang ZP, Lefeber E, Nijmeijer H. Saturated stabilization and tracking of a nonholo-
nomic mobile robot. System & Control Letters, 2001, 42:327-332.

[26] Judd B, Mclain W. Spline Based Path Planning for Unmanned Air Vehicles. AIAA
Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, Aug
2001, AIAA-2001-4238

[27] Khalil H. Nonlinear Systems, 3rd ed. NJ: Prentice-Hall, Upper Saddle River, 2002.

139

[28] Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Inter-
national Journal of Robotics Research, 1986, 5, 1:90-98.

[29] Kitamura Y, Tanaka T, Kishino F, Yachida M. 3-D Path Planning in a Dynamic
Environment Using an Octree and an Artificial Potential Field. IEEE International
Conference on Intelligent Robots and Systems, Pittsburgh, USA, Aug 1995, pp. 474-481

[30] Kolmanovsky I, McClamroch H. Developments in nonholonomic control problems.
IEEE Control Systems Mag. 1995, 6:20-36.

[31] Kothare MV, Campo PJ, Morari M, Nett CN. A unified framework for the study of
anti-windup designs. Automatica, 1994, 30:1869-1883.

[32] Krstic M, Kanellakopoulos I, Kokotovic PV. Nonlinear and Adaptive Control Design.
Wiley, New York, 1995.

[33] Kyriakopoulos K, Kakambouras P, Krikelis N. Potential Fields for Nonholonomic Vehi-
cles. Proc. IEEE International Symposium on Intelligent Control, Monterey, CA, Aug.
1995, pp. 461-465

[34] Lafferriere G, Sussmann HJ. Motion planning for controllable systems without drift.
Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, California, Apr. 1991, pp.
1148-1153.

[35] Lafferriere G. A general strategy for computing controls of systems without drift. Proc.
Proc. 30th Conf. Decis. Contr., Brighton, England, Dec. 1991, pp. 1115-1120.

[36] Laiou M, Astolfi A. Quasi-smooth control of chained systems. Proceeding of the Amer-
ican Control Conference, San Diego, pp. 3940-3944.

[37] Laumond JP. Feasible trajectories for mobile robots with kinematic and environment
constraints. Proc. Int. Conf. Intelligent Autonomous Syst, Amsterdam, The Netherlands,
1986, pp. 346-354.

[38] Laumond JP. Finding collision-free smooth trajectories for a nonholonomic mobile
robot. 10th Int. Joint Conf. Artificial Intelligence, Milano, Italy, 1987, pp. 1120-1123.

[39] Laumond JP, Taix M, Jacobs P. A motion planner for car-like robots based on a mixed
global/local approach. Proc. Int. Conf. Intelligent Robots Syst, Japan, 1990, pp. 765-773.

[40] Lin W. Time-varying feedback control of nonaffine nonlinear systems without drift.
System & Control Letters, 1996, 29, pp. 101-110.

[41] Lin Z, Brouchke M, Francis B. Local control strategies for groups of mobile autonomous
agents. IEEE Trans. on Automatic Control, 49:622-629.

140

[42] Luo J, Tsiotras P. Control design for chained-form systems with bounded inputs. Sys-
tem & Control Letters, 2000, 39:123-131.

[43] March N, Alamir M. Discontinuous exponential stabilization of chained form systems.
Automatica, 2003, 39:343-348.

[44] Marc N, Hably A. Global stabilization of multiple integrators with bounded controls.
Automatica, 2005, 41:2147-2152.

[45] M’Closkey RT, Murray RM. Exponential Stabilization of Driftless Nonlinear Control
System Using Homogeneous Feedback. IEEE Trans. on Automatic Control, 1997, 42:614-
628.

[46] M’Closkey RT, Murray RM. Exponential stabilization of driftless nonlinear control
system. Systems & Control Letters, 2000, 39:123-131.

[47] Monaco S, Normand-Cyrot D. An introduction to motion planning under multirate
control. Proc. 31th Conf. Decis. Contr., Tucson, AZ, Dec. 1992, pp. 1780-1785.

[48] Moreau L. Leaderless coordination via bidirectional and unidirectional time-dependent
communication. Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii.

[49] Murray RM and Sastry SS. Nonholonomic motion planning: Steering using sinusoids.
IEEE Trans. on Automatic Control, 1993, 38:700-716.

[50] Nakamura Y, Savant S. Nonlinear Tracking Control of Autonomous Underwater Vehi-
cles. Proc. IEEE International Conference on Robotics and Automation, Nice, France,
1992, pp. A4-A9

[51] Narendra KS, Annaswamy AM. Stable Adaptive Systems. Prentice Hall, Englewood
Cliffs, NJ., 1989.

[52] Nijmeijer H, Van der Schaft AJ. Nonlinear Dynamical Control Systems. Springer,
Berlin, 1990.

[53] Nilsson NJ, Principles of Artificial Intelligence, Tioga Publishing Company, 1980.

[54] Pomet JB. Explicit design of time-varying stabilizing control laws for a class of control-
lable systems without drift. Systems & Control Letters, 1992, 18:147-158.

[55] Qu Z. Robust Control of Nonlinear Uncertain Systems. Wiley-InterScience, 1998.

[56] Qu Z, Wang J, Plaisted CE. A new analytical solution to mobile robot trajectory
generation in the presence of moving obstacles. IEEE Transactions on Robotics, 2004,
20:978-993.

141

[57] Qu Z, Wang J, Plaisted CE, Hull RA. Global-stabilizing near-optimal control design
for nonholonomic chained systems. IEEE Transactions on Automatic Control, 2006,
51:1440-1456.

[58] Qu Z, Wang J, Hull RA, Martin J. Continuous and Inverse Optimal Control Design for
Chained Systems. Optimal Control Application and Methods, 2008, 1:1-25.

[59] Qu Z, Wang J, Hull RA. Cooperative control of dynamical systems with application to
autonomous vehicles. Submitted to IEEE Transactions on Automatic Control

[60] Repoulilas F, Papadopoulos E. Three Dimensional Trajectory Control of Underactuated
AUVs. Proc. of the European Control Conference 2007, Kos, Greece, July, 2007, ppl
3492-3499

[61] Ren, W. Simulation and Experimental Study of Consensus Algorithms for Multiple
Mobile Robots with Information Feedback. Intelligent Automation and Soft Computing,
1:73-87, 2008.

[62] Reyhanoglu M, Cho S, McClamroch N, Kolmanovsky I. Discontinuous feedback control
a planar rigid body with an underactuated degree of freedom. Proceedings of the 37th
Conference on Decision and Control, 1998, pp. 433-438.

[63] Reynolds CW. Flocks, herds, and schools: a distributed behavioral model. Computer
Graphics (ACM SIGGRAPH 87 Conference Proceedings), 21(4):25-34.

[64] Samson C. Control of chained systems: Application to path following and time-varying
point-stabilization of mobile robots. IEEE Trans. on Automatic Control, 1995, 40:64-77.

[65] Stentz A. Optimal and efficient path planning for partially-known environments. IEEE
International Conference on Robotics and Automation, May 1994.

[66] Stentz A. The Focussed D* Algorithm for Real-Time Replanning. Proceedings of the
International Joint Conference on Artificial Intelligence, August 1995.

[67] Sussmann HJ, Sontag ED, Yang Y. A general result on the stabilization of linear system
using bounded controls. IEEE Transactions on Automatic Control, 1994, 12:2411-2425.

[68] Teel AR. Global stabilization and restricted tracking for multiple integrators with
bounded controls. Systems & Control Letters, 1992, 18:165-171.

[69] Teel AR, Murray RM, Walsh G. Nonholonomic control systems: from steering to
stabilization with sinusoids. Proceedings of the 31st IEEE Conference on Decision and
Control, Tucson, Arizona, 1992, pp. 1603-1609.

[70] Tian YP, Li S. Smooth exponential stabilization of nonholonomic systems via time-
varying feedback. Proceedings of the 39th IEEE Conference on Decision and Control,
Sydney, 2000, pp. 1912-1917.

142

[71] Valenciaga F, Puleston P, Calvo O, Acosta G. Trajectory Tracking of the Cormoran
AUV Based on a PI-MIMO Approach. Oceans’07, Aberdeen Scotland, June, 2007, pp.
1-6.

[72] Vicsek T, Czirok A, Jacob EB, Cohen I, Shochet O. Novel type of phase transition in
a system of self-driven particles. Physical Review Letters, 75:1226-1229.

[73] Warren C. A Technique for Autonomous Underwater Vehicle Route Planning. IEEE
Trans. of Oceanic Engineering, 1990, 15,3:199-204.

[74] Wang Y, Lane D. Subsea Vehicle Path Planning Using Nonlinear Programming and
Constructive Solid Geometry. IEE proceedings-Control Theory and Applications, 1997,
2:143-152.

[75] Yang J, Daoui A, Qu Z, Wang J. An Optimal and Real-Time Solution to Parameter-
ized Mobile Robot Trajectories. Proc. IEEE International Conference on Robotics and
Automation, Barcelona, Spain, April. 2005, pp. 4412-4417.

[76] Yuan H, Yang J, Qu Z, Kaloust J. An Optimal Real-time Motion Planner for Vehicles
with a Minimum Turning Radius. The 6th World Congress on Intelligent Control and
Automation, Dalian, China, June 21-23, 2006.

[77] Yuan H, Gottesman V, Qu Z, Falash M, Pollak E, Chunyu J. Cooperative Formation
Flying in Autonomous Unmanned Air Systems with Application to Training. The 7th
International Conference on Cooperative Control and Optimization, Gainesville, Florida,
Jan.31-Feb.2, 2007.

[78] Yuan H, Qu Z. Design of An Experimental Testbed for Supervisory Control of Multiple
Cooperative Controlled Vehicles. 2008 IEEE International Conference on Distributed
Human-Machine Systems, Athens, Greece, March 9-12, 2008.

[79] Yuan H, Qu Z. Continuous Time-Varying Pure Feedback Control for Chained Nonholo-
nomic Systems with Exponential Convergent Rate. 17th IFAC World Congress, Seoul,
Korea, 2008.

[80] Zhang Q. A Hierarchical Global Path Planning Approach for AUV Based on Genetic
Algorithm. Proc. IEEE International Conference on Mechatronics and Automation, Lu-
oyang, China, June 2006, pp. 1745-1750.

[81] Zhou B, Duan GR. Global stabilization of linear systems via bounded controls. Systems
& Control Letters, 2009, 58:54-61.

143

	Control Of Nonh=holonomic Systems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION TO NONHOLONOMIC SYSTEMS
	1.1 Definition Of Nonholonomic Systems
	1.2 Some Examples Of Nonholonomic Systems
	1.2.1 The Unicycle or UAV Kinematic Model
	1.2.2 Car-like Robots
	1.2.3 Hopping Robots
	1.2.4 The Origin of Nonholonomy

	1.3 Canonical Forms Of Nonholonomic Systems

	CHAPTER 2 CONTROLLABILITY OF NONHOLONOMIC SYSTEMS
	2.1 Nonlinear Controllability Analysis Based On Lie Bracket
	2.2 Interpretation Of Lie Brackets From Control Viewpoint
	2.3 Controllability Of Chained Systems
	2.4 Difficulties In Nonholonomic Controls

	CHAPTER 3 REVIEW OF NONHOLONOMIC CONTROLS
	3.1 Open Loop Controls
	3.2 Discontinuous Feedback Controls
	3.3 Time-Varying Continuous Controls

	CHAPTER 4 SMOOTH PURE FEEDBACK STABILIZATION OF CHAINED NONHOLONOMIC SYSTEMS
	4.1 Problem Formulation
	4.2 Global State Scaling Transformation And Control Design Scheme
	4.2.1 Design of Control Component u1
	4.2.2 A Global State Transformation
	4.2.3 Design of Control Component u2

	4.3 Optimal Performance
	4.4 Design Examples
	4.5 Simulations And Comparisons With Other Existing Controls
	4.6 Conclusion

	CHAPTER 5 SATURATED CONTROL OF CHAINED NONHOLONOMIC SYSTEMS
	5.1 Problem Formulation
	5.2 The Saturated Control Design
	5.2.1 The Control Design u1 and u2
	5.2.2 Choice of k and d

	5.3 Simulations
	5.4 Conclusion

	CHAPTER 6 OPTIMAL REAL-TIME COLLISION-FREE MOTION PLANNING FOR NONHOLONOMIC AUVS IN A 3D UNDERWATER SPACE
	6.1 Problem Formulation
	6.1.1 The Kinematic Model
	6.1.2 The Trajectory Planning Problem

	6.2 Real-Time Trajectory Planning For AUVs
	6.2.1 Trajectory Planning without Obstacles
	6.2.2 Trajectory Planning with Obstacles
	6.2.3 Optimal Solution of Candidate Trajectories
	6.2.4 Solution and Solvability

	6.3 Simulation Results
	6.3.1 Single Obstacle
	6.3.2 Multiple Obstacles

	6.4 Torque Level Tracking Control Of 3D trajectories
	6.4.1 The Kinematic Tracking Controller
	6.4.2 The Dynamic Tracking Control Design
	6.4.3 Simulation Results

	6.5 Conclusion

	CHAPTER 7 COORDINATED EXPLORATION AND FORMATION CONTROL FOR MULTIPLE UNMANNED AERIAL VEHICLES (UAVS)
	7.1 Problem Formulation
	7.2 Motion Planning
	7.2.1 Parametric Feasible Trajectories
	7.2.2 Motion Planning for Avoiding Static/Dynamic Obstacles

	7.3 Cooperative Formation Controls
	7.3.1 Formation Control of Multiple UAVs
	7.3.2 Adaptive Cooperative Formation Controls
	7.3.3 Circular Trajectories and Arbitrary Trajectories
	7.3.4 Internal and External Collision Avoidance

	7.4 Simulations
	7.4.1 Simulation Settings
	7.4.2 Simulation Results

	7.5 Conclusion

	CHAPTER 8 CONCLUSION AND FUTURE WORK
	LIST OF REFERENCES

