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ABSTRACT 

A true linearized interferometric intensity modulator for pulsed light has been proposed 

and experimentally presented in this thesis. This has been achieved by introducing a mode-locked 

laser into one of the arms of a Mach-Zehnder interferometer and injection-locking it to the input 

light (which is pulsed and periodic). By modulating the injection-locked laser, and combining its 

output light with the light from the other arm of interferometer in quadrature, one can achieve true 

linearized intensity modulator. This linearity comes from the arcsine phase response of the 

injection-locked mode-locked laser (as suggested by steady-state solution of Adler’s equation) 

when it is being modulated.  

Mode-locked lasers are fabricated using a novel AlGaInAs-InP material system. By using 

the BCB for planarization and minimizing the metal pad size and directly modulating the laser, we 

have achieved very effective fundamental hybrid mode-locking at the repetition rate of ~ 23 GHz.  

This laser also provided the short pulses of 860 fs and 280 fs timing jitter integrated from 1 Hz- 

100 MHz. 

The linearized intensity modulator has been built by using two identical two-section mode-

locked lasers with the same length, one as the slave laser in one of the arms of the Mach-Zehnder 

interferometer injection-locked to the other one as the master which is the input light to the 

modulator. A low Vπ of 8.5 mV is achieved from this modulator. Also the current of the gain 

section or the voltage of the saturable absorber section of the slave laser has been used to apply 

the modulation signal. A spur free dynamic range of 70 dB.Hz2/3 is achieved when modulating the 

modulator through the saturable absorber. Modulating the saturable absorber provides a reduced 
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third-order intermodulation tone with respect to modulating the gain. This is simply because of the 

unwanted amplitude modulation created when modulating the gain section current. 

Finally an improved design is proposed and demonstrated to improve the modulator 

performance. This is achieved by introducing a third section to the laser. Using the impurity free 

vacancy disordering technique the photoluminescence peak of this section is blue-shifted 

selectively and therefore there would not be any absorption in that passive section. By applying 

the modulation signal to this passive section rather than applying it to the gain section or saturable 

absorber section, the amplitude and phase modulation could be decoupled. The experimental 

results have presented here and an almost six-fold reduction in Vπ and 5 dB improvement in spur 

free dynamic range have been achieved. The proposed and demonstrated configuration as an 

analog optical link has the potential to increase the performance and resolution of photonic analog-

to-digital converters. 
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1. INTRODUCTION 

 

 Photonic analog to digital conversion 

Photonic ADCs are desirable for high speed and high performance sampling and 

digitization of microwave signals. They could potentially eliminate the required mixing and 

filtering stages of the radio frequency (RF) carriers (down-conversion) used in low speed 

conventional electrical ADCs and could provide a smaller size and weight, lower cost, wider 

instantaneous bandwidth, and increased reliability [1, 2]. 

Most of the suggested photonic ADCs configuration contain an analog optical link between 

their RF input and the digital output [3, 4]. An analog optical link consists of an optical source, a 

modulator, and a photodiode as shown in Figure 1-1. Usually a semiconductor laser or a fiber 

mode-locked laser is used as the source and an external LiNbO3 Mach-Zehnder interferometer is 

used to impress the RF input signal on the optical signal. In some configuration the laser source 

itself is modulated with the RF signal directly. In more general analog optical links, there is a long 

optical fiber between the photodiode and the electronics part. The performance of the analog 

optical link is limited by noise and nonlinearities. The carrier-to-noise ratio, CNR, of analog optical 

link is expressed as [5] 
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𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑚𝑚𝑚𝑚𝑚𝑚)2/2
(𝜎𝜎𝑠𝑠2+𝜎𝜎𝑡𝑡ℎ

2 +𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅
2 )

  (1-1) 

where σs, σth, and σRIN are standard deviations of the photodiode noise current associated 

with shot, thermal and relative intensity noise (RIN), m is the modulation depth of the electro-

optic modulator, R is the responsivity of the photodiode and P is the average optical power on the 

photodiode. 

 

Figure 1-1: Typical analog optical link [2] 

 

 Photonic sampled analog to digital conversion 

The use of a mode-locked laser for photonic sampling of RF signals first introduced by 

Taylor et al. [6]. The short pulse width and low pulse-to-pulse jitter of a mode-locked laser make 

them a very attractive tool for photonic sampling of RF signals. A photonic sampled ADC consists 

of a stable-mode locked laser, an electro-optic modulator (generally Mach-Zehnder LiNbO3 

modulator), and a high speed photodiode to deliver the electrical signal for the electronic ADC 

(Figure 1-2). This photonic sampled ADC incorporates an analog optical link to be able to sample 

the RF signal to a sampling time equal to the pulse width of the mode-locked laser and sampling 
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jitter equal to pulse to pulse jitter of the mode-locked laser. However the performance of this 

photonic sampled ADC is characterized by its SFDR, SNR, modulator bandwidth, and photodiode 

saturation current bandwidth. 

 

Figure 1-2: Photonic sampled and electronically quantized ADC [2] 

LiNbO3 electro-optic modulators are by far the most developed technologies used as 

optical modulator in analog optical links. The ability to handle high optical powers, low 

dependency on wavelength and temperature and high modulation bandwidth make the LiNbO3 

modulator a very attractive candidate [7]. However being used for photonic ADCs limits the 

overall resolution because of the following two main reasons: (1) The required voltage to get the 

maximum extinction (Vπ) is much higher than the voltage of the RF signal and thus RF amplifier 

with a high linear response is needed; (2) MZI has an inherent nonlinear transfer function. Among 

these, the associated nonlinear transfer function affects the resolution the most. To give an 

example, the created intermodulation tones (because of the nonlinearities) when driving the 

modulator with 25% depth of modulation limits the effective number of bits (ENOB) of the ADC 

to less than 4. Operating at a very low depth of modulation also decreases the dynamic range of 

the modulator significantly and for any significant number of bits, the least significant bit falls 
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below the thermal noise of the photodetector. There have been numerous reports on pre- or post-

distortion linearization techniques [8, 9] to increase the SFDR of these modulators, showing 7-8 

bits of resolution [10]. An ENOB of 9.8 has been shown in [11] using a very non-uniform 

quantization technique which incorporates additional components. These techniques make the 

photonic ADCs more complex and costly and do not achieve the required performance (more than 

10 effective bits) for many applications such as radar and surveillance. 

 External intensity modulation 

The external intensity modulators are categorized in two types based on the material and 

the effect incorporated; Electro-absorption modulators and electro-optics modulators. When 

discussing the external intensity modulators there are multiple parameters to be considered such 

as the voltage needed for the π phase shift (Vπ), the linearity of the transfer function, optical power 

handling capabilities and environmental stability. 

1.3.1. Electro-absorption modulators 

Electro-absorption modulators (EAM) as an external modulator have been used in optical 

fiber communication because of their low chirp and the ability to integrate them with the other 

semiconductor devices. Basically they are reverse biased p-i-n diodes which the absorption layer 

could be a bulk active region [12] or multiple quantum wells (MQWs) [13]. By applying an electric 

field perpendicular to the active region, the absorption edge in semiconductor shifts to the longer 

wavelength (red shift). For bulk active region case the effect is called Franz-Keldysh and for the 
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MQWs, it is called quantum-confined Stark effect (QCSE) [14]. MQWs electro-absorption 

modulators are much sharper (absorption band) and faster (when applying the electric field) 

compared to the bulk active region [13]. 

The main advantage of these modulators is the low driving voltage (Vπ). The Vπ as low as 

0.36 V at DC to > 20 GHz has been reported [15, 16]. However this modulator can handle only 2 

mW of optical power and for higher optical power, the Vπ also increases (1.1 V is required to 

handle 60 mW of optical power). Despite having low driving voltage, large bandwidth and 

monolithic integration capability, these modulators are sensitive to wavelength, temperature and 

optical power and also they exhibit large fiber coupled insertion loss (10-20 dB). 

 

Figure 1-3: Integrated DFB laser with Electro-absorption modulator 

1.3.2. Electro-optic modulators 

Electro-optic modulators are based on the Pockels effect [17] which is the linear change in 

the refractive index of material by applying an electric field. This effect has been observed in non-

centrosymmetric materials (mostly crystals and organic polymers).  
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Figure 1-4: An electro-optic intensity modulator. It uses the induced retardation between the two 

orthogonal polarizations of the light to control the light transmission through the output 

polarizer. 

This modulator consists of one input and one output polarizers and Pockels cell in between 

(Figure 1-4). The light passing through the input polarizer has two orthogonal components inside 

the crystal. Since the crystal is a birefringent material, these orthogonal components experience 

different refractive indices and create a fixed retardation. Also by applying an electric field, we 

will induce extra retardation as well. By adjusting the length of the crystal and with the electric 

field off, the crossed output polarizer blocks off the beam and by applying the voltage needed to 

have the π phase shift, the beam will pass through.  

∆Γ(V) = Γ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +  ∆Γ𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉)  (1-2) 

∆Γ𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉) = 𝑘𝑘0𝐿𝐿[Δ𝑛𝑛1(𝑉𝑉) − Δ𝑛𝑛2(𝑉𝑉)]  (1-3) 

The voltage required to change the induced retardation by a π is called half wave voltage,  

∆Γ(𝑉𝑉π) = π  (1-4) 

And so 

6 

 



∆Γ(𝑉𝑉) = π 𝑉𝑉
𝑉𝑉π

  (1-5) 

After passing the output cross polarizer the output intensity as the function voltage is: 

𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛2 �
Γ(𝑉𝑉)
2
� = 𝐼𝐼𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛2 �

π
2
V
𝑉𝑉π
�  (1-6) 

And if we have a driving voltage in the form of the 𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑚𝑚sin (𝑓𝑓𝑚𝑚𝑡𝑡), where Vm is the peak to 

peak voltage and fm is the frequency rate that we want to modulate the light with, then 

𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑖𝑖
2
�1 + 𝑠𝑠𝑠𝑠𝑛𝑛 �𝜋𝜋 V𝑚𝑚

𝑉𝑉π
sin (𝑓𝑓𝑚𝑚𝑡𝑡)��  (1-7) 

In the case of small signal modulation which Vm<<Vπ, the equation can be written as 

𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑖𝑖
2
�1 + 𝜋𝜋 V𝑚𝑚

𝑉𝑉π
sin (𝑓𝑓𝑚𝑚𝑡𝑡)�  (1-8) 

As can be seen for the small signal modulation the relation between the output light and the input 

voltage is linear as shown in Figure 1-5. 
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Figure 1-5: Modulated output light versus input modulating voltage for an electro-optic 

modulator 

 

Among all of the electro-optic modulators, the lithium niobate (LiNbO3) Mach-Zehnder 

modulator is the most developed one. This modulator has been commercialized over the past 

decade. As it is shown in Figure 1-6, the LiNbO3 crystal is placed in arms with the applied voltage. 

The waveguides are defined by Ti-indiffusion providing low loss and stable waveguides that could 

couple the light to the optical fiber with a very low loss. The insertion loss of the commercialized 

LiNbO3 modulators are about 4-7 dB. These modulators in comparison with electro-absorption 

modulators can handle higher optical powers, they are less dependent to temperature and 

wavelength and they respond to the frequencies as high as 100 GHz. However the driving voltage 

Vπ increases as we want to modulate with higher frequencies, for example it increases from about 
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1 V to 5.1 V in order to modulate with the frequency of 500 MHz to 70 GHz [18]. However driving 

voltages as low as 0.18 V has been demonstrated at 30 MHz [19]. 

 

Figure 1-6: Lithium-Niobate Mach-Zehnder Intensity modulator schematic 

 

In the Mach-Zehnder interferometer shown below with no voltage applied the beams on 

the two arms will be combined with no phase difference resulting unmodulated input light. Usually 

push-pull design has been used to introduce more efficiency. By applying voltage, there will be 

equal phase retardation but with different signs in each arm. So the phase difference between the 

arms is: 

∆𝜑𝜑(𝑉𝑉) = 2 2𝜋𝜋
𝜆𝜆0
Δ𝑛𝑛(𝑉𝑉)𝐿𝐿  (1-9) 

which L is the length of the each arm. By applying this phase difference to the Mach-Zehnder 

transfer function 

𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑛𝑛(1 + cos(Δ𝜑𝜑))  (1-10) 

We will have the transfer function of the intensity modulator: 
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𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑛𝑛 �1 + cos �2 2𝜋𝜋
𝜆𝜆0
Δ𝑛𝑛(𝑉𝑉)𝐿𝐿��  (1-11) 

By applying the required voltage for π phase shift difference between the arms the output intensity 

will be zero. So by applying a modulating voltage we can modulate the output light. 

The nonlinear transfer function of the Lithium-Niobate modulator limits the spur free 

dynamic range of the modulator (SFDR). The SFDR which is expressed in dBc is the ratio of the 

power of the carrier frequency to the power of the next largest noise or spurious harmonics of the 

carrier. In order to measure the SFDR of the modulator usually a combination of two RF 

frequencies with the same power is applied (f1 and f2) and the SFDR is the signal to noise ratio 

(SNR) without observing any noise or spurious harmonics above the noise floor of the system [20]. 

The spurious harmonics that could fall in the bandwidth of the system are the second (f1±f2) and 

the third order distortion (2f1±f2, 2f2±f1). Depending on working with octave system or sub-octave 

system the second or third order distortion is measured, respectively. For example for a sub-octave 

system the f1±f2 falls out of the bandwidth of the system and the third order distortion 2f1±f2 is 

measured. However the SFDR is not measured directly and it is measured from a plot which shows 

the photo-detected RF power of the fundamental and the third order distortion signal versus the 

input RF power (Figure 1-7). By fitting linear curves to these two data sets and extrapolating them 

to the noise floor, the SFDR will be calculated. 
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Figure 1-7: Fundamental and third-order distortion photo-detected powers versus input RF 

power. SFDR is calculated by extrapolating the two fitted linear curves to the noise floor. 

The limited SFDR of the LiNbO3 modulator (because of owing a nonlinear transfer 

function) limits the dynamic range of the analog optical link. Other modulators have been reported 

using semiconductor materials with a broadband response however these modulators have a high 

Vπ because of a low electro-optic coefficient (compared to LiNbO3). Also they exhibit a huge loss 

when coupling to the fiber because of the large refractive index difference. Organic polymers have 

been used to build electro-optic modulators with a large electro-optic coefficient resulting a low 

Vπ and a very broadband response (113 GHz). However compared to LiNbO3 they are sensitive to 

the temperature, wavelength and they cannot handle high powers. 

The limited SFDR of the LiNbO3 modulator can be improved by utilizing other techniques 

providing linearization scheme rather than traditional Mach-Zehnder LiNbO3 modulators. 
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 Linearized Modulators 

The nonlinear transfer function of the conventional electro-optic LiNbO3 modulator limits 

the performance of the analog data transmission links. The modern analog data transmission 

system tends to use more-spectral efficient techniques which could create more number of 

channels and less channel bandwidth and channel separations; however the inherent nonlinearity 

of the electro-optic modulator is the main limiting factor. Furthermore the peak to the average ratio 

of the broadband is signal is very high and that necessitates a high dynamic range modulator 

(transmitter). To achieve such performances the linearization and compensation techniques (for 

the LiNbO3) becomes very crucial and attractive. 

Several linearization techniques such as Pre-distortion [21, 22], Post-distortion [9, 23], and 

feedforward [24, 25] has been proposed. All of these techniques require and additional electrical 

or optical component in addition to electro-optic modulator. The Post-distortion and feedforward 

techniques require additional optical element which makes them less cost effective. However they 

exhibit a good third order distortion cancelation. The Pre-distortion technique uses the electronic 

circuits to manipulate the RF signal applied to the device to reduce the nonlinearity at the output. 

This technique could be cost effective however the transfer function of the modulator used should 

be known accurately (this makes it difficult for the internal modulators) and also the performance 

is poor at high frequencies. The description of the design and performance of each of the above 

techniques are described in the following sections. 

In this past chapter, different types of modulators (internal and external) are described and 

discussed. It has been seen that both of the modulators have a nonlinear transfer function and 
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because of that harmonic distortions show up as an unwanted signal at the output and they limit 

the dynamic range of the modulator and the whole optical communication system. Several 

linearization and compensation techniques have been described in order to reduce the third order 

distortion and increase the SFDR of the modulator. Some of them such as Post-distortion and 

feedforward methods introduce another optical element in addition to optical modulator which 

increase the complexity and insertion loss and makes it even less cost effective. Also reducing the 

SFDR requires a tight control of the applied voltages, length and coupling ratios between the 

devices which makes fabrication less possible. Pre-distortion technique uses an electronic circuit 

to compensate for the nonlinearity by manipulating the applied RF to the device. It has been shown 

that this technique is challenging for electro-absorption modulator since the transfer function of 

the modulators is very complicated. However it has been applied to the LiNbO3 modulator with a 

known transfer function. This technique has improved the dynamic range for the low frequencies 

however the performance for the broad bandwidth system is questionable. 

 Injection-locking of lasers 

Injection locking has been explored and studied for centuries. In 1675, Huygens observed 

this phenomenon between two swinging pendulum which after certain period of time the pendulum 

would synchronize to each other even with different initial conditions [26]. This phenomenon did 

not have an explanation till the development of the nonlinear dynamics by Poincare and Van der 

Pol. In 1966, this phenomenon was demonstrated optically for the first time [27]. Later in 1973, 
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Adler showed that this locking synchronization between mechanical oscillators is also applicable 

to electronic circuits oscillators [28]. 

Optical injection locking of the lasers is the process of locking the frequency and the phase 

of a laser which is called slave laser, to the frequency and the phase of a more stable laser which 

is called master laser. Experimental observation of the semiconductor laser injection locking was 

reported in 1980 [29]. Figure 1-8 shows the master and slave lasers with the free running oscillation 

frequencies of ω1 and ω0, respectively. Injection locking is achieved by coupling the output light 

of the master laser into the slave laser. This power is usually a lot lower than the power of the free 

running slave laser. If the frequency of the master laser falls into a frequency range which is called 

locking range, then the frequency and the phase of the slave laser is locked to the master laser [30]. 

 

Figure 1-8: Injection locking of lasers 

Figure 1-9 shows the behavior of the slave laser whether the injection seed frequency is 

tuned inside or outside of the locking range. Depending on the frequency detuning and the injected 

power ratio (the ratio between injected light and the free running slave laser powers), the injection 

locking could be unstable, stable or exhibit chaotic behavior. Performance of the slave laser is 
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improved in the stable injection locking regime. When the frequency of the master laser is outside 

of the locking range of the slave laser, the injection seed will be amplified and it exists with the 

master laser frequency. In this case the power components of each frequency exist in the slave 

laser and those creates a beat tone after photo-detection. Chaotic behavior of the injection-locked 

laser is always observed at the edge of the locking range. However when the frequency of the 

master laser is within the frequency locking range of the slave laser, the slave laser phase and 

frequency follows the phase and frequency of the master laser. The output power of the injection 

locked slave laser is clamped after injection locking when the seed frequency is in the locking 

range however this is not the case for the semiconductor laser since there is always a coupling 

between the refractive index and gain. 

As Adler [28] showed, the phase response of the injection locked slave laser for the weak 

injection signals is an arcsine function of the detuning between the frequency of the master and 

slave lasers. In the case of not a weak injection the phase response is of the form of arctan function. 

Also for the weak injection locking of the semiconductor lasers, the phase response deviates from 

the arcsine because of the carrier density dependent refractive index. 
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Figure 1-9: Response of the slave laser to the injection seed when it is tuned to inside or outside 

of the locking range [30] 

 Linearized interferometric intensity modulator for CW light using an injection-locked 

VCSEL 

This modulator provides linear intensity modulation which is an ideal modulator for high 

dynamic range modulation without using any compensation or linearization techniques. The key 

to the modulator is the injection-locked resonant cavity as the arcsine phase modulator which is 

placed in one of the arms of the conventional Mach-Zehnder interferometer. This resonant cavity 

is a laser which is injection locked to the input light of the modulator. Based on the steady state 

solution of the Adler’s equation, an injection locked laser produces an arcsine phase response when 

it is modulated within the frequency range called locking range. This phase imparted by the 

injection locked laser is the function the detuning of the resonant frequency from the injection seed 

frequency and it is 
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𝜑𝜑(𝜔𝜔1) = 𝑠𝑠𝑠𝑠𝑛𝑛−1 �𝜔𝜔0−𝜔𝜔1
𝜔𝜔𝑚𝑚

�  (1-12) 

where ω0 is the cavity resonance frequency, ω1 is the injected seed frequency which is the 

input light to the modulator and ωm is the half of the locking range. By modulating the frequency 

of the injection-locked laser (by modulating the current of the resonant cavity), one can impart an 

arcsine phase modulation on the injection-locked resonant cavity and by interfering the modulated 

signal with its unmodulated counterpart at the other arm in quadrature, the output will be directly 

proportional to the function used to modulate the resonant cavity (Equation (1-13)). The schematic 

diagram of this true linearized modulator is shown in Figure 1-10. 

𝐼𝐼𝑜𝑜𝑛𝑛𝑛𝑛 = 𝐼𝐼𝑖𝑖𝑛𝑛 �1 + 𝑐𝑐𝑐𝑐𝑠𝑠 �𝑠𝑠𝑠𝑠𝑛𝑛−1(𝑓𝑓(𝑡𝑡) − 𝜋𝜋
2
�� = 𝐼𝐼𝑖𝑖𝑖𝑖

2
(1 + 𝑓𝑓(𝑡𝑡))  (1-13) 

 

 

Figure 1-10: Schematic diagram of the true linear interferometric intensity modulator [31]  
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Numerical simulations has been demonstrated in [32] comparing the conventional LiNbO3 

Mach-Zehnder modulator and the true linear interferometric intensity modulator assuming a 

perfect arcsine phase modulator. As it is shown in Figure 1-12, the SFDR of the linear modulator 

when it is biased at quadrature is noise limited.  However a typical LiNbO3 electro-optic modulator 

biased at quadrature shows almost 70 dB for SFDR at 10% depth of modulation, and it decreases 

for the higher depth of modulations. However linear modulator gives more than 100 dB at this 

depth of modulation and it doesn’t decrease for the higher depth of modulation. 

 

 

Figure 1-11: Numerical results of the performance of the typical LiNbO3 electro-optic modulator 

(red) and the true linear interferometric modulator (blue), a) SFDR versus depth of modulation, 

b) SFDR versus bias point of the modulator for the 10% depth of modulation [32] 

However it should be mentioned here that the simulation results shown for the linear 

interferometric setup are for the perfect arcsine phase modulator. However in practice the induced 
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phase modulation of the injection-locked laser deviates from the ideal case (perfect arcsine) due 

to the carrier density dependent refractive index and that limits the SFDR of this modulator. 

The concept of the arcsine phase modulation using an injection locked laser has been 

demonstrated by Kobayashi and Kimura [33] for the first time. This has been done by injection 

locking of a single longitudinal mode Fabry-Perot laser by another same laser inside the Mach-

Zehnder interferometer. A static pi phase shift has been observed from the arcsine phase modulator 

and the correspondent phase modulation also observed at the output.  

The first demonstration of the true linear interferometric intensity modulator has been 

reported by Hoghooghi et. al. [34] using a single mode Vertical Cavity Surface Emitting Laser 

(VCSEL) as the resonant cavity (arcsine phase modulator). The schematic diagram of this 

modulator is shown in Figure 1-12. The VCSEL used in the experiment is a commercially fiberized 

device operating at 1550 nm which can be tuned by ~3.3 nm. Device length is ~ 6 µm and has a 

threshold current of ~ 2mA and maximum output power of 1.025 mW. 
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Figure 1-12: Schematic diagram of the true linear interferometric intensity modulator using and 

injection-locked VCSEL as a resonant cavity. VCSEL: Vertical cavity surface emitting laser, 

TEC: Thermo-electric cooler, VOA: Variable optical attenuator, PS: Phase shifter, PC: 

Polarization controller, Iso: Isolator, CIR: Circulator, RFSA: Radio frequency spectrum analyzer, 

OSA: Optical spectrum analyzer [34] 

All of the components shown in Figure 1-12 are fiberized components. A CW laser input 

source to the modulator with 150 KHz short-term stability and narrow linewidth (<1 KHz) has 

been used because of the stability needed for the injection locking. A variable optical attenuator 

and a polarization controller have been used to control the intensity and polarization of the light 

going into the VCSEL. The ratio between the injected power and the VCSEL power defines the 

locking range of the VCSEL in the reflection mode. A phase shifter has been used to keep the 

interferometer always in quadrature. By modulating the current of the VCSEL with the function 

of 𝑓𝑓(𝑡𝑡) one can modulate the carrier density modulation which consequently modulates the 
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refractive index and finally we obtain frequency modulation of the resonant cavity according to 

the 𝑓𝑓 = 𝑐𝑐/2𝑛𝑛𝑛𝑛. According to the Adler’s equation an arcsine phase response is imparted on the 

output of the injection-locked laser. Then the arcsine phase modulated signal is interfered with its 

unmodulated counterpart from the other arm at quadrature and the result will be a true linear 

intensity modulator. 

Figure 1-13 shows the static phase shift induced by injection-locked VCSEL. This has been 

done by changing the DC bias current of the VCSEL around the bias point. The total phase shift 

of 0.7π observed for 52 µA change in the DC current. The arcsine fit to this data is also shown in 

Figure 1-13. Using the known impedance of the VCSEL, the required voltage to achieve the π 

phase shift is calculated to be 2.6 mV. 

 

 

Figure 1-13: Static phase shift of the injection-locked VCSEL and the arcsine fitted curve [34] 
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Figure 1-14 shows the frequency response of the linear modulator which provides 5 GHz 

bandwidth on 10 dB below the maximum value. However this is limited by using of a 

commercialized VCSEL and could be increased by using a better designed and packaged VCSEL. 

 

 

Figure 1-14: The frequency response of the true linear intensity modulator [34] 

The two-tone intermodulation has been done to calculate the SFDR of this modulator. This 

has been performed by applying two equal power RF tones at 300 MHz and 400 MHz and by 

looking for the third order distortion which is expected to be at 500 MHz at a very low resolution. 

The SFDR is measured to be 95 dB, however it is claimed to be limited by the noise floor and the 

instability of the fiberized system. This instability caused by the fluctuation of the fiberized system 

causes instability in the path length and finally makes the interferometer out of quadrature. 
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Figure 1-15: SFDR measurement, a) shows the power spectrum of the RF photo-detected signal 

consists of two equal power tones at 300 MHz and 400 MHz, b) shows the third order distortion 

at 500 MHz at the resolution bandwidth of 1 Hz [34] 

 This Thesis 

In this thesis, we propose and experimentally demonstrate a true linearized intensity 

modulator for pulsed with a very low Vπ and a high SFDR.  This modulator can be used inside an 

analog optical link and can potentially improve the performance and resolution of the photonic 

analog to digital conversion. 

In Chapter 2, we discuss in the details the fabrication steps needed to fabricate vertical 

mesa profile edge emitter lasers using a novel multiple quantum well AlGaInAs material system. 

This material system provides uncooled operation over a larger dc bias range and also a large range 

of reverse bias voltages. The fabrication steps involves standard UV lithography and wet etching 

techniques. BCB has been used for planarization and contacts have been deposited using a thermal 
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evaporator. The substrate has been thinned down to about 100 µm and devices are cleaved into 

individual bar and mounted p-side up on the cupper stud. The temperature of the device is 

controlled using a thermo-electric cooler and a PID controller. 

In Chapter 3, we show the first time demonstration of directly modulating a mode-locked 

laser at high frequencies. This has been achieved by carefully minimizing the metal pad size and 

using the BCB for passivation. Also high speed probe is used to apply the signal to the saturable 

absorber and the gain section in such a way that the gain section serves as a floating ground and 

thus reverse biasing the saturable absorber section. This has provided an effective fundamental 

hybrid mode-locking at 23 GHz with superior advantages compared to sub-harmonic mode-

locking. 

In Chapter 4, we experimentally demonstrate a true linearized intensity modulator for 

pulsed light for photonic ADCs application. This is made possible by introducing a two-section 

mode-locked laser (slave) into one of the arms of the Mach-Zehnder interferometer and injection-

locking it to the input light to the interferometer (which is an identical laser to the slave laser). By 

modulating the slave laser one can introduce an arcsine phase response on all of the injected combs 

lines (according to Adler’s equation) and by combining it with its unmodulated counterpart (other 

arm) at quadrature, one can realize a true linearized intensity modulator. The experimental results 

such as static phase response, optical and RF spectra have been presented. The current of the gain 

section or the voltage of the saturable absorber section has been used for modulation. However 

modulating the saturable absorber produces a smaller third-order nonlinearity when compared to 

modulating the gain. This is simply because of the carrier density modulation created when 
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modulating the current of the gain section which ultimately leads to an unwanted amplitude 

modulation. Finally, the results for the two-tone intermodulation experiment (as a measure of the 

linearity of the modulator) has been presented for the two above cases. 

In Chapter 5, we propose a new three-section laser to address the issue of the unwanted 

amplitude modulation when modulating the slave laser. We propose the addition of a new passive-

section (which is transparent at the operating wavelength of the laser) to the previous two-section 

design.  The amplitude modulation would be suppressed when modulating this phase section since 

there won’t be any absorption. By doing that we are able to decouple the phase and amplitude 

responses. Impurity free vacancy disordering (IFVD) technique has been used to blue shift the 

photoluminescence of the passive section. The experimental results for the ultra linear modulator 

has been presented. This results shows an almost six-fold reduction in Vπ (to about 1mV) and the 

two-tone intermodulation experiment also shows 5-dB SFDR improvement for this modulator.
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2. ALGAINAS MULTIPLE QUANTUM WELL MODE-LOCKED LASER 
FABRICATION 

 

 AlGaInAs multiple quantum well wafer 

A new and promising AlGaInAs-InP strained quantum well material at 1.55-µm has been 

used for fabricating Fabry-Perot and mode-locked lasers. This material system is going to replace 

the conventional InGaAsP-InP material because of a larger conduction band discontinuity 

(ΔEc=0.72 ΔEg) and a smaller valence band discontinuity [35]. The former enables uncooled 

operation over a large dc bias range and the latter enables a large range of bias voltage, which in 

fact makes the pulses from the mode-locked lasers shorter. The wafer is grown by Metal Organic 

Vapour Phase Epitaxy (MOVPE) on a 625 µm thick sulfur doped InP substrate by IQE (Europe) 

Ltd. in Cardiff, Wales, UK. As it is shown in Table 1, wafer growth began by forming 0.8 µm of 

n-type silicon doped InP as the buffer and cladding. The active layers consist of five compressively 

strained wells (6 nm) and six slightly tensile strained barriers (10 nm).  Figure 2-1 shows the 

photoluminescence (PL) spectrum of the wafer taken at room temperature using an in-house PL 

measurement setup explained in chapter 5. The peak of the emission is at 1524 nm with the 3-dB 

bandwidth of 80 nm. Active layers growth are followed by a 50 nm InGaAsP as the wet etch stop. 

The entire structure is capped with 1.6 µm zinc doped InP as the p-cladding followed by two highly 

p-doped contacts layers of InGaAsP (50 nm) and InGaAs (200nm) with doping concentration of 

3e18 cm-3 and 1.5e19 cm-3, respectively. 
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Table 1. AlGaInAs multiple quantum well wafer layer structure 

Layer Repeat Description Material 

Type 

Thickness 

(µm) 

C-V level 

(Cm-3) 

Type Dopant 

13  CAP InGaAs 0.2 >1.5e+19 p Zn 

12  p-Transition InGaAsP 0.05 >3e+18 p Zn 

11   InP 0.1 >1e+18 p Zn 

10  p-Cladding InP 1.5 1e+18 p Zn 

9  Wet etch stop InGaAsP 0.05 1e+18 p Zn 

8  p-Cladding InP 0.05 7e+17 p Zn 

7   AlGaInAs 0.1 - U/D Undoped 

6 5 Well  AlGaInAs 0.006 - U/D Undoped 

5 5 Barrier AlGaInAs 0.01 - U/D Undoped 

4   AlGaInAs 0.1 - U/D Undoped 

3  n-Cladding InP 0.5 1e+18 n Si/S 

2  n-Buffer InP 0.3 3e+18 n Si/S 

1  Substrate InP 625 3.8e18 n S 
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Figure 2-1. Photoluminescence spectrum of the as grown wafer at the room temperature. 

 

 Waveguide analysis for single mode operation 

The waveguide analysis has been done using the commercialized simulation software 

BeamPROPTM [36]. The software is based on the Beam Propagation Method (BPM) and it is well 

suited for design and simulation of integrated waveguide devices. 

Here the goal is to have an edge emitter laser than can only support one single transverse 

mode. This is important since a waveguide than can support more than one mode could provide a 

multimode laser with complex characteristics. Based on the wafer structure available and 

fabrication methods that can be utilized, simulation has been done to determine the dimensions 
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and the shape of the waveguides needed for single mode operation. There are three waveguide 

profiles (Figure 2-2) that can be achieved depending on acids used for wet etching and also the 

waveguides orientation with respect to major axis of the wafer. It is known that InP compound 

crystalizes in the zinc-blende structure, producing two interpenetrating face centered cubic (FCC) 

sub-lattices with each sub-lattice containing one kind of atom. This makes the InP wet etching to 

be a anisotropic and orientation dependent wet etching process [37-39]. 

Here in this thesis since the wet etching has been used as the primary method to make the 

waveguides, the height of the waveguides is dictated by the wet etch stop layer depth and that is 

about 1.85 µm. This has been a constant parameter when studying the waveguides using the 

BeamPROPTM software. The only two remaining parameters are the width of the waveguide and 

the profile of the waveguide which here is limited to the vertical mesa and mesa (since the reverse 

mesa is not of the interest here because of mode profile and wafer structure). 

Figure 2-3 shows the results of the simulation of a mesa waveguide with a height of 1.85 

µm and a width of 3.6 µm. It can be seen that there could be four transverse mode supported by 

this mesa waveguide which at least the first two should exist at the same time. Here it needs to be 

mentioned that only the area beneath the mesa region will experience the carrier injection thus 

making any existing part of the mode outside of this region impossible. The width of the waveguide 

is decreased here to obtain a single mode waveguide however the needed width would be 

impractical to fabricate. This leads us to only vertical mesa with vertical wall profile and with only 

parameter to play with when doing the simulation. 
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Figure 2-2. InP wet etching profiles (a) Vertical mesa with the vertical walls (b) Mesa with the 

walls at an angle of ~ 45 degrees and (c) Reverse mesa with the walls at angle of ~ -45 degrees. 

(d) Real image of the fabricated alignment marks on quantum well wafer (top view). The 

sidewalls of the vertical features could be seen easily (dark area) as a proof of mesa profile. 

However the horizontal features sidewalls are not observable from the top view suggesting that 

they are either vertical mesa or reverse mesa. 
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Figure 2-3. Four possible simulated transverse modes from a mesa waveguide with the width of 

3.6 µm and the height of 1.85 µm. 

Figure 2-4 shows two possible transverse mode obtained from the simulation of 2.5 µm 

wide and 1.85 µm tall vertical mesa waveguide. As can be seen the second mode (Figure 2-4 (b)) 

is unlikely to exist since a considerable amount of mode is outside of the walls of the waveguide. 

So this waveguide with the dimension of 2.5 µm by 1.85 µm with the vertical mesa profile could 

operate in the single transverse mode regime. 
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Figure 2-4. Two possible transverse mode obtained from simulating a vertical mesa waveguide 

with 2.5 µm width and 1.85 µm height. The second mode is very unlikely to exist since it doesn’t 

see the carrier injection outside the waveguide walls. 

 Mask design 

L-Edit of Tanner Research Co. [40] has been used to draw features such as waveguides, 

metal pads, alignment and cleaving marks. This has been used to export the features to GDSII file 

format for mask production. The mask has been produced by Photo sciences Inc. using an electron 

beam lithography system with a resolution of 150 nm. The features are made of chrome on a 4 

inch by 4 inches quartz glass. 

Figure 2-5 shows a captured image from the L-Edit software of the simple 2 mm Fabry-

Perot laser design. The 2.5 µm waveguide is shown in blue and it is overlapped intentionally with 

metal pads (in green). Other features are serving as alignments and cleaving marks. 
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A simple C program has been developed to be able create these features and ultimately be 

able to create a laser bar. This is useful since it enable us to have as many as laser possible in the 

sample that being processed. 

 

Figure 2-5. Image of the simple Fabry-Perot laser design from L-Edit software showing 

waveguide and alignment marks in blue and metal pads, alignment marks and cleaving marks in 

green. 

 

 Fabrication procedure 

2.4.1. Wafer cleaving 

Before cleaving the wafer the major and minor axis of the wafer has to be identified. This 

is critical since the wet etching of the InP based materials are anisotropic and it is not the same in 

the two planes of the wafer [41]. So as the first step the major axis is identified and the back side 

of the wafer is slightly scratched with diamond-tipped scriber with lines parallel to the major axis 

of the wafer. This ensures that the major axis won’t be missed when cleaving the wafer in to small 

pieces. 
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2.4.2. Sample cleaning 

After cleaving the sample is blown by N2 gas as the primary step to remove big particles 

created when cleaving. The sample then soaked in a DI water-filled soft plastic container and 

placed in ultrasonic bath for 2 min. The sample then thoroughly rinsed with DI water and dried 

with N2 gas and baked for 2 min at 120°C to remove any residual volatiles. Additional one minute 

intervals of ultrasonic bath is used if the sample was not clean after the first two minutes. Then the 

sample is thoroughly rinsed with acetone and methanol and isopropanol subsequently and dried 

with N2 to remove any organic residue. If more cleaning is required the sample could be soaked 

subsequently into acetone, methanol and isopropanol bath at 100°C for 5 min. 

The cleaning is followed by Si3N4 deposition to cover the sample and avoid any surface 

oxidization. 

2.4.3. Si3N4 deposition 

Because of harsh acidic nature of InP wet etchant, photoresists and oxide dielectric 

masking layers cannot resist the time needed to be able to etch 1.6 µm of InP. However Si3N4 is 

totally resistant to those acids and can be used as a mask when etching the first two layers (InGaAs 

and InGaAsP). After removing the first two layers, since the InGaAs layer is resistant to InP 

etchant acids, it can be used as an additional mask for InP wet etching. 

Plasma Enhanced Chemical vapor deposition (PECVD) method has been used to deposit 

dielectric layers [42]. This has been done using a dual chamber Plasma Therm 790 series system. 

One chamber is dedicated to deposition and the other one is used for etching. The plasma created 
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by applying an RF signal at 13.56 MHz between the shower head plate and the ground plate. 

Depending on the gases used, interaction with the sample surface could provide deposition or 

etching. Table 2 shows the parameters for the “SIN-DIFF” recipe which have been used for Si3N4 

deposition. The deposition rate can be changed by changing the gases amount, temperature, 

chamber pressure and also the RF power. It is also dependent to the substrate properties such as 

doping and also substrate thickness. It is very important to characterize the deposition rates of the 

machine frequently.  

200 nm of Si3N4 is deposited on a cleaned sample using the “SIN-DIFF” recipe. This could 

protect the selected areas and gives us the ability to etch InGaAs and InGaAsP selectively from 

InP. 
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Table 2. Deposition parameters of the recipe “SIN-DIFF” for Si3N4 deposition. The silane gas 

(SiH4) used is 2% silane diluted in N2. 

Parameters Si3N4 

SiH4 (sccm)   120 

NH3 (sccm) 4.56 

N2 (sccm) 400 

Temperature (°C) 246 

Pressure (mTorr) 900 

RF power (W) 20 

Deposition rate (nm/min) 8-10 

 

2.4.4. UV photolithography and Si3N4 etching 

Positive resist PR1805 is used for photolithography. This photoresist is about 500 nm thick 

and can provide the resolution needed for 2.5 µm waveguide fabrication. Exposure has been done 

using a Karl Suss MJB3 machine. Here the waveguides are perpendicular to the major axis in order 

to obtain 2.5 µm vertical mesa waveguide needed for single mode operation. The steps needed for 

photoresist spin-coating, photolithography and finally transferring the features to the Si3N4 

dielectric layers are summarized below: 

 

1. Spin-coat the PR1805 @ 3500 rpm for 40 seconds 
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2. Pre-bake @ 120 °C for 4 min 

3. UV Exposure @ 12 mW for 5.5 seconds 

4. Develop in AZ351 and DI water (ratio of 1:7) for ~ 25 seconds 

5. Post-bake @ 120 °C for 4 min 

6. Run recipe “Descum” on PECVD for 2 min 

7. Run recipe “etchsin1” on PECVD for 4 min 

8. Photoresist removal. Dip the sample in acetone @ 80 °C for 5 min then rinse with 

acetone, methanol and isopropanol and dry with N2 

9. Run recipe “prremove” on PECVD for 30 seconds. 

 

The recipe “Descum” on the PECVD machine has been used to remove any remaining 

photoresist in the developed area. The parameters for the “Descum” are listed in Table 3. This 

recipe is very mild etching recipe using oxygen and helium gases at a low power of 60 W and a 

low pressure of 40 mTorr. A mixture of Oxygen and tetrafluoromethane (CF4) has been used to 

etch Si3N4 layer (“etchsin1” recipe shown in Table 3). It is needed to be mentioned that the etching 

rate of 75 nm/min is obtained using the Si3N4 layer deposited using the “SIN-DIFF” recipe. After 

completely removing the photoresist by dipping the sample into the acetone bath, the remaining 

thin layer of photoresist is removed by using the PECVD with a much harsher etching recipe 

(prremove.prc) for the photoresist removal. The “prremove.prc” uses the same ratio of oxygen and 

helium at the higher processing pressure of 300 mTorr and RF power of 100 W. 
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Table 3. Reactive Ion Etching (RIE) parameters for photoresist and Si3N4 etching. Etching has 

been done in the room temperature.  

Parameters Descum.prc prremove.prc etchsin1.prc 

O2 (sccm) 20 50 1.0 

He (sccm) 10 50 - 

CF4 (sccm) - - 12 

Pressure (mTorr) 40 300 75 

RF power (W) 60 100 100 

Etching rate (nm/min) - - 75 

 

 

2.4.5. Wet etching 

There are three layers to be etched away by acids here to be able to form the single mode 

ridge waveguide. The first layer is 200 nm of highly doped InGaAs. The second layer is 50 nm of 

InGaAsP and the third layer is 1.6 µm of InP. The first two layers could be etched away by using 

sulfuric acid (H2SO4) or phosphoric acid solution (H3PO4) and the 200 nm thick Si3N4 layer would 

be a very good mask for this step. Table 4 shows the etching rates of the solutions based on H2SO4 

and H3PO4 acids for the two first layers. Hydrogen peroxide (H2O2) and Deionized water (H2O) 

are added as oxidizer and diluting agents, respectively [43]. 
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Table 4. Wet etching rate of the H2SO4 and H3PO4 acids solution for the InGaAs and InGaAsP 

layers [44, 45]. 

Acid solution Etching rate (nm/min) 

H2SO4 H3PO4 H2O2 H2O InGaAs InGaAsP 

1 - 1 10 400 100 

- 1 1 30 125 15 

 

The InGaAs could be etched easily using a solution of phosphoric acid: hydrogen peroxide: 

deionized water with the etching rate 125 nm/min. However this etchant is not suitable for 

InGaAsP etching since the etching rate is too slow (15 nm/min). This could be addressed by using 

the sulfuric acid-based solution. This etchant provides etching rates of 400 and 100 nm/min for 

InGaAs and InGaAsP, respectively. Despite the higher etching rates, this acid sill provides a good 

etch selectivity with InP. 

The first two layers are etched in one step using the H2SO4:H2O2:H2O (1:1:10) solution. 

The etching time required is about 75 seconds. The sample is dipped in DI water and then rinsed 

thoroughly with DI water for 1 min and dried with N2 gas. At this point the total height of the 

features (measured using α-stepper profilometer) is about 450 nm. 

 At this point the prremove.prc recipe from PECVD has to be used for almost 17 min to 

remove all the remaining photoresist. This is important since there are still some areas at the edges 

of the sample that the photoresist is not completely removed from top of the Si3N4. The remaining 
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photoresist could be possibly dissolved by the harsh etchant used to etch InP and form a mask in 

the middle of the sample. 

There are many acid combination that can be used to selectively etch InP and not InGaAs 

and InGaAsP such as such as hydrochloric acid (HCl), hydrobromic acid (HBr), and Nitric acid 

(HNO3). Table 5 shows the etching rate of some of the acid solutions. Hydrobromic acid solution 

provides a very controllable etching rate of 400 nm (when mixed with DI water with the ratio of 

2:1) and a good selectivity however it can only create mesa and reverse mesa profiles.  

InP etching solutions based on HCl are extremely fast and usually are accompanied by 

producing of microbubbles [46]. These microbubbles could results to not a smooth surface if the 

whole InP layer is not removed. Etching rate could be easily reduced by diluting the acid by the 

DI water. Also lactic acid (CH3CHOHCO2H) and acetic acid (CH3CO2H) could be used to reduce 

the amount of micro-bubbling [47]. Table 5 shows some of the suggested solutions with good 

balance between the etching rate and microbubbling formation. 

Table 5. InP etching rate of different acid solutions [41, 46, 47] 

Acid solution Etching rate 
(nm/min) 

HCl HBr CH3CO2H H3PO4 CH3CHOHCO2H H2O InP 

- 2 - - - 1 400 

1 - 6 - - - 825 

2 - - 5 2 - 240 

1 - - 1 - - 2000 

40 

 



 

The acid solutions suggested here based on hydrochloric acid, lactic acid and acetic acid 

provide a controllable etching rate and a decent surface smoothness. However they are good when 

etching thin layers of InP and not thick layers because of the following reason. When etching thick 

layers of InP (more than a micron) it is very challenging to maintain a uniform etching on the 

sample. The etching rate is always is higher in the middle of the sample compared to other area. 

To address this the sample is moved and rotated inside the solution however still challenging to 

achieve the same etching rate for everywhere in the sample. Also because of the microbubble 

formation, the surface always contains some micron size features (as shown in Figure 2-6). This 

happens when the InP layer is etched partially and the whole layer of InP is not removed.  

 

Figure 2-6. Sample containing two waveguides which they are formed using hydrochloric and 

lactic acid mixture. The waveguide are 1.6 µm deep and 2.5 µm wide. The micron size features 

next to the waveguides are produced because of the microbubbling. 
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 Another acid solution is suggested by adding the phosphoric acid to the hydrochloric acid 

with the ratio of 1:1 [48, 49]. This acid solution provides a fast etching rate of ~ 2 µm/min. This is 

very suitable for the application here since we want to remove the whole 1.6 µm thick InP layer. 

The InGaAsP layer after beneath the InP layer acts as a reliable etch stop layer for this acid mixture. 

This solution also provide a very good uniformity. 

As expected the etching is accompanied with the formation of microbubbles and it means 

that the first two layers are being successfully removed. The sample has to be removed from the 

solution shortly after the microbubbling stops. This is to ensure that the whole 1.6 µm layer of InP 

etched away. The sample is then dipped in DI water and also thoroughly rinsed with DI water for 

1 min as to remove any loose InP particle from the surface of the sample. Figure 2-7 shows the top 

view images of the waveguides fabricated taken using a microscope. 

Finally, the Si3N4 masking layer on top of the waveguides are removed by running the 

etchsin1.prc recipe for 5 min.  At this point the total height of the waveguides measured with the 

profilometer should be 1.85 µm since InP etching is stopped above the etch stop layer. 
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Figure 2-7. (a) Top view image from the fabricated vertical mesa waveguides, (b) the zoomed-in 

version of the fabricated waveguide 2.5 µm waveguide. Different color of the images coming 

from the different filters used when working with the microscope and does not show any 

information. 

2.4.6. BCB planarization 

Planarization has to be done on the waveguide in order to facilitate passivation and be able 

to put contacts for current injection. This can be done using dielectric layers such as SiO2 or Si3N4 

or resists such as Hydrogen silsesquioxane (HSQ) or polymers such as Benzocyclobutene (BCB). 

Among these BCB are the hardest to process however it provides an excellent planarization, a low 

dielectric constant and a small leakage current. Additionally it has a very good thermal stability 

and superior chemical resistance when it is cured. The steps that are needed for planarization and 

passivation are summarized below: 
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1. Spin-coat the adhesion promoter AP3000 @ 4000 rpm for 40 seconds 

2. Spin-coat the cyclotene 3022-46 @ 4000 rpm for 40 seconds 

3. Hard-cure the BCB @ 250 °C for 60 min using the convention oven under nitrogen 

ambient (the oven cure profile is shown in Table 6). 

4.  Dry etch the BCB using the cyclotene.prc recipe (Table 7) of the PECVD machine. 

Continue the dry etching until the BCB is removed from the top of the waveguide. At 

this point the height measured using α-stepper should be about 250 nm and not more 

than 300 nm. The total time could be between 9 to 11 min. 

5. Soak the sample into the Ash residue remover Rezi-Baker 28 @ 50 °C for 5min and 

then thoroughly rinse with DI water and dry with N2. 

 

Table 6. The temperature profile used for BCB hard-curing 

Step Full Cure 

1 15 minute ramp to 100 °C 

2 15 minute soak at 100°C 

3 15 minute ramp to 150°C 

4 15 minute soak at 150°C 

5 60 minute ramp to 250°C 

6 60 minute soak at 250°C 

7 Cool to <150°C 
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Table 7. Reactive Ion Etching (RIE) parameters for BCB etching. 

Parameters cyclotene.prc 

O2 (sccm) 10 

He (sccm) - 

CF4 (sccm) 5 

Pressure (mTorr) 50 

RF power (W) 100 

Etching rate (nm/min) 150 

 

2.4.7. Negative lithography for p-side contact 

The negative lithography has to be done to open windows required for metal deposition. 

Figure 2-5 shows the features for negative lithography in green. The step are summarized below: 

 

1. Spin-coat the NR7-1000PY @ 4000 rpm for 40 seconds 

2. Pre-bake @ 150 °C for 1 min 

3. UV Exposure @ 12 mW for 14 seconds 

4. Post-bake @ 100 °C for 1 min 

5. Develop in RD6 for ~ 20 seconds 
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6. Run recipe “Descum.prc” on PECVD for 2 min. This is to remove any remaining thin 

layer of photoresists. 

7. Deoxidize the waveguide by dipping the sample into H3PO4:H2O (1:30) acid solution 

for 7-8 seconds. The sample dipped in DI water and rinsed for 1 min and dried with N2. 

2.4.8. Contact metallization, liftoff and contact annealing 

The sample is loaded into an Edwards’s thermal evaporation machine right after the 

deoxidization step to avoid any excessive surface oxide formation. The machine would be ready 

for deposition when the chamber pressure reaches to 210-6 mTorr. Deposition started with 5 nm 

of Titanium (Ti) which provides excellent adhesion between the sample and the gold layer. This 

is very critical as without doing this the gold layer would peel off easily from the surface of the 

sample. Ti deposition is followed by deposition of 300 nm of gold which provides the device 

contact. 

After metallization the sample is soaked into the RR2 @ 60°C for liftoff. RR2 is a specific 

stripper for the NR7-1000PY photoresist. The metals from unwanted area starts to peeling off from 

the sample and the total time is about 20 minutes. The sample then rinsed with acetone, methanol, 

isopropanol and DI water and then dried with N2. 

The sample is annealed using a RTP-600 Modular Process Technology thermal annealer 

in a N2 ambient. The recipe profile used is shown in Table 9 in appendix A. The contacts are 

annealed at the temperature of 430 °C for 30 seconds. 
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Figure 2-8 shows an image taken using a microscope from a 2 mm Fabry-Perot laser after 

annealing contacts.  

 

Figure 2-8. Top view image of the fabricated 2 mm Fabry-Perot laser device after p-contact 

annealing 

2.4.9. Substrate lapping and polishing 

The 630 µm thick InP substrate has to be thinned down to about 100 µm. This is to improve 

the heat conductivity and be able to maintain the temperature of the junction using thermo-electric 

cooler (TEC). The thinner the substrate the closer the junction would be to the TEC. Also in order 

to cleave the laser bar with the accuracy of about ~ 5 µm the substrate has to be polished to about 

a 100 µm. The sample attached to a thin glass slide using wax and then transferred to the polishing 

chuck. First the sample thinned down to about 100 µm using a slurry of 5 µm size aluminum oxide 

grit and water. Lapping followed by polishing the sample using 0.3 µm size aluminum oxide 

powder. After this the substrate should look shiny. The sampled then dipped in acetone solution 

for hours to remove the wax and then rinsed with acetone, methanol, and isopropanol and finally 

dried with N2. 
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2.4.10. N-contact metallization 

Before metallization, deoxidization has been done by dipping the sample into H3PO4:H2O 

(1:30) acid solution for 7-8 seconds. The sample dipped in DI water and rinsed for 1 min and dried 

with N2. 

2 nm of Nickel (Ni), 20 nm of germanium (Ge) and 200 nm of gold (Au) are deposited 

respectively. The first deposited layer, Ni, provides adhesion to the surface. Ge will diffuse to the 

substrate during the annealing and would create a degenerately doped n-type region. The sampled 

then annealed at 430 °C for 30 seconds. 

2.4.11. Device image 

 

Figure 2-9. Scanning electron microscopy (SEM) image from a cleaved facet of the laser 
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2.4.12. Cleaving, mounting and temperature controlling 

The sample cleaved into individual chips using diamond tip scriber mounted with 

45°degrees of angle on a precise XYZ micrometer. This gives us the ability to be able to cleave 

with the accuracy of 5 µm. A special cleaving tape is used to hold the sample and then it is pushed 

against a surgery knife to cleave the sample.  

The individual laser chips are mounted p-side up on the gold-coated cupper studs with the 

same length as of the chip (here was ~ 2 mm) using standard Pb-In solders. In order to connect the 

laser to external drive circuitry for carrier injection, the laser p-contact is connected to a ceramic 

standoff (soldered to the cupper stud) using a fine gold wire. 

In order prevent overheating and also promoting the stability of the gain medium, working 

temperature of the diode is controlled. This has been done using a 10 kΩ thermistor which is 

mounted on the cupper stud close to the chip for temperature sensing and a closed loop circuit 

controlling the amount of the current going to the TEC cooling pad (which is in direct contact with 

the cupper stud). Here a precision PID controller has been used to maintain the working 

temperature of the device with the accuracy of 0.001 °C. In most cases this temperature is chosen 

to be 20 °C which is just below the room temperature and this is to avoid any condensation of the 

device facets. 
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3. DIRECT RF MODULATION OF ALGAINAS MODE-LOCKED LASER 

 

 Introduction 

Monolithic high-repetition-rate lasers have drawn considerable attention for applications 

in photonic analog-to-digital conversion, clock recovery and arbitrary waveform generation [50-

52]. These compact and monolithic sources generate sub-picosecond pulses at high repetition rates 

but exhibit large timing jitter due to amplified spontaneous emission (ASE) and lack of external 

stabilization. In order to realize a low noise mode-locked laser (MLL) by synchronizing to an 

external clock at high frequencies (> 20 GHz), several methods such as sub-harmonic hybrid 

mode-locking (SHML) [53], fundamental hybrid mode-locking (FHML) using semi-insulating 

substrate [54] and optical synchronous mode-locking [55] have been presented. The first of the 

above methods overcomes the shallow radio frequency (RF) modulation issue at high frequencies 

but introduces unwanted amplitude modulation and excess timing jitter (Figure 3-1 (a)). The 

second requires a semi-insulating wafer and lengthy fabrication process (Figure 3-1 (b)) while the 

third typically involves injection of a low noise mode-locked laser into the laser cavity, requiring 

an additional laser (Figure 3-1 (c)). 
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Figure 3-1. (a) Sub-harmonic hybrid mode-locking scheme, (b) fundamental hybrid mode-

locking (FHML) using semi-insulating substrate and (c) optical synchronous mode-locking [55] 

A promising new AlGaInAs-InP strained quantum well material at 1.55-µm described in 

chapter 2 used here to fabricate MLLs [56]. This material system is beginning to replace 

conventional InGaAsP-InP materials owing to a larger conduction band discontinuity (ΔEc = 0.72 

ΔEg) and a smaller valence band discontinuity. The former enables uncooled operation over a large 

dc bias range and the latter enables a large range of reverse bias voltage, allowing for shorter pulses 

durations [35, 56]. 

In this chapter, we present 860 fs pulses from a monolithic AlGaInAs multiple quantum 

well two-section MLL fabricated by employing a very simple self-aligned wet etching technique 

that described in chapter 2. By using Benzocyclobutene (BCB) as the isolation layer (1.3-µm-

thick) and minimizing the metal pad size, we were able to modulate the SA at 22 GHz and 
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synchronize the laser to an external source. By doing so we achieved very effective FHML (280 

fs timing jitter) which shows distinct advantages over other methods. 

 Device structure and fabrication 

Figure 3-2 shows the design layout of a 2 mm two-section mode-locked laser. The 2.5 µm 

waveguide is shown in blue and it is overlapped intentionally with metal pads (in green). Cleaving 

marks are put in the design to be able to cleave the saturable absorber with desired length. Different 

cleaving marks are introduced in the design to achieve different length ratios between the gain and 

SA section (1% to 6%). Other features are serving as alignments and cleaving marks. 

 

Figure 3-2. Image of the two-section mode-locked laser design from L-Edit software showing 

waveguides and alignment marks in blue and metal pads, alignment marks and cleaving marks in 

green. 

 

The electrical isolation between the gain section and SA section is achieved by removing 

the first two heavily-doped layers (InGaAs and InGaAsP) by H2SO4:H2O2:H2O wet etchant. This 
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provides us with a 3 kΩ resistance for the 10-µm gap. Figure 3-3 shows the actual image of the 

fabricated 2 mm device before cleaving. 

 

 

Figure 3-3. Top view image of the fabricated 2 mm two-section mode-locked laser 

The laser bar is cleaved to a total length of 1912 µm with a 56 µm SA.  Figure 3-4 shows 

the waveguide structure and the contact layout. The facets are left uncoated and the laser is 

mounted with the epi layer up on a copper stud connected to a thermo-electric cooler (TEC) to 

maintain the temperature at 20°C. 

 

Figure 3-4. Device schematic showing the waveguide structure and contact layout. 
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 Experimental results 

Passive mode-locking is achieved by forward biasing the gain section using a simple dc 

probe and by reverse biasing the SA. With the help of an 18 GHz bias tee and a 40 GHz ground-

signal (GS) microwave coplanar probe, the reverse bias voltage and the RF signal are mixed and 

applied to the device. Here the signal and ground probes were connected to the SA and the gain 

section, respectively as shown in Figure 3-4. Figure 3-5 shows the contacts layout schematic and 

electrical connections to provide a better understanding of how each section are biased and how 

the dc reverse bias and ac signals are mixed and applied to SA section. As shown in the schematic, 

the bias current on the gain section is applied between the p-electrode (top) and the n-electrode 

(bottom). Also the negative port of the reverse bias DC signal and the positive port of the AC signal 

(RF) is applied to the SA p-section (top) and the positive port of the reverse bias DC signal and 

the negative port of the AC signal (RF) is applied to the Gain p-section (top) using a bias tee. By 

doing that the p-section of the gain section is acting as a floating ground for the SA. Of course the 

SA is forward biased until the amount of voltage on the reverse bias voltage supply is less or equal 

to the forward biasing voltages on the gain section. However, by increasing the voltage beyond 

that point, the SA will be reverse biased and the dropped voltage (which is negative) on the SA 

will be the difference between the SA supply voltage and the forward bias voltage of the gain 

section.  
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Figure 3-5. Contacts layout schematic and electrical connections of the hybridly mode-locked 

two-section laser 

Figure 3-6 (a) shows a typical I-V curve of this mode-locked laser. From this graph a device 

impedance of 2.7 Ω has been obtained. Figure 3-6 (b) shows the typical output power-current (L-

I) characteristics for different reverse bias SA voltages. From this data a threshold current of 57 

mA is obtained for the unbiased SA, and it increases as the reverse bias voltage is increases. Also 

a slop efficiency of 0.08 W/A is measured when SA in unbiased. 

Figure 3-7 shows the far field mode pattern of the mode-locked laser in two directions 

when the gain section is biased with 70 mA of current and when the SA is unbiased. From this 

data an ellipticity of 0.89 is achieved. This suggest a good coupling ratio when trying to couple 

the light to a SMA fiber as it is easier to match the laser mode (almost circular) to a circular mode 

of the fiber.  
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Figure 3-6. (a) Current vs voltage characteristics of the two-section MLL, and (b) output power-

current characterization of the two-section MLL at 20°C for different reverse bias voltages 

Figure 3-8 shows the experimental setup that has been used for hybrid mode-locking and 

diagnostics. Output light is coupled to a single mode fiber using an aspheric lens and a free space 

isolator is used to avoid any back reflection. A fiberized optical semiconductor amplifier is also 

used to amplify the output light. 

 

Figure 3-7. Far field mode pattern of the mode-locked laser measured using DataRay Inc. beam 

profilometer 
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Figure 3-8. Experimental setup used for hybrid mode-locking and diagnostics. Iso: isolator; 

SOA: semiconductor optical amplifier; PD: photodetector; PC: polarization controller; RFSA: 

radio frequency spectrum analyzer; OSA: optical spectrum analyzer; L: aspheric lens; FC: fiber 

coupler. 

 

Stable passive mode-locking is observed for bias current values of 75 mA to 140 mA with 

reverse bias voltages of -2 V to -3.9 V. Figure 3-9 (a) shows the optical spectrum of the passively 

MLL running at 123 mA and reverse bias voltage of -3.9 V which gave us the shortest optical 

pulse. The optical spectrum centered at 1548 nm has a 3-dB bandwidth of 9.8 nm. Figure 3-9 (b) 

shows the corresponding RF spectrum at 22.14 GHz and its harmonic detected by a 33 GHz fast 

InGaAs PIN photodetector and observed by a 50 GHz RF spectrum analyzer. Maintaining a 

constant temperature, the pulse repetition rate can be tuned by about 400 MHz by changing the 
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biasing current and the reverse bias voltage. Figure 3-10 shows the optical intensity autocorrelation 

of the isolated pulse obtained by the second-harmonic autocorrelator. The autocorrelation signal 

of the pulse is equal to 1.31 ps which deconvolves to 860 fs by using 0.656 as the deconvolving 

factor obtained from simulation. The simulation is done using the measured optical power 

spectrum and assuming flat spectral phase. The results imply a time-bandwidth product of 1.05 

which is 2.6 times transform-limited [57]. 

 

 

Figure 3-9. (a) Optical spectrum of the mode-locked laser for shortest pulse at Igain = 123 mA and 

Vabs = -3.9 V, (b) the corresponding RF spectrum 

We minimized the capacitance by reducing the size of the SA metal pad to 56 µm×100 µm. 

By having the 1.3-µm-thick BCB layer as an insulating layer further helped to reduce the 

capacitance of SA pad. Careful design of these parameters enabled us to drive the SA at very high 

frequencies (>20 GHz) very effectively without the need for semi-insulating substrate wafers that 

require more fabrication processes [54]. 
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Figure 3-10. Autocorrelation trace of the isolated pulse under passive mode-locking 

 

Hybrid mode-locking is achieved by using a low noise RF synthesizer (Agilent E8254A) 

to drive the two-section MLL. SMA cables are used to transmit the RF signal and a 20-dB RF 

amplifier is used to compensate the huge loss of these cables and the losses introduced by the 18 

GHz bandwidth bias tee and other connectors. Figure 3-11 shows the double side band noise 

spectrum for the device running in the passive and fundamental hybrid and sub-harmonic hybrid 

mode-locked (n=2) regimes respectively. The bias current and the reverse bias voltage are 80 mA 

and -3.1 V respectively. The applied RF is tuned to 22.417783 GHz to minimize the pedestal. On 

applying the RF signal, the RF tone linewidth is seen to decrease from 1.5 MHz to sub Hz. As seen 

in Figure 3-11, by increasing the RF power, the RF noise is drastically reduced (more than 20 dB 

decrease is observed by applying 15 dBm RF signal). Figure 3-11 (inset) shows the amplified laser 

output time domain traces with 44.6 ps period using a 50 GHz Agilent sampling scope triggered 
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by 1.868148583 GHz signal using another RF synthesizer. The RF synthesizers and RF spectrum 

analyzer used are synchronized to each other. Because of the frequency response of the 

photodetector and cables, only the first harmonic is observed. For comparison SHML was also 

performed on the device with 15 dBm RF power and by small tuning of the modulation frequency 

to have the minimum pedestal. As can be seen in Figure 3-11, SHML has much higher RF noise 

validating the effectiveness of our approach. 

 

Figure 3-11. Double side band noise spectrum for passive, FHML at different RF power and 

SHML (n = 2). Inset shows the sampling scope trace for the FHML at RF power of 15 dBm. 

Figure 3-12 shows the residual phase noise power spectral density of the mode-locked laser 

under 15 dBm RF power, along with the noise floor of the measurement system, measured by a 

HP 70420A carrier noise test set and normalized to a 1 Hz Resolution bandwidth. From this data 

the timing jitter for the 1 Hz- 100 MHz range is calculated to be 280 fs. 
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Figure 3-12. Residual phase noise power spectral density of the FHML laser (black) under Igain = 

80 mA and Vabs = -3.1 V and the RF power of 15 dBm and noise floor of the measurement 

(Grey). 

 

 Noise performance comparison 

The timing jitter for the device under FHML is calculated by integrating the residual phase 

noise data obtained from the carrier noise test set which takes advantage of the fact that the device 

and the RF reference are phase-locked for phase noise measurement. However this phase noise 

measurement requires an appropriate RF source to be used as the reference. Key features of this 

source are that; 1) it has the same nominal frequency as the device under test (DUT), 2) it has 

lower phase noise than the DUT, and 3) additionally this reference signal should be phase-locked 

to the DUT such that it remains in quadrature with the DUT during the measurement. 

61 

 



For the FHML case, the laser is at the same frequency of the reference so keeping them in 

quadrature is easy to achieve and the phase noise could be measured. However for passive MLL 

this requirement of being in quadrature is hard to achieve because the passively mode-locked laser 

is free-running. Also for SHML, since the reference and the laser are at different frequencies, this 

method would require adding a frequency divider or multiplier which adds extra phase noise to 

the measurement and makes the phase noise measurement difficult. 

The RF spectrum of the photo-detected mode-locked laser pulse train can be used for noise 

comparison but this side band noise is composed of both AM and PM noise components and thus 

we cannot quote this integrated noise as “jitter”. So just for comparison and to show an 

improvement with the novel design, instead of giving any jitter values (not accurately measured in 

case of passive MLL), we have shown 20 dB improvement in the RF noise of the passive MLL by 

looking just at the RF spectrum after hybrid mode-locking it. 

 The single side band noise measured by RFSA for the device running under passive ML, 

SHML and FHML are shown on Figure 3-13 as well as the residual phase noise for the FHML as 

measured by the carrier noise test set. By using the SSB noise as the residual phase noise plot and 

by integrating, the below values are obtained for the “Integrated noise” (4 MHz-100 MHz). 
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Figure 3-13. Single side band noise measured by RFSA for the device running under passive ML 

(green), SHML (blue) and FHML (red). Residual phase for the FHML (black) is also shown for 

reference (measured using the carrier noise test set) 

Table 8. Integrated single sideband noise from 4 MHz to 100 MHz of the device running under 

different mode-locking scheme 

Mode-locking mechanism Integrated noise 

FHML 270 fs 

SHML 410 fs 

Passive ML 7.32 ps 
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 Conclusion 

In this chapter we demonstrated a simple self-aligned wet etching process to fabricate 

AlGaInAs quantum well MLLs. This material system has shown distinct advantages compared to 

the conventional InGaAsP-InP system. Pulses of 860 fs were obtained at a high repetition rate of 

22 GHz.  By carefully designing the metal pads, and by having 1.3-µm-thick layer of BCB as the 

insulation layer, very effective RF modulation of the SA was made possible at the round-trip of 

the cavity. Low timing jitter of 280 fs (1 Hz-100 MHz) at the fundamental repetition rate was 

achieved. These results confirm the potential of the novel, simple and cost-effective laser design 

as a compact source of low noise high repetition rate optical pulses. 
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4. TRUE LINEARIZED INTENSITY MODULATOR FOR PULSED LIGHT 

 

 Introduction 

Recently as described in section 1.6, a linearized optical intensity modulator has been 

reported [34]. The linearity of this modulator is inherent in its design and potentially could provide 

a much higher SFDR without the need for any linearization technique. It employs an injection-

locked resonant cavity placed in one of the arms of the MZI. When the frequency of the input light 

(master laser) is inside the locking range of the resonant cavity (slave laser), its frequency locks to 

the master laser frequency. Based on Adler’s equation [28] the induced phase response of the 

injection-locked slave laser is an arcsine function of the detuning between the resonance frequency 

of the slave laser and frequency of the master laser, 

𝜑𝜑𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛 � ∆𝜔𝜔
∆𝜔𝜔𝐿𝐿

�  (4-1) 

 

where Δω is frequency detuning between master and slave laser and ΔωL is half of the locking 

range of the slave laser. This equation is the steady state solution of the Adler’s equation under 

weak injection-locking. 

Previously this modulator concept was implemented using a vertical cavity surface 

emitting laser (VCSEL) and was shown to provide a very low Vπ of 2.6 mV, possible gain, 

modulation bandwidth of 5 GHz and most importantly SFDR of 120 dB.Hz2/3 [34, 58]. However, 
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the above modulator design is limited to single frequency light and to adapt this technique to a 

pulsed light, a resonant cavity with multiple optical resonances is needed (Figure 4-1 (a)). This can 

be done by using a Fabry-Pérot laser (FPL) as the resonant cavity with multiple resonances and 

injection-locking them to the frequency comb of the master laser [59]. By modulating the slave 

laser and inducing an arcsine phase response on each of the injected seeds and by combining them 

with its unmodulated counterpart from the other arm of the MZI, a linearized intensity modulator 

for pulsed light can be realized (Figure 4-1 (a), (b)). 
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Figure 4-1. (a) Schematic showing the slave laser resonances (black), the corresponding phase 

response (red), injected comb lines from the MLL (blue) and the instantaneous imparted phase 

on each of the injected comb lines (green), (b) Schematic of the linear interferometric intensity 

modulator for pulsed light. fmaster and fslave denote the mode spacing of the master and slave laser, 

respectively. 

 

For injection-locking, there should be an optical spectrum overlap between the lasers and 

also the free spectral range (FSR) of the FPL should match the pulse repetition rate of the MLL. 
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These conditions could possibly be satisfied if both the MLL laser and the FPL chips are fabricated 

using the same wafer with the same waveguide structure. However there are two main challenges: 

(1) two different physical lengths of the lasers are needed (~5-10 µm difference) to compensate 

for the slight difference in group indices of the FPL and MLL, requiring very accurate device 

cleaving; (2) because of the dispersion, the optical mode spacing of the FPL is not constant across 

the spectrum and this makes the injection-locking to all of the equally-spaced optical modes of the 

MLL more challenging [59]. This is highlighted in the optical spectra of the MLL (cavity length 

of 1912 µm) and FPL (cavity length of 1950 µm), shown in Figure 4-2 (a-c). The optical modes 

of the two lasers match well at one end of the spectrum (Figure 4-2 (b)) and start to walk off from 

each other on moving to the other side of the spectrum (Figure 4-2 (c)). This results in overall poor 

injection-locking and no induced phase response on the injection-locked resonant cavity. 
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Figure 4-2. (a) Optical spectra of the passively MLL (black) and FPL as the resonant cavity 

before (red) and after (blue) injection-locking. Both the lasers are biased with different dc 

currents to match the frequency spacing between the modes which results in different spectrum 

widths. The injection-locked FPL spectrum is much narrower than the spectrum of the master 

MLL since the well-spaced modes of the MLL match at one end of the spectrum with the modes 

of the FPL as shown in (b) and start to walk off from each other on moving to the other side of 

the spectrum (c). 

Figure 4-3 (a) also shows the RF spectrum of the hybridly mode-locked laser running at 

temperature of 17 °C and bias current of 145 mA and saturable absorber voltage of -2.8V. 

Figure 4-3 (b) shows the RF spectra of the FPL running at temperature of 23 °C and biased with 
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58 mA of current before (red) and after (blue) injection-locking. Autocorrelation trace of an 

isolated pulse from the FPL after injection-locking is also shown in Figure 4-3 (c). This is also 

another proof that the FPL is injection-locked to the MLL. 

 

Figure 4-3. (a) RF spectrum of the hybridly MLL running at temperature of 17 °C, biased with 

145 mA and VSA= -2.8V, (b) RF spectra of the FPL running at temperature of 23 °C and biased 

with 58 mA before (red) and after (blue) injection-locking and (c) autocorrelation trace of an 

isolated pulse from the FPL after injection-locking. 
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In this chapter, we propose and demonstrate the use of a MLL identical to the master laser 

as the resonant cavity inside the MZI [60]. This ensures the optical spectrum overlap and ideal 

matching of the spacing between the optical modes of the lasers. Experimental results of the 

injection-locking of this laser are presented here. The static phase response of the linearized 

modulator is presented for different injection power ratios. Instead of just modulating the current 

on the gain section of the FPL, the use of the MLL as the slave laser gives us two parameters to 

modulate: the saturable absorber voltage and the current on the gain section. Modulating the 

current of the gain section leads to carrier density modulation and hence an unwanted amplitude 

modulation is introduced. However we believe this could be reduced significantly by modulating 

the SA instead. Experimental results for the signal to intermodulation ratios are presented here and 

a much reduced third-order intermodulation tone is observed (for the same fundamental RF power) 

when modulating the SA compared to modulating the gain. Finally the SFDR of this modulator is 

measured for each of the two above cases. 

 

 

 Injection-locking of a passively MLL (slave) by a hybridly MLL (master) 

A promising AlGaInAs-InP material system (as described in section 2.1) has been used to 

fabricate the MLL chips. The multiple quantum well structures have been grown on sulfur-doped 

InP substrate using metal organic vapor phase epitaxy (MOVPE). The active region consists of 

five compressively strained wells (6 nm thick) and six slightly tensile strained barriers (10 nm 
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thick). Single mode 2.5 µm waveguides are fabricated using standard UV positive lithography 

process. Fabrication process is the same as description given in section 2.4. The master and slave 

lasers are chosen to be the adjacent lasers on a laser bar and cleaved simultaneously to obtain the 

exact same lengths. The total length of the lasers is 1.868 µm with the SA length of 70 µm. The 

ratio of the SA to gain section length is chosen in such a way that the relaxation oscillations are 

minimum and the mode-locking quality is the best possible. The facets are left uncoated and the 

devices are mounted p-side up on gold coated copper studs which themselves sit on top of thermo-

electric coolers (TEC). The TEC currents are controlled using high precision proportional-

integrated-differential (PID) controllers with a stability of 0.001°C. This is very critical for stable 

injection-locking since even a 0.001°C change results in a ~15 MHz drift in the optical frequency 

and a subsequent change in the quadrature point of the MZI. Figure 4-4 shows the electrical and 

optical characteristics of the MLL when no voltage is applied to the SA. A top view picture of the 

device is also shown in the inset of Figure 4-4. A threshold current of 51 mA, device impedance 

of 3.7 Ω and slope efficiency of 0.077 W/A are measured from these data. 
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Figure 4-4. Typical output power-current (blue) and voltage-current (black) characteristics of the 

MLL operating at 20 °C. No voltage is applied to the SA. The device characteristics are: 

Ithreshold=51 mA, R=3.7 Ω and slope efficiency of 0.077 W/A. Inset shows the top view of the 

actual fabricated MLL. 

 

The master laser is hybridly mode-locked by forward biasing the gain section using a 

simple DC probe and modulating the reverse-biased SA section. A high speed bias-tee is used to 

combine the reverse bias voltage and the RF signal. The mixed signal is applied to the SA using a 

40 GHz ground-signal (GS) microwave coplanar probe.  The slave laser is passively mode-locked 

by forward biasing the gain section and reverse biasing the SA section. Bias-tees are used for gain 

and SA sections to be able to apply the AC signal and modulate them separately. Aspheric lenses 

are used to couple the light in and out of the lasers. The master laser beam is divided using a non-

polarizing beam splitter (BS). An optical isolator with more than 35 dB isolation is used to avoid 
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any reflection being coupled back to the master laser. The injection power is adjusted using a 

neutral density filter (NDF) and monitored at the same time with the help of a pellicle beam splitter 

and an optical power meter. The injecting facet is the gain section facet of the slave laser. The 

output light from the slave is coupled to an SMF fiber and amplified using a semiconductor optical 

amplifier before going to diagnostics. 

Figure 4-5 (a)-(c) show the optical spectra of the master and slave laser before and after 

injection-locking. Here the master laser is operating at 65 mA of bias current and a reverse bias 

voltage of -1.8 V and is maintained at a constant temperature of 20 °C. An RF power of 6 dBm at 

22.998 GHz is applied to the SA to achieve hybrid mode-locking of the laser. The slave laser is 

passively mode-locked with 65 mA of bias current and a reverse bias voltage of -1.9 V and the 

operating temperature of 19.100 °C. Both lasers are running at the same bias currents and the same 

SA reverse bias voltages to achieve the same spectral width. SA voltages are carefully chosen to 

match the repetition rate frequencies and the operating temperature of the slave laser is carefully 

tuned for a precise overlap of its optical modes with that of the master laser. A high resolution 

optical spectrum analyzer is used to monitor the optical modes in more detail. The power injection 

ratio is -27.8 dB and is chosen to achieve the best injection-locking with the least amount of 

relaxation oscillations. The measured 3-dB optical bandwidth is about 2 nm for both lasers. 

Figure 4-5 (d) shows the corresponding RF spectra and confirms that the passively mode-locked 

slave laser follows the hybridly mode-locked master laser. The autocorrelation trace of the pulses 

from master laser are shown in Figure 4-5 (e). The pulse width is measured to be ~5 ps assuming 

a Gaussian shape and the pulses are 2.8 times transform limit. The autocorrelation trace of the 

slave laser is not shown here since it is almost identical to that of the master laser. 
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Figure 4-5. (a) Optical spectrum of the master laser (black) with Igain=65 mA, VSA=-1.8 V, T=20 

°C and 6 dBm of RF power at 22.998 GHz (b) and (c) optical spectra of the slave laser before 

(red) and after (blue) injection-locking with Igain =65 mA, VSA =-1.9 V, T=19.100 °C and 

injection ratio of -27.8 dB. (d) Normalized RF spectra of the master laser and slave laser before 

and after injection-locking. (e) Autocorrelation trace of the master laser (slave laser trace is not 

shown since it is same as that of the master laser with similar pulse width) 
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 Experimental setup of the linearized intensity modulator for pulsed light 

A schematic of the experimental setup is shown in Figure 4-6. Free space optical delays 

are used in both the arms of the MZI to be able to match the path lengths to achieve same pulse 

overlap after splitting. PZT linear optical stage is used in one of the optical delays to fine-tune the 

path difference and bias the MZI at quadrature. Power is monitored at three places in the setup: 

the injected power to the slave laser, the free space power in each of the arms of the interferometer, 

and the optical power coupled to the fiber from each of the arms. The last two power meters and a 

neutral density filter placed in front of the slave laser are used to monitor and balance the optical 

power of each arms and help to increase the visibility of the MZI. With the help of half-wave 

plates, the polarization of each arm is adjusted to further increase the visibility to ~ 68%. 

Normalized change of the output power (static phase shift response) of the modulator for the power 

injection ratio of -27.8 dB is obtained by deviating the current of the slave laser around the bias 

point and monitoring the output power of the MZI (Figure 4-7 (a)). Static phase shift of π is 

achieved when the bias current of the slave laser is changed by approximately 2.3 mA. This 

corresponds to a full locking-bandwidth of 665 MHz. The effective Vπ is calculated to be 8.5 mV. 

The static phase shift response in the locking range deviates from the expected pure linear response 

because of the significant amount of PM-to-AM coupling created by modulating the current of the 

slave laser. The -27.8 dB power injection ratio is chosen to avoid relaxation oscillations which are 
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the byproducts of the injection-locking. Increasing the injection ratio, one could possibly increase 

the visibility of the interferometer, however this itself creates relaxation oscillations and 

compromises the visibility of the interferometer. Figure 4-7 (b) shows the static phase response of 

the modulator for three different injection ratios. An increase in the injection-locking bandwidth 

is expected as the injection ratio increases. However by further increasing the injection ratio (-16 

dBm), relaxation oscillations become dominant and the injection-locking becomes unstable. 

 

Figure 4-6. Experimental setup. ISO: Isolator; BS: Beam splitter; λ/2: Half-wave plate; NDF: 

Neutral density filter; BT: Bias-Tee; PM: Power meter; SOA: Semiconductor optical amplifier; 

PD: Photo-detector; RFA: Radio frequency amplifier; OSA: Optical spectrum analyzer; RFSA: 

Radio frequency spectrum analyzer 
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Figure 4-7. Normalized change of the output power of the MZI (static phase change) as a 

function of DC current deviation of the slave laser. Master laser is running with Igain =65 mA, 

VSA=-1.8 V, T=20 °C and 6 dBm of RF power at 22.998 GHz. Slave laser is running with 

Igain=65 mA, VSA=-1.9 V and T=19.100 °C. Here the power injection ratio was -27.8 dB, (b) 

Static phase response as a function of DC current deviation for different power injection ratios. 

The locking bandwidth increases as the injection ratio increases, however by further increasing 

it, the relaxation oscillations dominate and the injection-locking becomes unstable (-16 dB). 

 

Figure 4-8 shows the high resolution optical spectra of the slave laser for different bias 

currents, where 1 µW of optical power from the gain side of the master laser (equivalent to -27.8 

dB of power injection ratio) is injected to the slave laser. Here the master laser bias current is kept 

constant at 65 mA. The injection seed from the master laser is at 1556.3688 nm and shown with a 
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solid black line. The slave follows the master in the approximate current range of ~ 64 mA to 66 

mA. As shown in Figure 4-8 for the bias currents which are outside of the locking bandwidth, the 

injection-locking becomes unstable and both the slave and master laser outputs are seen inside the 

slave laser spectra. 

 

Figure 4-8. High resolution optical spectra of the slave laser for different bias currents. The slave 

remains locked for the bias currents between 64 mA to 66 mA and unlocks for currents outside 

of the locking range. The 1 µW injection signal (-27.8 dB of injection ratio when slave is biased 

at 65 mA) from the master laser is coupled into the slave laser from the gain section facet. 

Master laser bias current is kept constant at 65 mA. The injection seed from the master laser is at 

1556.3688 nm and shown with the vertical solid black line. 
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 Two-tone intermodulation experiment 

Two-tone intermodulation experiment results are presented in this section as a measure of 

the linearity of this modulator.  The bias point of the modulator is critical since any deviation from 

the quadrature point would deteriorate the linearity of the modulator. The starting bias point could 

be off because of the asymmetric locking range of the resonant cavity. This is associated with any 

semiconductor laser with a non-zero alpha parameter [61]. This issue has been addressed by 

finding the center point of the static phase response curve and its corresponding bias current (here 

was 64.7 mA) and readjusting the bias current to this new value. The interferometer is again 

balanced accordingly. 

In order to measure the signal to intermodulation ratio, the modulator (gain section current 

or saturable absorber voltage) is modulated with two RF signals with the frequencies of 300 MHz 

and 400 MHz simultaneously. As shown in Figure 4-6, the RF signals are combined using a 3-dB 

coupler and applied to the bias-tee of either gain section or SA section. The photo-detected RF 

signal of the modulated light is split into two and monitored with two radio frequency spectrum 

analyzers at the same time; one for fundamental frequencies with a larger frequency span and the 

other for third-order intermodulation tones at 200 MHz and 500 MHz with a span of 512 Hz. 

Figure 4-9 (a) shows the photo-detected RF power spectrum of the fundamental tones. To be able 

to compare the third-order intermodulation tone when modulating the gain with third-order 

intermodulation tone when modulating the SA, the input powers to the modulator are adjusted in 

such a way that the same fundamental powers are seen after photo-detection. The applied input RF 

power was -16 dBm when modulating the gain and -24 dBm when modulating the SA. Figure 4-9 
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(b) and (c) show the third-order intermodulation tones at 200 MHz and 500 MHz, respectively. 

The 500 MHz sideband is used for the calculations since it was the larger spur compared to the 

200 MHz sideband. From this data, signal-to-intermodulation ratios of 50.8 dB and 55.3 dB are 

obtained when modulating the gain and SA, respectively. A ~ 4.5 dB improvement is achieved by 

modulating the voltage of the SA over the gain of the slave laser since modulating the SA would 

create less AM as opposed to modulating the gain (carrier density) of the slave laser. 
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Figure 4-9. (a) Photo-detected RF power spectrum of fundamental frequencies for the input RF 

power of -16 dBm when modulating the gain and -24 dBm when modulating the SA (the input 

powers are adjusted to achieve the same fundamental powers for comparison), (b) detected RF 

power spectra of the third-order intermodulation tones at 200 MHz, (c) detected RF power 

spectra of the third-order intermodulation tones at 500 MHz. Intermodulation tone shown in 

black when modulating the gain section and shown in red when modulating the SA section. 
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Figure 4-10. Fundamental and third-order intermodulation powers as a function of the input RF 

power to the modulator. 

Figure 4-10 shows the fundamental and third-order intermodulation powers for different 

input RF powers for each of the gain and SA modulation cases. A linear fit of slope one and another 

linear fit of slope three are applied to the fundamental and intermodulation tones respectively. 

Spur-free dynamic range of 68.5 dB.Hz2/3 and 70 dB.Hz2/3 are obtained from modulating the gain 

and SA, respectively [60]. Here the SFDR measurement is limited by noise from beating between 

the relatively broad linewidth laser modes. 
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 Discussion and conclusion 

The modulation bandwidth of this modulator is limited by the steady state solution of 

Adler’s equation which suggests that the modulation frequency should be much slower than the 

repetition rate of the MLL. Assuming a 5% ratio, this would give a modulation bandwidth of about 

1.1 GHz for the MLLs used here. The modulator still would operate for higher frequencies, 

however the phase response would deviate from the arcsine. The bandwidth could be increased by 

having MLLs with higher repetition rates [62]. This can be realized by having shorter physical 

length and employing the colliding pulse MLL scheme. This type of modulator with a very high 

sampling rate could be used for oversampled sigma-delta ADC [1]. 

The frequency shifting of the slave laser necessary to induce the arcsine phase response is 

expected to be linear with respect to current of the gain section (or the voltage of SA section) 

within a small locking bandwidth. This is confirmed by measuring the optical frequency shift on 

a high resolution optical spectrum analyzer while tuning the current of the gain section (not shown 

here). Furthermore, the 120 dB.Hz2/3 SFDR obtained in [58] by utilizing a VCSEL as the resonant 

cavity suggests a highly linear response in the small locking range. 

The SFDR measurement provided here is limited by noise from beating between the 

relatively broad linewidth laser modes. This noise extends to higher frequencies as the optical 

linewidth of the lasers get larger (here about ~200 MHz). This could be addressed by reducing the 

overall loss of the cavity such as improving the waveguide design and coating the facets. Also 

there have been many reports on narrow optical linewidth monolithic MLLs using different 

material system [63]. 
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Currently available electronic ADCs with similar bandwidth may offer comparable or 

modestly better SFDR and ENOB to results reported here. However we believe our novel design 

has the potential for significantly higher bandwidth and linearity, ultimately providing a superior 

ENOB compared to electrical samplers of the same bandwidth. 

Finally a novel linearized intensity modulator for pulsed light is presented in this chapter. 

This has been realized by introducing a passively MLL injection-locked to a hybridly MLL (which 

is the input to the MZI) into one of the arms of the MZI. By modulating the injection-locked laser, 

one can induce arcsine phase response on each of the injected longitudinal modes. A linear 

intensity modulator is obtained by interfering the modulated light with its unmodulated counterpart 

from the other arm in quadrature. A low Vπ of 8.5 mV eliminates the need for a linear RF amplifier 

required for RF signal amplification in the case of LiNbO3 modulator .The current of the gain 

section or voltage of the SA are used to modulate the slave laser. Modulating the SA provides a 

reduced AM and hence a reduced third-order intermodulation tone with respect to modulating the 

gain. A SFDR of 70 dB.Hz2/3 is obtained when modulating the SA. The reported SFDR is limited 

by the noise of the MLLs. Employing this novel linearized modulator in an analog optical link 

offers the potential to improve the resolution and the overall performance of the photonic sampled 

ADC. 
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5. HIGHLY LINEAR INTENSITY MODULATOR FOR PULSED LIGHT 
USING THREE-SECTION MLLS 

 

 Introduction 

As discussed in chapter 4, the linearity of the linearized modulator is limited by the 

unwanted amplitude modulation produced when modulating the gain section or saturable absorber 

section. This can be addressed by decoupling the phase and amplitude responses. Here in this 

chapter, we propose the use of a three-section device which an additional passive section is 

introduced into the previous design. This section is transparent to the operating wavelength of the 

laser and hence does not absorb any light when its current (or voltage) being modulated well below 

the threshold current. Figure 5-1 shows the schematic of the proposed three-section device. It 

consists of gain, saturable absorber and phase sections [64].  

In this chapter we will discuss the principle of operation of the three-section device and 

explain how the absolute position of the frequency combs changes when applying the modulation 

signal to the passive section. Also in order to make the passive section transparent at the operating 

wavelength of the laser, we have used the impurity free vacancy disordering method (IFVD) to 

selectively tune the bandgap of the passive section. Silicon nitride and silicon oxide dielectric 

layers have been used to promote and inhibit the intermixing process, respectively. Also additional 

fabrication steps needed for the three-section device has been explained and discussed. Finally the 

experimental setup for the highly linear interferometer has been built and the results are presented. 
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Figure 5-1. Schematic of the proposed three-section device including: gain section, saturable 

absorber section and the new passive (phase) section. The modulation signal can be now applied 

through the passive section. 

 

 Three-section MLL principle of operation 

Changing the current of the gain section or the voltage of the saturable absorber section 

has been used previously to shift the absolute frequency of the comblines to be able to induce the 

arcsine phase response. However there are two main drawbacks in employing them for modulation. 

Modulating the gain or saturable absorber is associated with an unwanted amplitude modulation 

which deteriorates the overall linearity and performance of the modulator. It is needed to be 

mentioned here that the ideal case when modulating the slave laser comblines would be tuning all 

of the comblines positions together with minimal change of the frequency spacing between them. 
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We believe that the new design could make this possible. Here in the new design, by modulating 

the current of the passive section, one can induce refractive index change in that section and 

therefore can change the frequency spacing of the optical modes. To give an approximate example 

assuming a 1.877 mm long device with 20% passive section length and also with a refractive index 

change of about 10-4, would create 0.127 MHz change in the frequency spacing of the comblines. 

Since the fixed point for repetition rate change is near DC for a passively MLL [65-67], as shown 

in Figure 5-2, small change in frequency spacing accumulate from DC to the optical frequencies. 

Assuming the repetition rate (comblines spacing) of 22.656 GHz would make the combline at 

optical wavelength of 1550 nm, the 8542th combline from the DC point. This makes the total shift 

at this combline to about 1.08 GHz which is enough for inducing arcsine phase response in the 

locking bandwidth. So only small changes are needed to achieve a greatly magnified (×8542) shift 

at optical frequencies [64]. 

The amount of current needed in order to introduce 10-4 change in the refractive index 

through the plasma effect would be very small (in the order of 1 mA) and this is well below the 

lasing threshold current of that section. This promises a pure phase response with minimal 

amplitude modulation. This also could lead to a significant reduction of the Vπ of the modulator. 
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Figure 5-2. Visual representation of the frequency shift of the MLL when it is modulated through 

its passive section. Black and red shows the optical modes and their absolute location when the 

passive section is unbiased and biased, respectively. 

 

 Impurity free vacancy disordering 

5.3.1. Introduction 

Different bandgap of semiconductor active region is needed in order to achieve integration 

of optoelectronic devices, such as modulators, laser, detectors, and etc. in a common substrate 

platform. Selective bandgap tuning of semiconductor active region has been done in order to be 

able to introduce multiple functionalities. There have been numerous report on bandgap 

engineering of semiconductor materials and they all fall into two main categories: during growth 

or post growth. The former could be either through grow-etch-regrowth [68-70] or selective-area 
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epitaxial growth [71, 72]. It is possible to produce large and very controllable bandgaps differences 

with good spatial resolution on the wafer with these techniques, however they need multiple 

epitaxial growth steps and ultimately become very expensive. Also selective-area growth needs 

precise masking layers and accurately tailoring the growth conditions. Extensive studies have been 

done on the second method which is the post-growth bandgap tuning method since it provide a 

much simpler, less time consuming and most importantly less expensive method. This method is 

named quantum well intermixing (QWI) [73, 74] for quantum well materials. 

The QWI process is a simple post-growth bandgap tuning method that modifies the 

bandgap energy of an existing quantum well system by intermixing the composition of well and 

barrier layers. The intermixing is achieved by introducing point defects in selected area while rapid 

thermal annealing (RTA) is used to promote the intermixing process. This method could deliver 

multiple bandgap wafers with less complexity and less cost compared to grow-etch-regrowth 

method. There are several approaches reported to achieve intermixing such as impurity induced 

disordering (IID) [75, 76], photo-absorption induced disordering (PAID) [77, 78],  ion implantation 

induced intermixing [79, 80], plasma induced intermixing [81], and impurity free vacancy 

disordering (IFVD) [73, 82, 83]. Among these IFVD has received a great deal of attention because 

of simplicity, being cost effective, good spatial resolution and also conserving the electrical 

property of quantum well material. This method usually involves the deposition of dielectric layer 

followed by rapid thermal annealing (RTA). Several dielectric layers such as SiO2, Si3N4, SrF2, 

and TiO2 have been used to inhibit or promote the intermixing [84-86]. By properly choosing the 

dielectric capping layers and RTA conditions (time and temperature), one can induce atomic 

interdiffusion between the quantum well and barriers compositions. The constant flow of atoms 
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(from region with high concentration to low concentration) between the wells and barriers when 

annealing causes blurring of the previously sharp concentration gradient between the well and 

barriers. As shown in Figure 5-3, this blueshifts the emission properties of the quantum well 

material and also widens its optical bandgap. 

  

 

Figure 5-3. Schematic diagram of the energy levels and energy bandgap for intermixed and non-

intermixed regions. 

There have been reports on two approaches for intermixing of the AlGaInAs QW 

structures, one using the sputtered SiO2 as the promoter [87, 88] and the other one suggesting the 

use of PECVD Si3N4 dielectric layer [89, 90]. The former method is based on the point defects 

created during SiO2 sputtering and it is proven to work for different material systems such as GaAs-

AlGaAs, InGaAs-InGaAsP, InGaAs-InAlGaAs, and AlGaInAs-AlGaInAs [88]. The point defects 

produced during the sputtering process, results in an increased rate of atomic interdiffusion during 

the annealing stage. This is a universal method since it works for the wide range of material 
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systems and there is no need for dielectric material characterization for each of the material 

systems. A thin layers of SiO2 is sputtered using Ar: O2 gas mixture with a self-DC bias of 1 kV 

and a processing pressure of 510-3 mbar. The sputtering is followed high temperature annealing 

(650 °C-750 °C). Figure 5-4 shows the measured PL for the InGaAsP and InAlGaAs material 

systems as a function of RTA temperature for the annealing time of 1 min. Bandgap shift is 

observed for InGaAsP samples capped with sputtered SiO2 at temperatures as low as 550 °C. 

Meanwhile, the sample covered with PECVD SiO2 serves as a good inhibitor until the 650 °C. For 

InAlGaAs material systems, bandgap shift are observed at around 650 °C for the sample capped 

with sputtered SiO2 caps and it increase with increasing the annealing temperature, up to about 

100 meV for 750 °C. The InAlGaAs samples covered with PECVD SiO2 has shown no significant 

shift in the range of temperature shown in the figure. This makes the sputtered and PECVD SiO2 

layers ideal materials as the intermixing promoter and inhibitor for the InAlGaAs systems, 

respectively. Also temperature needed for enough bandgap shifting for this material system is low 

enough that the thermally induced intermixing are not expected to occur. This is very important 

and critical as the electrical properties of the material system preserves during the intermixing 

process. Also the areas that intermixing are needed to be inhibited remain unperturbed.  
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Figure 5-4. Measured PL shifts as a function of anneal temperature for InGaAsP with 200 nm 

sputtered (●) and PECVD () SiO2 caps and AlInGaAs capped with 200 nm sputtered SiO2 

() [87]. 

 

Another reported method for AlGaInAs quantum well intermixing is introduced in [89]. 

They have suggested the use of a 50 nm thick layer of Si3N4 as the intermixing promoter followed 

by annealing at high temperature of 720 °C for 2 min. The Si3N4 layer is deposited using a mixed 

frequency option of the PECVD machine. Depositing with the high frequency RF signal creates 

tensile films while depositing with low frequency RF signals provides compressive films. 

Therefore by carefully adjusting the low and high frequency intervals, one can possibly obtain an 

almost stress-free thin layer of Si3N4. Figure 5-5 shows the composition analysis of the intermixed 
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AlGaInAs quantum well structures using secondary ion mass spectrometry (SIMS) [90]. As it is 

shown the bandgap shift is mainly attributed to the interdiffusion of In and Ga between quantum 

wells and barriers. The In and Ga are interdiffused for the sample covered with Si3N4 when 

annealing at 720 °C for 2 min, however there is no interdiffusion for the uncapped sample. 

 

 

Figure 5-5. Compositions analysis of the AlGaInAs multiple quantum wells and barriers 

measured by SIMS for (a) In and (b) Ga atoms in the intermixed sample and for (c) In and (d) Ga 

atoms in the non-intermixed sample. Samples were annealed at 720 °C for 2 min and only the 

intermixed one was with a Si3N4 dielectric film capping layer. The data are compared to a 

reference (no annealing) sample [90]. 
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In [89], 200 nm of PECVD SiO2 is used to cover the whole sample (as the inhibitor and 

also to protect the sample surface) after selectively defining the intermixing regions with 50 nm of 

Si3N4. The sample then annealed at 720 °C for 2 min under nitrogen ambient. Figure 5-6 shows 

the optical spectra of the two 500-µm-long ridge lasers which on one intermixing is inhibited and 

the other intermixing is promoted. This data clearly shows more than 100 nm wavelength 

separation which is enough for active/passive integration purposes. This is a promising result in 

terms of bandgap shift and the relatively low temperature of 720 °C. However the required 2 min 

annealing time is long enough for the Zinc dopant (of the first two heavily-doped layers) to back-

diffuse into separate confinement heterostructure layers and accumulating above the active region 

of the area where the intermixing has been promoted. This increase the optical loss due to 

intervalence band absorption and also sub-bandgap absorption [90]. This makes this technique 

unsuitable for electro-absorption modulator fabrication as it cannot tolerate high voltages (needed 

for modulation) because of zinc back-diffusion. This is the main drawback of this method and it 

can only be used where there is no need for applying high voltages to the device. However, it is 

needed to be mentioned that the first method described here in [88], allows applying high voltages 

to the device. This is mainly because of the lower annealing temperatures (<700 °C) and also 

shorter annealing times, as an increase in both of these parameters contribute to more Zinc back-

diffusion. 
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Figure 5-6. Optical spectra of 500-µm-long edge emitter lasers from the area that intermixing is 

promoted and inhibited [89] 

 

Figure 5-7. (a) Profile analysis of Zn concentration measured by SIMS in intermixed AlGaInAs 

multiple quantum wells and barriers as well as in top AlGaInAs SCH guiding layer. The data are 

compared to a reference (no annealing) sample [90]. 
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5.3.2. Photoluminescence measurement setup 

A fiber coupled semiconductor laser at 980 nm is used here as the excitation source. 

Figure 5-8 shows the experimental setup that being built for photoluminescence measurement. A 

WDM fiber coupler/divider has been used to selectively couple the each wavelength into different 

port. It is designed specifically for 980 nm and 1550 nm wavelengths. A lensed fiber has been used 

to illuminate the sample with 70 mW of 980 nm light and simultaneously couple back the 1550 

nm emission from the sample. A XYZ stage also is used to control the positioning of the sample. 

The 1550 nm photoluminescence redirects to 1550 nm port and it is connected to an optical 

spectrum analyzer. The excitation source power plays a key role for this measurement as too much 

power will heat up the sample and shifts and widens the photoluminescence spectrum. The 70 mW 

power and the distance between the lensed fiber and the sample is always kept unchanged when 

measuring the PL for different samples. 

 

Figure 5-8. Experimental setup for photoluminescence measurements at room temperature. 
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5.3.3. Bandgap tuning experiment and results 

In this thesis, the PECVD SiNx approach has been chosen as the intermixing promoter over 

RF sputtered SiO2 approach because of the equipment availability. In order to characterize the 

parameters needed for intermixing process, the samples are prepared by first depositing the 

PECVD SiNx on the whole sample. Then half of the sample is covered by a clean mechanical wafer 

followed by dry etching of the SiNx of the uncovered area. Finally the whole sample is covered 

with PECVD SiO2 as the intermixing inhibitor and also in order to protect the surface of the 

sample. Figure 5-9 shows a schematic of the prepared sample with dielectrics defining the area 

that intermixing needed to be promoted (area beneath SiNx layer) and the area that intermixing 

needed to be inhibited (area beneath SiO2 layer). 

 

Figure 5-9. Schematic of dielectrics deposited selectively on quantum well sample to be able to 

define the regions that intermixing is needed to be promoted (SiNx capped) and inhibited (SiO2 

capped). 
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Figure 5-10. The cracks occurred on the sample upon annealing because of the different thermal 

expansion between the dielectrics. The SiO2 layers is deposited first and then half of the sample 

is covered and the uncovered SiO2 is etched away. Finally the whole sample is covered with 

SiNx. 

 

Another possible approach would be depositing the SiO2 layer first and dry etching the 

uncovered area followed by depositing the SiNx layer on the whole sample. However this has been 

experimented as it is shown in Figure 5-10. As it can be seen cracks are occurred after annealing 

the sample at high temperatures and basically destroys the sample surface and makes it unsuitable 

for reliable fabrication. This is mainly because of the different thermal expansion of the dielectric 

layers when deposited in this specific order. 

Because of annealing at the very high temperature special attention has been made in this 

work to deposit low stress dielectric films. PECVD deposited SiO2 usually has a small compressive 

stress which is independent of gas ratios and RF power used for deposition [91, 92]. However, 

PECVD deposited SiNx films using standard gases of SiH4, NH3 and N2 and using single frequency 
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of 13.56 MHz are tensile in nature [93]. A common technique to control the stress of SiNx films is 

the addition of low frequency power (380 KHz) which creates compressive SiNx films. By 

controlling the intervals of high and low frequencies when depositing, one can adjust the stress of 

the films [93]. An alternative method is suggested when working with single frequency PECVD 

machines and that is the addition of He gas to the previously standard gases. This has been shown 

in the Figure 5-11 for SiNx deposited at the temperature of 250 °C and for different RF powers. 

As it is shown the stress can be tuned from tensile region to the compressive region by increasing 

the amount of He gas. 

 

 

Figure 5-11. PECVD deposited SiNx stress control by the He dilution method. Films are 

deposited at the temperature of 250 °C with different RF powers [93]. 

Different SiNx recipes has been tried and their film quality when annealing and 

photoluminescence shift are examined in order to find the best conditions to deposit the SiNx 
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dielectric layer. Some of the recipes are shown in Table 9. In all of these recipes, RF power, 

processing pressure and total N2 are kept almost unchanged. A fixed 600 sccm of He is used is in 

some of the recipes to reduce the stress. On those recipes the N2/(He+N2) ratio are kept constant 

and only the NH3 levels are changed. It is made sure to keep the mentioned ratio at 45% and the 

amount of N2 the same. It is needed to be mentioned here that the changing the 2% diluted silane 

would cause a change in the total amount of N2. 

All of the samples are prepared first by depositing 70 nm of SiNx using recipes shown in 

Table 9, followed by covering half of the sample with mechanical wafer and dry etching the 

uncovered area. Finally the whole sample is covered with 185 nm of SiO2. The SiO2 is deposited 

using the recipe shown in Table 10. The samples are annealed in the nitrogen ambient at the 

temperature of 800° C for 2 min. The peak of the PL spectrum of each of the samples are also 

shown in Table 9. 
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Table 9. Deposition parameters of the recipes used for SiNx deposition. The flow unit for all of 

the gases is standard cubic centimeters per minute (sccm). The samples are annealed at the 

annealing temperature of 800 °C for 2 min. For the sake of consistency, SiNx and SiO2 dielectric 

layer thicknesses are kept the same (70nm±5nm and 185nm±10nm for SiNx and SiO2, 

respectively).  

 LS-SIN2 LS-SIN6 LS-SIN5 SIN-DIFF 

Pressure (mTorr) 940 940 940 900 

N2 200 200 200 400 

He 600 600 600 - 

SiH4+N2 300 300 300 120 

Silane 6 6 6 2.4 

NH3 4.05 4.66 3.47 4.56 

RF (W) 100 100 100 100 

Total N2 500 500 500 520 

NH3/SiH4 0.675 0.775 0.575 1.9 

N2/(He+N2) 45% 45% 45% - 

PL shifted to 1343 nm 1360 nm 1354 nm 1390 nm 
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Table 10. Deposition parameters of the recipe “depsio2” for SiO2 deposition. The silane gas 

(SiH4) used with this PECVD machine is 2% silane diluted in N2. 

Parameters depsio2 

SiH4 (sccm) 200 

NO2 (sccm) 412 

Temperature (°C) 246 

Pressure (mTorr) 1050 

RF power (W) 25 

Deposition rate (nm/min) 48-52 

 

The photoluminescence spectra of different samples with different SiNx are shown in 

Figure 5-12. The highest blue shift is obtained for the SiNx deposited using the LS-SIN2 recipe 

which is about 180 nm. This recipe has been used for SiNx deposition for further characterization 

of the intermixing parameters such as ideal annealing time and temperature. 
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Figure 5-12. Photoluminescence spectra of different samples capped with 70 nm SiNx layers 

deposited with different recipes annealed at 800 °C for 2 min. 

In another experiment a sample is prepared by depositing ~ 70 nm of SiNx using the LS-

SIN2 recipe followed by covering half of the sample with mechanical wafer and dry etching the 

uncovered area. Finally the whole sample is covered with 185 nm of SiO2. The sample is cleaved 

in smaller pieces and each are annealed for 2 min at different temperature. Figure 5-13 shows the 

PL blueshifts of the samples capped with SiNx and SiO2 as a function of annealing temperature. 

As it can be seen from Figure 5-13 a 130 nm differential blueshift is obtained between the SiNx 

and SiO2 capping area. This shift is large enough for active/passive integration purposes, however, 

the high annealing temperature and possibly long annealing time have caused the thermal 

intermixing in those region. Thermal intermixing happens because of the natural point defects 

formed when growing the active region. This will introduces more loss to the active region and 

degrades the performance of device. 
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Figure 5-13. Photoluminescence blue shift of the sample capped with 70 nm SiNx and capped 

with 190 nm of SiO2 for different annealing temperature (annealing time was kept 2 min for all 

of the samples).  

In order to find the approximate annealing time, another sample is prepared with 77 nm 

and 187 nm of SiNx and SiO2 capping area, respectively. Figure 5-14 shows the measured PL 

blueshifts of the SiNx and SiO2 capping areas as a function of annealing time for the annealing 

temperature of 800 °C. As it can be seen a blueshift of about 90 nm is obtained when annealing 

for 45 seconds. This is ideal since the active area (SiO2 capping) is minimally perturbed and the 

blueshift is less than 5 nm compared to as grown PL spectrum. Also the 90 nm could be sufficient 

for the active/passive integration purposes. Also as it is shown in the Figure 5-14 more shift is 

obtained for the SiNx capping area by annealing for a longer time, however, the thermal 

intermixing also starts to happen and this also blueshifts the PL spectra of the active region. 
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Figure 5-14. Variation of measured photoluminescence blue shift versus annealing time for SiO2 

and SiNx dielectric capping layers (Annealing temperature remained unchanged at 800 °C). 

 

 Mask design and fabrication 

Figure 5-15 shows a captured image from the L-Edit software of the design layout of a ~ 

1.9 mm three-section mode-locked laser. The 3 µm waveguide is shown in blue and it is overlapped 

intentionally with metal pads (in green). Cleaving marks are put in the design to be able to cleave 

the saturable absorber with desired length. Different cleaving marks are introduced into the design 

to achieve different length ratios between the gain and SA section (1% to 5%). The passive section 

length is designed to be 20% of the total length. The area shown in red is a level in the mask design 

that is needed for defining the area that needed to be intermixed. Other features are serving as 
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alignment and cleaving marks. Additional contact pads are introduced in the design so they can be 

used for high speed probe application. 

 

 

Figure 5-15. Image of the three-section mode-locked laser design from L-Edit software showing 

waveguides and alignment marks in blue and metal pads, alignment marks and cleaving marks in 

green. The red region (passive section) shows the area that needed to be intermixed. 

Fabrication of the three-section mode-locked lasers are started by cleaving and cleaning a 

sample similar as described in sections 2.4.1 and 2.4.2. The cleaning is followed by deposition of 

75 nm of SiNx using the LS-SIN2 recipe. It is made sure that the deposition chamber of the PECVD 

machine is thoroughly cleaned before deposition. The SiNx deposition is followed by UV positive 

lithography and SiNx etching to define the regions that needed to be intermixed selectively. The 

steps are summarized below: 

1. Spin-coat the PR1805 @ 3500 rpm for 40 seconds 

2. Pre-bake @ 120 °C for 4 min 

3. UV Exposure @ 12 mW for 5.5 seconds 

4. Develop in AZ351 and DI water (ratio of 1:7) for ~25 seconds 

5. Post-bake @ 120 °C for 4 min 
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6. Run recipe “Descum” on PECVD for 2 min 

7. Run recipe “etchsin1” on PECVD for 1 min and 15 seconds 

8. Photoresist removal. Dip the sample in acetone @ 80 °C for 5 min then rinse with 

acetone, methanol and isopropanol and dry with N2 

9. Run recipe “prremove” on PECVD for 7 minutes. 

 

The “prremove” is a critical step since the remaining photoresist has to be removed using 

the PECVD machine otherwise it reduces the amount of blueshift occurred in the SiNx capping 

area. The above steps are immediately followed by deposition of 190 nm SiO2 using the “depsio2” 

recipe. The sample then annealed using a RTP-600S system at the temperature of 800°C for 30 

seconds using the recipe shown in Table 13.  

 

Figure 5-16 shows the measured photoluminescence spectra of the SiNx capping area (blue) 

and SiO2 capping area (red). A differential blueshift of 73 nm is obtained between the active and 

passive area and more importantly the blueshift in the SiO2 capping area (active area) is limited to 

below 10 nm. This is critical since it is ideal to have the optical and electrical properties of the 

active area unchanged.  
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Figure 5-16. Measured photoluminescence spectra of the area capped with SiNx (passive section) 

and the area capped with SiO2 (gain and SA sections) annealed at 800 °C for 30 seconds. 

In order to have a reference (after removing the dielectric layers) to align the waveguides 

with respect to the intermixed and non-intermixed regions, alignment marks are designed on the 

original mask layout. The alignment marks are etched through the first layer in order to have the 

exact location of the active/passive regions. Negative lithography and wet etching steps needed to 

do this are summarized below: 

 

1. Spin-coat the NR9-1000P @ 4000 rpm for 40 seconds 

2. Pre-bake @ 150 °C for 1 min 

3. UV Exposure @ 10 mW for 2 seconds 

4. Post-bake @ 100 °C for 1 min 

5. Develop in RD6 for ~ 20 seconds 
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6. Post-bake @ 100 °C for 1 min 

7. Run recipe “Descum.prc” on PECVD for 2 min. This is to remove any remaining thin 

layer of photoresists. 

8. Run the “etchsio2” recipe (shown in Table 11) for 4 min to etch the SiO2 layer. 

9. Run the “etchsin1” recipe for 2 min to etch the SiNx layer. 

10. Use the H3PO4:H2O2:H2O (1:1:30) to etch the first layer for 2 min and 30 seconds 

11. Photoresist removal. Dip the sample in acetone @ 80 °C for 5 min then rinse with 

acetone, methanol and isopropanol and dry with N2  

12. Run the “etchsio2” recipe for about 4 min to remove the SiO2 layer. 

13. Run the “etchsin1” recipe for about 1 min and 30 seconds to remove the SiNx layer. 

 

The above steps are followed by a fresh deposition of 200 nm SiNx using the “SIN-DIFF” 

recipe. The remaining steps of fabrication are similar to what explained in sections 2.4.4 to 

section 2.4.12. 
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Table 11. Reactive Ion Etching (RIE) parameters for SiO2 etching. Etching has been done in the 

room temperature. 

Parameters etchsio2.prc 

O2 (sccm) 5 

CF4 (sccm) 45 

Pressure (mTorr) 75 

RF power (W) 175 

Etching rate (nm/min) 56 

 

Figure 5-17 shows an image taken using a microscope from a 2 mm three-section mode-

locked laser after annealing contacts.  

 

 

Figure 5-17. Top view image of the fabricated 1.9 mm three-section mode-locked laser 

 

In order to characterize each of the intermixed and non-intermixed regions separately, short 

length (~ 360 µm) laser are cleaved from each sections. They are individually mounted on the 

cupper stud and their optical and electrical characteristics are examined. Figure 5-18 shows the 
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output power versus current characteristics of these two lasers operating at 20 °C. From the 

Figure 5-18 (a) a threshold current of 15 mA and a slope efficiency 0.156 W/A are obtained for 

the non-intermixed sample. These values are very close to the values provided by the wafer’s 

vendor company suggesting that the active area is minimally perturbed. Figure 5-18 (b) also shows 

the characteristics of the intermixed area. From this figure threshold current and slope efficiency 

of 25 mA and 0.112 W/A are obtained, respectively. It is clear that this area exhibit more loss as 

expected, however this is not critical for our purposes which is the a slight change of the refractive 

index of the passive section by applying very small current. Figure 5-19 also show the optical 

spectra of the two lasers when biased with 80 mA of current and operating at 20 °C. 

 

Figure 5-18. Typical current vs output power characteristics of the two 360 µm-long Fabry-Perot 

lasers, (a) device is cleaved from the area that intermixing inhibited and (b) is cleaved from the 

area that intermixing promoted. 
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Figure 5-19. Optical spectra of the two different 360 µm-long Fabry-Perot lasers, (a) device is 

cleaved from the area that intermixing inhibited and (b) is cleaved from the area that intermixing 

promoted. (Both the laser are biased with 80 mA of current and operating at 20 °C). 

 Device Characteristics 

The three-section MLL cleaved with a total length of 1877 μm with a saturable absorber 

length of 30 μm and passive section length of 365 μm. The laser is mounted p-side up on the cupper 

stud and its temperature is controlled using a TEC and a PID controller. Figure 5-20 shows the 

electrical and optical characteristics of the three-section MLL at operating temperature of 20 °C 

when no voltage is applied to the SA and passive sections. A threshold current of 44 mA, device 

impedance of 3.3 Ω and slope efficiency of 0.06 W/A is measured from these data. 
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Figure 5-20. Typical voltage-current (left) and output power-current (right) characteristics of the 

MLL operating at 20 °C. No voltage is applied to the SA or passive section. The device 

characteristics are: Ithreshold=44 mA, R=3.3 Ω and slope efficiency of 0.06 W/A. 
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Figure 5-21. Optical spectrum of the three-section mode-locked laser with at Igain = 70 mA, Vabs 

= -1.5 V, and unbiased passive section, (b) autocorrelation trace of an isolated pulse with 

deconvolved width of 3.2 ps (2.86 times transform-limited), (c) the corresponding RF spectrum, 

and (d) full span RF spectrum 

 

Passive mode-locking has been achieved by forward biasing the gain section and reverse 

biasing the SA section using simple DC probes. Figure 5-21 (a) shows a stable mode-locking 

optical spectrum when the gain section is biased with 70 mA of current and SA section is reverse 
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biased with 1.5 V. An optical 3-dB bandwidth of 3.15 nm is achieved from this spectrum. An 

autocorrelation trace of an isolated pulse is shown in Figure 5-21 (b). From this graph a 

deconvolved pulse duration of 3.2 ps is calculated assuming a Gaussian shape for the optical 

spectrum. The pulses are chirped and 2.86 times transform-limit and they can be compressed to 

narrower pulse widths. The optical signal is photodetected using a 33 GHz PIN photodiode and 

Figure 5-21 (c) and (d) also show the radio frequency spectrum of the mode-locked laser. 

A high resolution spectrum analyzer has been used to capture and analyze the absolute 

values of the frequency combs. Figure 5-22 shows the high resolution optical spectrum of three 

individual comblines of the mode-locked laser when the gain section is biased with 70 mA of 

current and the SA is reverse biased with 1.5 V. The comblines with the black color are when the 

passive section is not biased. As discussed in section 5.2, by applying a small current to the passive 

section one can induce a small change in the refractive index (210-4) and subsequently a small 

change in the repetition rate of the mode-locked laser. This shifts the absolute frequency of each 

optical modes by the change in mode spacing times the combline number. For the mode spacing 

in this MLL, the laser spectrum is centered on the 8542th combline. Since the fixed point for 

repetition rate change is near DC for a passively MLL, only small changes are needed to achieve 

a greatly magnified (×8542) shift at optical frequencies. This is demonstrated with the comblines 

in the red color in Figure 5-22. A 5.9 mA of current is needed to apply to the passive section to be 

able to shift the comblines by half of the repetition rate of the laser (22.656 GHz). 

116 

 



1545.7 1545.8 1545.9 1546.0 1546.1
-65

-60

-55

-50

-45

-40

-35

Po
w

er
 (d

B
)

Wavelength (nm)

 Ipassive=0 mA
 Ipassive=5.9 mA22.656 GHz

 

Figure 5-22. High resolution optical spectrum of the three optical modes. Black is when the 

passive section is unbiased and red is when the passive section is biased with 5.9 mA. 

Modulating the comblines through the passive section has another advantage compared to 

modulating the gain section and that is the decoupling the AM and PM responses. Modulating the 

passive section basically should have the minimum amplitude modulation since the passive section 

is transparent at the operating wavelength of the mode-locked laser. Also very small amount of 

current is needed (only 1 mA of current is needed to shift the combs by 1.92 GHz) and these values 

are well below the threshold lasing values of the passive section. Figure 5-23 shows the optical 

output power change of the mode-locked laser as a function of passive section current. This is 

limited to only about 2% change for 10 mA of current applied to the passive section. This is 

basically the added ASE from the blueshifted bandgap energy of the passive section when it is 

forward biased. 
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Figure 5-23. Output power change of the mode-locked laser as a function of passive section bias 

current 

 

 Experimental setup of the ultra linear intensity modulator 

A schematic of the experimental setup is shown in Figure 5-24. Free space optical delays 

are used in both the arms of the MZI to be able to match the path lengths to achieve same pulse 

overlap after splitting. PZT linear optical stage is used in one of the optical delays to fine-tune the 

path difference and bias the MZI at quadrature. Power is monitored at three points of the setup: 

the injected power to the slave laser, the free space power in each of the arms of the interferometer, 

and the optical power coupled to the fiber from each of the arms. The last two power meters and a 

neutral density filter placed in front of the slave laser are used to monitor and balance the optical 
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power of each arms and help to increase the visibility of the MZI. With the help of half-wave 

plates, the polarization of each arm is adjusted to further increase the visibility. 

 

 

Figure 5-24. Experimental setup. ISO: Isolator; BS: Beam splitter; λ/2: Half-wave plate; NDF: 

Neutral density filter; BT: Bias-Tee; PM: Power meter; SOA: Semiconductor optical amplifier; 

PD: Photo-detector; RFA: Radio frequency amplifier; OSA: Optical spectrum analyzer; RFSA: 

Radio frequency spectrum analyzer 
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 Experimental Results 

Figure 5-25 shows the optical spectra of the master and slave laser before and after 

injection-locking. Here the master laser is a two-section device operating with 75 mA of bias 

current and a reverse bias voltage of 1.4 V and is maintained at a constant temperature of 17.35 

°C. An RF power of 6 dBm at 22.712 GHz is applied to the SA to achieve hybrid mode-locking of 

the laser. The slave laser (three-section device) is passively mode-locked with 55 mA of bias 

current and a reverse bias voltage of 1.2 V and the operating temperature of 20 °C. SA voltages 

are carefully chosen to match the repetition rate frequencies and the operating temperature of the 

slave laser is carefully tuned for a precise overlap of its optical modes with that of the master laser. 

A high resolution optical spectrum analyzer is used to monitor the optical modes in more detail. 

Figure 5-26 (a) shows the corresponding RF spectra and confirms that the passively mode-locked 

slave laser follows the hybridly mode-locked master laser. The autocorrelation trace of the pulses 

from master and slave lasers are also shown in Figure 5-26 (b).  
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Figure 5-25. Optical spectrum of the two-section hybridly mode-locked master laser (black) with 

Igain=75 mA, VSA=-1.4 V, T=17.35 °C and 6 dBm of RF power at 22.712 GHz and optical spectra 

of the three-section passively mode-locked slave laser before (blue) and after (red) injection-

locking with Igain =55 mA, VSA =-1.2 V, T=20 °C. 
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Figure 5-26. (a) Normalized radio frequency spectrum of the master laser (black) and also the 

slave laser before (red) and after injection-locking and (b) their corresponding autocorrelation 

traces. It is clear that the slave laser follows the master after injection-locking. 

 

5.7.1. Two-tone intermodulation experiment 

Two-tone intermodulation experiment results are presented in this section as a measure of 

the linearity of this modulator. In order to measure the signal to intermodulation ratio, the 

modulator is modulated through the passive section with two RF signals with the frequencies of 

1000 MHz and 1100 MHz, simultaneously. As shown in Figure 5-24, the RF signals are combined 

using a 3-dB coupler and applied to the bias-tee of the passive section. The photo-detected RF 

signal of the modulated light is split into two and monitored with two radio frequency spectrum 

analyzers at the same time; one for fundamental frequencies with a larger frequency span and the 

other for third-order intermodulation tones at 900 MHz and 1200 MHz with a span of 200 Hz. 
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Figure 5-27 (a) shows the photo-detected RF power spectrum of the fundamental tones. The input 

powers to the modulator at the two frequencies are adjusted in such a way that the same 

fundamental powers are seen after photo-detection. Figure 5-27 (b) and (c) show the third-order 

intermodulation tones at 900 MHz and 1200 MHz, respectively. The 1200 MHz sideband is used 

for the calculations since it was the larger spur compared to the 900 MHz sideband. From this data, 

signal-to-intermodulation ratio of 63.1 dB is obtained when modulating the passive section. 

 

Figure 5-27. (a) Photo-detected RF power spectrum of fundamental frequencies (1 GHz and 1.1 

GHz) (the input powers are adjusted to achieve the same fundamental powers), (b) detected RF 

power spectra of the third-order intermodulation tones at 900 MHz, (c) detected RF power 

spectra of the third-order intermodulation tones at 1200 MHz. 
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Figure 5-28 shows the fundamental and third-order intermodulation powers for different 

input RF powers. A linear fit of slope one and another linear fit of slope three are applied to the 

fundamental and intermodulation tones, respectively. Spur-free dynamic range of 75 dB.Hz2/3 is 

obtained from modulating the passive section. Here the SFDR measurement is limited by noise 

from beating between the relatively broad linewidth laser modes. 

 

Figure 5-28. Fundamental and third-order intermodulation powers as a function of the input RF 

power to the modulator. 
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 Conclusion 

A novel highly linearized intensity modulator for pulsed light is presented in this chapter. 

This has been realized by introducing a three-section passively MLL injection-locked to a hybridly 

two-section MLL (which is the input to the MZI) into one of the arms of the MZI. By modulating 

the injection-locked laser, one can induce arcsine phase response on each of the injected 

longitudinal modes. A linear intensity modulator is obtained by interfering the modulated light 

with its unmodulated counterpart from the other arm in quadrature. By introducing the passive 

section into the previous laser design and modulating this section instead of gain section current 

or the voltage on the SA section, one can eliminate any unwanted amplitude modulation. This 

modulator has provided a six-fold reduction in the Vπ and also 5 dB improvement of SFDR 

compared to the prior design for high performance and high resolution photonic ADC applications. 
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APPENDIX A: THERMAL ANNEALING PROFILES 
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Table 12. Thermal annealing recipe used for annealing contact at the temperature of 430 °C for 

30 seconds 

Step Step Function Time 

(Sec) 

Temp 

°C 

Gas 1 

N2 

Gas 1 

N2 

1 Idle 600 0 10 0 

2 Idle 20 0 0 0 

3 Ramp 8 430 0 3 

4 Hold 30 430 0 3 

5 Idle 15 0 0 3 

6 Idle 600 0 10 0 

7 Stop 0 0 0 0 
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Table 13. Thermal annealing recipe used for intermixing at the temperature of 800 °C for 30 

seconds 

Step Step Function Time 

(Sec) 

Temp 

°C 

Gas 1 

N2 

Gas 1 

N2 

1 Idle 1800 0 10 0 

2 Idle 20 0 0 0 

3 Ramp 15 800 0 3 

4 Hold 30 800 0 3 

5 Idle 15 0 0 3 

6 Idle 1200 0 15 0 

7 Stop 0 0 0 0 
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