
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Creating Models Of Internet Background Traffic Suitable For Use Creating Models Of Internet Background Traffic Suitable For Use

In Evaluating Network Intrusion Detection Systems In Evaluating Network Intrusion Detection Systems

Song Luo
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Luo, Song, "Creating Models Of Internet Background Traffic Suitable For Use In Evaluating Network
Intrusion Detection Systems" (2005). Electronic Theses and Dissertations, 2004-2019. 589.
https://stars.library.ucf.edu/etd/589

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/589?utm_source=stars.library.ucf.edu%2Fetd%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

CREATING MODELS OF INTERNET BACKGROUND TRAFFIC
SUITABLE FOR USE IN EVALUATING NETWORK INTRUSION DETECTION SYSTEMS

by

SONG LUO
B.E. North China Institute of Electrical Power, 1995

M.S. University of Central Florida, 2002

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Major Advisor: Gerald A. Marin

Fall Term
2005

 ii

© 2005 Song Luo

 iii

ABSTRACT

This dissertation addresses Internet background traffic generation and network intrusion

detection. It is organized in two parts. Part one introduces a method to model realistic Internet

background traffic and demonstrates how the models are used both in a simulation environment

and in a lab environment. Part two introduces two different NID (Network Intrusion Detection)

techniques and evaluates them using the modeled background traffic.

To demonstrate the approach we modeled five major application layer protocols: HTTP, FTP,

SSH, SMTP and POP3. The model of each protocol includes an empirical probability

distribution plus estimates of application-specific parameters. Due to the complexity of the

traffic, hybrid distributions (called mixture distributions) were sometimes required. The traffic

models are demonstrated in two environments: NS-2 (a simulator) and HONEST (a lab

environment). The simulation results are compared against the original captured data sets. Users

of HONEST have the option of adding network attacks to the background.

The dissertation also introduces two new template-based techniques for network intrusion

detection. One is based on a template of autocorrelations of the investigated traffic, while the

other uses a template of correlation integrals. Detection experiments have been performed on real

traffic and attacks; the results show that the two techniques can achieve high detection

probability and low false alarm in certain instances.

 iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Gerald A. Marin for his guidance, encouragement and

support. I am very fortunate to have had the chance to work with him during my lengthy Ph.D.

studies.

I thank my family, my parents and my wife Lin, for their endless support of my doctoral studies.

No matter what challenges I have to face, I know they are behind me.

My research also benefited from interactions with many others. I would especially like to thank

Dr. William Allen and Dr. David Nickerson for many illuminating discussions and much helpful

advice.

 v

TABLE OF CONTENTS

CHAPTER 1: OVERVIEW AND MOTIVATION ... 1

CHAPTER 2: LITERATURE REVIEW ... 4

2.1 Early work on Telecommunication and Network Simulation .. 4

2.2 Introduction to Self-semiliarity... 6

2.3 Related Work on Network Traffic Modeling & Generation... 8

2.3.1 Tcplib .. 8

2.3.2 Paxon’s Models... 9

2.3.3 WWW Traffic Model.. 10

2.3.3.1 Empirical Model ... 10

2.3.3.2 Page Oriented Model .. 11

2.3.3.3 New features of today’s HTTP traffic .. 12

2.3.3.4 Recent HTTP traffic modeling.. 13

2.3.4 Self-Similar Traffic Models.. 13

2.3.4.1 Fractional Brownian Motion (FBM)... 14

2.3.4.2 Fractional Gaussian Noise (FGN)... 14

2.3.4.3 ARFIMA... 15

2.3.4.4 Wavelets.. 16

2.3.4.5 On/Off Processes .. 17

2.3.4.6 Self-Similar Markov Modulated ... 17

2.3.4.7 Multifractal Traffic ... 18

 vi

CHAPTER 3: MODELING INTERNET BACKGROUND TRAFFIC USING MIXTURE

DISTRIBUTIONS .. 19

3.1 LAN Traffic Analysis ... 20

3.2 Heavy-tailed Feature and Usage of Hybrid Distributions... 23

3.3 Modeling FTP traffic .. 27

3.3.1 FTP Session Arrival (AFTP)... 28

3.3.2 Number of FTP-DATA Connection (NFDC).. 29

3.3.3 Bytes per FTP-DATA Connection (BFDC) .. 30

3.3.4 Idle Time between FTP-DATA Connections (IFDC) ... 32

3.4 Modeling HTTP traffic ... 33

3.4.1 HTTP Session Arrival (AHS)... 34

3.4.2 Number of HTTP Pages per Session (NHPS) ... 36

3.4.3 Bytes per HTTP Page (BHP).. 36

3.4.4 Time between HTTP Pages (THP)... 37

3.5 Modeling SMTP Traffic ... 39

3.5.1 Arrivals of SMTP Connections (ASC)... 39

3.5.2 Bytes per SMTP Connection (BSC)... 39

3.6 Modeling POP3 Traffic... 41

3.6.1 Arrivals of POP3 Connections (APC) .. 41

3.6.2 Bytes per POP3 Connection (BLPC and BUPC)... 41

3.7 Modeling SSH Traffic... 44

3.7.1 Arrivals of SSH Connection (ASSH).. 44

3.7.2 Number of Originator Packets per SSH Connection (NSSH)..................................... 44

 vii

3.7.3 Time Between Adjacent SSH Originator Packet (TSSH) ... 45

3.7.4 Number of Bytes per SSH Response (BSSH) ... 46

CHAPTER 4: SIMULATING SYNTHETIC INTERNET BACKGROUND TRAFFIC IN NS-

2 ……………….. 48

4.1 Why NS-2 ... 48

4.2 Experiment Design.. 50

4.3 Results... 54

4.3.1 Session Arrivals .. 54

4.3.2 Packet Arrival ... 55

4.3.3 Self-similarity ... 56

4.3.4 Correlation Integral and Fractal Dimension ... 58

CHAPTER 5: GENERATING NETWORK TRAFFIC USING HONEST 61

5.1 Experimental Design... 64

5.2 Experiment Settings .. 66

5.2.1 Traffic Model .. 66

5.2.2 Network Parameters.. 66

5.3 Experiment Results ... 69

5.3.1 Overall Traffic Comparisons .. 69

5.3.2 Autocorrelation ... 72

5.3.3 Self-similarity ... 73

5.3.4 HTTP Protocol Comparisons.. 75

5.3.5 SSH Protocol Comparisons... 77

5.3.6 SMTP Protocol Comparisons ... 80

 viii

5.3.7 FTP Protocol Comparisons ... 81

5.4 Conclusions... 84

CHAPTER 6: INTRODUCTION TO NETWORK INTRUSION DETECTION................... 86

6.1 Network Security Becomes a Big Challenge.. 86

6.2 The Early and Current State of Network Intrusion Detection 89

6.2.1 Early Work on Computer Security and Intrusion Detection..................................... 89

6.2.2 The Current State of Intrusion Detection.. 93

6.2.2.1 Techniques .. 93

6.2.2.1.1 Anomaly Intrusion Detection .. 94

6.2.2.1.2 Misuse Intrusion Detection ... 97

6.2.2.2 Products... 99

6.3 Limitations of Current Intrusion Detection Systems .. 109

6.3.1 The False Alarm Problem ... 109

6.3.2 Problems with High-speed Network and Real-time Response 110

6.3.3 Problems with Training Data .. 110

6.3.4 Problems with Management Interface .. 111

CHAPTER 7: BUILDING AUTOCORRELATION TEMPLATES TO DETECT DOS

ATTACKS…….. .. 112

7.1 Denial-of-Service Attacks... 112

7.2 Decision Analysis of Network-based IDSs - The Theory .. 114

7.2.1 Basic Idea.. 114

7.2.2 Traffic Template ... 115

7.2.3 Distance Measures and Probability Distributions... 116

 ix

7.2.4 Selecting the Threshold... 119

7.3 Building the Autocorrelation Template .. 123

7.3.1 Method .. 124

7.3.2 Experiment and Results .. 125

7.4 Summary ... 128

CHAPTER 8: DETECTING DoS ATTACKS USING THE CORRELATION

INTEGRAL …….. 129

8.1 What is a Correlation Integral... 129

8.2 Related Work .. 131

8.2.1 Correlation Integrals of Network Traffic.. 132

8.2.2 Constructing a Traffic Template.. 133

8.2.3 Detecting DoS-TE attacks... 139

8.3 Summary and Future Work... 144

CHAPTER 9: CONCLUSION AND FUTURE WORK ... 145

9.1 Traffic Modeling and Simulation.. 145

9.2 Intrusion Detection.. 148

LIST OF REFERENCES.. 150

 x

LIST OF FIGURES

Figure 1: CDF and LLCD plot of FTP-DATA bytes.. 25

Figure 2: CDF of FTP-DATA bytes and its model... 26

Figure 3: CDFs of AFTP and the predition.. 28

Figure 4: CDF and LLCD plot of NFDC .. 29

Figure 5: BFDC plots .. 30

Figure 6: The final model of BFDC .. 31

Figure 7: CDFs of IFDC.. 32

Figure 8: CDFs of HTTP session arrivals... 35

Figure 9: CDFs of AHS .. 35

Figure 10: LLCD of random variable NHPS .. 36

Figure 11: LLCD and CDF of the lower part of BHP .. 37

Figure 12: LLCD and CDF of THP.. 38

Figure 13: CDF of ASC.. 40

Figure 14: BLPC matches a Gamma distribution ... 40

Figure 15: The arrival of POP3 connection .. 41

Figure 16: Plots of BUPC and BLPC .. 43

Figure 17: CDF of POP3 connection bytes... 43

Figure 18: CDF of SSH connection arrival... 44

Figure 19: ASSH is approximately lor2-normal. .. 45

Figure 20: Log10-normal model of TSSH .. 46

Figure 21: BSSH is heavy tailed ... 47

 xi

Figure 22: Simulation Procedure .. 51

Figure 23: NS-2 simulating network structure.. 52

Figure 24: Session arrivals of 5 protocols... 55

Figure 25: Comparison of packet arrivals... 56

Figure 26: ACF plots of CS and simulation traffic... 57

Figure 27: LLCD plots of CS and simulation traffic .. 57

Figure 28: Correlation integrals and fractal dimension of CS traces.. 59

Figure 29: Correlation integrals and fractal dimension of simulation .. 60

Figure 30: HONEST System Layout .. 62

Figure 31: Packet Arrivals .. 70

Figure 32: Connection Arrivals .. 70

Figure 33: Autocorrelation of packet arrivals... 73

Figure 34: Autocorrelation of connection arrivals.. 73

Figure 35: Self-similarity.. 75

Figure 36: HTTP packet arrivals... 76

Figure 37: HTTP page arrivals ... 76

Figure 38: SSH packet arrivals ... 78

Figure 39: SSH connection arrivals .. 78

Figure 40: SSH connection size CDF ... 79

Figure 41: SSH responder's bytes CDF .. 79

Figure 42: SMTP packet arrivals .. 80

Figure 43: SMTP connection arrivals ... 81

Figure 44: FTP packet arrivals.. 82

 xii

Figure 45: FTP connection arrivals... 82

Figure 46: CDF of FTP-DATA numbers.. 83

Figure 47: CDF of FTP-DATA bytes ... 83

Figure 48: Incidents reported from 1988 to 2003 ... 87

Figure 49: Diagram of IDS architecture ... 115

Figure 50: Plots of Pd vs Pf ... 119

Figure 51: Detection area with ξ~N(90,10) .. 122

Figure 52: Building the template of autocorrelation function .. 124

Figure 53: Obtain stationary process by differencing... 126

Figure 54: Partial autocorrelation plot .. 127

Figure 55: Predicted autocorrelation structure.. 127

Figure 56: Template of CS traffic dataset... 134

Figure 57: An example of good match to the template... 135

Figure 58: An example of poor match to the template ... 136

Figure 59: Another example of poor match to the template ... 136

Figure 60: Background + attack traffic... 140

Figure 61: P-values of sliding window ... 141

Figure 62: Attack packets during second 9011- 9040 .. 141

 xiii

LIST OF TABLES

Table 1: Summary of Analytical Models from Paxson’s Paper ... 9

Table 2: Random variables of page oriented HTTP model .. 11

Table 3: TCP connections on Day 1 and Day 2.. 21

Table 4: The top 10 destined IP addresses in the CS LAN... 22

Table 5: Summary of random variables used in simulation ... 53

Table 6: Experimental settings for “Total Traffic per Protocol” .. 67

Table 7: Packet and connection number statistics .. 70

Table 8: Packet percentages per protocol ... 71

Table 9: Connection percentages per protocol.. 72

Table 10: HTTP packet and page statistics... 75

Table 11: SSH packet and connection statistics ... 77

Table 12: SMTP packet and connection statistics .. 80

Table 13: FTP packet and connection statistics.. 82

Table 14: P-values of K-S tests between traffic segments and the template 138

Table 15:Kolmogorov-Smirnov Test Results ... 139

Table 16: Time to Dectection of DoS attacks Used in the DARPA/IDS Evaluation 143

 1

CHAPTER 1: OVERVIEW AND MOTIVATION

Although network traffic engineers have long worked to model and predict traffic flow, the need

to test Intrusion Detection Systems (IDS) in realistic environments makes modeling and

simulating today’s Internet traffic more critical. However, simulating real Internet traffic is never

an easy task. The heterogeneity of the physical infrastructure, the mix of network and application

layer protocols, the rapid rate of change, and the problems of scale combine to create a daunting

modeling challenge.

Realistic simulation (and laboratory emulation) of network traffic is especially critical when

developing and testing an IDS. As argued in [88], one cannot simply replay existing real traffic

traces to test an IDS, because real traffic may contain attacks and other abnormalities that

obscure IDS performance. A better approach is to provide completely clean or attack-free

synthetic background traffic and integrate it with prepared attacks (known or unknown to the

IDS). The synthetic traffic can be used as a part of test bed for IDS evaluation - either in a

laboratory environment or a simulation environment.

Intrusion detection systems are either based on analyses of attack signatures or, for previously

unseen attacks, on some type of anomaly detection. Often anomaly detection depends on

statistical properties of the network traffic such as arrival rates, traffic volumes, source and

destination distributions, port distributions, and latency changes. Thus, for anomaly detection it

is particularly important that traffic be modeled accurately with regard to such characteristics.

For example, previous work has shown that real Internet traffic is self-similar, and the intrusion

 2

detection technique developed in [88] uses loss of self-similarity as an indication that an attack

may be present. To test such detection techniques we must create modeled traffic that includes

subtle distributional characteristics. This is an important goal of the present work.

Of course Internet traffic simulation is used in many other fields, such as developing new

protocols, network congestion control, and traffic engineering, and much more. The modeling

and traffic generation work described here is applicable to these and other fields; however, in this

dissertation the focus is on how to provide a realistic test bed for IDS testing and evaluation.

As the world relies more on electronic information and interconnected networks, the security

risks to people and to businesses increase. Evidence shows that the recent increase in focus on

computer security from government, research and industry has not stemmed the accelerating

trend of computer security incidents. Before 1998, there were fewer than 5000 computer security

incidents each year; in 2003, this number jumped to 137,529, a significant 68% increase over

2002’s number of 82,094 [14]. It is thought that the situation became worse in 2004 because of

widespread use of automated attacking tools.

The above statistics suggests that providing security protection to computer systems is a critical

task, especially in an inter-networking environment. The research into intrusion detection

techniques, in particular, has been substantial in recent years, but today’s IDSs are still

experiencing fatal problems including high false-alarm rates, configuration difficulty, and

bandwidth limitations.

 3

Li [54] proposed a theoretically robust approach for detecting network intrusions (DoS attacks)

with a high detection probability and a low false-alarm rate. The approach calculates the

autocorrelation of the examined traffic, and the difference between the autocorrelation and a

predefined traffic template is used to judge if there is an attack in the traffic. Allen [86] proposed

an intrusion detection technique based on comparing fractal dimensions of the examined traffic

to a traffic template.

Both of the above two techniques require a reliable template of “normal” traffic. How to

estimate such a template is left as an open question in both Li and Allen’s work. Therefore, in

this thesis, we present techniques for building useful traffic templates that are based, in turn, on

the modeling techniques also developed here.

 4

CHAPTER 2: LITERATURE REVIEW

2.1 Early work on Telecommunication and Network Simulation

Molina [46] reports that back in 1898, G. T. Blood of the AT&T Co. had done simulation

experiments, and found a close agreement between the terms of a binomial expansion and the

results of the observations on the distribution of busy telephone calls. That was probably the

earliest work on simulating traffic in a telecommunication system.

Communications between servers and users (or terminals) have been studied since the rise of

time-sharing systems in the 1960’s. E. Fuchs and P.E. Jackson [26] developed a data stream

model from a study of multi-access computer communications [64]. The model was basically

composed of two kinds of segments: the user burst segment and the computer burst segment.

During a user burst segment, the user is sending characters to the computer; during a computer

burst segment, the user is receiving characters from the computer. This early work assumed half-

duplex operation, but with minor modification, applies to full-duplex operation. Within a given

burst segment, there are periods of line activity and of line inactivity. They are called think time

or idle time, depending on whether the previous segment is a computer burst segment or a user

burst segment. Independent random variables are introduced to describe the elements in the

model, such as the number of burst segments per call, think time, user inter-burst time, etc. Fuchs

and Jackson inferred distributions of each random variable and tested them using the goodness-

of-fit method.

 5

In the following years, computer communication and computer network traffic were modeled

based on the concept of burst segments. And it was widely considered appropriate to model

packet traffic using pure Poisson or Poisson-related processes, such as Poisson-batch or Markov-

Modulated Poisson processes [33], packet-train models [71], fluid flow models [17], etc.

However, more and more evidence has been found that for both local area and wide area network

traffic the distribution of packet interarrivals clearly differs from the exponential [70], [32], [63].

Leland [92] argues convincingly that LAN traffic is much better modeled using statistically self-

similar processes, which have remarkably different theoretical properties than Poisson processes.

For self-similar traffic, there is no natural length for a burst, and traffic bursts appear on a wide

range of time scales. Furthermore, Paxson in [85] pointed out that for wide area traffic Poisson

processes are valid only for modeling the arrival of user sessions, such as TELNET connections

and FTP control connections, and that they fail as accurate models for other WAN arrival

processes.

 6

2.2 Introduction to Self-semiliarity

According to Beran [39], a stochastic process can be called self-similar (with Hurst parameter H)

if the rescaled process, with an appropriate rescaling factor, is equal in distribution to the original

process. Leland et al. [92] studied the self-similar behavior in Ethernet traffic and described

several methods for determining the Hurst parameter.

Let X={Xt: t=0, 1, 2, …} be a wide-sense stationary stochastic process with autocorrelation

function r(k), k≥0. Let {Xk
(m): k=1,2,3,…} represent a family of aggregate processes produced

by summing the original time series, X, over adjacent, non-overlapping blocks of size m. In

particular, for integer m≥1, X(m) = {Xk
(m), k=1,2,3,…} where ∑ −−=

=
km

mkmi i
m

k X
m

X
)1(

)(1 . Generally

stated, if the distribution of each of the aggregate processes X(m), m>1 is approximately the same

as that of the original process, X=X(1), then X is self-similar.

Self-similar processes are classified into 2 models: One is an exactly self-similar model and the

other an asymptotically self-similar model [39]. A process X is called exactly second-order self-

similar with parameter H ∈ (0.5, 1), if its autocorrelation function is

 .]},)1(2)1[(
2
1)(222 Ikkkkkr HHH ∈−+−+= (2-1)

A process is called asymptotically second-order self-similar with parameter H∈(0.5, 1), if its

autocorrelation function is with the form

 ∞→− kckkr H ,~)(22 , (2-1)

 7

where c>0 is a constant.

In actual applications, an exactly self-similar model is too narrow to model real traffic, thus in

most cases, an asymptotically self-similar model is used.

Asymptotic self-similarity is indicated by several properties that can be used to test for its

presence [92]:

• The variance of the sample mean decreases more slowly than the reciprocal of the

increase in sample size m, thus var(X(m))~cm-β, as m→∞, where c is some positive

constant and 0<β<1.

• The hyperbolic rate of decay of the autocorrelations, proportional to k-β, indicates that

∑kr(k)=∞; by definition the process is long-range dependent.

• The spectral density, f(λ)=∑∞
k=-∞r(k)e-ikλ, of the process obeys a power law near the

origin, f(λ)~I(λ)=cλ-γ as λ→0, where 0<γ<1, γ=1-β and c is some positive constant.

Hlavacs al et. [34] summarized methods to test self-similarity and the Hurst parameter. The

methods include Variance-Time plot, R/S plot, Periodogram, Whittle estimator, correlogram plot

and Wavelet estimator.

Self-similarity has a strong influence on the resulting traffic. Traffic with self-similarity usually

has features including long-range dependence, heavy-tailed distributions with infinite variance,

and traffic bursts.

 8

2.3 Related Work on Network Traffic Modeling & Generation

After the self-similarity or long-range dependence feature of network traffic was revealed, many

solutions and techniques have been proposed to better model and simulate network traffic for

traffic generation purposes. Here we introduce some of the important research done in this area.

2.3.1 Tcplib

Danzig [61] describes a library, Tcplib, to help generate realistic TCP/IP network traffic. Tcplib

models 5 different types of Internet application traffic (FTP, SMTP, NNTP, TELNET and

RLOGIN) based on Internet traffic traces collected from UC Berkeley, University of Southern

California, and Bell Communication Research. By using routines provided by the library, users

can generate network traffic that is statistically similar with the real traffic traces collected.

Several limitations exist in Tcplib. First, it needs a better model of conversation arrival rates.

Second, it lacks several application-specific details. For example, the interarrival time of FTP

control packets and the distribution of number of request-response handshakes that occur during

SMTP and NNTP conversations were not modeled. Also, because this work preceded the growth

of the web, Tcplib does not include a model of HTTP traffic, which is critical for today’s

network traffic simulation.

 9

2.3.2 Paxon’s Models

Perhaps the most frequently referenced models of TCP connection distributions are those from

Paxson [85], [83]. Paxson and his colleagues examined 3 million TCP connections from a

number of wide-area traffic traces and a variety of sources. Some analytical models were

derived to describe the random variables associated with TELNET, NNTP, SMTP and FTP

connections. In [83], it was found that, except for user-initiated TCP session arrivals, other TCP

connection arrivals are not Poisson. The following table summarizes the models used in his work

to describe the traffic characteristics of different services.

Table 1: Summary of Analytical Models from Paxson’s Paper

Protocol Variables Model

TELNET Session arrivals Poisson

 Originator bytes Log2-extrem

 Responder bytes Log2-normal, 80-100%

 Connection size(in packets) Log2-normal

 Packet interarrivals Empirical, from Tcplib

SMTP Session arrivals Poisson

 Originator bytes Log2-normal

FTP Session arrivals Poisson

 Connection bytes Log2-normal

 FTP-data spacing Log-normal/log-logistic

 Session bytes Log2-normal

NNTP Originator bytes Log2-normal

 10

Notably missing from Table 1 (and from the referenced work) is any reference to HTTP.

2.3.3 WWW Traffic Model

Because web traffic has dominated the Internet since the middle of the 1990’s, modeling this

traffic has become critical to any simulation of real Internet traffic. We present several major

efforts made in this area.

2.3.3.1 Empirical Model

Mah in [8] constructed an empirical model of HTTP traffic. The model consists of a number of

probability distributions determined by analysis of TCP traces of actual HTTP conversations.

The analysis shows that HTTP requests exhibit a bimodal distribution, and that sizes of HTTP

replies have a heavy-tailed distribution (to be discussed more fully). Some other components are

also discussed, such as document size (number of files per document) and user think time.

Although the measurement of this work is basically consistent with measurements of other

studies, this empirical model does not deal with the case of persistent-connection HTTP, where

new measurement and analysis methodologies may be required. The self-similar feature

discussed in [52] [45] is not adequately handled. Finally, the empirical distributions instead of

closed-form analytical expressions inhibit the model’s applicability in a variety of environments.

 11

Table 2: Random variables of page oriented HTTP model

Another early empirical measurement of HTTP traffic was done by Paul Barford and Mark

Crovella in [62]. Today’s web traffic generators are usually based on results from one or both of

these pioneering measurement projects.

2.3.3.2 Page Oriented Model

Reyes presented a structural, multilevel model for WWW traffic in [6]. The model is based on

HTTP traces and is designed to simulate application-level traffic. Reyes analyzed the HTTP

traffic in three levels: session level, page level, and packet level. On each level, several random

variables are derived to describe the traffic. Table 2 summarizes those random variables and his

findings about their distributions.

Random Variable Distribution

Session Interarrival Time Exponential

Pages per session Lognormal

Time between pages Gamma

Page size Pareto

Packet size Multimodal

Packet interarrivals time Exponential

 12

2.3.3.3 New features of today’s HTTP traffic

By examining over 500GB of TCP/IP protocol header traces in [28], Smith et al. draw a number

of interesting conclusions about contemporary Web traffic’s evolving nature. This study

confirms that persistent HTTP connections play a major role in transferring web objects.

Although only 15% of HTTP connections are persistent, they represent 40-50% of all the web

objects requested, and their use results in a 50% reduction in the total number of TCP

connections required to deliver web content. Other interesting observations include: 65% of all

web pages are constructed entirely by responses from a single server; close to 70% the

consecutive top-level page references go to an IP address that is different from the address used

for the previous top-level page reference, possibly representing the impact of large organizations

managing their web sites with a “server farm” for load balancing; an increase in the number of

embedded objects per web page but a decrease in frequently occurring sizes, possibly due to the

pervasive use of “banner adds” and icons to decorate pages.

Casilari [25] studied HTTP traces by alternatively enabling the two versions of HTTP protocols

(HTTP 1.0 and HTTP 1.1), and found that although HTTP 1.1 prefers persistent connections to

retrieve multiple objects from remote server for one page, HTTP 1.1 traffic exhibits the same

statistical properties as HTTP 1.0. In this sense, the heavy-tailed nature of the size of HTTP

connections is proved to be an invariant. Casilari also reported that longer traces should be

collected to analyze the impact of other improvement introduced by HTTP 1.1.

 13

2.3.3.4 Recent HTTP traffic modeling

Based on Riedi’s [74] work, Balamash [2] applied multi-fractal analysis in modeling WWW

traffic on the server side. The presented model captures the essential characteristics of WWW

traffic, including the temporal and spatial localities as well as the popularity profile. The main

advantage of this model is that it simultaneously captures the marginal distribution and ACF

(Autocorrelation Function) of the traffic.

Li [53] presented a form of autocorrelation function for asymptotically self-similar processes and

verified that this form satisfactorily fits the real traffic data on investigated Ethernet. His work

made the effort to solve the problem that, although we know the general shape of the

autocorrelation function of an asymptotical self-similar process, we still don’t know its closed

form with fixed finite lags. In [55], Li used his general form of autocorrelation function to fit real

WWW traffic, and found that, with minor modification, the function can describe the real data to

a satisfactory degree.

2.3.4 Self-Similar Traffic Models

Self-similarity has been widely observed for modern network traffic. To simulate today’s

network traffic, we cannot ignore self-similarity and related heavy-tailed properties. Actually,

much research has been done to reproduce self-similarity in simulated networking traffic, and a

number of relevant models have been proposed. A survey of models of self-similar stochastic

processes is given in [34].

 14

This section briefly introduces the major models used to simulate self-similar network traffic.

2.3.4.1 Fractional Brownian Motion (FBM)

Define a zero mean Gaussian Process BH(t) with Hurst parameter H as follows:

(1) E[BH(t)]=0

(2) BH(0)=0

(3) BH(t+δ) - BH(t) is normally distributed N(0, σ|δ|H)

(4) BH(t) has independent increments

(5) E[BH(t) BH(s)]= σ2/2(|t|2H+|s|2H-|t-s|2H)

BH(t) is exactly self-similar, perfectly determined by H.

FBM can be used to model the sum or integral of self-similar traffic (as observed in network

buffers, file sizes of audio/video streams, etc). Its increments/derivatives yield self-similar

fractional Gaussian Noise.

2.3.4.2 Fractional Gaussian Noise (FGN)

The increments of FBM are known as Fractional Gaussian Noise (FGN) [10] and form a

stationary process GH(t) with the following properties:

(1) GH(t) = (BH(t+δ) - BH(t))/ δ

 15

(2) GH(t) is normally distributed N(0, σ|δ|H-1)

(3) E[GH(t+τ) GH(t)] = σ2H(2H-1)| τ|2H-2 for τ>>δ

Discrete time FGN also has the following autocorrelation function ([39]):

 .1),|1|||2|1(|
2
1)(222 ≥−+−+= kkkkk HHH

Xρ (2-3)

In [84] an algorithm is given to create estimated discrete-time FGN. The algorithm first

generates an estimate of the power series f(λ, H) of the desired traffic stream at the discrete

frequencies λj=2πj/n, j=1,…, n/2. Here, only the Hurst parameter H is necessary. After some

transformations, a sequence of n complex numbers is obtained, which is transformed back via the

inverse Fourier transformation to obtain a sequence {xk}n
k=1. In [84], an instance of the algorithm

is given explicitly and programmed in the statistics language S.

FGN is exactly second-order self-similar traffic and is a good candidate for modeling the traffic

of Ethernet, ATM, VBR coded video, Web Telnet and FTP instances.

2.3.4.3 ARFIMA

Fractional ARIMA models (ARFIMA or FARIMA) ([92], [39]) are built on classical ARIMA

models. {Xn}∞n=0 is called an ARFIMA(p,d,q) process, if {ΔdXn}∞n=0 is an ARMA(p,q) process

 16

for some non-integer d>0. Let B be the Backshift-operator B(Xn)=Xn-1 and Δd can be represented

by

 ∑
∞

=

=−=Δ
0

)1(
u

u
u

dd BB π (2-4)

with π0=0 and

 ,...2,1,1
)()1(

)(
1

=
−−

=
−Γ+Γ

−Γ
= ∏

∞

=

u
k

dk
du

du
k

uπ (2-5)

ARFIMA processes are asymptotically self-similar, with Hurst parameter H=d+0.5, 0<d<0.5.

For large lags, the correlations of an ARFIMA(p,d,q) process are similar to those of an

ARFIMA(0,d,0) with the same d.

ARFIMA models are similar to FGN, yet they are very flexible due to the natural

correspondence to ARIMA(p,d,q) models and to their higher number of parameters.

2.3.4.4 Wavelets

The above described stochastic models try to capture short- and long-term dependencies as

observed in VBR video or Ethernet traffic. Wavelets provide a means of transforming the

original self-similar process into a new process with much less self-similar behavior. For this

new process, simpler models can be applied. Traffic is then generated first in the wavelet domain,

 17

and then transformed back into the time domain by applying the inverse wavelet transformation

([65], [58]).

Wavelets are capable of capturing both short-range and long-range dependencies. They are thus

well suited for modeling Ethernet, ATM, VBR, Telnet and Web traffic.

2.3.4.5 On/Off Processes

A large number of superimposed heavy-tailed On/Off processes ([51]) can yield self-similar

traffic as well. An On/Off process is either in the On or Off state. One can construct a time series

by observing the number of On-Processes at any time point. If On-times and Off-times are drawn

from a heavy-tailed distribution like the Pareto distribution with parameters α1 and α2, then the

observed stochastic process is self-similar fractional Gaussian noise with H=(3-min(α1, α2)).

On/Off processes can be used to create network traffic at the packet level, or streams of requests

at a higher level.

2.3.4.6 Self-Similar Markov Modulated

In [77] self-similarity is simulated by using a Markov modulated discrete-time, discrete-state

process. The proposed modulating Markov chain depends only on 3 parameters.

 18

2.3.4.7 Multifractal Traffic

In [4], the multifractal nature of WAN traffic is demonstrated. In contrast to monofractal (self-

similar) traffic, where the local scaling behavior is constant, multifractal traffic takes into

account the changing local scaling behavior over time. This local scaling behavior is measured as

the rate at which the number of bytes/packets observed in the interval [t0, t0+δt] tends to zero as

δt 0. In [4] this local scaling behavior is calculated by using wavelet transforms. The

multifractal property is then motivated by the cascading nature of WAN traffic (each trace

consists of sessions, each session consists of traffic requests, each traffic request consists of TCP

connections, each TCP connection consists of IP packets, …).

 19

CHAPTER 3: MODELING INTERNET BACKGROUND TRAFFIC
USING MIXTURE DISTRIBUTIONS

Ideally, to evaluate an Intrusion Detection System (IDS) one needs realistic traffic that contains

only known attacks. (The nature and location of the attacks should be known by testers; attacks

should not all be known by IDS developers.) Furthermore, the traffic needs to be “live” so that

one can better judge the system’s ability to protect targeted test-bed systems. In addition, the

non-attack traffic ideally should reflect the characteristics of typical traffic of the defended

network because today’s tools generally need to be tuned to a particular environment in order to

mitigate false alarms.

In pursuit of such an environment, we have been analyzing the characteristics of the CS LAN

traffic at UCF to identify the major contributors to that traffic, to model the corresponding

statistical distributions, and to measure key distribution parameters. The intent is to model a

majority of the traffic threads present in the original LAN traffic and either a) emulate the

modeled sources of traffic while targeting them towards servers that are present in the lab

environment, or b) simulate the software and targeted servers using the NS-2 simulator.

 20

3.1 LAN Traffic Analysis

The traffic traces we captured from the Computer Science department at UCF are TCP headers

from millions of Ethernet frames during a two-day period in February 2003. The CS department

uses Network File System (NFS) and an auxiliary server to reduce the load on its main email and

file server. Thus, all email, FTP, and web traffic that is addressed to the main server is

automatically redirected to port 2049 of the NFS server. Once we understood this, we eliminated

the duplicate traffic on port 2049 from further consideration. The CS LAN also supports

significant printer sharing with the network printer service at port 9100. We also eliminated this

traffic prior to modeling. Table 3 gives an overview of the remaining traffic statistics from the

two days.

Table 4 lists the 10 most heavily loaded machines (bytes received) on the CS LAN along with

the number of bytes received and the percent of total bytes. This type of information is important

if one is trying to reproduce a particular organization’s traffic patterns or is concerned with

detecting anomalies based on existing destination patterns. (It is interesting to note that only 10

machines account for more than 90% of the CS LAN traffic by destination.) In later chapters,

we report our discoveries on the key features of CS LAN traffic and the results obtained by

building analytical distribution models for FTP, HTTP, SMTP, POP3 and SSH protocols.

 21

Table 3: TCP connections on Day 1 and Day 2

Day 1 - Feb. 05 Day 2 - Feb. 07

PKTS 32,070,078 PKTS 20,162,983

 IP 32,070,078 IP 20,162,983

 ICMP 29,197 ICMP 26,694

 UDP 1,740,446 UDP 1,631,138

 TCP 30,300,214 TCP 18,504,809

BYTES 19,857,363,053 BYTES 13,295,981,557

 ICMP 2,994,825 ICMP 2,658,906

 UDP 772,239,405 UDP 657,411,561

 TCP 19,082,115,557 TCP 12,635,890,568

TCPCONN 212,716 TCPCONN 170,550

 HTTP 92,034 HTTP 78,581

 SMTP 5,520 SMTP 5,214

 FTPDATA 2,236 FTPDATA 3,817

 TELNET 39 TELNET 37

 FINGER 8 FINGER 10

 FTP 435 FTP 466

 POP3 13,586 POP3 12,018

 TIME 2 TIME 2

 SSH 833 SSH 690

 IRC 0 IRC 0

 IDENT 315 IDENT 246

 22

Table 4: The top 10 destined IP addresses in the CS LAN

IP Address

Number of

Bytes Proportion

132.170.108.140 802,439,489 26.30%

132.170.108.162 657,245,632 21.54%

132.170.108.1 512,159,566 16.79%

132.170.108.39 325,281,391 10.66%

132.170.107.219 258,709,111 8.48%

132.170.108.2 187,601,525 6.15%

132.170.107.188 65,045,048 2.13%

132.170.107.125 37,364,870 1.22%

132.170.107.132 36,940,338 1.21%

132.170.108.183 31,208,124 1.02%

 23

3.2 Heavy-tailed Feature and Usage of Hybrid Distributions

In the usual way, we denote the cumulative distribution function (cdf) of a random variable X as

][)(xXPxFX ≤= (3-1)

and its associated probability density function (pdf) as

)()(' xFxf XX = (3-2)

when this derivative exists. The distribution of a random variable X is said to be heavy-tailed if

 1 () [] ~XF x P X x x α−− = > , as x→∞, 0<α<2. (3-3)

Heavy-tailed distributions have a number of properties that are qualitatively different from

distributions more commonly used, such as Poisson, normal or exponential distributions [52]. As

parameter α decreases, an arbitrarily large portion of the probability mass may be present in the

tail of the distribution. In other words, a random variable that follows a heavy-tailed distribution

can give rise to extremely large values with non-negligible probability.

 24

To assess the presence of heavy tails in our data, we can employ log-log complementary

distribution (LLCD) plots. These are plots of the complementary cumulative distribution

][)(1)(xXPxFxF >=−= on log-log axes. Plotted this way, heavy-tailed distributions have the

property that

 α−=
xd
xFd

log
)(log , x>θ (3-4)

for some real threshold θ and the shape parameter α>0.

To check for the presence of a heavy tail, we form the LLCD plot, and look for approximate

linear behavior over a significant range in the tail.

An LLCD plot is also used to estimate the parameters θ and α. Once the existence of linear

behavior is confirmed, parameter α can be estimated by a linear regression. The value of θ is the

estimated point on X-axis beyond which the plot appears to be linear.

The most commonly used heavy-tailed distribution is the Pareto distribution with pdf given by

1()f x k xα αα − −= , α>0, k>0. (3-5)

The corresponding cdf is

() [] 1 (/)F x P X x k x α= ≤ = − . (3-6)

 25

Note that the parameter α can be measured by the slope of straight line behavior in LLCD plot;

the parameter k can be estimated by estimating the points at which the data begin to show heavy-

tailed behavior.

Having a heavy tail is a well-known feature of network traffic [92] [93], and we have indeed

seen it in the CS data. For instance, the random number of bytes transmitted during an FTP-

DATA connection is obviously heavy-tailed. The straight line behavior in its LLCD plot also

confirms the existence of its heavy-tailed feature (Figure 1).

Figure 1: CDF and LLCD plot of FTP-DATA bytes

Cumulative Distribution Function
plot of FTP-DATA bytes from trace
of Feb. 05, 2003. It has an apparent
upper heavy tail.

LLCD plot of FTP-DATA bytes from
trace of Feb. 05, 2003. The straight
line indicates existence of heavy tail.

 26

We found more evidence of heavy-tailed behavior in other random variables, and we also

recognize that it is not sufficient to model these random variables by using only one heavy-tailed

distribution. Our analysis and experiments show that a mixed, or hybrid, approach often gives

better performance. For example, for the FTP-DATA bytes, a hybrid model composed of

Exponential and Pareto distributions fits very well (see Figure 2). Chi-square testing supports a

finding of no significant difference between distribution of real trace data and the hybrid model.

In the following sections, we will describe our work on modeling random variables for different

Internet protocol traffic, and demonstrate in detail our approach of using mixed distributions.

Figure 2: CDF of FTP-DATA bytes and its model

 27

3.3 Modeling FTP traffic

Each FTP session includes an FTP control connection and either zero, one, or multiple FTP-

DATA connections in “active” or “passive” mode, as described in [83]. In this section we are

interested in modeling distributions of the following random variables:

AFTP: FTP session arrivals;

NFDC: The number of FTP-DATA connections per session;

BFDC: The number of bytes transferred during a single FTP-DATA connection;

IFDC: Idle-time between adjacent FTP-DATA connections.

One difficulty in identifying passive FTP-DATA traffic is that the associated port number is

variable. Unlike transmission in active mode, which always uses the port 20 on the server,

passive FTP transmissions might use any number above 1024 as the port number for the client or

the server. The following 8 rules to distinguish valid FTP-DATA connections from the synthetic

background traffic:

• Connections on port 20 are valid FTP-DATA connections

• Connections with no actual data payload are rejected

• That both sides of a connection send data is not allowed

• If a connection is a passive FTP-DATA, port numbers of both sides must be

above 1024

 28

• If a connection is a passive FTP-DATA, its parent session’s client must initiate

the FTP-DATA connection

• The time span of an FTP-DATA connection must be completely covered by its

parent FTP session

• An FTP session’s child data connections are not overlapped in time

• The port numbers of FTP-DATA connections spawned by an FTP session should

be increasing, when the FTP-DATA connections are ordered by creation time.

3.3.1 FTP Session Arrival (AFTP)

According to Table 1, FTP session arrival is a typical user-initiated process and should be

Poisson. Figure 4 depicts both the empirical cdf for FTP session arrivals and the predicted cdf for

Poisson arrivals first for Day 1 (Feb. 05) and then for Day 2 (Feb. 07). Both plots confirm the

prediction. We use time intervals of 5 minutes to count FTP session arrivals.

Figure 3: CDFs of AFTP and the predition

 29

3.3.2 Number of FTP-DATA Connection (NFDC)

The random variable NFDC counts the number of FTP-DATA connections that are spawned by a

single FTP session. The reason we model NFDC instead of FTP session bytes (number of bytes

transmitted during a session) is that, it is much easier to control session termination using the

number of its FTP-DATA connections than using the total bytes transferred. Figure 4 shows that

the distribution of NFDC seems to be heavy-tailed, while the LLCD plot confirms our guess, and

indicates that the threshold θ is near 1. The straight line in the LLCD plot has a slope of -1.0595,

which suggests 1.0595 as the value of the α parameter of the corresponding Pareto model. The

straight line begins at point x=1, therefore 3 (e1~3) could be a good estimation for parameter k of

the Pareto model.

Figure 4: CDF and LLCD plot of NFDC

CDF plot of NFDC suggests a heavy
tail may exist in its disdistribution

LLCD plot of NFDC confirms the
existence of heavy tail. The straight
line in the picture also gives
parameter estimations: α=1.0595, k=3

 30

3.3.3 Bytes per FTP-DATA Connection (BFDC)

The random variable BFDC represents the bytes transferred during a single FTP-DATA

connection. Although an “active” FTP-DATA connection always connects to port 20 of FTP

server, a “passive” FTP-DATA connection could be established on any server port number. We

developed software to identify both “active” and “passive” FTP connections, and to extract them

from synthetic traffic traces. Thus, there is a guarantee that our samples include both kinds of

connections.

Extensive investigation indicates that the distribution of BFDC does not match any known classic

model. In this one the distribution does have a heavy tail, which is seen clearly in the LLCD plot,

Figure 5.

Figure 5: BFDC plots

BFDC has heavy-tailed feature only
on a range of its value domain

The lower 85% samples of BFDC
matche closely to Exponential
distribution

 31

From Figure 5, one can see the straight-line behavior begins roughly at x=4. The range

corresponds to bytes number greater than 10000, which accounts for about 15% of all sample

values. A good model for this part might be a Pareto distribution with parameter k=10000 and

α=0.3090 (the negative slope of the straight line).

Now let’s consider the lower 85% samples (or samples with a value less than 10000). CDF plot

of this part suggests an Exponential distribution with the rate parameter 0.00052. The CDF plot

of Figure 5 includes the fitted Exponential plot.

Having determined distribution models for the upper and lower part of the hybrid distribution

sample, we combine these to build the final model for the random variable BFDC. Figure 6 depicts

the Chi-square test results.

Figure 6: The final model of BFDC

The comparison between the
sample distribution and the mixture
model of BFDC

 32

3.3.4 Idle Time between FTP-DATA Connections (IFDC)

Basically, people use FTP in two manners. The first one is manual, in which the user types a

command in an FTP client shell, waits for the server response, and then types the next command.

In this way, the idle times between two consecutive data transfers are usually more than 1 second.

Alternatively, people may use automatic FTP client software tools, such WS-FTP and SmartFTP.

In these tools, users select all desired files before the actual transferring, and download/upload

them in a batch mode. The file transferring is controlled by the software and in an automatic

manner. The idle times between two continuous files are normally much less than 1 second.

Based on this observation, we divide our collected FTP-DATA idle times in two groups. One

group contains only the times equal to or more than 1 second. We call it the manual group. The

other group contains only idle times less than 1 second, and it is called the automated group.

Figure 7: CDFs of IFDC

Figure 7 depicts the cdf of IFDC from both groups, compared with the expected Gamma

distribution, for Day 1.

 33

3.4 Modeling HTTP traffic

The currently used HTTP protocols include version 1.0 and version 1.1. In HTTP 1.0, if a

requested page contains images or other special objects, separate HTTP connections will be

initiated to get these objects, even though they reside on the server that hosts the page. In HTTP

1.1, only one TCP connection is needed to retrieve contents of a web page, provided that the

contents are stored in the same server. In [25], analysis has been preformed on HTTP traffic

generated separately by these two versions of HTTP. Results demonstrate that distributions of

the two versions were not significantly different. Based on this conclusion, we do not distinguish

HTTP 1.0 traffic from HTTP 1.1 traffic in our experiments and analysis.

It follows that no matter how large a page and how many connections it has, it is always

appropriate to model only one TCP connection for this page. Thus we don’t need to keep details

of multiple connections, and the pages size (in byte) is calculated as the sum of the sizes of all

connections associated with it. When we analyze and simulate the HTTP traffic, we need only

include session level and page level. In this paper, 4 random variables are HTTP session arrivals,

number of pages browsed during an HTTP session (session size), bytes transferred for one page

(page size) and page spacing (idle time between pages).

We use the same structure to model HTTP traffic as that in [1] except that we do not need packet

level. Another difference is how we determine both session and page generation times. When we

come up with a new connection from a user, two time periods are measured. One is the

 34

connection spacing, which is the time between the start of new connection and the end of last

connection from the same user. If this time exceeds 30 min., or 1800s, we consider the new TCP

connection as the start of a new coming HTTP session. Another measurement is the difference of

start times of two consecutive TCP connections. In [6], 30 seconds was the threshold to

distinguish two pages. Thirty seconds may be appropriate for wireless networks (the work of [6]

was done on analysis of wireless traffic), but for wired networks, it is too large. Our experiments

suggest that 1 second is a good threshold for wired network.

3.4.1 HTTP Session Arrival (AHS)

One HTTP session is defined as continuous web browsing activities by a user. During a HTTP

session, the user may open one or multiple web pages. These pages are separated by various

lengths of thinking time. HTTP session arrival is supposed to satisfy Poisson distribution [8] [25],

but the fit is greatly influenced by the size of the time interval in which we count HTTP session

arrivals. Figure 8 depicts the cdf of HTTP session arrivals from the two day’s traffic on 5-minute

interval, while Figure 9 depicts cdf on 1-minute interval.

 35

Figure 8: CDFs of HTTP session arrivals

Figure 9: CDFs of AHS

It is clear that the distribution with 1-minute interval matches Poisson much better. The

implication is that when simulating HTTP session arrivals using Poisson process, it is critical to

choose proper time intervals to achieve expected results.

 36

3.4.2 Number of HTTP Pages per Session (NHPS)

Random variable NHPS counts the number of web pages browsed in one user session. For the CS

data sets, of both Feb. 05 and Feb. 07, NHPS shows obvious heavy-tailed feature. In Figure 10,

LLCD plot of this random variable for Feb. 05 has a linear pattern demonstrated by strait line

Y=-0.08408-1.26188X. Thus, a Pareto distribution with α=1.26 and k=1 is appropriate.

Figure 10: LLCD of random variable NHPS

3.4.3 Bytes per HTTP Page (BHP)

Random variable of BHP measures the number of byte transferred by one web page. It includes

bytes of HTML text, embedded pictures and all other objects in the page. Our analysis reveals

that BHP also has heavy tail in its distribution plot, see Figure 11.

 37

LLCD shows the straight line behavior happens for byte number ranged from 104.25 to 107.5, with

slope –1.164. This suggests a Pareto distribution (α=1.164, k=104.25) for http page bytes more

than 104.25 bytes (upper 36% on distribution plot).

For the lower 64% of distribution part, HTTP page byte number is more like an Exponential,

with parameter rate 0.0002419939. The CDF plot depicts the trace distribution and the fitted

Exponential model.

Figure 11: LLCD and CDF of the lower part of BHP

3.4.4 Time between HTTP Pages (THP)

THP, which is related to user thinking time, is the time between two sequential “clicks”. It is the

time between the beginnings of two consecutive web pages of a single user session.

LLCD of BHP shows the random
variable has heavy tail in its upper
36% part of values

 lower 64% part of values of BHP
has a distribution more like
Exponential

 38

The LLCD plot in this case shows that THP does not have a heavy-tailed distribution. We found

the distribution is actually very close to a Gamma model (Figure 12). From the CS data, the

shape and rate parameters of the Gamma model are 0.9936 and 0.0504, respectively.

Figure 12: LLCD and CDF of THP

LLCD of THP shows there’s no
heavy-tailed feature in its distribution

Distribution of THP can be closely
fitted by a Gamma model

 39

3.5 Modeling SMTP Traffic

3.5.1 Arrivals of SMTP Connections (ASC)

There are no classic models found to describe SMTP traffic, except that documents from

DARPA experiments [72] mentioned that a Poison process was used to simulate SMTP

connection arrivals. Our analysis of the CS traffic confirms that SMTP session arrival is a

Poisson distribution. Again however, the distribution with 1-minute intervals shows better match,

compared with 5-minute intervals. See Figure 13.

3.5.2 Bytes per SMTP Connection (BSC)

Our experiments show even for the SMTP connection with one of the simplest email sent (i.e.

the email contains no message in the body, no attachment, but only sender and receiver’s

addresses and a very short one-word subject), it has a data payload slightly more than 500 bytes

in its TCP packets. We conclude that for each valid SMTP connection, it must have at least 500

bytes. We discard those SMTP connections with payloads less than 500 bytes, assuming they are

generated by scans.

LLCD analysis indicates BSC also has heavy-tailed feature, and a Pareto model with parameters

α=0.8454 and k=1250 might be a good fit. Figure 14 plots the comparison between distributions

of real traces and the simulation by Pareto model.

 40

Figure 13: CDF of ASC

Figure 14: BLPC matches a Gamma distribution

 41

3.6 Modeling POP3 Traffic

3.6.1 Arrivals of POP3 Connections (APC)

The arrival of POP3 connections is still a Poisson process. Again, this conclusion is based on

observations of small time intervals, in this case, 1 minute. See Figure 15.

Figure 15: The arrival of POP3 connection

3.6.2 Bytes per POP3 Connection (BLPC and BUPC)

Experiments on POP3 connections show that, POP3 client programs issue several commands,

such as LIST and UIDL. After a connection with a server is established and authorization is

passed, the client will try to get information about maildrop and messages on the server. The

server responds to every command from the client; however, the length of the response depends

on how many email messages (for the particular user account) exist on the server.

 42

Experiments also show that a successful POP3 conversation with a remote server that has an

empty maildrop has a sum about 90 bytes of data payload. On the other hand, a POP3 connection

that actually receives emails from the server will have an average data payload of 1000 bytes.

Here we classify captured POP3 connections into 3 categories: “Invalid” connections are POP3

connections with payload less than 90 bytes, which cannot possibly complete the simplest

conversation; “Unloaded” connections are those with payload between 90 and 1000 bytes;

“Loaded” connections as those with payload more than 1000 bytes. “Unloaded” POP3

connections log into a server successfully, and query the maildrop, but do not download any

email. “Loaded” connections include all actions of the “Unloaded” connections, and they retrieve

at least one email from the server. It is possible that some connections have more than 1000

bytes of payload but retrieve nothing; they should be classified as “Unloaded”. In practice, we

cannot distinguish them from “Loaded” connections based only on TCP header information. It is

appropriate and more feasible to think them as “Loaded” connections.

We use random variables BLPC and BUPC to represent the number of bytes per “Loaded”

connection and per “Unloaded” connection, respectively. As indicated by the LLCD plot, the

BUPC distribution is heavy-tailed . The BLPC distribution is apparently Gamma. See Figure 16.

 43

Figure 16: Plots of BUPC and BLPC

Statistics from Feb. 05 traffic reveal that 43.17% of total POP3 connections are “unloaded”,

while the rest are “loaded”. Simulation based on this percentage returns a sample distribution

which is very similar to that of CS traces, as shown in Figure 17.

Figure 17: CDF of POP3 connection bytes

BUPC is heavy tailed.

BLPC is Gamma.

 44

3.7 Modeling SSH Traffic

Generally, the traffic between an SSH client and server is similar to TELNET traffic, and we can

use the random variables developed for TELNET to model SSH traffic. (See Table 1.)

3.7.1 Arrivals of SSH Connection (ASSH)

Contrary to the other modeled user-initiated TCP connections, The SSH arrival distribution is

apparently Gamma (Figure 18).

Figure 18: CDF of SSH connection arrival

3.7.2 Number of Originator Packets per SSH Connection (NSSH)

This random variable counts the total number of packets sent by a client (or originator) during a

single SSH connection. The information exchanged in a SSH connection follows a fixed pattern:

each time an SSH client sends a packet (request) to a server, the server will give a response of

 45

one or more packets to the client. Usually, the server does not send packets to client unless it

receives a request. This protocol is simple to include in simulations and implies that control can

be based on modeling carefully the number of packets that originate at the client.

Based on the analysis of the CS traffic traces, the number of SSH packets originating from a

client fits a log2-normal distribution. (See Figure 19.)

Figure 19: ASSH is approximately lor2-normal.

3.7.3 Time Between Adjacent SSH Originator Packet (TSSH)

TSSH is the time between two adjacent client packets in an SSH session. It controls the frequency

of SSH traffic on the network. We found it difficult to find an appropriate distribution to model

this random variable, even though the hybrid method lost its power when attempting SSH

originator’s packet spacing. However, we eventually discovered that the most distortion happens

with small values TSSH, less than 1 millisecond. Larger values of TSSH satisfy a log-normal

 46

distribution (Figure 20). We decide to use this log-normal distribution as the model for TSSH,

because differences less than 1 millisecond will not cause an observable effect on simulation

(when statistics are calculated on a time scale of seconds or minutes).

Figure 20: Log10-normal model of TSSH

3.7.4 Number of Bytes per SSH Response (BSSH)

As described in 3.7.2, in a typical SSH conversation, the server responds to each client packet.

The response can be only one packet or as many as thousands of packets. Unlike client packets,

which are normally very small, server packets vary greatly in the number of bytes. Thus, we take

the total number of bytes of a response, instead of number of packets, as the measure of SSH

server’s response.

After removing extremely large outliers (larger than 8000 bytes), we found that BSSH has a close

match to heavy-tailed Pareto distribution. The LLCD plot also confirms the finding. Figure 21

 47

depicts that BSSH of Feb. 05 traffic can be modeled by a Pareto distribution with parameters

α=1.079 and k=32.

Figure 21: BSSH is heavy tailed

 48

CHAPTER 4: SIMULATING SYNTHETIC INTERNET
BACKGROUND TRAFFIC IN NS-2

4.1 Why NS-2

Simulating Internet traffic is a tough job not only because of the challenges associated with

building appropriate distribution models for all the random variables we need, but also because it

is difficult to construct a simulation environment. Such a simulation environment must meet

criteria given in the following paragraphs.

First, the simulation environment must be highly efficient. In our approach, we analyzed hourly

traffic traces captured over a number of days. Thus, we were simulating many millions of

packets over many hours of network time. Furthermore, it was generally necessary to repeat

simulation runs often in response to changes and in an effort to obtain greater statistical

confidence.

Second, the simulation environment must be highly flexible with regard to its structure. The

target networks may range from a computer group in a small company to a large university’s

campus network, and even to the Internet. The ideal simulation environment supports adding,

removing and changing network components in an easy manner.

Third, the simulation environment must model networking protocols realistically. Many

simulations run at the application level, and their realism depends greatly on how well the

 49

simulation environment captures the important effects of the underlying transmission and routing

protocols.

Finally, a good simulation environment must support trace collection on different levels,

including the packet level. Only adequate trace analysis can compare simulation results to

simulated traffic on multiple levels - both for validation and for analytical results.

NS-2 [36] is a discrete event simulator targeted at network research. NS-2 supports many kinds

of network devices (end node, switch, router, link…) and various communication protocols (IP,

TCP, UDP…). Because it is open-source, users can write or modify existing code for their own

devices or protocols and introduce them to the NS-2 system. NS-2 users can easily construct

their experiments even when designing complex networks. The complexity of the simulation is

only limited by the computer’s power. NS-2 provides authentic support for TCP, which means

that in NS-2 TCP runs realistically with virtually all options supported. NS-2 also allows users

to perform simulations at the packet level as well as the application level. No matter the

simulation level, NS-2 can capture and store all passing packets at points specified by the user.

Because of these characteristics plus its widespread acceptance in the research community, we

used NS-2 for our simulation experiments.

 50

4.2 Experiment Design

The purpose of our simulation experiment is to generate network traffic that is statistically

similar to the Internet background traffic of a real organization. In our approach, the work begins

with the analysis of traffic traces from an organization of interest.

The work reported here uses captured UCF traffic headers. We first built distribution models and

estimated their parameters for all the required random variables. This step is described in

sections 3.3 to 3.4. Then we ran a set of programs that implemented all the models and produced

simulated values for each of the modeled random variables. For the FTP protocol, we got

simulated values for FTP session arrival time, number of FTP-DATA connections for each of

simulated session, number of bytes transmitted by FTP-DATA connections, and idle time

between two sequential FTP-DATA connections. With all of these values in hand, we are able to

run the NS-2 simulation, which takes inputs of simulated values and creates application-level

connections. NS-2 completes all details of simulated connections including establishing TCP

connections, dividing information into packets, handling congestion control, and so on. We set

up a monitor point at the main link, through which all traffic packets between clients and servers

must pass. This monitor captures all packets and stores them in a file. By reading the file and

retrieving all the simulated packets, we are able to compare the statistics of simulation traffic

with real traffic traces at the packet level.

 51

Table 5 gives random variables and their actual parameters for the five major protocols we used

in simulating the CS traffic. Figure 22 illustrates the simulation procedure. Figure 23 depicts the

network structure we used in NS-2. In this structure, all client computers lay inside an

organization and service requests are all sent to servers outside (over the Internet). A main link

with large throughput connects the inside router and outside routers, representing an Internet

access link. All client computers in the organization connect to the inside router via links with a

small delay time, representing high speed LAN connections. All servers are connected to the

outside router also by high speed connections. We set up a monitor at the access link between the

organization and the Internet.

Figure 22: Simulation Procedure

 52

Figure 23: NS-2 simulating network structure

The CS traffic traces were captured from 8am to 6pm on Feb. 05, 2003. We simulated the entire

10 hours of collected traffic on the NS-2 platform. The running time of the simulation program

in the Debian Linux on a computer with Pentium 4 2.0 GHz CPU and 1GB memory is about 40

minutes.

 53

Table 5: Summary of random variables used in simulation

Protocol Variable Name Distribution Parameters
HTTP Session Arrival Poisson λ varies every 1 minute

 Bytes per page Pareto
(upper 36%)

α=1.164, k=104.25

 Exponential
(lower 64%)

rate=0.0002419939

 Number of Pages per
Session

Pareto α=1.26, k=1

 Idle Time between 2
pages

Gamma shape=0.9936,
rate=0.0504

FTP Session Arrival Poisson λ varies every 5 minute
 Number of FTP-DATA

per session
Pareto α=1.0595, k=3

 Bytes per FTP-DATA Pareto
(upper 15%)

α=1.15, k=10000

 Exponential
 (lower 85%)

rate=0.00052

 Idle time between 2
FTP-DATAs

Gamma (>1
sec.)

shape=0.227,
scale=73.962

 Gamma (< 1
sec.)

 shape=202.04,
scale=0.079

SMTP Connection Arrival Poisson
 Bytes per Connection Pareto α=0.8454, k=1250

POP3 Connection Arrival Poisson
 Bytes per Connection Gamma (loaded) shape=40.6029,

rate=2.8903
 Pareto

(unloaded)
shape=1.873, k=90

SSH Connection Arrival Gamma Shape=0.2784
Rate=0.2260

 Number of Originator
Packet per connection

Log2-normal μ=7.9613, σ=2.8304

 Time between 2
Originator Packets

Log10-normal μ=3.4624, σ=1.6275

 Bytes of Response Pareto α=1.079, k=32

 54

4.3 Results

Here we compare the simulation results with the original CS traffic traces. We give the

comparison of session arrivals for all five protocols. Although we obtained satisfactory results

for other random variables, we only show comparison plots for session arrivals due to space

limitation. Several other measurements at the packet level are also compared. The first packet-

level measurement is packet arrivals per second. Autocorrelation, self-similarity, correlation

integral and fractal dimension are then calculated and compared. Note that the latter 4

measurements are calculated based on the packet arrival measurements.

4.3.1 Session Arrivals

 The simulated session arrivals of the 5 protocols are depicted and compared to the CS traffic

trace in Figure 24. The simulation results compare favorably to real data.

0

50

100

150

200

250

300

350

1 5 9 13 17 21 25 29 33 37

Time interval (15 minutes)

H
TT

P
 s

es
si

on
 a

rr
iv

al
s

CS trace
Simulation

HTTP session arrival

0

1

2

3

4

5

6

7

8

1 5 9 13 17 21 25 29 33 37

Time Interval (15 minutes)

FT
P

se
ss

io
n

ar
riv

al
s

CS trace
Simulation

FTP session arrival

 55

Figure 24: Session arrivals of 5 protocols

4.3.2 Packet Arrival

From section 4.3.2 to 4.3.5, we discuss several packet-level measurements obtained from the

simulation. To make the comparisons we used the time period in the CS traces (from 1:50pm to

3:10pm) when packet arrivals were most intense. Figure 25 compares the packet arrivals of the

CS traces with those of the simulation. The means and standard deviations compare favorably.

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37

Time interval (15 minutes)

SM
TP

 s
es

si
on

 a
rr

iv
al

s

CS trace
Simulation

SMTP session arrival

0

50

100

150

200

250

300

350

400

1 5 9 13 17 21 25 29 33 37

Time interval (15 minutes)

PO
P3

 s
es

si
on

 a
rr

iv
al

s

CS trace
Simulation

POP3 session arrival

0

5

10

15

20

25

30

35

40

45

1 5 9 13 17 21 25 29 33 37

Time interval (15 minutes)

SS
H

se
ss

io
n

ar
ri

va
l

CS trace
Simulation

SSH session arrival

 56

The maximum burst of both traces is around 5000 bytes/sec., while the simulation has a larger

number of small bursts.

Figure 25: Comparison of packet arrivals

Network traffic has the feature of long-range dependence, which can be demonstrated by the

Autocorrelation function (ACF). Figure 26 gives ACF plot for CS traces and the simulation. The

ACFs show that, as expected, both represent long-range dependence.

4.3.3 Self-similarity

As noted previously, self-similarity is an important characteristic of network traffic. Here we

compare the data and simulation results with respect to this important characteristic.

Packet arrival of CS traffic traces Packet arrival of NS-2 simulation
traces

 57

We collected TCP packet counts for every second from both UCF and simulation traces. We

tested their self-similarity using log-log spectra density plots near the origin, as showed in Figure

27. This method of testing self-similarity is described in [52] [93].

Figure 26: ACF plots of CS and simulation traffic

Figure 27: LLCD plots of CS and simulation traffic

ACF plot of simulation traces ACF plot of CS traffic traces

Log-log spectra density plot of
simulation trace

Log-log specta density plot of
UCF trace

 58

The straight lines in figure 33 are linear models of the data. The degree of self-similarity of the

data is obtained from the slope of the straight line. The well-known Hurst parameter is found as

H = (1-slope)/2 [52]. Repeated simulations yield similar results: the Hurst parameters of real

traffic traces and simulation traces have comparable values.

4.3.4 Correlation Integral and Fractal Dimension

That network traffic also exhibits “fractal-like’ behavior that has been observed and studied by

Leland [92], Willinger and Paxson [94]. Grassberger and Procaccia [66] give one method to

calculate a time series’ fractal dimension through correlation integrals. Let xi be the number of

packet arrivals at the ith second, we use following formula to calculate correlation integrals:

The difference between the number of packets arriving at the ith time step and the jth time step is

the “distance” |xi – xj|. C(r) takes values in the range [0,1].

2
, 1,

1() lim (| | /)
N

i jN i j i j

C r r x x D
N

θ
→∞

= ≠

= − −∑ (4-1)

where |xi-xj| is the Euclidean norm and θ is the Heaviside function

⎩
⎨
⎧

>
<

=
0,1
0,0

)(
x
x

xθ

Grassberger and Procaccia also showed in [66] that for small r, the correlation integral C(r)

grows according to a power law:

 () ~ vC r r , (4-2)

 59

and v is the estimation of the correlation fractal dimension, and it can be determined by plotting

C(r) vs. r on a log-log plot.

Figure 28 and Figure 29 display correlation integral plots on normal and log-log axis, and they

also gives the estimated values of fractal dimension. Figure 28 shows the plots for CS traces, and

Figure 29 shows those for simulation traces.

Figure 28: Correlation integrals and fractal dimension of CS traces

The plots show that the simulation has similar correlation integrals and close values of fractal

dimension to the simulated traffic.

Correlation integrals Correlation Integrals on log-log
axis and the estimated fractal
dimension

 60

Figure 29: Correlation integrals and fractal dimension of simulation

Correlation integrals Correlation integrals and
estimated fractal dimension

 61

CHAPTER 5: GENERATING NETWORK TRAFFIC USING HONEST

Although using NS-2 for traffic simulation has its own advantages, it never replaces the need for

a real laboratory networking environment. Live traffic with real content payload in each packet

will provide the complexity of the real world, upon which an IDS system can be reliably tested.

The Hands-On Networking Environment for Security Testing (HONEST) is designed to run

traffic simulation experiments in a laboratory network environment in order to test Intrusion

Detection Systems. The system is comprised of a few independent computers- four at a

minimum- as well as other networking components. In order to run properly, the system needs

one master system, one database server, and two (or more) machines that serve as matrices. A

matrix is one physical machine that can simulate multiple logical machines. HONEST includes

following components: 1) at least one Server Matrix machine; 2) at least one Client Matrix

machine; 3) a data network hub where clean generated traffic as well as attack data are sent from

clients to servers; 4) a management network switch that allows the test to be set up and run from

one master system without interfering with the test data; 5) a database server for use with the

model-based background traffic generation; and 6) the MAGNA attack management and

generation tool. The GUI resides on the master system and controls each function of the process,

which is divided into two concrete sections: set-up and execution. The system layout is depicted

in Figure 30. Most programming work was done by Michael A. Cooper at FIT [48].

 62

Figure 30: HONEST System Layout

HONEST has several advanced features. First, it is a distributed simulation environment. The

configurations of servers and clients are sent to networked computers, which accordingly play

the roles (server or client) assigned by the master system. Second, HONEST integrates

background traffic generation with attack generation. Besides the models of background traffic,

users can also choose attack models through MAGNA, a system used to generate realistic

network attacks. Third, HONEST is a scalable simulator. Users can configure the traffic intensity

of each protocol for computers in the network, and thus, have the control to adjust the simulation

 63

to make it more like a specific network. Users can also define how many virtual machines there

are in a matrix, depending on the size of the network to be simulated. At last, HONEST provide

a convenient GUI interface, through which users can input, review and modify the simulation

configuration, as well as watch the log information.

 64

5.1 Experimental Design

This section describes the experimental settings used in HONEST to create the dataset that was

compared to the original traffic model. With these settings, a user will be able to duplicate the

experiment as it was run for this work using an appropriately configured HONEST system.

For this work, HONEST ran with a total of five machines including a database server used as the

Server Matrix for the experiment. Three Client Matrices were used to produce traffic and the

Master System was used for control and data collection. This configuration allows the many

facets of the HONEST system to be showcased, albeit in a limited capacity.

Each of the Client Matrices simulates ten clients, and the one Server Matrix simulates five

servers. The Server Matrix supports multiple IP addresses and connections on behalf of clients.

The data network hub allows all the produced traffic (comprised of background traffic from four

protocols plus the scheduled attacks) to be collected and archived using the master system. The

management network switch allows fast and simple communication between the master system

and each of the matrices, as well as between each of the matrices and the database server. All of

this communication is left out of the archived dataset; appropriate log entries are made for events

such as file transfers and program starts and stops.

The scripts that are generated from skeleton script files are also archived with the network

capture, which aids in tracking down errors if any occur and also serves as an archive of the

 65

experimental execution. Combined with the network capture dataset and the experiment file, a

complete record of the settings of the specific execution, and of the results can be reviewed.

 66

5.2 Experiment Settings

5.2.1 Traffic Model

The first step in the setup process requires the traffic model to be selected so that the protocols

being modeled are available to later steps in the process. Here, the definition of model is not the

same as previous chapters, which refers to a statistical distribution. In this chapter, a model used

by HONEST refers to some choices that have been already been made and parameters defined to

represent a particular traffic data set.

The model that is selected for this experiment is the UCF model that was described in the

previous chapters. This model includes four protocols: HTTP, FTP, SSH, and SMTP. Note that

the POP3 model is missing because of the lack of appropriate simulation tools for this protocol.

This experiment used the default model timing of 36,000 seconds (10 hours), but the user may

wish to run smaller experiments for debugging purposes. Running longer experiments is not

supported because the estimated parameters vary with time and runtime may not exceed the

length of time specified.

5.2.2 Network Parameters

The next step is configuring the network settings. This experiment used one Server Matrix and

three Client Matrices. The Server Matrix was a “unix” type machine, and simulated five servers

 67

with IPs in the 192.168.0.0/16 range. There were three Client Matrices, each simulated ten client

IPs. The IP address ranges of these three Client Matrices were 192.168.1.0/24, 192.168.2.0/24,

and 192.168.3.0/24.

Once the network information is entered, the scale factors and percentages for each server must

be configured by protocol. This experiment used settings that may be typical in a real

networking environment, such as only one server for SMTP traffic and SSH traffic and a mix of

HTTP and FTP traffic. Because this experiment had one Server Matrix hosting five simulated

servers, there were a few servers available to divide up the active protocols. Each of the scale

factors was left at 1 in order to produce the same number of arrivals that are specified in the

model. Increasing this number increases the simulated “users” and therefore, the amount of

traffic generated; conversely, decreasing this number will reduce the amount of traffic generated.

The settings for each server are shown in Table 6: Experimental settings for “Total Traffic per

Protocol.

Table 6: Experimental settings for “Total Traffic per Protocol”

After each of the servers is assigned to host a percentage of a protocol’s total traffic, each

server’s traffic must be divided among the clients. For this experiment, server traffic streams

 Server0 Server1 Server2 Server3 Server4

HTTP 60 10 20 0 10

FTP 75 0 25 0 0

SSH 0 0 75 0 25

SMTP 0 0 0 100 0

 68

were divided evenly among the clients. Because there are three Client Matrices, each simulating

ten clients, there are a total of thirty clients, which makes an even distribution 3% of each

protocol per client, for each server. Each of the five servers is configured similarly.

 69

5.3 Experiment Results

This section details the results of the experiments that were performed with the HONEST system.

The results compare two different experimental settings with the original captured traffic. A first

dataset was determined to be unsatisfactory, and a second dataset (described in the previous

section) was run from the redesigned experiment in an effort to produce more realistic traffic.

The original traffic was captured from the UCF Computer Science LAN on February 5th, 2003.

The first dataset was produced using only three matrix machines, with a total of four client IPs

and two server IPs. The second dataset used the experimental settings from the previous section,

with a total of 30 client IPs and five server IPs. The results are first presented for the overall

traffic based on the second dataset, and are then broken down by each protocol.

5.3.1 Overall Traffic Comparisons

The most obvious difference between the simulation datasets and the original traffic capture is

that the simulations have more TCP packets, but less TCP connections. Since there are fewer

connections, the simulations have a much higher number of packets per connection. Table 7

shows the number of packets and connections for each of the datasets, while Figure 31 and

Figure 32 show comparative graphs of packet arrivals and connection arrivals, respectively.

 70

Table 7: Packet and connection number statistics

Figure 31: Packet Arrivals

Figure 32: Connection Arrivals

 Packets Connections Pkts/Conn.

UCF_data 8541517 100072 85.35

Simulation_#1 10955542 42608 257.12

Simulation_#2 14306800 39300 364.04

Connection arrivals of the UCF traffic Connection arrivals of simulation #1 Connection arrivals of simulation #2

Packet arrivals of the UCF traffic Packet arrivals of simulation #1 Packet arrivals of simulation #1

 71

The packet percentages of each protocol that make up the complete traffic dataset are shown in

Table 8. These results show that with the exception of SMTP, the overall percentages of each of

the protocols is different when compared to the original UCF capture. For HTTP, the dominant

protocol in the UCF dataset, packets dropped from 51% to 23% in simulation #1 and, 13% in

simulation #2. In the UCF capture, SSH only accounts for 36% of the traffic, while in

simulations #1 and #2 it accounts for 59% and 66%, respectively. Similarly, FTP increases from

10% in the UCF capture, to 15% in simulation #1 and 19% in simulation #2. The SMTP traffic

decreases slightly from 3% in the UCF capture to each of the simulations, which each have

SMTP percentages of 2%.

Table 8: Packet percentages per protocol

While the packet percentages changed dramatically between each of the datasets, the number of

connections did not. Table 9 details the connection numbers of each of the 3 datasets. HTTP

decreases from 90% in the UCF capture to 84% and 83% in simulations #1 and #2. SMTP,

increases from 7% to 11% and 12% in the simulations, while SSH and FTP increase by 1%.

Based upon the information in each of these tables we can see that HTTP traffic was decreased

and that SSH traffic was increased between the UCF traffic capture and the two simulations.

The cause for this change needs to be determined, and may lie in further analysis of each of the

protocols individually.

 HTTP SSH SMTP FTP SUM

UCF_data 51% 36% 3% 10% 100%

simulation_#1 23% 59% 2% 15% 100%

simulation_#2 13% 66% 2% 19% 100%

 72

Table 9: Connection percentages per protocol

5.3.2 Autocorrelation

As shown in Figure 33, we produced autocorrelation function (ACF) plots on the three datasets.

The UCF traffic capture shows more long-range-dependence of the packet arrivals when

compared to the two simulation datasets. Of the two simulations, simulation #2 has much more

obvious long-range-dependence on the packet arrivals than simulation #1. Because simulation

#2 used more client and server IPs, we infer that long-range-dependence in network traffic can

be better simulated by using more IP addresses to increase the number of available clients and

servers, or use more physical machines because the TCP stack and queue management on each

physical machine influences the packet transmission, thus having an effect on the

autocorrelations of the packet arrivals.

Autocorrelation of connection arrivals is surprisingly better. As shown in Figure 34, both

simulations show long-range-dependence for connection arrivals as does the UCF captured

traffic. Since connection arrivals are on the application layer, they are not affected by TCP stack

and queue management.

 HTTP SSH SMTP FTP SUM

UCF_data 90% 1% 7% 2% 100%

simulation_#1 84% 2% 11% 3% 100%

simulation_#2 83% 2% 12% 3% 100%

 73

Figure 33: Autocorrelation of packet arrivals

Figure 34: Autocorrelation of connection arrivals

5.3.3 Self-similarity

In order to determine self-similarity of each of the datasets, the Hurst parameter was estimated

for the UCF traffic and the two simulations. Self-similar sequences have a Hurst parameter H

ACF of packet arrivals of the UCF
traffic

ACF of packet arrivals of simulation #1 ACF of packet arrivals of simulation #2

ACF of connection arrivals of the UCF
traffic

ACF of connection arrivals of
simulation #1

ACF of connection arrivals of
simulation #2

 74

between 0.5 and 1.0. As shown in Figure 35, the Hurst parameter for the UCF traffic capture

was 0.9243- confirming self-similarity. However, each of the simulations has Hurst parameters

above 1.0. Simulation #1 has a Hurst parameter of 1.0482; and simulation #2 has a value of

1.049. While these values are close to 1.0, they are greater and we can therefore conclude that

the two simulation datasets lost self-similarity. Because self-similarity depends upon long-

range-dependence, we believe that the loss of self-similarity is a natural consequence of the loss

of long-range-dependence as shown in section 5.3.2. Figure 33 in section 5.3.2 indicates that

long-range-dependence improves when the number of client and server IPs increases. A

reasonable explanation is that the TCP queuing will affect the traffic’s long-range-dependence.

When traffic from many sources has to use a single TCP queue, the queuing management will

restrain bursts, and thus damage the long-range-dependence and self-similarity. To solve this

problem, one can add more computers into the lab, and simulate as many IP addresses as

necessary. But due to the limitation of our lab environment, using many computers is currently

inapplicable.

Self-similarity of packet arrivals of the
UCF traffic

Self-similarity of packet arrivals of
simulation #1

Self-similarity of packet arrivals of
simulation #2

 75

Figure 35: Self-similarity

5.3.4 HTTP Protocol Comparisons

In the UCF traffic capture, one HTTP page may contain more than one TCP connection, since a

page may contain images and other elements that are loaded separately. In our simulations, each

page is represented by a single connection. As seen in Table 10, both simulations generate a

similar number of page views when compared with the traffic capture. However, on average

they generate fewer packets per page, which explains why HTTP accounts for less of the total

traffic in the simulations than the original UCF traffic capture.

In Figure 36 we show the HTTP packet arrivals for all three datasets. The two simulations do

not match the original traffic capture, and have larger extremes as high as 10,000; the largest

value in the original UCF traffic is around 2000. Another aspect of the HTTP traffic of the

simulations is that the packet arrivals display a layered pattern. This is because the HTTP files

that are retrieved are mock files, created for the simulation with sizes of powers of two.

Table 10: HTTP packet and page statistics

 Packets Pages Pkts/Page

UCF_data 4365316 31630 138.01

Simulation_#1 2561310 35966 71.21

Simulation_#2 1879462 32629 57.6

 76

Figure 37 shows the page arrivals of the HTTP traffic for each of the datasets. Here the

simulations appear similar to that of the original UCF traffic capture. This means that the

algorithms generating session and page arrivals are correct, and may only need to be updated to

include better and more diverse file selection.

Figure 36: HTTP packet arrivals

Figure 37: HTTP page arrivals

HTTP packet arrivals of the UCF traffic HTTP packet arrivals of simulation #1 HTTP packet arrivals of simulation #2

HTTP page arrivals of the UCF traffic HTTP page arrivals of simulation #1 HTTP page arrivals of simulation #2

 77

At this time, the application layer random variables cannot be compared for HTTP because the

relatively low number of client IPs in both of the simulations, when compared to the UCF traffic

capture, make it difficult for the analyzing programs to identify individual sessions that are

repeatedly launched from the same client IP.

5.3.5 SSH Protocol Comparisons

The actual number of SSH connections are similar to the original UCF traffic capture. The

average packets per connection (Table 11), however, are doubled for simulation #1, and tripled

for simulation #2! This explains why SSH is seen as a much larger percentage in the simulations

than in the UCF dataset as described in section 5.3.1, which can be observed in Figure 38. Since

the session arrivals are similar (Figure 39), we suspect that it is the connection size that increases

the SSH traffic so dramatically.

Table 11: SSH packet and connection statistics

For SSH traffic generation, there are two random variables that determine the connection size:

the number of originator’s packets and the responder’s bytes size. These variables determine

how much data is sent from the client to the server, and then back from the server to the client,

 Packets Connections Pkts/Conn.

UCF_data 3084105 739 4173.35

Simulation_#1 6451523 776 8313.82

Simulation_#2 9391463 904 10388.79

 78

respectively. Figure 40 and Figure 41 show the cumulative distribution function (CDF) plots of

these variables.

Figure 38: SSH packet arrivals

Figure 39: SSH connection arrivals

Figure 40 shows that the number of originator’s packets for both simulations generally fit the

UCF traffic capture. However, Figure 41 shows that the responder’s bytes for both of the

SSH packet arrivals of the UCF traffic SSH packet arrivals of simulation #1 SSH packet arrivals of simulation #2

SSH connection arrivals of the UCF
traffic

SSH connection arrivals of simulation
#1

SSH connection arrivals of simulation
#2

 79

simulations shift to big values, and the distributions change to Normal-like while the UCF traffic

capture is Exponential-like. For the SSH protocol it appears that either the model data used or

that the traffic generation scripts have errors, and both need to be reviewed.

Figure 40: SSH connection size CDF

Figure 41: SSH responder's bytes CDF

CDF of SSH connection size of the
UCF traffic

CDF of SSH connection size of
simulation #1

CDF of SSH connection size of
simulation #2

CDF of SSH responder’s bytes of the
UCF CS traffic

CDF of SSH responder’s bytes of
simulation #1

CDF of SSH responder’s bytes of
simulation #2

 80

5.3.6 SMTP Protocol Comparisons

In Table 12, we see that the simulation generated for SMTP has fewer connections, but the

packets per connection are greater so total number of packets is similar. We believe that the

differences between the real and simulated number of connections and packets per connection

are in an acceptable range. However, there are a few seconds with noticeably large packet

arrivals in the UCF traffic capture that are missing from the simulations. When these few bursts

are removed, the simulation plots (Figure 42 and Figure 43) look similar to the original UCF

dataset.

Table 12: SMTP packet and connection statistics

Figure 42: SMTP packet arrivals

 Packets Connections Pkts/Conn.

UCF_data 294951 6715 43.92

Simulation_#1 245719 4568 53.79

Simulation_#2 301241 4703 64.05

SMTP packet arrivals of the UCF
traffic

SMTP packet arrivals of simulation #1 SMTP packet arrivals of simulation #2

 81

Figure 43: SMTP connection arrivals

5.3.7 FTP Protocol Comparisons

For the FTP protocol, there are fewer connections and a much higher number of packets per

connection. Simulation #1 had three times as many packets per connection as the UCF traffic

capture, and simulation #2 had six times as many packets per connection! The simulations have

much larger mean bytes for the FTP-DATA connections than the UCF dataset does, which might

again be related to the file set used for transfers- HTTP and FTP used the same files with sizes as

powers of two. The simulations may have transferred more of the larger sized files than those

seen in the UCF traffic capture.

SMTP connection arrivals of the UCF
traffic

SMTP connection arrivals of simulation
#1

SMTP connection arrivals of simulation
#2

 82

Table 13: FTP packet and connection statistics

Figure 44: FTP packet arrivals

Figure 45: FTP connection arrivals

 Packets Connections Pkts/Conn.

UCF_data 829710 1919 432.37

Simulation_#1 1697206 1302 1303.54

Simulation_#2 2734631 1052 2599.46

FTP packet arrivals of the UCF traffic FTP packet arrivals of simulation #1 FTP packet arrivals of simulation #2

FTP connection arrivals of the UCF
traffic

FTP connection arrivals of simulation
#1

FTP connection arrivals of simulation
#2

 83

Figure 46: CDF of FTP-DATA numbers

Figure 47: CDF of FTP-DATA bytes

CDF of FTP-DATA number of the
UCF traffic

CDF of FTP-DATA number of
simulation #2

CDF of FTP-DATA number of
simulation #2

CDF of FTP-DATA bytes of the UCF
CS traffic

CDF of FTP-DATA bytes of simulation
#1

CDF of FTP-DATA bytes of simulation
#2

 84

5.4 Conclusions

In our experiments, the UCF data set was simulated by HONEST with two different network

settings, and the results were compared against the original traffic traces. The results are not

satisfactory when we examine some key features of the traffic traces, such as autocorrelation

structure and self-similarity. The reasons are complex. Many problems can be explained by the

limitations inherent in HONEST.

For example, because HONEST is still in its preliminary stage, the number of physical

computers and network interfaces that were used is low. Although a single computer can

simulate multiple IP addresses, there is an actual maximum limit due to available computing

power. In this situation, simulating traffic of a relatively large network, such as UCF CS LAN, is

not actually suitable. Another example is the deployment of target files on servers. Some

protocols, including HTTP, FTP, and SSH, need target files deployed in advance on the server’s

file system, so that the clients can generate network traffic by retrieving these files from servers.

In our experiments, target files are created with a number of fixed sizes for the simplicity of

deployment. But for CS LAN data, the file size has a much wider variety. The consequence is

that, for simulation, the distribution of connection size may obviously deviate from the

measurement.

With the above exceptions our experiments proved that HONEST is a useful and working tool

allowing a network simulation to run in a real laboratory environment. More to the point, the

 85

experiments also proved that our protocol models are able to generate traffic that reasonably

matches the measured CS background (within the limitations of HONEST).

 86

CHAPTER 6: INTRODUCTION TO NETWORK INTRUSION
DETECTION

In the following section, we look back the history of computer security and the development of

Intrusion Detection Systems. The early and current state of research on Intrusion Detection will

be reviewed, and the relevant IDS products will be discussed.

6.1 Network Security Becomes a Big Challenge

The CERT Coordination Center of Software Engineering Institute at Carnegie Mellon University

has been collecting computer intrusion incident data from 1988. Since then, computer systems

and the Internet have changed substantially. More networks are interconnected, new applications

and protocols are implemented, the number of Internet users and the amount of information on

the Internet is exploding. These changes result in an exponentially increased number of reported

intrusion incidents. Figure 48 shows the number of incidents reported to CERT from 1988 to

2003 [14].

The rapid increase of intrusion incidents is greatly due to widespread use of automated and high-

speed attacking tools. Attackers usually use scanning tools as a first step in launching an attack.

Previously, vulnerabilities were discovered after the completion of a long-range scan (at the port

or host level). Now, advanced attacking tools can exploit vulnerabilities as part of the scanning

activities, which speeds up the attack. Also, attacking tools are become more automated. In the

past, most attacking tools required a human to manipulate and initiate a new attack cycle. Today,

many attacking tools can initiate new cycles themselves, without human intervention.

 87

Figure 48: Incidents reported from 1988 to 2003

Now, attackers can distribute their automated smart attacking tools all over the world, and are

able to launch a global attack quickly. This is a real nightmare for every computer

system/security administrator. On July 19, 2001, a worm “Code Red” [13] and its variants

infected more than 250,000 systems in just 9 hours. The “Code Red” worms propagated to other

systems automatically and waited for the attacking date. On the specified date (July 19, 2001),

worms distributed all over the world launched attacks simultaneously and caused a traffic flood

to specific targets.

Attacking tools are also becoming more advanced. In [5], 3 advanced features of the modern

attacking tools are summarized. First, current attackers are good at hiding the nature of attacking

tools. Security experts have to spend more time to analyze attacking tools and understand the

 88

rapidly developing threats. A prevention and cure solution usually cannot be obtained

immediately after a threat has been discovered. Second, today’s attacking tools commonly have

dynamic behaviors, which make it more difficult to detect them. They can vary their patterns and

behaviors based on random selection, a predefined decision path, or through direct intruder

management. Third, many of today’s attacking tools have a feature of modularity, which means

they can change themselves by replacing or upgrading a portion of the tool. In an extreme case,

this causes polymorphic tools that self-evolve to be different in each instance.

With the Internet growing rapidly and with easy access to advanced attack tools, the Internet

security situation is worsening. In 2004, because attacks against Internet-connected systems have

become so commonplace, the counts of the number of the incidents reported lost relevance with

regard to assessing the scope and impact of attacks. Thus, CERT/CC ceased to publish the

number of incidents reported, and chose to develop and report other more meaningful metrics,

such as “E-Crime Watch Survey”.

“2004 E-Crime Watch Survey” is a project conducted by CSO magazine, United States Secret

Service and CERT/CC. The survey shows a significant number of organizations reporting an

increase in electronic crimes (e-crimes) and network, system or data intrusions. Forty-three

percent (43%) of respondents report an increase in e-crimes and intrusions versus the previous

year and 70% report at least one e-crime or intrusion was committed against their organization.

Respondents say that e-crimes cost their organizations approximately $666 million in 2003.

 89

The job of securing computer systems enclosed by the Internet has become a true challenge for

everyone who wants to use the resources and functions provided by the Internet.

6.2 The Early and Current State of Network Intrusion Detection

Because traditional firewall techniques cannot provide complete protection against attacks, an

Intrusion Detection System (IDS), as a necessary component of defense-in-depth, attempts to

detect (and possibly counteract) unauthorized activities in a computer network or on a host

computer. The goal of an IDS is simply to identify all attacks present without generating false

alarms [96]. The false alarm constraint is critical because a low false alarm rate can still obscure

valid alerts when applied to high data volumes.

6.2.1 Early Work on Computer Security and Intrusion Detection

The possible earliest work about computer security was done by Saltzer and Schroeder in 1974

[40]. They described a number of important design principles and protection mechanisms that are

necessary for the protection of computer system resources and data. They introduced standard

terminology, provided a detailed look at the fundamental access control features, and surveyed

the research projects and working systems available at that time.

In [38], Anderson proposed a scheme to classify various threats and attacks on computer systems

into 3 main categories:

 an external penetration by an unauthorized person

 90

 an internal penetration by an individual who is authorized to use certain parts of the

systems, but who is attempting to use resources that he is specifically not authorized to

use

 the misuse of resources by an individual that is authorized to use them, but not in the

way or for the purpose that he/she is using them

Among these three kinds of threats, the “misuse” type by one having supervisor or system-

programming privileges is the most difficult to detect. These kind of intruders can easily modify

or erase the traces he leaves, and to keep his intrusion under cover. As a solution, [38] suggested

that an independent auditing on the major components of the system should be carried on by an

external unit, which is not under the intruder’s control.

Anderson also noticed that system auditing may produce a large amount of information that

would be impossible to analyzed manually. To solve this problem, he suggested the security

analysis should rely on knowing the “normal” usage pattern of each legitimate user. It would be

possible that the security system could filter out only those normal patterns, and block any

“abnormal” usage. The normal patterns can be built on a number of measures, including the

user’s logon patterns, file access statistics, and I/O instances. Although Anderson’s work was

limited and did not give details on how to detect abnormal patterns and intrusions, it was still a

meaningful guideline for the future research on computer security and intrusion detection.

 91

Two formal security models, the Bell-LaPadula model and the Denning’s model, were developed

in the 1970’s and the 1980’s, and have been serving as the basis for most intrusion detection

research and products.

The Bell-LaPadula model was presented in a report by Bell and LaPadula [18] that was a result

of a series of research projects commissioned by the Electronic Systems Division of the U.S. Air

Force. The Bell-LaPadula model is the first formal model of computer security. In the Bell-

LaPadula model, data or resources are defined as objects, programs or users as subjects. The

model defines a set of restrictions on access to objects (data or resources) at different security

levels. Subjects are able to access objects only if their security level meets a set of conditions that

implement the security level. The Bell-LaPadula model was used in the document “Trusted

Computer System Evaluation Criteria [60]” as the standard of computer information security,

published by the Department of Defence, 1985.

Another famous model was proposed by Dorothy Denning [19]. Denning’s model was based on

the idea that intrusions can be detected by recognizing abnormal patterns of behavior in a

computer system’s audit records. This model was proposed to specifically address the design of a

real-time intrusion detection system using the techniques of expert systems.

In Denning’s model, profiles are created for each legitimate user that describes the user’s normal

behavior pattern. The profile is built from the system’s audit records on the actions of subjects

upon objects. A number of metrics and statistics models can be used to create a meaningful

profile of a user’s past behavior. Denning also provided a detailed description of the profile’s

 92

structure. When a system is running, generated audit records are compared to existing profiles. If

there are any records that do not match a known profile, they are considered to be anomalous,

and an “anomaly record” is created in a security log. If needed, further action can be applied,

such as production of summary reports, profile updates or alerts to system administers.

During the 1980’s and the early 1990’s, some research projects and products of Intrusion (or

Misuse) Detection systems were developed. Haystack [78] is a host-based audit trail analyzer for

use on a multi-user system. It uses both signature detection and a simple statistical anomaly

detector to find events of interests to security officers. It mainly focuses on misuse by internal

users. Wisdom & Sense [37] is one of the first ID systems to determine behavior criteria

automatically. It has two main components: the “wisdom” component and the “Sense”

component. The “wisdom” component performs an analysis on audit files that record past

activities, and produces a set of rules that describes the normal behavior pattern of the system

and each user. Once the behavior patter is determined, the “Sense” component (usually an expert

system), will check the recent audit log, and produce a score which indicates the likelihood that

the user’s activities are anomalous enough to indicate a misuse. The Information Security

Officer’s Assistant (ISOA) [43] combines the real-time analysis of the user and host activity with

a more detailed analysis of an entire session, usually preformed when the session ends. With the

help of information provided by analyzing the audit records of complete sessions, ISOA is able

to describe a user’s behavior pattern more accurately. The Intrusion Detection Expert System

(IDES) [35] is also one of the first ID projects. The IDES is based directly on Denning’s model

[19], and developed with the idea that a user’s behavior does not change much over time and a

model of that behavior can be used to detect abnormal behaviors, either caused by users who

 93

attempt to misuse resources or by another individual who attempts to masquerade as the user.

The statistical analysis component of IDES develops a profile for ‘normal’ activities for each

user. The profile is based on a deep statistical analysis of the user’s past audit records. The IDES

will give a score to each new audit record based on profiles, and the score value indicates the

degree of abnormality.

6.2.2 The Current State of Intrusion Detection

Since the middle of the 1990’s, with the rapid growth of networking and the Internet, computer

systems and users have to face threats and attacks more from the external world: attacks from

other systems carried by the Internet. ID systems also have been developed into new generation

with advanced abilities. These new ID systems usually have multiple sensors, can collect data

from a distributed system or a network environment, and detect intrusions using both signature-

based and anomaly-based algorithms. More important, these systems focus more on detecting

intrusions originated from outside the local network, not only misuses by insiders.

6.2.2.1 Techniques

Even today, many ID systems are still using Denning’s model as the base. Profile of a user or

system’s normal behavior is built not only from system audit records, but also from network

packets, or any other observable trail of system activities. Bai and Kobaysashi [96] overviewed

current techniques of intrusion detection and divided them into two categories: Anomaly

Intrusion Detection and Misuse Intrusion Detection.

 94

6.2.2.1.1 Anomaly Intrusion Detection
Anomaly Intrusion Detection uses deviation from the established normal usage patterns to

identify intrusions. Anomaly detection techniques assume that all intrusive activities are

necessarily anomalous. Because of this, they generally alert administrators and do not

immediately act to block traffic. Several major approaches to the anomaly intrusion detection

systems are described below.

• Statistical Approach

ID systems implementing this approach create profiles of normal usage or behavior pattern

before detection. Then the anomaly detector starts collecting data while the system continues

running. The anomaly detector constantly generates the variance of the present profile from the

original one. If the variance is statistically significant enough, an intrusion alarm will be sent to

security officer.

The main advantage to statistical systems is that a statistically driven ID system can learn and

thus be more sensitive than expert systems. However, this learning ability can be leveraged by

intruders. Intruders can train the system by gradually changing their behavior until an intrusive

activity cannot be detected.

• Predictive Pattern Generation

This approach of intrusion detection tries to predict future events based on the events that have

already occurred.

 95

The main advantages of this method are: First, rule based sequential patterns can detect

anomalous activities that are difficult with traditional methods. Second, ID systems of this type

are highly adaptive to changes, because bad patterns are continuously removed. Third, it is easier

to detect users who try to train the system during its learning period.

• Artificial Neural Network (ANN)

The idea of this approach is to train the neural network to predict a user’s next action or

command. The network is trained on a set of representative user commands. After the training

phase, the network tries to match actual commands with the user profile which is already present

in the net. Any incorrectly predicted events actually measure the deviation from the established

profile.

Advantages of using ANN include strong anti-noise ability with input data; their success does

not depend on any statistical assumption about the nature of the underlying data; they are easier

to modify for new users. The disadvantages of ANN include: a small window will result in false

positives while a large window will result in irrelevant data and increase the chance of false

negatives; the net topology is only determined after considerable trial and error; the intruder can

train the net during its learning phase.

• Data Mining Based Intrusion Detection

 96

As computer systems become more and resulting audit data become more volumnious, analytical

approaches may be overwhelmed. Data mining based intrusion detection tries to use data mining

techniques to discover consistent and useful patterns of system and traffic behavior and use these

to compute classifiers that can recognize anomalies and known intrusions [91]. Data mining

approaches have great potential to help alleviate the problem of automatically detecting

anomalous patterns in a large amount of audit data.

The data mining approach also has its disadvantages and limitations. First, such systems have a

higher rate of false positives than traditional signature based systems. Second, these systems

have lower efficiency during the training phase and the evaluation phase. At last, data mining

based systems require large amount of training data and are more complicated than existing

systems.

• Data Fusion Based Intrusion Detection

Multi-sensor data fusion, or distributed sensing, is used to combine multiple and diverse sensors

and sources in order to make more accurate inferences about events, activities and situation.

Input into data fusion based IDS consists of sensor data, commands and priori data from

established database. For example, the system input would be data from numerous distributed

packet sniffers, system log file, SNMP traps, user profile database etc. The outputs of data

fusion based IDS can be the estimate of the identity of an intruder, the intruder’s activities, and

 97

an evaluation of the attack behaviors, and so on. Tim Bass discussed how to apply multi-sensor

and data fusion technology to an IDS [80].

6.2.2.1.2 Misuse Intrusion Detection

Misuse intrusion detection uses patterns of known attacks or weak spots of the system to match

and identify attacks. Ideally, not only an attack itself, but also its variations can be detected by

misuse intrusion detection. Anomaly detection systems try to detect the complement of bad

behavior. Misuse detection systems try to recognize known bad behavior.

In most cases, it is not enough to have only anomaly detection systems, because they are

ineffective to detect attacks from the inside. On the other hand, misuse detection systems cannot

detect new and unknown attacks. Having both of them is a reasonable solution for many current

IDSs.

Several major approaches to misuse intrusion detection are described below.

• Expert System

Expert systems are modeled in such a way as to separate the rule matching phase from the action

phase. The matching is operated according to audit trail events. Expert system is formulated by

security experts, who define rules to be used in the detection component. However, because the

system greatly depends on security experts and need to be tuned manually, it is insensitive to

new attacks.

 98

• Model Based Intrusion Detection

Model Based Intrusion Detection assumes that certain scenarios can be inferred by certain other

observable activities. If the system monitors these activities, it is possible that an intrusion

attempt can be predicted by observing activities that infer the intrusion scenario.

This kind of system can predict the attacker’s next step based on the intrusion model. These

predictions can be used to verify an intrusion hypothesis, to take preventive measures, or to

determine what data to look for next. However, there are some restrictions in such systems: (1)

the patterns for intrusion scenario must be easily recognized. (2) The patterns must always occur

in the behavior being looked for. (3) The patterns must not be associated with any other normal

behavior.

• State Transition Based Intrusion Detection

A State Transition Based Intrusion Detection system is described as a state transition diagram.

The system is in a valid state when it starts and changes from state to state while the system is

running, if a given condition is satisfied. The final state of the transition diagram is the

compromised state. With the technique based on state transition, it is possible to detect some

unknown attacks. However, because attacks are only described by a sequence of activities, the

system is unable to detect complicated attacks which cannot be described by a transition diagram.

• Pattern Matching Based Intrusion Detection

 99

This approach encodes known intrusion signatures as patterns that are matched against the data.

Systems implementing this technique are usually efficient because of a simple design. The main

problem with this model is that it can only detect known attacks.

6.2.2.2 Products

In this section, we discuss several representative IDS products developed with current techniques.

Many current IDSs use both a anomaly detection technique and a misuse detection technique.

NIDES

The Next-Generation Intrusion Detection Expert System (NIDES) ([81], [16]) was developed at

SRI as the successor to IDES. NIDES collects data from a number of hosts and performs an

analysis in a central location. Like IDES, it uses two different detection techniques, statistical

analysis and rule-based (expert system) analysis. To simplify processing and archiving data, each

host’s native audit records are converted into a standard NIDES audit format before transmission

to the analyzer. NIDES can operate in either a real-time or batch mode. The batch option allows

for a more detailed analysis and can be selected from the user interface.

Experiments have shown that NIDES can detect anomalies that IDES could not and that its

performance, even when monitoring a large number of hosts, is improved. The original design of

 100

NIDES did not include a network monitoring component, but the option of adding that feature

was considered by the designers.

EMERALD

The system called Event Monitoring Enabling Responses to Anomalous Live Disturbances

(EMERALD) ([68], [69]) is the successor to the IDES and NIDES systems, but it represents a

different approach to the problem of detecting intrusions in a large network. Instead of designing

a complete ID system, EMERALD intends to provide a framework within which modules can be

added to solve specific problems.

The EMERALD framework includes a three-level design which can scale to any number of

network nodes and hosts.

 Service analysis level – local, distributed EMERALD monitors collect and analyze data

and communicate with peers

 Domain-wide level – supports separately-administered domains within an enterprise

network and coordinates information from the EMERALD monitors at the local level to

detect wide-spread intrusions or coordinated attacks

 Enterprise-wide level – gathers information from the domain level, looking for system-

wide anomalous activities

 101

The EMERALD monitor is not a specific piece of software; it is a conceptual object that can be

implemented in many ways to support specific platforms or services. Each EMERALD monitor

can be customized to a particular host platform or a network and solve a particular problem.

Each EMERALD monitor must provide certain essential features and services, including an

interface used to interact with the target being monitored; a profiler engine which performs

anomaly detection using the audit information available to the monitor (host audit logs, network

traffic or data from lower-level monitors); a signature engine that performs rule-based detection

on filtered audit data; a universal resolver that correlates the results of both analyzer engines and

communicates with other monitors.

The universal resolver is the most important analysis component of the EMERALD system. It

uses a rule-based expert system to process reports and alerts from the local profiler and signature

engine, and from other monitors in the system, to detect intrusions or misuse. It is also

responsible for determining which information should be passed on to other monitors. A limited

number of preprogrammed countermeasures are available for responding to attacks and the

resolver determines if they are appropriate.

NSM

The Network Security Monitor (NSM) ([47], [11]) was developed by the University of California

at Davis to detect intrusions by directly monitoring network traffic instead of analyzing host

audit logs. Thus, NSM can monitor a heterogeneous system without having to directly support a

variety of operating systems or platforms. However, this means that NSM is limited to detecting

 102

only remote intrusions or misuses; it is unable to determine if an intrusion is attempted from the

host’s console or if malicious code is executing on a host.

NSM uses a layered model, called the Interconnected Computing Environment Model (ICEM) to

determine the overall state of the networked system. Packets received from the network are

processed through an ICEM layer, which correlates related information and fills in data

structures (referred to as vectors) that represent the behavior of a connection between hosts or the

overall network behavior of each individual host. At the highest layer, the set of all the host and

connection vectors represents the state of the entire system and is used by an expert system to

perform intrusion detection.

The expert system has access to profiles of network activity that it uses to determine if an

intrusion or misuse has occurred. These profiles include a list of the expected set of connection

paths between hosts, lists of the connection types (telnet, ftp, mail, etc.) that should be found in

normal network traffic, security levels assigned to each host and signatures of past known attacks.

Based on the profile information and the current state of connections, a suspicious level is

calculated and reported to security personnel.

Bro

The Bro IDS [82] uses passive network monitoring to detect intrusions in a local network. It

operates in real time and, because it is a network monitor and not a host monitor, it neither places

a performance burden on hosts nor requires installation on or modification of hosts. Furthermore,

 103

it is capable of monitoring a heterogeneous network from one UNIX workstation. Bro’s designer

considered the possibility of attacks on the network monitor and provided some solutions to this

problem. Bro’s design goals were:

• the system should be able to monitor high-speed networks with a large volume of traffic

• the packet capture process should not drop packets

• the system should provide real-time notification of intrusions

• a separation of the mechanism from the security policy

• the system should be extensible

• security policies should be simple and clear to reduce mistakes in implementation

• it is expected that the monitor will be attacked

Each packet is processed through three layers: packet capture and filtering, event detection and

interpretation of the security policy for a given event. This layering supports several of the

design goals listed above. The first three goals are aided by the separation of packet capture from

processing. By handling event detection and policy interpretation in two separate layers, goals 4

and 6 are supported. The Bro language, used to create detection rules and the specific action that

should be taken when each rule is triggered, fulfill the needs of the fifth goal. The layered

approach also makes Bro more robust and several extra features, such as a watchdog timer which

determine if Bro has stopped responding to input, make it more resistant to attack.

CSM

 104

The Cooperating Security Managers (CSM) [31] provides a distributed, peer-to-peer approach to

network intrusion detection. Each host in the system runs a copy of the CSM software and

communicates with its peer hosts to both detect and respond to intrusions. When a user remotely

accesses one host from another, the CSM on each endpoint of the connection will share

information about the user, supporting user tracing and preventing masquerading or spoofing.

System security operators can request a trace of user activities that will show when and where a

user connected to each host in the system. Although the prototype of CSM was developed on

UNIX hosts, it was designed to be platform and OS independent. The designers of CSM focused

mainly on the cooperative aspects of the system and less on local intrusion detection or the

operator’s user interface. The cooperative approach is intended to allow a more scalable system

and to discover intrusions that independent host monitors could not detect.

GrIDS

Its designers refer to GrIDS [79] as a “Graph-based Intrusion Detection System” for large

networks. In this case, the term graph-based refers not to a graphical, i.e. visual technique, but to

the use of graph theory to represent activity on hosts and the network traffic between them. By

analyzing the resulting graphs, GrIDS can detect security violations. This technique is

particularly suited to attacks or misuse activities that are propagated throughout a network or

involve a large number of hosts. GrIDS is organized as a hierarchical system. The lower levels

detect local intrusions and report them to higher levels where large-scale intrusions can be

detected by correlating information from several local sources. GrIDS uses rule-based detection

 105

and can determine whether to take specific actions at each level or to pass the result from that

level up to the next level for further processing.

The FrIDS system includes several components: a software manger, a graph-building engine, a

module builder and data sources. The software manger oversees the system’s state and

communicates with its distributed modules. The data sources are actually host-based modules

that monitor the activities of each host or local network and report to the other components. The

graph-building engine constructs an activity graph which includes a subset of the hosts in the

network. Each node in the graph represents a host and the edges represent the specific

connections between those hosts that are involved in the intrusion. The information used to

construct a lower-level graph is received from the data sources in its local area and the graph-

builder’s results are reported to the next level of the hierarchy. This continues up to the highest

level where an activity graph is constructed that shows the overall extent of detected intrusions.

STAT and NetSTAT

STAT (the State Transition Analysis Tool) [44] was designed to be one detection component

within a host-based ID system. It was expected that the ID system would include a profile-based

anomaly detector to complement the rule-based state transition features provided by STAT. audit

record would be collected by the system and converted into a format that STAT could process

and STAT would deliver its results to the security officer’s interface so that action could be taken.

 106

NetSTAT [30] is a distributed, network-based intrusion detection system that monitors network

traffic for attacks and abnormal behavior. NetSTAT has access to a network fact base that

includes information about the network topology and available services. An attack scenario

database contains state transition information about known network attacks. That information is

represented as a series of transitions between known states that are triggered by signature attack,

i.e., known events. When a signature action is detected, NetSTAT triggers the appropriate state

transitions. If a series of signature actions that lead to a known compromise are detected, the set

of state transitions associated with that compromise will each have been visited in turn and the

end state will have been reached, indicating that the attack occurred. Thus, just as a specific

sequence of rules in a expert system can be used to indicate the complex series of events that

lead to an intrusion, the state transition described in the scenario database can model complex

attacks and intrusions.

SHADOW

SHADOW and Snort, which will be introduced later, are two open-source ID systems. These ID

products are developed with contributions from the whole open-source community and are

widely supported by many third-party plug-ins to enhance their performance or functionality.

Also, because of large number of users, new attacks can be reported promptly and corresponding

rules can be added to the system in a short time.

The SHADOW system was built by the staff of the Naval Surface Warfare Center, based upon

their many years of experience as intrusion analysts [76]. SHADOW [95] is an open source

 107

collection of scripts and programs that supports intrusion detection and analysis at low cost. The

minimum SHADOW system is composed of a sensor, usually located outside of the firewall

where is exposed to attack traffic, and an analyzer which should be inside the firewall. Data

collected by the sensor is transmitted to the analyzer where it is filtered by a set of scripts that

search for intrusive or suspicious behavior. The results can be monitored via a web browser.

Snort

Snort [57] is a packet filtering and inspection program that can be use either as one component in

a more complex ID system or as a stand-alone, lightweight IDS. Snort is freeware and open

source community provides strong support for it in many ways. There are more Snort detection

rules for known attacks than for any of the commercial ID systems [76] and features like SQL

database support, web-based interfaces, data-mining software and professional technical support

are all widely available.

Snort uses a rule-based detection engine to detect known intrusions or attacks. Rules are written

in a specific, simple notation and output can be to the screen, to log files, to a database or to

another IDS component via syslog or email messages. In addition to examining packet header

fields for anomalies or suspicious activities, Snort can look into the packet’s payload to find data

that indicates hostile activities such as buffer overflow, CGI script exploits or macro virus code.

Snort’s packet capture engine is fast enough to avoid dropped packets, even in busy networks.

 108

Snort can be used as the packet logging component for a more sophisticated IDS, such as the

SHADOW system, where Snort finds known attacks and intrusions using its detection rules and

passes the captured packets to SHADOW for further investigation. If SHADOW finds an

unknown intrusion, the information that SHADOW found can be used to create a new rule for

Snort and added to its detection engine. The combination of two different detection techniques,

similar to the configuration of many of the research ID system described above, makes for an

effective and efficient intrusion detection system which can be based entirely on open source

software [3].

 109

6.3 Limitations of Current Intrusion Detection Systems

6.3.1 The False Alarm Problem

A false alarm happens when the ID system reports an intrusion alarm but actually there is no

attack. It becomes a problem when the false alarm rate is too high that the security officer is

overwhelmed by alarming information, and the true intrusion activities are not noticed.

In 2002, Network World conducted a test on seven leading commercial IDS systems plus the

open source system Snort, with the purpose of reviewing major IDS products and testing their

reliability and performance [24]. The tests were run on Opus One, a relative small ISP in Arizona

that provides service for about 50 small to medium-sized businesses. The Opus One backbone

bandwidth is about 12 Mbps. The tested ID systems were not stressed. However, the testing

result was not encouraging: Several IDSs crashed repeatedly under the burden of the false alarms

they churned out; when real attacks came along, some products didn’t catch them and others

buried reports so deep in false alarms that they were easy to miss; overly complex interfaces

made tuning out false alarms a challenge.

In 2003, Network World did a similar test [42] and found that the false alarm was still a big

problem for IDSs. Although tested IDSs were improved on the way they manage and present the

alarm output, high volume of alarm messages made system sluggish and ill-behaved. In some

cases, alarms produced by IDS used up the hard disk and the whole system were unusable.

 110

6.3.2 Problems with High-speed Network and Real-time Response

Network World also performed another test on IDSs in 2002 focused on the performance on

Gigabit Ethernet [12]. The first step was to run 28 well-known attacks against each product on a

wire that had no other traffic running on it, then compare the detection result with that obtained

under Gigabit traffic (970Mbps). It turned out the most products downgraded their performance

by averagely 50%. When under Gigabit network traffic, they only detect half the same attacks as

they could under light traffic.

A relevant problem is the response time for on-line real-time IDS. Unlike off-line IDS, a real-

time IDS needs to recognize and response to attacks immediately, especially when the attacks are

against the IDS itself. When the volume of attacks is very high, real-time IDSs may not be able

to perform the matching for all rules, or they cannot response in the pre-defined time. A scheme

is proposed in [90] that IDS monitors the event rate. When the event rate is below a threshold,

the IDS runs at a quiet mode and all rules are utilized to cover all attacks. If the event rate

increases beyond the threshold, the IDS only uses rules which are deemed as critical. This

scheme can protect IDS from overwhelmed under heavy attacks and guarantee it responses in

real time. However, real-time IDSs under this scheme could possibly pass some attacks into the

defense line.

6.3.3 Problems with Training Data

As we have seen from previous sections, many anomaly-based IDS need a ‘normal’ data to train

the system. The training data can be audit records, network traffic or any other trail of user’s

 111

activities. No matter what it is, the training data is generally required to be attack-free. To let an

IDS work in a real environment, the best way is to train it using the real data, for example, real

traffic packets. However, when using the real traffic packets, IDS administrator is facing a big

problem: even though all known attacks can be removed from the traffic data, there could be

unknown attacks in it. As a result, the trained IDS cannot detect them in the future.

6.3.4 Problems with Management Interface

IDS is a complex system and usually requires more time than security administrators have

available to devote to their proper use [7]. IDS administrators have to deal with multiple data

input sources, manage detection rules, monitor high volume of alarms and determine proper

action etc. Results of a survey into the state of security management in a variety of companies

and institutes clearly show that the state of network security management is poor [41]. This is

partly because of lack of good tools or management interfaces to administrators. Testing

experiments of [24] and [12] also confirm that the bad user interface decreases usability of ID

systems.

 112

CHAPTER 7: BUILDING AUTOCORRELATION TEMPLATES TO
DETECT DOS ATTACKS

In this chapter, we first introduce a theory of network intrusion detection that is based on the

analysis of the correlation structure of network traffic. The theory is designed to achieve high

detection probability and low false alarm rate. A successful implementation of this theory relies

on an accurate template of the autocorrelation of “normal” traffic, and the paper that introduced

this theory [54] did not treat the problem of obtaining such a template. Here we offer an

approach for constructing and updating templates based on data collected in sliding traffic

windows.

7.1 Denial-of-Service Attacks

The term denial-of-Service (DoS) is used to describe network attacks where legitimate users are

denied services or access to information resources [20]. Allen [86] divides DoS attacks into two

categories: DoS-SE and DoS-TE.

In DoS-SE (DoS system exploit) attacks, attackers create one or a few specially-crafted packets

that exploit some weakness in the target’s operating system, network protocol stack, or software

application(s). These packets cause the executing code to enter an unanticipated state or to

overwrite critical data, and the result is software failure. In August 2001, a DoS-SE attack “Code

Red” was reported to CERT/CC [15], [13]. The “Code Red” worm can crash Microsoft IIS 4.0

server by sending a crafted URL if the server is configured to use URL redirection.

 113

DoS-TE (DoS traffic exploit) attacks take a different approach. DoS-TE attacks generate a flood

of packets that overwhelm the target’s ability to process them. This type of attack may rely on

brute force to disrupt the target’s services, or the attack may leverage known target

vulnerabilities. In the latter case an attack may still be classified as a traffic exploit if it relies on

the volume of the traffic to achieve its end. One example of a DoS-TE is the denial-of-service

attack on domain name servers that occurred in April 2000 [21]. In that attack, intruders sent a

large number of UDP-based DNS requests to name server(s) using a spoofed source IP address.

Any name server response was sent back to the spoofed IP address as the destination. In this

scenario, the spoofed IP address was overwhelmed by flood of responses forwarded by one or

more name servers, and represented the victim of the denial of service attack. The name server is

an intermediate party in the attack. Other DoS-TE attacks include apache2, smurf, UDP storm

and Neptune.

In addition to attacks discussed above, network scanning is another common type of intrusion

and may be considered to be a DoS attack. Typically a scan gathers information about the

network’s configuration or probes for the existence of host vulnerabilities. A scan can be stealthy,

meaning that it leverages relatively few packets or spreads its packets over a long time period to

avoid notice. On the other hand, “brute-force” scans generate large numbers of packets during

relatively short periods intending to occupy the target so that it cannot perform its intended

functions.

 114

7.2 Decision Analysis of Network-based IDSs - The Theory

While network intrusion has become a real challenge to security community, network-based ID

systems are suffering from high false alarm rates and from other problems [24] [42] [12]. In

theory, whatever the approach, each intrusion detection technique can be characterized by curves

showing probability of detection, pd, versus probability of false alarm, pfa. A good IDS should

achieve a high pd and a low pdf.

7.2.1 Basic Idea

In a paper by Li, Jia, and Zhao [54], the author offers a mathematical approach for intrusion

detection that yields high probability of detection and low probability of false alarm. In this

section, we give an introduction to their theoretical approach.

Let the time series ()ix t represent the attack-free portion of an organization’s background traffic;

specifically let ()ix t give the number of bytes arriving at time it . Let ()iy t represent total bytes

arriving, then ()iy t can be represented by

 ()iy t = ()ix t + ()in t , (7-1)

where ()in t represents bytes arriving from any attack traffic that may be present. Based on the

assumption that the ()ix t and ()in t are statistically independent, the following formula holds:

 115

 Ikkrkrkr nxy ∈+=),()()(, (7-2)

where ry(k), rx(k) and rn(k) are autocorrelations of ()iy t , ()ix t and ()in t respectively. The work

described here is based on detecting differences among these autocorrelations; in particular, rx

serves as the template of normal traffic. The distance

 yxn rrr −==ξ (7-3)

is used as the measure of deviation between the normal and abnormal traffic. A threshold V is

determined so that, if the distance is larger than V, the IDS will determine that there is a DoS

intrusion; otherwise, the IDS will treat the traffic as benign.

Figure 49 depicts the basic architecture of the system.

Figure 49: Diagram of IDS architecture

7.2.2 Traffic Template

Obviously, successful intrusion detections rely on the availability of a useful template of normal

traffic rx(t). In fact, the effectiveness of the theory depends on the accuracy of such a template.

As noted, however, the original research did not address the template estimation problem.

 116

The self-similarity feature of network traffic has been widely studied ([92][85][52][45] et. al.)

and accepted as elemental for network traffic. As noted in [39], x is called asymptotically

second-order self-similar with Hurst parameter H between 0.5 and 1, if its autocorrelation, in the

discrete case, satisfies

 ~ (), (0,1)kr ck kα α− →∞ ∈ , (7-4)

where c>0 is a constant, and α=2-2H.

However, equation (7-4) is only a qualitative expression of autocorrelation function of a self-

similar process, and it is too rough for use in pattern matching. Li and his colleagues give an

exact autocorrelation function for self-similar network traffic in [53], and apply it in network

traffic simulation [55] [56]. The autocorrelation function given in [53] is

 2 2() (| | 1) , (0,1], (0.5,1)Hr k k Hα α−= + ∈ ∈ (7-5)

Li uses expression (7-5) to obtain autocorrelations of normal and abnormal traffic, and then

calculates distance between these two.

7.2.3 Distance Measures and Probability Distributions

The theory needs two distance measures to achieve intrusion detection. They are

 117

)()(krkr yx −=ξ and (7-6)

)()(krkr xlx −=ζ (7-7)

In (7-7), rxl stands for the autocorrelation obtained in the absence of attack traffic and not used as

a template. Thus, the random variable ξ measures the distance between the normal traffic

template and the abnormal traffic; while the random variable ζ measures the distance between

the normal traffic template and attack-free traffic. Given a detection threshold V if ξ>V, IDS

detects an intrusion successfully; if ζ >V, IDS gives a false alarm.

In [54], it is suggested that the distance be calculated using the Itakura-Saito norm [50], i.e.

 ∑ −−=−=
k x

y

x

y
yx y

r
r
r

rr 1logξ . (7-8)

The theory assumes that in detection, enough samples of ()iy t are arranged that ξ is

approximately Gaussian, and we have

2

2

2

)(

2

2
1),(~ ξ

ξ

σ

μξ

ξ
ξξ σπ

σμξ
−

−

= eN , (7-9)

where μξ and σξ2 are the mean and variance of the random variable ξ.

 118

Let

 ∫
∞−

−
=Φ

t

dttet
22

1)(
2

π
. (7-10)

Then detection probability Pd can be expressed by

 [] d
V

t

PVdteVP =−Φ−==∞<< ∫
∞

−

−

ξξ

σ
μ

σμ
π

ξ

ξ

ξ

/)(1
2
1)(2

2

. (7-11)

Similarly, the probability of false alarm Pf can be expressed as

 [] ./)(1)(fPVVP =−Φ−=∞<< ζζ σμζ (7-12)

Note that μζ and σζ2 are the mean and variance of the random variable ζ.

In Li’s paper, the probability of a miss (failing to recognize a real attack) is also presented.

Because the miss probability Pm=1-Pd, it is sufficient to discuss only Pd here.

The goal is that in the absence of attacks there should be no significant difference between the

normal template traffic and total traffic received. Thus, μζ=0 in most cases. In addition, the

variances of ξ and ζ can be standardized such that σξ=σζ=σ. Then Pd and Pf can be given by

 119

 []σμξ /)(1 −Φ−= VPd , (7-13)

)/(1 σVPf Φ−= . (7-14)

Figure 50 depicts curves of Pd vs Pf given ξ of three different normal distributions.

Figure 50: Plots of Pd vs Pf

7.2.4 Selecting the Threshold

Ideally, we desire an IDS with Pd as high as possible and Pf as low as possible, i.e. Pd 1 and

Pf 0 at the same time.

If we let d be the lower bound of Pd, then

 d
V

Pd <
−

Φ−=)(1
σ
μξ . (7-15)

Because

ξ~N(40,10) ξ~N(80,15) ξ~N(120,20)

 120

)()(1
σ

μ
σ
μ ξξ VV −

Φ=
−

Φ− ,

(7-15) can be written as

 d
V

<
−

Φ)(
σ

μξ , (7-16)

and we have

)(0 1 dV −Φ⋅−<< σμξ . (7-17)

Theoretically, we can take maximum value of d=1. If the precision of the normal distribution

expressed by Φ is determined (for example, 4), in this case, we have

 σμξ 40 −≤<V . (7-18)

We can also use the same method to investigate the relationship between Pf and the threshold V.

Let f be the upper bound of Pf, we have

 fVPf <Φ−=)/(1 σ . (7-19)

Because

 121

)()(1
σσ
VV −

Φ=Φ− , (7-20)

we get

)(1 fV −Φ−≥ σ . (7-21)

If we set f=0 and we detect based on 4 standard deviations, we have

 σ4≥V . (7-22)

Concluding the above, to let dP d≥ and fP f≤ , the threshold v must satisfy the following

condition:

)](),([11 dfV −− Φ−Φ−∈ σμσ ξ . (7-23)

In the extreme case, when d=1 and f=0 and the precision of the normal distribution is 4, we have

 .04],4,4[>−−∈ σμσμσ ξξV (7-24)

Note that the constraint of (7-24) is equal to

 122

 σμξ 8> . (7-25)

In other words, to apply this detection theory and obtain high probability of detection and low

probability of false alarm, two requirements must be met: (1) the mean of random variable ξ

(distance between normal and abnormal traffic) must be at least 8 times its standard deviation; (2)

the selected threshold V must be some value from the interval defined by (7-24).

Figure 51: Detection area with ξ~N(90,10)

Figure 51 gives an example of selecting the threshold V with ξ~N(90,10). According to (7-24),

extremely good results (high Pd and low Pf) can be achieved by selecting V from [72] [18]. But

Figure 51 shows that useful results can be obtained by choosing values of V from the dark area.

The dark area is called detection area in [54].

 123

7.3 Building the Autocorrelation Template

Li et al. have provided a theoretical proof for the above method. They conducted experiments by

assuming normal and abnormal traffic had particular autocorrelation functions, but the method

has not been evaluated against real traffic data. Once we decided to apply Li’s theoretical work

and pursue a practical IDS, we found several major problems which hinder its implementation on

real traffic: (1) The x values of the time series {xi} used by Li are the byte counts for each time

increment, and the theory depends on the self-similar nature of {xi}. However, when we tried to

demonstrate self-similarity based on byte counts, it yielded undependable results; (2) the theory

requires a template of traffic autocorrelation, but does not provide an approach for obtaining it;

(3) the detection theory is constructed on the assumption that the norm)()(krkr yx −=ξ will be

normally distributed. But based on our analysis of the UCF CS traffic traces and several other

data sets, we don’t observe normal distribution for the norm ξ.

Among these difficulties, the most critical one is how to achieve a good template of the

autocorrelation data. In this section, we demonstrate a method to construct the autocorrelation

template using time series forecasting. The experimental results of this method show that in most

cases, it forecasts correctly the autocorrelation structure for a period which contains a future

period.

 124

7.3.1 Method

We replace the original byte sequence with a packet arrival sequence ()ix t , and calculate the

autocorrelations of a sliding window on the arrival sequence. For each position of the sliding

window, we calculate the autocorrelation functions using a suitable maximum lag value “max.”

The sliding window will run a finite number of steps to provide data for time series analysis. A

time series is constructed by including ACF values corresponding to the same lag as computed

across different steps. Hence, there are “max” different time series constructed. Then we build an

ARIMA model for each time series to predict the ACF values in the future; each time series

predicts a particular lag in a future window. The method is illustrated in Figure 52.

Figure 52: Building the template of autocorrelation function

 125

Using the above approach we can predict ACF values k steps ahead. The accuracy of the

predictions is affected by several selections: the size of the sliding window; the size of the

window’s sliding step; the number of stops used for training; and the value of k, the number of

steps we wan to predict ahead.

7.3.2 Experiment and Results

We captured all TCP headers in 5 days from 8am to 8pm at the Olin Engineering building of FIT.

The sliding window size was set to one hour, or 3600 seconds. The step size was 1 minute, or 60

seconds. We used the first 60 steps for training, which means there are 60 elements in each time

series. We set k=5; thus, the ARIMA model from each lag time series predicts 5 steps, or 5

minutes, ahead.

In building an ARIMA model one assumes that the time series of interest is stationary. Our

program uses a time series linear model to judge if there is a trend. When a trend is present, the

program will perform a differencing operation upon the time series, and attempt to eliminate the

trend. After the first differencing, the program fits the differenced data to a linear model and tries

to find and eliminate any existing trend. This procedure repeats until no significant trend exists.

Figure 53 depicts a time series with a trend and the resulting stationary process after two

differencing operations on the original data. Our investigation showed that there usually was no

seasonal component in the traffic time series; thus, it was not necessary to remove a seasonal

component.

 126

Figure 53: Obtain stationary process by differencing

After the stationarity of a particular time series is assured, the next step is to choose a proper

ARIMA model for the time series. Choosing the best ARIMA model is a complex task. Here we

follow a simple but efficient rule for building an AR model for each time series [67]. An AR(p)

model is usually appropriate for a time series if its partial ACF function becomes zero after lag p.

Our program calculates the PACF functions for every stationary time series and finds a proper p

to build the AR model. Figure 54 shows the PACF plot for the above differenced time series.

The PACF value of lag 1 in the plot lies outside the 95% confidence interval, thus, an AR(1)

model should be proper for the time series, and is used to forecast the future values.

Figure 55 gives the prediction result for the time period from second 2041 to second 5460 of day

1. The black line represents the observed ACF structure; the red line represents the predicted

ACF structure.

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

Original Time Series

ts

0 10 20 30 40 50 60

-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

Differenced Time Series

ts
2

 127

Figure 54: Partial autocorrelation plot

Figure 55: Predicted autocorrelation structure

Among the predictions of all 5 days, most predictions were a good match to the observed sample

ACF. A small fraction of the results do not have a satisfactory visual match. According to our

investigation, we found they are associated with significant changes in the traffic pattern.

Because we only have the information from TCP headers (and not segment data), it is difficult to

investigate the traffic data and determine whether these changes are due to attacks or due to

particular valid applications. At any rate these changes, or the disagreement between the sample

and the prediction, are definitely worth a security administrator’s attention.

5 10 15
-0

.3
-0

.2
-0

.1
0.

0
0.

1
0.

2

Lag

P
ar

tia
l A

C
F

Differenced Time Series

 128

7.4 Summary

Implementing Li’s theory of intrusion detection involves many practical issues, such as how to

define and calculate norms, how to construct the key random variable which satisfies a normal

distribution, and how to provide both normal and attack-free traffic. We have obtained a solution

for the most challenging problem – that of finding a template of the background traffic.

This chapter developed an approach to solve the problem of building the autocorrelation

template. The experimental results show that this approach is effective, in the sense that it

produces matching predictions of autocorrelation structures at most times. In the instances that

there is not a match between prediction and measurement, the differences are associated with

significant changes in the traffic pattern. While more experimentation is needed, the approach for

building an autocorrelation template appears quite promising.

 129

CHAPTER 8: DETECTING DoS ATTACKS USING THE
CORRELATION INTEGRAL

8.1 What is a Correlation Integral

A Correlation integral is defined by Grassberger and Procaccia [66] as a tool to calculate fractal

dimension.

The concept of fractal dimension was formally brought forward by Mandelbrot [9]. Mandelbrot

extended the Euclidean concept of dimension (i.e. the number of parameters needed to describe

an object’s shape or location in space) to include the dimension of fractal curves which usually

do not have an integer number of dimensions.

Grassberger and Procaccia defined the information fractal dimension, and use correlation

integral as a tool to calculate the fractal dimension. The correlation integral measures spatial

correlation and it is based on the correlation between pairs of points in a fractal curve. The

correlation integral is formally defined as:

 }||tan),({1lim)(2 rXXcediswhosejipairsofnumberthe
N

rC jiN
<−=

∞→

For a single-variable time series {xi, i=1,…,N, x∈R}, the correlation integral is defined as:

 ∑
≠=

∞→
−−=

N

jjji
jiN

xxr
N

rC
,1,

2 |)|(1lim)(θ

where |xi-xj| is the Euclidean norm and θ is the Heaviside function

 130

⎩
⎨
⎧

>
<

=
0,1
0,0

)(
x
x

xθ

C(r) measures the probability that the distance between any pair of points in the time series is

less than r.

Grassberger and Procaccia also showed that for small r, C(r) grows according to a power law:

 vrrC ~)(

The correlation exponent, v, is a measure of the local structure of the fractal curve and is an

estimate of the correlation fractal dimension.

 131

8.2 Related Work

Leland [92] and Willinger [94] discussed Fractal dimension of network traffic. In their work, the

relationship between fractals and self-similarity were discussed, but the application of the

correlation integral or fractal dimension of traffic was not involved.

Ayedemir et al. [49] showed that the correlation fractal dimension could be used to compare

synthetic traffic to real traffic so that one could determine how accurately the synthetic traffic

was generated. The researchers used a modified definition of correlation integral to derive local

structure of short traffic sequences and to measure the traffic’s fractal dimensions. Based on

stochastic analysis, they claimed that the correlation dimensions of independent traffic sequences

can be compared to determine if their behaviors are similar. The authors did not discuss

applications to network intrusion detection.

Allen [86] proposed an intrusion detection technique by comparing fractal dimensions between

normal network traffic and the traffic being attacked. In his method, traffic fractal dimensions are

calculated for fixed-sized time segments both for investigated traffic and a traffic template. The

traffic template should possess characteristics of typical normal traffic, or traffic not being

attacked. When the fractal dimension measurements of investigated traffic segments are obtained,

they are compared to the measurements of the template using an F-test. DoS attacks are indicated

by a low p-value.

 132

Allen’s method relies on the availability of a good traffic template; obtaining such a template

was left as an open problem. Again, this work uses changes in fractal dimension for detection

alerts.

8.2.1 Correlation Integrals of Network Traffic

In this section, we introduce an intrusion detection approach using the correlation integral, and

we provide a method for estimating an appropriate template for attack-free traffic. The template

is derived from real traffic traces, and in a general form. We also report the preliminary

experimental result of applying this technique in detection of DoS-TE attacks.

As discussed in section 4.1, a correlation integral C(r) measures the probability that the distance

between any pair of points in the time series is less than r. If we consider a network traffic

sequence as a time series {xi=packet arrivals in the ith time unit}, then C(r) of {xi} is greatly

influenced by any relatively large values (bursty arrivals) in the sequence. According to the

definition, two sequences may have same correlation integral measures, even though they have

significantly different total packet sums or average packet numbers per time unit. The factor that

really matters is the distances between pair of points. The network traffic’s self-similarity and

bursty nature make it reasonable to assume that correlation integral might be the right building

block for a new detection method.

In the following section, we use the UCF CS traffic traces to demonstrate the procedure.

 133

8.2.2 Constructing a Traffic Template

The UCF traffic dataset includes Internet traffic traces captured over 10 hours (from 8am to

6pm). To get attack-free background traffic, we removed obvious attacks by running an Intrusion

Detection program (Snort) on the traces and filtered out all packets except TCP packets that did

not match Snorts malicious signatures. Then packets of 5 major Internet protocols (FTP, HTTP,

SMTP, POP3, SSH) were extracted from the traffic traces. The extracted traces were sent to the

NS-2 simulator introduced in Chapter 4, and the traffic traces produced by the simulation were

used to construct the traffic template. In this was we guaranteed that the template is built from

attack-free traffic having similar correlation integral structure to that of the UCF CS traffic. We

counted the packet arrivals each second in the simulation traffic, and obtained a time series {xi,

i=1,…,36000, x∈I}. xi is the number of packets arrival in the ith second.

We use a slightly modified definition correlation integrals for the simulation traffic.

 ∑
≠=

∞→
−−=

N

jjji
jiN

Dxxr
N

rC
,1,

2
')/||(1lim)(θ

The distance |xi – xj| is defined as the difference in the number of packets between the ith and the

jth second. D is the maximum distance found between any two ,i jx x values. We introduce D into

the formula so that r only takes values in the range [0,1].

Because the time series {xi} has 36000 elements (36000 seconds), it is computationally

infeasible to calculate correlation integrals based on the entire dataset. We divide the dataset into

10 non-overlapping subsets, and each set corresponds to 1000 continuous seconds of time. We

 134

calculate C’(r) for each subset with r=0.005,…,0.1. r increases with a step of 0.005. Thus, for all

10-hour traffic traces, we get 36 vectors of correlation integrals:

)}1.0(),...,01.0(),005.0({ '
1

'
1

'
11 CCCV =

)}1.0(),...,01.0(),005.0({ '
2

'
2

'
22 CCCV =

 …

)}1.0(),...,01.0(),005.0({ '
36

'
36

'
3636 CCCV =

The traffic template Vt is a vector similar to the above, but its element at a particular position is

the mean of elements at the same position of all 36 measured vectors.

)}1.0(),...,01.0(),005.0({ '''
tttt CCCV =

 ∑
=

=
36

1

'')(
36
1)(

i
it rCrC

Figure 56 depicts the template of CS dataset and its 99% confidence interval.

Figure 56: Template of CS traffic dataset

 135

According to the definition of C’(r), the correlation integral is sensitive to extremely large bursts.

The template in our discussion reflects the average burstiness of the traffic. If the network is not

going through a very high frequency of packet arrivals from DoS attacks or other suspicious

activities, the correlation integral vector should have no statistically significant difference with

the template vector. The p-value from a Kolmogorov-Smirnov test on the similarlity between the

template and the correlation integral vector of investigated traffic determines whether any

difference is significant.

Investigation of the 36 CS traffic subsets shows that the majority of them have a correlation

integral vector with similar shape to the template, and the p-values of Kolmorov-Smirnov tests

are large enough to indicate no significant difference. Figure 57 gives an example of subset

which has a high p-value; Figure 62 and 63 give two examples where low p-values are obtained.

Figure 57: An example of good match to the template

Correlation integral vector fits to the
template well

Plot of actual packet arrival

 136

Figure 58: An example of poor match to the template

Figure 59: Another example of poor match to the template

Correlation integral vector fits with the
template poorly

Plot of actual packet arrival

Plot of actual packet arrival Correlation integral vector fits with the
template poorly

 137

Figure 57 shows the typical normal traffic pattern of the CS network. Mostly, the packet arrival

rates are under 1000/sec. Some traffic bursts occur, and one burst has an arrival rate larger than

3500/sec. The correlation vector of the traffic does not show significant difference (p-

value=0.9831) with the template - despite the bursts.

In Figure 58, the network is under heavy usage. The average arrival rate first increases steadily

to more than 1000/sec, and then to about 2000/sec. Some bursts have arrival rates more than

5000/sec. The correlation integral vector of this traffic obviously deviates from the template.

Figure 59 demonstrates another case in which unmatched vectors and a low p-value result. In this

case, the traffic is normal except for a few seconds having an extremely high packet arrival rate

of around 10000/sec. Due to the correlation integral’s sensitivity to extremely large values, the

vector of the traffic shows an obviously different pattern compared with the template. The

Kolmogorov-Smirnov test returns a p-value of 0.

Table 14 summarizes p-values of Kolmogorov-Smirnov tests between the template and

correlation integral vectors of 36 CS traffic subsets. The first column displays the beginning and

ending second of the traffic, the second column gives the p-value.

Table 15 gives the percentage of vectors whose p-values are above some specific thresholds.

 138

Table 14: P-values of K-S tests between traffic segments and the template

Time duration(sec.) P-value Time duration (sec.) P-value

1-1000 0.001115802 18001-19000 1

1001-2000 0.8319696 19001-20000 0.8319696

2001-3000 0.335591 20001-21000 0.0335417

3001-4000 0.174533 21001-22000 1

4001-5000 0.08105771 22001-23000 0.9999924

5001-6000 0.571336 23001-24000 0.9999924

6001-7000 0.03354166 24001-25000 0.0122986

7001-8000 0.571336 25001-26000 0.0039673

8001-9000 0.9999924 26001-27000 0.9831369

9001-10000 0.9999924 27001-28000 0.9831369

10001-11000 0.571336 28001-29000 0.9999924

11001-12000 9.55E-06 29001-30000 0.0335417

12001-13000 0.9831369 30001-31000 0.571336

13001-14000 0.9999924 31001-32000 0.9999924

14001-15000 0.01229861 32001-33000 0.9831369

15001-16000 0.9831369 33001-34000 0.8319696

16001-17000 0.9831369 34001-35000 0.9999924

17001-18000 0.9831369 35001-36000 0.174533

 139

Table 15:Kolmogorov-Smirnov Test Results

8.2.3 Detecting DoS-TE attacks

The correlation integral vector’s sensitivity to extremely high packet arrival rates and sustained

large amount of traffic makes it an ideal tool to detect those DoS-TE attacks that cause traffic

floods. One can detect the DoS-TE attacks by comparing the correlation integral vectors of

suspicious traffic to the template and perform various kinds of statistical tests. An ID system

judges if there’s any attack by reading the p-values of tests. If the p-value drops below a

threshold, a warning might be sent and further analysis or action can be taken.

We demonstrate this intrusion detection technique by using real background and attack traffic.

The background traffic is from the UCF CS dataset we used in previous sections. The attack

traffic is taken from traces captured at FIT (Florida Institute of Technology) campus network on

p-value Counts

 (out of 36)

≥0.8 20

≥0.6 20

≥0.4 24

≥0.2 25

≥0.1 27

 140

Oct. 30, 2004. Analysis indicates that heavy scan activities are present in FIT traffic traces. We

identified the scan packets by running Snort on the dataset, and extracted all those scan packets

into a separate trace file. We used 300 seconds of heavy scan packets from FIT, and merged

them into 1000 seconds of background traffic from UCF (background traffic is taken from the

second 8501 to 9500; scan begins at the second 9011), as if they happened in the same network.

The combined traffic is plotted in Figure 60.

Figure 60: Background + attack traffic.

We use a sliding time window for intrusion detection. The window is a time series of packet

arrivals for 1000 consecutive seconds. To begin with the head of the window is positioned at

second 9001, and the window moves to seconds of higher values with one-second steps. Each

time the window arrives a new position, its correlation integral vector V is calculated and

compared to the template Vt.

Attack traffic begins at second 9001, ends at second 9300

 141

The sliding window is arranged to begin at the second 9001, 10 seconds before attack traffic, and

stop running at the second 9040. We make this arrangement in order to demonstrate the changes

of p-values before and after the beginning of the attack. Figure 61 depicts p-value versus the

head position of sliding window.

Figure 61: P-values of sliding window

Figure 62: Attack packets during second 9011- 9040

 142

Although the attack begins at second 9011, the p-values between second 9011 and 9018 are still

high. It is because that there are not enough attacking packets during this period to damage the

traffic’s overall burstiness. But once the attacking packet arrival rate reaches 5000 at the second

9018, the p-value drops immediately at the second 9019, and keeps low while attack continues

(Figure 62).

It is notable that we use 1 second as the step size of the sliding window. Increase of the step size

will reduce the needed computation, but also increase the attack response time. Computation can

also be reduced by using smaller windows.

We also performed detection experiments on the 19 DoS attacks included in the 1999

DARPA/Lincoln Lab Intrusion Detection Evaluation [73]. All of these are examples of TE

attacks as defined in 7.1. We selected a period of “normal” traffic (i.e., having high p-values in

the previous K-S tests) from the UCF CS background data. Because the average packet arrivals

of the DARPA/Lincoln Lab experiment were much lower than that of the UCF CS data, the

attack intensities (packets/second) were rescaled so that the peak attack intensity to average

background intensity matched to that of original.

We used a sliding window of 1,000 seconds and step size of one second. At each position of the

sliding window, we computed the correlation integral vector and compared with the vector

obtained from the template (as discussed). A sharp drop of p-value below 0.1 (from the K-S test)

indicated the detection of a DoS attack. Table 16 lists the 19 attacks and the number of seconds

to detection.

 143

Table 16: Time to Dectection of DoS attacks Used in the DARPA/IDS Evaluation

The results show that the technique successfully detected 18 attacks within 10 seconds after the

attacks began. The longest time to detection is 40 seconds. In real events, a short detection time

may allow security administrators to act before an attack causes irreparable damage.

Attack Name Detection
Time(sec.)

Attack Name Detection
Time
(sec.)

Fri4.mailbomb 9 Thu4.mailbomb 1

Fri4.smurf 2 Thu4.satan 2

Fri5.back 40 Tue5.back 4

Fri5.neptune 2 Tue5.neptune 2

Mon4.smurf 1 Wed4.mailboumb 1

Mon5.apache-1 2 Wed4.satan 1

Mon5.apache-2 2 Wed4.smurf 2

Mon5.neptune 2 Wed5.apache 1

Mon5.udpstorm 1 Wed5.back-1 1

Wed5.back-2 2

 144

8.3 Summary and Future Work

This chapter demonstrates a correlation integral methodology that is able to track changes in

traffic structure and it presents an approach for estimating the required template. The

methodology is sensitive to extremely high packet arrival rates and sustained traffic volumes.

These features can be used to detect DoS attacks. Computation time and sensitivity can be

adjusted by selecting different sizes of sliding window and its moving step. More work will be

done to determine sensitivity to stealthier attacks.

Currently, the template is built using means of correlation integrals of multiple traffic segments.

Other more efficient computing method may exist, such as using weighted means. One can also

change the constructional method to improve the template. For example, overlapped, instead of

non-overlapped, traffic segments may generate more useful templates under some conditions.

 145

CHAPTER 9: CONCLUSION AND FUTURE WORK

9.1 Traffic Modeling and Simulation

In this dissertation, we introduced an approach for modeling Internet background traffic using

mixture distributions. The approach is proposed because traditional distributions are ineffective

for a number of random variables that are essential in modeling Internet traffic. Our approach has

been demonstrated for five major Internet protocols (HTTP, FTP, SMTP, POP3 and SSH) based

on data collected from the CS LAN at UCF. Based on these results, an NS-2 simulation

environment and a real simulation lab have been built and used for simulating the Internet

background traffic and generating traffic traces. The experimental results are discussed and

compared with the original traffic. The simulation results show that our models can produce

realistic network traffic, especially in the NS-2 simulation environment, with regard to the

following:

• The random variables of the simulation traffic have similar distributions with the real

traffic

• The packet arrival patterns of the simulation compare favorably with actual arrivals

• Both simulation results and real traffic demonstrate long-range dependence

• The simulation results and real traffic compare with regard to self-similarity

• The correlation integral results are comparable for both

• The fractal dimension results from both are comparable.

 146

One limitation of this approach is that the model is protocol-specific. One must build different

models for different Internet applications, and must usually re-estimate parameters for models

when applying the method in a new network environment. One possible area of future work is to

classify the Internet traffic into major different categories in the hope that many protocols will fit

with a single pattern. Thus, the traffic of different applications/protocols can be classified into

the same classification, as long as they have the same communication pattern at the packet level.

Then the mixture-distributions approach can be applied on each traffic class.

We also found that, although a close degree of self-similarity was achieved with the simulation,

the simulated traffic does not have extremely high packet arrivals that characterize the real traffic.

The simulation traffic looks less bursty than the real traffic. The reason may lie with the Pareto

distribution that we used to model the heavy-tailed behavior of random variables. Another

distribution with more obvious heavy-tailed features might be suitable to produce extremely high

bursts.

Finally, we note that, although we do not report the results here, we have made similar

comparisons with data collected at Florida Institute for Technology (FIT) and obtained similar

results.

The ultimate goal of this project is to provide a test-bed for IDS testing and evaluation. Thus,

besides the generated background traffic, one needs to model and generate network attacks, and

combine them into the background to produce a synthetic traffic to test an IDS.

 147

MAGNA [87] [89] (Modeling and Generating Network Attacks) is a system developed at UCF

and FIT to generate realistic network attacks. MAGNA models attacks by their characteristics

and behavior. The term characteristic refers to the contents of each unique packet included in the

attack; the term behavior describes an attack’s interactions with the target. The goal of MAGNA

is to generate attacks that are realistic in their behavior, not just exact duplicates of sample

attacks. A number of attacks have been modeled and successfully recreated by MAGNA, and

experimental results show that the generated attack packets match the original packets. [89]

With successful simulations of Internet background traffic and network attacks, one can build a

realistic network environment, in which the real capabilities of an IDS can be tested.

 148

9.2 Intrusion Detection

The detection technique based on the template of traffic autocorrelation has demonstrated the

potential to achieve high detection probabilities and low false-alarm rates. The key challenge

with this technique is to build a template of the “normal” traffic autocorrelation. Li al et. [54]

proposed the overall theory, but no actual application was demonstrated. The theory also requires

attack-free traffic, which is used to compute the false-alarm rate; however, Li’s paper offers no

suggestions for obtaining such attack-free traffic.

We focus on enhancing Li’s detection technique by mitigating the implementing problems in

practice. Particularly, we answered the question of how to build the autocorrelation template and

how to provide attack-free traffic.

Another detection technique introduced in this dissertation is based on the correlation integral.

The correlation integral is closely related to the idea of fractal dimension. Allen [86] suggests a

detection technique based on a fractal dimension technique and demonstrates its ability to detect

a wide range of attacks. Our experiments show that the correlation integral technique is more

reliable. With the help of the background traffic simulation, we can now use a more realistic

traffic simulation for template building and intrusion detection.

 149

Although this technique is successful on the UCF CS traffic trace and several other data sets,

more experiments on different data are needed to validate it. There are also a number of ideas for

constructing the template that we hope to pursue further.

 150

LIST OF REFERENCES

[1] 2004 E-Crime Watch Survey. http://www.cert.org/about/ecrime.html.

[2] A. Balamash, and M. Krunz, “Appplication of multifractals in the characterization of

WWW traffic”, IEEE International Conference on Communications 2002. Vol. 4.

[3] A. DelVecchio, “Building network intrusion detection systems using open source

software”, http://www.sans.org, 2001

[4] A. Feldmann, A.C. Gilbert, and W. willinger, “Data networks as cascades: Investigating

the multifractal nature of internet wan traffic”, Computer Communication Review, vol.

28, no. 4, pp. 42-55, 1998

[5] A. Householder, K. Houle, and C. Dougherty, “Computer attack trends challenge Internet

security”, Computer, Vol.35, Iss.4, Apr 2002

[6] A. Reyes-Lecuona, et al, ``A page-oriented WWW traffic model for wireless system

simulations", 16th International Telegraphic Congress, Vol. 2, pp 1271-1280, Edinburgh,

June, 1999.

[7] A. T. Zhou, J. Bluestein and N. Zincir-Heywood, “Improving intrusion detection systems

through heuristic evaluation”, CCECE 2004, May 2004

[8] B. A. Mah, “An empirical model of HTTP network traffic”, In Proceedings of IEEE

INFOCOM, pages 592-600, 1997.

[9] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1983

[10] B. B. Mandelbrot and J.W. Van Ness, “Fractional Brownian motions, fractional noises

and applications” SIAM Review, vol. 10, no. 4, pp. 422-437, 1968

http://www.cert.org/about/ecrime.html
http://www.sans.org/

 151

[11] B. Mukherjee, T. Heberlein, and K. Levitt, “Network, intrusion detection”, IEEE

Network, May/June 1994

[12] B. Yocom, R. Birdsall and D. Poletti-Metzel, “Gigabit intrusion-detection systems”,

Network World, Dec. 2002

[13] CERT/CC Advisory CA-2001-23, http://www.cert.org/advisories/CA-2001-23.html

[14] CERT/CC statistics, http://www.cert.org/stats/cert_stats.html

[15] "Code Red" Worm Crashes IIS 4.0 Servers with URL Redirection Enabled, CERT

Incident Note IN-2001-10.

[16] D. Anderson, T. Frivold, and A. Valdes, “Next-generation Intrusion Detection Expert

System (NIDES) a summary”, Technical report SRI-CSL-95-07, SRI International, May

1995.

[17] D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data-handling system with

multiple sources”, Bell System Technical Journal. 61(8):1871-1894, 1982.

[18] D. Bell and L. LaPadula, “Secure computer system: unified exposition and multics

interpretation”, Technical report MTR-2997, Mitre Corporation, 1976.

[19] D. E. Denning, “An intrusion detection model”, IEEE Transactions on Software

Engineering, 13(2), Feb. 1987

[20] D. E. Denning, “Information Warfare and Security”, Addison-Wesley, 1999.

[21] Denial of Service Attacks using Nameservers, CERT Incident Note IN-2000-04.

[22] D. Heyman and T.V. Lakshman, “Source models for VBR broadcast video traffic”,

IEEE/ACM Transactions on Networking, 4(1):37-46, Feburary 1996.

http://www.cert.org/advisories/CA-2001-23.html
http://www.cert.org/stats/cert_stats.html

 152

[23] D.L. Jagerman, B. Melamed, and W. Willinger, “Stochastic modeling of traffic

processes”, in Frontiers in Queuing: Models, Methods and Problems, J.H. Dshalalow, Ed.

1996, CRC Press.

[24] D. Newman, J. Snyder, and R. Thayer. “Crying wolf: False alarm hide attacks”,

http://www.nwfusion.com/techinsider/2002/0624security1.html, 2002

[25] E. Casilari, F. J. Gonzalez, and F. Sandoval, “Modeling of HTTP Traffic”, IEEE

Communication Letters, vol. 5, No. 6, June 2001

[26] E. Fuchs and P.E. Jackson, “Estimates of distributions of random variables for certain

computer communications traffic model”, Communication ACM, vol. 13, no. 12, pp:752-

757, Dec. 1970.

[27] E. W. Knightly and H. Zhang, “D-bibd: An accurate traffic model for providing QoS

guarantees to VBR traffic”, IEEE/ACM Transactions on Networking, 5(2):219-231, April

1997

[28] F. Donelson Smith, F. Hernandez-Campos, Kevin Jeffay, and David Ott., “What TCP/IP

protocol headers can tell us about the web”, In Proc. Of SIGMETRICS/Performance,

pages 245-256, 2001.

[29] F. Hernández-Campos, A. B. Nobel, F. D. Smith, and K. Jeffay, “Statistical Clustering of

Internet Communication Patterns”, In Proceedings of the 35th Symposium on the

Interface of Computing Science and Statistics, Computing Science and Statistics, Vol. 35,

July 2003.

[30] G. Vigna and R. Kemmerer, “NetSTAT: a network-based intrusion detection system”. In

Proceedings, 14th Computer Security Conference, 1998

http://www.nwfusion.com/techinsider/2002/0624security1.html

 153

[31] G. White, E. Fisch, and U. Pooch, “Cooperating Security Managers: A peer-based

intrusion detection system”, IEEE Network, Jan/Feb 1996

[32] H. Fowler and W. Leland, “Local area network traffic characteristics, with implication

for broadband network congestion management”, IEEE Journal on Selected Areas in

Communications. 9(7):1139-1149, Sept. 1991.

[33] H. Heffes and D. M. Lucantoni, “A Markov modulated characterization of packetized

voice and data traffic and related statistical multiplexer performance”, IEEE Journal on

Selected Areas in Communication, 4(6):856-868, 1986.

[34] H. Hlavacs, G. Kotsis, and C. Steinkellner, “Traffic source modeling”, Technical Report

TR-99101, Institute of Applied computer Science and Information Systems, University of

Vienna, 1999

[35] H. Javitz and A. Valdes, “The SRI IDES statistical anomaly detector”, In Proceedings,

IEEE Symposium on Research in Security and Privacy, May 1991.

[36] HTTP://www.isi.edu/nsnam/ns/

[37] H. Vaccaro and G. Liepins, “Detection of anomalous computer session activity”, In

Proceeding, IEEE Symposium on Research in Security and Privacy, 1989.

[38] J. Anderson. “Computer security threat monitoring and surveillance”, Technical report, J.

P. Anderson Co., 1980

[39] J. Beran, “Statistics for Long-Memory Processes”, chapman & Hall, New York, 1994

[40] J. H. Saltzer and M. D. Schroeder. “The protection of information in computer systems”,

Communications of the ACM, 17(7), July 1974

http://www.isi.edu/nsnam/ns/

 154

[41] J. Nielsen, “Heuristic evaluation”, http://www.useit.com, 2003.

[42] J. Snyder, “False positives remains a major problem”,

http://www.nwfusion.com/reviews/2003/1013idsalert.html, 2003

[43] J. Winkler and W. Page, “Intrusion and anomaly detection in trusted systems”, In

Proceedings, 5th IEEE computer Security Applications Conference, Dec. 1989.

[44] K. Ilgun, R. Kemmerer and P. Porras, “State Transition Analysis: a rule-based intrusion

detection approach”. IEEE Transaction on Software Engineering, 21(3), Mar. 1995

[45] K. Park, G. Kim, and M. Crovella, “On the relationship between file sizes, transport

protocols, and self-similar network traffic”, Technical Report 1996-016, Boston

University, 30, 1996.

[46] L. E. Schrage, and L. W. Miller, “The queue M/G/1 with the shortest processing

remaining time discipline.” Operations Research, 14:670 – 684, 1966.

[47] L. Heberlein, G. Dias, K. Levitt, et al. “A Network Security Monitor”, In Proceedings,

IEEE Symposium on Research in Security and Privacy, 1990

[48] M. A. Cooper, “HONEST: Hands-on Networking Environment for Security Testing”,

Master Thesis, FIT 2005

[49] M. Ayedimir, L. Bottomley, et al., “Two tools for network traffic analysis”, Computer

Networks, 36, 2001

[50] M. Basseville, “Distance measure for signal processing and pattern recognition”, Signal

Processing, vol. 18, 1989.

http://www.useit.com/
http://www.nwfusion.com/reviews/2003/1013idsalert.html

 155

[51] M.E. Crovella and A. Bestavros, “Explaining world wide web traffic self-similarity”,

Technical Report TR-95-015, Computer Science Department, Boston University, Oct.

1995.

[52] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: evidence

and possible causes”, IEEE/ACM Transactions on Networking, 5(6):835-846, 1997.

[53] M. Li, W. Jia, and W. Zhao, “A whole correlation structure of asymptotically self-similar

traffic in communication networks”. Proceedings of the First International Conference on

Web Information Systems Engineering, Vol. 1, 19-21 June 2000.

[54] M. Li, W. Jia and W. Zhao, “Decision analysis of network based intrusion detection

systems for Denial-of-Service attacks”, In Proceedings, IEEE Conferences on Info-tch

and Info-net, 2001.

[55] M. Li, W. Jia, and W. Zhao "Modeling WWW-traffic Data by Autocorrelations",

Proceedings of the 7th International Conference on Distributed Multimedia Systems

(DMS 2001), Taipei, Taiwan, 26-28 September 2001, pp 338-343.

[56] M. Li, W. Jia and W. Zhao, “Simulation of long-range dependent traffic and a simulator

of Tcp arrival traffic”, Int. J. of Interconnection Networks, Sep. 2001.

[57] M. Roesch, “Snort – lightweight intrusion detection for networks”, In Proceedings, 13th

USENIX System Administration Conference, Nov. 1999

[58] M. Stoksik, R. Lane, and D. Nguyen, “Accurate synthesis of fractional Brownian motion

using wavelets”, Electronics Letters, vol. 30, no. 2, pp. 383-384, 1994

[59] M. W. Garrett and W. Willinger, “Analysis, modeling and generation of self-similar VBR

video traffic”, SIGCOMM, pages 269-280, 1994

 156

[60] National Computer Security Center. “Trusted computer system evaluation criteria”.

Technical report DOD 5200.28-STD, Department of Defence, 1985.

[61] P. B. Danzig and S. Jamin, “Tcplib: A library of TCP/IP traffic characteristics”, USC

Networking and Distributed Systems Laboratory TR CS-SYS-91-01, October, 1991.

[62] P. Barford and M. Crovella, “Generating representative web workload for network and

server performance evaluation”, In proc. Of the ACM SIGMETRICS, pages 151-160,

1998.

[63] P. Danzig, S. Jamin, R. Caceres, D. Mitzel and D. Estrin, “An empirical workload model

for driving wide-area TCP/IP network simulations”, Internetworking: Research and

Experience 3:1-26, Mar., 1992.

[64] P. E. Jackson and C. D. Stubbs, “A study of multi-access computer communications”,

Proc. AFIPS 1969 SJCC, vol. 34, AFIPS Press, Montvale, N. J., pp. 491-504.

[65] P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian motion”, IEEE

Transactions on Information Theory, vol. 38, no. 2, pp. 910-917, 1992

[66] P. Grassberger and I. Procaccia, “Characterization of strange attractors”, Physical Review

Letters, 50(5), 1983.

[67] P. J. Brockwell and R. A. Davis, “Introduction to Time Series and Forecasting”, Springer

2002.

[68] P. Neumann and P. Poras, “Experience with EMERALD to date”, In proceedings,

USENIX Workshop on Intrusion Detection and Network Monitoring, April 1999

 157

[69] P. Porras and P. Neumann, “EMERALD: Event Monitoring Enabling Responses to

Anomalous Live Disturbances”, In Proceedings, 20th National Information Systems

Security Conference, Oct. 1997

[70] R. Gusella, “A measurement study of diskless workstation traffic on an Ethernet”, IEEE

Trans. on Communications. 38(9):1557-1568, Sept., 1990.

[71] R. Jain and S. A. Routhier, “Packet trains: Measurements and a new model for computer

network traffic”, IEEE Journal on Selected Areas in Communication, 4(6):986-995, 1986.

[72] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkle, I. Graf, K. R. Kendall, S.

E. Webster, D. Wyschogrod, M. A. Zissman, "Evaluating Intrusion Detection Systems

without Attacking your Friends: The 1998 DARPA Intrusion Detection Evaluation",

SANS 1999.

[73] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das. “The 1999 DARPA Off-Line

Intrusion Detection Evaluation”. Computer Networks: The International Journal of

Computer and Telecommunications Networking. Volume 34, Issue 4, 2000.

[74] R. Riedi, M. Crouse, V. Ribeiro, and R. Baraniuk, “A multifractal wavelet model with

application to network traffic”, IEEE Transaction on Information Theory, 45(3):992-1018,

April, 1999.

[75] S. Floyd, V. Paxon, “Difficulties in Simulating the Internet”, IEEE/ACM Transaction on

Networking, Volume 9, Issue 4, pp. 392 - 403, 2001.

[76] S. Northcutt and J. Novak, “Network Intrusion Detection: an Analyst’s Handbook”, New

Riders Publishing, second edition, 2001.

 158

[77] S. Robert and J.Y. Le Boudec, “New models for pseudo self-similar traffic”, Performance

Evaluation, vol. 30, pp. 57-68, 1997

[78] S. Smaha, “Haystack: an intrusion detection system”, In Proceedings, IEEE 4th Aerospace

Computer Security Applications Conference, Dec. 1998.

[79] S. Staniford-Chen, S. Cheung, R. Crawford, et al. “GrIDS – a Graph-based Intrusion

Detection System for large networks”. In Proceedings, 19th National Computer Security

conference, Oct. 1996.

[80] T. Bass, “Intrusion detection systems and multisensor data fusion”, Communications of

the ACM, April 2000/vol. 43, No. 4, pp99-105

[81] T. Lunt, “Detecting intruders on computer systems”, In Proceedings, Conference on

Auditing and Computer Technology, 1993

[82] V. Paxon, “Bro: A system for detecting network intruders in real-time”, Computer

Networks, 31, Dec. 1999.

[83] V. Paxson, “Empirically derived analytic models of wide-area TCP connections”,

Networking, IEEE/ACM Transactions on , Volume: 2 Issue: 4 , Aug. 1994, Page(s): 316

–336

[84] V. Paxson, “Fast approximation of self-similar network traffic”, Technical Report LBL-

36750/UC-405, Lawrence Berkeley National Laboratory, Apr. 1995.

[85] V. Paxson, and S. Floyd, “Wide area traffic: the failure of Poisson modeling”,

Networking, IEEE/ACM Transactions on , Volume: 3 Issue: 3 , June 1995, Page(s): 226

–244

 159

[86] W. H. Allen, “Analysis, detection, and modeling of attacks in computer communication

networks”, Ph.D. thesis, University of Central Florida, 2003

[87] W. H. Allen, G. Marin, “MAGNA: Modeling And Generating Network Attacks”, in

Proceedings of the 29th Annual IEEE International Conference on Local Computer

Networks (LCN’04), Nov. 2004

[88] W. H. Allen and G. A. Marin, "On the Self-similarity of Synthetic Traffic for the

Evaluation of Intrusion Detection Systems", in Proceedings of the IEEE Symposium on

Applications of the Internet (SAINT ’03), January 2003

[89] W. H. Allen, S. Luo, G. Marin, “Modeling network traffic and attacks for security

testing”, In theProceedings of the 2nd IASTED Conference on Computer and

Communication Networks, Nov. 2004

[90] W. Lee, J.B.D. Cabrera, A. Thomas et al. “Performance adaption in real-time intrusion

detection systems”. In Proceedings, 5th International Symposium on Recent Advance in

Intrusion Detection (RAID 2003), Oct. 2002

[91] W. Lee and S. J. Stofo, “Data mining approaches for intrusion detection”, Proceedings of

the 7th USENIX Security Symposium, 2000

[92] W. Leland, M. Taqqu, W. Willinger, and E. Wilson, “On the self-similar nature of

Ethernet traffic (extended version)”, IEEE/ACM Trans. Networking, vol 2, pp. 1-15, Feb.,

1994.

[93] W. Willinger, M. Taqqu, R. Sherman and D. Wilson, “Self-similarity through high-

variability: statistical analysis of Ethernet LAN traffic at the source level”, Proc.

SIGCOMM ’95, pp. 100-113, 1995.

 160

[94] W. Willinger and V. Paxson, “Where mathematics meets the Internet”, Notices of the

American Mathematical Society, 45(8), Sep. 1998

[95] W. Ralph, “SHADOW installation manual”, http://www.nswc.navy.mil, 2001

[96] Y. Bai and H. Kobayashi, “Intrusion detection systems: technology and development”, In

Proceedings, IEEE 17th International Conference on Advanced Information Networking

and Application,2003

[97] Y. Bai, H. Kobayahsi, “Intrusion Detection Systems: Technology and development”,

Procedings of 17th International Conference on Advanced Information Networking and

Application, March 2003

http://www.nswc.navy.mil/

	Creating Models Of Internet Background Traffic Suitable For Use In Evaluating Network Intrusion Detection Systems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: OVERVIEW AND MOTIVATION
	CHAPTER 2: LITERATURE REVIEW
	2.1 Early work on Telecommunication and Network Simulation
	2.2 Introduction to Self-semiliarity
	2.3 Related Work on Network Traffic Modeling & Generation
	2.3.1 Tcplib
	2.3.2 Paxon’s Models
	2.3.3 WWW Traffic Model
	2.3.3.1 Empirical Model
	2.3.3.2 Page Oriented Model
	2.3.3.3 New features of today’s HTTP traffic
	2.3.3.4 Recent HTTP traffic modeling

	2.3.4 Self-Similar Traffic Models
	2.3.4.1 Fractional Brownian Motion (FBM)
	2.3.4.2 Fractional Gaussian Noise (FGN)
	2.3.4.3 ARFIMA
	2.3.4.4 Wavelets
	2.3.4.5 On/Off Processes
	2.3.4.6 Self-Similar Markov Modulated
	2.3.4.7 Multifractal Traffic

	CHAPTER 3: MODELING INTERNET BACKGROUND TRAFFIC USING MIXTURE DISTRIBUTIONS
	3.1 LAN Traffic Analysis
	3.2 Heavy-tailed Feature and Usage of Hybrid Distributions
	3.3 Modeling FTP traffic
	3.3.1 FTP Session Arrival (AFTP)
	3.3.2 Number of FTP-DATA Connection (NFDC)
	3.3.3 Bytes per FTP-DATA Connection (BFDC)
	3.3.4 Idle Time between FTP-DATA Connections (IFDC)

	3.4 Modeling HTTP traffic
	3.4.1 HTTP Session Arrival (AHS)
	3.4.2 Number of HTTP Pages per Session (NHPS)
	3.4.3 Bytes per HTTP Page (BHP)
	3.4.4 Time between HTTP Pages (THP)

	3.5 Modeling SMTP Traffic
	3.5.1 Arrivals of SMTP Connections (ASC)
	3.5.2 Bytes per SMTP Connection (BSC)

	3.6 Modeling POP3 Traffic
	3.6.1 Arrivals of POP3 Connections (APC)
	3.6.2 Bytes per POP3 Connection (BLPC and BUPC)

	3.7 Modeling SSH Traffic
	3.7.1 Arrivals of SSH Connection (ASSH)
	3.7.2 Number of Originator Packets per SSH Connection (NSSH)
	3.7.3 Time Between Adjacent SSH Originator Packet (TSSH)
	3.7.4 Number of Bytes per SSH Response (BSSH)

	CHAPTER 4: SIMULATING SYNTHETIC INTERNET BACKGROUND TRAFFIC IN NS-2
	4.1 Why NS-2
	4.2 Experiment Design
	4.3 Results
	4.3.1 Session Arrivals
	4.3.2 Packet Arrival
	4.3.3 Self-similarity
	4.3.4 Correlation Integral and Fractal Dimension

	CHAPTER 5: GENERATING NETWORK TRAFFIC USING HONEST
	5.1 Experimental Design
	5.2 Experiment Settings
	5.2.1 Traffic Model
	5.2.2 Network Parameters

	5.3 Experiment Results
	5.3.1 Overall Traffic Comparisons
	5.3.2 Autocorrelation
	5.3.3 Self-similarity
	5.3.4 HTTP Protocol Comparisons
	5.3.5 SSH Protocol Comparisons
	5.3.6 SMTP Protocol Comparisons
	5.3.7 FTP Protocol Comparisons

	5.4 Conclusions

	CHAPTER 6: INTRODUCTION TO NETWORK INTRUSION DETECTION
	6.1 Network Security Becomes a Big Challenge
	6.2 The Early and Current State of Network Intrusion Detection
	6.2.1 Early Work on Computer Security and Intrusion Detection
	6.2.2 The Current State of Intrusion Detection
	6.2.2.1 Techniques
	6.2.2.1.1 Anomaly Intrusion Detection
	6.2.2.1.2 Misuse Intrusion Detection

	6.2.2.2 Products

	6.3 Limitations of Current Intrusion Detection Systems
	6.3.1 The False Alarm Problem
	6.3.2 Problems with High-speed Network and Real-time Response
	6.3.3 Problems with Training Data
	6.3.4 Problems with Management Interface

	CHAPTER 7: BUILDING AUTOCORRELATION TEMPLATES TO DETECT DOS ATTACKS
	7.1 Denial-of-Service Attacks
	7.2 Decision Analysis of Network-based IDSs - The Theory
	7.2.1 Basic Idea
	7.2.2 Traffic Template
	7.2.3 Distance Measures and Probability Distributions
	7.2.4 Selecting the Threshold

	7.3 Building the Autocorrelation Template
	7.3.1 Method
	7.3.2 Experiment and Results

	7.4 Summary

	CHAPTER 8: DETECTING DoS ATTACKS USING THE CORRELATION INTEGRAL
	8.1 What is a Correlation Integral
	8.2 Related Work
	8.2.1 Correlation Integrals of Network Traffic
	8.2.2 Constructing a Traffic Template
	8.2.3 Detecting DoS-TE attacks

	8.3 Summary and Future Work

	CHAPTER 9: CONCLUSION AND FUTURE WORK
	9.1 Traffic Modeling and Simulation
	9.2 Intrusion Detection

	LIST OF REFERENCES

