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ABSTRACT

We consider a wireless sensor network (WSN), consisting of several sensors and a fusion center

(FC), which is tasked with solving an M -ary hypothesis testing problem. Sensors make M -ary

decisions and transmit their digitally modulated decisions over orthogonal channels, which are

subject to Rayleigh fading and noise, to the FC. Adopting Bayesian optimality criterion, we con-

sider training and non-training based distributed detection systems and investigate the effect of im-

perfect channel state information (CSI) on the optimal maximum a posteriori probability (MAP)

fusion rules and detection performance, when the sum of training and data symbol transmit powers

is fixed. Our results show that for Rayleigh fading channel, when sensors employM -FSK or binary

FSK (BFSK) modulation, the error probability is minimized when training symbol transmit power

is zero (regardless of the reception mode at the FC). However, for coherent reception, M -PSK and

binary PSK (BPSK) modulation the error probability is minimized when half of transmit power

is allocated for training symbol. If the channel is Rician fading, regardless of the modulation, the

error probability is minimized when training transmit power is zero.
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CHAPTER 1: INTRODUCTION

In recent years wireless sensor networks (WSN) have received great attention in both theory and

application. The applications span from environmental monitoring to monitoring of manufacturing

processes, robotics and medical applications. One of prevalent applications is monitoring or de-

tecting a physical phenomenon or environmental condition by means of geographically distributed

battery-powered sensors deployed over a sensing field. In signal processing society, the prob-

lems associated with detecting or estimating the phenomenon, employing multiple observations

coming from distributed sensors are usually termed distributed detection [1, 2], or distributed esti-

mation [3–9], respectively.

Distributed detection theory is concerned with optimal designs of fusion rule at the FC and local

detection rules at the sensors (local detectors), such that a predetermined detection performance

criterion is optimized. We consider a wireless sensor network, consisting of a set of spatially

distributed sensors and a FC, that is tasked with solving an M -ary distributed detection problem.

In particular, we consider the problem of distributed classification of M independent Gaussian

sources with identical variances and different means. We assume each sensor processes locally its

observation to form a local decision and transmits its digitally modulated decision to the FC, over

a fading channel. The FC is tasked with fusing all the received signals from the sensors directly,

via applying the optimal fusion rule, and making the final decision.

Channel-aware binary distributed detection for fusion of binary decisions transmitted over fading

channels was first discussed in [10], where the FC fuses the received signals from the sensors

directly (without demodulating the transmitted symbols). The works on channel-aware binary dis-

tributed detection are mainly built on the assumption that perfect knowledge of phase or amplitude

of the fading channel coefficients are available at the FC [11–17]. Today’s wireless communication

systems with coherent reception rely upon training in order to facilitate channel estimation at the
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receiver. In fact, quantifying the effect of imperfect channel state information (CSI) and channel

estimation error on the design and performance of wireless communication systems is a challeng-

ing problem, that has attracted the attention of researchers over the past decade [18, 19]. Recently,

channel-aware binary distributed detection with imperfect CSI was studied in [20–22]. Compared

with binary distributed detection, the literature on channel-aware M -ary distributed detection falls

short [23–26], where the communication channels are modeled as additive white Gaussian noise

(AWGN) [23] and Rayleigh fading with perfect CSI available at the FC [24, 25]. To the best of

our knowledge, this is the first work that considers the impact of imperfect CSI on the design and

performance of channel-aware M -ary distributed detection systems.

In this work, we address the following questions: how are the optimal fusion rules affected by

channel estimation error? how can we mitigate the negative impact of channel estimation error via

optimizing transmit power allocation between data and training symbols? how do the answers to

the above questions change as the reception mode at the FC and modulation scheme at the sen-

sors vary? For non coherent reception, how do the optimal fusion rules differ for training and

non-training based systems, where the sensors do not transmit training symbols (for estimating

channel amplitudes) and the FC only relies on the knowledge of the channel statistics? To answer

these questions we consider the following cases: assuming Rician or Rayleigh block fading chan-

nel model: (i) the FC is equipped with a coherent receiver and a training based channel estimator,

sensors employ M -PSK or M -FSK modulation for transmitting their data and training symbols,

(ii) the FC is equipped with a non coherent receiver and a training based channel amplitude es-

timator, the sensors employ M -FSK modulation for transmitting their data and training symbols,

(iii) the FC is equipped with a non coherent receiver without a channel estimator (the FC only has

the channel statistics), the sensors employ M -FSK modulation for transmitting their data symbols.

The organization of the thesis follows: In Chapter 2, we derive the optimal fusion rules for cases

(i), (ii), (iii) explained above when sensors useM -ary modulation. In chapter 3, we derive optimal

fusion rule for coherent reception when we apply BFSK and BPSK modulations. Chapter 4, we

2



compare the performance of different systems considering error probability. Chapter 5 includes

concluding remarks.

Notation: Boldface lower case letters without and with underline denote random scalars and ran-

dom vectors, respectively. Boldface upper case letters denote matrices.

3



CHAPTER 2: OPTIMAL FUSION RULE FOR M-ARY DISTRIBUTED

DETECTION WITH M-ARY MODULATION

In this chapter, we consider an M -ary distributed detection system, in which sensors send their

modulated decisions over orthogonal noisy channels with Rayleigh fading channel model to a FC.

We use M-PSK or M-FSK for sending data from sensors to FC. We consider training and non-

training based systems and investigate the effect of imperfect channel state information on the

fusion rules and detection performance, assuming the sum of training and data symbol transmit

powers is fixed. This chapter is organized as follows. First, we present our system model. Next for

random and deterministic channel models, we derive the optimal fusion rules and the special case

of M = 2.

System Model and Problem Statement

We consider the problem of testing which of the M ≥ 2 hypotheses {Hj}Mj=1 has been occurred,

assuming πj is the a priori probability of Hj happening. Our system consists of a FC and N

spatially distributed sensors, which is tasked with solving this M -ary hypothesis testing prob-

lem. Let xk denote the local observation collected at sensor k during an observation period.

We assume that xk’s are independent across sensors, conditioned on a particular hypothesis, i.e.,

f(x1,x2, ...,xN |Hj) =
∏N

k=1 f(xk|Hj) for j = 1, ...,M , where f(.) is the probability density

function (pdf). Suppose xk at sensor k under hypothesis Hj is

Hj : xk = zj + nk, j = 1, ...,M (2.1)
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where zj’s are Gaussian signal sources with different means and equal variances, i.e., zj ∼

N(mj, σ
2
z), nk’s are Gaussian measurement noises nk ∼ N(0, σ2

n), and zj,nk are all mutually

uncorrelated. Each sensor applies a local rule to decide which of the M hypotheses has occurred,

such that the error probability at the sensor is minimized, i.e., the local detector of sensor k finds

lk = arg minj |xk −mj| and decides hypothesis Hlk . Let pkij denote the probability that sensor k

decides on Hi, given that the true hypothesis is Hj . For the sensing model in (2.1), one can verify

that pkij = pij given below

pij =


Q(

mi+mi−1−2mj
2(σ2

n+σ2
z)

)−Q(
mi+mi+1−2mj

2(σ2
n+σ2

z)
) i 6= 1,M

1−Q(
m1+m2−2mj

2(σ2
n+σ2

z)
) i = 1

Q(
mM+mM−1−2mj

2(σ2
n+σ2

z)
) m = M

(2.2)

where we define the Q-function as Q(x) = 1√
2π

∫∞
x
e−t

2/2dt. Sensor k employs an M -ary digital

modulator to map its M -ary decision to a symbol and transmits this symbol with power Pd. In

this chapter, we consider M -PSK and M -FSK modulation at the sensors. Let uk and uk denote

the modulated symbol at sensor k corresponding to M -PSK and M -FSK modulation, respectively,

where uk ∈ {ej2π
i−1
M , i = 1, ...,M}, uk ∈ {ei, i = 1, ...,M} and ei is an 1 ×M canonical vector

whose all elements except the i-th one are zeros. We refer to the modulated symbols uk, uk as

data symbols and Pd as data symbol transmit power. Assuming the data symbols are sent over

orthogonal channels between sensors and the FC, the channel output corresponding to sensor k at

the FC upon the reception of data symbol is

ydk =
√
Pdkhkuk + ndk M-PSK,

y
dk

=
√
Pdkhkuk + ndk M-FSK, (2.3)
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where Pdk = GPd(∆k)
−ε is the received power corresponding to the data symbol, G is a constant,

ε is the path loss exponent, and ∆k is the distance between sensor k and the FC. The communica-

tion channel noises, denoted as ndk and ndk, are zero mean complex Gaussian ndk ∼ CN(0, σ2
n),

ndk ∼ CN(0, σ2
nI), where I is an M ×M identity matrix. We assume that the channel outputs

conditioned on the channel inputs, are independent across the sensors. The complex channel co-

efficient hk in (2.3) is modeled as hk ∼ CN(0, 1) and is represented as hk = αke
jφk , where the

amplitude αk and the phase φk, respectively, have Rayleigh and uniform distributions.

To enable training based channel estimation, we assume that the channel coefficients are fixed

for two consecutive symbol intervals, and each sensor sends a training symbol with power Pt

along with its data symbol. We refer to the symbols ut, ut as training symbols and Pt as training

symbol transmit power. Without loss of generality, we assume ut = 1 and ut = e1, respectively,

when the sensors employ M -PSK and M -FSK schemes. Training symbols are also sent over

orthogonal channels between sensors and the FC, prior to sending data symbols. The channel

output corresponding to sensor k at the FC upon the reception of training symbol is

ytk =
√
Ptkhkut + ntk M-PSK,

y
tk

=
√
Ptkhkut + ntk M-FSK, (2.4)

where the noises ntk ∼ CN(0, σ2
n), ntk ∼ CN(0, σ2

nI) are independent from ndk and ndk in

(2.4). Also, Ptk = GPt(∆k)
−ε is the received power corresponding to the training symbol. In this

chapter, we consider both coherent and non coherent receivers. The unknown channel parameters

to be estimated depend on the receiver structure. For a coherent receiver with a training based

channel estimator and a non coherent receiver with a training based channel amplitude estimator,

the unknown parameters are hk and αk, respectively. We model these as hk = ĥk + h̃k and

αk = α̂k + α̃k, where ĥk and α̂k are the estimates based on ytk and vtk = |y1
tk|2 in (2.4)

6



respectively, and h̃k and α̃k are the estimation errors1. To include the cost of channel estimation,

we assume that the transmit power consumption per decision Pt + Pd = P is constant. We define

Pk = GP (∆k)
−ε and let rd = Pd/P = Pdk/(Pdk+Ptk) = Pdk/Pk, where rd ∈ [0, 1] is the fraction

of the power assigned to the data symbol.

We adopt the Bayesian criterion to find the optimal fusion rule at the FC, in order to make a global

decision u0 ∈ {H1, H2, .., HM}. The optimal fusion rule is u0 = arg maxm πmΘm where Θm

varies, depending on the receiver structure and the modulation scheme. Since the channel outputs

are independent across sensors, we find

Θm =
N∏
k=1

f(ydk|Hm)=
N∏
k=1

M∑
i=1

pimf(ydk|uk(i), ĥk) (2.5)

when sensors employ M -PSK and the receiver is coherent. When sensors employ M -FSK we

obtain

Θm =
N∏
k=1

M∑
i=1

pimf(y
dk
|uk(i), gk) (2.6)

where gk = ĥk for coherent receiver, gk = α̂k for non coherent receiver with a training based

channel amplitude estimator, and gk is null for non coherent receiver without a channel estimator.

Also, uk(i), uk(i) in (2.5), (2.6) are the transmitted data symbols of sensor k corresponding to the

decision of Hi and pim is obtained from (2.2). Since the sum of transmit powers of training and

data symbols is fixed, the estimation error and thus the performance of the optimal fusion rules

would depend on Pk and the ratio rd.

1As we mentioned, the sensors employ M -FSK modulation when the FC is equipped with a non coherent receiver
and a training based channel amplitude estimator. Since ut = e1, the estimator only employs the first entry of vector
y
tk

, denoted as y1
tk, for channel amplitude estimation.
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Coherent Reception with M -PSK and M -FSK

Complex Channel Estimation

For the linear signal model in (2.4), the minimum mean square error (MMSE) channel estimation

of hk given ytk is ĥk = E {hk|ytk} =
σ2
h

√
Ptk

σ2
hPtk+σ2

n
ytk. substituting ĥk in ydk in (2.3), we find:

ydk =
√
Pdkĥkuk +wk, where wk =

√
Pdkh̃kuk + ndk. (2.7)

The complex noisewk in (2.7) combines the AWGN noise and the channel estimation error. Con-

sidering (2.4), we observe that ytk ∼ CN(0, Ptkσ
2
h + σ2

n). Let γtk = Ptk/σ
2
n. Since ĥk is a linear

function of ytk, we have ĥk ∼ CN(0,
σ4
hγtk

1+σ2
hγtk

) and h̃k ∼ CN(0,
σ2
h

1+σ2
hγtk

) [20].

Optimal Fusion Rule Corresponding to M -PSK

To find f(ydk|uk(i), ĥk) in (2.5), we realize that given uk and ĥk, we have ydk ∼

CN(
√
Pdkĥkuk, σ

2
wk

) where σ2
wk

= Pdkσ
2
h̃k

+ σ2
n. Therefore, we write f(ydk|uk(i), ĥk) as:

f(ydk|uk(i), ĥk) =
1√
πσ2

wk

exp

(
−|ydk −

√
Pdkĥke

j2π i−1
M |2

σ2
wk

)

After eliminating the terms that are independent of m, the fusion rule reduces to u0 = arg maxm

πmΘm where Θm is:

Θm =
N∏
k=1

M∑
i=1

pim exp

(
2
√
PdkRe(e

−j2π(i−1)
M ydkĥ

∗
k)

σ2
wk

)
(2.8)
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Note that the optimal fusion rule depends on Pk, rd (through Pdk, σ2
wk

), channel outputs ydk, chan-

nel estimates ĥk, and local sensor performance indices pim. For the special case of M = 2, the

optimal fusion rule reduces to:

N∑
k=1

log

p22 + (1− p22)e
− 4
√
Pdk

σ2wk

Re(ydkĥ
∗
k)

p21 + (1− p21)e
− 4
√
Pdk

σ2wk

Re(ydkĥ
∗
k)

 H1

T
H0

log

(
π0

π1

)

Optimal Fusion Rule Corresponding to M -FSK

To find f(y
dk
|uk(i), ĥk) in (2.6), we realize that given uk(i) and ĥk, we have y

dk
∼

CN
(√

Pdkĥkuk(i),Cy

)
where Cy is a diagonal matrix whose entries are Cy(j, j)=σ2

n for j 6= i

and Cy(j, j)=σ2
wk

for j= i. Therefore, we write f(y
dk
|uk(i), ĥk) as:

β exp

(
M∑
j=1

−|y
j
dk|2

σ2
n

+
|yidk|2

σ2
n

− |y
i
dk −

√
Pdkĥk|2

σ2
wk

)
(2.9)

where yidk denotes the ith entry of vector y
dk

and β−1 =
√
πMdet(Cy). Eliminating the term

exp(−
∑M

j=1

|yjdk|
2

σ2
n

) inside the exp in (2.9), due to its irrelevance to m, the optimal fusion rule

reduces to u0 = arg maxm πmΘm where Θm is:

Θm =
N∏
k=1

M∑
i=1

pim exp

Pdkσ2
h̃k
|yidk|2 + 2

√
Pdkσ

2
nRe

(
yidkĥ

∗
k

)
σ2
nσ

2
wk


︸ ︷︷ ︸

=F (yidk)

(2.10)

Comparing (2.10) and (2.8) reveals the impact of the modulation scheme on the optimal fusion

rule. For the special case of M=2 the optimal fusion rule reduces to:

N∑
k=1

log

(
(1− p22)F (y1

dk) + p22F (y2
dk)

(1− p21)F (y1
dk) + p21F (y2

dk)

) H1

R
H0

log

(
π0

π1

)
(2.11)
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Non Coherent Reception with M -FSK

Channel Amplitude Estimation

The MMSE estimate of the channel amplitude αk given vtk = |y1
tk|2 is α̂k = E {αk|vtk} =∫

αkf(αk|vtk)dαk, where the conditional pdf f(αk|vtk) assumes the following form [20]:

f(αk|vtk) =2αk(1 + γtk) exp(
γtkvtk

(1 + γtk)σ2
n

− (1 + γtkα
2
k))

× I0(2αk

√
γtk
vtk
σ2
n

)

where I0(.) is the modified Bessel functin of the first kind with order zero. Given vtk, we have

αk ∼ Rice(r, s2) where r = 1
γtk+1

√
γtk

vtk
σ2
n

and s2 = 1
γtk+1

. Therefore, α̂k is [20]:

α̂k =

√
πs2

2
F1(
−1

2
, 1;
−r2

s2
)

where F1(., .; .) is the Kummer confluent hypergeometric function and F1(−1
2
, 1;x) = e

x
2 (xI1(x

2
)−

(x − 1)I0(x
2
)), I1(.) is the modified Bessel functin of the first kind with order one. Furthermore,

the variance of estimation error can be computed as below [20]:

σ2
α̃k

= 1− π

4

1

γtk + 1
E

{
F1(
−1

2
, 1;
−r2

s2
)2

}

Optimal Fusion Rule with Channel Amplitude Estimation

Substituting α̂k in (2.3), we have:

y
dk

=
√
Pdkα̂ke

jφkuk +wk, where wk =
√
Pdkα̃ke

jφkuk + ndk

10



To find f(y
dk
|uk(i), α̂k) we write f(y

dk
|uk(i), α̂k) =

∫
f(y

dk
|uk(i), α̂k, φ)f(φ)dφ. However, to

express f(y
dk
|uk(i), α̂k, φ) we need the conditional pdf f(wk|uk(i), α̂k, φ). Unfortunately, this

conditional pdf depends on the pdf f(α̂k) and finding its closed form expression is mathematically

intractable. However, our simulation results suggest that, conditional wk can be approximated as

a zero-mean complex Gaussian vector with a diagonal covariance matrix Cw whose entries are

Cw(j, j) = σ2
n for j 6= i and Cw(j, j) = σ2

wk
= Pdkσ

2
α̃k

+ σ2
n for j = i. Consequently, given

uk(i), α̂k and φ, we can approximate y
dk
∼ CN(

√
Pdkα̂ke

jφkuk(i),Cw). With this approxima-

tion, we proceed with finding f(y
dk
|uk(i), α̂k). One can verify the following:

f
(
y
dk
|uk(i), α̂k

)
= c1c2(|yidk|)

∫ 2π

0

1

2π
exp

(
2
√
PdkRe

(
yidkα̂ke

−jφ)
σ2
wk

)
dφ

(a)
=
c1c2(|yidk|)

2π

∫ 2π

0

exp

(
2
√
Pdkα̂k|yidk| cos(φ− θ)

σ2
wk

)
dφ = c1c2

(
|yidk|

)
I0

(
2
√
Pdkα̂k
σ2
wk

|yidk|
)

(2.12)

in which c1 = e

−Pdk|α̂k|
2

σ2wk√
πM (σ2

n)M−1σ2
wk

exp(−
∑N

j=1

|yjdk|
2

σ2
n

), c2(|yidk|) = exp(
Pdkσ

2
α̃k
|yidk|

2

σ2
nσ

2
wk

). To obtain (a),

we let yidk = |yidk|ejθ. After substituting fy(ydk|uk(i), α̂k) in (2.6) and eliminating c1 due to its

irrelevance to m, the optimal fusion rule reduces to u0 = arg maxm πmΘm where Θm is:

Θm =
N∏
k=1

M∑
i=1

pim c2

(
|yidk|

)
I0

(
2
√
Pdkα̂k
σ2
wk

|yidk|
)

︸ ︷︷ ︸
=G(|yidk|)

(2.13)

Note that the optimal fusion rule depends on Pk, rd (through Pdk, σ
2
wk

), magnitude of channel

outputs |yidk|, channel amplitude estimates α̂k, and local sensor performance indices pim. For the

special case of M = 2, the optimal fusion rule is similar to (2.11) with the difference that F (yidk)

needs to be replaced with G(|yidk|) defined in (2.13).
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Optimal Fusion Rule without Channel Amplitude Estimation

In the absence of training, we have Pd = P and Pt = 0. To find f(y
dk
|uk(i)) in (2.6), we realize

that given uk(i), we have y
dk
∼ CN(0,Cy) where Cy is a diagonal matrix whose entries are

Cy(j, j)=σ2
n for j 6= i andCy(j, j)=Pdkσ

2
h + σ2

n for j= i. We can verify that f(y
dk
|uk(i)) equals

to

β exp

(
Pdkσ

2
h|yidk|2

σ2
n (σ2

n + Pdkσ2
h)

) M∏
j=1

exp

(
−|y

j
dk|2

σ2
n

)

After substituting fy(ydk|uk(i)) in (2.6) and eliminating
∏M

j=1 exp(− |y
j
dk|

2

σ2
n

) due to its irrelevance

to m, the optimal fusion rule reduces to u0 = arg maxm

πmΘm where Θm is:

Θm =
N∏
k=1

M∑
i=1

pim exp

(
Pdkσ

2
h|yidk|2

σ2
n (σ2

n + Pdkσ2
h)

)
︸ ︷︷ ︸

=H(|yidk|)

(2.14)

Different from (2.13), (2.14) does not depend on channel amplitude estimates and only depends on

the channel statistics. For the special case of M = 2, the optimal fusion rule is similar to (2.11)

with the difference that F (yidk) needs to be replaced with H(|yidk|) defined in (2.14).
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CHAPTER 3: OPTIMAL FUSION RULE FOR M-ARY DISTRIBUTED

DETECTION WITH BINARY MODULATION

In this chapter, we consider an M -ary distributed detection system, in which sensors send their

decisions over orthogonal noisy channels with Rayleigh and Rician fading channel model to a

fusion center. In chapter 2, we used M-PSK or M-FSK modulation for sending data from sensors

to FC. In this chapter we use BPSK or BFSK for sending data to FC. We derive the optimal fusion

rule for coherent reception and investigate the effect of imperfect channel state information on the

fusion rules and detection performance, assuming the sum of training and data symbol transmit

powers is fixed. This chapter is organized as follows. First, we present our system model. Next,

for Rayleigh and Rician fading channel models, we derive the optimal fusion rules.

System Model and Problem Statement

We consider the problem of testing which of the M ≥ 2 hypotheses {Hj}Mj=1 has been occurred.

The sensing model is similar to sensing model in chapter 2. Each sensor makes a decision and

forwards its decision to FC. Sensor k employs BPSK or BFSK modulation to map its M -ary deci-

sion to an L-bit sequence uk=[uk(1), ...,uk(L)] for BPSK and uk=[uk(1), ...,uk(L)] for BFSK

modulation where uk(l) ∈ {−1, 1} for BPSK and uk(l) ∈ {[1 0], [0 1]} for BFSK modulation.

Each sensor transmits this binary sequence with power Pd. Assuming uk’s are sent over orthogo-

nal channels between sensors and the FC, the channel output corresponding to sensor k at the FC

upon the reception of uk is y
dk

= [ydk(1), ...,ydk(L)] for BPSK and y
dk

= [y
dk

(1), ...,y
dk

(L)]
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for BFSK where ydk(l) and y
dk

(l) are

ydk(l) =
√
Pdkhkuk(l) + ndk(l) BPSK,

y
dk

(l) =
√
Pdkhkuk(l) + ndk(l) BFSK,

l ∈ {1, ..., L} , L = log2M (3.1)

where Pdk = GPd(∆k)
−ε is the received power corresponding to the data symbol,G is a constant, ε

is the path loss exponent, and ∆k is the distance between sensor k and the FC. The communication

channel noises, denoted as ndk(l) and ndk(l), are zero mean complex Gaussian ndk ∼ CN(0, σ2
n),

ndk ∼ CN(0, σ2
nI), where I is a 2 × 2 identity matrix. We assume that the channel outputs

conditioned on the channel inputs, are independent across the sensors. We represent the complex

channel coefficient in (3.1) as hk = αke
jφk where αk and φk, respectively, are the channel am-

plitude and phase. We assume hk ∼ CN(µ̄k, σ
2
h) where µ̄k is the Rice factor, µ̄k = Ake

jθk with

Ak and θk being the amplitude and phase shift of the line of sight (LOS) component. This model

encompasses Rician and Rayleigh fading with E {|hk|2} = σ2
h. For Rayleigh fading (i.e., there is

no LOS component), the channel distribution reduces to hk ∼ CN(0, σ2
h).

To enable training based channel estimation, we assume that the channel coefficients are fixed dur-

ing sending L binary data symbols, and each sensor sends a training symbol with power Pt along

with its L data symbols. We refer to the symbols ut, ut as training symbols and Pt as training

symbol transmit power. Without loss of generality, we assume ut = 1 and ut = e1, respectively,

when the sensors employ BPSK and BFSK schemes. Training symbols are also sent over orthog-

onal channels between sensors and the FC, prior to sending data symbols. The channel output

14



corresponding to sensor k at the FC upon the reception of training symbol is:

ytk =
√
Ptkhkut + ntk BPSK,

y
tk

=
√
Ptkhkut + ntk BFSK, (3.2)

where the noises ntk ∼ CN(0, σ2
n), ntk ∼ CN(0, σ2

nI) are independent from ndk and ndk in

(3.1). Also, Ptk = GPt(∆k)
−ε is the received power corresponding to the training symbol. We

consider coherent receiver with a training based channel estimator where the unknown parameter

to be estimated is hk. We model hk as hk = ĥk + h̃k, where ĥk is the channel estimate based

on ytk and y
tk

in (3.2), and h̃k is the estimation error1. To include the cost of channel estimation,

we assume that the transmit power consumption per decision Pt + Pd = P is constant. We define

Pk = GP (∆k)
−ε and let rd = Pd/P = Pdk/(Pdk+Ptk) = Pdk/Pk, where rd ∈ [0, 1] is the fraction

of the power assigned to the data symbol.

We adopt the Bayesian criterion to find the optimal fusion rule at the FC, in order to make a global

decision u0 ∈ {H1, H2, .., HM}. The optimal fusion rule is u0 = arg maxm πmΘm where Θm

varies, depending on the modulation scheme. Since the channel outputs are independent across

sensors, we find:

Θm =
N∏
k=1

M∑
i=1

L∏
l=1

pimf
(
ydk(l)|uik(l), ĥk

)
(3.3)

when sensors employ BPSK. When sensors employ BFSK we obtain:

Θm =
N∏
k=1

M∑
i=1

L∏
l=1

pimf(y
dk
|uik(l), ĥk) (3.4)

1Since ut = e1, the estimator only employs the first entry of vector y
tk

, denoted as y1
tk, for channel amplitude

estimation.
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where uik(l), uik(l) in (3.3), (3.4) are the transmitted lth binary data symbols of uk for sensor k

corresponding to the decision of Hi and pim is obtained from (2.2). Since the sum of transmit

powers of training and data symbols is fixed, the estimation error and thus the performance of the

optimal fusion rules would depend on Pk and the ratio rd.

Coherent Reception with BPSK and BFSK

Complex Channel Estimation

For the linear signal model in (3.2), the MMSE channel estimation of hk given ytk is ĥk =

E {hk|ytk} = µ̄k +
σ2
h

√
Ptk

σ2
hPtk+σ2

n

(
ytk −

√
Ptkµ̄k

)
. Substituting ĥk in ydk in (3.1), we find:

ydk =
√
Pdkĥkuk +wk, where wk =

√
Pdkh̃kuk + ndk. (3.5)

The complex noisewk in (3.5) combines the AWGN noise and the channel estimation error. Con-

sidering (3.2), we observe that ytk ∼ CN(0, Ptkσ
2
h + σ2

n). Let γtk = Ptk/σ
2
n. Since ĥk is a linear

function of ytk, we have ĥk ∼ CN(µ̄k,
σ4
hγtk

1+σ2
hγtk

) and h̃k ∼ CN(0,
σ2
h

1+σ2
hγtk

) [20].

Optimal Fusion Rule Corresponding to BPSK

To find f(ydk(l)|uik(l), ĥk) in (3.3), we realize that given uk(l) and ĥk, we have ydk(l) ∼ CN

(
√
Pdkĥkuk(l), σ

2
wk

) where σ2
wk

= Pdkσ
2
h̃k

+ σ2
n. Therefore, we write f(ydk(l)|uik(l), ĥk) as:

f(ydk(l)|uik(l), ĥk) =
1√
πσ2

wk

exp

(
−|ydk(l)−

√
Pdkĥku

i
k(l)|2

σ2
wk

)
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After eliminating the terms that are independent of m, the fusion rule reduces to u0 = arg maxm

πmΘm where Θm is:

Θm =
N∏
k=1

M∑
i=1

P k
im exp

2
√
PdkRe

(∑L
l=1 ĥ

∗
kydk(l)u

i
k(l)
)

σ2
wk

 (3.6)

Note that the optimal fusion rule depends on Pk, rd (through Pdk, σ2
wk

), channel outputs ydk(l),

channel estimates ĥk, and local sensor performance indices pim.

Low SNR approximation: As the channel noise variance σ2
n → ∞, we have σ2

h̃k
→ σ2

h and

σ2
wk
→∞. Using the approximations e−x ≈ 1− x for small x and the fact that

∑M
i=1 pim = 1, we

can simplify Θm in (3.6) as the following:

Θm =
N∏
k=1

M∑
i=1

pim

2
√
PdkRe

(∑L
l=1 ĥ

∗
kydk(l)u

i
k(l)
)

σ2
wk


Special case of M = 2: The optimal fusion rule reduces to:

N∑
k=1

log

p22 + (1− p22)e
− 4
√
Pdk

σ2wk

Re(ydkĥ
∗
k)

p21 + (1− p21)e
− 4
√
Pdk

σ2wk

Re(ydkĥ
∗
k)

 H1

R
H0

log

(
π0

π1

)

Optimal Fusion Rule Corresponding to BFSK

To find f(y
dk
|uik(l), ĥk) in (3.4), we realize that given uk(l) and ĥk, we have y

dk
(l) ∼ CN(√

Pdkĥku
i
k(l),Cy

)
whereCy is a 2×2 diagonal matrix whose entries areCy(j, j)=σ2

n for j 6= i

and Cy(j, j)=σ2
wk

for j= i. Therefore, we write f(y
dk

(l)|uik(l), ĥk) as

β exp

(
2∑
j=1

−|y
j
dk(l)|2

σ2
n

+
|yidk(l)|2

σ2
n

− |y
i
dk −

√
Pdkĥk|2

σ2
wk

)
(3.7)
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where yidk(l) denotes the ith entry of vector y
dk

(l) and β−1 =
√
πMdet(Cy). Eliminating the term

exp(−
∑2

j=1

|yjdk(l)|2
σ2
n

) inside the exp in (3.7), due to its irrelevance to m, the optimal fusion rule

reduces to u0 = arg maxm πmΘm where Θm is

Θm =
N∏
k=1

M∑
i=1

pimexp

∑L
l=1 Pdkσ

2
h̃k
||y

dk
(l).uik(l)||2

σ2
nσ

2
wk

+

∑L
l=1 2
√
PdkRe

(
ĥ∗kydk(l).u

i
k(l)
)

σ2
wk

 (3.8)

Comparing (3.8) and (3.6) reveals the impact of the modulation scheme on the optimal fusion rule.

Low SNR approximation: Using similar low SNR approximations for BPSK, we can simplify

Θm in (3.8) as below:

Θm =
N∏
k=1

M∑
i=1

pim

∑L
l=1 Pdkσ

2
h̃k
||y

dk
(l).uik(l)||2

σ2
nσ

2
wk

+

∑L
l=1

√
2PdkRe

(
ĥ∗kydk(l).u

i
k(l)
)

σ2
wk



Special case of M = 2: The optimal fusion rule reduces to:

N∑
k=1

log

(
(1− pk22)F (ydk(1)) + pk22F (ydk(2))

(1− pk21)F (ydk(1)) + pk21F (ydk(2))

) H1

R
H0

log

(
π0

π1

)
(3.9)

where F (x) =
Pdkσ

2
h̃k
||x||2+2σ2

n

√
PdkRe(ĥ∗kx)

2σ2
nσ

2
wk

.
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CHAPTER 4: NUMERICAL RESULTS

To conduct our numerical simulations, we let M = 4 and assume π1 =π2 =π3 =π4 =1/4. For the

means mj of Gaussian sources we assume mj ∈ {−2v,−v, v, 2v} where v = 5 × 10−5. We let

N = 5, G = −30 dB,ε = 2, σ2
n = −50 dB. We assume all sensors are equally distant from the FC

with ∆k = 10m and define Ptk = P̄t, Pdk = P̄d, Pk = P̄ for all k and SNR = 10 log( P̄
σ2
n
).

Figures (4.1) and (4.2) represent error probability (Pe) when sensors employ M -ary modualtion

for sending their data to FC. Figures 4.1(a) and 4.2(a) depict error probability vs SNR for coherent

and non coherent reception, respectively. As a benchmark, we also plot Pe assuming perfect CSI

at the FC. The gap between perfect CSI and imperfect CSI at low SNR in coherent reception is

noticeable, which is due to the channel estimation error. However, as SNR increases the channel

estimation error reduces and this gap goes to zero. For non coherent reception, we observe that the

lack of perfect knowledge of channel amplitude increases Pe. Furthermore, in the case of coherent

reception, we observe that Pe is lower in FSK, compared to PSK since 4-FSK represents the signal

in more dimensions, compared to 4-PSK. Figures 4.1(b) and 4.2(b) show Pe vs rd for coherent

and non coherent reception, respectively. We observe that for FSK modulation (regardless of the

reception mode at the FC) as rd increases, Pe decreases. In fact, the optimal rd is one, implying that

no transmit power should be allocated for sending training symbol. On the other hand, for PSK

modulation and coherent reception Pe is minimized at rd=0.5. Figures (4.3) and (4.4) represent

Pe at the FC when sensors employ binary modulation for sending their data. Figures 4.3(a) and

4.4(a) show that the performance gap between perfect CSI and imperfect CSI at low SNR for both

channel models is noticeable. However, as SNR increases the channel estimation error reduces

and this gap goes to zero. Also, BPSK appears to be more vulnerable to channel estimation error,

as the performance gap between perfect CSI and imperfect CSI for BPSK is larger than that of

BFSK. Furthermore, we observe that Pe corresponding to BPSK is lower than that of BFSK.
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Figures 4.3(b) and 4.4(b) show Pe vs rd for Rayleigh and Rician fading channel models, respec-

tively. We observe that for Rician fading model (regardless of modulation) and for Rayleigh fading

model with BFSK modulation, as rd increases Pe decreases. In fact, the optimal rd is one, implying

that each sensor should allocate all its transmit power to its L data symbols. On the other hand,

for Rayleigh fading model with BPSK modulation Pe is minimized at rd = 0.5, i.e., each sensor

should allot half of its transmit power for training symbol. The reason for these different behaviors

is the different levels of vulnerability of these two modulations to signal distortion due to the ran-

dom channel phase. For PSK modulation, a phase shift (due to random channel phase) decreases

the Euclidean distance between the two constellation points and hence Pe increases. Whereas, in

FSK modulation a phase shift does not change this distance. In fact, low data power (small rd) can

be much more detrimental than low training power (large rd) for FSK modulation for both coherent

and non coherent reception.
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Figure 4.1: Training based coherent reception with 4-PSK and 4-FSK modulation: (a) Pe vs. SNR,
(b) Pe vs. rd.
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Figure 4.2: Noncoherent reception with 4-FSK modulation: (a) Pe vs. SNR for training and non-
training based, (b) Pe vs. rd for training based.
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Figure 4.3: Rayleigh fading channel model with BPSK and BFSK modulation: (a) Pe vs. SNR,
(b) Pe vs. rd.
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Figure 4.4: Rician fading channel model with BPSK and BFSK modulation: (a) Pe vs. SNR, (b)
Pe vs. rd.
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CHAPTER 5: CONCLUSIONS

In summary, we considered a distributed detection wireless system that is tasked with solving an

M -ary hypothesis testing problem. We studied the effect of wireless channel uncertainty, due

to channel estimation error, on the design and performance of this system, assuming the sum of

transmit powers of training and data symbols is fixed. In particular, we provided the optimal fusion

rules for training and non-training based systems. Our results show that the error probability of this

system, when the sensors employ FSK modulation, is minimized when training symbol transmit

power is zero. However, when the sensors employ PSK modulation along with coherent reception

at the FC the error probability is minimized when the transmit power is equally distributed between

training and data symbols.
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