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ABSTRACT 

Support vector machines are a relatively new approach for creating classifiers that 

have become increasingly popular in the machine learning community.  They present 

several advantages over other methods like neural networks in areas like training speed, 

convergence, complexity control of the classifier, as well as a stronger mathematical 

background based on optimization and statistical learning theory.  This thesis deals with 

the problem of model selection with support vector machines, that is, the problem of 

finding the optimal parameters that will improve the performance of the algorithm.   It is 

shown that genetic algorithms provide an effective way to find the optimal parameters for 

support vector machines.  The proposed algorithm is compared with a backpropagation 

Neural Network in a dataset that represents individual models for electronic commerce. 
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CHAPTER 1. INTRODUCTION 

This chapter provides a brief overview of the main topics considered in this thesis.  

First, we will start by briefly discussing learning algorithms in general and their relation 

with simulation modeling.  Then we will introduce a very specific learning algorithm 

known as Support Vector Machines and how we intend to improve them. 

1.1 Learning Algorithms 

A learning algorithm is a program that creates a function, classifier, or solution from 

a given data set called the training set.  A special type of learning algorithm is the so 

called supervised learning in which the training set is pairs of the form 

 where  is a vector and  is a number assigned to vector 

.  If the value  comes from a finite set of possible values, then we are dealing with a 

classification problem.  If  can take any real number, then we are dealing with a 

regression problem.  In this thesis, we will be working with binary classification only. 

1 1 2 2( , ), ( , ), , ( , )n ny yx x x… y nx ny

nx ny

ny

The main objective of learning algorithms for classification is to create a function that 

will correctly classify data points that are not used in its construction. This is called the 

generalization ability and it is the performance measure used in comparing and selecting 

algorithms. The generalization ability is usually measured by the percentage of correct 

classifications or the percentage of misclassifications in the test set. More about this is 

discussed in Section 2.4. 

Learning algorithms and artificial intelligence in general, have a lot of similarities to 

simulation.  In simulation we use computers to create a model of an existing natural or 
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artificial system in order to analyze its behavior, estimate certain characteristics, and 

perhaps to try to find optimal parameters that will improve certain measures of 

performance. In artificial intelligence, we try to model knowledge (Fishwich and 

Modejeski, 1991) or to simulate certain aspects of human intelligent behavior (Paul 

Fishwich and Modejeski, 1991), therefore, we deal with more abstract systems. In both 

cases, we need input and output data used to create models and validate them, e.g., arrival 

of customers, service time, time waiting in system, and so on. Also in both cases, there is 

a lot of uncertainty involved in the data that we use; therefore, there is a need of statistical 

tools to arrive to trustworthy conclusions.   There are differences though: in learning 

algorithms, the model is created from the data alone; we have a black box that for certain 

inputs produces certain outputs, while in simulation we create the model from our 

understanding of an existing system and the data available.  Another important difference 

is the objective of both techniques.  With learning algorithms, we are interesting in 

discovering the true relationship between the inputs and the outputs while, in simulation, 

we may be more interested in improving the original system in terms of certain measures 

of performances. Also, sometimes there are used complementary to each other.  For 

instance, simulation is sometimes used to evaluate a learning algorithm.  Despite their 

differences, the fusion of both techniques has created new types of simulations like, for 

instances, Knowledge-based simulation—which represents a natural extension of 

simulation that try to go beyond the classical what-if question answered by conventional 

simulation (Rothenberg, 1991; Fishwich and Modejeski, 1991)—and agent based 

simulation –which uses the concept of agents (Wooldridge, 2002) to model complex 

systems.  In this thesis, the experimental data is a collection of 125 datasets—from an 
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experiment conducted by Ryan (1999)—that represent the likes and dislikes of 125 

individuals with respect to certain images.  The images are produced by the variation of 

several parameters: blur, color, brightness, density, pointalization (size of the points that 

make the drawing), saturation, and background (see Section  4.1 for a definition of this 

parameters). Therefore, in this case the system is the abstract subjective preferences of a 

person (see Section 4.1). 

1.2 Support Vector Machines 

Support vector machines are a relatively new approach for creating classifiers that 

have become increasingly popular in the machine learning community.  They present 

several advantages over other methods like neural networks in several areas like training 

speed, convergence, controlling the complexity of the classifier, as well as a stronger 

mathematical background based on statistical learning theory. The theory behind support 

vector machines is described in Section 2.3. 

Nevertheless, like most learning algorithms they present certain problems. One of 

them is related to the parameters that control the behavior and that ultimately determine 

how good the resulting classifier is. The simplest way to find good parameter values is 

using an exhaustive search, i.e., trying all possible combinations but this method is 

impractical as the number of parameters increases. The problem of finding the right 

parameters values to improve the performance is called the model selection problem. 

This problem has been explored by several researchers but in most cases the methods 

proposed were limited to certain restrictive condition (see CHAPTER 3).  

 12



1.3 Model Selection with Genetic Algorithms 

This thesis deals with the problem of finding the optimal parameters of support vector 

machines.  The main contribution of this thesis is to show that genetic algorithms provide 

an effective way to find the optimal parameters for support vector machines and to 

propose a possible implementation. Several variations of the basic genetic algorithm are 

compared and the one with the fastest convergence is selected. In addition, it is shown 

that using a convex sum of two kernels (a function such that ( ) ( ) ( ),i j i jK = Φ ⋅Φx x x x  

where Φ  is an arbitrarily mapping function and  is a vector.  See Section 4.2.2 for more 

information about kernel) provides an effective kernel for classification problems and not 

only for regression as is previously tested in Smits and Jordaan (2002).  The algorithm is 

tested in a data set that consists of information on 125 subjects from a study conducted by 

Ryan (1999) and previously used for comparing several learning algorithms in Rabelo 

(2001).  The proposed algorithm is compared with a backpropagation Neural Network in 

a dataset that represents individual models for electronic commerce (CHAPTER 5). 

x

1.4 Synopsis of Thesis 

CHAPTER 2 contains the theoretical background of learning algorithms, support 

vector machines, generalization performance measures, and some important statistical 

test for comparing algorithms. CHAPTER 3 presents literature related to the research that 

has been done regarding model selection with support vector machines and the 

integration of genetic algorithms with support vector machines.  CHAPTER 4 presents 

our implementation, case study, and some experiments to help us decide on the best 
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parameters of the genetic algorithm for this particular application.  CHAPTER 5 

compares the proposed algorithms with a fixed architecture SVM and with a 

backpropagation neural network with different number of hidden nodes.  Finally, 

CHAPTER 6 contains the conclusions, contribution, and future research directions. 
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CHAPTER 2. THEORETICAL BACKGROUND 

This chapter provides the theoretical background behind the two main techniques 

used in this thesis: genetic algorithms and support vector machines.  In addition, we will 

provide some basic concepts of learning algorithms for pattern recognition, 

generalization error estimates, and some basic statistical tests that we use. 

2.1 Genetic Algorithms 

Evolutionary computation is a search and optimization technique inspired in natural 

evolution. The various evolutionary models that have been proposed and studied are 

usually referred as evolutionary algorithms (EAs) and they share similar characteristics 

(Bäck et. al, 2000): 

• the use of a population of individuals or possible solutions, 

• the creation of new solutions or individual by means of random process that 

model biological crossover and mutation, and 

• a fitness function that assign a numeric value to each individual in the population. 

A selection process will favor those individual with a higher fitness function. The 

fitness function represents the environment in which the individuals live. 

Genetic algorithms (GAs) (see Figure 1) are evolutionary algorithms first proposed 

by Holland in 1975 (Holland, 1975) and they initially had three distinguishing features 

(Bäck et. al, 2000): 

• the individuals are represented by bitstrings, i.e., strings of 0’s and 1’s of fixed 

length, 
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• the individuals are selected for reproduction according to proportional selection, 

and 

• the primary method of producing variation is crossover. In addition, mutation of 

newly-generated offspring induced variability in the population. 

GAs have been through a lot of changes and the difference with other EAs has started 

to blur.  Nevertheless, most GAs implementation follow certain common elements 

(Goldberg, 1989; Mitchell ,1998): 

• they work with a representation or coding of the parameters, 

• they search a populations of individuals, 

• selection is according to a fitness function only, and  

• they use probabilistic transition rules.  

The search for a solution implies a compromise between two contradictory 

requirements: exploitation of the best available solution, and robust exploration of the 

search space.  Exploitation is referred to the search of similar solutions and it is closely 

related to the crossover operator while exploration involves a global search and it is 

related to the mutation operator.  If the solutions are overexploited, a premature 

convergence of the search procedure may occur.  This means that the search stops 

progressing and the procedure eventually ends with a suboptimal solution.  If emphasis is 

given to the exploration, the information already available may be lost and the 

convergence of the search process could become very slow. 
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Figure 1. Simple Genetic Algorithm. 

 

Probably, the most important characteristics of genetic algorithms are the 

robustness—they tend to solve a wide domain of problems with relatively efficiency— 

and the flexibility—they do not require any especial information about the problem (e.g. 

derivatives, etc) besides the fitness function.  Thanks to these characteristics, they have 

been applied to a great variety of problems. 
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2.1.1 Elements of Genetic Algorithms 

2.1.1.1 Representation 

In the simple GA introduced by Holland, the individuals were represented by a string 

of bits.  Certain number of bits represents a particular attribute or variable: 

 

1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 

var1 var2 
 

var3 

 

Depending on the problem, each of these strings can be transformed into integers, 

decimals, and so on.  

Usually the initial population is selected at random; every bit has an equal chance of 

being a ‘0’ or a ‘1’. For each individual, a fitness value is assigned according to the 

problem. The selection of the parents that will generate the new generation will depend 

on this value. 

Another popular representation in GAs is the floating point representation: each gene 

in the individual represents a variable.  This type of representation has been successfully 

used in optimization problems (Michalewicz and Janikow, 1996; Goldberg, 1991). It is 

important to note, though, that real-coded genetic algorithms require specialized 

operators. 
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2.1.1.2 Selection 

There are different ways to select the parents. In the fitness proportionate selection 

method every individual is selected for crossover a number of times proportional to his 

fitness. It is usually implemented with the roulette-wheel sampling (also called 

Montecarlo Selection algorithm in Dumitrescu et al. (2000)): each solution occupies an 

area of a circular roulette wheel that is proportional to the individual’s fitness. The 

roulette wheel is spun as many times as the size of the population.  This method of 

selection has several drawbacks. During in the start of the algorithm if there are 

individuals that have a relatively large fitness function they will be selected many times 

which could cause a premature convergence due to lack of diversity.  Later on the 

simulation run when most individuals have similar fitness function every individual will 

have roughly the same probability of being selected.  Also, it is not compatible with 

negative values and it only works with maximization problems.   

In Tournament selection,  individuals are selected at random from the population. 

In the deterministic Tournament selection, the fitter of the k  individuals is selected. In 

the nondeterministic version, the fitter individual is selected with certain probability. 

Tournament selection is becoming a popular selection method because it does not have 

the problems of fitness-proportionate selection and because it is adequate for parallel 

implementations (Bäck et. al., 2000). 

k

Other selections methods include rank-based selection, Boltzman selection, steady 

state selection, sigma scaling and others.  For a complete survey of the different selection 

methods the reader can refer to Bäck et. al. (2000) and Mitchell (1998). 
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2.1.1.3 Operators 

There are two main types of operators Bäck et. al. (2000): unary, e.g., mutation and 

higher order operators, e.g., crossover. 

Crossover involves two or more individuals that are combined together to form one or 

more individual. The simplest crossover type is one point crossover: 

 

Parent1:  1 0 1 1 0 0 0 1 0 1 0 0 0 1 
Parent2:  1 0 1 0 1 0 1 0 0 1 1 1 1 1 

One point 
crossover 

Child 1:  1 0 1 1 0 0 1 0 0 1 1 1 1 1 
Child 2:  1 0 1 0 1 0 0 1 0 1 0 0 0 1 

 

 

This operator has an important shortcoming: positional bias—the bits in the extremes 

are always exchanged. This type of crossover is rarely used in practice (Bäck et. al 2000).   

Two-point crossover is a variation of the previous operator: 

 

Parent1:  1 0 1 1 0 0 0 1 0 1 0 0 0 1 
Parent2:  1 0 1 0 1 0 1 0 0 1 1 1 1 1 

 

Child 1:  1 0 1 1 0 0 0 1 0 1 0 0 0 1 
Child 2:  1 0 1 0 1 0 1 0 0 1 1 1 1 1 

Two point 
crossover 
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Other types include n -point crossover or uniform crossover. In uniform crossover, a 

mask determines which parent will provide each bit.  For instance, one child could be 

formed by selecting the bit from parent1 if the corresponding bit in the mask is a 1 and 

selecting the bit from parent 2 if the bit in the mask is a 0. Another child could be formed 

by doing the inverse. 

 

Parent1  1 0 1 1 0 0 0 1 0 1 0 0 0 1 
Parent2  1 0 1 0 1 0 1 0 0 1 1 1 1 1 
Mask  1 1 1 0 0 0 1 1 0 0 0 1 1 0 

Child 1  1 0 1 0 1 0 0 1 0 1 1 0 0 1 
Child 2  1 0 1 1 0 0 1 0 0 1 0 1 1 1 

 

 

 There is no clear “best crossover” and the performance of the GA usually depends on 

the problem and the other parameters as well. 

Crossover is not limited to two parents, though. There have been experimental results 

pointing out that multiparent crossover, e.g., six parent diagonal crossover, have better 

performance than the one-point crossover (see Eiben, 2002 and references therein). 

In the one-child version of the diagonal crossover, if there are n  parents, there will be 

 crossover points and one child (see Figure 2) 1n −
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Figure 2. Diagonal crossover with one child. 

 

In GAs, crossover is the main operator of variation, while mutation plays a reduced 

role.  The simplest type of mutation is flipping a bit at each gene position with a 

predefined probability.  Some studies have shown that varying the mutation rate can 

improve significantly the performance rate when compared with fixed mutation rates (see 

Thierens, 2002). 

 There are three main approaches to varying the mutation rate (Thierens, 2002): 

• Dynamic parameter control in which the mutation rate is a function of the 

generations. 

• Adaptive parameter control in which the mutation rate is modified according to a 

measure of how well the search is going.  

• Self-adaptive parameter control in which the mutation rate is evolved together 

with the variables that are being optimized. 

An example of a dynamic mutation rate is tested in Bäck and Schütz (1996) where the 

mutation rate depended on the generation according to 
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1t

np t
T

−−⎛ ⎞= + ⋅⎜ ⎟−⎝ ⎠
 

where t  is the current generation and T  is the maximum number of generations. 

In the adaptive methodology, the goodness of the search is evaluated and the mutation 

rate, and sometimes also the crossover rate, is modified accordingly. One technique that 

is found to produce good results in Vasconcelos et al.  (2001) measured the “genetic 

diversity” of the search according to the ratio of the average fitness to the best fitness or 

.  A value of  close to 1 implies that all individuals have the same genetic code 

(or the same fitness) and the search is converging. To avoid premature convergence, it is 

necessary to increase exploration (by increasing the mutation rate) and to reduce the 

exploitation (by reducing the crossover rate). For the contrary, if the falls below a 

lower limit the crossover rate is increased and the mutation rate reduced. 

gdm gdm

gdm

In the self-adaptive methodology, several bits are added to each individual that will 

represent the mutation rate for that particular individual. This way the mutation rate 

evolves with each individual. This technique is investigated by Bäck and Schütz (1996). 

Another important variation is elitism in which the best individual is copied to the 

next generation without modifications. This way the best solution is never lost (see, for 

example, Xiangrong and Fang, 2002). 

2.2 Learning algorithms for binary classification 

In binary classification problems, we are given a set of pattern vectors  with 

associated classes 

1, , mx x…

{ }1 2, , , 1, 1my y y ∈ −…  called the training set. From these input vectors 

we try to find a function ( )f x that will minimize the number of classification errors in 
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patterns vectors that are not in the training set.  This error in this testing set is called the 

generalization error or expected risk and can be defined mathematically as (Vapnik, 1999) 

( ) ( ( ), ) ( , )R f L f y dP y= ∫ x x             (1) 

where  is a loss function that measures the disagreement between the predicted value 

of the algorithm 

( )L i

( )f x  and the correct (or desired) value  and  is the unknown 

joint probability distribution from which the patterns vectors are being generated.  The 

goal is to find a function 

y ( , )P yx

( )f x that minimizes the risk ( )R f .   

The problem is that the risk cannot be minimized directly since the joint 

probability  is unknown.  Therefore, an induction principle is needed to achieve 

this goal indirectly.  One induction principle that may be used for large sample sizes is 

the empirical risk minimization (ERM) induction principle where the empirical risk is 

given by 

( , )P yx

(
1

1( ) ( ),
m

emp i i
i

)R f L f
m =

= ∑ x y         (2) 

The empirical error measures the average error in the training set. 

The expected risk is bounded by the empirical risk according to the following 

equation (Vapnik, 1999):  

( ) ( ) ( )empR f R f fφ≤ +                                                         (3) 

where the second term is the confidence interval.  The confidence interval depends on the 

complexity of the type of functions being used (Vapnik, 1999). 

For large sample sizes, Statistical Learning theory (Vapnik, 1999) tells us that there 

are functions that will minimize the expected risk and for which the empirical risk will 
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asymptotically converge to the expected risk.  In other words, the expected risk ( )R f  

(Eq. 1) can be approximated by the empirical risk ( )empR f  (Eq. 2).  In fact, as Vapnik 

(1999) points out, several classical methods for solving specific learning problems are 

based on the empirical risk such as the least squares and the maximum likelihood 

methods. 

Nevertheless, this may not be the case for small sample sizes.  If the selected 

classification function is too complex, the empirical risk may be minimized to zero even 

though the confidence interval may be large, which implies that the errors in the testing 

set could be considerably high.  This is known as overfitting.  In order to avoid 

overfitting, it is required to keep the functions simple.  On the other hand, if the functions 

are very simple, it will be difficult to minimize the empirical risk. Therefore, we need a 

tradeoff between the complexity of the decision function and how close we approximate 

the training set.  This search for this tradeoff is known as the Structural Risk 

Minimization principle (Vapnik, 1999). 

There are two approaches that can be used to minimize the bound (Eq. 3) (Vapnik, 

1999): 

• The confidence interval is fixed by selecting a particular set of functions while 

minimizing the training set. Neural networks implement this approach.  First, an 

architecture is selected (feedforward or recurrent; single layer or multilayer; how 

many layers; how many nodes per hidden layer, and so on) that will define the 

confidence interval or complexity of the decision functions. Then, we minimize 

the error in the training set. 
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• Or, the empirical risk is fixed while minimizing the confidence interval, e.g. 

support vector machines.  In this case, we need to control the tradeoff between 

the complexity of the set of decision functions and the number of classification 

errors in the training set. 

2.3 Support Vector Classification 

In support vector classification, the pattern vectors  are first mapped into a 

high-dimensional space, also known as feature space, by means of a predefined mapping 

function .  In this-high dimensional space, we try to find a linear decision function  

1, , mx x…

( )Φ i

( )( ), ( ) signbf b= ⋅Φ +ω x w x                (4) 

that will classify correctly the pattern vectors.  In the Eq. 4,  is an orthogonal vector to 

the hyperplane  

w

( ) 0b⋅Φ + =w x       (5) 

(see Figure 3 for an hyperplane in two dimensions) and  is a threshold.  The reason for 

the mapping is to transform any dataset into a linearly separable dataset so that it can be 

classified correctly by a linear function which is a simple function for which the bounds 

of the expected risk can be calculated and minimized. 

b
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Figure 3. Hyperplane in two dimensions. 

 

For hyperplanes, the complexity term or confidence interval in Eq. 3 is a function of 

the margin (see Figure 3) which can be measure by the length of the vector  (Vapnik, 

1999; Muller et al., 1997; Muller et al., 2001).  Therefore, we can rewrite Eq. 3 as 

w

2

1
( ) ( ( ) )

m

i
i

R f L f y λ
=

≤ − +∑ ix w                                           (6) 

where  is a lost function, L λ is a regularization constant, and  is the number of 

training points (Muller et al., 1999). 

m

There is certain degree of freedom in selecting the hyperplane related with the fact 

that we can multiply both  and  by the same non-zero constant without affecting the 

decision function.  To find a unique solution, the canonical hyperplane is introduced:  

w b
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( ,bw )  is a canonical form of the hyperplane ( ) 0b⋅Φ + =w x  with respect to 

 if it is scaled so that  1, , mx x…

( )
1, ,

min 1ii m
b

=
⋅Φ + =w x

…
,  

which means that the point closest to the hyperplane has a distance of 1/ w  (Schölkopf, 

B. and A.J. Smola, 2002).  This last quantity is known as the margin of the classifier. 

By using canonical hyperplanes, the condition that the empirical risk is zero (perfect 

classification) for the function in Eq. 4 can be expressed as: 

( )( ) 1, 1, ,i iy b i⋅Φ + ≥ =w x … m       (7) 

The hyperplane that satisfies Eq. 7 and at the same time minimize  is called the 

maximal margin hyperplane or optimal hyperplane. 

w

In order to find this optimal hyperplane we need to solve the following optimization 

problem: 

( )( )

1Minimize
2

subject to   1, 1, ,i iy b i

⋅

⋅Φ + ≥ =

w w

w x … m
  (8) 

One way to solved this constrained optimization problem is by using the generalized 

Lagrangian  

( )( )( )
1

( , , ) 1
m

i i i
i

L b y bα α
=

= ⋅ − ⋅Φ + −∑w w w w x        (9) 

where iα  are the Lagrange multipliers.   

We need to minimize ( , , )L b αw  subject to 0iα ≥ . Eq. 9 is called a convex quadratic 

programming problem because the objective function is convex and have a quadratic 
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dependence on the α  and the constraints are linear and, therefore, also forms a convex 

set (Burges, 1998).   

Mathematically, a function is convex if (Bazaraa et al., 1994) 

1 2 1[ (1 ) ] ( ) (1 ) (f f 2 )fλ λ λ λ+ − ≤ + −x x x x   

where  and  are elements of a convex set and  1x 2x [ ]0,1λ∈  (see Figure 4 and Figure 5). 

 

 

1x  2x  

1 2(1 )λ λ+ −x x  

( ) (1 2(1 )f fλ λ+ −x x )  

Figure 4. A convex function. 
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( ) ( )1 2(1 )f fλ λ+ −x x  

1x  2x  

1 2(1 )λ λ+ −x x  

Figure 5. A non-convex function. 

 

A set is convex if for each  and  that belongs to that set, the line segment 1x 2x

1 (1 ) 2λ λ+ −x x  also belongs to that set. In other words, any line segment that we can 

draw between two points of that set is inside the set (see Figure 6). 

 

 

Figure 6. Convex and non-convex sets. 
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For convex problems, the Kuhn-Tucker Theorem (KKT) gives us the necessary and 

sufficient conditions of optimality (Burges, 1998; Cristianini and Shawe-Taylor, 2000): 

( )( )
( )( )

1

1

( , , ) 0,

( , , ) 0

1  1, ,

1 0

0                                    

m

i i i
i

m

i i
i

i i

i i i

i

L b y

L b y
b

y b i

y b i

i

α

α

α

α

=

=

∂
= − =

∂
∂

= =
∂

⋅Φ + ≥ =

⋅ + − = ∀

≥ ∀

∑

∑

w α w x
w

w α

w x

x w

… m     (10) 

From the first two equations, we have that 

1

m

i i i
i

yα
=

=∑w x  

with 

1
0

m

i i
i

yα
=

=∑ . 

Replacing the primal variables in the Lagrangian Eq (9), one obtains the dual as 

follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

, 1 1 1

, 1 1 1 1 1

1 , 1

1( , , ) 1
2

1
2

1
2

m m m

i j i j i j i i j j j i i
i j i j

m m m

i j i j i j i j i j i j i i i
i j i j i i

m m

i i j i j i j
i i j

L b y y y y y b

y y y y b y

y y

α α α α α

m m

α α α α

α α α

= = =

= = =

= =

⎛ ⎞
= Φ ⋅Φ − Φ ⋅Φ + −⎜ ⎟

⎝ ⎠

= Φ ⋅Φ − Φ ⋅Φ −

= − Φ ⋅Φ

∑ ∑ ∑

∑ ∑∑ ∑

∑ ∑

w x x x x

x x x x

x x

α α
= =

+∑

 

Therefore, the dual programming problem of the primal (Eq. 8) can be stated as 
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( ) ( )
1 , 1

1

1Maximize 
2

subject to  0,

                 0, 1, , ,

m m

i i j i j i
i i j

m

i i
i

i

y y

y

i m

α α α

α

α

= =

=

− Φ ⋅

=

≥ =

∑ ∑

∑

x x

…

jΦ

  (11) 

where expression ( ) ( ) ( ),i j i jK = Φ ⋅Φx x x x  is known as the kernel.  If this 

optimization problem is strictly convex, there is only one global solution; if not, there 

could be several, equally good, solutions. 

The third equation in (10) is known as the Karush-Kuhn-Tucker complementary 

condition and it provides insights about the form of the solution. This condition states 

that the optimal solutions must satisfy 

( )( )1 0i i iy bα ⋅ + − =x w , 

which implies that only the points that are closest to the hyperplane (with margin of 1 

since we are using canonical hyperplanes) will have 0iα > .  These points are called 

support vectors.  All other points will have 0iα = .  This property is called sparseness. As 

Cristianini and Shawe-Taylor (2000) stated, each Lagrange multiplier gives a measure of 

how important is a given training point in finding the classifying function. Clearly, a 

training point with 0iα =  is not important and can be eliminated without altering the 

final decision function. 

By using the KKT complementary condition, b  is determined by averaging 

(Schölkopf, B. and A.J. Smola, 2002) 

1
( , )

m

j i i j
i

b y y Kα
=

= −∑ x xi     (12) 
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over all points with 0jα > . 

Finally, the decision function Eq. (4) may be rewritten in terms of the kernel and the 

Lagrange multiplier as 

( )
1

( ) sign ,
m

i i i
i

f y K bα
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑x x x  

or 

( )( ) sign ,i i i
i sv

f y K bα
∈

⎛ ⎞
= +⎜

⎝ ⎠
∑x x ⎟x .             (13) 

This decision function only depends on the support vectors. It is not needed to keep 

the rest of the input vectors once the training completes.  All the information required to 

find the optimal hyperplane lies in the support vectors.  Figure 7 depicts the decision 

function in terms of a one-layer network or Perceptron. 
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Figure 7. Network representation of the SVM architecture (based on drawing from 

Vapnik (1999)). 

 

2.3.1 Soft Margin Classifiers 

So far, we have assumed that there exists a hyperplane capable of separating the data 

correctly, i.e., we assume that the training data is linearly separable in the feature space.  

Nonetheless, if the data is noisy or have outliers, we may not be able to find a solution or 

we may tend to overfit it.  Furthermore, in the previous section, we stated the need of a 
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control variable that will determine the tradeoff between how well the training points are 

approximated and how complex is the decision function. 

To ignore noisy data and outliers, the constraint in the primal optimization problem is 

modified to include a slack variable iξ : 

( )( )
1

i

1Minimize
2

subject to   1 , 1, , ,

                  0, 1, , ,

m

i
i

i i i

C

y b i

i m

ξ

ξ

ξ

=

⋅ +

⋅Φ + ≥ − =

≥ =

∑w w

w x …

…

m   (14) 

where a penalty term has been added in the objective function and where  is the penalty 

value for the slack variables selected a priori.  Choosing a particular value of  

corresponds to selecting the complexity of the function (by selecting a 

C

C

w  value) and 

then minimizing the slack variables iξ  (see also Cristianini and Shawe-Taylor, 2000).  

Usually, we will try different values of C  in order to find the optimal one for a particular 

problem. 

The corresponding dual can be found following a procedure similar to the one used 

for the maximal margin classifier case. 

The corresponding Lagrangian is: 

( )
1 1

1( , , , , ) 1
2

m m

i i i i i
i i

L b C y b ri iξ α ξ
= =

= ⋅ + − ⋅ + − + − ξ∑ ∑ ∑w ξ α r w w x w  

with , 0.i irα ≥   is an extra Lagrange multiplier to take into account the extra constraint. 

To find the dual problem, we need to apply the KKT conditions: 

ir
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1

1

( , , , , ) 0,

( , , , , ) 0,

( , , , , ) 0.

m

i i i
i

i i
i

m

i i
i

L b y

L b C r

L b y
b

α

α
ξ

α

=

=

∂
= − =

∂
∂

= − − =
∂

∂
= =

∂

∑

∑

w ξ α r w x
w

w ξ α r

w ξ α r

        (15) 

From the second expression in Eq. 15 and noting that  it is easy to show that 0ir ≥

i Cα ≤ .  From the KKT complementary conditions we obtain 

( )1 0, 1, ,

0, 1, , .
i i i i

i i

y b i

r i m

α ξ

ξ

⋅ + − + = =

= =

x w …

…

,m
 

Using the second equation, it is clear that 0iξ ≠  only when 0ir =  and i Cα = . 

Therefore, the dual problem of the primal (14) is 

( )
1 , 1

1

1Maximize ,
2

subject to  0,

                 0 , 1, , .

m m

i i j i j i
i i j

m

i i
i

i

y y K

y

C i m

α α α

α

α

= =

=

−

=

≤ ≤ =

∑ ∑

∑

x x

…

j

   (16) 

This formulation is usually known as the box constraint (Cristianini and Shawe-

Taylor, 2000) because of the bounds in the values of iα .  It is interesting to note that the 

only difference between Eq. 11 and Eq. 15 is the upper bound on iα . 

2.3.2 Training of the SVM 

The training of the SVM consists on solving the quadratic programming problem 

given in Eq. 16 which can be rewritten as  
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1Minimize 
2

subject to   0
                 0  for 1, ,

T T

T

i C uα

−

=
≤ ≤ =

α Qα e α

y α
… m

   17 

where Q  is a matrix with elements ( , )ij i j i jq K y y= x x , and e  is a vector of ones. 

Another way of seeing the convexity of this problem is by studying the properties of 

the matrix Q  (Platt, 1998): 

• Matrix Q may be positive definitive which means that it have a unique minimum 

or it may be positive semidefinite which means it have a set of equivalent minima. 

• As mentioned before, there is an optimality condition that describe this minima 

and it is given by the Karush Kuhn Tucker theorem. 

Because of these properties, there are no local minima and there are efficient ways to 

find the solution.  The solution of Eq. 17 could be obtained simply by using gradient 

descent, conjugate gradient and several other methods. However, it is important to note 

that there are as many unknown variables α  as training points.  For some real-world 

problems the matrix  could be huge.  For example, with 10,000 training points, we 

would need a matrix with 100 million points. For these situations, we need methods 

capable of using subsets of the matrix at a time instead of using the complete matrix.   

Q

There are two ways to solve this optimization problem (Platt, 1998): 

1. Using specialized structures.  Kaufman (1998) shows that when the matrix Q  is 

quadratic and the training vectors are available, there is no need to store the 

matrix Q  when doing matrix-vector multiplication with .  A pseudo-algorithm 

for this is found in Kaufman (1998). 

Q
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2. Decomposition methods. These methods are based on the fact that if we knew in 

advance which points are support vectors, the problem could be simplified.  

Therefore, many strategies have been developed to somehow guess the support 

vectors and restrict the training to this subset.  In other words, several smaller 

optimization problems are solved instead of one big problem.  Cristianini and 

Shawe-Taylor (2000) considers the sequential minimal optimization (SMO) 

algorithm a decomposition method taken to the extreme since a subset of just two 

points is optimized at each iteration. This provides the advantage that the 

optimization of two data points can be solved analytically.  This means that 

quadratic optimizers are no longer needed.  Several heuristics are used to 

determine which two points should be used at each iteration. 

For detailed implementation issues, the reader can refer to Cristianini and Shawe-

Taylor (2000), Schölkopf and Smola (2002), Kaufman (1998), Platt (1998), and 

Burges(1998). 

2.3.3 More about Kernels 

Since support vector machines are linear classifiers, it is necessary to map the input 

vectors with a nonlinear mapping in order to learn non-linear relations.  The resulting 

vectors are usually called features. The problem with using mappings is that the 

dimensionality usually increases, degrading the computational performance of the 

algorithm. For example, using a complete polynomial kernel of the form  

( )( , )
p

k u v u v c= ⋅ +  
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the feature space would have a dimensionality of (Herbrich, 2001; Cristianini and Shawe-

Taylor, 2000)  

n p
p
+⎛ ⎞

⎜ ⎟
⎝ ⎠

, 

where  is the dimensionality of the input vectors.  Input vectors with a dimensionality 

of 10 transformed by a polynomial kernel of degree 3 would have a feature of 

dimensionality 286.   

n

A kernel is a function , such that for all  K ,x z

( ) ( )( , )K = Φ ⋅Φx z x z . 

Kernels are symmetric (Cristianini and Shawe-Taylor, 2000), i.e.,  

( , ) ( ) ( ) ( ) ( ) ( , )K Kφ φ φ φ= ⋅ = ⋅ =x z x z z x z x   

and follow the Cauchy-Schwarz inequality 

2 2 22( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( , ) ( , )

K

K K

φ φ φ φ

φ φ φ φ

= ⋅ ≤

= ⋅ ⋅ =

x z x z x z

x x z z x x z z
. 

 

By using a kernel we do not need to work with the features directly.  The kernel maps 

the input data implicitly into a feature space avoiding the computational problems 

mentioned above.  This is possible because in the dual representation the algorithm has 

been expressed in terms of inner products. 

There are several ways to find kernels (Herbrich, 2001; Schölkopf and Smola (2002)): 

1. choosing a mapping φ  that will explicitly gives us a kernel K , e.g, the 

polynomial kernel, 
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2. choosing a kernel  which implicitly corresponds to a fixed mapping K φ , e.g., 

the Radial Basis Function (RBF) kernel 

3. combining several simple kernels to form a more complicated kernel. It is 

possible to create kernels by using the following properties: 

a.  1 1 2 2 1 2( , ) ( , ) ( , ) for , 0K c K c K c c= +x z x z x z ≥

b.  1( , ) ( , ) for all K c K c= ⋅ ∈x z x z

c.  1 2( , ) ( , ) ( , )K K K= ⋅x z x z x z

Two of the most commonly used kernels are the Polynomial and the Radial Basis 

function kernel. 

2.3.3.1 Polynomial Kernel 

For some applications like visual pattern recognition (Schölkopf and Smola, 2002), 

most information is contained in monomials of degree . So the input vectors are first 

mapped into monomials of degree d , 

d

2 2
1 2 1 2 1 2( , ) ( , , )x x x x x x→ . 

Using this mapping, if the inputs are in dimensions, the feature space will have a 

dimensionality of  

N

1d N
d

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

It is possible to construct a polynomial kernel that will accomplish this mapping 

implicitly (for a proof see p. 27 of Schölkopf and  Smola, 2002):  

( , ) dK = ⋅x z x z . 
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The complete polynomial kernel, i.e., a kernel that will map the input vectors to the 

space of all monomials up to degree , can be constructed similarly: d

( , ) dK c= ⋅ +x z x z  

Figure 8 shows a toy example of an application of the polynomial kernel. 

 

 

Figure 8. Toy Example showing the importance of the polynomial kernel in allowing 

a linear decision function to classify input vectors with nonlinear relations. (based 

on drawing from Schölkopf and Smola, 2002). 

 

2.3.3.2 Gaussian Radial Basis Function Kernel 

Radial basis function (RBF) kernels are those that are a function of a distance 

measure (Schölkopf and Smola, 2002): 

( , ) ( ( , ))K f d=x z x z   

where  is a metric. ( )d ⋅
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A popular example of a RBF kernel is the Gaussian kernel: 

2

22( , )K e σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠=

x z

x z  

or 

( )2

( , )K e
γ− −

=
x z

x z  

Gaussian RBF kernels have several important properties: 

• Since  each mapped input vector have a unit length, ( , ) 1K =x x ( ) 1Φ =x .  

• If all input vectors are different, the mapped points 1 2( ), ( ), , ( )mx x xΦ Φ Φ…  are 

linearly independent.  

• The feature space have infinite dimension. 

• RBF kernels are shift invariant: 2 2( ) ( )+ − + = −x a z a x z  

• If we assume that all input vector are different and that  where  and 

 are the number of input vectors belonging to class 1 and 2, respectively, then 

for any value of C and 

1 2 1 2l l> + > 1l

2l

2σ  (or γ ) there is a unique solution (Keerthi and Lin, 

2003). 

The parameter γ  controls the smooth level of the kernel as seen in Figure 9. 
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Figure 9. The parameter γ  of the Gaussian RBF Kernels control the smoothing of 

the function. In this case the input points are 1-dimensional points. 

 

Table 1 summarizes the properties of the kernels previously mentioned. 

 

Table 1. Summary of some important kernels. 

Name Kernel function Feature Space Dimension 

pth degree polynomial ( , ) dK = ⋅x z x z  1d N
d

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Complete or 

inhomogeneus polynomial 

( , ) dK c= ⋅ +x z x z  d N
d
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Gaussian RBF 2

22( , )K e σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠=

x z

x z  

∞  
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2.4 More on the Generalization Error 

As it was seen in the previous section there are several parameters that need to be set 

before starting the training like, for instance, the type of kernel, the kernel-specific 

parameters, and the  value. The generalization performance of the SVM depends on the 

value of these parameters.  For this reason, we need a way to measure the generalization 

error of the learning algorithm in order to compare and select the best model.  There are 

several theoretical bounds on the generalization error of SVMs but they are usually the 

worst case scenario (Joachims, 1999) and their accuracy is still a subject of research 

(Cristianini and Shawe-Taylor, 2000). In any case, the estimate of the performance error 

should have a low bias and a low variance.  

C

The generalization error estimation technique that we should use depends on the 

amount of data available. If we have a lot of data points we can simply set aside part of it 

for testing purposes and use the rest as training. Usually, however, this is not the case so 

we need to use resampling techniques to estimate this error. 

Widely used techniques for estimating the generalization error of any learning 

algorithms includes the hold-out testing, Montecarlo Crossvalidation, k-fold 

crossvalidation, leave one out and, stratified crossvalidation.  

It is also important to note that there is a minimum error rate also known as Bayes’s 

optimal error rate which is a fixed but unknown quantity (Martin and Hirschberg, 1996). 

This error exists due to errors in the dataset or insufficient data. An optimal classifier 

would have an error rate equal to Bayes’s error rate. 
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2.4.1 Hold-Out Testing 

In this method, also called single validation estimate (Chapelle et al., 2002) or test 

sample estimation (Kohavi, 1995), the data is partitioned in two mutually exclusive 

subsets: the training set and the testing set (also called the validation set or the holdout 

set).  Usually 2/3 of the original data is used for training and 1/3 for testing.  If the testing 

set is { }1
' , 'i i i p≤ ≤

x y   for SVMs the estimate is 

1

1 ( ( '
p

i i
i

T y f
p =

= Ψ −∑ x ))  

where  is the step function: Ψ ( ) 1xΨ =  when  and 0x > ( ) 0xΨ =  otherwise.  This is a 

pessimistic estimator because only a portion of the dataset is given to the learning 

machine for training. A variation, called the random subsampling (also called Monte-

Carlo Crossvalidation in Lendasse et al. (2003)), consists on randomly splitting the data 

into training a testing set  times and the performance of each holdout is averaged.  k

2.4.2 Cross-validation and Leave One out 

In k-fold cross-validation the dataset is divided into k subsets of approximately the 

same size.  The learning algorithm is then trained on 1k −  subsets and the resulting 

decision function is tested on the remaining subset.  Each subset is left out once so that it 

is required to do k trainings.  The average performance of those k trainings is the -fold 

cross validation estimate.  

k

In complete crosssvalidation all possible combinations,  , of observations are 

used as testing sets and the average performance is the estimate. This is clearly a very 

/
n

n k
⎛ ⎞
⎜
⎝ ⎠

⎟
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expensive procedure.  Instead, we can get a Monte-Carlo estimate if we repeat the k-fold 

crossvalidation using several random divisions of the data. Another variation is the 

stratified cross-validation (Kohavi, 1995), where the folds contain approximately the 

same proportions of each class as in the original set. Kohavi (1995), Weiss (1991), and 

Weiss and Indurkhya (1994) reported good results using stratified crossvalidation as 

compared with other resampling methods. 

The leave-one-out method is a n-fold crossvalidation where n is the total number of 

examples. In this case all points are tested once. If we have  training points we will 

have to do n  training using 

n

1n −  training points.  Therefore this is also a computationally 

expensive process. There are, however, theoretical results that indicate that this estimator 

gives a good approximation for the generalization error (Joachims, 1999; Chapelle et al., 

2002) even though it has a high variability (Joachims, 1999; Kohavi, 1995).  

One interesting variation of the k-fold crossvalidation is proposed by Burman (1989). 

In his study, he concludes that in order to reduce the bias and variance certain correction 

terms should be added to the crossvalidation estimate. 

2.4.3 SVM Specific Generalization Estimates 

Several generalization performances estimates specific for SVMs have been proposed. 

Vapnik (1999) shows theoretically that a bound for the leave-one-out estimate for hard 

margin support vector machines is  

SVNT
n

=  
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where  is the number of support vectors after training and  is the total number of  

training points.  Joachims (1999) extends this algorithm for the soft margin version of the 

algorithm. The error is defined in terms of the 

SVN n

α  and the ξ : 

n dErr
nξα =  with ( ){ }2: 1i id i Rρα ξ∆= + ≥  

where 2ρ =  and 2R ∆  is an upper bound on ( , ) ( , ')K K−x x x x  for all .  The proof 

for this bound can be found in Joachims (1999). 

, 'x x

The advantage of this bound to leave-one-out is that we can calculate it with just 

one training of the SVM in contrast to doing  trainings in leave-one-out or 10 trainings 

per repetition for repeated 10-fold crossvalidation. In the next chapter, we perform 

experiments to determine if this bound is predictive when changing parameters. 

n

2.5 Statistical tests for comparing classifiers 

While SVMs are deterministic algorithms, the methods for estimating their 

generalization performance, e.g. crossvalidation, depends on random partitions of the 

data. In addition, the genetic algorithms that we will use to optimize the SVM, uses 

random variables extensively. Therefore, it is important to apply statistical tests to find 

significant results.  

A primary concern in this research is model selection. We want to find the best 

classifier for our particular dataset.  This means that we need a valid way to compare two 

classifiers constructed using limited number of observations. 

As noted by Dietterich (1988), there are many sources of random variations when 

comparing classifiers: 
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• The random selection of the test data used to evaluate each classifier. If the test 

set is not representative of the real population, we may be mislead to think that 

one classifier is better than the other when in reality they may be just as good. 

• The random selection of the training set used to create the classifier. In SVMs 

deleting a support vector will affect the performance of the decision function. 

Support vectors are the points that compress the information about the 

relationship between input and output vectors. 

• The randomness of the algorithm. This is not the case for SVMs but it is an 

important issue with neural networks. 

• Random classification errors, outliers, etc.  SVMs try to overcome these problems 

by allowing errors in the training. The number of allowable errors depends on the 

value of C . 

In order to make statistically-sound decisions, we need to use statistical tests to 

select among models.  In this thesis, two particular tests will be used extensively: paired-t 

confidence interval and selecting the best of k systems. 

2.5.1 Paired-t Confidence Interval 

In the paired-t test we have 1 2, , ,i i inX X X…  independent and identically distributed 

(IID) observations from system  with expected value i ( )i E Xijµ = .  We want to find a 

confidence interval for 1 2µ µ− .  Lets define 1j j 2 jZ X X= − , for 1, 2, ,j n= … .  Then  

1( )

n

j
j

Z
Z n

n
==
∑
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and 

2

1[ ( )]^
( 1)

n

nj
j

Z Z
Var Z n

n n
=

⎡ ⎤−⎣ ⎦
=

−

∑
  

and we can form the approximate 100(1 )α−  percent confident interval 

1, / 2( ) ( )n iZ n t Var Z nα− −
⎡ ⎤± ⎣ ⎦ ^ 

If the 'jZ s  are normally distributed, the confidence interval is exact. Otherwise, 

according to the Central Limit Theorem the coverage probability will be near 1 α−  for 

large n  (Law and Kelton, 2000).  Many statistical books consider   a large sample 

(Mendenhall and Sincich, 1995). 

30n ≥

2.5.2 Selecting the Best of k Systems (Law and Kelton, 2000) 

Let 
li

µ  be the th smallest of the l iµ ’s, so that 
1 2 ki i iµ µ µ≤ ≤ ≤… .  We would like to 

select the system with the smallest expected response (or larger). Let “CS” denote the 

correct selection.  We would like to make the CS with a given probability.  In addition, if 

2i
µ  and 

1i
µ  are very close we might not care if we select either one and, therefore, we 

want to avoid doing unnecessary replications. 

We want  provided that *( )P CS P≥
2 1

*
i i dµ µ− ≥  where  and the 

difference  are both specified by the analyst. 

* 1/P > k

* 0d >

This process involves two stages of sampling. In the first-stage sampling, we make 

 replications of each system and define 0 2n ≥
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for .  Then we compute the total sample size  needed for system  as 1,2, ,i = … iN i

2 2
1 0

0 * 2

( )max 1,
( )

i
i

h S nN n
d

⎧ ⎫⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭

 

where  is the smallest integer that is greater than or equal to the real number i , and  

is a constant from a table and it is a function of , , and .  Then we make 

⎡ ⎤⎢ ⎥i 1h

k *P 0n 0iN n−  

more replications of system  and obtain the second-stage sample means i

0 1(2)
0

0

( )

iN

ij
j n

i i
i

X
X N n

N n
+=− =
−

∑
. 

Then define the weights (see p. 568 and p. 575 of Law and Kelton, 2000) 

* 2
0 0

1 2 2
0 0

( )( )1 1 1
( )

i i
i

i i i

n N N n dW
N n h S n

⎡ ⎤⎛ ⎞−⎢ ⎥= + − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

and , for .  Finally, the weighted sample means are 2 11i iW = −W k1,2, ,i = …

(1) (2)
1 0 2( ) ( ) ( )i i ii i i i 0X N W X n W X N n= + − . 

The system with the smallest ( )i iX N  is the CS with a probability of at least . *P
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2.6 Summary 

SVM combines several fields like optimization theory from Operations Research, 

kernels from integral operator theory, generalization bounds from statistical learning 

theory, and the learning methodology from machine learning. It presents several 

theoretical and practical advantages over other learning techniques like neural networks.  

First, instead of minimizing the empirical risk as neural network do, SMVs follow the 

structural risk minimization principle to minimize the bound on the generalization ability 

of the algorithm which implies that they are particularly suited for problems with limited 

data.  Second, we can directly control the tradeoff between the approximation to the 

training set and the complexity of the approximating function.  Third, in other to train a 

neural network we usually need to solve a nonlinear non-convex optimization problem 

which presents the danger of getting trapped in a local solution which implies a loss in 

performance.  To train a SVM we need to solve a convex quadratic programming 

problem for which efficient solution exists and which is usually sparse. Fourth, there are 

far less parameters to set with SVM than with neural networks. 
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CHAPTER 3. LITERATURE SURVEY 

This chapter presents a literature survey of previous work regarding support vector 

machines and model selection and of the uses of genetic algorithms to improve support 

vector machines. 

3.1 Support vector machines and model selection 

As explained in the previous chapter, support vector machines have several 

parameters that affect their performance and that need to be selected in advance.  These 

parameters include the penalty value C , the kernel type, and the kernel specific 

parameters.  While for some kernels, like the Gaussian RBF kernel, there is only one 

parameter to set (γ ), other more complicated kernels may need an increasing number of 

parameters.  The usual way to find good values for these parameters is to train different 

support vector machines –each one with a different combination of parameter values– 

and compare their performance on a test set or by using other generalization estimates 

like leave one out or crossvalidation.  Nevertheless, an exhaustive search of the parameter 

space is time consuming and ineffective especially for more complicated kernels. For this 

reason several researchers have proposed methods to deal with this problem.   

Cristianini and Shawe-Taylor et al. (1999) shows that the margin of a support vector 

machine with Gaussian Radial Basis Function kernel is a smooth function of the kernel 

parameter σ  (1/ γ ). This implies that the bound on the generalization error is also 

smooth in σ .  Using this result they propose a kernel selection procedure that makes use 

of the Kernel-Adatron training algorithm (Frieβ et al, 1998): 
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1. Initialize σ  to a very small value 

2. Train the SV with the Kernel-Adatron algorithm 

3. If the margin is maximized, then 

a. Observe the validation error 

b. Increase the kernel parameter: σ σ δσ← +  

       else go to step 2. 

4. Stop when a predetermined value of σ  is reached. 

The previous procedure will find the maximal margin hyperplane for a small value of 

σ  and then the hyperplane is kept at the maximal margin by continually adjusting the α  

values while the kernel-parameter is increased.  This procedure is quite effective if we 

only have one parameter to set.  Furthermore, the kernel type is selected arbitrarily. In 

Cristianini and Shawe-Taylor et al. (1999) the experiments were done using a Gaussian 

kernel. While the authors reported a speedup in the convergence when using this 

technique, it is not clear how to find the penalty value C  or other parameters of the 

kernel using this procedure  

Chapelle et al. (2002) propose a method of using gradient descent to set the kernel 

parameters  (a vector containing the penalty value  and the kernel specific parameters) 

of a support vector machine: 

θ C

1. Initialize to some value. θ

2. Using the standard SVM algorithm, find the maximum of the quadratic form 

: W

0 ( ) arg max ( , )Wα =θ α θ . 
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3. Update the parameters θ  such that the generalization error estimate is 

minimized. 

This is typically achieved by a gradient step. 

4. Go to step 2 or stop when the minimum of the generalization error is reached. 

Using this method requires finding how the generalization error varies with the 

parameter vector θ , i.e., the kernel has to be differentiable with respect to the vector of 

parameters in order to use the gradient descent technique.  Furthermore, it is not clear if 

the generalization error is a convex function of the parameter vector.  If it is not, there is 

no guarantee that the solution obtained is a global solution (see for example Keerthi, S. 

and Lin C.-J., 2003; Xuefeng and Fang, 2002).  Also, the kernel is not selected 

automatically but it is assigned arbitrarily. 

Shao and Cherkassky (1999) propose a completely different approach to dealing with 

finding the optimal parameters.  They describe an extension of the SVM method based on 

using several kernels at the same time with different scales called the Multi-Resolution 

Support Vector Machine (M-SVM).  They develop this variation of SVMs as an 

extension to wavelet-based multi-resolution analysis.  The training of M-SVM will find 

not only the α values but also the kernel-specific parameters.  They experiment with two 

Radial Basis Function kernels in several simulated regression problem. The results show 

that this combination of kernels is able to reduce the prediction error of the SVM.  

Nevertheless, this method requires adding m-fold free variables for m kernels used in the 

optimization formulation which increases the computational complexity.  Even more 

important, now we need to arbitrarily set one penalty value C  for each kernel.  
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Another approach for improving regression performance by using a mixture of 

kernels was proposed by Smits and Jordaan (2002). They use a convex combination of a 

polynomial and a RBF kernel: 

(1 )mix poly rbfK K Kρ ρ= + −  

In this approach one extra parameter—that requires setting—is added.  Also there is a 

need to find optimal values for  and C ε .  The technique is tested on a real-life industrial 

data set and presents improved interpolation and extrapolation results as compared with 

using individual kernels. 

Ali and Smith (2003) propose a method based on Bayesian inference on the training 

set to find the optimal degree for a polynomial kernel.  They find that for datasets that are 

strongly non-normal the performance of the model found with their method is better than 

that obtained by using arbitrarily assigned degrees or even using a Gaussian RBF kernel 

with arbitrarily assigned parameters. With this approach, we can only find the optimal 

degree of a polynomial kernel.  It will not allow us to find parameters of other important 

kernels like, for instance, a RBF kernel.  Also, it is not clear what value of C  is used for 

the experiments and how this value is selected.  

3.2 Genetic algorithms and learning algorithms 

For many years now, genetic algorithms have been used together with neural 

networks.  There have been different ways to integrate genetic algorithms and neural 

networks: they have been use to find the weights (training), to determine the architecture, 

for input feature selection, weight initialization, among other uses.  A thorough review 
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can be found in Yao (1999).  Recently, researchers have been looking into the 

combination of support vector machines with genetic algorithms.   

Few researchers have tried integrating SVMs with genetic algorithms.  There are 

basically two types of integrations of SVM and GA.  The most common one consists on 

using the GA to select a subset of the possible variables reducing the dimensionality of 

the input vector for the training set of the SVM or selecting a subset of the input vectors 

that are more likely to be support vectors (Sepúlveda-Sanchis et al., 2002; Zhang et al., 

2001; Xiangrong and Fang, 2002; Chen, 2003).  A second type of integration found in the 

literature is using a GA for finding the optimal parameters for the SVM (Quang et al, 

2002; Xuefeng and Fang, 2002). 

In Sepúlveda-Sanchis et al. (2002), a genetic algorithm is designed to find a subset of 

variables with the highest influence on predicting the risk of acute unstable angina.  The 

fitness function of this GA is based on several information criteria like Mallow’s  

criterion, Akaike’s Information Criteria (AIC), and the Maximum Description Length 

(MDL) (see references in Sepúlveda-Sanchis et al., 2002). The genetic algorithm was 

able to find a subset of 5 variables out of the 75 original variables.  Those variables were 

then used to train a support vector machine to predict the mortality of patients with 

unstable angina.    

pC

A similar approach is proposed in Xiangrong and Fang (2002).  In this case the fitness 

function is based on a previous work by Zhang et al. (2001), where a method called the 

Center Distance Ratio Method is introduced.  This method allows them to find those 

input vectors that are closest to the margin and that, therefore, are more likely to be 
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support vectors.  While they so not present any experimental results, it seems conceivable 

that this particular combination of GAs with SVM could produce good results. 

GAs have also been applied to a slightly different problem: reducing the 

dimensionality of the data.  This problem is of particular relevance for bioinformatics, 

e.g., gene selection where the data is usually limited and the dimensionality is high.    

Chen (2003) uses a combination of GAs with a resampling technique known as 

Bootstrap to select those genes that are needed to be able to discriminate between cancer 

and normal cells.  The algorithm is tested with two datasets: a colon cancer dataset and a 

leukemia dataset.  In both cases, the dataset is split in a training and a testing set.  Each 

individual of the population of GAs became a possible subset of 5 genes.  The fitness 

function is based on training a SVM with the training set using only the subset of genes 

defined by the individual and then measuring the misclassification on the testing set.  

Using this procedure, it is found that several subsets could classify all observations from 

the testing set correctly.   

Xuefeng and Fang (2002) present a variation to the method proposed by Chapelle et 

al. (2002), where the gradient descent is replaced by a genetic algorithm.  The advantage 

of this approach lies in that now the kernel does not need to be differentiable and that the 

solution have a better chance of being a global solution. 

Finally, Quang et al. (2002) used GAs to find the different parameters of a SVM with 

a mixture of kernels.  In addition, they use two penalty values, one for each class.  The 

main difference in the approach that we use lies in that the fitness function used by 

Quang et al. (2002) is based on estimating the generalization error of the SVM with the 

ξα -estimator proposed by  Joachims (1999) because of the great efficiency of the 
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method.  However, this estimate was not compared to other well tested methods for 

estimating the generalization error like crossvalidation or repeated holdout testing.  In 

fact, research by Duan et al. (2003) have found that the ξα  gives estimates close to the 

test error for small values of C .  However, when the C  value increases, this estimate 

differs a lot from the test error. This will tend to mislead the search of the GA. 

3.3 Summary 

In summary, from this literature survey it is clear that several researchers have been 

devising ways to automatically find the best parameters for SVMs.  In this thesis, we will 

propose another approach that makes use of ten-fold crossvalidation, genetic algorithms, 

and support vector machines with a mixture of kernel for pattern recognition.  The 

experiments are done using a dataset that represents model of individuals for electronic 

commerce applications.  This particular combination of techniques has not been 

integrated and applied to e-commerce datasets before as far as we know.  
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CHAPTER 4. IMPLEMENTATION AND RESULTS 

This chapter presents our genetic algorithm implementation to automatically find the 

optimal parameters of a support vector machine with a mixture of Gaussian and 

polynomial kernel for pattern recognition.  We start by describing the dataset used for all 

experiments. Immediately after we describe the different parts of the genetic algorithm 

and present the Unified Modeling Language (UML) diagrams of the main classes.  

Finally, we will run some initial experiments to decide the operators for the genetic 

algorithm. 

4.1 Dataset 

All experiments use data from the study conducted by Ryan (1999) that contains 

information on 125 subjects. A web site is used for this experiment, where 648 images 

are shown sequentially to each subject (all of the images are saved using a JPG quality of 

5). The response required from the individuals is their preference for each image (1: Yes, 

0: No). 

The images varied on seven attributes (features) with some specific levels:  

• Density – Describes the number of circles in an image (3 levels). 

• Color Family – Describes the hue of the circles (3 levels). 

• Pointalization – Describes the size of the points that make the individual circles (3 

levels). 

• Saturation – Describes the strength of the color within the circles (3 levels). 

• Brightness – Describes the amount of light in the circles themselves (4 levels). 

 59



• Blur – Describes the crispness of the circles (2 levels). 

• Background – Describes the background color of the image (3 levels). 

 

Table 2. Features used to generate the 624 images (Rabelo 2000). 

 Attribute Level 1 Level 2 Level 3 Level 

4 

1 Density X3 X2 X1 -- 

2 Cold vs. 

Warm 

Cold: blue, 

green 

purples Warm: red, 

orange 

-- 

3 Pointalized 5 15 50 -- 

4 Saturation 50 0 -- -- 

5 Light/Dark 50 -- -- -25 

6 Motion blur 0 10 -- -- 

7 BKG Black Gray White  -- 

 

For example, Figure 10 to Figure 12 show examples of some of the images. 
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Density: Level 1  Cold vs Warm: Level 1        Density: Level 1  Cold vs Warm: Level 1 
Pointalized: Level 1  Saturation: Level 1         Pointalized: Level 1  Saturation: Level 1 
Light/Dark: Level 1  Motion blur: Level 1         Light/Dark: Level 2  Motion blur: Level 2
BKG: Level 3      BKG: Level 3  

Figure 10. Images with features 1111113 and 1111223 respectively. 

 

Density: Level 1  Cold vs Warm: Level 2     Density: Level 1  Cold vs Warm: Level 2 
Pointalized: Level 1  Saturation: Level 1     Pointalized: Level 3  Saturation: Level 1 
Light/Dark: Level 3  Motion blur: Level 2     Light/Dark: Level 3  Motion blur: Level 1 
BKG: Level 2         BKG: Level 1   

Figure 11. Images with features 1211323 and 1231311 respectively. 
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Density: Level 2  Cold vs Warm: Level 2     Density: Level 3  Cold vs Warm: Level 1 
Pointalized: Level 2  Saturation: Level 3     Pointalized: Level 2  Saturation: Level 1 
Light/Dark: Level 3  Motion blur: Level 2     Light/Dark: Level 2  Motion blur: Level 1 
BKG: Level 1         BKG: Level 2   

Figure 12. Images with features 2223321 and 3121212 respectively. 

 

The response of each individual is an independent dataset. Rabelo (2001) compares 

the performance of several learning algorithms using this dataset.   

4.2 Implementation of the Genetic Algorithm 

All programs are written in C++ and compile in Visual C++ .NET.  The support 

vector training is based on a modified version of LIBSVM (Chang and Lin, 2001). An 

object-oriented methodology is followed in the creation of all programs. Interfaces 

provided the skeleton for most operators like the fitness function, selection, mutation, and 

crossover.  As a result, the population class could use any fitness function implementing 

the corresponding interface. In the same way, any mutation or crossover operator 

implementing the corresponding interface could act on the population. 
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4.2.1 Representation 

The LIBSVM program is modified to include a mixture of Gaussian and polynomial 

kernel: 

( )
2

(1 )
d

p e pγ− −⋅ + − ⋅ ⋅ +u v u v r  

Keerthi and Lin  (2003)  find that when a Gaussian RBF kernel is used for model 

selection, there is no need to consider the linear kernel since it behaves as a linear kernel 

for certain values of the parameters  and C γ . 

Each individual is represented as a binary string that encoded five variables (see 

Figure 13): 

• The first 16 bits represents the cost or penalty value, C. It is scaled from 0.01 to 

1000. 

• The next 16 bits represents the width of the Gaussian kernel, γ , scaled from 

0.0001 to 1000.   

• The next 2 bits represents 4 possible values for the degree d : from 2 to 5 

• The next 16 bits represents the ρ  parameter which controls the percentage of 

polynomial and Gaussian kernel.  It was scaled from 0 to 1. 

• Finally, the last parameter is the r  value, which determines whether we use a 

complete polynomial or not. 
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Figure 13. Representation of parameters. 

 

The binary code  that represents each variable is transformed to an integer 

according to the expression  

is

1

0
2

N
i

i
i

m s
−

=

= ∑  

where  is the number of bits.  This integer value is then scaled to a real number in the 

interval [  according to  

N

, ]a b

2 1N

b ax a m −
= +

−
 

The precision depends on the range and the number of bits: 

2 1N

b aε −
=

−
. 

The population of individuals is implemented by a class called BinPopulation.h (see 

Figure 14).  Individuals are stored in a vector of strings while their corresponding fitness 

is stored in a vector of doubles. The population keeps a pointer to the fitness function 

interface, which is needed to calculate the fitness of each individual. Since all fitness 

functions implement this interface, the population class can point to any fitness function. 

The crossover operation requires selecting the parents. Therefore the population class 
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also keeps a pointer to the selection interface which allows it to use any selection 

technique that implements this interface. 

 

 

Figure 14. UML diagram of the Population class. 

 

4.2.2 Fitness Function  

The objective function is probably the most important part of the genetic algorithms 

since it is problem-dependent. 

We need a way to measure the performance or quality of the possible solutions.  As 

indicated previously, there are several methods that try to estimate the generalization 

error of a classifier.  Contrary to other applications of genetic algorithms, the objective 

function in this problem is a random variable with associated variance and it is 
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computationally expensive since it involves training a learning algorithm.  In order to 

decide which method to use, several experiments are run to find the estimator with the 

lowest variance. 

A class, Xvali, split the data according to the different techniques (see Figure 15). 

 

 

Figure 15. UML diagram of the Crossvalidation class used to test the different 

generalization estimates. 

 

LIBSVM with , Gaussian RBF kernel, and 10C = 0.1γ = was used as a classifier. A 

sample of 1000 observations where taking from each method: 

• Hold out 

• Stratified hold out 

• 10 fold crossvalidation 

• 10 fold stratified crossvalidation 
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• 10 fold modified crossvalidation 

• 10 fold modified stratified crossvalidation 

The results are summarized in Table 3. 

 

Table 3. Mean and standard deviation of the several estimates of the generalization 

performance obtained from a sample of 1000 observations. 

Technique Mean (%) 
Standard Deviation 

(%) 

10 fold Stratified Modified 

Crossvalidation 
86.830 0.461 

Modified Crossvalidation 86.791 0.463 

Stratified Crossvalidation 86.681 0.486 

Crossvalidation 86.617 0.496 

5 fold Stratified Modified 

Crossvalidation 
86.847 0.540 

5 fold Stratified 

Crossvalidation 
86.567 0.609 

5 fold Crossvalidation 86.540 0.629 

Stratified hold out 86.215 1.809 

Hold out 86.241 1.977 
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The hold out technique had the highest standard deviation.  Stratifying the method, 

i.e., keeping the same ratio between classes in the training and testing set, slightly 

reduced the standard deviation.  All crossvalidation estimates had a significantly lower 

standard deviation than the hold out technique. 

Since there is really no statistically significant difference in the standard deviation 

between the different crossvalidation techniques we use one of the most common: 10-fold 

crossvalidation. 

The fitness function is a component of the class population that evaluates an 

individual. It returns the generalization estimate according to the 10-fold crossvalidation. 

 

 

Figure 16. UML diagram of the Fitness function class. 

 

4.2.2.1 An efficient generalization estimate vs. 10-fold Crossvalidation 

As mentioned in the previous chapter, there have been some leave-one-out 

approximations that are specific to SVM and are very efficient. Because of this efficiency, 
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if they would produce a good approximation of the generalization error, they would make 

an excellent fitness function.  For this reason, we compare the estimate obtained using 

this method with the one obtained using 10-fold crossvalidation. The estimate for the ξα  

technique is calculated using Joachims’s SVMlight.  The 10-fold crossvalidation is 

repeated 50 times and the average is calculated.  The results for different values of  is 

shown in Table 4 for dataset ind2 and a Gaussian RBF kernel with 

C

0.1γ = .  

 

Table 4. Comparison of two generalization estimates. 

C ξα  Estimate (% f errors) 10-fold crossvalidation 

(% of errors) 

0.01 25.62 25.613 

0.1 24.07 23.19122 

0.5 41.36 13.77713 

1 38.27 12.92339 

2 36.11 12.98201 

5 33.49 12.89836 

10 32.72 13.44506 

25 30.4 14.42876 

50 30.71 15.32877 

100 30.86 16.214 

500 30.4 17.35171 

1000 28.7 18.61872 
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From these results it seems that for small values of  the estimate is very close to the 

crossvalidation estimate. However, as the C  increases the estimate starts to deviate. 

According to the 

C

ξα  estimate the best model is the one with 0.1C =  while according to 

10-fold crossvalidation estimate the best model has 5C = .   

Clearly, the ξα  requires more research in order to understand these deviations. 

4.2.3 Crossover 

Several crossover operators are tested: one point, two point, uniform, and multiparent 

diagonal. Each class implemented the Crossover interface (see Figure 17).   

 

 

Figure 17. UML diagrams of the Crossover operators. 
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4.2.4 Mutation 

Two mutation operators implement the Mutation interface (see Figure 18). 

SimpleMut is a simple mutation with fixed mutation probability. DynaMut is a mutation 

with a dynamic rate of mutation that depends on the generation according to the equation: 

122
1t

np t
T

−−⎛ ⎞= + ⋅⎜ ⎟−⎝ ⎠
 

In addition, SimpleMut serves as the base for other techniques for varying the 

mutation rate: a self-adaptation method and a feedback mechanism based on the genetic 

diversity.  

The self adaptation method consists on adding 16 bits to each individual in order to 

obtain a probability p .  From this value the mutation rate is obtained according to the 

following equation (Bäck and Schütz ,1996): 

1
(0,1)1' 1 Npp e

p
γ

−
− ⋅⎛ ⎞−

= + ⋅⎜ ⎟
⎝ ⎠

 

where γ  is the rate that controls the adaptation speed and  is a random normal 

number with mean 0 and standard deviation 1. The normal random variable is generated 

according to the Box and Muller method (see, for example, Law and Kelton 2000 p 465) 

(0,1)N

The feedback mechanism was based on calculating the genetic diversity of the 

population . If the genetic diversity falls below a particular level 

the mutation rate is increased and the crossover rate is reduced. The contrary happens if 

the genetic diversity becomes bigger than a given value. The problem is to find those 

critical values. Clearly, it will depend on the problem. 

/AvgFitness BestFitness

 

 71



 

Figure 18. UML diagrams of the Mutation operators. 

 

4.2.5 Selection 

The deterministic Tournament selection is implemented as seen in Figure 19. k

 

 

Figure 19. UML diagram of the Deterministic Tournament selection class. 
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4.3 Comparison of Variations of Genetic Algorithms 

To select the operators with the best performance (e.g., faster convergence of the 

genetic algorithm) from the different possibilities, we repeat the algorithm 30 times with 

different random initial solution.  With each replication, we obtain an independent 

estimate for the best generalization ability at each generation.  

At the start of each replication, the dataset is randomly split in the ten subsets 

required by the 10 fold crossvalidation.  Using the same split during the whole run allows 

us to study the effect of the different variations without being affected by randomness, 

i.e., one particular model will always have the same performance throughout the run of 

the genetic algorithm. At the same time, since we are doing 30 replications –each with a 

different random split— we can get a good idea of the average performance as a function 

of the generation for each of the variations of the genetic algorithm.  Figure 20 

summarizes this process in an activity diagram. 

Table 5 lists the different parameters of the genetic algorithm. 

 

Table 5. Parameters of the genetic algorithm used for testing the different variations. 

Paremeter Value 

Population 10 

Generations 20 

Prob. of crossover 0.95 

Prob. of mutation 0.05 

Fitness function 10 fold crossvalidation 
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Selection 2-Tournament selection 

Crossover types One point, two point, uniform, diagonal with 4 parents

Mutation type Fixed rate, dynamic rate, self adaptive rate, feedback 

Other Elisitm, no elitism 

 

 

Figure 20. Overview of the genetic algorithm. 
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4.3.1 Experiments 

To study the behavior of the genetic algorithms as a function of the different 

parameters, we repeat the experiment 30 times and calculated the average for each 

generation. A subset of 215 points is used for the experiments. This subset was obtained 

in a stratified manner (the proportion of individuals of class 1 to class -1 was kept equal 

to the original dataset) from individual number 2. The reduction of the number of points 

is done to reduce the processing time. 

In most cases, we are interested in comparing the performance measures at the 20th 

generation the genetic algorithms using different parameters.  This comparison is made 

using several statistical tests like 2 sample t test and best of k systems (Law and Kelton, 

2000). 

4.3.1.1 Effect of the elitist strategy 

Figure 21 shows the effect of elitism when the genetic algorithms uses a one point 

crossover with crossover rate of 0.95 and simple mutation with mutation rate of 0.05. 
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Figure 21. Effect of elitism in the best fitness per generation. 

 

We use simple elitism, i.e., the best parent is passed unmodified to the next 

generation.  As it is shown in Figure 21, by not using elitism there is a risk of losing good 

individuals, which may also increase the number of generations needed to find a good 

solution. 

A two sample t-test shows that, at generation 20, the average best fitness of the 

elitism GA is significantly higher at the 0.1 level with a p-value of 0.054 and a lower 

limit for the 90% confidence interval of 0.542557. 
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Figure 22. Standard deviation of the average best fitness for elitism vs. not elitism.  

 

Figure 22 shows the standard deviation of the two genetic algorithms as a function of 

the generation.  Another advantage of using the elitist strategy is that as the generation 

increases the standard deviation decreases.  The standard deviation of the genetic 

algorithm with elitist strategy is significantly lower at the 20th generation at the 0.1 level 

in the F test for two variances and the Bonferroni confidence interval (see Figure 23). 

 

90% Bonferroni Confidence Intervals for StDevs

No Elitism

Elitism

2.252.001.751.501.251.000.750.50

F-Test

Test Statistic 0.29
P-Value 0.001

Test for Equal Variances for Elitism, No Elitism

 

Figure 23. Test for Equal Variances for elitism vs. not elitism. 
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4.3.1.2 Effect of Crossover type 

Four crossover types are tested: one point, two points, uniform, and a 4-parents 

diagonal as defined in Section 3.1.1.  The comparison is shown in Figure 24 and Figure 

25. 

 

Figure 24. Effect of the different crossover type on the fitness function. 

 

Table 6. Average and Variance in the 20th generation as a function of the crossover 

type. 

Crossover 

Type 

Average Variance 
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Diagonal 84.24481 1.015474

Twopoint 84.10167 0.456379

Uniform 84.06692 1.105777

Onepoint 83.71069 1.593839

 

Figure 25. Effect of the different crossover type on the standard deviation. 

 

The 4-parent diagonal crossover has the highest fitness function at the 20th generation; 

however, it has a higher standard deviation than the two-points crossover (see Figure 25 

and Table 6). In order to make a decision we use a technique found in Law and Kelton 

(2000) for finding the best of k systems (see also previous chapter).  With this 

methodology, we select the diagonal crossover as the best for this particular problem.  

Also, with 90% confidence, the expected performance of the diagonal crossover will be 
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no less than 84.24481-0.5 (in other words, * 90%P = , * 0.5d = ). The assumptions 

required by this test are normality and independence. Normality is tested using Anderson-

Darling test as implemented by Minitab (see Table 7). Each genetic algorithm is run 

using an independent stream of random numbers. 

 

Table 7. Normality test (Anderson-Darling). 

Crossover 

Type 

p-value Decision 

Onepoint 0.22 Normal at 0.05 

level 

Twopoint 0.249 Normal at 0.05 

level 

Uniform 0.391 Normal at 0.05 

level 

Diagonal 0.176 Normal at 0.05 

level 

 

4.3.1.3 Effect of varying mutation rates 

Four ways to set the mutation rate are tested: fixed mutation rate, dynamically 

adapted, self adaptation, and feedback. The other parameters are kept constant: diagonal 

crossover with 4 parents, crossover rate of 0.95 and tournament selection.  For the fixed 

mutation rate, the probability of mutation is set to 0.05.  The behavior of the average best 

fitness as a function of the generation is shown in Figure 26.  Figure 27 shows the 

behavior of the standard deviation. 
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Figure 26. Effect of mutation rate adaptation. 

 

 

Figure 27. Standard deviation of the best fitness per generation. 
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Again, to select between the different techniques we use the select the best of k 

system methodology to choose among the different techniques with the best performance 

at the 20th generation.  The selected method is the fixed mutation rate. 

The assumption of normality is tested with Anderson Darling test (see Table 8). 

 

Table 8. Normality test for the 30 replications at the  20th generation. 

Crossover 

Type 

p-value Decision 

Fixed 0.176 Normal at 0.05 

level 

Dynamic 0.291 Normal at 0.05 

level 

Uniform 0.255 Normal at 0.05 

level 

Diagonal 0.379 Normal at 0.05 

level 

 

4.4 Genetic Algorithm and Support Vector Machines 

From the previous experiments, we select the parameters shown in Table 9. 

Table 9. Parameters in the final genetic algorithm. 

Parameters Value 

Population 10 
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Generations 20 

Prob. of crossover 0.95 

Prob. of mutation 0.05 

Fitness function  10-fold crossvalidation 

Selection  2-Tournament selection 

Crossover types Diagonal with 4 parents 

Mutation type Fixed rate 

Others Elitist strategy 

 

The activity diagram of the final genetic algorithm is shown in Figure 28. The most 

important difference between this final model and the one used in the previous section is 

related to the random split of the data.  Instead of using only one split of the data, every 

time the fitness of the population is calculated, we use a different random split (see 

Figure 29).  As a result, all individuals at a particular generation are measured under the 

same conditions.  Using only one random split throughout the whole run of the GA 

carries the danger that the generalization error estimate for one particular model may be 

higher than for other models because of the particular random selection and not because it 

was really better in general.  Using a different random split before calculating the fitness 

of every individual carries the same danger: an apparent difference in performance may 

be due to the particular random order and not due to the different value of the parameters.  

While repeating the estimate several times and getting an average would probably 

improve the estimate, the increase in computational requirements makes this approach 

prohibitive. For example, if we have 10 individuals and we use 10 fold crossvalidation 
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we would have to do 100 trainings per generation. If in addition, we repeat every estimate 

10 times to get an average we would have to do 1000 trainings.  Clearly, for real world 

problems this is not a good solution. 

Using the same random split in each generation has an interesting analogy with 

natural evolution.  In nature the environment (represented by a fitness function in GAs) is 

likely to vary with time, however, at any particular time all individuals are competing 

under the same conditions. 
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Figure 28. Final genetic algorithm. 
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Figure 29. Calculation of the fitness of the population. 
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CHAPTER 5. EXPERIMENTAL RESULTS 

In this chapter, we compare the proposed algorithm with the conventional way of 

setting the parameters: assigning arbitrarily the kernel, kernel parameters, and penalty 

value C .  Also, we compare the algorithm with backpropagation neural networks with 

different number of hidden nodes.  

5.1 Comparison with the conventional approach 

The experiments are performed with selected individuals of the previously mentioned 

case study.  The individuals were selected according to the worst performance as reported 

in Rabelo (2000).  All 648 data points were use in the experiments. 

The generalization performance of the model constructed by the GA was then 

compared with the performance of a model constructed by arbitrarily selecting the kernel 

and the kernel parameters.  This method of selecting the model will be referred to from 

now as the conventional way.  In order to compare the different models the 10-fold 

crossvalidation was repeated 50 times using the same stream random numbers.  This is 

akin to the common random number technique (Law and Kelton, 2000) to reduce 

variance.  Additionally, the best model from the conventional method was compared with 

the model created by the GA by a paired t test to determine if the difference was 

significant.   

The model created by the genetic algorithms had the parameters shown in Table 10 
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Table 10. Best model found by the genetic algorithm. 

Dataset γ  C Degree p r 

Ind7 451.637 959.289 2 0.682536 1 

Ind10 214.603 677.992 2 0.00968948 1 

Ind100 479.011 456.25 2 0.428016 1 

 

Interestingly, for 2 datasets (ind7 and ind100) the chosen kernel was a mixture of 

Gaussian and polynomial kernel. 

For the conventional method the kernel is arbitrarily set to Gaussian and the penalty 

value C  was set to 50 while the kernel width γ  is varied to 0.1, 0.5, 1, 10, and 50.  The 

average generalization error after the 50 replications for 3 individuals from the case study 

is shown in Table 11 and Table 12 and the Tufte’s boxplot (Tufte, 1983) are shown in 

Figure 30-Figure 32. Notice that in this case, we are comparing percentage of 

misclassification instead of percentage of correct classifications like in the plots of the 

performance of the different genetic algorithms as in the previous section. 

 

Table 11. Performance of models created using the conventional method. 

Kernel width (γ ) Ind7 Ind10 Ind100 

0.1 23.9168 24.3358 24.1783 

0.5 30.5086 29.8396 30.4063 

1 29.0546 28.4365 29.2966 

10 30.3981 46.2980 38.2692 
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50 30.3981 46.2980 38.2692 

 

Table 12. Performance of model created using the genetic algorithm. 

 Ind7 Ind10 Ind100 

GA 22.0025 21.8491 21.9937 

 

 

Figure 30. Average performance of the different models for dataset Ind7. 
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Figure 31. Average performance of the different models for dataset Ind10. 

 

 

Figure 32. Average performance of the different models for dataset Ind100. 
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The results of a paired t-test of the difference between the performance of best model 

using the conventional method and the model constructed by the genetic algorithms show 

that the difference in performance is statistically significant at the 95% level (see Table 

13). 

 

Table 13. Paired t-test of the conventional best model vs the genetic algorithms. 

Dataset 
95% C.I. 

Upper bound 
p-value 

Ind7 -1.67608 0.000 

Ind10 -2.24952 0.000 

Ind100 -1.97312 0.000 

 

These experiments show that using genetic algorithms are an effective way to find the 

optimal parameters for support vector machines.  This method will become particularly 

important as more complex kernels with more parameters are designed. 

5.2 Comparison with Backpropagation Neural Networks 

In this section, our proposed algorithm is compared to a more traditional approach to 

learning algorithms: a backprogation neural network (NN). 

In order to reduce the variance, 30 pairs of training and testing set were generated for 

each dataset and then stored (see Figure 33).  At every replication, the dataset is 

randomly split in training and testing set keeping the proportion of class 1 to class 2 
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approximately equal to the proportion in the original dataset (stratified holdout).  The 

same training and testing set is used to train and test the SVM with the parameters 

selected by the GA and the backpropagation neural networks with different number of 

hidden nodes.   

These experiments allow us to use a paired t- test and a 95% confidence interval to 

determine if there is a statically significant difference between the performances. 

The backpropagation NN is trained using the Levenberg-Marquardt algorithm.  This 

algorithm is designed to approach second-order training speed. It approximates the 

Hessian matrix  by using the Jacobian matrix  (which contains the first derivatives of 

the network errors with respect to the weights) as follows (Demuth and Beale, 1998): 

H J

T=H J J  

And the gradient can be computed as  

TJ e  

where e  is a vector of the neural network errors. Therefore, the update is modified to be: 

1
( 1) ( ) T Tt t β

−
⎡ ⎤+ = − +⎣ ⎦W W J J I J e , 

where β  is a constant that is decreased or increased depending on the performance 

function. Levenberg-Marquardt is considered one of the fastest algorithms for training 

backpropagation neural networks.  
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Figure 33. Comparison between the a backpropagation neural network and the 

proposed algorithm. 

 

Table 14 shows the mean and standard deviation while Table 15 shows the results 

from the paired t-test using 10% of the dataset for training.  In all cases, the mean test 

error is lower with the SVM than with the NN (as indicated by the negative test statistics, 

t-value and Figure 34 -Figure 37).  Furthermore, for most cases this difference is 

statistically significant at the 95% confidence level as indicated by the negative upper 

bound and the p-value. Only when tested with datasets ind1 the difference is not 

significant at the 0.05 level (but it was significant at the 0.1 level). 
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Table 14.  Mean test error with 10% of the dataset (approximately 65 points) used 

in training. 

Dataset  Ind1 Ind7 Ind10 Ind100 

Average 4.47685 34.02635 32.53859 30.79474 SVM 

Std dev 2.481708 4.052861 3.476982 3.61084 

Average 7.890222 53.43643 47.82161 46.70097 NN 1 node 

Std dev 13.20988 21.16148 22.86714 23.94577 

Average 8.793595 55.75601 53.15037 47.22127 NN 2 nodes 

Std dev 6.993879 17.69439 13.72225 18.43694 

Average 8.702118 54.78236 52.03544 47.61578 NN 3 nodes 

Std dev 5.041017 13.45559 11.10692 14.49721 

Average 10.68039 56.67238 56.62664 47.54718 NN 4 nodes 

Std dev 7.799044 9.136175 9.696914 11.34729 

Average 12.96169 57.44559 56.98685 52.57862 NN 5 nodes 

Std dev 9.102082 8.561429 9.839618 11.39469 

 

Table 15. Paired t test for the difference between test errors for the SVM vs. the NN 

with 10% of the dataset (approximately 65 points) used in training. 

Dataset 95% Upper bound p-value T-value 

 SVM vs. best NN SVM vs. best NN SVM vs. best NN

Ind1 0.85380 0.092 -1.36 

Ind7 -12.8299 0.000 -5.01 

Ind10 -8.6208 0.000 -3.90 

Ind100 -8.6573 0.000 -3.73 
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Figure 34. SVM vs. NN for different architectures of the NN and training with 10% 

of dataset ind1. 

 

 

Figure 35. SVM vs. NN for different architectures of the NN and training with 10% 

of dataset ind7. 
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Figure 36. SVM vs. NN for different architectures of the NN and training with 10% 

of dataset ind10. 

 

 

Figure 37. SVM vs. NN for different architectures of the NN and training with 10% 

of dataset ind100. 
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Table 16 shows the means and standard deviation while Table 17 shows statistical 

test results when using 20% of the dataset for training.  Again, the results show that the 

SVM produces a lower average testing error and in all cases this difference is statistically 

significant at the 0.05 level (see Figure 38 to Figure 41).   These results agree with the 

results found in Rabelo (2000), where SVM are compared with several types of NN and it 

is found that for small datasets the results are significantly better when using SVMs. 

 

Table 16. Mean test error with 20% of the dataset (approximately 130 points) used 

in training 

Dataset  Ind1 Ind7 Ind10 Ind100 

Average 4.009023 28.96196 28.97684 28.1789 SVM 

Std dev 1.84101 4.00994 3.542786 3.437897 

Average 4.98713 54.73888 48.81595 37.98584 NN 1 node 

Std dev 2.434057 18.52352 26.15919 16.19415 

Average 6.563708 51.88266 51.6731 42.87644 NN 2 nodes 

Std dev 2.429254 14.73741 11.70238 13.79561 

Average 6.801804 52.69505 50.46976 46.80824 NN 3 nodes 

Std dev 2.792366 13.96284 11.38751 12.31946 

Average 8.912484 58.04643 52.50322 48.55212 NN 4 nodes 

Std dev 4.730942 13.19836 7.515809 11.66712 

Average 9.536683 58.82657 54.4659 48.79664 NN 5 nodes 

Std dev 3.931462 5.374914 6.901339 8.419554 
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Table 17. Paired t test for the difference between test errors for the SVM vs. the NN 

with 20% of the dataset (approximately 130 points) 

Dataset 95% Upper bound p-value T-value 

 SVM vs. best NN SVM vs. best NN SVM vs. best NN

Ind1 -0.089702 0.036 -1.87 

Ind7 -19.6691 0.000 -7.17 

Ind10 -11.4120 0.000 -4.00 

Ind100 -4.93208 0.001 -3.42 

 

 

Figure 38. SVM vs. NN for different architectures of the NN and training with 20% 

of dataset ind1. 

 

 98



 

Figure 39. SVM vs. NN for different architectures of the NN and training with 20% 

of dataset ind7. 

 

Figure 40. SVM vs. NN for different architectures of the NN and training with 20% 

of dataset ind10 
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Figure 41. SVM vs. NN for different architectures of the NN and training with 20% 

of dataset ind100. 

 

In both cases the parameters used in the experiments are shown in Table 18 and Table 

19. 

 

Table 18. Parameters for the GA. 

Parameters Value 

Population 10 

Generations 5 

Prob. of crossover 0.95 
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Prob. of mutation 0.05 

Fitness function 10-fold crossvalidation 

Selection Tournament selection 

Crossover types Diagonal with 4 parents 

Mutation type Fixed rate 

Others Elitist strategy 

 

Table 19. Parameters for NN. 

Parameters Value 

Training Levenberg-Marquardt 

Epochs 300 

Transfer Function Tan-sigmoid/purelin 

Hidden nodes 1-5 

Layers 2 

 

5.3 A final experiment 

One last experiment was meant to test the algorithm in a more realistic situation. We 

randomly split the data in half: training and testing.  Then, we take a sample of 10, 25, 50, 

100, and 324 points from the training set. Finally, we train the NN and the SVM with 

those subset 30 times (see Figure 42). 
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Tested on

 

Figure 42. Final experiments. 
 

The results are shown in Table 20.  In all cases, the SVM had a lower mean 

classification error and a smaller standard deviation.  It is important to notice that for big 

sample sizes the difference in performance between SVM and NN tend to become 

smaller.  For instance, the difference in performance between SVM and the best NN 

model for a 10 points training set was 10.7% and for 324 points it was 4.85%. 

 

Table 20. Mean and standard deviation of the percentage of incorrect classification 
for the final experiments. 

Dataset  10 25 50 100 324 

Mean 31.18 18.91 20.97 13.85 8.87 
SVM 

Std Dev 1.94 6.98 3.22 2.25 1.63 

Mean 43.67 25.80 41.62 19.22 13.72 
NN 1 node 

Std Dev 19.26 18.55 11.45 10.23 11.78 

NN 2 nodes Mean 41.88 27.08 36.31 21.91 14.53 
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Std Dev 17.67 15.47 12.80 10.44 7.30 

Mean 44.34 30.25 39.91 22.90 16.98 
NN 3 nodes 

Std Dev 13.10 14.03 13.26 9.79 8.78 

Mean 44.04 28.88 44.60 23.901 17.28 
NN 4 nodes 

Std Dev 11.51 14.94 12.64 7.98 6.11 

Mean 44.43 32.28 45.98 31.48 18.51 
NN 5 nodes 

Std Dev 11.29 13.62 12.08 12.54 5.45 

 

Rabelo (2000) compared a SVM with optimal width selected by a GA with several 

other techniques like Fuzzy Art Map (FAM), backpropagation NN, FAM with voting 

schemes, frequency random generator (Fran), and Pure Random Generator (Pran).  A 

reproduction of the results for one dataset is shown in Table 21. 

 

Table 21. Results for dataset ind2 from Rabelo (2001). 

Training 

File 

SVM FAM Voting BP Pran Fran 

10 76.2% 77.8% 78.4% 78.1% 49.1% 72.8% 

25 76.2% 75.9% 75.0% 76.2% 53.1% 71.6% 

50 77.2% 76.2% 74.1% 76.5% 46.6% 63.9% 

100 76.2% 72.2% 79.6% 75.3% 52.2% 60.5% 

324 80.9% 81.2% 83.3% 84.0% 49.4% 62.0% 
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It is important to note a couple of issues about these last experiments.  First, the 

random splits are not the same as used in Rabelo (2001). Second, in Table 21 the reported 

results are one observation and not a mean. 

5.4 Processing times considerations 

The previous experiments showed that 10-fold crossvalidation is an adequate estimate 

of the generalization error and has allowed us to guide the genetic algorithm to a good set 

of parameters for a SVM.  Nevertheless, there is an important drawback: the processing 

time.  Every time we use crossvalidation, we need to train the SVM ten times. 

Furthermore, in case of the genetic algorithm, we need to repeat the process for each 

individual of the population.  For instance, for a population of 10 individuals, we need to 

do 100 trainings at each generation.  The experiments were done on a Athlon XP 2500+ 

computer with 1.84 GHz and 256 MB of RAM.  With a training set of 130 points each 

generation required approximately 7 seconds. From the experiments, it seems that 5 

generation is enough to get a good answer. Therefore, every run of the GA requires at 

least 35 seconds. In contrast, a run of the neural network required approximately 3 

seconds.  Clearly, there is a need to find a more efficient estimate of the generalization 

error to replace the 10 fold crossvalidation. 
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CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 

This chapter presents the summary of the work done, the main results and 

contributions, and future directions of research. 

6.1 Summary of Work and Results 

In this thesis, we explore and propose a way to use genetic algorithms to optimize the 

parameters of a SVM.  Currently, the proposed algorithm makes use of 10-fold 

crossvalidation as its fitness function.  However, the whole algorithm has been designed 

to take advantage of interfaces (abstract classes) to facilitate the testing of other fitness 

functions and operators. Several types of crossover and mutation for the genetic 

algorithm are implemented and compared.  It is seen that a diagonal crossover with 4 

parents and a fixed mutation rate provided the best performance.  Also, 10-fold 

crossvalidation is compared with an efficient estimate of the generalization error known 

as the ξα  and it is found that this last estimator was biased for high values of .   C

The SVM engine is based on a C++ version of LIBSVM (Chang and Lin, 2001). This 

implementation is modified to include a kernel that is a mixture of Gaussian and 

polynomial kernels.  As a result, the genetic algorithm has the flexibility to decide on one 

or the other or a mix of both kernels.  Additionally, this is a more complicated kernel that 

requires more parameters to set and it better shows the significance of having an 

automated technique to find the optimal values. 

 105



The results of the experiments shows significant improvement over using a SVM with 

fixed architecture and over other learning algorithms like Neural Networks trained with 

the Levenberg-Marquardt algorithm and with different architectures.   

Finally, we should state that this improvement in performance comes with the price of 

an increased processing time. This drawback will not be an issue once an efficient and 

unbiased estimate of the performance of SVMs is found. 

6.2 Contributions 

In this thesis, a genetic algorithm was designed for the purpose of finding the optimal 

parameters for a SVM trained on an e-commerce dataset.  Several types of crossover and 

mutation operators were implemented and tested.  These experiments indicated that a 

diagonal crossover with 4 parents and simple mutation with fixed rate had the best 

performance in terms of convergence time and variance.   

While the importance of using GAs for finding optimal parameters might not seem so 

great for SVM with simple kernels like a Gaussian RBF with only one parameter to set, 

as applications continue to appear and new, more complicated kernels (and likely with 

more parameters) are designed for specific problems, this need will become apparent.  

For this reason a kernel which is a mixture of RBF and complete polynomial kernel was 

used in the experiments.  This kernel was previously tested in regression problems by 

other researchers and also seems to be providing good results for classification problems. 

It was also shown that 10 fold crossvalidation is a good estimator of the 

generalization performance of support vector machines and it allowed us to guide the 

genetic algorithm to good values for the parameters of the SVM.  In addition, we 
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explored the possibility of using the efficient bound to leave-one-out known as ξα .  The 

experiments indicated that this estimator tended to diverge with respect to the 10 

crossvalidation estimate for high values of .  C

6.3 Further Research Issues 

• Further research is needed in developing more efficient methods to estimate the 

generalization error of support vector machines.  Several researchers have 

proposed algorithms; however, whether they are predictive so that we can use 

them for model selection is still an open question.  Preliminary experiments 

comparing the ξα  with crossvalidation seems to indicate that this estimate is not 

suited for parameter selection using the tested e-commerce dataset. 

• Another possible area of research is the possibility of using genetic algorithms to 

improve the current training methods for support vector machines.  For instance, 

genetic algorithms may be adequate to replace the current heuristics used to 

determine which two points to optimize at each iteration of the SMO algorithm. 

• The same methodology used here to find the optimal parameters for support 

vector classification can be applied to regression problems without many 

difficulties.   

• It would also be interesting to compare the current algorithms with other machine 

learning techniques like decision trees, fuzzy ART map, RBF Neural Network, 

and others. 
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