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ABSTRACT

Models of the spontaneous emission and absorption of photons coupled to the electronic states of

quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled

as artificial few level atoms, are important to the development of quantum computers and quantum

networks. A quantum source modeled after an effective few level system is strongly dependent

on the type and coupling strength the allowed transitions. These selection rules are subject to the

Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of

a photonic state and its subsequent emission. The model presented in this dissertation describes

the spatio-temporal evolution of photonic states by means of a Dirac-like equation for the photonic

wave function within the region of interaction of a quantum source. As part of this aim, we describe

the possibility to shift from traditional electrodynamics and quantum electrodynamics, in terms of

electric and magnetic fields, to one in terms of a photonic wave function and its operators. The

mapping between these will also be presented herein. It is further shown that the results of this

model can be experimentally verified. The suggested method of verification relies on the direct

comparison of the calculated density matrix or Wigner function, associated with the quantum state

of a photon, to ones that are experimentally reconstructed through optical homodyne tomography

techniques. In this non-perturbative model we describe the spontaneous creation of photonic state

in a non-Markovian limit which does not implement the Weisskopf-Wigner approximation. We

further show that this limit is important for the description of how a single photonic mode is created

from the possibly infinite set of photonic frequencies νk that can be excited in a dielectric-cavity

from the vacuum state. We use discretized central-difference approximations to the space and

time partial derivatives, similar to finite-difference time domain models, to compute these results.

The results presented herein show that near field effects need considered when describing adjacent

quantum sources that are separated by distances that are small with respect to the wavelength of
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their spontaneously created photonic states. Additionally, within the future scope of this model,

we seek results in the Purcell and Rabi regimes to describe enhanced spontaneous emission events

from these few-level systems, as embedded in dielectric cavities. A final goal of this dissertation

is to create novel computational and theoretical models that describe single and multiple photon

states via single photon creation and annihilation operators.
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1 INTRODUCTION, MOTIVATION, AND WORK PLAN

1.1 Summary

Modeling the spontaneous emission of a single-photon emitted from an electrically or optically

injected few-level system is important for several proposed solid-state quantum computers and

quantum networks. In this study we seek to model the fully quantized excitation and spontaneous

decay from these levels through an optical emission of a photon in the non-Markovian limit of

the photon bath. We propose the use of discretized central-difference approximations of space

and time partial derivatives to describe the interaction between single photon and quantum dot

states. In the future scope of this model, we seek results in the Purcell and Rabi regimes for

spontaneous emission events from quantum dots embedded in dielectric cavities. In this chapter

we discuss in detail the motivation for studying this system and the work plan that has been carried

out while developing a computational model that calculate results that can be directly compared to

experimental results.

1.2 Background

The field of quantum computation (QC) and quantum information technology (QIT) has recently

experienced escalated activity in the search for a physically legitimate description of photonic

states coupled to their quantum sources [1, 2]. The observed increase in activity is in part due to

the suggestion that quantum information processing based on the electron spins of quantum dots

(QDs), coupled through optical modes of a dielectric cavity [1], could improve on schemes based

on the energy states of trapped ions [3] and nuclear spins in chemical solution [4, 5]. Some ad-

vantages of a QC scheme based on the suggested semiconductor quantum dot arrays may include

greater scalability, longer spin decoherence and long distance, fast interactions by means of pho-

tons [1].
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We propose a model for describing this coupling between a photonic state to the electron spin state

of a quantum source (such as a QD) through optical modes present in a dielectric cavities. Addi-

tional applications of this model may include the design of devices aimed at single photon emission

[6], single photon detection [7, 8], quantum teleportation, and quantum computing within a quan-

tum network [2]. In order to successfully describe the coupling between spontaneously emitted

photons and their quantum sources in this model, we show that high computational resolution is

required to describe whispering gallery modes [9] and other optical modes available in dielectric

cavities such as micro-disks and photonic crystals.

The proposed model for spontaneous photonic emission of radiation describes the evolution of

photonic states by means of a Dirac like equation in 3+1 dimensions. The rigorous description

of the interaction between a quantum source and the generated Photonic Wave Function (PWF)

[10, 11] is initially made within the formalism of relativistic quantum field theory (QFT) [12, 13].

In this procedure, a connection between the PWF and the four vector potential for a Maxwell Field

is drawn. This canonical quantization procedure leads to two important results, a complex tensor

introduced into the photon field Lagrangian in place of the Faraday tensor and the coupled electron-

photon field equations in terms of a field equation for the PWF. We describe the coupling between

quantum sources and the PWF it generates. We extend these results to show how to model the emis-

sion of photonic states from a QD embedded in dielectric cavities. Experimentally, the quadratures

of photonic states [14, 15, 16, 17, 18] have been measured and used to calculate quantum state’s

Wigner and g(2) correlation functions [16]. The models of photonic states presented herein can

be extended and used to generate such photonic states for verification or comparison directly to

experimental observations of this type.
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1.3 Introduction

Figure 1.1: Bloch Sphere (used from Wikipedia)

As transistors begin to near the angstrom scale, in order for the computing industry to continue

following Moore’s law it has become increasingly important for computer chip manufacturers to

consider quantum mechanical effects when designing computing devices. Currently, classical com-

puters are being manufactured via processes that manipulate matter at the order of 45 nm or less;

such as Intel i7 (Nehalem) [19], AMD Opteron (Shanghai) [20], and IBM Cell Broad Band Engine

[21] processors. In order to understand how quantum mechanical effects will affect computing in

coming years computer chip manufacturers will have to focus on the differences between classi-

cal and quantum computers. Both industry and government have started initiatives over the last

few decades to investigate the viability of quantum computing (QC). In this study we discuss the

motivation for designing quantum computers, outline differences between quantum and classical

computers, and focus on how we contribute to the design of a quantum computing network. We

also extend our contribution to the areas of single photon emission and detection.

Classical computers differ from quantum computers at the fundamental level of information stor-

age and communication. Since the conception of the Touring-complete general purpose computer

ENIAC by John Von Neumann the principal unit of information in computing technologies has

been a binary digit (bit). To this day computers and all the information stored within them operate

on this basic unit of information. However, since the advent of computers, the need to access infor-

mation and process it has increased at ever increasing rates. This growth in information production
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and processing has been accompanied by a need for ever faster computers. One such need is

presented by the armed forces requirement for secure communication and the ability to decode

mission critical information while intercepting potentially dangerous communications between

possible enemies of the state. In addition, large amounts of information lead to large databases

that need to be sorted through when seeking particular entries in a vast sea of information. For

example industry giants like Google perpetually generate and parallelize databases replete with

information in hopes of speeding up search algorithms and facilitating nearly instantaneous access

to an ever increasing and newly generated set of information. Note that we have omitted the entire

banking sector, economic industry, and sciences from this discussion for brevity. The main point

revolves around the necessity that computer manufacturers have to stack millions of transistors

into ever smaller volumes in order to create ever faster computer chips, storage units, and memory

necessary for processing and storing copious amounts of information.

Where classical computers depend on bits to store information, quantum computers depend on

quantum bits ( qubits) for this purpose. As the name suggests quantum binary digits are a quan-

tum representation of the on and off state as interpreted in machines like ENIAC and those in

existence today. It is possible to visualize the relationship between bits and qubits by means of

what is known as the Bloch sphere in figure 1.1 in terms of the on |1〉 and off states |0〉 of a bit

and a superposition state of a qubit |Ψ〉. One major advantage of quantum computers is that they

do not alter the Church-Turing thesis. This implies that QC does not allow the computation of

functions which are not theoretically computable. So far it has been shown through the discoveries

of Shor and others that it is possible to develop quantum algorithms for important problems like

prime factorization [22], protocols for quantum error correction (QEC) [23], and fault-tolerant QC

[23]. Other algorithms in QC, that if physically implemented could be of immediate use, include

Grover’s Algorithm for database searches [24] and the quantum Fourier Transform [25].

Central to the discussion on QC and QEC is the decoherence rate of qubits. It is imperative to

QC to find an implementation where qubits that are part of the QC are well isolated from their

environment. Among suggested implementations for QC are Raman coupled low-energy states of
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trapped ions [3] and nuclear spins in chemical solution [4, 5]. Implementations of qubits based on

these implementations could provide the first examples of QC up to the 5 through 10 qubits level.

However, these implementations may not be scalable to more than 100 qubits [1]. One proposed

implementation that could be scalable to more than 100 coupled qubits, with long spin decoher-

ence times and long distance, fast interactions between qubits may be based on quantum dot (QD)

electron spins[26] coupled through an optical mode of a photonic crystal or dielectric micro-cavity

[1].

A theory and model focused on the interaction between quantum sources and photonic states may

be generated on the basis of the consideration of quantum dots [27, 28, 29, 30, 31], molecules with

sharp absorption and emission peaks [32, 33, 34, 35, 36], or N-V (single nitrogen vacancy) cen-

ters in diamond [37, 38, 39, 40, 41, 42, 43, 44] as artificial few level systems [15]. The selection

rules of these few-level systems are subject to the interactions dictated by physical properties the

system. For a QD [2] which specify σ+ or σ− transitions during the spontaneous creation of a

photonic state. In this contribution we model the spontaneous creation of photonic states coupled

to the electronic states of a quantum dot beyond the Markovian limit. We avoid this limit in order

to describe, from first principles, how a possibly infinite set of photonic frequencies νk present in

a dielectric-cavity can be excited from the vacuum state by a QD that is physically represented by

the state to state transition frequency ωnm and dipole moments ℘nm.

The model presented herein describes the spatio-temporal evolution of photonic states by means of

a Dirac-like equation for the PWF [10, 45, 11, 46, 47]. It has been to shown that the quantum state

of a photon can be experimentally reconstructed using optical homodyne tomography techniques

by measuring quantum noise statistics of field amplitudes at different optical phases [14, 17, 18].

In this work, the rigorous description of the interaction between a quantum source and the gener-

ated PWF draws a reference point for relating its g(2) function to those available from experimental

measurements. In the theoretical description presented in this contribution, we follow the canon-

ical quantization procedure presented by the Gupta and Beuler method [48, 12, 13] to arrive at a

resulting interaction between the PWF and the electronic states of a QD. To do so, we adopt the
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radiation gauge for interacting fields1 and seek a connection between the PWF [49, 50, 51, 47],

and the four vector potential for a Maxwell Field. This leads to two important results, the complex

photonic tensor (not to be confused with the textbook Faraday or Maxwell Field Tensor) and the

coupled electron-photon field equations in terms of a field equation for the PWF. Where it has been

previously proposed that the PWF can not yield an interaction between photons [52] we show that

the prescription presented here yields the possibility to produce such an interaction as mediated via

few level systems. This complex photonic tensor gives rise to the PWF which directly satisfies and

yields equations of motion equivalent to the generalized Maxwell equations [51, 11, 46, 45] (not to

be confused with the textbook Maxwell’s equations for real electric and magnetic components). In

the second result we show the coupling equations of motion between a two level quantum source

and the PWF it generates and extend these results to show how these can be applied to model the

emission of a single photon from a dielectric micro-/nano-cavity using finite differencing schemes.

Throughout the relativistic treatment of these fields we will maintain the Minkowski Metric ηµν to

have the signature (+,−,−,−), and adopt the 4-notation consistent with xµ which corresponds to

the position four-vector (ct, x) and the product ηµνxν = xµ = (ct,−x).

Additional applications of this model could include the design of devices aimed at single pho-

ton emission [6], single photon detection [7, 8], quantum teleportation, and quantum computing

within a quantum network [2]. Preliminary results implementing the MIT Electromagnetic Equa-

tion Propagation (MEEP) [53] and MIT Photonics Bands (MPB)[54] computer codes to model said

whispering gallery modes in dielectric micro-cavities and optical modes in photonic crystals are

encouraging. The preliminary results presented in figures (1.2), (1.3), and (1.4) show that Finite

Difference Time Domain (FDTD) techniques could possibly be used to model a whispering gallery

mode or photonic crystal mode coupled to an embedded quantum source.

1.4 Preliminary Theory & Work Plan

The objectives carried out as part of this dissertation revolve around the construction of a theory

and model describing the spontaneous emission of a photon coupled to the electronic state of a

1In the relativistic regime we set ~∇ · ~A+ 1
c∂tΦ = 0
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(a) Electromagnetic Field Energy

(b) Electric field x component

(c) Magnetic field z component (d) Electric field y component

Figure 1.2: Preliminary results for 2-dimensional whispering gallery mode predictions in cylindri-
cal dielectric micro-cavities.

Figure 1.3: Preliminary results for x component of electric field whispering gallery mode in 3-
dimensions
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(a) Large air pockets at an initial time (b) Large air pockets at a later time

(c) Small air pockets at an initial time (d) Small air pockets at a later time

Figure 1.4: Electric Field x projection for photonic crystal with air pockets of variable size at set
times. Preliminary results for 2-dimensional optical mode predictions in photonic crystal micro-
cavities.
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quantum dot. The aim of this study is to understand and implement the quantum interactions be-

tween the quantum source and its emitted photons in dielectric media. These interaction are carried

out in the non-Markovian limit which does not make use of the Weisskopf-Wigner approximation.

Applications of the theory and model may include single photon emission [6], single photon de-

tection [7, 8], quantum teleportation, and quantum computing within a quantum network [2].

• Preliminary results presented in figures (1.2), (1.3), and (1.4) were produced by means of

the existing MEEP [53] FDTD program for electromagnetic modeling. These model elec-

tromagnetic wave propagation in dielectric media. We extend these results by developing a

theory that models spontaneously created photonic states coupled to few level systems em-

bedded in such cavities. We additionally extend this model to an array of two couple few

level systems required for modeling a quantum computing network.

• We develop a theoretical construct by following the procedure presented in the field of Quan-

tum Optics. We use this theoretical construct for describing the coupling of an atomic-like

state to that of a photonic state emitted by a two and six level system. Currently, approxima-

tions to the solution of this problem make use of the Weisskopf-Wigner approximation. This

approxiamtion fixes the value of accessible modes from a possibly infinite set of frequen-

cies νk to a single mode of the cavity ωγ . We do not make this approximation. We model

spontaneous emission events from quantum sources embedded in micro-cavities which enter

regimes inclusive of possible collapse and revival phenomena. Within the context of a full

quantum source interacting with it’s emitted electromagnetic field at the quantum level these

are known as the Purcell and Rabi regimes.

• Within this theoretical construct we show how models of spontaneously created photonics

states couple PWFs via the few level systems such as QDs.

• We develop a new computational scheme that implements these models two and six level sys-

tems. The numerical methods implemented depend on a finite differencing of time and space

similar to Finite Difference Time Domain (FDTD) methods. We suggest that future efforts
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should focus Finite Element Methods (FEM), Spectral Methods (SM), & Quasi-Spectral

Methods (QSM).

• Finite differencing computational methodologies proved to be too computationally time con-

suming and required parallelization of the algorithm. Parellization was carried out through

the use of the Message Passing Interface (MPI). An effort was made to adopt FEM or SM

computational techniques for computational speed up, but proved to be beyond the scope of

time assigned for this study.

We assume that the interaction between a quantum source and photon can be fully described by

a PWF Lagrangian for this system. This Lagrangian is composed of the quantum source, the free

field term (in terms creation and annihilation operators a†~k,λ , a~k,λ), and the interaction introduced

by means of a minimal substitution replacing the canonical momentum pµ with pµ → pµ − e
c
Aµ,

where e is the electric charge, c is the speed of light, and Aµ is the electromagnetic four vector

potential. Subsequently, such a self dual Lagrangian leads to a complete HamiltonianH

H = Hσ +Hγ +HInt (1.4.1)

where Hγ , Hσ, and HInt represent the photonic, electronic and interacting terms respectively.

The interaction term depends on both the dipole and rotating wave approximations (RWA) and is

presented in the interaction picture. We solve the set of these coupled differential equations first

analytically for a two level system and then numerically for more than two levels.

1.4.1 Plane Wave Dipole Approximation

The interaction and quantum source terms of the Hamiltonian density can be found by making

the dipole approximation and applying it to the equations of motion for the various systems. We

start by taking the proposed PWF Lagrangian expressing it in terms of the conjugate momentum

pµ → pµ −
e

c
Aµ. In textbooks [15], the dipole approximation traditionally assumes that the entire
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quantum source is immersed in a plane electromagnetic wave described by a vector potential2 ~A

which satisfies

~A (~r0 + ~r, t) = ~A (t) ei
~k·(~r0+~r) (1.4.2)

≈ ~A (t) ei
~k·(~r0) (1.4.3)

to first order in ~r, where ~r represents some position in space with respect to a globally defined

coordinate system, t represents the time, e is the natural number, i represents the imaginary number,

~k represents the wave vector, and ~r0 is taken to be the spatial origin of the quantization axes of the

quantum source state. In this approximation we additionally require the possibility to redefine the

wave-function ϕ (~r, t) of the quantum source by

ϕ (~r, t) = e
i
~
e
c
~A(~r0,t)·~rφ (~r, t) (1.4.4)

where ~ represents Plank’s constant. Substituting these two approximations back into (1.4.6) and

solving yields

i~∂t
[
e
i
~
e
c
~A(~r0,t)·~rφ

]
=

(
~p− e

c
~A
)2

2m

[
e
i
~
e
c
~A(~r0,t)·~rφ

]
i~
[
i

~
e

c

(
~̇A · ~r

)
φ+ φ̇

]
ei
e
~
~A(~r0,t)·~r =

(
~p− e

c
~A
)2

2m

[
e
i
~
e
c
~A(~r0,t)·~rφ

]

where ∂t represents the partial derivative with respect to time, m represents the mass of a particle.

Remembering that the vector potential in the radiation gauge requires that the electric field ~E

satisfy ~E = −1
c
∂t ~A. We can find an equation describing the approximated quantum source state φ

2Here we switch from four notation to 3+1 notation.
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given by

i~∂tφ =


(
~p− e

c
~A
)2

2m
− e

(
~E · ~r

)φ
=

~p2 − e
c
~p · ~A− e

c
~A · ~p+

(
e
c
~A
)2

2m
− e

(
~E · ~r

)φ .

Making a final assumption by approximating that
(
e ~A
)2

� 1 and again remembering that the

divergence, written in terms of the nabla operator ~∇, ~∇ · ~A = 0 implies that the commutator

between the momentum and electromagnetic vector potential yields
[
~p, ~A

]
= 0 in the radiation

gauge, we arrive at

i~∂tφ =

[
~p2

2m
− e

(
~E · ~r

)]
φ . (1.4.5)

Note that if we had included any external influence on the quantum source wave-function by in-

cluding an additive term

i~∂tϕ =

(
~p− e

c
~A
)2

2m
ϕ+ V (~r, t)ϕ (1.4.6)

we would arrive at a similar result

i~∂tφ =

[
~p2

2m
− e

c

(
~E · ~r

)]
φ+ V (~r, t)φ . (1.4.7)

This leads to the conclusion that we can re-express this equation as

i~∂tφ = Hσφ+HIntφ . (1.4.8)
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Regrouping these terms we recognize that Hσ represents the Hamiltonian that fully describes the

energy eigenstates of the quantum source in the absence of the vector potential ~A and that the

interaction term is given by

HInt = −e
(
~E · ~r

)
. (1.4.9)

However, in this dissertation we choose to follow the derivation which calculates the dipole ap-

proximation from the commutation of the total Hamiltonian with the position operator [55, 56],[
H, ~̂r

]
= im0

~ ~p. This approach is described with the PWF interpretation later in the text.

1.4.2 Energy & Fock Representation

To complete this section we define the product energy and Fock eigenstates |a〉 (the excited state)

and |b〉(the ground state). In the general case where we are interested in state to state transitions

of the quantum source, we can represent the quantum source Hamiltonian in terms of the quantum

source transition operators by

Hσ =
∑
n

En |n〉 〈n| , (1.4.10)

where |n〉 is an energy eigenstate of the quantum source and En is it’s corresponding energy.

Restricting our discussion to a two state system implies that

Hσ = Ea |a〉 〈a|+ Eb |b〉 〈b| . (1.4.11)

Here we simplify the notation by introducing σnm = |n〉 〈m| to represent the transition operators.

Hσ = Eaσaa + Ebσbb (1.4.12)
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We recognize that these operators σnm satisfy the algebra of the spin-1
2

Pauli spin matrices

[σnm, σn′m′ ] = σnm′δmn′ − σn′mδnm′ , (1.4.13)

where δnm is the Kronecker delta. As such σab and σba can be considered to be the creation and

annihilation operators of the two level quantum source states σ− ≡ σba and σ+ ≡ σab (which are

different from the optical spin transitions) respectively [15].

To describe the interaction between a photon and a two level quantum source, the interaction

Hamiltonian is expanded in terms of the energy eigenstates of the quantum source and summed

over the two accessible states. The coupling of the source with the optical field is then mitigated

by the transition dipole operator ~℘nm between the sates enumerated by n andm, ~℘nm = e 〈n|~r |m〉

e~r = ~℘abσ+ + ~℘baσ− . (1.4.14)

Assuming that the dipole operators of the quantum source states are real, these satisfy the equation

~℘ab = ~℘ba

e~r = ~℘ab (σ+ + σ−) (1.4.15)

and the interaction component of the total Hamiltonian will be given by

HInt = − ~E · ~℘ab (σ+ + σ−) . (1.4.16)

To complete the total Hamiltonian that describes the single photon/quantum source system one can

make use of the single photon HamiltonianHγ given by

Hγ =
∑
~k,λ

~νk
(
a†~k,λa~k,λ +

1

2

)
, (1.4.17)
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(where λ ∈ {−,+}represents positive or negative spin or helicities) and the electric field operator

~E =
∑
~k,λ

√
~νk

2ε0V

[
ε̂~k,λa~k,λe

−iνktei
~k·~r + ε̂∗~k,λa

†
~k,λ
eiνkte−i

~k·~r
]
, (1.4.18)

where a†~k,λ and a~k,λ are the creation and annihilation operators for single photon states and satisfy

the algebra of
[
a~k,λ, a

†
~k′ ,λ′

]
= δ~k,~k′δλ,λ′ . In addition this introduces the traditional notion of a spin

polarized unit vector ε̂~k,λ. Taking all of these contribution into consideration the total Hamiltonian

H = Hσ +Hγ +HInt can be represented in the dipole approximation by

H = Eaσaa + Ebσbb +
∑
~k,λ

~νk
(
a†~k,λa~k,λ +

1

2

)
− ~E · ~℘ab (σ+ + σ−) . (1.4.19)

1.4.3 Interaction Picture

Table 1.1: Interaction Picture Operators

Free Operators Interacting Operators

a~k,σλe
−iνkt e

i
~ (Hσ+Hγ)ta~k,σλe

− i
~ (Hσ+Hγ)t

a†~k,σλ
eiνkt e

i
~ (Hσ+Hγ)ta†~k,σλ

e−
i
~ (Hσ+Hγ)t

σ−e
−iωσt e

i
~ (Hσ+Hγ)tσ−e

− i
~ (Hσ+Hγ)t

σ+e
iωσt e

i
~ (Hσ+Hγ)tσ+e

− i
~ (Hσ+Hγ)t

It is well known that one can change to the interaction picture by following the transcription orig-

inally proposed by Dirac [57]. To switch to the interaction picture we first find the initial state of

the Hamiltonian density by evaluating it at t = t0 = 0 and continue by following the diction pre-

sented in table (1.1) which can be constructed from the discussion presented in [55]. The resulting

Hamiltonian in the interaction picture V is given by
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V =
∑
~k,σλ

√
~νk

2ε0V

[
ε̂~k,λa~k,λe

−iνktei
~k·~x + ε̂∗~k,λa

†
~k,λ
eiνkte−i

~k·~x
]
· ~℘ab

(
σ+e

iωσt + σ−e
−iωσt

)
. (1.4.20)

Assuming that the quantum source is initially in the state |a〉 at t0 = 0 and photon is in the vacuum

state |0〉 we can define the state vector [15] for the combined quantum source/photon system by

the product state |γσ〉, given by the product |γσ〉 = |γ〉 ⊗ |σ〉 as

|γσ〉 = ca (t) |a0〉+
∑
~k,λ

cb,~k,λ (t)
∣∣b1~k〉 , (1.4.21)

with ca (0) = 1 and cb,~k (0) = 0 which represent the absence or existence of a photon respectively.

The equations of motion for these probability amplitudes [15] are found from the Schrödinger

equation in the interaction picture

i~∂t |γσ〉 = V |γσ〉 , (1.4.22)

by applying the rotating wave approximation [58], summing over all positive and negative values

of ~k, expanding the state vector, substituting into the expression above, and grouping like terms to

be

∂tca (t) =
i

~
∑
~k

√
~νk

2ε0V
~℘ab · ε̂∗~ke

i(ωσ−νk)tcb,~k (t) (1.4.23)

∂tcb,~k (t) =
i

~

√
~νk

2ε0V
~℘ab · ε̂~ke−i(ωσ−νk)tca (t) . (1.4.24)

Note that these equations of motion lack the spin resolved components of the unit helicity vectors.

We will re-incorporate and consider the spatial propagation of these by working with the PWF

interpretation.
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1.4.4 Propagate and Couple to the Electric Field

The final expression for the state coefficient corresponding to the probability density of measuring

a photon through the term cb,~k that is coupled to the quantum source state ca at ~r0 may be related

to the electric component of the photon. This is evident by formally integrating the expression for

cb,~k and applying the Weisskopf-Wigner approximation discussed previously to get an expression

for the generated electric field [15].

Once the electric field is know it should be possible to propagate it via Maxwell’s Equations. In

order to solve the problem without making the Weisskopf-Wigner approximation for more than 2

levels it is necessary to computationally implement an algorithm that can model the propagation

of electromagnetic waves and couple to the equations of motion. As a first approach we focused

on modifying existing FDTD code to include interaction and came to the conclusion that it was

required that a new new code to solve this problem. As presented within our preliminary results we

had proposed the use of MEEP [53] and MPB [54] to model electromagnetic field propagation for

implementing the FDTD scheme and searching for optical cavity modes both in dielectric micro-

cavities or photonic crystals. To incorporate the inclusion of the quantum source and electric field

coupling we attempted to modify this code and investigate the possible use of different numerical

algorithms [59]. Since the modification of the MEEP and MPB suites proved intractable we de-

veloped a new program in C++ that implements the Yee grid [60] to model single photon emission

and propagation away from a quantum source.

1.4.5 Visualize and Calculate Spatial Profiles

A scheme for visualizing photon states can be implemented by incorporating similar methods used

by MEEP and MPB. This visualization scheme follows existing visualization techniques such as

those presented in preliminary results and extend these to incorporate the visualization of spa-

tial interference between fock states. The visualization of the electromagnetic field modes out

of resonance with the quantum source may be extracted by extending this mode to use existing

Harminv routines [61, 62]. Through the analysis of this model it is be possible to view study
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any polarization state associated with these photon Fock states. The measure and visualization

of the amount quantum entanglement between quantum states can be computed from the density

matrix by means of quantum entropy calculations [63, 64]. Visualization of results for these quan-

tities may be explicitly done by means of existing programs such as gnuplot or a simple real time

OpenGL implementation. The developed model, analysis of results, and visualization that are part

of this work plan provide the ability to compare first principles calculations to the experimental

development of a scalable quantum computing networks composed of photonic crystals and/or

dielectric micro-cavities.

1.5 Dissertation Time Table

Table 1.2: Dissertation Time line

Milestone Fall ’09 Spring ’10 Summer ’10 Fall ’10 Spring/Summer ’11

Dissertation Proposal X

Theoretical Model X X X X

Numerical Techniques X X X X

Single Photon Source X

Interaction of Q. Sources X

Multilevel Q. Sources X

Writing Dissertation X X X X X

Defend Dissertation X
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2 DESCRIBING THE PHOTON VIA THE PHOTONIC WAVE
FUNCTION

In the 1930s Ettore Majorana and J. Robert Oppenheimer had already constructed an approach that

could be used to express the photon by means of a photonic wave function PWF. Both Majorana

and Oppenheimer eventually went on to describe a plausible Lagrangian formalism for that wave

function. Since that time, most studies that have worked with the PWF have expressed it terms

of its electric and magnetic field components [65, 66]. Even more impressively, the Maxwellians,

such as Heaviside and Fitzgerald, [67], may have in the 1800s unknowingly found the Dirac-like

equation for the relativistic photon by expression Maxwell’s laws in operator form. Since those

times, Quantum Optics (QO) and Quantum Electro-Dynamics (QED) have matured to their current

state. Currently in these subjects, the quantum nature of the light and the PWF can be recorded

at detector by means of a procedure known as Homodyne Tomography [14]. Current efforts in

the field of QO are focused on extending these and other methods to improve on the lifetime and

coherence of quantum states. In this way the interaction between quadratures of the PWF and

quantum sources can be manipulated in the weak field limit. Quantum sources that are popular in

today’s search for components of a quantum computer include quantum dots [27, 28, 29, 30, 31],

molecules with sharp absorption and emission peaks [32, 33, 34, 35, 36], as well as N-V centers in

diamond[37, 38, 39, 40, 41, 42, 43, 44]. These are of interest because they can be modeled as ar-

tificial few level atoms[15]. It is remarkable to note that additional efforts in the 1950s focused on

finding a particle theory for a photon which was compatible with Dirac’s theory[50]. In fact, these

efforts were aimed at further investigating the similarity between the Dirac equation, Maxwell’s

field equations, and their corresponding wave-functions [49].

There is a stark contrast between the motivation that led researchers in the early 1900’s to the

presently controversial subject of the simple contemplation of the existence of a photonic wave

function. The study that occurred in the early 1900’s stemmed from an interest to find a fundamen-
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tal description for a photon that incorporated all the general considerations of field theory [49]. In

describing the state of a photon in terms of ordinary differential operators, a compromise between

the complexities associated with spinor components and the discussion of solutions could be found

[50].

The current controversy that exists around the PWF stems from the fact that PWFs are said to not

have all the properties which are traditionally associated with wave functions in non-relativistic

wave-mechanics [11]. In fact, standard textbooks in the subject of quantum optics are careful to

point out that one may not think of the photon in the same context as the a massive non-relativistic

particle [15]. The key here is the term non-relativistic. In fact, studies point out, that this is due to

the fact that photons can have positive and negative frequencies where as Schrödinger-like particles

can only have positive ones [15]. Furthermore, it is said that since the ~E and ~B fields associated

with Maxwell’s equations on free-space are real and can therefore not be eigen-functions of the

energy operator i~∂t. That this is true would depend on the idea that Schrödinger-like particles

have to be complex [68]. In this chapter we present our motivation for introducing the PWF in our

studies and re-iterate for posterity the definition of the photonic wave function that can be found in

the literature. In this contribution we introduce a new single photon operator and use it to motivate

the form of the PWF we use throughout the text and in out new calculations.

2.1 From Maxwell’s Equations to the PWF

In this section we re-iterate in summary the common approach presented in the literature that is

used to define the PWF [69, 10, 70, 15]. A good point of departure stems from the second quantized

description of the electric and magnetic fields [15] working within the vacuum

~E (~x, t) =
∑
~k,λ

ε̂~k,λE~ka~k,λe−iνktei
~k·~x + H.c. (2.1.1)

~B (~x, t) =
∑
~k,λ

~k × ε̂~k,σλ
νk

E~ka~k,λe−iνktei
~k·~x + H.c. . (2.1.2)
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In the expressions above the field field strengths are traditionally give by the quantity E~k =

√
~νk

2ε0V

and the expansion functions e−iνktei~k·~x + H.c. are chosen to satisfy the D’Alembertian operator

(� = c−2∂2
t −∇2) [71] in the following equation of motion

�
[
e−iνktei

~k·~x + H.c.
]

= 0 . (2.1.3)

The definition of the positive and negative frequency parts of the magnetic field, which correspond

to their creation and annihilation operators, can be re-written in terms of the stray or demagnetizing

field from the definitions [71] ~B(+) (~x, t) ≡ µ0
~H(+) (~x, t), c−2 = µ0ε0, & k = νkc as

~H(+) (~x, t) =
∑
~k,λ

~k

k
× ε̂~k,λ

√
~νk
2µ0

a~ke
−iνktei

~k·~x . (2.1.4)

By rewriting the quantized electric and magnetic field operators in terms of the their positive and

negative energy parts

~E (~x, t) = ~E(+) (~x, t) + ~E(−) (~x, t) (2.1.5)

~H (~x, t) = ~H(+) (~x, t) + ~H(−) (~x, t) , (2.1.6)

their interpretation can be understood to lead to the probability of exciting the state of a detector

(atom, QD, etc) in terms of these. As such, at a given position ~x, the probability of measuring these

(for example the electric field strength) is governed by the relationship

Pψ (~x, t) ∝ 〈ψ| ~E(−) (~x, t) ~E(+) (~x, t) |ψ〉 , (2.1.7)

which may be written in terms of the vacuum state as

Pψ (~x, t) ∝ 〈ψ| ~E(−) (~x, t) |0〉 〈0| ~E(+) (~x, t) |ψ〉 . (2.1.8)
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Taking care to carefully consider the definition of the state vector |ψ〉, where the probability is

dependent on the creation and annihilation operators of the electric field [15], the state-vectors that

we will be working with through this dissertation a the tradition Fock states. These states are eigen-

states of the creation, annihilation, and Hamiltonian operators. Since the creation and annihilation

operators we will be working with must obey the bosonic algebra, as was stated before, these states

obey the following rules:

a†~k,λ |0〉 =
√
n+ 1

∣∣∣(n+ 1)~k,λ

〉
(2.1.9)

a~k,λ |n〉 =
√
n
∣∣∣(n− 1)~k,λ

〉
. (2.1.10)

From the first definition it is clear that any state
∣∣∣n~k,λ〉 can be expressed in terms of the vacuum

state as

∣∣∣n~k,λ〉 =

√
1

n!

(
a†~k,λ

)n
|0〉 .

In fact, by operating on either the vacuum or |ψ〉 states with a single electric or magnetic field

operator will lead to the fact that this state must be

|ψ〉 ≡ |1〉 . (2.1.11)

Leading to the conclusion that since the probability is given by

Pψ (~x, t) ∝ 〈1| ~E(−) (~x, t) |0〉 〈0| ~E(+) (~x, t) |1〉 , (2.1.12)
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there must exists a probability density of measuring a single photon state |1〉 sharply peaked about

a frequency ω through a detector|ψ〉 that leads to the definition of an “electric field” by [15]

~ΨE (~x, t) = 〈0| ~E(+) (~x, t) |1〉 (2.1.13)

~Ψ†E (~x, t) = 〈1| ~E(−) (~x, t) |0〉 . (2.1.14)

Traditionally the probability amplitude is taken to be sharply peaked about the transition frequency

of the detector ω. This means that the frequency of the optical field νk is often expressed as a

slowly varying frequency represented by ω. Therefore, normalizing ~ΨE in these cases will yields

the photo-detection probability density due to the electric field without any contribution from the

additional modes νk 6= ω. One can always retract this assumption and not necessitate the frequency

νk to vary slowly by again including it in the sum. In the case where the approximation νk = ω

is not made, the normalized photo-detection probability amplitude for the electric field is given by

the expressions1

~ϕγ (~x, t) ≡
√

2ε0
~ω

~ΨE (~x, t) (2.1.15)

= 〈0| 1√
V

∑
~k,λ

√
νk
ω
ε̂~k,λa~k,λe

−iνktei
~k·~x |1〉 (2.1.16)

~ϕ†γ (~x, t) = 〈1| 1√
V

∑
~k,λ

√
νk
ω
ε̂∗~k,λa

†
~k,λ
eiνkte−i

~k·~x |0〉 . (2.1.17)

A similar probability amplitude for the magnetic field may be written which is also sharply peaked

about the transition frequency of the detector

~ΨH (~r, t) = 〈0| ~H(+) (~r, t) |1〉 (2.1.18)

~Ψ†H (~r, t) = 〈1| ~H(−) (~r, t) |0〉 (2.1.19)

1The volume term V was kept as part of the normalization requirement. This is due to the fact that when we
reiterate any observable associated with an eigenstate of ~Γγ and integrate over all space we will inevitably introduce a
contribution from the volume.
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and normalized to give a probability density due to a “magnetic field”

~χγ (~r, t) ≡
√

2µ0

~ω
~ΨH (~r, t) (2.1.20)

= 〈0| 1√
V

∑
~k,λ

√
νk
ω

~k

k
× ε̂~k,λa~k,λe−iνktei

~k·~x |1〉 (2.1.21)

~χ†γ (~r, t) = 〈1| 1√
V

∑
~k,λ

√
νk
ω

~k

k
× ε̂∗~k,λa

†
~k,λ
eiνkte−i

~k·~x |0〉 . (2.1.22)

In terms of (2.1.16), (2.1.17), (2.1.21), and (2.1.22) these energy-normalized probability densities

can be shown to satisfy a normalized form of Maxwell’s equations also found in [15]

~∇× ~ϕγ = −c−1∂t~χγ (2.1.23)

~∇× ~χγ = c−1∂t~ϕγ , (2.1.24)

along with their complex conjugates

~∇× ~ϕ†γ = −c−1∂t~χ
†
γ (2.1.25)

~∇× ~χ†γ = c−1∂t~ϕ
†
γ . (2.1.26)

From the literature it is known that these can be expressed as a Dirac-like equation [49, 50], both

in free space and with sources, by representing the probability densities discussed above in terms

of normalized spinors. The fact that this analogy is immediately made clear comes about from the

interpretation of these as the quantum form of Maxwell’s equations in matrix notation. This form
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is given by [15]

∂t

 ~ϕγ

~χγ

 =

 0 c~∇×

−c~∇× 0


 ~ϕγ

~χγ

 (2.1.27)

∂t

 ~ϕ†γ

~χ†γ

 =

 0 c~∇×

−c~∇× 0


 ~ϕ†γ

~χ†γ

 . (2.1.28)

2.1.1 Definition of the Photonic Wave-function

In this section we present the counter argument to the assertion present in the literature for the non-

existence of a photonic wave-function. In the discussion above it was presented that the electric

and magnetic components of an electromagnetic field could be represented in terms of complex

probability densities. In addition it was discussed that these satisfy a normalized quantum me-

chanical form of Maxwell’s equations. That discussion enforces that these wave-functions could

satisfy a complex energy operator i∂t. Further, the additional presentation of the argument asso-

ciated with the real nature of the ~E and ~B fields does not constrain the possibility of introducing

a new complex vector which can eventually be recognized as the PWF[51, 70, 11, 46, 45, 72]. In

addition, the problem with the positive and negative frequencies in the non-relativistic limit can be

addressed by means of an argument that already exists in relativistic quantum mechanics. In this

argument the positive and negative frequency parts are associated with particle and anti-particle

solutions respectively which have their own corresponding equations of motion [10, 70].

It is here that we will slightly depart from the description given in Scully and Zubairy and in-

clude the photonic wave function (PWF) formalism [51, 10, 11, 73, 46, 50, 49, 45]. We adopt this

formalism for two reasons.

1. The PWF is a spin (helicity) resolved wave-function that will facilitate the representation

and interpretation of results dependent on the interaction that arises due to pure σ+ and σ−

transitions.
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2. The equations of motion of the PWF are of first order and therefore lend themselves to

computational techniques derived from algorithms that are stable in 3+1 dimensions.

Here we reiterate in summary the definition of the wave-function and introduce the notation that

will be used throughout this dissertation. The notation that will be adopted to describe the un-

normalized form of the PWF in terms of the Riemann-Silberstein vector[10] is given by

~Fγ ≡

 ~F+
γ

~F−γ

 , (2.1.29)

where the Riemann-Silberstein vector depends on the classical (and real) displacement and mag-

netic fields as given by the definition ~F±γ ≡
1√
2

(
~D√
ε
± i ~B√

µ

)
. In media that is homogeneous we

distinguish the speed of light in vacuum c or c0 from the speed of light in that medium v via the

definition v =
1√
εµ

. Therefore, using the “spin-1 matrices” [66] (here expressed in terms of the

Levi-Civita symbol [71])←→s = −iεijk

i~∂t ~F±γ = ±v (←→s · ~p) ~F±γ . (2.1.30)

When written in matrix form this complex set of Maxwell’s Equations is indeed a sort of Dirac-like

(relativistic wave) equation for the free propagation of the electromagnetic field [74, 50, 49, 11, 51]

i~∂t

 ~F+
γ

~F−γ

 =

 v←→s · ~p 0

0 −v←→s · ~p


 ~F+

γ

~F−γ

 . (2.1.31)

Noting that a PWF that satisfies (2.1.31) and can be represented as a superposition of plane waves,

their spin or helicity polarization vectors2 ε̂~k,λ must depend on the propagation vector ~k [11]. This

is analogous to the discussion presented in the quantization of the electric and magnetic fields. A

useful property that exists between the wave-vector and the polarization vectors is that the cross-

2Note that these are not the transverse polarization vectors, but instead, these are spin polarization vectors.
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product between these yields the same polarization vector with an added complex phase3 of π
2

~k

k
× ε̂~k,λ = −λiε̂~k,λ . (2.1.32)

In the remainder of this document the polarization vector ε̂~k,− will be referred to as carrying posi-

tive helicity or left handed polarization (by convention ε̂~k,− = 1√
2

(xi − ixj)), and ε̂~k,+ will be re-

ferred to as carrying negative helicity or right handed polarization (by convention ε̂~k,+ =
1√
2

(xi + ixj)).

We will use the property 2.1.32 many times while searching for the PWF in Maxwell’s equations

and a more general Lagrangian formalism.

The relationship between un-normalized Riemann-Silberstein vector and the equations of motion

for the normalized PWF, as defined in this approach, depend on the ability to normalize the elec-

tric and magnetic fields simultaneously. By expressing the complex form of Maxwell’s equations,

along with its conjugate, in terms of the quantized electric and stray fields (instead of the displace-

ment and magnetic fields) one arrives at the classical equations of motion

i~∂t

(
ε ~E√

2ε
± iµ ~H√

2µ

)
= ±v←→s · ~p

(
ε ~E√

2ε
± iµ ~H√

2µ

)
, (2.1.33)

by using the constitutive relations for linear homogeneous media [10, 11, 75]. In a different ap-

proach than the one which is presented in the literature, we recognize the above in terms of the

associated second-quantized operators for the electric ~̂ΨE (~r, t) and stray ~̂ΨH (~r, t) fields respec-

tively

i~∂t

ε
(
~̂ΨE + ~̂Ψ†E

)
√

2ε
±
iµ
(
~̂ΨH + ~̂Ψ†H

)
√

2µ

 =

± v←→s · ~p

ε
(
~̂ΨE + ~̂Ψ†E

)
√

2ε
±
iµ
(
~̂ΨH + ~̂Ψ†H

)
√

2µ

 .

3Please see (C.5)
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Taking advantage of the definitions (2.1.17), (2.1.16) & (2.1.22), (2.1.21) and using the same

constitutive relations as before, we can substitute these definitions into the equations of motion

above and find the respective equations of motion for the energy-normalized spinor operators to be

i~∂t

[√
1

4

(
~̂ϕγ + ~̂ϕ†γ

)
± i
√

1

4

(
~̂χγ + ~̂χ†γ

)]
=

± v←→s · ~p
[√

1

4

(
~̂ϕγ + ~̂ϕ†γ

)
± i

√
1

4

(
~̂χγ + ~̂χ†γ

)]
.

The definition of the energy normalized PWF operator then stems from the energy-normalized

electric and magnetic field operators that satisfy the Dirac-like equation outlined above and is

given by

~̂Ψγ,± ≡
1

2

[(
~̂ϕγ + ~̂ϕ†γ

)
± i
(
~̂χγ + ~̂χ†γ

)]
. (2.1.34)

Making use of the property (2.1.32) and expressing each polarization of ~ϕγ & ~χγ in terms of their

creation and annihilation operators a†~k,λ& a~k,λ respectively, we can see that the second quantization

form of ~̂Ψγ,+ & ~̂Ψγ,− are given by the sums

~̂Ψγ,+ ≡
1

2

1√
V

∑
~k,λ

√
νk
ω
ε̂~k,λa~k,λe

−iνktei
~k·~x + H.c.


+ i

∑
~k,λ

−iλ
√
νk
ω
ε̂~k,λa~k,λe

−iνktei
~k·~x + H.c.


~̂Ψγ,− ≡

1

2

1√
V

∑
~k,λ

√
νk
ω
ε̂~k,λa~k,λe

−iνktei
~k·~x + H.c.


− i

∑
~k,λ

−iλ
√
νk
ω
ε̂~k,λa~k,λe

−iνktei
~k·~x − H.c.

 .

In later chapters we will use these expressions for describing the σ+ and σ− transitions in a new

light.
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Please note that taking the Hermitian conjugate of either of these expressions will yield one an-

other. This does not imply the existence of a negative energy solution. It means that one could

consider that these expressions describe particle and antiparticle pairs of the photon. This property

of the photon has peen previously studied and its consequences addressed in the vacuum [10, 11].

In those studies it was pointed out that a distinction between a photon and anti-photon does not

exist and that there is no need for a photon conservation law[10, 11]. In those studies it is also

noted that the operators ~̂Ψγ,+ and ~̂Ψγ,− correspond to left-handed and right-handed photons that

can be freely superposed. Further, it is suggested that electromagnetic interactions are invariant

under the parity transformation4 and that a change of polarization should be associated with the

parity transformation and not with a particle-antiparticle transition. The rationale for the assertions

regarding “antiparticle polarization” rely on the self-evident property that the Hermitian conjugate

of the polarization vectors have to satisfy the equation ε̂∗~k,σ+
= ε̂~k,σ− .

A couple of interesting properties of the Riemann-Silberstein vector worth mentioning are as fol-

lows. The energy carried by an electromagnetic field expressed by the Riemann-Silberstein vector

is given by

Hγ = ~F†γ
~Fγ (2.1.35)

Also, there exists the possibility to describe the coupling between Riemann-Silberstein vectors of

opposing spin, ~F+
γ and ~F−γ , by working with inhomogeneous media. In media that is inhomoge-

neous the definition of the equations of motion for the un-normalized PWF leads to a Dirac-like

equation for a photon that is dressed in an effective mass [11, 10]

i~∂t~Fγ =

 √
v (~r)←→s · ~p −i~ v(~r)

2h(~r)
(←→s · ∇h (~r))

i~ v(~r)
2h(~r)

(←→s · ∇h (~r)) −
√
v (~r)←→s · ~p

 ~Fγ . (2.1.36)

4These are transformations that interchange states with opposite helicities
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This is analogous to a relativistic theory of a massive particles. For example and in comparison, in

relativistic quantum mechanics the Dirac equation for a neutrino is given below [13, 12, 10, 11]

ψη (~r, t) ≡

 ~ϕη

~χη

 (2.1.37)

i~∂tψη (~r, t) =

 c←→σ · ~p mc2

mc2 −c←→σ · ~p

ψη (~r, t) . (2.1.38)

2.2 Definition of the PWF Operator from Maxwell’s Equations

The normalized electric and magnetic field operators defined in expression (2.1.34) are operators

that can create a photon with any bandwidth that is dependent only on the state vector that they

operate on. For the case of a vacuum state, all of the modes contribute towards the definition of a

single photon state with a definite line-width. As was mentioned in the previous section the real

advantage of using the wave function arises due to the clarity of interpretation that can be derived

of the interactions we seek to describe in this dissertation. In this section we focus on this advan-

tage and seek an operator that will lead to an accessible interpretation of the interaction between

the quantum systems we will be studying. We note that this approach can in general be applied to

any charged massive field that interacting with numbered photon states. A detailed discussion on

this interaction will be presented in later chapters.

We start the definition of this operator from the expression (2.1.27) which we found from the

expressions for the energy-normalized electric (2.1.17) and magnetic (2.1.22) field operators. Car-

rying out the full sum over the spin states, λ find that this is in fact a single photon creation operator

given by the expressions

~̂Ψγ,+ =
1√
V

∑
~k

√
νk
ω

[
ε̂~k,+a~k,+e

−iνktei
~k·~x + ε̂∗~k,−a

†
~k,−
eiνkte−i

~k·~x
]

(2.2.1)

~̂Ψγ,− =
1√
V

∑
~k

√
νk
ω

[
ε̂~k,−a~k,−e

−iνktei
~k·~x + ε̂∗~k,+a

†
~k,+
eiνkte−i

~k·~x
]
. (2.2.2)
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These operators carry all of the information about momentum, number, energy, and spin that we

can possibly associate with the state of a single photon. Please note that by taking the adjoint of

either yields the relations

~̂Ψ†γ,+ =
1√
V

∑
~k

√
νk
ω

[
ε̂∗~k,+a

†
~k,+
eiνkte−i

~k·~x + ε̂~k,−a~k,−e
−iνktei

~k·~x
]

(2.2.3)

= ~̂Ψγ,− (2.2.4)

and vice-verse. We therefore define operator to be the notation that we will use throughout this

dissertation as the energy normalized single photon operator5

~̂Γγ =
1√
V

∑
~k

√
νk
ω

[
ε̂~k,+a~k,+e

−iνktei
~k·~x + ε̂∗~k,−a

†
~k,−
eiνkte−i

~k·~x
]
. (2.2.5)

This operator, being a spin-resolved operator also carries with it all the properties of a spinor[13,

11, 10, 51, 70]

~Ψγ (~r, t) =

 ~̂Ψγ,+

~̂Ψγ,−



and we will refer to ~̂Γγ as the normalized Riemann-Silberstein Field Operator for historical ref-

erence (or photonic wave function operator for short). Similarly the un-normalized Riemann-

Silberstein vector can also be associated with a similar spinor [11, 10, 51, 70]

~Fγ (~r, t) =

 ~̂Fγ,+

~̂Fγ,−

 .

5To rewrite this expression as an integral over an infinite number of accessible modes or as a discrete sum of modes,
it is necessary to use the transition from a continuum of states to a discrete space via

V

(2π)
3

ˆ
d3k →

∑
~k
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Though these expressions are already sufficient to construct the formalism we will be using for

coupling low intensity Maxwell Fields to charged matter fields, in the next chapter and in the dis-

cussion present in the appendices6, we will describe in detail all of the conserved quantities that

are associated with the newly defined single photon operator.

To interpret the meaning of the single photon operator we will follow a discussion similar to the one

presented in the previous section and operate with these on numbered Fock states. The full corre-

spondence between QED and this PWF formalism has been studied previously [52] and we there-

fore constrain our discussion to a summary of the interpretation of single-photon states. Though

previous studies have argued that the PWF picture can not be used to introduce an interaction

between photonic states [52, 66], we show, as part of later chapters of this dissertation, that the

interaction between photonic states can be mitigated by charged matter fields.

We start the interpretation of the single photon wave function similarly to our discussion in the pre-

vious section. We therefore break up the PWF operator into positive and negative frequency (not

to be confused with spin, energy, or anti-particle) parts.

~Γγ = ~Γ(+)
γ + ~Γ(−)

γ . (2.2.6)

We limit our discussion to the terminology of frequency to avoid the debate over the interpretation

of these as corresponding to positive or negative energy [51, 52, 66, 45, 73, 50, 74, 49, 10, 11].

2.3 Working with the PWF ~Γγ operator

The commutation relations associated with the positive and negative frequency parts of the PWF

operator are7[15, 13, 12]

[
~Γ(+)
γ , ~Γ(−)

γ

]
= 0 ,

6Refer to alpha and beta matrix representation of the PWF Dirac Equation in the appendix
7The polarization vectors satisfy the identity ε̂∗~k,σλ · ε̂~k′ ,σλ′ = δ~k.~k′ δσλ,σ′λ . See (C.5)
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[
~Γ(±)
γ , ~Γ†(±)

γ

]
= 0 ,

[
~Γ(±)
γ , ~Γ†(∓)

γ

]
=

1

V

∑
~k

νk
ω
ε̂~k,±ε̂

∗
~k,± .

From these we can obtain the the commutation relations for the PWF operator and its Hermitian

conjugate. These commutation relations yield the relation

[
~Γγ, ~Γ

†
γ

]
=

[
~Γ(+)
γ , ~Γ†(+)

γ

]
+
[
~Γ(−)
γ , ~Γ†(−)

γ

]
+
[
~Γ(−)
γ , ~Γ†(+)

γ

]
+
[
~Γ(+)
γ , ~Γ†(−)

γ

]
=

1

V

∑
~k

νk
ω
e−2iνkte2i~k·~x

(
I −

~k~k

|k|2

)
.

Considering a continuum of states we can re-write this expression as an integral over an infinite

number of modes yields the commutation relation to be

1

V

∑
~k

νk
ω
e−2iνkte2i~k·~x

(
I −

~k~k

|k|2

)
→
ˆ

d3k

(2π)3

νk
ω
e−2iνkte2i~k·~x

(
I −

~k~k

|k|2

)

=
c

ω

ˆ
d3k |k|
(2π)3 e

2i|k|(|x| cos θ−ct)

(
I −

~k~k

|k|2

)

which require the definition of a coordinate system in order to be evaluated.

We can gain a further understanding of these operators by interpreting them in terms of their

corresponding wave-functions. We accomplish this by operating on a single photon state 〈1| =

〈0|
∑
~k,λ

a~k,λ. However, since we will be coupling this state to that of a quantum source, we will no

longer have free particle states. We are therefore introduce a probability amplitude c∗~k,σλ associated

with this state 〈1| = 〈0|
∑
~k,λ

c∗~k,λa~k,λ. In later chapters we will show how this probability amplitude

couples to the state of a quantum source. However, in the meantime, we work with the vacuum

state in the absence of matter. Proceeding with operation of ~Γ†γ on this state 〈1| = 〈0|
∑
~k,λ

c∗~k,λa~k,λ,
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the probability density is determined to be

〈1| ~Γ†γ |0〉 =

√
1

V

∑
~k

√
νk
ω
c∗~k,+ε̂

∗
~k,+
eiνkte−i

~k·~x .

Conversely, operating on |1〉 =
∑
~k,λ

c~k,λa
†
~k,λ
|0〉 yields this probability density to be

〈0| ~Γ†γ |1〉 =

√
1

V

∑
~k

√
νk
ω
c~k,−ε̂~k,−e

−iνktei
~k·~x .

Operating with ~Γ on |1〉 =
∑
~k,λ

c~k,λa
†
~k,λ
|0〉 yields the probability density to be

〈0| ~Γγ |1〉 =

√
1

V

∑
~k

√
νk
ω
c~k,+ε̂~k,+e

−iνktei
~k·~x .

Again, conversely operating on 〈1| = 〈0|
∑
~k,λ

c∗~k,λa~k,λ yields the probability density to be

〈1| ~Γγ |0〉 =

√
1

V

∑
~k

√
νk
ω
c∗~k,−ε̂~k,−e

iνkte−i
~k·~x .

These probability densities may be interpreted similarly to the probability of measuring an Electric

Field as before. Following this interpretation, the probability of measuring a photon with negative

spin (positive helicity or left handed polarization), as given by the discussion above, implies that

the PWF operators ~Γ(+)
γ , ~Γ

(−)
γ & ~Γ

†(+)
γ , ~Γ

†(−)
γ yield

Pγ,+ ∝ 〈1|
(
~Γ(+)
γ

)†
|0〉 〈0| ~Γ(+)

γ |1〉 .

Recalling that the Hermitian conjugate of the positive frequency part of the PWF operator is the

negative frequency part of the Hermitian conjugate of the PWF operator
(
~Γ

(+)
γ

)†
= ~Γ

†(−)
γ . Using

this identity we can define the notation for the probability density of the PWF, which has a positive
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spin, by dropping the hat of the symbol ~Ψγ,+ according to the following expressions

~Ψγ,+ = 〈0| ~Γ(+)
γ |1〉

~Ψ†γ,+ = 〈1| ~Γ†(−)
γ |0〉 .

Similarly, we define the notation for describing the probability density for the PWF, this time

negative spin according to the following expressions

Pγ,σ− ∝ 〈1|
(
~Γ†(+)
γ

)†
|0〉 〈0| ~Γ†(+)

γ |1〉 .

This time we take advantage of the converse argument for the Hermitian conjugate of the Hermitian

conjugate of the positive frequency part of the PWF operator
(
~Γ
†(+)
γ

)†
= ~Γ

(−)
γ . Through this

identity we define the notation for the probability density of the PWF, which has a negative spin,

by dropping the hat of the symbol ~Ψγ,− according to the following expressions

~Ψ†γ,− = 〈0| ~Γ†(+)
γ |1〉

~Ψγ,− = 〈1| ~Γ(−)
γ |0〉 .

The overall probability of measuring a photon with any helicity must therefore be given as a the

sum of the probabilities for either case. The normalization condition must therefore be

ˆ
d3x~Ψ

†
γ
~Ψγ =

ˆ
d3x

(
~Ψ†γ,+~Ψγ,+ + ~Ψ†γ,−~Ψγ,−

)
= .1 (2.3.1)

Consequently the interpretation of these photonic wave functions is take to be the following

• ~Ψγ,+ (~r, t) represents an energy normalized photonic wave function which propagates with

λ → + (referred to as positive spin, negative helicity, or right handed polarization), when

35



operating on a single photon state, which can be described via a PWF given by

~Ψγ,+ (~r, t) =
∑
~k

ζ~k,+ε̂~k,+e
−iνktei

~k·~x (2.3.2)

~Ψ†γ,+ (~r, t) =
∑
~k

ζ∗~k,+ε̂
∗
~k,+
eiνkte−i

~k·~x (2.3.3)

• ~Ψγ,− (~r, t) represents an energy normalized photonic wave function propagating with λ→ −

(referred to as negative spin, positive helicity, or left handed polarization), when operating

on a single photon state, which can be described via a PWF given by

~Ψγ,− (~r, t) =
∑
~k

ζ~k,−ε̂~k,−e
−iνktei

~k·~x (2.3.4)

~Ψ†γ,− (~r, t) =
∑
~k

ζ∗~k,−ε̂
∗
~k,−e

iνkte−i
~k·~x (2.3.5)

Therefore, a unit-normalized operator, associated with the PWF, is given by

ψγ (~r, t) =
∑
~k

(
ζ~k,+ε̂~k,+a~k,+e

−iνktei
~k·~x + ζ∗~k,−ε̂

∗
~k,−a

†
~k,−
eiνkte−i

~k·~x
)

(2.3.6)

ψ†γ (~r, t) =
∑
~k

(
ζ∗~k,+ε̂

∗
~k,+
a†~k,+e

iνkte−i
~k·~x + ζ~k,−ε̂~k,−a~k,−e

−iνktei
~k·~x
)
. (2.3.7)

Again, we stress that these operators represent two possible polarizations of the photon. The inter-

pretation corresponding to these as a particle anti-particle pair is not investigated and is considered

beyond the scope of the discussion presented in this dissertation.8 Comparing to (2.1.16), (2.1.17),

(2.1.21), and (2.1.22) we note that these electric and magnetic wave-functions are indeed com-

posed of single photon wave functions. Moreover, to represent an electric field wave-function it is

now evident that more than one PWF is required.

8Please refer to the previous section for a discussion on the interpretation and meaning of the particle anti-particle
pair of photons
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2.3.1 Spatial Representation of the ψγ Operator

Since we have employed a full sum over accessible states denoted by ~k in the definition (2.2.5)

for the second quantized single photon operators of ψγ , we can express the spatial representation

of this operator by defining the coordinate system in which it exists. Since there are an infinite

number of accessible states to this operator we can once again make the transition from a discrete

number of ~k- states to a continuum9

ψγ (~r, t) =

√
1

V

V

(2π)3

ˆ
d3~k

[
ζ~k,+ε̂~k,+a~k,+e

−iνktei
~k·~x + ζ∗~k,−ε̂

∗
~k,−a

†
~k,−
eiνkte−i

~k·~x
]

(2.3.8)

ψ†γ (~r, t) =

√
1

V

V

(2π)3

ˆ
d3~k

[
ζ∗~k,+ε̂

∗
~k,+
a†~k,+e

iνkte−i
~k·~x + ζ~k,−ε̂~k,−a~k,−e

−iνktei
~k·~x
]
. (2.3.9)

Setting the coordinate system such that ~k always points along some radial direction with respect to

the quantization axis associated with it’s emitting source10 from (2.1) we can define the unit wave

vector as

k̂ ≡ r̂ . (2.3.10)

This fixes the polarization vectors to point along orientations that are orthogonal to r̂. We choose

these so as to retain the required spin nature of the photon by following the identity (2.1.32) and

setting the polarization vectors,

ε̂~k,+ =
1√
2

(
θ̂ + iφ̂

)
(2.3.11)

ε̂~k,− =
1√
2

(
θ̂ − iφ̂

)
(2.3.12)

9To rewrite the traditional integral form of the 4-vector as a discrete sum of modes which are available to an optical,
cavity we use

V

(2π)
3

ˆ
d3k →

∑
~k

10Here we assume that any emitted photons will always tend to move away from their sources.
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Figure 2.1: Coordinate System for ~Γγ

in this coordinate system11. Expressing the wave and polarization vectors in terms of Cartesian

unit vectors yields the relationship between these to be give by the transformations

k̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

ε̂~k,+ =
1√
2

[(cos θ cosφx̂+ cos θ sinφŷ − sin θẑ) + i (− sinφx̂+ cosφŷ + 0ẑ)]

ε̂~k,− =
1√
2

[(cos θ cosφx̂+ cos θ sinφŷ − sin θẑ)− i (− sinφx̂+ cosφŷ + 0ẑ)] .

11By setting θ = 0 and φ = 0 to get r̂ (θ = 0, φ = 0) = ẑ, θ̂ (θ = 0, φ = 0) = x̂, and φ̂ (θ = 0, φ = 0) = ŷ, and
substituting these into the derivation (C.5), one can verify that the definition of these polarization and wave vectors
indeed satisfy the derivation presented in (C.5).
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These can be simplified by grouping unit vectors to get

k̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (2.3.13)

ε̂~k,+ =
1√
2

[(cos θ cosφ− i sinφ) x̂+ (cos θ sinφ+ i cosφ) ŷ − sin θẑ] (2.3.14)

ε̂~k,− =
1√
2

[(cos θ cosφ+ i sinφ) x̂+ (cos θ sinφ− i cosφ) ŷ − sin θẑ] . (2.3.15)

By making a substitution of these coordinate transformations into the equation for the unit nor-

malized PWF operators (2.3.9) we can express each component of the PWF independently. These

components take the form of integrals that have to be evaluated as dependent upon unit normalized

probability amplitudes which are expressed as

ψ
(+)
γ,~x =

√
1

V

V

(2π)3

ˆ
d3~kζ~k,+ε̂~k,+a~k,+e

−iνktei
~k·~x (2.3.16)

ψ
(−)
γ,~x =

√
1

V

V

(2π)3

ˆ
d3~kζ∗~k,−ε̂

∗
~k,−a

†
~k,−
eiνkte−i

~k·~x (2.3.17)

ψ
†(+)
γ,~x =

√
1

V

V

(2π)3

ˆ
d3~kζ~k,−ε̂~k,−a~k,−e

−iνktei
~k·~x (2.3.18)

ψ
†(−)
γ,~x =

√
1

V

V

(2π)3

ˆ
d3~kζ∗~k,+ε̂

∗
~k,+
a†~k,+e

iνkte−i
~k·~x . (2.3.19)

Since these integrals have the general form

~Ξ~x,σ± =
√

2

ˆ
d3~kε̂~k,±a~k,±ζ~k,±e

∓iνkte±i
~k·~x (2.3.20)

~Ξ†~x,σ± =
√

2

ˆ
d3~kε̂∗~k,±a

†
~k,±
ζ∗~k,±e

±iνkte∓i
~k·~x , (2.3.21)

we can expand out each of these components in terms of the three orthogonal unit vectors x̂, ŷ, and

ẑ. This yields 12 integrals need to be evaluated in order to acquire the spatial representation of ~Γγ
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and ~Γ†γ . These twelve integrals are

~Ξx̂,± = x̂

ˆ
d3~k (cos θ cosφ± i sinφ) a~k,σ±ζ~k,±e

∓iνkte±i
~k·~x (2.3.22)

~Ξŷ,± = ŷ

ˆ
d3~k (cos θ sinφ± i cosφ) a~k,σ±ζ~k,±e

∓iνkte±i
~k·~x (2.3.23)

~Ξẑ,± = −ẑ
ˆ
d3~k (sin θ) a~k,±ζ~k,±e

∓iνkte±i
~k·~x (2.3.24)

and

~Ξ†x̂,σ± = x̂

ˆ
d3~k (cos θ cosφ∓ i sinφ) a†~k,σ±

ζ∗~k,±e
±iνkte∓i

~k·~x (2.3.25)

~Ξ†ŷ,σ± = ŷ

ˆ
d3~k (cos θ sinφ∓ i cosφ) a†~k,σ±

ζ∗~k,±e
±iνkte∓i

~k·~x (2.3.26)

~Ξ†ẑ,σ± = −ẑ
ˆ
d3~k (sin θ) a†~k,σ±

ζ∗~k,±e
±iνkte∓i

~k·~x . (2.3.27)

We do not yet have any explicit expressions for a†~k,±, a~k,±, or ζ~k,±. These will be determined in a

later chapter. In the meantime, these integrals can not be evaluated, but these expressions can and

will be used when coupling a quantum source to the photonic states corresponding to the Dirac-like

equation of motion for this field. Finally we note that the integrals ~Ξi,± and ~Ξ†i,± can be understood

to be the Cartesian projections for the creation or annihilation operators of a photon in the spatial

representation. Expressing the unit normalized PWF operators ψγ in terms of these integrals we

can see that there is no longer a wave-vector ~k dependence on these.

ψγ =

√
V

(2π)3

3∑
i=1

1√
2

(
~Ξi,σ+ + ~Ξ†i,σ−

)
(2.3.28)

ψ†γ =

√
V

(2π)3

3∑
i=1

1√
2

(
~Ξi,σ− + ~Ξ†i,σ+

)
. (2.3.29)

2.4 Electric and Magnetic Field operators from the PWF ~Γγ Operator

In the previous section we defined and motivated the use of the PWF operator. In this section we

define the relationship between this operator and the original electric and magnetic field operators.
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We start by looking at the independent parts of the fields and then generalize the discussion to

incorporate all the necessary components of all the required fields. From the operators defined in

the previous section we can describe the Electric and Magnetic ones through definitions (2.1.1)

and (2.1.2). These are

~E(+) (~r, t) =
∑
~k,σλ

ε̂~k,σλa~k,σλ

√
~νk

2ε0V
e−iνktei

~k·~x

~H(+) (~r, t) =
∑
~k,σλ

~k

k
× ε̂~k,σλ

√
~νk

2µ0V
a~k,σλe

−iνktei
~k·~x .

Using the identity (2.1.32) and rewriting in terms of ~Γ(+)
γ yields,

~E(+) (~r, t) =

√
~ω
2ε0

(
~Γ(+)
γ + ~Γ†(+)

γ

)
(2.4.1)

~H(+) (~r, t) = −i
√

~ω
2µ0

(
~Γ(+)
γ − ~Γ†(+)

γ

)
. (2.4.2)

Since the same is true for ~E(−) (~r, t) and ~H(−) (~r, t), the general case is then given by

~E (~r, t) =
∑
~k,σλ

√
~νk

2ε0V

[
ε̂~k,σλa~k,σλe

−iνktU~k (~r) + ε̂∗~k,σλ
a†~k,σλ

eiνktU∗~k (~r)
]

~H (~r, t) =
∑
~k,σλ

√
~νk

2µ0V

[
~k

k
× ε̂~k,σλa~k,σλe

−iνktU~k (~r) +
~k

k
× ε̂∗~k,σλa

†
~k,σλ

eiνktU∗~k (~r)

]
.

Again making the same substitution and using the identity (2.1.32) as above yields the complete set

of positive and negative frequencies of the electromagnetic fields to be related to the PWF operator

via

~E (~r, t) =

√
~ω
2ε0

(
~Γγ + ~Γ†γ

)
(2.4.3)

~H (~r, t) = −i
√

~ω
2µ0

(
~Γγ − ~Γ†γ

)
. (2.4.4)
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This discussion can be extended to incorporate the displacement and magnetic fields ~D ≡ ε0
~E and

~B ≡ µ0
~H by solving for ~Γγ and ~Γ†γ . From this problem it can be found that, at least in media that is

homogeneous, the energy normalized PWF operator can be expressed in terms of the displacement

and magnetic fields by means of the expressions

~Γγ =
1√
2

1√
~ω

(
~D√
ε0

+ i
~B√
µ0

)
(2.4.5)

~Γ†γ =
1√
2

1√
~ω

(
~D√
ε0

− i
~B√
µ0

)
. (2.4.6)

Conversely, the displacement vector and magnetic fields can also be expressed in terms of the PWF

operator by means of the following expressions

1√
~ω

~D√
2ε0

= ~Γγ + ~Γ†γ (2.4.7)

1√
~ω

i ~B√
2µ0

= ~Γγ − ~Γ†γ . (2.4.8)

The treatment presented above can be generalized to any linear homogeneous media by multiplying

the vacuum dielectric constants by their corresponding dielectric constants such that ε ≡ (1 + χe) ε0

and µ ≡ (1 + χm)µ0 and following the same procedure above. It is a major advantage of this

quantum mechanical picture that, even if these dielectric factors depend on the number of photons

that are present in the media, any change in these dielectric factors can be immediately taken into

consideration by means of the following expressions

1√
~ω

~D√
2ε

= ~Γγ + ~Γ†γ (2.4.9)

1√
~ω

~B√
2µ

= ~Γγ − ~Γ†γ . (2.4.10)

The treatment of the photon as a PWF comes full circle to the analogy of the quantum oscilla-

tor. Here we can see that if we treat the energy normalized PWF operator as the creation and

annihilation operators of spin resolved photonic Fock states, the Magnetic component correspond

42



to a momentum like operator, and the Electric field to position-like operator. One final and im-

portant identity that relates the energy density between the formulation of the photon in terms of

electromagnetic fields and that of the PWF is given in the following short derivation

ε

2
~E2 +

1

2µ
~B2 =

1

4

(
~Γγ + ~Γ†γ

)(
~Γ†γ + ~Γγ

)
+

1

4

(
−i~Γγ + i~Γ†γ

)(
i~Γ†γ − i~Γγ

)
=

1

4

(
~Γγ~Γ

†
γ + ~Γγ~Γγ + ~Γ†γ~Γ

†
γ + ~Γ†γ~Γγ

)
+

1

4

(
~Γγ~Γ

†
γ − ~Γγ~Γγ − ~Γ†γ~Γ†γ + ~Γ†γ~Γγ

)
=

1

2

(
~Γ†γ~Γγ + ~Γγ~Γ

†
γ

)
=

1

V

∑
~k,λ

~νk
(
a†~k,λa~k,λ +

1

2

)
.

This shows that defining the PWF does not violate energy conservation. In the next chapter we

will derive in full detail the conserved quantities associated with this formalism to show that it is

a good candidate for yielding new insight into the problems we are interested in. To do so we will

have to introduce a new PWF Lagrangian which will be proposed purely from the requirements

that photons have no mass and that they carry unit spin.
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3 RELATIVISTIC QUANTUM FIELD FORMULATION OF THE
PHOTONIC WAVE FUNCTION AND SELF DUAL

ELECTROMAGNETIC TENSOR

It is evident from previous studies that a fully co/contra-variant Relativistic Quantum Field Theory

describing a photon in a PWF formalism should be possible [10, 11]. The arguments presented in

those studies were focused on using Maxwell’s equations to justify the definition of the PWF in

terms of the Riemann-Silberstein vector. In this chapter we use the ideas presented in additional

studies that look at the possibility of defining a Lagrangian for the PWF formalism [73, 46, 47,

45, 66]. We start from the fully relativistic limit due to the fact that we recognize the photon as a

fully relativistic particle which needs to be described by means of a complex wave function. This

is due to the previously mentioned constraints that were imposed on such a PWF. In summary,

these constraints state that a non-relativistic and non-complex photonic wave function does not

exist [68, 15]. Our intent is to arrive at an interaction between a PWF formulated to describe a

photon and a quantum source in any approximation.

In the proposed theory, which describes the photon by means of a Dirac-like equation in 3+1

dimensions, we begin the rigorous description of the PWF by defining the Casimir invariants of

the Poincaré group which we will use as motivation. We will then propose a PWF Lagrangian

and within the a canonical quantization procedure, like the Gupta and Beuler method [13, 12]

and determine the quantized form of the resulting field [76]. In later chapters we will use this

quantized field for the definition of a Lagrangian and gauge of the interacting fields. During this

procedure, we will draw a connection between the photon wave function (PWF) and the gauge

field that is necessary to describe the interaction between charged massive particles and photons.

The canonical quantization procedure will lead to two important results, the complex Maxwell

Field Tensor (not to be confused with the Faraday or real Maxwell Field tensor) and the coupled

electron-photon field equations in terms of a field equation for the PWF. This field tensor gives rise
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to a PWF whose equations of motion and real and imaginary parts, when separated and treated as

real vectors, satisfy Maxwell’s equations. In the second result, which will be discussed in the next

chapter, we show the coupling between a quantum source and the Maxwell Field it generates.

The Gauge for the PWF will be shown to correspond to the radiation gauge1. In this gauge, the

correspondence between the quantized four-vector potential and the PWF has been shown to be

given by the creation and annihilation operators of the photon [51]. Throughout the relativistic

treatment we will maintain the Minkowski Metric to have the signature (+,−,−,−) and to be

represented in terms of the Dirac Gamma matrices (D.2) by

ηµν =
1

2
{γµ, γν}

=
1

2
(γµγν + γνγµ) .

The co-variant gamma matrices that will be used throughout the chapter are defined by2

γµ = ηµνγ
ν

=

(
γ0 −γ1 −γ2 −γ3

)
.

These gamma matrices are explicitly stated in the appendix (D.2). We present the convention that

we will be using throughout the chapter and which is normally used in textbooks[13, 77, 12, 78].

For clarity we itemize the signature and definition of symbols used in this chapter.

• Greek indices such as µ, ν refer to four notation, while latin indices such as i, j refer to three

notation
1

• Coulomb Gauge - ~∇ · ~A = 0 & −∇2Φ = 4πρ

• Radiation Gauge - ~∇ · ~A = 0 & Φ = 0

• Lorenz Gauge - ~∇ · ~A+
1

c
∂tΦ = 0 (Originally used and proposed by George F. Fitzgerald [citation needed])

2Some may prefer to use the alternative signature (−,+,+,+), here we keep this signature in order to keep the
traditional definition of the Dirac gamma matrices in the Dirac basis.
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• Signature (+,−,−,−)

• Minkowski-Metric ηµν = ηµν ≡



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• Four-vectors

– Standard Basis

xµ ≡ (ct, ~x), ηµνxν = xµ = (ct,−~x), where ~x = (x, y, z)

– Derivatives in Einstein Notation

∂xµ ≡ ∂µ ≡
(
c−1∂t, ~∇

)
, ∂xµ ≡ ηµν∂ν = ∂µ =

(
c−1∂t,−~∇

)
– Momentum

pµ ≡
(
E
c
, ~p
)
, ηµνpν = pµ =

(
E
c
,−~p

)
, where ~p = (px, py, pz)

pµ ≡ i~∂µ =
(
i~c−1∂t,

~
i
~∇
)

, ηµνpν = pµ = i~∂µ =
(
i~c−1∂t,−~

i
~∇
)

• Pseudo-tensors

– Permutation/Levi-Civita Symbol

* εµναβ is 0 for any repeated indices and 1 for cyclic −1 for all non-cyclic permuta-

tions of µναβ

* εijk is 0 for any repeated indices and 1 for cyclic−1 for all non-cyclic permutations

of ijk

3.1 Defining the PWF from the Lagrangian Formalism

In this section we will start by finding the invariants we need to satisfy when developing a theory

that relies on the Lagrangian formalism for PWF. By carrying out the definition of the PWF in this

fashion we will no longer be constrained to the argument that necessitates Maxwell’s equations

and new insight about the photon may be discerned. Previous studies have sought to find such
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a formalism,but have not arrived at a PWF Lagrangian that can be included with the interaction

[46, 73, 45, 66]. In this discussion we contribute and yield a naturally feasible and straight forward

definition for what will be single and multiphoton states interacting with quantum sources. We

seek the aid of the Poincaré group, which is the group of isometries of Minkowski space-time

[79], to determine what are the invariants we can rely on when approaching this discussion. Since

all elementary particles fall in representations of this group, we expect that if we satisfy these

invariants we will have the description for an elementary particle in this formalism. The Poincaré

algebra is the Lie algebra of the Poincaré group. In component form, the Poincaré algebra is given

by the commutation relations for the generator of translations Pµ and the generator of Lorentz

transforms Mµν [79, 80].

• [Pµ, Pν ] = 0

• 1
i

[Mµν , Pν ] = ηµρPν − ηνρPµ

• 1
i

[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

In this algebra, Casimir invariants or Casimir operators are distinguished elements of the center

of the universal enveloping algebra of a Lie algebra which commutes with all elements of the Lie

algebra [78]. Two Casimir invariants of the Poincaré algebra are:

• Norm square of the Momentum Four-Vector - P µ ≡ pµ =
(
E
c
, ~p
)

P 2 = pµpµ = E2

c2
− ~p · ~p

• Norm square of the Pauli-Lubanski Four Vector [46, 73, 75, 81] W µ ≡ εµνρσ
2
P νMρσ

W 2 = W µWµ = εµνρσεµνρσ

4
P νMρσPνMρσ = −1

2
P 2MνρMνρ + PρP

νMρµMνµ

These Casimir invariants are important to previous studies since they govern the divergence condi-

tions of massless particles. These have the consequence that the photon has unit spin and no mass

[73]. We present the definition of a photonic wave-function as motivated from the norm square of

the momentum four vector and use the same conditions of the Pauli-Lubanski four-vector [73] to

satisfy the divergence condition in the vacuum.
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3.1.1 Quantization of the 4-Potential corresponding to a Maxwell Field in QFT

The discussion of the interaction of an electromagnetic field with any charged massive particle

depends on the possibility of defining a gauge field that can be used in the minimal substitution for

a canonical momentum [78]. Therefore, we define the quantized 4 vector of the electromagnetic

field which we will later use for the interaction. This exercise is not only useful for definition

purposes, but also for direct comparison and interpretation of the relationship between any object

defined in terms of this vector potential and the PWF we are after.

We refer the quantization of the 4-potential in the radiation Gauge to the canonical quantization

procedure outlined by the Gupta-Beuler method for an electromagnetic field presented in text-

books [12, 78, 13, 77]. In those discussions the classical analog to the 4-vector potentials lead to

Maxwell’s Equations and can therefore be expanded in terms of any function U~k (~x) that satisfies

the wave-equation for the D’Alembertian operator �U~k (x) = 0. That expansion is given by the

definition of the 3 vector potential in terms of these functions U~k (~x, t) and their corresponding

polarization ε̂~k,λ, and annihilation operator a~k,λ

~A (~x, t) =
∑
~k,λ

(
ε̂~k,λa~k,λU~k (~x, t) + ε̂∗~k,λa

†
~k,λ

U∗~k (~x, t)
)
. (3.1.1)

One set of functions that satisfy these restrictions are plane waves. Therefore the choice is made to

define U~k (~x) = 1
ck0E~ke−ik

µxµe−iφ with a normalization factor E~k =

√
~νk

2ε0V
that guarantees units

of energy for this object. The wave vector ~k is taken to be part of a uniform k-space where the

norm of the 4 wave vector is analogous to the norm of the 4-momentum kµkµ = c−2ν2
kt

2−k2 = 0,

kµ ≡
(
c−1νk, ~k

)
, kµ ≡

(
c−1νk,−~k

)
, and φ can be considered a global Gauge parameter. Please

note the meaning of ~x as the position vector in Cartesian coordinates ~x ≡ xx̂ + yŷ + zẑ since we

plan to use the notation ~x =
3∑
i=1

xix̂i and −~x =
3∑
i=1

xix̂i.
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In terms of this plane wave expansion, the vector potential is3

~A (xµ) =
∑
~k,λ

1

ck0

(
ε̂~k,λE~ka~k,λe−ik

µxµe−iφ + ε̂∗~k,λE
∗
~k
a†~k,λe

ikµxµeiφ
)
. (3.1.2)

Assuming that there are an infinite number of accessible states with wave-vector ~k , the vector

potential can be represented as a Fourier Integral through4

~A (~x, t) =
V

(2π)3

ˆ
d3k

νk

∑
λ

(
ε̂~k,λE~ka~k,λe−iνktei

~k·~xe−iφ + ε̂∗~k,λE
∗
~k
a†~k,λe

iνkte−i
~k·~xeiφ

)
. (3.1.3)

The textbook Lagrangian density for this vector potential of the quantized Maxwell field is then

given in terms of the Faraday tensor rate of change of the vector potential as [72, 78, 13, 12]

L = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)

= −1

4
FµνF

µν ,

where ∂µ ≡
(

1

c
∂t,∇

)
is the four-gradient and Fµν is said to be the quantized electromagnetic or

Maxwell field tensor or Faraday tensor. In terms of the electric and magnetic fields, the Faraday

3Though this notation is suggestive and similar to that which has been presented so far in the text, at this point
please consider this expression as not written in terms of the traditional circular polarization vectors ε̂~k,λ defined

above or the same creation/annihilation operators a~k,λ & a†~k,λ
we have been using so far. That these are the same is

still in need of proof which we will present herein.
4To rewrite the traditional integral form of the 4-vector as a discrete sum of modes which are available to an optical,

cavity we use

V

(2π)
3

ˆ
d3k →

∑
~k
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tensor is then

Fµν =



0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


. (3.1.4)

In the absence of sources this tensor satisfies �Fµν = 0 and can be derived from the 4-potential by

Fµν = ∂µAν − ∂νAµ.

3.1.2 Electric, Magnetic Fields, and Maxwell’s Equations

The comparison and correspondence of the PWF as a Maxwell Field in QED has previously been

discussed in detail [52]. Those discussions revolve around rewriting Maxwell’s equations to arrive

at a set of equations for the Riemann-Silberstein vector [10, 11, 51]. The definition of Maxwell’s

equations from the Faraday tensor will be instructive later when we seek the equations of motion

for the PWF. From the Lagrangian formalism, Maxwell’s equations are the equations of motion

and are written in terms of the Faraday tensor Fµν . However, a sort of symmetry breaking occurs in

this formalism since in order to be able to get back all of Maxwell’s equations it becomes necessary

to introduce the dual of the Faraday tensor FµνD . This dual tensor can be calculated from the vector

potential Aµ via the definition of the dual tensor [82]

FDµν =
1

2
εµναβF

αβ (3.1.5)

FDνµ = −FDµν . (3.1.6)

Rewriting this definition in terms of the 4-vector potential shows that there is a type of curling of

this vector that gives rise to the dual

FµνD =
1

2
εµναβ (∂αAβ − ∂βAα) (3.1.7)
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Explicitly writing this tensor in terms of the electric and magnetic fields yields that indeed this

object refers to

FµνD =



0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0


(3.1.8)

The corresponding electric and magnetic fields can then be extrapolated in terms of the two tensors

Fµν and its dual FµνD to be (3.1.3)

~E = Fµ0

= −F0ν

~B = Fµ0
D

= F0ν
D .

Taking the time derivative and curl of ~A (~r, t) respectively yields these expressions (given in natural

units) to be

~E (~r, t) = −∂t ~A

= i
V

(2π)3

ˆ
d3k

∑
λ

ε̂~k,λE~ka~k,λe−iνktei
~k·~xe−iφ + H.c.

~B (~r, t) = ~∇× ~A

= i
V

(2π)3

ˆ
d3k

νk

∑
λ

~k × ε̂~k,λE~ka~k,λe−iνktei
~k·~xe−iφ + H.c. .
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Re-expressing these as a discrete sum5 and fixing the global Gauge parameter as [51] φ =
π

2
indeed

yields the second quantization form for the electric and magnetic fields that we used in the previous

chapters

~E =
∑
~k,λ

ε̂~k,λE~ka~k,λe−iνktei
~k·~x + H.c. (3.1.9)

~B =
∑
~k,λ

1

νk
~k × ε̂~k,λE~ka~k,λeiνkte−i

~k·~x + H.c. . (3.1.10)

Note that in this section we have not yet defined any properties of the polarization vectors we

are using. This leaves their interpretation open to either transverse linear vectors or helical spin

resolved left or right handed vectors.

3.1.3 Relativistic Quantum Field Equation of the Free Photon

To propose a new Lagrangian we begin by trying to guess the equations of motion for the ele-

mentary particle we are looking for and from these work backwards. Much of this discussion

has already been determined in previous studies and we will use the idea that proposes a new La-

grangian which will directly lead to a vector similar to the Riemann-Silberstein; vector up to a

phase factor of φ = π
2

[73, 46, 45, 49, 80, 47, 52, 10, 11, 51]. Starting from the four momentum

Lorentz invariant P µPµ = E2

c2
− ~p · ~p = m2c2 we follow an approach similar to that taken by Dirac

in hopes of finding the “square root” of this Lorentz invariant.

E = c
√

(~p · ~p+m2c2) . (3.1.11)

5To rewrite the traditional integral form of the 4-vector as a discrete sum of modes which are available to an optical,
cavity we use

V

(2π)
3

ˆ
d3k →

∑
~k
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Upon substituting E = i~c−1∂t and ~p = ~
i
~∇, this energy relation yields an operator equation

which should factor as

[
~2~∇2 − ~2c−2∂t

]
=
(
A∂x +B∂y + C∂z + ic−1D∂t

) (
A∂x +B∂y + C∂z + ic−1D∂t

)
,

(3.1.12)

where A, B, C, and D are matrices. One suggestions for the definition of these matrices which

has been previously studied [10, 11] is given below

 i~
c
∂t + ~~∇× 0

0 − i~
c
∂t + ~~∇×


 ~z+

~z−

 = 0

and is subject to the divergence conditions

 ~
i
~∇· 0

0 ~
i
~∇·


 ~z+

~z−

 = 0 .

Those studies have taken advantage of the fact that the curl operator~∇×may be written as i∂k (−iεijk),

or in the matrix notation of an SO(3) group, ~σ(3) = −iεijk (where the three denotes that these are

three, 9 component (3× 3) matrices). In that notation the expression above takes on the following

form i~
c
∂t

 I 0

0 −I

− ~
i
∂k

 σ
(3)
k 0

0 σ
(3)
k



 ~z+

~z−

 = 0 .

However, that expression can be shown not to satisfy the invariance condition for the four momen-

tum P 2 above. Instead, following the discussion presented in other studies [45, 73, 46, 75], those
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matrices can be better represented by the equation of motion

i~
c
∂t

 0 I

−I 0

− ~
i
∂k

 0 σ
(3)
k

σ
(3)
k 0



 ~z−

~z+

 = 0 . (3.1.13)

For the case where we also consider sources this expression takes the form6

 i
c
∂t

 0 I

−I 0

− 1

i

 0 ~∇ · ~σ(3)

~∇ · ~σ(3) 0



 ~z−

~z+

 =

 ψ~αψ†

ψ†~αψ

 (3.1.14)

We study the invariance condition for the four momentum P 2 associated with this equation of

motion equally closely. The notation of this expression may be simplified further by adopting

definitions of the SO(3) gamma matrices [45]

Γ0 ≡

 0 I(3)

−I(3) 0

 (3.1.15)

Γk ≡

 0 ~σ(3)

~σ(3) 0

 . (3.1.16)

Using the index raising and lowering Minkowski we can see that these satisfy the equation ηµνΓν =

Γµ. For brevity we also introduce the spinor Ψ ≡

 ~z−

~z+

 that yields these equations in the

condensed form

ΓµpµΨ = 0 . (3.1.17)

This condensed notation will be used throughout the remainder of the chapter.

6The abscence of µ0√
µ0

is due to the fact that we work in Gaussian units.
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3.1.4 Energy-Momentum relation

The energy-momentum relation for a free photon that is satisfied by equation 3.1.17 above can be

found by multiplying the that expression with its conjugate. Doing so leads to the expression

Ψ† (Γµpµ) (Γµpµ) Ψ = Ψ†

i~
c
∂t

 0 I

−I 0

−
 0 σ

(3)
k

σ
(3)
k 0

 ~
i
∇k


2

Ψ

= Ψ†

i~
c
∂t

 0 I

−I 0




2

Ψ−Ψ†


 0 σ

(3)
k

σ
(3)
k 0

 ~
i
∇k


2

Ψ .

Using the identity which states that the square of the matrix

 0 I

−I 0

 is the identity matrix, we

can replace

i~
c
∂t

 0 I

−I 0




2

= −~2

c2
∂2
t

 I 0

0 I


=

(
i~
c
∂t

)2

 I 0

0 I


into the expression above. Doing so shows that we are left to evaluate the square of the SO(3)

matrices σ(3)
k of the expression


 0 σ

(3)
k

σ
(3)
k 0

 ~
i
∇k


2

=


(
σ

(3)
k

~
i
∇k

)2

0

0
(
σ

(3)
k

~
i
∇k

)2

 .

Before evaluating these however, we also substitute these into the expression above. Doing so

tells us that we simply have to prove that
(

~
i
~∇ · ~σ(3)

)2

is equivalent to ~2~∇2 as evident from the
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equation of the energy-momentum relation we have so far, given by

(
i~
c
∂t

)2

−
(
~
i
~∇ · ~σ(3)

)2

= 0 .

We are therefore required to define the term
(

~
i
~∇ · ~σ(3)

)2

. To prove that the equation above

yields the correct energy momentum relation we will have to work with the commutator and anti-

commutators of ~σ(3). The commutation relation of these matrices are defined by

[
σ

(3)
i , σ

(3)
j

]
−

=
(
σ

(3)
ak

)
i

(
σ

(3)
kb

)
j
−
(
σ

(3)
ak

)
j

(
σ

(3)
kb

)
i

= (−iεaki) (−iεkbj)− (−iεakj) (−iεkbi)

= − [(δibδaj − δijδab)− (δjbδai − δjiδab)]

= − (δibδaj − δjbδai) = iεijk (−iεabk)

= iεijkσ
(3)
k .

These commutation relations assert that the matrices σ(3) are indeed an irreducible representations

of the SO (3) group [83]. The anti-commutators for these matrices are

[
σ

(3)
i , σ

(3)
j

]
+

=
(
σ

(3)
ak

)
i

(
σ

(3)
kb

)
j

+
(
σ

(3)
ak

)
j

(
σ

(3)
kb

)
i

= (−iεaki) (−iεkbj) + (−iεakj) (−iεkbi)

= − [(δibδaj − δijδab) + (δjbδai − δjiδab)]

= − (δiaδjb + δibδja − 2δijδab)

= 2δijδab − δiaδjb − δibδja .
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Substituting these in for σ(3)
i σ

(3)
j in

(
~
i
~∇ · ~σ(3)

)2

and making use of the identity σ(3)
i σ

(3)
j = 1

2

([
σ

(3)
i , σ

(3)
j

]
+

+
[
σ

(3)
i , σ

(3)
j

]
−

)
,

yields

(
~
i
~∇ · ~σ(3)

)2

=
~
i
∇iσ

(3)
i

~
i
∇jσ

(3)
j

= −~2∇i∇j

2

([
σ

(3)
i , σ

(3)
j

]
+

+
[
σ

(3)
i , σ

(3)
j

]
−

)
= −~2∇i∇j

2
([2δijδab − δiaδjb − δibδja]− [δibδaj − δjbδai])

= −~2∇i∇j

2
(δijδab − δibδja)

= (i~∇i) (i~∇i)− (i~∇i) (i~∇j) δibδja .

Representing the identify matrix as a Kronecker delta yields the energy-momentum relation in

operator form to be

(
i~
c
∂t

)2

δab −
(
~
i
∇i

)2

δab = −
(
~
i
∇iδib

)(
~
i
∇jδja

)
.

Comparing this expression against the energy-momentum relation for a massive particle

E2

c2
δab − |~p|2 δab = m2c2δab , (3.1.18)

suggests that photons with longitudinal components in the vacuum have an effective mass. This

can be more explicitly shown by expressing each component of Ψ as Ψa to find

Ψ†b

(
i~
c
∂t

)2

δabΨa −Ψ†b

(
~
i
∇i

)2

δabΨa + Ψ†b

(
~
i
∇iδib

)(
~
i
∇jδja

)
Ψa

= Ψ†a

(
i~
c
∂t

)2

Ψa −Ψ†a

(
~
i
∇i

)2

Ψa + Ψ†b

(
~
i
∇iδib

)(
~
i
∇jδja

)
Ψa

=
E2

c2
− |~p|2 +

(
pi ·Ψ†i

)
(pj ·Ψj)

=
E2

c2
− |~p|2 −m2

effc
2 .
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That effective mass would then be given by the scalar quantity

m2
eff ≡ − 1

c2

(
pi ·Ψ†i

)
(pj ·Ψj) . (3.1.19)

Note that if the photon field is divergence-less we regain the free photon Energy-momentum rela-

tion

E2

c2
− |~p|2 = 0 .

This also implies that the norm squared of the Pauli-Lubanski vector for such an elementary parti-

cle is independent of mass and due only to the spin of the system as governed by the relation[73]

W µWµ = −s (s+ 1) pµp
µI(s) ,

where s corresponds to the total spin carried by the system and I(s) is the (2s+ 1) unit matrix.

In contrast, this relation would be mass dependent in the case of a massive particle as reported in

previous studies [84]

3.1.5 General Lagrangian Formalism

We now adopt Feynman notation for brevity, where ~p/ is known as Feynman dagger notation for any

operator Λ/ ≡ γµΛµ, and γµ replace the commonly used Dirac gamma matrices matrices(D.2)with

the definitions for Γµ above. Additionally we adopt the use of the notation

ψ̄ ≡ ψ†γ0 (3.1.20)

as the adjoint spinor of ψ instead with Γ0 instead of the Dirac gamma matrix γ0. In this way general

Lagrangian formalism for the photon can be determined from the equation of motion

p/Ψ = 0 .
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We construct the Lagrangian by left multiplying by δΨ̄, where Ψ̄ ≡ Ψ†Γ0 and integrating over all

space-time

0 =

ˆ
d4xδΨ̄p/Ψ

= δ

(ˆ
d4xΨ̄p/Ψ

)

this leads us to identify the Lagrangian density that is in agreement with those defined in previous

studies [46, 45]

Lph = Ψ̄p/Ψ

= Ψ†Γ0

(
i~
c
∂tΓ

0 − pkΓk
)

Ψ

where ~Γ ≡ Γk. The main difference here, is that we have not assigned an object to this Lagrangian.

Namely, we have not stated what Ψ is and at this point leave it open to interpretation. In the

following discussion we will fix this Lagrangian to an object which can be interpreted in terms of

the unit normalized PWF discussed in the previous chapter.

3.1.5.1 Equations of Motion

Before moving onto the discussion of the relationship between this Lagrangian and the PWF, we

first check that we do in fact get the same equations of motion that we started out with. The

equations of motion arrived at by varying this Lagrangian with respect to Ψ are given by

∂µ

[
∂Lph
∂ (∂µΨ)

]
− ∂Lph

∂Ψ

= ∂µ
[
Ψ̄i~Γµ

]
− 0

and are recognized as the adjoint equation for the photon that we started with.

59



3.1.5.2 Conjugate momentum and conservation laws

This Lagrangian density yields the momentum conjugate

π =
∂Lph
∂ (∂0Ψ)

= i~Ψ†

from which we can define most conservation laws.

3.1.5.3 Hamiltonian Density

The Hamiltonian density resulting from this conjugate momentum is given by

Hph = π∂0Ψ− Lph

= i~Ψ†∂0Ψ− Ψ̄p/Ψ

= Ψ†
i~
c
∂tΨ− Ψ̄

i~
c
∂tΓ

0Ψ + Ψ̄
~
i
∂kΓ

kΨ

which follows from the photon wave equation

Hph = Ψ̄
~
i
∂kΓ

kΨ = Ψ̄
i~
c
∂tΓ

0Ψ

Hph →Ψ̄
i~
c
∂tΓ

0Ψ− Ψ̄
~
i
∂kΓ

kΨ = 0 .

This is useful for two major reasons. Recalling the discussion on the non-existence of the PWF,

the two main arguments posed against its existence were dependent on the fact that the operator

i∂t could not be satisfied by real electromagnetic fields and that the negative frequency solution

could not be satisfied by a non-relativistic theory. Herein lies the success of this Lagrangian. It is

not evident that with this Lagrangian we can now define a PWF that satisfied the energy operator

i∂t and which, being explicitly relativistic, can yield positive and negative energy solutions. One

major challenge that still needs to be overcome depends on the need to couple said PWF to a
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charged matter field. To do so we will need to re-express this Lagrangian in terms of a new object

that is not the Faraday tensor. This is discussion is left for the next chapter.

3.1.5.4 Comparison between PWF and Standard Lagrangian formulations

The question of how this Lagrangian compares to the standard Lagrangian still remains. To answer

this questions it is necessary to compare them both. From the standard Lagrangian for the Maxwell

Field [78] we know that this Lagrangian is

Lph = −1

4
FµνF

µν

= −1

2

(∣∣∣ ~E∣∣∣2 − ∣∣∣ ~B∣∣∣2)
= −1

2

(〈
−1

c
∂t ~A

〉2

−
〈
σk(3)pk ~A

〉)
.

In contrast the PWF Lagrangian yields the following differential relations

Lph = ψ†Γ0

(
i~
c
∂tΓ

0 − pkΓk
)
ψ

=

ψ†I(2) i~
c
∂tψ + ψ†

 0 −σk(3)

σk(3) 0

 pkψ

 ,

, where here we are compelled to use the SU(2) representation of the spin matrices σk(3) as sug-

gested in the literature [45]. Since we started from the assumption that ψ is an eigenfunction of i~
c
∂t

and pk we find that this description corresponds to the same Lagrangian so long as the eigen-values

satisfy certain constraints. As stated before, the eigen value of the operator i~
c
∂t must correspond

to the energy, and the eigen value of pk must correspond to the momentum. Also from these rela-

tions it is understood that, where ~E = −1
c
∂t ~A and ~B = σk(3)pkAk, we are not introducing a new

degree of freedom for what would in the future be a Lagrangian for the interaction. This degree

of freedom is the some one that is introduced by means of a gauge field when treating the charge

matter field.
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3.1.6 Gauge Invariance of the Riemann-Silberstein vector

In the discussion presented in the previous sections we have determined a new Lagrangian for the

quantum description of the photon field. As such, we have to show that this formalism produces

a field and it’s Lagrangian which are gauge invariant. Note that we have arrived at this formalism

without need for the discussion presented in previous chapters where we made the substitution

~ψ± = ~E± i ~B, for transverse fields. Extending, this discussion to include longitudinal fields would

not affect this formalism since, as we saw in the previous sections, these are inherently treated

in the discussion of Lorentz and Translational invariants (recall PµP µ). Taking ~ψ± to yield any

transverse or longitudinal electromagnetic vector, and recalling the definition of these we find that

~ψ± =

(
−~∇ϕ− 1

c
∂t ~A

)
± i
(
~∇× ~A

)

and upon fixing a gauge which transforms ~A & ϕ simultaneously via

~A→ ~A+ ~∇ξ

ϕ→ ϕ− 1

c
∂tξ ,

where ξ is a scalar function of ~x and t, yields

~ψ± =

(
−~∇

[
ϕ− 1

c
∂tξ

]
− 1

c
∂t

[
~A+ ~∇ξ

])
± i
(
~∇×

[
~A+ ~∇ξ

])
=

(
−~∇ϕ− 1

c
∂t ~A

)
± i
(
~∇× ~A

)
+ ~∇

[
1

c
∂tξ

]
− 1

c
∂t

[
~∇ξ
]
± i~∇×

[
~∇ξ
]

=

(
−~∇ϕ− 1

c
∂t ~A

)
± i
(
~∇× ~A

)
,

such that both the Lagrangian density and all equations of motion for this interpretation of ~ψ±

remain gauge invariant. The same is true for the spinor Ψ. However, to show that these wave

functions correspond to the gauge field we will have to work first with the charged matter field that

is susceptible to these phase and gauge transformations.
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3.2 Lagrangian for Dirac Fields Interacting with Photons

In the previous section we found a Lagrangian form for a free photon. In this section we suggest an

interaction Lagrangian and additionally include it into the sum of the Lagrangian for the interacting

fields. For a spin 1
2

massive Dirac particle, using the traditional Dirac matrices, the Lagrangian is

given by [12, 78]

L 1
2
,m=m0

= Ψ̄ 1
2

[
p/−m0c

2
]

Ψ 1
2
. (3.2.1)

From the section above, the Lagrangian for free photons, using the SO(3) matrices, is given by

L1,m=0 = Ψ̄1 [p/] Ψ1 . (3.2.2)

However, the interaction mitigated by these two fields has to be given by a Lagrangian which

includes the minimal coupling.

Interaction Lagrangian L 1
2
,m0,Aµ

from Phase/Gauge Invariance

The interaction between a bound Photon and a Dirac field can be shown to be mitigated by the

4-vector potential by requiring the phase and gauge invariance of these respectively [78, 77, 13].

Here we introduce the constant gPWF to satisfy the unit requirements of some scalar field Θ, where

Θ = ξgPWF. We do not suggest a value for this constant. We only suggest that it is necessary to

insure any necessary unit conversions if ξ is unit-less. For now, we focus on the phase and gauge

freedoms as given by

• Phase Freedom

Ψ′1
2
→ e−

i
~
e
c
(gPWF)ξΨ 1

2
(3.2.3)
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• Gauge Freedom

Ψ′1 → [Ψ1 + ∂νξ] (3.2.4)

Applying these substitutions to an interaction Lagrangian of the form

L′1
2
,m0,ψPWF

= Ψ̄′1
2

[
p/−m0c

2
]

Ψ′1
2
− (gPWF)

e

c
Ψ̄′1

2
γµΨ′1Ψ′1

2
(3.2.5)

yields

L′1
2
,m0,ψPWF

= L 1
2
,m0,ψPWF

− (gPWF)
e

c
Ψ̄ 1

2
(γµ∂µξ) Ψ 1

2
− (gPWF)

e

c
Ψ̄ 1

2
γµΨ1Ψ 1

2

= L 1
2
,m0,ψPWF

.

Therefore, these expressions retain the invariance of the Lagrangian as required by the phase and

gauge freedom conditions above [13]. Most importantly, we can see that the relation between Ψ1

andAµ . This is given by resolvingAµ into two possible helicity states each with four components.

Unfortunately, the development of the consequences of such a discussion is beyond the scope of

this dissertation. However, it is satisfying to see that the gauge freedom can also be introduced

by means of a PWF [74, 50]. In this formalism, gauge freedom is satisfied by the photonic wave

function and its equations of motion. This is evident from making the same gauge substitution as

the one above into the EOMs for the PWF, ∂µ
[
Ψ̄1i~Γµ

]
= 0. By making the gauge substitution

into the conjugate of this equation of motion, it is evident from

ΓµpµΨ′1 = ΓµpµΨ1 + Γµpµ∂νξ

= 0 ,

that the only way these equations of motion can be satisfied is if we are in a gauge where Γµpµ∂νξ =

0 and Γµ are the 4 × 4 matrices introduced by Moses [74, 50]. Please note that since we are not
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constrained to a zero field, these constraints do not break the U(1) symmetry associated with the

phase freedom of the massive field. In fact, these specifically state that the phase symmetry can

be localized in space or time, leading to an associated bandwidth for any spontaneously created

photon. Any detailed discussions on the consequences of these constraints in the high energy limit

are beyond the scope of this dissertation.

Interaction Lagrangian L 1
2
,m0,Aµ,1

for a Photon with Dirac Field

The Lagrangian for a charged massive field interacting with a relativistic photon is finally at hand.

This interaction can be given by adding the Lagrangian of the massive field to that of a PWF and

fixing the constant gPWF to unity, while retaining the appropriate units of [J ·s]
[C·m2]

. The resulting

Lagrangian is then given by the expression

LInt = L 1
2
,m0,ψPWF

+ L1,m=0

= Ψ̄ 1
2

[
Γ
µ(2)
1
2

pµ −m0c
2
]

Ψ 1
2

+
e

c
gPWFΨ̄ 1

2
Γ
µ(2)
1
2

Ψ1Ψ 1
2

+ Ψ̄1Γ
µ(2)
1 pµΨ1 ,

where Γ
µ(2)
1
2

and Γ
µ(2)
1 represent the corresponding gamma matrices for a spin 1

2
and spin 1 particle

respectively. Then, the primary challenge posed is to know how to switch from the SO(3) repre-

sentation of the PWF to the SU(2) representation of the charged massive field. Another approach

to the interaction leads to a tensorial representation of the photon term. The interaction in that

approach depends on the complex Maxwell Field Tensor and keeps the definition of the lagrangian

in terms of the electromagnetic vector potential. This approach is discussed in detail throughout

the remainder of this dissertation.

3.3 Tensorial Representation of the Photon

Though we are after an equation for a single photon and its corresponding wave function, there

are still many questions that still have to be answered before a full theory of the PWF formalism

can be used to model experimental results. For this reason we constrain our discussion in the

remainder of this dissertation to the traditional QED Lagrangian. We use Maxwell’s equations
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which have been shown in the discussion above to be sufficient for coupling the single photon

state to a quantum source to develop our model further. Maxwell’s equations can be defined as the

equations of motion for the Lagrangian

Lph = −1

4
FµνF

µν .

In tensor form, Maxwell’s equations are give by

∂µF
µν = 0

∂µF
µν
D = 0 .

The equations of motion for the PWF vector ~F = ~B + i ~E can then be defined from these by

multiplying the second by −i and summing them together

∂µ [Fµν − iFµνD ] = 0 .

3.3.1 Correspondence between the Maxwell Field Tensor and the Photon Field Tensor

In defining Gµν ≡ Fµν − iFµνD we have constructed a complex tensor that has been previously

studied under a different Minkowski signature [46]

Gµν ≡



0 − ε0Ex√
ε0

+ iµ0Hx√
µ0

− ε0Ey√
ε0

+ iHy − ε0Ez√
ε0

+ iHz

ε0Ex√
ε0
− iµ0Hx√

µ0
0 −µ0Hz√

µ0
− i ε0Ez√

ε0

µ0Hy√
µ0

+ i ε0Ey√
ε0

ε0Ey√
ε0
− iµ0Hy√

µ0

µ0Hz√
µ0

+ i ε0Ez√
ε0

0 −µ0Hx√
µ0
− i ε0Ex√

ε0

ε0Ez√
ε0
− iµ0Hz√

µ0
−µ0Hy√

µ0
− i ε0Ey√

ε0

µ0Hx√
µ0

+ i ε0Ex√
ε0

0


.
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The definition of this vector is presented in detail in the appendix C.1. An energy normalized

version of Gµν can be expressed in terms of the the vector

~z =
1√
~ωσ

[
µ0
~H√
µ0

+ i
ε0
~E√
ε0

]
(3.3.1)

as

Gµν =



0 izx izy izz

−izx 0 −zz zy

−izy zz 0 −zx

−izz −zy zx 0


. (3.3.2)

Therefore, the generalized and energy normalized Maxwell’s equations can be expressed in terms

of an single tensor Gµν in the following form

∂µG
µν = 0 . (3.3.3)

In the vacuum, the equations of motion for this vector are given as before via the expressions

 −i~∇ · ~z

i1
c
∂t~z + ~∇× ~z

 =

 0

0

 . (3.3.4)

These are the energy normalized and complex form of ∂νFµν = 0 and ∂νF
µν
D = 0 from discussion

above.

3.3.1.1 Self-dual electromagnetic tensor

We have shown in the discussion above that in the literature there exists a tensor Gµν which can be

used to find Maxwell’s equations. In the Minkowski metric we have adopted it is straight forward

this is a self dual tensor. To prove this, we first mention that this tensor can be purely defined in

the language of geometric algebra [85]. Its duality is then given by the Hodge dual [85] via the
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definition

Gµν
D =

(−i)
2

εµναβGαβ . (3.3.5)

Re-writing this expression in terms of the energy normalized Faraday tensor, Fµν and its dual FµνD ,

the proof is completed by following a series of algebraic manipulations and use of the following

identity of the Levi-Civita symbol associated with our Minkowski metric,

εαβµνεαβηγ = −2!
(
ηµη η

ν
γ − ηµγηνη

)
(3.3.6)

(−i)
2

εµναβGαβ =
(−i)

2
εµναβ (Fαβ − iFαβD)

=

(
−iFµνD − i

(−i)
2

εµναβεαβηγF
ηγ

)
= (−iFµνD + Fµν)

= Gµν .

This proves the self-duality of the complex, generalized, and energy normalized electromagnetic

field tensor,

Gµν = Gµν
D (3.3.7)

This tensor additionally facilitates a description of the free field in terms of a self-dual Lagrangian

for the free electromagnetic field of the form,

Lph = −1

8
~ωσGµνG

µν . (3.3.8)

This is a self-dual Lagrangian that yields the Dirac-like equations of motion associated with the

PWF. We herevy conclude the discussion on the relativistic quantum field formulation of the La-
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grangian formalism for the PWF and self-dual electromagnetic tensor.
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4 INTERACTION BETWEEN THE MAXWELL FIELD AND A
QUANTUM SOURCE

In the previous chapters it was established that the creation and annihilation operators implemented

in the quantization of the PWF correspond to those of the EM field as presented by Quantum Field

Theory (QFT), Quantum Electrodynamics (QED), and applied in Quantum Optics and Photonics

(QO). In this chapter different cases in modern application requiring the coupling between a quan-

tum source and the Maxwell Field it generates are presented. The first couple of sections describe

the general formalism and general approximations underlying these interactions. Later sections

will describe the possible cases these approximations may be applied to. Recent studies have been

conducted that require the need to model an interaction that couples relativistic single photon states

with those of quantum sources in devices [14, 86, 18, 87]. Therefore, in this chapter we model a

theory which can lead to parameters which would allow the calculation of revival and sudden death

phenomena associated with revival and sudden death of entanglement [88, 89, 90, 91] as well as

enhanced emission times in optical cavities [27, 28, 92].

4.1 Interaction Lagrangian Density

In previous chapters we defined the interaction Lagrangian used in textbooks to quantize, by means

of the Gupta-Beuler method, a classical interaction that identifies the canonical momenta which

allows equal time commutation relations for the electromagnetic field to be written down[12, 78,

77]. These Lagrangians, which correspond to the charged quantum source and photon respectively,

are given by the expressions

Lqs = ψ̄
(
c~p/−m0c

2
)
ψ (4.1.1)

Lph = −1

4
FµνF

µν . (4.1.2)
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You may recall from the previous chapter that ~p/ is referred to as Feynman slash notation. In this

notation any operator Λ/ ≡ γµΛµ is expressed as product of the Dirac gamma matrices γµ (D.2) and

itself. The bar notation ψ̄ defines the adjoint spinor of the field ψ and is given by the expression

ψ̄ ≡ ψ†γ0 . (4.1.3)

The electromagnetic interaction can be included in these Lagrangians by means of a “minimal”

gauge invariant substitution c~p/ → c
(
~p/− e0

c
A/
)

and summing the two independent Lagrangians

[12, 78, 77]. This operation is accomplished in the expressions

Lph,qs = ψ̄
(
~p/− e

c
~A/−m0c

)
ψ − 1

4
FµνF

µν . (4.1.4)

These expressions tell us that the interaction Lagrangian density is given by the term corresponding

to

Lint = −e
c
ψ̄ ~A/ψ . (4.1.5)

From here on out we will work in the radiation gauge when propagating the EM field far from

electron sources. In regions near the sources we may use the Coulomb or Lorenz gauges. By

studying the interaction distance associated with the charge density given by the field spinor ψ that

bound to the quantum source we will determine explicitly if are we are either in the Coulomb or

Lorenz gauge as long as. If we find that our optical fields give rise to a divergence or gradient term

we will assume that we are near a region that satisfies the expressions

~∇ · ~E = −~∇ · ~̇A−∇2Φ (x) 6= 0

∂t ~E = − ~̈A− ∂t (∇Φ) 6= 0 ,
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where Φ = e0

´
d3x′ ρ(x′)

4π|x′−x| , and will return to the coulomb gauge. If we find that we do have

a divergent field associated with the Poisson equation −∇2Φ (x) = e0ψ̄ (x)ψ (x), then we will

also report the charge density by means of the operator ρ (x) ≡ e0ψ̄ (x)ψ (x) 6= 0. In addition,

if we find that we are in the Lorenz gauge we will report a current density or Zitterbewegung by

calculating the therm jk = cψ̄αkψ 6= 0, where αk is a Dirac matrix (D.2).

Substituting the self-dual Lagrangian, Lph = −1
8
~ωσGµνG

µν which we defined in the previous

chapter, into the full Lagrangian for the interacting fields Lph,qs, the coupled field equations are

defined by minimizing the variation of the action of the Maxwell and Dirac fields [12, 78, 13]

∂ψLph,qs − ∂µ
[
∂Lph,qs

∂ (∂µψ)

]
= 0 (4.1.6)

∂AiLph,qs − ∂µ
[
∂Lph,qs

∂ (∂µAi)

]
= 0 . (4.1.7)

These yield the coupled field equations which we will be studying for the remainder of the chapter

as given by the expressions

(
cp/−m0c

2
)
ψ (x) =

e

c
A/ψ (x) (4.1.8)

∂νG
µν =

e

c
ψ̄ (x) γµψ (x) . (4.1.9)

The first equation is the equation of motion for a quantum source interacting with an electromag-

netic field. The second equation 4.1.9 can be shown to correspond to the generalized form of

Maxwell’s equations with sources, as described in the previous chapter.

4.1.1 Interaction Hamiltonian

The Hamiltonian density for the interacting fields if given by the definition [13, 12]

Hph,qs = ∂ψ̇Lph,qsψ̇ + ∂ȦiLph,qsAi − Lph,qs . (4.1.10)
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The explicitly calculated Hamiltonian is known from textbooks to be given by the expression [12]

Hph,qs = ψ†
(
c~α · ~p+ βm0c

2
)
ψ +

1

2

(
~E2 + ~B2

)
+

1

c
~E · ~∇Φ +

e

c
ψ̄γµA

µψ . (4.1.11)

In this expression e
c
ψ̄γ0A

0ψ = e
c
ψ†ψΦ and 1

c
~E · ~∇Φ− e

c
ψ†ψΦ = e

c
~∇ ·
(
~EΦ− ~EΦ

)
= 0. Making

these substitutions in the expression above, the Hamiltonian density simplifies to

Hph,qs = ψ†
(
c~α ·

[
~p+

e

c
~A
]

+ βm0c
2
)
ψ +

1

2

(
~E2 + ~B2

)
, (4.1.12)

where ~α and β are Dirac matrices discussed in the appendix (D.2). In terms of the self-dual

Lagrangian formalism for the PWF the Hamiltonian takes on the form

Hph,qs = ψ†
(
c~α · ~p+ βm0c

2
)
ψ +

~ωσ
2

zkz†k −
i

c

√
~ωσzk∂kΦ +

e

c
ψ̄γµA

µψ . (4.1.13)

In terms of the elctric and magnetic fields this expression is given by

Hph,qs = ψ†
(
c~α · ~p+ βm0c

2
)
ψ +

1

2

(
µ0
~H2 + ε0

~E2
)
− i

c

(
µ0
~H√
µ0

+ i
ε0
~E√
ε0

)
· ~∇Φ +

e

c
ψ̄γµA

µψ .

From this expression we can begin to develop an approximate interaction Hamiltonian (4.2.1)

which we will use throughout the dissertation. In addition, from the formalism above we can see

that we do not need to go the Hamiltonian description to solve this problem. Therefore, we will

be defining the interaction directly from the coupled field equations of motion for he systems of

interest as derived from interaction Lagrangian density Lph,el. Further, we will not focus on solving

the complex non-linear problem for the spatial dependence of the wave-functions for the matter

field. Instead, we look at the applications that are of interest and see what approximations are

appropriate to simplify avoid that part of the calculations and make the problem more manageable.
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4.1.2 Conservation Laws for Interacting Fields

Throughout our calculations we check conserved quantities to make sure that we do not violate

conservation laws. The conservation laws that we rely on during computational checks rely on the

traditional Lagrangian formalism. As discussed in previous chapters, we rely on invariants of the

formalism to define these conservation laws.

Translational Invariance of the Lagrangian

The conservation laws associated with translational invariance of the interacting Dirac and Maxwell

fields naturally arise form Noether’s Theorem [12]. Under an infinitesimal displacement,

x′µ = xµ + εµ

the Lagrangian L can be shown to change by the amount

δL = L′ − L = εµ
∂L

∂xµ
.

From textbook discussions it is known that in the Lagrangian formalism if the LagrangianL is

translationally invariant, then the Noether current Jµν [12, 13] will satisfy the expression

∂µJ
µν = 0 .

This Noether current is explicitly given by the expression

Jµν =

[
∂Lph,qs

∂ (∂µψ)

]
∂νψ +

[
∂Lph,qs

∂ (∂µAi)

]
∂νAi − ηµνL ,
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where ηµν corresponds to the traditional Minkowski metric defined in the previous chapter. From

this conservation law, the conserved quantities are given in general by

Pν ≡
ˆ
d3xJ0ν =

ˆ
d3x

{
∂ψ̇Lph,qs∂

νψ + ∂ȦiLph,qs∂
νAi − η0νL

}
.

It is therefore the case that the Noether current gives rise to the conservation laws must satisfy the

equality

∂0Pν = 0 .

Since the conjugate momenta are given by taking the partial with respect to the time derivative of

the field of interest, as show by ∂ψ̇Lph,qs = iψ† and ∂ ~̇ALph,qs = −∂0
~A, it is clear that the first

conserved quantity is the Hamiltonian of the system

∂0P0 = ∂0

ˆ
d3xJ00 = ∂0

ˆ
d3xH = 0 .

In general, one of the main checks that we will conduct during our calculations corresponds to the

commutator of the Hamiltonian with the conserved quantities as given by

[H,P] = 0 .

The additional components left to be calculated correspond to the quantized analog of Poynting’s

theorem

∂0Pi = ∂0

ˆ
d3xJ0i = ∂0

ˆ
d3x

{
∂ψ̇Lph,qs∂

iψ + ∂ȦiLph,qs∂
iAi − η0iL

}
= 0 .
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From these expressions we find that the conserved momentum is

∂ψ̇Lph,qs∂
iψ + ∂ ~̇ALph,qs∂

i ~A− η0iL

= iψ†∂iψ − ∂0
~A∂i ~A− η0iψ̄

(
cγ0~p− e0

c
γ0 ~A−m0c

2
)
ψ + η0i

1

4
F0iF

0i

= iψ†∂iψ − ∂0
~A∂i ~A− η0iψ

†
(
ci~~∇− e0

c
γ0 ~A−m0c

2
)
ψ + η0i

1

4
F0iF

0i .

However, since we do not calculate the properties of the matter field, we are left with only the

properties of the photon field. As such, we assume that the quantum source is stationary and that

the linear momentum of the matter field is conserved, namely,

∂0

ˆ
d3x

[
iψ†∂iψ − ∂0

~A∂i ~A− η0iψ
†
(
ci~~∇− e0

c
γ0 ~A−m0c

2
)
ψ
]

= 0 .

The quantity that we expect to be conserved, and which we do calculate is given by

∂0Pi = ∂0

ˆ
d3xη0i

1

4
F0iF

0i .

4.2 Hamiltonian of the PWF

The textbook approach to determining the equations of motion for the coupled system revolves

around first identifying the Hamiltonian. In this case, the Hamiltonian density derived in the pre-

vious section can be expressed more compactly as

H = Hσ +Hγ +HInt , (4.2.1)

whereHσ can be thought of as representing the quantum source,Hγ can be thought of as express-

ing the free Maxwell Field in terms of the PWF creation and annihilation operators a†~k,λ, a~k,λ, and

HInt as the interaction part. Since the equations of motion and the interaction are now known for

this system, the next step requires that we show that the definition of Hamiltonian for both yield

equivalent results. This can be accomplished by expressing Hγ in terms of ~E & ~B or the unit
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normalized operator ~Γγ .

Hγ in terms of ~E & ~B

We first expressHγ in terms of Electric and Magnetic operators. The plane wave expansion of this

Hamiltonian in terms of the single photon creation and annihilation operators is well known from

textbooks [15]. We define this expansion again as an exercise that will allow us to draw parallels

when working with the PWF operators. Using the definition of ~E & ~B in terms of the creation an

annihilation operators and recalling the identity given by the expression
~k

k
× ε̂~k,σλ = −iλε̂~k,σλ

1,

the Hamiltonian for the free photon is given by

Hγ ≡
ε0

2
~E2 +

1

2µ0

~B2 (4.2.2)

=
~ω
4

(
~ϕγ + ~ϕ†γ

)2
+

~ω
4

(
~χγ + ~χ†γ

)2
(4.2.3)

=
1

V

∑
~k,λ

~νk
(
a†~k,λa~k,λ +

1

2

)
. (4.2.4)

Hγ in terms of ~Γγ

The expression for Hγ as written in terms of the PWF operators has also been previously studied

[10, 11]. We also define it again here to show its equivalence to the expression above. The expres-

sion for the expanded form of the Hamiltonian in this expression can be arrived at by using the

definition of ~Ψγ in terms of ~Γγ & ~Γ†γ , that we worked with in previous chapters. In this instance

we will again have to make use of the identity for the helically polarization vectors as before. The

result for this Hamiltonian, given by the expression below

Hγ =
~ω
2
~Ψ†γ

~Ψγ (4.2.5)

=
1

V

∑
~k,λ

~νk
(
a†~k,λa~k,λ +

1

2

)
, (4.2.6)

1Please see (B.1)
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is equivalent to the expression derived from representingHγ in terms of ~E & ~B.

4.3 Non-relativistic Approximation

Having established that the conservation laws we sought are the same no matter the formalism we

are working in, we can now move forward with establishing the interaction. We work here with

the coupled Dirac and Maxwell field equations. In particular we will make some approximations

based on the ideas that, in the domain of condensed matter, electronic or quantum source states

in semi-conductors can be well described within a non-relativistic approximation. Therefore , the

only states that will retain any relativistic properties2 will correspond to the states of the Maxwell

field. Using the equations of motion that were defined above, for the electronic part

[
i~γµ∂µ +

e

c
γµ
(
Aµ + AExtµ

)
+m0c

]
ψ̄ = 0 (4.3.1)[

i~γµ∂µ −
e

c
γµ
(
Aµ + AExtµ

)† −m0c
] (
ψ̄
)†

= 0 (4.3.2)

and photonic part

− e

c
ψ̄γνψ + ∂µG

µν = 0 (4.3.3)

− e

c
ψγνψ̄ + ∂µ (Gµν)† = 0 , (4.3.4)

we define what would be the exact picture for the interaction. Following the traditional discussion

also presented in text books [56, 12, 13], the first step we will make focuses on the matter equations

of motion. There, we fix the representation of the Dirac matrices and express the equations for the

coupled spinor states as follows3

2 Except for the energies and intensities which will correspond to the that which is available from the quantum
source.

3Ak,Tot ≡
(
Ak +AExtk

)
and ΦTot ≡

(
Φ + ΦExt

)
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I i~
c
∂t −

 0 σk

σk 0

[~
i
∂k +

e

c
A†k,Tot

]
−

 I 0

0 −I

m0c+
e

c
Φ†Tot


 ϕ

χ

 = 0 . (4.3.5)

The equation of motion for the term corresponding to the “large” component of the spinor,∂tϕ, is

then given by the expression

i~
c
∂tϕ = σk

(
~
i
∂k +

e

c
A†k,Tot

)
χ+

[
m0c−

e

c
Φ†Tot

]
ϕ . (4.3.6)

In contrast, the equation of motion for the “small” component of the spinor ∂tχ is given by

i~
c
∂tχ = σk

(
~
i
∂k +

e

c
A†k,Tot

)
ϕ−

[
m0c+

e

c
Φ†Tot

]
χ . (4.3.7)

The difference between “large” and “small” will be made evident in from the following discussion.

The Pauli equation arises naturally from the Dirac field equation by making the non-relativistic

approximation[56]. In this non-relativistic limit the speed of a massive particle is much less than

that of the speed of light,
|~vel|
c
� 1. Working in the radiation gauge, and taking the limit where

m0c
2 is considered that largest component of the energy4, ψ ≈ e−

i
~m0c2tψ′, the equation of motion

corresponding to the evolution of large partner is given by, ∂tϕ

i~∂tϕ′ + eΦExtϕ
′ = σkcπkχ

′ . (4.3.8)

Similarly applying the same approximation to the equation of motion which has the evolution of

the weaker term ∂tχ yields

1

2m0c2
[i~∂t + eΦExt]χ

′ =
σkcπk
2m0c2

ϕ′ − χ′ . (4.3.9)

4π = ~
i ∂k + e

cA
†
k,Tot, A

† = A,~∇ · ~A = 0, and Φ = 0
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We also assume that the potential field and kinetic energies present in the system are much less

than the energy contained in the rest mass of the particle we are working with, [i~∂t + eΦExt]χ
′ �

2m0c
2. Therefore, the equations of motion simplify significantly to yield the expressions

χ′ ≈ σkcπk
2m0c2

ϕ′ (4.3.10)

and

i~∂tϕ′ + eΦExtϕ
′ =

(σkcπk)
2

2m0c2
ϕ′ . (4.3.11)

The identity ~σ · ~π~σ · ~π = ~π2 + i~σ · ~π × ~π is necessary to evaluate the square of the term σkcπk.

Substituting this identity back into the first “large” component of the spinor equation yields that

i~∂tϕ =

[
1

2m0

(πkπk + iσkεkijπiπj)− eΦExt

]
ϕ . (4.3.12)

Where we have used the Levi-Civita symbol [83, 82]. The term in the parentheses can be evaluated

by using the expansion

εkijπiπjφ = εkij [Ai (∂jφ) + (∂iφ)Aj + (∂iAj)φ] (4.3.13)

i~∂tϕ =

[
1

2m0

([
~
i
∂k +

e

c
Ak,Tot

]2

+
e~
c
σkBk,Tot

)
− eΦExt

]
ϕ . (4.3.14)

At this point we have a spin resolved interaction that can be modeled via this equation and the

equations of motion for the photonic operators. However, since we will not be taking into consid-

eration contributions due to external weak magnetic fields, we split the discussion once again by

making another approximation. Before making the next approximation however, we express the

equation above in terms of energy normalized PWF operators, ~Γγ . To do so , we use the form of
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the magnetic field in terms of ~Γγ which we determined in a previous chapter.

i~∂tϕ =

[
1

2m0

(
π2 +

e~
2c
σk

(
−i
√

~ω
2

(
~Γγ − ~Γ†γ

)
+Bk,Ext

))
− eΦExt

]
ϕ . (4.3.15)

We expect that in this equation we will be working with very weak fields spontaneously created

fields. Therefore, we can neglect ~Γγ in the term that coupled to an external magnetic field, since it

is small by comparison to the external field. The result of making that approximation yields that

the only contribution from the spontaneously emitted field is due to the canonical momentum,

i~∂tϕ =

[
1

2m0

(
π2 +

e~
2c
σkBk,Ext

)
− eΦExt

]
ϕ . (4.3.16)

4.3.1 The Dipole Approximation

Please note that since we are working in the low intensity limit, we expect that this model can not

describe non-linear inhomogeneous media. Therefore, we assume that the material we are working

with is well behaved in the region of the quantum source and that the quantum source responds

quickly to the optical field. From the discussion in the previous section we know that the square

of the canonical momentum yields a coupling to the momentum of the massive particle in the

presence of some external field. As before, we split the contributions due to the electromagnetic

influence to two parts. The first part is due to some external field and the other to the spontaneously

emitted field. Therefore, the canonical momentum for the quantum source in the absence of the

contribution from the spontaneously created field is given by~π′ = ~p + ~A†Ext. Further, we expect

that the emitted field will have no longitudinal components and therefore expect that its divergence

will be null ~∇ · ~A† = 0. The corresponding square of the total canonical momentum is therefore

given as a sum of three terms. The first term is the contribution from some external field and the

momentum of the massive particle, the second is the coupling between the two, and the third is the
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contribution due to the free field as given in the expression

~π2ϕ =

[
~π′2 + 2

e

c
~A · ~π′ +

(e
c
~A
)2
]
ϕ . (4.3.17)

For simplicity we define what we will refer to as the electronic Hamiltonian. This term contains all

of the contributions to the state of the system which are associated with the matter field. All other

contributions will be taken to come from the spontaneously emitted field of the quantum source.

Therefore, this a priori component to the equations of motionH0 is given by the expression

H0 ≡
1

2m0

(
π′2 +

e~
2c
σkBk,Ext

)
− eΦExt . (4.3.18)

Please note that we do not refer to this expression as the Hamiltonian of the system since we have

not shown it to be so. In fact, the Hamiltonian is given by a similar expression which has some

differences in signs. In addition, as before, we assume that the spontaneously emitted field is weak,

As a result the square of this field should be even weaker as shown by the approximation give by(
e
c
~A
)2

≈ 0. Therefore, rewriting the canonical momentum of the electronic system as ~π′ → ~p, we

arrive at its equation of motion prior to making the dipole approximation as given by

i~∂tϕ =

[
H0 +

e

m0c
~A · ~p

]
ϕ . (4.3.19)

Here we note that there are two possible ways of taking the dipole approximation. The differences,

similarities, and correspondence is outlined in detail in textbooks [15]. We will address both of

these and show that for your system both will provide an adequate description.

4.3.1.1 A source completely immersed in the optical field interacting with an electric field, ~E · ~r

One textbook approach to describing the dipole approximation assumes that the entire quantum

source is immersed in a plane electromagnetic wave [15]. Here, the electromagnetic field is de-
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scribed by a vector potential which satisfies the approximation

~A (~r0 + ~r, t) = ~A (t) ei
~k·(~r0+~r)

≈ ~A (t) ei
~k·(~r0) .

This approximation attributes the scalar potential Φ only to the description of the quantum source

state in the absence of the Maxwell field. As a consequence this constrains the electronic wave

function to be the product between some spatio temporal evolution driven by the field and another

part dependent on the other components of the system.

ϕ (~r, t) = ei
e
~
~A(~r0,t)·~rφ (~r, t) . (4.3.20)

Substituting this expression into the traditional, non-relativistic, Schödinger equation yields the

dipole approximation for the interaction to be

i~∂t
[
ei
e
~
~A(~r0,t)·~rφ

]
=

(
~p− e

c
~A
)2

2m

[
ei
e
~
~A(~r0,t)·~rφ

]
i~
[
i
e

~

(
~̇A · ~r

)
φ+ φ̇

]
ei
e
~
~A(~r0,t)·~r =

(
~p− e

c
~A
)2

2m

[
ei
e
~
~A(~r0,t)·~rφ

]
.

Using the fact that in the radiation gauge we required that ~E = − ~̇A, we can find an equation that

describes the quantum source state φ as given by

i~∂tφ =


(
~p− e

c
~A
)2

2m
− e

(
~E · ~r

)φ
=

~p2 + e
c
~p · ~A+ e

c
~A · ~p+

(
e
c
~A
)2

2m
− e

(
~E · ~r

)φ .
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Making the same assumption as before by approximating that
(
e
c
~A
)2

� 1 and again remembering

that ~∇ · ~A = 0 implies that we arrive at the electronic equation of motion

i~∂tφ =

[
~p2

2m
− e

(
~E · ~r

)]
φ . (4.3.21)

Next we will look at an approach that does not require an explicit expression in terms of the electric

field or any derivative of the vector potential.

4.3.1.2 A source interacting with the vector potential via its coupling to the canonical momentum

of a charged particle, ~A · ~p

Many textbooks use the alternative approach that we adopt for this interaction [15]. It is also

part of textbook discussions that these independent approached yield a difference in measurable

quantities. These differ by a factor of the ratio ω
v

, where ω refers to the transition frequency and v

to the speed of the electronic term H0 [15]. This implies that the wave-functions defined for each

approach needs to be treated differently. A detailed discussion on this correspondence is given

in Section 5.A of [15] as an appendix. One of the affected factors in making the transition from

one description to the other is the decay rate of the excited state [93]. We therefore constrain the

remainder of this discussion to the coupling associated with the canonical momentum of the few

level system. In this description, the canonical momentum of the electronic term is replaced with

the commutator between it and the position operator through the relation

[H0, ~r] =
im0

~
~p . (4.3.22)

Then the equation of motion for the coupled charged particle and optical field can be describe

through the equation

i~∂tϕ =

[
H0 +

ie

~c
~A · [H0, ~r]

]
ϕ . (4.3.23)
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Expanding this electronic component in terms of its energy eigen basis [56],

H0 =
∑
n

En |n〉 〈n| (4.3.24)

and the vector potential, as before, in terms of plane-waves,

~A =
∑
~k,λ

c

νk

√
~νk
2V

(
ε̂~k,λa~k,λe

−i(νkt−i~k·~x)e−iφ+ + ε̂∗~k,λa
†
~k,λ
ei(νkt−i

~k·~x)eiφ−
)
,

will allow us to draw a comparison point between this approach and that of the single photon

wave-function. For brevity, we also introducing the notation σnm ≡ |n〉 〈m| to denote transitions

between states.

4.3.2 The Quantum Source & PWF coupling in the interaction picture

Separating what we can express as the description of the quantum source state in the absence of

the photon and the contribution due to the photon by including again the free Maxwell field terms

into (4.3.21) we have an equation describing an approximate interaction between the Maxwell

Field and its source given by equation 4.3.23. This equation can be abbreviated in terms of an

interaction,HInt, and free field termHγ , to read

i~∂tφ = Hσ +HInt . (4.3.25)

Please note that in light of the newly introduced notation in terms of σnm, we are relabelingH0 as

Hσ. In summary, this is the interaction between a quantum source state given by Hσ interacting

with a coupled field via the non-relativistic dipole approximation HInt. Note that since these are

not describing the full Hamiltonian of the system there is no contribution from a free field,Hγ .

4.3.2.1 Interaction Hamiltonian for two Polarizations in Linear Homogeneous Media

The full interaction of this coupled system can therefore be expressed by expanding it in terms of

the energy-eigen basis and plane wave contributions of the electromagnetic field. This expansion
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is explicitly outlined in the equation

[
H0 +

ie

~c
~A · [H0, ~r]

]
=
∑
n

{
Enσnn +

ie

~c
~A · [Enσnn, ~r]

}
. (4.3.26)

From the commutator above, we can then define a term for the transition dipole operator, ~℘nm ≡

E 〈n|~r |m〉which will contain all the physical factors [56, 13], E ≡ e
~

√
~
2

The simplified interaction

is then given in terms of this operator by means of the expression

e

~

√
~
2

∑
n

[Enσnn, ~r] =
∑
n,m

En~℘nmσnm −
∑
n,m

Em~℘nmσnm . (4.3.27)

We fix part of the gauge freedom originally introduced in the definition of the vector potential to

φ± = ±π
2

and then take advantage of the assumption that the transition energy of the electronic

state is driven by that of the optical field it generates, En = Em + ~νk. From these conditions, in

a region near the location of the quantum source ~x0, the interaction component of the equation of

motion then takes on the form of the expression

ie

~c
~A · [H0, ~r] =

∑
n,m

∑
~k,λ

√
~νk

2ε0V

(
ε̂~k,λa~k,λe

−i(νkt−i~k·~x0) + H.c.
)
· (~℘nmσnm) . (4.3.28)

This interaction has been previously studied extensively with significant success and is the tradi-

tional interaction covered in many textbooks [56, 13, 12, 93, 15, 94, Berman].

4.3.2.2 Interaction Hamiltonian for a Two Level Quantum Source and a Maxwell Field in Linear

Homogeneous Media

For a two level quantum source with energy eigenstates |a〉 (the excited state) and |b〉(the ground

state),Hσ may be expressed by

Hσ = Ea |a〉 〈a|+ Eb |b〉 〈b| . (4.3.29)
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The state vector for these levels, which incorporates the Fock states of the optical field of a sin-

gle mode ~k with two possible spin states (polarizations) λ ∈ {+,−}, is defined by through the

expression

|σγ〉 = ca (t) |a0〉+
∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉 . (4.3.30)

This state vector implies that a source in the excited state is in a state described by the direct

product of it with the vacuum state. Similarly, for the case when the source is in the ground state

we associate this state with its direct product to a single photon Fock state resolved for the spin of

the spontaneously generated photon. This is similar to traditional textbook discussions [15], but

differs in that the state we are now working with can resolve the contributions of integer spin states

associate with those of the photon. Additionally, we consider σab and σba as the annihilation and

creation operators of the two level quantum source states σ+ and σ− respectively.

Table 4.1 outlines the transformations [12] necessary to change to the interaction picture [56, 15,

13, 12]. There, we will solve the coupled systems of equations that arise from this two level system.

Table 4.1: Operator Expansion Coefficients

Free Fields Interacting Fields

a~k,λe
−iνkt e

i
~Hσta~k,σλe

− i
~Hσt

a†~k,λe
iνkt e

i
~Hσta†~k,σλ

e−
i
~Hσt

σ−e
−iωσt e

i
~Hσtσ−e

− i
~Hσt

σ+e
iωσt e

i
~Hσtσ+e

− i
~Hσt
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4.3.2.2.1 Single photon interacting with a two level quantum source in the interaction picture

In the interaction picture equation 4.3.23 reduces to the expression

i~∂t |σγ〉 =
∑
~k,λ

√
~νk
V

(
ε̂~k,λa~k,λe

−i(νkt−i~k·~x0) + H.c.
)
·
(
~℘abσ+e

iωσt + ~℘baσ−e
−iωσt

)
|σγ〉 ,

(4.3.31)

where we have introduced state to state transition dipole moments ~℘ab and transition frequencies

ωσ as parameters of the calculation. In theory we could solve the entire system of coupled spatio-

temporal differential equations established above, but such an effort is beyond the scope of this

dissertation. Instead, these parameters will be referenced from multiple methods, depending on the

material and geometry that is being modeled. Fortunately there have been my studies aimed and the

measurement of these values in the literature [95, 96, 97, 98]. When values for these parameters are

not available from the literature, their values will be calculated by means of previously established

methods [99, 100, 101] and those values suggested for experimental comparison.

In terms of the energy normalized photon creation and annihilation operators defined in equation

2.2.5, the interaction takes on the form

V =
√

~ωσ
(
~Γγ + ~Γ†γ

)
·
(
σ+e

iωσt~℘ba + σ−e
−iωσt~℘ab

)
. (4.3.32)

Already we can see several cases arising for strong and weak coupling between the quantum source

states and the state of a Maxwell Field. There can be modes of the Maxwell Field where the inter-

action Hamiltonian is in exact resonance with respect to the quantum source ωσ = νk, intermediate

cases where it is close to resonance, and others where it is far off resonance. The simplest expres-

sion for the interaction is then

i~∂t |γσ〉 = V |γσ〉 . (4.3.33)
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4.3.2.2.2 Interpretation of the interaction Hamiltonian represented in terms of the ~Γγ operator.

Using the electronic |a〉 , |b〉 and electromagnetic |0〉, a†~k,λ |0〉 states that correspond to the product

state

|γ〉 ⊗ |σ〉 ≡ |γσ〉 ,

and their Hermitian conjugates, conversely 〈a|, 〈b| and 〈0| , 〈0| a~k,λ, that correspond to

〈σ| ⊗ 〈γ| ≡ 〈σγ| ,

we interpret the meaning of the interaction by taking the sandwich of the interaction i~∂t |γσ〉 = V |γσ〉.

We will independently compute the 8 possible cases that are left after making the rotating wave

approximation (RWA) [58, 15]for each component of the interaction. Within the formalism of the

PWF, the four terms that are left after the RWA in the interaction can be interpreted by operating on

the direct product of a single photon state and the quantum source states. Since we are interested

being able to describe revival phenomena implicitly we will not invoke that Weisskopf-Wigner

approximation in the derivation below:

For the product~Γγσ− the following sandwich represents an unavailable transition in the quantum

source by the operator σ− as can be shown by

〈a0| ~Γγσ−
∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉 =

∑
~k,λ

cb,~k,λ (t) 〈a0| ~Γγσ−
∣∣∣b1~k,λ〉

= 0 ,
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since the quantum source annihilation operator σ− satisfies
[
~Γγ, σ−

]
= 0, operating on the states

as done above yields

~Γγσ− |b0〉 = ~Γγ |b〉 〈a| |b0〉

= 0

〈a0|σ−~Γγ = 0 .

This term represents the processes where the quantum source is taken from is upper state a to its

lower state b

∑
~k,λ

〈
b1~k,λ

∣∣∣ ~Γγσ−ca (t) |0a〉 =
∑
~k,λ

ca (t) 〈b0| a~k,λ~Γγσ− |0a〉

=
∑
~k,λ

∑
~k′ ,λ′

√
1

4V

√
νk
ωσ
ca (t) ε̂∗~k′ ,λ′e

iν
k
′ te−i

~k
′ ·~x0 (1− λ) 〈b0| a~k,λσ−a

†
~k,′λ′
|0a〉

=
∑
~k,λ

∑
~k′ ,λ′

〈a0|
√

1

4V

√
νk
ωσ
ca (t) ε̂∗~k′ ,λ′e

iν
k
′ te−i

~k
′ ·~x0 (1− λ) δ~k,~k′δλ,λ′ |0a〉

=
∑
~k,λ

〈a0|
√

1

4V

√
νk
ωσ
ca (t) ε̂∗~k,λe

iνkte−i
~k·~x0 (1− λ) |0a〉 .

Forcing the sum over the two available polarizations λ yields

~Ψ
(−)
γ,+,a =

∑
~k

√
1

4V

√
νk
ωσ
ca (t) ε̂∗~k,−e

iνkte−i
~k·~x0 (1 + 1)

=
∑
~k

√
1

V

√
νk
ωσ
ca (t) ε̂~k,+e

iνkte−i
~k·~x0 .

This corresponds to the creation of a photon with a negative helicity or right handed polarization.

For the product~Γγσ+the following sandwich represents the process where the quantum source is
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take from its lower state b to is upper state a

〈a0| ~Γγσ+

∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉 =

∑
~k,λ

cb,~k,λ (t) 〈a0| ~Γγσ+a
†
~k,λ
|b0〉

=
∑
~k,λ

∑
~k′ ,λ′

√
1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k′ ,λ′e

−iν
k
′ tei

~k
′ ·~x0 (1 + λ) 〈a0| a~k,′λ′σ+a

†
~k,λ
|b0〉

=
∑
~k,λ

∑
~k′ ,λ′

〈
b1~k,λ′

∣∣∣√ 1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k′ ,λ′e

−iν
k
′ tei

~k
′ ·~x0 (1 + λ) δ~k,~k′δλ,λ′

∣∣∣b1~k,λ〉

=
∑
~k,λ

〈
b1~k,λ

∣∣∣√ 1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k,λe

−iνktei
~k·~x0 (1 + λ)

∣∣∣b1~k,λ〉

forcing the sum over the two available polarizations λ yields

~Ψ
(+)
γ,+,b =

∑
~k

√
1

4V

√
νk
ωσ
cb,~k,+ (t) ε̂~k,+e

−iνktei
~k·~x0 (1 + 1)

~Ψ
(+)
γ,+,b =

∑
~k

√
1

V

√
νk
ωσ
cb,~k,+ (t) ε̂~k,+e

−iνktei
~k·~x0

which corresponds to the creation of a photon with a negative helicity or right handed polarization.

The following term represents an unavailable transition in the quantum source by the operator σ+

as can be shown by

∑
~k,λ

〈
b1~k
∣∣ ~Γγσ+ca (t) |a0〉 =

∑
~k,λ

ca (t)
〈
b1~k
∣∣ ~Γγσ+ |a0〉

= 0

since the quantum source annihilation operator σ+ satisfies
[
~Γγ, σ+

]
= 0, operating on the states

as done above yields

~Γγσ+ |a0〉 = 0

〈b0|σ+
~Γγ = 0 .
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For the product ~Γ†γσ−, the following term represents an unavailable transition in the quantum

source by the operator σ− as can be shown by

〈a0| ~Γ†γσ−
∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉 =

∑
~k,λ

cb,~k,λ (t) 〈a0| ~Γ†γσ−
∣∣∣b1~k,λ〉

= 0

since the quantum source annihilation operator σ− satisfies
[
~Γ†γ, σ−

]
= 0, operating on the states

as done above yields

~Γ†γσ− |b0〉 = 0

〈a0|σ−~Γ†γ = 0

This term represents the process where the quantum source is taken from its upper state to its lower

state

∑
~k,λ

〈
b1~k,λ

∣∣∣ ~Γ†γσ−ca (t) |a0〉 =
∑
~k,λ

ca (t) 〈b0| a~k,λ~Γ†γσ− |a0〉

=
∑
~k,λ

∑
~k′ ,λ′

√
1

4V

√
νk
ωσ
ca (t) ε̂∗~k′ ,λ′e

iν
k
′ te−i

~k
′ ·~x0 (1 + λ) 〈b0| a~k,λa

†
~k′ ,λ′

σ− |a0〉

=
∑
~k,λ

∑
~k′ ,λ′

〈a0|
√

1

4V

√
νk
ωσ
ca (t) ε̂∗~k′ ,λ′e

iν
k
′ te−i

~k
′ ·~x0 (1 + λ) δ~k,~k′δλ,λ′ |a0〉

=
∑
~k,λ

〈0a|
√

1

4V

√
νk
ωσ
ca (t) ε̂∗~k,λe

iνkte−i
~k·~x0 (1 + λ) |a0〉

forcing the sum over the two available polarizations λ yields

~Ψ
†(−)
γ,−,a =

∑
~k

√
1

4V

√
νk
ωσ
ca (t) ε̂∗~k,+e

iνkte−i
~k·~x0 (1 + 1)

=
∑
~k

√
1

V

√
νk
ωσ
ca (t) ε̂~k,−e

iνkte−i
~k·~x0
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which corresponds to the creation of a photon with a positive helicity or left handed polarization.

For the product ~Γ†γσ+, this term represents the processes where the quantum source is taken from

is lower state b to its upper state a and a Maxwell Field with a negative helicity or right handed

polarization is created.

〈a0| ~Γ†γσ+

∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉 =

∑
~k,λ

cb,~k,λ (t) 〈a0| ~Γ†γσ+a
†
~k,λ
|b0〉

=
∑
~k,λ

∑
~k′ ,λ′

√
1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k′ ,λ′e

−iν
k
′ tei

~k
′ ·~x0 (1− λ) 〈a0| a~k′ ,λ′σ+a

†
~k,λ
|b0〉

=
∑
~k,λ

∑
~k′ ,λ′

〈
b1~k,λ′

∣∣∣√ 1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k′ ,λ′e

−iν
k
′ tei

~k
′ ·~x0 (1− λ) δ~k,~k′δλ,λ′

∣∣∣b1~k,λ〉

=
∑
~k,λ

〈
b1~k,λ

∣∣∣√ 1

4V

√
νk
ωσ
cb,~k,λ (t) ε̂~k,λe

−iνktei
~k·~x0 (1− λ)

∣∣∣b1~k,λ〉

forcing the sum over the two available polarizations λ yields

~Ψ
†(+)
γ,−,b =

∑
~k

√
1

4V

√
νk
ωσ
cb,~k,− (t) ε̂~k,−e

−iνktei
~k·~x0 (1 + 1)

=
∑
~k

√
1

V

√
νk
ωσ
cb,~k,− (t) ε̂~k,−e

−iνktei
~k·~x0

which corresponds to the creation of a photon with a positive helicity or left handed polarization.

The following term represents an unavailable transition in the quantum source by the operator σ+

as can be shown by

∑
~k,λ

〈
b1~k,λ

∣∣∣ ~Γ†γσ+ca (t) |0a〉 =
∑
~k,λ

ca (t)
〈
b1~k,λ

∣∣∣ ~Γ†γσ+ |a0〉

= 0
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since the quantum source annihilation operator σ+ satisfies
[
~Γ†γ, σ+

]
= 0, operating on the states

as done above yields

~Γ†γσ+ |a0〉 = 0

〈b0|σ+
~Γ†γ = 0 .

These operations can be captured in the following set of relations, where χ(±)
±,n is only used as

a place holder, (±) represents the sign of frequency part, and ±, n represent the helicity of the

produced photon and the eigen-state affected. n can therefore only take on one of the two values E

for excited or g for ground. Explicitly these are given by the scheme ~Γγσ− → χ
(−)
+,E , ~Γγσ+ → χ

(+)
+,g,

~Γ†γσ− → χ
(−)
−,E , and ~Γ†γσ+ → χ

(+)
−,g. These cases translate into the coupled equations of motion in

the Interaction picture through two cases.

First, taking the sandwich of the single photon state/lowest quantum source state

∑
~k,λ

〈
b1~k,λ

∣∣∣ i~∂t |γσ〉 =
∑
~k,λ

〈
b1~k,λ

∣∣∣V |γσ〉
the left hand side yields

∑
~k,λ

〈
b1~k,λ

∣∣∣ i~∂t |γσ〉 = i~
∑
~k,λ

ċb,~k,σλ (t)

and the right hand side yields

∑
~k,λ

〈
b1~k,λ

∣∣∣V |γσ〉 =
∑
~k,λ

〈
b1~k,λ

∣∣∣ (~Γγσ+ + ~Γ†γσ+

)ca (t) |a0〉+
∑
~k,λ

cb,~k,σλ (t)
∣∣∣b1~k,λ〉

 eiωσt · ~℘ba

+
∑
~k,λ

〈
b1~k,λ

∣∣∣ (~Γγσ− + ~Γ†γσ−

)ca (t) |a0〉+
∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉

 e−iωσt · ~℘ab .
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In terms of our interpretation above this expression leaves two of the 8 terms we originally started

with. The terms that are left are given by the expressions

∑
~k,λ

〈
b1~k
∣∣V |γσ〉 =

∑
~k,λ

〈
b1~k
∣∣ (~Γγσ− + ~Γ†γσ−

)
ca (t) |a0〉 e−iωσt · ~℘ab

=

∑
~k,λ

〈
b1~k
∣∣ ~Γγσ−ca (t) |a0〉+

∑
~k,λ

〈
b1~k
∣∣ ~Γ†γσ−ca (t) |a0〉

 e−iωσt · ~℘ab

=
√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab .

Since the probability amplitude for the excited state is subject to the condition that it must not be a

function of the mode of the optical field, ∀a,~k, λ → c̃a,~k,λ (t) ≡ ca (t), these expressions simplify

to the following equation of motion for the ground state of the two level system,

i~
∑
~k,λ

ċb,~k,λ (t) =
√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab . (4.3.34)

Second, taking the sandwich with respect to the excited quantum source state and the vacuum state

〈a0| i~∂t |γσ〉. For the left hand side, we find the rate of change of the excited state probability

amplitude

〈a0| i~∂t |γσ〉 = i~ċa (t) .

Looking at the right hand side we find that

〈a0| V |γσ〉 = 〈a0|
(
~Γγσ+ + ~Γ†γσ+

)ca (t) |a0〉+
∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉

 eiωσt · ~℘ba

+ 〈a0|
(
~Γγσ− + ~Γ†γσ−

)ca (t) |a0〉+
∑
~k,λ

cb,~k,σλ (t)
∣∣∣b1~k,λ〉

 e−iωσt · ~℘ab
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which in terms of our interpretation above leaves two of the 8 terms

〈a0| V |γσ〉 =
√

~ωσ 〈a0|
(
~Γγσ+ + ~Γ†γσ+

)∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉

 eiωσt · ~℘ba

=
√

~ωσ

〈a0| ~Γγσ+

∑
~k,λ

cb,~k,λ (t)
∣∣b1~k〉+ 〈a0| ~Γ†γσ+

∑
~k,λ

cb,~k,λ (t)
∣∣∣b1~k,λ〉

 eiωσt · ~℘ba

=
√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

and simplifies to

i~ċa (t) =
√
~ωσ

(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba (4.3.35)

For clarity, we again present the coupled equations below and make the substitutions which sub-

jects the excited state to the condition ∀a,~k, λ→ c̃a,~k,λ (t) ≡ ca (t) or in terms of the PWF

i~ċa (t) =
√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba (4.3.36)

i~
∑
~k,λ

ċb,~k,λ (t) =
√
~ωσ

(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab .

After taking the dot product with ~℘ab and ~℘ba, solving these expressions for ċa (t) and ċb,~k,λ (t) pro-

vides the possibility of propagating a single photon with circular or linear polarizations. One can

show that it is possible to describe both types of polarizations, either transverse or circular, or any

combination there or. To do so, one simply has to fix the probability amplitudes and polarization

vectors to the desired configuration. This implies that all the information of the quantum system is

contained in these energy normalized wave-functions ~Ψ(+)
γ,+,b and ~Ψ†(+)

γ,−,b.

4.3.2.2.3 Analytical Integration of Equations of Motion

This two level system lends itself to analytic integration by carrying out the formal integration of

ca and cb,~k,λ over the interval [t0, tf ]. As discussed in (D.10), this procedure yields the integral
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equations

∑
~k,λ

(
cb,~k,λ (tf )− cb,~k,λ (t0)

)
= − i

~
√

~ωσ
ˆ tf

t0

dt′
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt

′ · ~℘ab

= − i
~
√

~ωσ
ˆ tf

t0

dt′
∑
~k,λ

ca (t′)
(〈
b1~k,λ

∣∣∣ ~Γγσ− |a0〉+
〈
b1~k,λ

∣∣∣ ~Γ†γσ− |a0〉
)
,a
e−iωσt

′ · ~℘ab

= − i
~

ˆ tf

t0

dt′
∑
~k

√
~νk
V
ca (t′)

{
ε̂∗~k,− + ε̂∗~k,+

}
eiνkt

′
e−i

~k·~x0e−iωσt
′ · ~℘ab .

Taking the sum on a term by term basis over ~k , each term can be expressed independently of the

sum by

∑
λ

(
cb,~k,λ (tf )− cb,~k,λ (t0)

)
= − i

~

ˆ tf

t0

dt′
√

~νk
V
ca (t′)

{
ε̂∗~k,− + ε̂∗~k,+

}
eiνkt

′
e−i

~k·~x0e−iωσt
′ · ~℘ab .

4.3.2.2.4 Solving for ca (t)

Working with the equation of motion for ca (tf ) we already know that the rate of change of this

term depends on every possible mode

i~ċa (tf ) =
√

~ωσ
(
~Ψ

(+)
γ,+ (tf ) + ~Ψ

†(+)
γ,− (tf )

)
,b
eiωσtf · ~℘ba

=
√
~ωσ

∑
~k,λ

cb,~k,λ (tf )
(
〈a0| ~Γγσ+

∣∣∣b1~k,λ〉+ 〈a0| ~Γ†γσ+

∣∣∣b1~k,λ〉) eiωσ(tf) · ~℘ba
=
∑
~k

√
~νk
V

(
cb,~k,+ (tf ) ε̂~k,+ + cb,~k,− (tf ) ε̂~k,−

)
e−iνktf ei

~k·~x0eiωσtf · ~℘ba .
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Substituting cb,~k,λ (tf ) into this expression from the formal integration conducted above tells us

that in fact, it also depends on its value in some small time interval.

i~ċa (tf ) = − i
~
∑
~k

~νk
V

ˆ tf

t0

dt′ca (t′)
{(
ε̂∗~k,+ · ~℘ab

)(
ε̂~k,+ · ~℘ba

)
+
(
ε̂∗~k,− · ~℘ab

)(
ε̂~k,− · ~℘ba

)}
eiνk(t

′−tf)e−iωσ(t
′−tf)

+
∑
~k

√
~νk
V

(
cb,~k,+ (t0) ε̂~k,+ + cb,~k,− (t0) ε̂~k,−

)
e−iνktf ei

~k·~x0eiωσtf · ~℘ba .

Therefore, by assuming that the interaction takes place around some time τ between tf and t0, we

can approximate this time to be averaged such that tf − t0 = δt and tf = τ + 1
2
δt and t0 = τ − 1

2
δt.

Then, substituting into the above, yields that the we have but to evaluate the sum of the series over

all modes of ~k in order to find a solution. This approximation is shown in the expression below,

∑
~k

√
~νk
V

(
cb,~k,σ+

(
τ − 1

2
δt

)
ε̂~k,σ+

+ cb,~k,σ−

(
τ − 1

2
δt

)
ε̂~k,σ−

)
e−iνk(τ+ 1

2
δt)ei

~k·~x0eiωσ(τ+ 1
2
δt) · ~℘ba .

By substituting this approximation into the above, for time scales where δt−1 � (νk − ωσ) we

do not require memory effects which establish a non-Markovian limit for this model5 [102, 103].

The expression below outlines the difference between this approach and the approach traditionally

found in text books [15]. Here, instead of neglecting the additional term contributed by the pho-

tonic state, we retain it. This corresponds to the assumption that at a previous time step we need

not be purely in the excited state. This is shown by the last term of the following expression

i~ċa (tf ) = − i
~
∑
~k

~νk
V

ˆ tf

t0

dt′ca (t′)
∑
λ

∣∣∣ε̂~k,λ · ~℘ba∣∣∣2 ei(νk−ωσ)(t′−tf)

+
∑
~k,λ

√
~νk
V

(
cb,~k,λ (τ) ε̂~k,λ

)
e−iνkτei

~k·~x0eiωστ · ~℘ba .

5This limit is important for describing quantum error effects and has been applied previously to particle production
at relativistic energies. Here we are interested in both, though not in the range of relativistic energies.
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By comparing that term to the sum of the positive frequency parts of the energy normalized PWF

and its complex conjugate, we see that it corresponds to a state of the field already present in the

region of interaction

~Ψ
(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ) =

1√
V

∑
~k,λ

√
νk
ωσ

(
cb,~k,λ (τ) ε̂~k,λ

)
e−iνkτei

~k·~x0 .

Making that substitution, the expression for the rate of change of the excited state probability

amplitude becomes,

i~ċa (tf ) = − i
~
∑
~k

~νk
V

ˆ tf

t0

dt′ca (t′)
∑
λ

∣∣∣ε̂~k,λ · ~℘ba∣∣∣2 ei(νk−ωσ)(t′−tf)

+
√
~ωσeiωστ

[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba .

We next divide through by i~ and change the order of the sum over modes and the integration over

time6. By doing so we can sum over all the accessible modes of the field and then investigate the

effects that one time-step yields on later ones.

ċa (tf ) = −1

~

ˆ tf

t0

dt′ca (t′)
∑
~k

νk
V

∑
λ

∣∣∣ε̂~k,λ · ~℘ba∣∣∣2 ei(νk−ωσ)(t′−tf)

− i

~
√

~ωσeiωστ
[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba .

To carry out the infinite sum over all accessible modes we change from a discrete sum over modes

to a continuum of modes via the substitution
1

V

∑
~k

→ 1

(2π)3

ˆ
d~k. Then we are left to evaluate

the integral

1

(2π)3

ˆ
d~kνk

{∣∣∣ε̂~k,σ+
· ~℘ba

∣∣∣2 +
∣∣∣ε̂~k,σ− · ~℘ba∣∣∣2} ei(νk−ωσ)(t′−tf) . (4.3.37)

6In order to swap the integration over time with the sum over modes,
∑
~k we make use of the assumption that we

are in a region with linear dispersion relations that are not time-dependent.
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Making use of the coordinate system defined in figure (C.1), where for brevity we define Cη ≡

cos η, Sη ≡ sin η, we can see that the helical polarization vectors dotted by the transition dipole

moments can be expressed of these coordinates according to the relation below

ε̂~k,± · ~℘nm =
1√
2

(
CθCφ ∓ iSφ CθSφ ± iCφ −Sθ

)
~℘nm,x

~℘nm,y

~℘nm,z


=

1√
2
{(CθCφ ∓ iSφ) ~℘nm,x + (CθSφ ± iCφ) ~℘nm,y − Sθ ~℘nm,z} .

These terms are important for the evaluation of the integral of equation (4.3.37). We will analyze

each of these terms independently and evaluate them under the assumption that we are working

with a linear dispersion relation νk = v0k. In addition we will make use of the definition of the

derivative of a delta function which is presented in the appendix (D.5.2). Please note that in text

book discussions it is here that the Weisskopf-Wigner approximation is traditionally made. By

not fixing the value of the amplitude of ~k to that of the transition frequency we are in a non-

Markovian regime which allows us to evaluate the emission lifetime of a spontaneously generated

Fock state as well as any revival effects associated with it. The resulting integrals can be evaluated

by separating the sum. For
~℘2
ab,x

2 (2π)3

ˆ
d~kνke

i(νk−ωσ)(t′−tf) (C2
θC2

φ + S2
φ

)
the two indpendent terms

of are as follows: v0

´
dkdθdφ

[
k3Sθe−i(v0k−ωσ)(tf−t′)C2

θC2
φ

]
yields

2πv0

3

ˆ ∞
0

dk
[
k3e−i(v0k−ωσ)(tf−t′)

]
=

2πv0

3

ˆ ∞
0

du

[
1

v4
0

(u+ ωσ)3 e−iu(tf−t
′)
]

=
2π

3v3
0

ˆ ∞
0

du
[(
u3 + 3u2ωσ + 3uω2

σ + ω3
σ

)
e−iu(tf−t

′)
]

=
2π

3v3
0

π
{

(−1)3 i3δ(3) (tf − t′) + 3ωσ (−1)2 i2δ(2) (tf − t′)

+ 3ω2
σ (−1) iδ(1) (tf − t′) + ω3

σδ
(0) (tf − t′)

}
.
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and v0

´
dkdθdφ

[
k3Sθe−i(v0k−ωσ)(tf−t′)S2

φ

]
yields

2π

v3
0

π
{

(−1)3 i3δ(3) (tf − t′) + 3ωσ (−1)2 i2δ(2) (tf − t′)

+ 3ω2
σ (−1) iδ(1) (tf − t′) + ω3

σδ
(0) (tf − t′)

}
.

For
~℘2
ab,y

2 (2π)3

ˆ
d~kνke

i(νk−ωσ)(tf−t′) (C2
θS2

φ + C2
φ

)
the two indpendent terms of are as follows: v0

´
dkdθdφ

[
k3Sθe−i(v0k−ωσ)(tf−t′)C2

θS2
φ

]
yields

2π

3v3
0

π
{

(−1)3 i3δ(3) (tf − t′) + 3ωσ (−1)2 i2δ(2) (tf − t′)

+ 3ω2
σ (−1) iδ(1) (tf − t′) + ω3

σδ
(0) (tf − t′)

}
and v0

´
dkdθdφ

[
k3Sθe−i(v0k−ωσ)(tf−t′)C2

φ

]
yields

2π

v3
0

π
{

(−1)3 i3δ(3) (tf − t′) + 3ωσ (−1)2 i2δ(2) (tf − t′)

+ 3ω2
σ (−1) iδ(1) (tf − t′) + ω3

σδ
(0) (tf − t′)

}
.

For
~℘2
ab,z

2 (2π)3

ˆ
d~kνke

i(νk−ωσ)(t′−tf)S2
θ the substitutiongive: v0

´
dkdθdφ

[
k3Sθe−i(v0k−ωσ)(tf−t′)S2

θ

]
which yields

4π

3v3
0

π
{

(−1)3 i3δ(3) (tf − t′) + 3ωσ (−1)2 i2δ(2) (tf − t′)

+ 3ω2
σ (−1) iδ(1) (tf − t′) + ω3

σδ
(0) (tf − t′)

}
.

From the integrations conducted above we are left with the equation of motion for ca as in terms

of the spatial integration given by

ċa (tf ) = −1

~

ˆ tf

t0

dt′ca (t′)h (tf − t′) .
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This expression relates the rate of change of the excited to state to the accessible modes which

can describe a spontaneously emitted field. In that expression the term h (tf − t′) contains all the

information associated with the contributions of the transition dipole moments and any constraints

imposed on the modes, ~k

h (tf − t′) =
1

4π

1

3v3
0

{
−i3δ(3) (tf − t′) + 3ωσi

2δ(2) (tf − t′)

− 3ω2
σiδ

(1) (tf − t′) + ω3
σδ

(0) (tf − t′)
} [

2~℘2
ab,x + 2~℘2

ab,y + ~℘2
ab,z

]
.

The evaluation of the time integration of the product of this expression with the excited state re-

quires that we use some properties of the Dirac Delta function and its derivative as defined in the ap-

pendix through equation (D.4.1) [82, 83]. For clarity, we define the substitution λ ≡ 1

4π

1

3v3
0

[
1

2
~℘2
ab,x +

1

2
~℘2
ab,y + ~℘2

ab,z

]
,(please

do not confuse this parameter with the helicities or spin states of the excited optical fields). We use

this definition to express that in reality ca satisfies a third order equation of motion. This is a new

result prescribed by the expression

c(1)
a (tf ) +

i

~
eiωστ

[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba = −1

~

ˆ tf

t0

dt′ca (t′)h (tf − t′)

= −λ
~

{
−i3∂(3)

tf
+ 3ωσi

2∂
(2)
tf
− 3ω2

σi∂
(1)
tf

+ ω3
σ

}
[ca (tf )] (4.3.38)

= −iλ
~
{
c(3)
a (tf ) + 3iωσc

(2)
a (tf )− 3ω2

σc
(1)
a (tf )− iω3

σca (tf )
}
.
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In that expression c(n)
a represents the nth derivative with respect to time of ca (t). The corresponding

ordinary differential equation is then of the form 7

c(3)
a + 3iωσc

(2)
a −

(
3ω2

σ + i
~
λ

)
c(1)
a − iω3

σca = −
√
~ωσ
λ

eiωστ
[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba .(4.3.39)

This ODE may be solved analytically for fixed values of ~Ψ(+)
γ,b,+ (τ) and ~Ψ∗(+)

γ,b,− (τ). However, since

we do not have these values, we solve the problem computationally in later chapters. Using the

cubic formula and standard mathematical techniques, it is possible to find a closed form solution

for this expression. The inhomogeneous term depends on the form of ~Ψ(+)
γ,b,+ (τ)+~Ψ

∗(+)
γ,b,− (τ), which

we do not have. Therefore, we also delay the discussion on the evaluation of the inhomogeneous

solution to the chapters on the computational methods applied. Finding the homogeneous solution

is much more straight forward. We find the homogeneous solution using standard techniques of

ODEs. First, by guessing a solution of the form ca,h (t) = Ahe
zt and substituting it into (4.3.39)

yields the characteristic equation

z3 + a2z
2 + a1z + a0 = 0 ,

7From the expression (4.3.38) derived for c(1)
a above, we now show that neglecting all the higher order derivatives

and keeping only −λω
3
σ

~
ca can be said to correspond to making the Weisskopf-Wigner approximation presented in

[15]. In our discussion, by fixing θ′ = 0 we can orient the transition dipole moment along a relative z-axis to get

− λω3
σ

~

∣∣∣∣
θ′=0

= − 1

2π

ω3
σ (~℘ba)

2
z

3~v3
0

. Rewriting ~℘ba in the units of textbooks [15] as ~℘ba =
~℘′ba√
2ε0

, this expression yields

− λω3
σ

~

∣∣∣∣
θ′=0

= − 1

4πε0

ω3
σ |~℘ba|2
3~v3

0

. Rewriting v0 → c, we find that in particular expression (6.3.13) of [15], which

defines −Γ

2
≡ 1

2

1

4πε0

4ωσ

∣∣∣~℘′ba∣∣∣2
3~c3

is in fact given in our notation by −Γ

2
= −2

λω3
σ

~

∣∣∣∣
θ′=0

. Careful consideration

shows that the fact that these two expressions differ by a factor of 2 makes perfect sense. In the approach that we
have presented above, we are taking into consideration only one polarization at a time. We are therefore forced to

use the transformation
1

V

∑
~k

→ 1

(2π)
3

ˆ
d~k when converting from discrete sum modes to an integration over a

continuum of modes. In contrast, the discussion in [15] immediately considers a sum over 2 polarizations by making

the transformation
∑
~k

→ 2
V

(2π)
3

ˆ
d3k when computing −Γ

2
. We can therefore, once again, assert that neglecting

the higher order derivatives of ca corresponds to making the Weisskopf-Wigner approximation discussed in textbooks
[15].

103



where a2 = (3iωσ), a1 = −
(
3ω2

σ + i ~
λ

)
, and a0 = (−iω3

σ). Note that since a0 is complex, all the

characteristic roots zn will also be complex. Since the cubic equation produces 3 roots and none

of them are assumed to be repeated, we have a characteristic solution of the form

ca,h (tf ) = A1e
z1tf + A2e

z2tf + A3e
z3tf .

The roots for zn can be analytically calculated by implementing the cubic equation (D.8) or using

an algorithm that makes some approximation [83, 82, 59]. We do not neglect exponential terms

that can give rise to un-inhibited growth in the solution. We instead propose an analogy with the

solutions of the Schrödinger equation in the presence of a potential barrier. This analogy can be

intuited as arising due to the discretization of time in the interaction region of the few-level system.

We assume that the terms that exhibit exponential growth are analogous to tunneling components

associated with the near-field interaction of the photon with the few-level system where we have

centered the interaction at a time t′ exactly half way between tf and t0.

Next, we use the cubic equation to find the characteristic roots for the characteristic equation since

we are searching for an analytical solution. In this analytical calculation we first define all of the

parameters required by the traditional treatment of the cubic equation

Q = −i ~
3λ

(4.3.40)

R =
~ωσ
2λ

. (4.3.41)

These parameters define the next term,

D =
~2ω2

σ

22λ2
+ i

(
~3

33λ3

)
. (4.3.42)
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Finally, the resulting roots are given by the expressions

S =

(
~ωσ
2λ

) 1
3

3

√√√√1 +

√
1 +

4i

27

~
λω2

σ

(4.3.43)

T =

(
~ωσ
2λ

) 1
3

3

√√√√1−
√

1 +
4i

27

~
λω2

σ

. (4.3.44)

In order to evaluate and interpret these roots we must take advantage of the properties of high order

roots of complex numbers outlined in section (D.9). There we outline how we can use Demoivre’s

theorem to express these roots in the complex form α + iβ. Since the expressions for these roots

are very cumbersome, it suffices to say that the three characteristic roots zn are

z1 = iωσ + (S + T ) (4.3.45)

z2 = iωσ −
1

2
(S + T ) +

1

2
i
√

3 (S − T ) (4.3.46)

z3 = iωσ −
1

2
(S + T )− 1

2
i
√

3 (S − T ) . (4.3.47)

In complex notation these roots can be expressed as in terms of ς ≡ λω2
σ

~ by the phasors

α1 =
(
1− 4ς2

)
+ 4i

(
1

9ς
− ς
)

(4.3.48)

α2,± =

(
1± |α1|

1
2 cos

θ1

2

)
± i
(
|α1|

1
2 sin

θ1

2
∓ 2ς

)
. (4.3.49)

The characteristic roots given in this form are then explicitly

Root 1:

z1 = iωσ −
(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

[
cos

θ2,l

3
+ i sin

θ2,l

3

]
(4.3.50)
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Root 2:

z2 = iωσ +

(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

2

[(
cos

θ2,l

3
− l
√

3 sin
θ2,l

3

)
+ il

(√
3 cos

θ2,l

3
+ l sin

θ2,l

3

)]
(4.3.51)

Root 3:

z3 = iωσ +

(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

2

[(
cos

θ2,l

3
+ l
√

3 sin
θ2,l

3

)
− il

(√
3 cos

θ2,l

3
+ sin

θ2,l

3

)]
(4.3.52)

A more detailed discussion and the full analytical form of the roots zn for various systems will be

presented in (C.6.1).

4.3.2.2.5 Solving for ~Ψ(+)
γ,+,b and ~Ψ†(+)

γ,−,b

Similarly to the procedure carried out above, we can substitute the solution of (4.3.39) for ca (tf )

into the integral expression for cb,~k,λ (tf ). Here we arrive at the photonic wave function for a

single photon interacting with a two level quantum source in terms of cb,~k,λ (tf ). We reiter-

ate energy normalized wave-functions and make an averaged time phase approximation, where

e−iνkt ≈ e−iνk
1
2(tf+t0), for these expressions

~Ψ
†(+)
γ,−,b (~x, t) =

√
1

V

∑
~k

√
νk
ωσ
cb,~k,− (t) ε̂~k,σ−e

−iνk 1
2(tf+t0)ei

~k·~x

~Ψ
(+)
γ,+,b (~x, t) =

√
1

V

∑
~k

√
νk
ωσ
cb,~k,+ (t) ε̂~k,σ+

e−iνk
1
2(tf+t0)ei

~k·~x .
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For readability we also restate the spin resolved terms corresponding to the photonic state proba-

bility amplitudes and the spin resolved PWF’s above

cb,~k,− (tf )− cb,~k,− (t0) = − i
~

ˆ tf

t0

dt′
√

~νk
V
ca (t′) ε̂∗~k,−e

iνkt
′
e−i

~k·~x0e−iωσt
′ · ~℘ab

cb,~k,+ (tf )− cb,~k,+ (t0) = − i
~

ˆ tf

t0

dt′
√

~νk
V
ca (t′) ε̂∗~k,+e

iνkt
′
e−i

~k·~x0e−iωσt
′ · ~℘ab .

Previously we assumed that we could let tf = t0 + δt, and δt−1 � (νk − ωσ). In this limit we can
make the approximation e−i(νk−ωσ)δt ≈ 1, such that for these short times there isn’t much change
in the exponential functions e−i(νk−ωσ)tf ≈ e−i(νk−ωσ)t0 . Within these constraints we can yield the
relationship between the excited state ca and the produced single photon wave function associated
with the probability amplitude cb,~k,± to be

~Ψ
†(+)
γ,−,b

(
tf
)
− ~Ψ†(+)

γ,−,b (t0) =
−i

(2π)3

1
√
~ωσ

ˆ
d~k

ˆ tf
t0

dt′νk

(
ε̂~k,σ−

ε̂∗~k,σ−
· ~℘ab

)
e−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)ca
(
t′
)
eiνkt

′
e−iωσt

′

~Ψ
(+)
γ,+,b

(
tf
)
− ~Ψ(+)

γ,+,b (t0) =
−i

(2π)3

1
√
~ωσ

ˆ
d~k

ˆ tf
t0

dt′νk

(
ε̂~k,+ε̂

∗
~k,+
· ~℘ab

)
e−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)ca
(
t′
)
eiνkt

′
e−iωσt

′
.

By separating these wave-functions we again deviate from the traditional approach found in text
books [15], which specify the use of the identity8 ∑

λ ε̂
∗
~k,λ
ε̂~k,λ = ~1 − ~k~k

k2 for the evaluation of the
integral.
In fact, it is this separation of the wave-function into independent spin states that will have signifi-
cant consequences down the road. This separation will allow us to suggest future experiments. In
addition we will be able to propose numerical models and results that can predict and/or provide
experimental benchmarks for a spin resolved experimental set-up. These would be benchmarks
that would be essential when studying quantum networks that depend on the helical (spin) nature
of the photon to transport or teleport spin encoded quantum information from one qubit to another.
Going back to the analysis of this separation, we next substitute the solution for ca (tf ) into this
expression and again make use of the approximation mentioned earlier, where tf = t0 + δt, and
δt−1 � (νk − ωσ), to the term corresponding to the initial optical wave-function

i

(2π)3

3∑
n=1

ˆ
d~kνk

(
ε̂~k,−ε̂

∗
~k,− · ~℘ab

)
e−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)

(
−
i
√
~ωσ
λω3

σ

~Ψ
(+)
γ,± (t0) · ~℘baeiωσt0

) ˆ tf
t0

dt′eiνkt
′
e−iωσt

′
.

It is evident from this approximation that this term drops off. This is due to the fact that any history

associated with the wave-function is assumed to be contained purely in the complete solution of

8This identity is proved in section (C.5) of the appendix.
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the excited state probability amplitude ca. This is explicitly shown in the expression below

ˆ tf

t0

dt′eiνkt
′
e−iωσt

′
=

[
ei(νk−ωσ)tf − ei(νk−ωσ)t0

]
i (νk − ωσ)

≈
[
ei(νk−ωσ)t0 − ei(νk−ωσ)t0

]
i (νk − ωσ)

= 0 .

This does not adversely affect the average time phase approximation. In fact, this result also relies
on the average time phase approximation since it implies that if ei(νk−ωσ)tf ≈ ei(νk−ωσ)t0 , then
ei(νk−ωσ)(2t−t0) ≈ ei(νk−ωσ)(2t−tf), which is exactly true when t0 and tf are equally spaced from
t. Note that this does not constrain how big or small δt must be. The full expression of the wave
functions ~Ψ†(+)

γ,±,b (tf ) are then given by the equations

~Ψ
†(+)
γ,−,b

(
tf
)
− ~Ψ†(+)

γ,−,b (t0) =
−i

(2π)3

1
√
~ωσ

3∑
n=1

ˆ
d~k

ˆ tf
t0

dt′νk

(
ε̂~k,−ε̂

∗
~k,− · ~℘ab

)
e−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)Ane
znt
′
eiνkt

′
e−iωσt

′

~Ψ
(+)
γ,+,b

(
tf
)
− ~Ψ(+)

γ,+,b (t0) =
−i

(2π)3

1
√
~ωσ

3∑
n=1

ˆ
d~k

ˆ tf
t0

dt′νk

(
ε̂~k,+ε̂

∗
~k,+
· ~℘ab

)
e−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)Ane
znt
′
eiνkt

′
e−iωσt

′

and simplifies to the evaluation of the vector integrals

~Ψ
†(+)
γ,−,b

(
tf
)
− ~Ψ†(+)

γ,−,b (t0) =
−i

(2π)3

1
√
~ωσ

3∑
n=1

An

ˆ
d~ke−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)νk

(
ε̂~k,−ε̂

∗
~k,− · ~℘ab

) ˆ tf
t0

dt′eznt
′
eiνkt

′
e−iωσt

′

~Ψ
(+)
γ,+,b

(
tf
)
− ~Ψ(+)

γ,+,b (t0) =
−i

(2π)3

1
√
~ωσ

3∑
n=1

An

ˆ
d~ke−iνk

1
2 (tf+t0)e−i

~k·( ~x0−~x)νk

(
ε̂~k,+ε̂

∗
~k,+
· ~℘ab

) ˆ tf
t0

dt′eznt
′
eiνkt

′
e−iωσt

′
.

We first carry out the integration over t′. This integration yields the term

ˆ tf

t0

dt′ei(νk−ωσ−izn)t′ =

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
i (νk − ωσ − izn)

.

Another difference between our approach and the discussion present in textbooks [104, 15, 105]
is that we do not take the long time limit, and instead focus on small times due to the nature of
our computational model. Therefore the integration over ~k is more involved. This integration is
discussed in detail in the appendix (C.7). The integrals that are evaluated in the appendix are of
the form

~I−,n
(
|~x− ~x0| , tf

)
=

ˆ
d~k
e−i

~k·( ~x0−~x)e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(νk − ωσ − izn)

νk

(
ε̂~k,σ−

ε̂∗~k,σ−
· ~℘ab

)

~I+,n
(
|~x− ~x0| , tf

)
=

ˆ
d~k
e−i

~k·( ~x0−~x)e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(νk − ωσ − izn)

νk

(
ε̂~k,σ+

ε̂∗~k,σ+
· ~℘ab

)
.
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Through the assumption of a linear dispersion relation νk = v0k and defining |~x− ~x0| ≡ r, these

can be computed through the expressions discussed in appendix section (C.7). These yield that the

wave functions have the form9

~Ψ
†(+)
γ,−,b (r, tf ) =

−1

(2π)3

1√
~ωσ

3∑
n=1

An~I−,n (r, tf ) + ~Ψ
†(+)
γ,−,b (r, t0)

~Ψ
(+)
γ,+,b (r, tf ) =

−1

(2π)3

1√
~ωσ

3∑
n=1

An~I+,n (r) + ~Ψ
(+)
γ,+,b (r, t0) ,

where~I±,n (r) is given by the respective expressions below. For compactness and clarity, we define

the following causal functions for all three cases

ζ+ = π2Θ

(
t+

r

v0

)
e
−i(ωσ+izn)

(
t+ r

v0

)

ζ− = π2Θ

(
t− r

v0

)
e
−i(ωσ+izn)

(
t− r

v0

)

These objects define the integrals to be calculated with poles in the lower half plane.

I±,n,x (r) =[
(±2i~℘ab,y + (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ± ~℘ab,y)
2i (ωσ + izn)

r
2v0

+
2~℘ab,x
r

3

]
ζ−

−
[

(±2i~℘ab,y − (1± 1) ~℘ab,x)
(ωσ + izn)2

rv2
0

− (~℘ab,x ∓ ~℘ab,y)
2i (ωσ + izn)

r
2v0

− 2~℘ab,x
r

3

]
ζ+

I±,n,y (r) =[
(∓2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ∓ ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ−

+

[
(±2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

− (~℘ab,y ± ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ+

9Please note that the units of this integral are [eV ]
1
2 [m]

− 3
2 and that those of the prefactor are [eV ]

− 1
2 . This implies

that indeed this wave-function has the correct units of probability density.
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Iσ±,n,z (r) =[
1

r
3
− i (ωσ + izn)

r
2v0

]
4~℘ab,zζ−

+

[
1

r
3

+
i (ωσ + izn)

r
2v0

]
4~℘ab,zζ+

These objects define the integrals to be calculated for poles in the upper half plane.

I±,n,x (r) =[
(±2i~℘ab,y − (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ∓ ~℘ab,y)
2i (ωσ + izn)

r
2v0

− 2~℘ab,x
r

3

]
ζ−

+

[
(±2i~℘ab,y + (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ± ~℘ab,y)
2i (ωσ + izn)

r
2v0

+
2~℘ab,x
r

3

]
ζ+

I±,n,y (r) =[
(∓2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ± ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ−

+

[
(∓2i~℘ab,x + (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ∓ ~℘ab,x)
2i (ωσ + izn)

r
2v0

− 2~℘ab,y
r

3

]
ζ+

Iσ±,n,z (r) =[
1

r
3
− i (ωσ + izn)

r
2v0

]
4~℘ab,zζ−

−
[

1

r
3

+
i (ωσ + izn)

r
2v0

]
4~℘ab,zζ+
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4.3.2.2.6 Initial Conditions and Conservation Laws for Equations of Motion

The coefficients An may be determined by applying initial and normalization conditions to ca. The

first condition requires that the initial state of ca (t0) be known in the region of the quantum dot

ca (t0 = 0) =
∑
n

An .

The second condition requires only that
(
~Ψ

(+)
γ,σ+ + ~Ψ

†(+)
γ,σ−

)
,b

be known. Here we have explicitly

used the equations of motion to arrive at this condition.

ċa (t0 = 0) = − i
~

(
~Ψ(+)
γ,σ+

(t0) + ~Ψ∗(+)
γ,σ− (t0)

)
,b
· ~℘ba

=
∑
n

Anzn .

The last condition is given by the second derivative of ca

c̈a (t0 = 0) = − i
~
d

dt

[(
~Ψ(+)
γ,σ+

+ ~Ψ†(+)
γ,σ−

)
,b
eiωσt · ~℘ba

]
t0=0

=
∑
n

Anz
2
n

where we expect that the total energy will remain bounded. Here we make explicit use of the

invariance we calculated in previous chapters. This conservation law is given by the expression,

∂tH (~x, t) = 0 .

In general, the coefficients An may be determined from the following system of equations, derived

for some initial state of the quantum dot and a known photonic wave-function via the substitution

∑
n

An = |ca,0| eiθ0
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∑
n

Anzn = − i
~

(
~Ψ(+)
γ,σ+

(0) + ~Ψ∗(+)
γ,σ− (0)

)
,b
· ~℘ba

∑
n

Anz
2
n = − i

~
d

dt

[(
~Ψ(+)
γ,σ+

+ ~Ψ†(+)
γ,σ−

)
,b
eiωσt · ~℘ba

]
t0=0

where we can verify their correspondence with physical reality by checking that the Hamiltonian

densities satisfy the following restrictions

∂t

[
He +

1

2
~ωσ~Ψb · ~Ψ∗b

]
= 0

= ∂t

[
~ωσ |ca (t)|2 +

1

2
~ωσ

∣∣∣~Ψb (t)
∣∣∣2] .

Note that the interaction term has been absorbed into the term He. This expression also can be

satisfied equally well by factoring out any coefficients and expressed as a probability conservation

law . In the expression below the integration over all space is understood to be carried out over all

these terms.

1 = |ca (t)|2 +
1

2

∣∣∣~Ψb (t)
∣∣∣2

In this way we have three cases, fixing τ = 0, defining Ψ̃b = − i
~

(
~Ψ

(+)
γ,σ+ + ~Ψ

∗(+)
γ,σ−

)
,b

(0) · ~℘ba and

ζk =
[
Ψ̃b − |ca,0| eiθ0zk

]
for compactness and ease of calculation. For the case of Ai, the first two

equations yield

Aj + Ak = |ca,0| eiθ0 − Ai

Ajzj + Akzk = Ψ̃b − Aizi
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which simplify to

Aj =
1

(zj − zk)
[
Ψ̃b − |ca,0| eiθ0zk + Ai (zk − zi)

]
Ak =

1

(zk − zj)
[
Ψ̃b − |ca,0| eiθ0zj + Ai (zj − zi)

]

where upon using our definitions can be more compactly expressed as

Aj =
ζk + Ai (zk − zi)

(zj − zk)

Ak = −ζj + Ai (zj − zi)
(zj − zk)

Substituting into the condition for the second derivative, as given by the third expression, we find

that

Ai =

[
z2
i +

z2
j (zk − zi)− z2

k (zj − zi)
(zj − zk)

]−1 [
˙̃Ψb −

ζkz
2
j − ζjz2

k

(zj − zk)

]

4.3.2.3 Interaction Hamiltonian for a Six Level Quantum Source in Linear Homogeneous Media

with positive-spin and negative-spin transitions

Here we extend the our approach for generating a theory of the interaction between multiple levels

of a quantum source and photonic states. For the case of a quantum source modeled after an

effective six level system, the selection rules presented in figure (4.1) can yield an interaction via

the dipole approximation. By implementing the state to state transition dipole moments typically

found in QDs we expect to yield compute results that can be directly compared to experimental

ones. All the accessible levels of the system can be expressed by means of the state vector

113



Conduction

Valence

(a) Heavy-Heavy hole

Conduction

Valence

(b) Light-Light hole

Figure 4.1: Selection rules in a two-level quantum source coupling to single photon states

|σλ〉 = c 1
2

c

∣∣∣∣12c, vac
〉

+ c− 1
2

c

∣∣∣∣−1

2
c, vac

〉
+ c 3

2
v,~k−

∣∣∣∣32v, 1~k−
〉

+ c− 3
2

v,~k+

∣∣∣∣−3

2
v, 1~k+

〉
+ c 1

2
v,~k−

∣∣∣∣12v, 1~k−
〉

+ c− 1
2

v,~k+

∣∣∣∣−1

2
v, 1~k+

〉
.

Following the prescription defined above, we can couple these states by means of the interaction

outlined in equation (4.3.32). Since we have already described in detail how we achieve the cou-

pling between the states, we will not be as verbose here as before. Instead, we specify in summary

the result of the definitions of the equations of motion for each state. For this six-level system, the

interaction is given by

V =
√

~ωσ
(
~Γγ + ~Γ†γ

)
·
∑
n,m

(
~℘nmσnme

iωnmt
)
. (4.3.53)

Once expanded in terms of the transitions that we will consider, this interaction takes on the form,

where V = Vγ · Ve,

Ve =
4∑

n=1

[
~℘

(n)
+ σ

(n)
+ eiω

(n)
+ t + ~℘

(n)
− σ

(n)
− eiω

(n)
− t
]
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and the terms ~℘(n)
± σ

(n)
± eiω

(n)
± t are evaluated according to the expression 4.3.54 . From the structure

for the allowed transitions presented in that table we proceed by constructing the explicit interac-

tion with the field. The six-level terms ~℘(n)
± σ

(n)
± eiω

(n)
± t, the contribute to the interaction are therefore

tabulated as follows,

−1
2
c −1

2
v −3

2
v 3

2
v 1

2
v 1

2
c

−1
2
c 0 0 ~℘

(1)
− σ

(1)
− eiω

(1)
− t 0 ~℘

(2)
− σ

(2)
− eiω

(2)
− t 0

−1
2
v 0 0 0 0 0 ~℘

(3)
+ σ

(3)
+ eiω

(3)
+ t

−3
2
v ~℘

(1)
+ σ

(1)
+ eiω

(1)
+ t 0 0 0 0 0

3
2
v 0 0 0 0 0 ~℘

(4)
+ σ

(4)
+ eiω

(4)
+ t

1
2
v ~℘

(2)
+ σ

(2)
+ eiω

(2)
+ t 0 0 0 0 0

1
2
c 0 ~℘

(3)
− σ

(3)
− eiω

(3)
− t 0 ~℘

(4)
− σ

(4)
− eiω

(4)
− t 0 0

(4.3.54)

This is given by the expression

V =
4∑
n

√
~ω(n)

(
~Γ(n)
γ + ~Γ(n)†

γ

)
·
[
~℘

(n)
+ σ

(n)
+ eiω

(n)t + ~℘
(n)
− σ

(n)
− e−iω

(n)t
]
.

By operating from the left and right with the the state vector and recalling the schematic relations

~Γγσ− → χ
(−)
+,E , ~Γγσ+ → χ

(+)
+,g, ~Γ†γσ− → χ

(−)
−,E , and ~Γ†γσ+ → χ

(+)
−,g one can show that this sandwich

yields the following equations of motion after dropping all non-contributing terms,

i~ċ− 3
2
v,1~k+

=

〈
−3

2
v, 1~k+

∣∣∣√~ω(1)~Γ†(1)
γ ξ

(1)
− c− 1

2
c

∣∣∣− 1

2
c, vac

〉
(4.3.55)

i~ċ− 1
2
v,1~k+

=

〈
−1

2
v, 1~k+

∣∣∣√~ω(3)~Γ†(3)
γ ξ

(3)
− c 1

2
c

∣∣∣ 1

2
c, vac

〉
(4.3.56)
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i~ċ− 1
2

c =

〈
−1

2
c, vac

∣∣∣√~ω(1)~Γ(1)
γ ξ

(1)
+ c− 3

2
v,1~k+

∣∣∣− 3

2
v, 1~k+

〉
+

〈
−1

2
c, vac

∣∣∣√~ω(2)~Γ†(2)
γ ξ

(2)
+ c− 3

2
v,1~k+

∣∣∣ 1

2
v, 1~k−

〉
(4.3.57)

i~ċ 1
2

c =

〈
1

2
c, vac

∣∣∣√~ω(3)~Γ(3)
γ ξ

(3)
+ c− 1

2
v,1~k+

∣∣∣− 1

2
v, 1~k+

〉
+

〈
1

2
c, vac

∣∣∣√~ω(4)~Γ†(4)
γ ξ

(4)
+ c 3

2
v,1~k−

∣∣∣ 3

2
v, 1~k−

〉
(4.3.58)

i~ċ 1
2
v,1~k−

=

〈
1

2
v, 1~k−

∣∣∣√~ω(3)~Γ(3)
γ ξ

(3)
−

∣∣∣− 1

2
c, vac

〉
(4.3.59)

i~ċ 3
2
v,1~k−

=

〈
3

2
v, 1~k−

∣∣∣√~ω(4)~Γ(4)
γ ξ

(4)
−

∣∣∣ 1

2
c, vac

〉
, (4.3.60)

where we have made the substitution ξ(n)
± = ~℘

(n)
± σ

(n)
± eiω

(n)
± t for brevity. Explicitly in terms of the

PWF for each corresponding state, these are then given by

i~ċ− 3
2
v,1~k+

=
√
~ω(1)

(
~Ψ

(−)
γ,−

)(1)

1
2
c
· ~℘(1)
− e

iω
(1)
− t (4.3.61)

i~ċ− 1
2
v,1~k+

=
√
~ω(3)

(
~Ψ

(−)
γ,−

)(3)

1
2
c
· ~℘(3)
− e

iω
(3)
− t (4.3.62)

i~ċ− 1
2

c =
√
~ω(1)

(
~Ψ

(+)
γ,+

)(1)

− 3
2
v,1~k+

· ~℘(1)
+ eiω

(1)
+ t +

√
~ω(2)

(
~Ψ

(+)
γ,−

)(2)

1
2
v,1~k−

· ~℘(2)
+ eiω

(2)
+ t (4.3.63)

i~ċ 1
2

c =
√
~ω(3)

(
~Ψ

(+)
γ,+

)(3)

− 1
2
v,1~k+

· ~℘(3)
+ eiω

(3)
+ t +

√
~ω(4)

(
~Ψ

(+)
γ,−

)(4)

3
2
v,1~k−

· ~℘(4)
+ eiω

(4)
+ t (4.3.64)
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i~ċ 1
2
v,1~k−

=
√
~ω(3)

(
~Ψ

(−)
γ,+

)(3)

− 1
2
c
· ~℘(3)
− e

iω
(3)
− t (4.3.65)

i~ċ 3
2
v,1~k−

=
√
~ω(4)

(
~Ψ

(−)
γ,+

)(4)

1
2
c
· ~℘(4)
− e

iω
(4)
− t . (4.3.66)

It is evident that where we had a cubic equation to solve before, we now have a much more complex

problem. We do not attempt to solve this problem analytically, though we can benchmark against

our previous analytical result. The best approach to solving this problem is the implementation

of an algorithm that can handle fast matrix diagonalization and fast Fourier transforms. Such

packages for computational methods can be found in suites such as LAPACK, Super-LU, and

FFTW [106, 107, 108]. In the next chapter we will apply some numerical techniques to study the

questions we have encountered in this chapter.
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5 COMPUTATIONAL METHODS, RESULTS, AND CONCLUSIONS

In this chapter we discuss in detail all the computational methods and results that were completed

throughout this dissertation. We start by studying an explicit example for quantum sources com-

posed of a mixture of GaAs. All experimental parameters are referenced from the literature and

are used to calculate the computational parameters needed to carry out the the model. In order

to discuss the analytical solutions to the interacting light matter few level systems the first set of

parameters that have to be calculated the three characteristic roots associated with the probability

amplitude of the excited state ca (t). These three poles, which are presented in figure (5.1), need to

be carefully considered when solving for the mixed electron-photon probability densities cb,~k,λ (t).

Each of these poles correspond to emission and/or re-absorption, and model the Rabi oscillations

associated with revival phenomena in near field regions. These poles can be evaluated numerically

or analytically by application of Demoivre’s theorem. In figure (5.1) we present solutions for poles

zn corresponding to transition wavelengths and transition dipole moments in the ranges of 750 -

1300 nm and 20 to 100 Debye [95, 96, 97]. The poles of the contour integrals arrived at from

these results and which are associated with the evaluation of ca (t) are also presented in figure

(5.1). Their physical meaning is interpreted from their location in the complex plane, by means

of their arguments and absolute magnitudes. The contours for the poles are closed by imposing

further constraints as discussed in the previous chapter. The coupling between the equations of

motion for the light matter interaction as well as the propagation of the free field was modeled

computationally. This calculation relied on the use of the following algorithm as implemented in

a leap-frogging scheme [59]. In this scheme we alternate between real and imaginary parts of the

wave-functions at half time step intervals. The propagation was run both within and beyond the

interaction regions, please see figure (5.2a). This algorithm was implemented in a 3 step process

defined as,
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1. Determine analytic approximation for ca and use its leading coefficients and roots to deter-

mine the state of the photonic wave function ~Ψ(+)
γ,+,b & ~Ψ

∗(+)
γ,−,b at the next time step

2. Update the state of the quantum dot from the current state of the photonic wave function to

3. Propagate ~Ψ(+)
γ,+,b & ~Ψ

∗(+)
γ,−,b and repeat from step 1

The figure (5.2b) shows a stable near-field exchange of energy between the quantum dot and single

photon states. These results are derived from two computational experiments set to have the same

ratio of spatial finite differences to temporal ones,∆x
∆t

. It is interesting to note that the envelope

functions for both of these oscillations of the probability amplitudes are very similar and both ex-

hibit a seemingly linear decay of energy shortly after an initial revival of the quantum dot state.

This seems to suggest that though it is worth while to retain a time resolution small enough to

observe the initial revival event, this resolution can be made coarser almost immediately following

the first revival. In the next couple of sections we will outline, the scale of the calculation con-

ducted, the parameters used during the execution of the model, and the explicit algorithm of the

model. We will conclude the chapter and this dissertation in the section dedicated to future work

that can extend the work carried out herein.

5.1 The problem of scale

Determining the scale of the problem is imperative when seeking stability conditions for this com-

putational model while retaining physical reality. For the case of the poles which determine the

time scales of the interaction we find that these are dependent on the strength of the transition

dipole moments and the transition frequencies associated with the energy band gap of the system

under study. The time scales associated with the characteristic roots of the problem are close to

those time scales that can be found in the literature. These correspond to the order of 10−15s for

quantum dots composed of InGaAs and GaAs. As mentioned previously, experimentally measured

values for transition wavelengths and dipole moments are in the range of 750 - 1300 nm and 20 to

100 Debye[95, 96, 97]. In our model the units of the poles zn are arrived at from the definition of
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the parameter λ, which has units of [D]2

[m/s]3
. For clarity we reiterate the expression for this parameter,

which is given by the expression λ ≡ 1

4π

1

3v3
0

[
2~℘2

ab,x + 2~℘2
ab,y + ~℘2

ab,z

]
. These can be translated to

our time-scale by making a series of conversions. To start off, we decide to work in of two sets of

units, either SI or cgs units. for the cast of cgs units, a Debye is given by [71] the definition of the

unit as

[D] = 10−18 statC·cm

=
1

c
× 10−21 [C]

[
m2

s

]

By taking the square of this unit we can avoid any future fractional power of units. Doing so we

are left with the following set of units.

[D]2 = 10−22 statC2 · nm2

Since the stat-Coulomb,statC is defined in cgs units by a unity of the product of the three basic

units in the unit system we find that,

statC2 = cm3g1s−2

= 10−9m · kgm
2

s2

= nm · J

=

(
1

1.602176487× 10−19

)
nm · eV .

In the calculation carried out above we were seeking units of electron-volt nano-meters. By using

those units of measurement we can directly compare our results, as well as use parameters derived

from the literature. In this way we use the standard of the experimental papers that provide the

experimental parameters necessary for our model. Finishing our the unit conversion in the desired
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units, we see that the basic unit of the Debye in electron-volt nanometers is given by,

[D]2 = 10−22

(
1

1.602176487× 10−19

)
eV · nm3

= 6.24150965× 10−4 eV · nm3 .

Optionally we could also work in SI units. In these units we use the formal definition of the

coulomb to check our result above. We follow pretty much the same approach as before, except

this time expanding the units in terms of Coulombs, meters, and seconds. This calculation is given

below,

[D]2 =
(

2.99792458× 108
[m
s

])−2

× 10−42 [C]2
[
m2

s

]2

= 11.1265006× 10−60 [C]2
[
m2
]

= 11.1265006× 10−42 [C]2 [nm]2 .

A third possibility is to convert between Coulombs and stat-Coulombs to take advantage of the

conversion for a coulomb squared, where statC ↔ 3.33564095 × 10−10C = cm
3
2 g

1
2 s−1. This

will allow a triple check to make sure that these unit conversion match the standard. We now focus

purely on the calculation of a Coulomb squared, as given in cgs units by,

(
3.33564095× 10−10C

)2
= cm3g1s−2

= 10−9m · kgm
2

s2

= nm · J

=

(
1

1.602176487× 10−19

)
nm · eV .

In terms of the basic units we are after, the Coulomb squared is given by the unit conversion,

1C2 = 5.60958911× 1037nm · eV .
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Therefore, we can represent the square of a Debye in the desired units,

[D]2 = 11.1265006× 10−42 ∗ 5.60958911× 1037nm3 · eV

= (11.1265006) (5.60958911)× 10−5 [nm]3 · eV

= 6.24150966× 10−4nm3 · eV .

This calculation gives almost an exact agreement to 7 decimal places. Even though the numbers

are not exactly the same, we are with the desired level of accuracy. We therefore take the unit of a

Debye from the square root of its square to be given by the constant unit conversion,

[D] = 2.498301353× 10−2nm
3
2 · eV 1

2 .

In the next step we calculate the units of the parameter λ in anticipation of calculating the charac-

teristic roots we are after. Using the definition of this parameter from previous sections, we know

that this parameter has units of,

[D]2

[m/s]3
=

6.24150966× 10−4nm3 · eV
1× 1027nm3

s3

= 6.24150966× 10−31eV · s3 .

Since there is an additional factor of ~ associated with the calculation, we present plots in units of

1
~

[D]2

[m/s]3
. These units are of the order defined by,

1

~
[D]2

[m/s]3
=

6.24150966× 10−31eV · s3

6.58211899× 10−16eV · s

= 0.948252329× 10−15s2

= 948.252329× 10−18s2

= (30.7937060ns)2 .
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For a range transition dipole moment values between 20− 30Debye, we find that our λ parameter

lies in the range of the following values,

λ

~
=

1

4π

1

3

1

(2.99792458× 108)3


(20)2 ∗ 948.252329× 10−18s2,

(100)2 ∗ 948.252329× 10−18s2,

@20Debye

@100Debye
9.84480000× 10−28 ∗ (20)2 ∗ 948.252329× 10−18s2,

9.84480000× 10−28 ∗ (100)2 ∗ 948.252329× 10−18s2,

@20Debye

@35Debye

=


3.73414181× 10−40s2,

9.33535453× 10−39s2,

@20Debye

@35Debye

.

Additionally, the poles zn also depend on the time scales of ωσ. For transitions associated with

the transition dipole moments mentioned above, these are transition frequencies are in the range

of 750 - to 1300 nm. Assuming that the wavelength measurements are made near vacuum, we can

use the corresponding relationship between the wave-length and transition frequency as given by,

ωσ = 2π c
λσ

ωσ =


2.51153540× 1015 1

s
,

1.44896274× 1015 1
s
,

@λσ = 750nm

@λσ = 1300nm

.

This implies that our transition frequency is in the range of the values above. In addition, the

time-scales that correspond to these frequencies are in following range of values, τ = 1
ωσ

τ =


0.398162813 fs,

0.69014887 fs,

@λσ = 750nm

@λσ = 1300nm

.

From the previous chapter you may recall that the energy also strongly dominated the results of

the mode. In this case, the corresponding to energies ,in eV , for the transition frequencies above
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are within the range,

~ωσ =


1.65312249eV,

0.95372452eV,

@λσ = 750nm

@λσ = 1300nm

.

To test the feasibility of these times scales we compare to the lifetime of a state described in the

Weisskopf-Wigner approximation[15]. The approximate lifetime Γ related purely to the first order

derivative of ca is defined by neglecting all higher order derivatives and assuming the complete

absence of an initial E-M field as given by

ċa = −Γ

2
ca

= −λDip
~

ω3
σca .

As such, the lifetime τ = 1
Γ

is explicitly given by

Γ =
2λDip
~

ω3
σ

≈


2 ∗
(
1.44896274× 1015 1

s

)3 ∗ 3.73414181× 10−40s2,

2 ∗
(
2.51153540× 1015 1

s

)3 ∗ 9.33535453× 10−39s2,

@20Debye; 1300nm

@100Debye; 1000nm

=


2.27191697× 106 1

s
,

2.95786755× 108 1
s
,

@20Debye; 1300nm

@100Debye; 750nm

.

or

τ ≈


440.156931ns,

3.38081399ns,

@20Debye; 1300nm

@100Debye; 750nm

.

This is a wide range of times, but it still puts our calculations where we expected them to be from

previous studies [109, 110]. The poles of the contour integrals arrived at from these results and
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which are associated with the evaluation of ca (t) are presented in figure (5.1). Their physical

meaning is interpreted from their location in the complex plane, by means of their arguments and

absolute magnitudes. The contours for the poles are closed by imposing further causal constraints.

We interpret these poles to have the following meaning:

• z0: Corresponds to product state of an incoming photonic state with the QD in the ground

state at t = −∞

• z2: Corresponds to product state of in the absence of a photonic state with the QD in the

excited state at t = 0

• z1: Corresponds to product state of an emitted photonic state with the QD in the ground state

at t =∞

These interpretations for zn tell us that for a given time t the solutions of the equations of motion

consist of three eigenstates and three energy eigenvalues that corresponding to our three poles.

From these characteristic roots we can also calculate what the initial contribution to the free elec-

tromagnetic field should be.

5.2 Finite Difference algorithm for propagating a free Maxwell field

In this section we focus on the algorithm that we will use to propagate the free field coupled to the

quantum source we are interested in. In many studies, Finite Difference Time Domain (FDTD)

models have been used to accurately and efficiently solve Maxwell’s equations. This method is

very popular for computing and finding physical interpretations for electromagnetic scattering and

wave propagation. FDTD has also become common applied to the analyze of microwave circuits

[111]. In the model we have studied, tested, and used to develop a theory on the near-field emission

effects of few level systems, a scheme similar to FDTD was implemented. In this approach, the

FDTD like program was used to propagate a photonic wave-function that was coupled to a quantum

source via (C.1.17) . These equations of motion for the free fields correspond to the non-relativistic
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Figure 5.1: Analytically evaluated poles zn through use of Demoivre’s theorem. Plots present the
relative change of the argument θ in arc-seconds ∆θ” for z0 & z1. For z2 the change in the argument
is of the order ∆θ”× 10−2. Radial length phasors zn + iωσ for z0 and z1 are of the order of 1019s−1

and for z2 these are of the order of 1015s−1 as plotted with respect to transition frequency ωσ in
1015s−1 and λ

~ in 10−40s2. Phasors with negative real components correspond to emission and those
with positive real components correspond to revival in near field regions.
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approximation through the expressions

(
−ic−1∂t + ~∇×

)
~F (+) = 0 (5.2.1)(

−ic−1∂t − ~∇×
)
~F †(+) = 0 . (5.2.2)

From the discussion in previous chapters, the interaction is coupled to these fields by means of the

general electronic equation of motion 4.3.33.

i~∂t |γσ〉 = V |γσ〉 . (5.2.3)

Within this formalism it has been presented in previous chapters that these expressions can be

applied to solve classes of problems which include, but are not limited to

• a two level quantum source emitting a single photon in linear homogeneous media

• an 6-level quantum source emitting a Maxwell Fields in linear homogeneous media

We now define the explicit finite-differences algorithm. First we will define the expressions that

we will use to propagate a free PWF and later we will introduce how to entangle the the PWF to a

quantum source.

5.2.1 Free PWF Propagation

In regions where the field is free or in the cases where the field is not coupled to a quantum source,

the propagation of the positive energy part of the photonic wave-function takes the form of:

i∂t~Ψγ = v∇× ~Ψγ ,

where ~Ψγ =
1√
2

1√
~ωσ

(
ε~Ψ ~E√
ε

+ i
µ~Ψ ~H√
µ

)
and v−1 =

√
εµ. These expressions may be solved

computationally by expressing them in a leap-frog finite differences algorithm as is shown herein.

Other computational schemes are beyond the scope of this dissertation. The derivation of the
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leap-frog algorithm follows from separating the real and imaginary parts of ~Ψγ and discretizing

them over a Cartesian grid. With these objects defined, the leap-frog algorithm , in the absence

of a quantum source, is given from ∂t

(
−=

{
~Ψγ

})
= v~∇ ×

(
<
{
~Ψγ

})
and ∂t

(
i<
{
~Ψγ

})
=

v~∇×
(
i=
{
~Ψγ

})
which can be explicitly stated in terms of the iterative expressions:

={Ψγ,x}n+ 1
2

i,j,k = ={Ψγ,x}n−
1
2

i,j,k +
v∆t

2

[
1

∆xj

(
<{Ψγ,z}ni,j+1,k −<{Ψγ,z}ni,j−1,k

)
− 1

∆xk

(
<{Ψγ,y}ni,j,k+1 −<{Ψγ,y}ni,j,k−1

)]
={Ψγ,y}n+ 1

2
i,j,k = ={Ψγ,y}n−

1
2

i,j,k −
v∆t

2

[
1

∆xi

(
<{Ψγ,z}ni+1,j,k −<{Ψγ,z}ni−1,j,k

)
− 1

∆xk

(
<{Ψγ,x}ni,j,k+1 −<{Ψγ,x}ni,j,k−1

)]
={Ψγ,z}n+ 1

2
i,j,k = ={Ψγ,z}n−

1
2

i,j,k +
v∆t

2

[
1

∆xi

(
<{Ψγ,y}ni+1,j,k −<{Ψγ,y}ni−1,j,k

)
− 1

∆xj

(
<{Ψγ,x}ni,j+1,k −<{Ψγ,x}ni,j−1,k

)]

and:

<{Ψγ,x}n+1
i,j,k = <{Ψγ,x}ni,j,k − v∆t

[
1

∆xj

(
={Ψγ,z}n+ 1

2
i,j+1,k −={Ψγ,z}n+ 1

2
i,j−1,k

)
− 1

∆xk

(
={Ψγ,y}n+ 1

2
i,j,k+1 −={Ψγ,y}n+ 1

2
i,j,k−1

)]
<{Ψγ,y}n+1

i,j,k = <{Ψγ,y}ni,j,k + v∆t

[
1

∆xi

(
={Ψγ,z}n+ 1

2
i+1,j,k −={Ψγ,z}n+ 1

2
i−1,j,k

)
− 1

∆xk

(
={Ψγ,x}n+ 1

2
i,j,k+1 −={Ψγ,x}n+ 1

2
i,j,k−1

)]
<{Ψγ,z}n+1

i,j,k = <{Ψγ,z}ni,j,k − v∆t

[
1

∆xi

(
={Ψγ,y}n+ 1

2
i+1,j,k −={Ψγ,y}n+ 1

2
i−1,j,k

)
− 1

∆xj

(
={Ψγ,x}n+ 1

2
i,j+1,k −={Ψγ,x}n+ 1

2
i,j−1,k

)]
.

A similar finite differencing procedure can be implemented for

i∂t~Ψ
†
γ = −v∇× ~Ψ†γ ,
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where ~Ψ†γ =
1√
2

1√
~ωσ

(
ε~Ψ ~E√
ε
− iµ

~Ψ ~H√
µ

)
, except that the sign in front of v is opposite. Apply-

ing this procedure yields another leapfrog algorithm. In the absence of a quantum source the

iterative scheme can be defined from the relations ∂t
(
−=

{
~Ψ†γ

})
= −v~∇ ×

(
<
{
~Ψ†γ

})
and

∂t

(
i<
{
~Ψ†γ

})
= −v~∇×

(
i=
{
~Ψ†γ

})
. These iterative expressions are explicitly stated below as:

=
{

Ψ†γ,x
}n+ 1

2

i,j,k
= =

{
Ψ†γ,x

}n− 1
2

i,j,k
− v∆t

2

[
1

∆xj

(
<
{

Ψ†γ,z
}n
i,j+1,k

−<
{

Ψ†γ,z
}n
i,j−1,k

)
− 1

∆xk

(
<
{

Ψ†γ,y
}n
i,j,k+1

−<
{

Ψ†γ,y
}n
i,j,k−1

)]
=
{

Ψ†γ,y
}n+ 1

2

i,j,k
= =

{
Ψ†γ,y

}n− 1
2

i,j,k
+
v∆t

2

[
1

∆xi

(
<
{

Ψ†γ,z
}n
i+1,j,k

−<
{

Ψ†γ,z
}n
i−1,j,k

)
− 1

∆xk

(
<
{

Ψ†γ,x
}n
i,j,k+1

−<
{

Ψ†γ,x
}n
i,j,k−1

)]
=
{

Ψ†γ,z
}n+ 1

2

i,j,k
= =

{
Ψ†γ,z

}n− 1
2

i,j,k
− v∆t

2

[
1

∆xi

(
<
{

Ψ†γ,y
}n
i+1,j,k

−<
{

Ψ†γ,y
}n
i−1,j,k

)
− 1

∆xj

(
<
{

Ψ†γ,x
}n
i,j+1,k

−<
{

Ψ†γ,x
}n
i,j−1,k

)]

and:

<
{

Ψ†γ,x
}n+1

i,j,k
= <

{
Ψ†γ,x

}n
i,j,k

+ v∆t

[
1

∆xj

(
=
{

Ψ†γ,z
}n+ 1

2

i,j+1,k
−=

{
Ψ†γ,z

}n+ 1
2

i,j−1,k

)
− 1

∆xk

(
=
{

Ψ†γ,y
}n+ 1

2

i,j,k+1
−=

{
Ψ†γ,y

}n+ 1
2

i,j,k−1

)]
<
{

Ψ†γ,y
}n+1

i,j,k
= <

{
Ψ†γ,y

}n
i,j,k
− v∆t

[
1

∆xi

(
=
{

Ψ†γ,z
}n+ 1

2

i+1,j,k
−=

{
Ψ†γ,z

}n+ 1
2

i−1,j,k

)
− 1

∆xk

(
=
{

Ψ†γ,x
}n+ 1

2

i,j,k+1
−=

{
Ψ†γ,x

}n+ 1
2

i,j,k−1

)]
<
{

Ψ†γ,z
}n+1

i,j,k
= <

{
Ψ†γ,z

}n
i,j,k

+ v∆t

[
1

∆xi

(
=
{

Ψ†γ,y
}n+ 1

2

i+1,j,k
−=

{
Ψ†γ,y

}n+ 1
2

i−1,j,k

)
− 1

∆xj

(
=
{

Ψ†γ,x
}n+ 1

2

i,j+1,k
−=

{
Ψ†γ,x

}n+ 1
2

i,j−1,k

)]
.

The stability of this approach is identical to the Courant condition [59, 60]. The computational

limit is then determined by the amount of physical memory and computational cycles available to

the program. A rule of thumb when modeling devices requires that the finite differences should
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be at least tone tow orders of magnitude smaller than the smallest feature in the computation.

Since our smallest feature is of the order of one nano-meter 1 nm, using the Courant condition

∆t < c−1∆x. This implies that the largest time step we can take is of the order of ∆tMax =

[3× 108]
−1

[0.06× 10−9] s, or ∆tMax = 2.0 × 10−19s. In our models we traditionally use time

scales of the order of ∆tMax = 1.0× 10−20s. This way we can satisfy both the fast oscillations of

the optical field, which are of the order of ∆t = 10−15s and the characteristic roots which are also

of the order of ∆t = 10−19s.

5.2.2 PWF and Quantum Source Entanglement

In previous chapters we couple the PWF to a quantum source analytically. By applying another

computational scheme similar to the one presented above, we now show that it is possible to work

in the interaction picture and define an equation of motion for the interaction 4.3.33 to be evaluated

computationally. To couple the FDTD description of the PWF propagation defined above to a

quantum source it is now necessary to have an explicit definition of this interaction term. In the

discussion presented below we describe how to numerically solve/integrate the expression

(
−ic−1∂t + ~∇×

)
~Ψγ = 0 (5.2.4)(

−ic−1∂t − ~∇×
)
~Ψ†γ = 0 , (5.2.5)

when it is coupled to a quantum source. The main idea depends on the same procedure we used

previously to develop a leap-frog algorithm.

5.2.2.1 One Two Level Quantum Source emitting a Maxwell Field in Linear Homogeneous Me-

dia

We begin by separating the real and imaginary parts of this expression. In the case of a dipole

non-relativistic approximation, the interaction Hamiltonian for this system was shown to yield the
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coupled equations

i~ċa (t) =
√
~ωσ

(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

i~
∑
~k,λ

ċb,~k,λ (t) =
√
~ωσ

(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab .

These coupled expression can be numerically expressed by separating them into their real and

imaginary components and discretizing them over a Cartesian grid. With these defined the algo-

rithm is given from

• Excited State Probability Density:

– ∂t (−={ca}) = 1
~<
{√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

}
– ∂t (i<{ca}) = i1

~=
{√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

}
• Optical State Probability Density:

– ∂t

(
−=

{∑
~k,λ cb,~k,λ

})
= 1

~<
{√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab

}
– ∂t

(
i<
{∑

~k,λ cb,~k,λ

})
= i1

~=
{√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab

}
The time discretization for the coupling between the quantum source and Maxwell Field states are

given for the excited and vacuum states are

={ca}n+1
i,j,k = ={ca}n−1

i,j,k −
∆t

~
<
{√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

}n
i,j,k

<{ca}n+1
i,j,k = <{ca}n−1

i,j,k +
∆t

~
=
{√

~ωσ
(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
,b
eiωσt · ~℘ba

}n
i,j,k

.
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The time discretization for the coupling between the quantum source and the Maxwell Field state

given for the ground state and photonic state are

=

∑
~k,λ

cb,~k,λ


n+1

i,j,k

= =

∑
~k,λ

cb,~k,λ


n−1

i,j,k

− ∆t

~
<
{√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab

}n
i,j,k

<

∑
~k,λ

cb,~k,λ


n+1

i,j,k

= <

∑
~k,λ

cb,~k,λ


n−1

i,j,k

+
∆t

~
=
{√

~ωσ
(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
,a
e−iωσt · ~℘ab

}n
i,j,k

,

(each component must be set independently). Studying the expressions that determine ca and∑
~k,λ

cb,~k,λ one can show that tone way to start the procedure is by either setting an initial value

for ca or by bringing an incident field near ca. Since this state will act as the initial quantum

source of any photon/s, then we just need to let the system evolve naturally. Since ca is initially

determined then all the terms
∑
~k,λ

cb,~k,λ will be subsequently computed and updated from that

term. Moreover, the update of
∑
~k,λ

cb,~k,λ is a direct update to the PWF that is being emitted or

absorbed by the quantum source. Similarly, this term is also coupled to the ground state of the

few-level system and would, if required, enter into a more complicated calculation of the modified

electronic structure. We can show that from the definitions ~Ψ(−)
γ,+,a =

∑
~k,λ

〈
b1~k
∣∣ ~Γγσ−ca (t) |a0〉

and ~Ψ†(−)
γ,−,a =

∑
~k,λ

〈
b1~k
∣∣ ~Γ†γσ−ca (t) |a0〉, any change to cb,~k,γ will result in a delayed change to ca.

However, the discussion on recalculating the electronic spatial wave-function from changes to the

spatial profile of the electromagnetic field is beyond the scope of this dissertation.
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(a) Computational Algorithm Diagram
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(b) Near field revival

Figure 5.2: Computational algorithm and near field revival phenomena. Near field oscillations
are represented in terms of energy exchange ∆E ≡ Eg

(
1− |ca|2

)
between the two and four QD

states and their spontaneously emitted PWF. Envelope functions bounding the region of coherent
oscillation behave as low order polynomials. The polynomial behavior of the envelope functions
is contradictory to the expectation of exponential behavior with characteristic times of the order of
the roots zn for ca. For the case of two QDs a phase shift of π

2
in revival oscillations is observed

with respect to those present in one QD.

5.2.2.2 Determining Coupled Maxwell Field & Quantum Source at times between the fixed time

grid values

This difficulty can be circumvented by interpolating the missing values at the desired time. One

such method which we implement here is simple linear interpolation.

={z}n = ={z}n− 1
2 +

1

2∆t

(
={z}n+ 1

2 −={z}n− 1
2

)
<{z}n+ 1

2 = <{z}n +
1

2∆t

(
<{z}n+1 −<{z}n

)
.

5.2.2.3 Updating the excited state probability density without the Computational Fourier Trans-

form

In describing the interaction between a quantum source its spontaneously generated Maxwell Field

we found that the evolution of the excited state is given for a known field according to equation

(4.3.39). Discretizing this expression we find that we can compute the next time step value of
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the excited state ca (t+ δt). Therefore, we will compute the time evolution of ca over a small

time interval δt according to the discrete form of time derivative expressions where the first order

derivative is centered in the interval t ∈
[
t+ δt

2
, t− δt

2

]
. To do so we will need to make use the

discretized forms of the first-

f (1) (t) =
f
(
t+ δt

2

)
− f

(
t− δt

2

)
δt

,

second-

f (2) (t) =
f (1)

(
t+ δt

2

)
− f (1)

(
t− δt

2

)
δt

=
f (t+ δt)− 2f (t) + f (t− δt)

(δt)2 ,

and third- order derivatives

f (3) (t) =
f (2) (t+ δt)− f (2) (t− δt)

δt

=
f
(
t+ 3

2
δt
)
− 3f

(
t+ δt

2

)
+ 3f

(
t− δt

2

)
− f

(
t− 3

2
δt
)

(δt)3 .

We then have to substitute these expressions into (4.3.39) (repeated here for convenience)1

c(3)
a + 3iωσc

(2)
a −

(
3ω2

σ + i
~
λ

)
c(1)
a − iω3

σca = −1

λ
eiωστ

[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba .

From that substitution we find that discretized form of the LHS of this expression is given by

ca
(
t+ 3

2δt
)
− 3ca

(
t+ δt

2

)
+ 3ca

(
t− δt

2

)
− ca

(
t− 3

2δt
)

(δt)
3

+ 3iωσ

(
ca (t+ δt)− 2ca (t) + ca (t− δt)

(δt)
2

)

−
(

3ω2
σ + i

~
λ

)(
ca
(
t+ δt

2

)
− ca

(
t− δt

2

)
δt

)
− iω3

σca (t) .

1λ = 1
4π

1
3v30

[
2~℘2

ab,x + 2~℘2
ab,y + ~℘2

ab,z

]
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However, since we do not have information at the time t+ 3
2
δt, we have to shift the location where

we evaluated these derivatives back by δt. The discrete form of these shifted derivatives is given

by the expression below.

ca
(
t+ δt

2

)
− 3ca

(
t− δt

2

)
+ 3ca

(
t− 3

2δt
)
− ca

(
t− 5

2δt
)

(δt)
3

+ 3iωσ

(
ca (t)− 2ca (t− δt) + ca (t− 2δt)

(δt)
2

)

−
(

3ω2
σ + i

~
λ

)(
ca
(
t− δt

2

)
− ca

(
t− 3δt

2

)
δt

)
− iω3

σca (t− δt) .

In order to be able to couple this solution to the field propagation defined before we need to solving

for a time that corresponds to the time when that propagation is set to begin again. The term we

need to solve for is given at the timeca
(
t+ δt

2

)
. Once we have been able to isolate that term we

can complete discretized form of (4.3.39) which is given by,

1

(δt)
3 ca

(
t+

δt

2

)
− 3

(δt)
3 ca

(
t− δt

2

)
+

3

(δt)
3 ca

(
t− 3

2
δt

)
− 1

(δt)
3 ca

(
t− 5

2
δt

)
+

(
3iωσ

(δt)
2 ca (t)− 6iωσ

(δt)
2 ca (t− δt) +

3iωσ

(δt)
2 ca (t− 2δt)

)

−
(
3ω2

σ + i ~λ
)

δt
ca

(
t− δt

2

)
+

(
3ω2

σ + i ~λ
)

δt
ca

(
t− 3δt

2

)
− iω3

σca (t− δt) = − 1

λ
eiωστ

[
~Ψ

(+)
γ,b,+ (τ) + ~Ψ

∗(+)
γ,b,− (τ)

]
· ~℘ba .

This procedure is computationally cheap since it only requires that we retain the history of at least

5 previous time steps. From the previously conducted time steps we can then update the most

current time step. This is evident from the fact that algorithmically

c
n+ 1

2
a = 3c

n− 1
2

a − 3c
n− 3

2
a + c

n− 5
2

a

−
[
cna − 2c

n− 2
2

a + c
n− 4

2
a

]
3iωσ∆t

+
[
c
n− 1

2
a − cn−

3
2

a

](
3ω2

σ + i
~
λ

)
∆t2

+

[
iω3

σc
n− 2

2
a − 1

λ
eiωστ

[
~Ψ

(+)
γ,b,+ + ~Ψ

∗(+)
γ,b,−

]n
· ~℘ba

]
∆t3 .
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5.2.2.4 Evaluating other components for comparison to experimental results

Computationally the coupling between the interaction and the propagation of the Maxwell Field

occurs through direct substitution of the newly computed and energy normalized PWF vectors ~F (+)
b

and ~F †(+)
b into their corresponding equations of motion. Subsequent computations of ~F (+)

b , ~F †(+)
b ,

~℘ab, ωσ, and ~F (−)
a , ~F †(−)

a then depend on their previously computed values. The computation cycle

presented above for one two level quantum source emitting a Maxwell Field in linear homogeneous

media can be represented by (5.3).

Figure 5.3: Computational Cycle for modeling one - two level quantum source emitting a Maxwell
Field in linear homogeneous media.

From these values we can then compute electric, magnetic, and Riemann-Silberstein wave func-

tions. Referring back to the discussion on the PWF, we know that:

• Electric Components are given by:

– ~Ψ
(+)
E,b =

√
~ωσ
2ε0

(
~Ψ

(+)
γ,+ + ~Ψ

†(+)
γ,−

)
b

– ~Ψ
(−)
E,a =

√
~ωσ
2ε0

(
~Ψ

(−)
γ,+ + ~Ψ

†(−)
γ,−

)
a

• Magnetic Components are given by:

– ~Ψ
(+)
H,b = −i

√
~ωσ
2µ0

(
~Ψ

(+)
γ,+ − ~Ψ

†(+)
γ,−

)
b
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(a) 1QD <{zx}+ (b) 1QD <{zy}+ (c) 1QD <{zz}+

Figure 5.4: Finite difference models of the spontaneous emission of a single photon from a two-
level system of quantum dot states. Color intensity in red (positive) and blue (negative) represent
the amplitude of the photonic wave-function field strengths.

(a) 2QDs <{zx}+ (b) 2QDs <{zy}+ (c) 2QDs <{zz}+

Figure 5.5: Finite difference models of the spontaneous emission of two photons from two 2-level
systems of quantum dot states. Color intensity in red (positive) and blue (negative) represent the
amplitude of the photonic wave-function field strengths.

– ~Ψ
(−)
H,a = −i

√
~ωσ
2µ0

(
~Ψ

(−)
γ,+ − ~Ψ

†(−)
γ,−

)
a

• Riemann-Silberstein Vector components are given by:

– ~F (+)
b =

√
~ωσ

(
~Ψ

(+)
γ,+

)
b

– ~F †(+)
b =

√
~ωσ

(
~Ψ
†(+)
γ,−

)
b

5.3 Computational Results and Conclusions

For the case of two quantum sources, the influence of the adjacent QD states is evident in the phase

shift of the non-Markovian revival effects observed. Fig. (5.4) presents spatial single photon state

components zx,+, zy,+, and zz+ following the establishment of coherent oscillations within the

polynomial envelope functions, at a time of 91.74 as, of Fig. (5.2b). The dipolar structure of the

isosurfaces presented in Fig. (5.4) was expected due to the initial orientation of the transition dipole
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moment solely along the z quantization axis. Further, the interference present in the isosurfaces of

Fig. (5.5) were also expected due to the out-of-phase emission associated with the second QD.

From these computational results we have demonstrated near-field non-Markovian effects required

for the study of single- and multi-photon emission from quantum sources embedded in dielectric

structures by means of the Riemann-Silberstein wave-function and finite-difference methods that

go beyond the Markovian limit; both analytically and computationally. The bandwidth character-

istic frequencies νc, of order νc = 1017Hz, observed in Fig. (5.2b) are due to revival phenomena

in near field regions. These fast oscillations can be understood to arise from the confinement of

the photon in the spontaneous emission region. A run-of-the-mill calculation using the Heisenberg

uncertainty principle yields that these are correct, since ∆x∆p > ~
2
. The explicit calculation yields

that for a quantum source of diameter ∆x ≈ 10−9nm the following conditions mus be satisfied,

∆νk >
1

2

c

∆x
.

Therefore, attributing the near-field oscillations to this bandwith implies that νc ≡ ∆νk, which is2

∆νk ≈ 3
2
1017Hz.It was further demonstrated that the product QD-photon state is highly localized

during spontaneous emission while energy is being injected and exchanged between both photon

and quantum dot states. Test cases were directly compared for different values of ∆x & ∆t . From

these it was determined that the polynomial envelope functions for coherent oscillations were in

agreement within the initial revival period of the quantum dot excited state. Furthermore, the theo-

retical approximations made provide further analytic and interpretative insight to the periodicity of

the initial decay and revival phenomena present in the near field limit. This work provides a recipe

for computationally designing and evolving photonic states to be emitted and detected by solid-

state quantum sources embedded within dielectric structures and to compare them to experimental

results by means of their corresponding density matrix, Wigner functions, and g(2) functions.

The model developed for single-photon emission from QFT principles yields the expected emis-

2It is interesting to note that this bandwidth is of the same order as the oscillatory components (imaginary parts) of
the large characteristic roots, with fast decay times, presented in the analysis of the revival terms in Fig. 5.1.
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sion profile for a dipole oriented along the quantization axis. The adopted representation of the

photon in terms of the Riemann-Silberstein vector was shown to yield a generalized form of

Maxwell’s equations that facilitates the interpretation of numerical results and convolution of lo-

calized photon-exciton fields within near field and free field regions. Results from these models

can be used to calculate density matrix elements ρσγ = |σγ〉 〈σγ| for the coupled photon-matter

field. These values can then be directly compared to experimental ones. To calculate the density

matrix from the results of the mode only the time evolution of the probability amplitudes is nec-

essary. The density matrix for the case of the two level system, with two possible photonic spin

states, is shown in the following expression,

ρσγ =

|a0〉
∣∣∣b1~k,+〉 ∣∣∣b1~k,−〉

〈0a| |ca|2 c∗acb,~k,+ c∗acb,~k,−〈
1~k,+b

∣∣∣ c∗
b,~k,+

ca

∣∣∣cb,~k,+∣∣∣2 cb,~k,−c
∗
b,~k,+〈

1~k,−b
∣∣∣ c∗

b,~k,−ca c∗
b,~k,−cb,~k,+

∣∣∣cb,~k,−∣∣∣2
(5.3.1)

The density matrix for the case of the 5 level system, with 4 possible photonic spin states, this is
given by the expression

ρσγ = ∣∣∣ 32 v1~k,−

〉 ∣∣∣ 12 v1~k,−
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(5.3.2)

These density matrices represent the main interpretation of calculated results. From these we

can compare to experimental results and further compute the entanglement present in these few-
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level systems. It has been suggested that a photon interacting with two electron spins can estab-

lish Greenberger-Horne-Zeilinger entanglement between spin-photon-spin systems [112, 113, 2].

Though there are various measures for entanglement [114, 115], we follow the prescription of

previous studies which suggest the use of the quantum von Neumann entropy [116] to calculate

quantum entanglement. The von Neumann entropy is given by the expressions [117]

S (ρσγ) = −Tr (ρσγ ln ρσγ) , (5.3.3)

or

S (ρσγ) = = −
∑
i

(λi lnλi) , (5.3.4)

where the values λi represent the eigen-values of the density matrix, ρσγ . Additionally, our results

can be used to calculate the Wigner-Weyl, quasi-probability distributions from the probability am-

plitudes that result from our model. The Wigner-Weyl quasi-distributions can be compared to

experimental results by using the same method utilized in experimental studies [118, 119, 14, 86,

17, 18, 87, 51, 16, 120], where the tomography kernel is given by K (x) = 1
2

´∞
−∞ |ξ| eiξxdξ &

pr (Xθ, θ) ≡ 〈Xθ〉

W (X,P ) =
1

2π2

ˆ π

0

ˆ ∞
−∞

dθdXθpr (Xθ, θ)×K (X cos θ + P sin θ −Xθ) . (5.3.5)

5.3.1 Homodyne Tomographic Experimental Comparison

The parameters Xθ in these types of experiments are known as the quadratures of the field and are

designated by the rotation matrix[104, 15, 14]

 Xθ

Pθ

 =

 cos θ sin θ

− sin θ cos θ


 X

P

 , (5.3.6)
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where Xand P are probability amplitudes of the field, and are given by [104, 15, 14],

X =
1√
2

(
b̂+ b̂†

)
(5.3.7)

P =
1√
2
e−i

π
2

(
b̂− b̂†

)
. (5.3.8)

The correspondence of these quadratures to the signal field emitted from a weak source (such as a

quantum source), is given by,

~̂ES = i
∑
~k

ε̂~kE~kâ~ke−i(νkt−
~k·~r) + h.c .

In the in the presence of a 50/50 beam splitter, experimentalists mix the signal with a local-

oscillator field, given by

~ELO = iε̂LOELOαLOg (x, y)h (t) e−i(νLOt−kLOz) + c.c. ,

and which oscillates at the same frequency as a signal. At the beam splitter the fields undergo the

transformation,

 ~̂E1

~̂E2

 =

 cos 45◦ sin 45◦

− sin 45◦ cos 45◦


 ~̂ES

~ELO

 .

This transformation yields two beams incident on two detectors at 90◦ from one another. The

expression for the field incident on detector 1 is then ~̂E1 = 1√
2

(
~̂ES + ~ELO

)
and the one incident

on detector 2 is is given by ~̂E2 = 1√
2

(
~ELO − ~̂ES

)
. By counting the number of clicks at each

detector, as expected according to the expressions, where N̂1 corresponds to detector 1 and N̂2 to

detector 2,

N̂1 =

ˆ
Vdet

ˆ
∆t

ε0V

c~ω
1

2

(
~̂E2
S + ~E2

LO + 2 ~̂ES · ~ELO
)
dtdV ,
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N̂2 =

ˆ
Vdet

ˆ
∆t

ε0V

c~ω
1

2

(
~̂E2
S + ~E2

LO − 2 ~̂ES · ~ELO
)
dtdV .

Taking the difference of these counts by means of a difference aggregator yields that the measure-

ment will provide information about the quantum statistics of the signal field. The expression for

this is given below,

N̂− =N̂1 − N̂2 =

ˆ
Vdet

ˆ
∆t

ε0V

c~ω

(
2 ~̂ES · ~ELO

)
dtdV .

In fact, the quadrature it self will by proportional to N̂− as is evident from the expression [14],

~̂ES · ~ELO =

i∑
~k

ε̂~kE~kâ~ke−i(νkt−
~k·~r) + h.c

 · (iε̂LOELOαLOg (x, y)h (t) e−i(νLOt−kLOz) + c.c
)
.

Simplifying that expression, yields the result

N̂− =
∑
~k

C~k

(
âkα

∗
LO + â†kαLO

)
= |αLO|

(
b̂e−iθ + b̂†eiθ

)
Xθ =

1√
2

(
b̂e−iθ + b̂†eiθ

)
=

1√
2

N̂−
|αLO|

.

This is given by the traditional normalization condition imposed on measurements so that the

quadratures satisfy the commutation relation

[X,P ] =i

If the probability amplitude of the signal field is given by the complex quantity α = |α| eiθα , the for

completeness and clarity we reiterate that the X quadrature is traditionally associated with the real
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(a) Photonic crystal structure (b) Photonic crystal structure

Figure 5.6: Quantum source beam splitter embedded in a photonic crystal nano-cavity.

part of the probability amplitude and the P quadrature with the imaginary part [15, 104, 17, 14],

X = <{α}

P = ={α} .

This concludes the discussion on experimental comparison.

5.4 Future Work

Future work associated with this dissertation should revolve around the implementation of a more

realistic model that can describe the interaction directly from electronic structure calculations such

as hole entrapment at STP while taking into consideration selection rules of multiple QD states

simultaneously. The model for single photon emission should also be improved to provide more

realistic effects such as multi-photon states and optical mode generation explicitly in micro- or

nano-cavities. However, such calculations will be computationally expensive and therefore neces-

sitate benchmarks to insure code scalability. The description presented in this section will facilitate

the proposal of new and enhanced devices that could, for example, rely on electron-hole pair re-
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combination for a quantum wire embedded in a cavity. Overall, these effects will determine the

entanglement and teleportation of quantum information between QD (or Qubit) states via optical

modes by means of a single-photon or multi-photon state. Additionally, future studies along this

area could look at Maxwell Field states that carry orbital angular momenta as well as spin. Those

conservation laws associated with orbital angular momentum quantum numbers can be studied in

detail based on the formalism presented as part of this dissertation. Finally, calculations that model

detectors can be build on effective quantum dot beam splitters embedded in photonic crystal nano-

cavities and it is the sincere interest of the authors that such an are of research be studied.
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6 COMPUTATIONAL IMPLEMENTATION OF QUANTUM SOURCE

In this chapter we describe detail the computational design and structure of the program devel-

oped to calculate the integration of the equations of motion for the coupled quantum source and

electromagnetic fields. The design of this program implements a finite differencing scheme which

requires high resolution finite differences to describe features that can be up to three orders of

magnitude smaller than the wavelength of the modeled electromagnetic field. In order to address

the high memory and computational requirements associated with the model described in previous

chapters, we incorporate a domain decomposition strategy that divides the complete computational

domain into a Cartesian grid. This strategy is required to reduce the total wall time associated with

job execution at run-time. Without this strategy in would be intractable to solve this problem in

a single modern processor. We implement the use of parallel interfaces [121, 122] for managing

inter node communication and parallel input and output to storage files [123, 124]. The principal

classes of the program are the Maxwell field and the quantum dot. However, these classes de-

pend on secondary classes that define computational parametrization of physical constraints, grid

decomposition, and presentation of results.

6.1 Finite Differencing Strategy

It is well known that finite differencing integration techniques are memory and compute efficient

and so have been widely applied to computational models of physical electromagnetic phenom-

ena [60]. However, the computational resource requirements for physically viable models depend

strongly on the scale of the features of the model under study. In this study the expected and applied

difference in scale from the smallest feature to the largest feature spans 3 to 4 orders of magnitude.

As mentioned previously, the time scale associated with the model requires spatio-temporal reso-

lutions of the order of ∆t ≤ 10−20s and ∆x ≤ 10−10m. These conditions automatically satisfy

the Courant condition associated with spatio-temporal numerical techniques [59]. However, the
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discretization of a space which requires a 4 order of magnitude difference results in grid point

requirements of the order of 50, 000 grid points per spatial direction. The memory requirement

associated with this grid point value is of the order of 50, 0003 or 125× 1012 grid points.

Since the field values associated with this type of calculation are complex, each memory compo-

nent requires 16 bits to store. This implies that any instantiation of the Maxwell field class, in the

full calculation, will require approximately 16 × 125 × 1012 bits of storage. This is equivalent

to 2 × 1015 bits or ∼ 1.78 peta bytes. In a linpack benchmark [125] we conducted of a modern

Intel processor, see figure 6.1a, it was determined that the computational ability is of the order of

108 floating point operations per second. Since fixed floating point values are represented by 6

bits, this translates to a performance of the order of 109 bits or approximately 931 mega bytes per

second. This implies that it would take a single node of this type approximately 2 × 106 seconds,

or 12 days to complete one iteration of this size. Since we would need 1012 iterations, this would

be equivalent to approximately 1.2× 1010 years to complete one run.

Simulating a model of this type of physical phenomena at these scales is completely intractable

with the computational hardware configuration discussed. Therefore, the only way to avoid the

problem associated with these large time scales is to constrain the domain of the simulation only

to the regions of interest and decompose the domain so that multiple computers can work in uni-

son to solve the problem. The domain of the simulation can be constrained by specifying special

boundary conditions that behave as perfectly absorbing media and which do not at reflections from

the boundaries. These types of boundary conditions, known as perfectly matched layers (PMLs)

or absorbing boundary conditions (ABCs) [126, 127] have been widely studied and previously

applied.

6.2 Domain Decomposition

As mentioned in the previous section, accurate and precise computational models of physical phe-

nomena require the main domain of the model to be decomposed in to sub-domains so that multiple

computers can work in unison to achieve a timely solution of the model. Many computational li-

braries exist that are designed primarily for the purpose of decomposing structured or unstructured
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Figure 6.1: Computational hardware benchmarks

grids [128, 129]. In this study we constrained the program to a structured Cartesian grid decompo-

sition of the computational domain. To implement this type of domain decomposition we utilized

built in routines MPI_CART_CREATE available in the message passing interface (MPI) standard

[130, 122, 121]. The grid decompositions that are utilized with this program are presented in figure

6.2. The type of decomposition is determined by the number of processes that are requested for use

at run time. For the case of 1, 2, 3, 4, 5, 6, 7, and 8 processes the grid is decomposed as follows:

1. One large cubic block that encompasses the entire domain

2. Two planar sheets with half the length of the total domain

3. Three planar sheets with one third the length of the total domain

4. Four rectangular prisms with sides s = 1
2
L and height h = L, where L is the total length of

the domain

5. Five planar sheets with one fifth the length of the total domain

6. Six planar sheets with one sixth the length of the total domain

7. Seven planar sheets with one seventh the length of the total domain
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(a) Layer (1D) (b) Rectangular (2D) (c) Block (3D) (d) Ghost points

Figure 6.2: Computational grid decomposition types & update skin

8. Eight cubic blocks with sides s = 1
2
L.

As part of the domain decomposition for modeling physical phenomena it is imperative that a

continuity equation be satisfied between domains. If this is not the case, un-physical effects, such

as artificial reflections, can be observed at the boundaries. This means that at the boundary between

sub-domains of the total domain there has to be an update skin which will manage to insure that

all the information required for the sub-domain computation is present. One example that helps

insure the availability of this information takes advantage of a technique know as the update skin

where ghost points are defined in the sub-domain calculation, see figure 6.2d.

Another type of domain decomposition specifies grid regions with higher point densities. In these

instances interpolation techniques are used to insure that the information in the sub-grid is not lost

to the larger grid [131, 132]. These techniques, though not yet incorporated in this computational

implementation, are considered in the mesh class of the design of the program.

6.3 File Handling

The domain decomposition adopted in our computational approach assigns a section of the compu-

tational tasks to discrete sets of processing units. To supply the required information to these tasks

we are therefore required to distribute computational data across multiple computational nodes. In

order to analyze results of the computation it is, in many cases, necessary to unify the distributed

data into contiguous files. In the program we have developed we utilize the HDF5 file format

[123] to handle parallel input and output from files stored on disk. We use the H5Dwrite routine,
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available from the HDF5 libraries, to write the hyper dimensional data structure that represents

the electromagnetic into a set of contiguous files. The hyper-dimensional data structure is four

dimensional in that it captures the three dimensional spatial distribution of the fields as well as the

polarization in terms of the vector components associated with the two possible helicities of the

field. The data structure can be expressed mathematically in terms of the following object

~Ψγ ≡ Ψijk,x.

The dimensions of the object are therefore dependent on the set definitions i ∈ {0, Nx}, j ∈

{0, Ny}, k ∈ {0, Nz}, x ∈ {0, 6}. The first three indices represent the number of grid points

along the x, y, and z axis. The last index represents the field component associated with the

electromagnetic field.

The HDF5 file format can be converted to various file formats. In our case, we utilized the h5utils

package, developed by the AbInit group which also develops MEEP and MPB [53], to translate

our results from this file format to the commonly used visualization toolkit (VTK) file format

[133]. Using this scheme allows visualization of isosurfaces and analysis of data corresponding

to the modeled electromagnetic phenomena. In addition to the visualization class implemented in

our program, we additionally plotted and quantitatively studied the generated data using the data

analysis and visualization Paraview suite [134]. From these isosurface plots we were able to exactly

determine interference regions and 3 dimensional field profiles. The data gathered from those

results is essential for the calculation of spatially resolved probability densities and temporally

resolved probability amplitudes as presented in previous chapters.

6.4 Program Structure

The physical classes of the model are the Maxwell Field, Boundary Conditions, and Quantum

Dot. The physical classes of the algorithm represent the implementation of the finite differencing

schemes presented in previous chapters. The coupling of these physical classes can be seen in

figures 6.4 and 6.5. The quantum dot class incorporates several methods which define how the
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Figure 6.3: Distributed Model
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Figure 6.4: Quantum Dot
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Figure 6.5: Maxwell Field
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Maxwell field defines the quantum source states and vice verse. One such class is the class that

takes the Fourier transform of the Maxwell field and couples it to the probability amplitude of the

quantum source in the interaction region. As evident from this discussion, the physical classes can

not exist independent of other computational and structural classes of the program. For example,

the definition of the “interaction region” is defined else where in the program, though attributed

to the physical parameters of the quantum source. The Boundary Conditions class defines these

essential physical parameters of scale, coupling strengths, and dielectric properties associated with

the model. In addition it defines the methods which allow other classes access to this information

for construction of the simulation.

The primary computational and structural classes of the model are the distribution grid, the mesh,

the visualization, and the distributed model. The mesh defines the differentiation and number of

grid points in three dimensions that we associate with the quantization axis of the model. This

mesh represents the fixed information that the Maxwell field and Quantum dot use to calculate up-

dates and adjacent spatial values. In addition, the mesh class defines what type of decomposition

topology the distribution grid will define. The distribution grid has the primary purpose of using all

the information available to it, including memory limits, number of processors, mesh grid points,

and specified decomposition topology, to generate a series of sub domains which encompass the

original mesh and all its geometric properties. The methods available in the grid distribution class

facilitate the access to shared skin updates and recalculation in the Maxwell Field class.

The distributed model class is effectively the complete model which constructs all of these classes

at run time and coordinates their call sequence. It starts by populating the configuration variables

such as max size and calculating minimum differences from computational constraints such as the

Courant condition. Then, it creates the boundary conditions instance which determine the mesh

characteristics of the model. Once the mesh is constructed it creates the quantum sources, initial-

izes the available quantum states and incorporates that additional information into the mesh. After

the mesh is finalized, the information contained in its instance will be used by the distributed model

to construct the distributed grid. The Maxwell field is created only after the distributed grid has
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been constructed. Since the Maxwell Field has the largest requirements for memory in the model it

can not be instantiated in a single node. The distribution grid class therefore creates all of the dis-

tributed instances of the Maxwell Field instance simultaneously and in parallel. This implies then

that the quantum sources are also distributed to those instances. Therefore, the interaction regions

are perfectly contained within these instances and the only cross-talk that can occur is governed

by the transfer of information to the instances of the Maxwell Field class. During development

and initial testing of the proposed models, the visualization class provides real time coarse results

of the evolution of the model. This technique is invaluable for saving time during development

and when first starting the design of boundary conditions associated with the model. The results

presented throughout this dissertation depend strongly on the presented program structure.

All conclusions drawn about the nature of the creation of photonic states coupled to few level

systems in near field regions could not have been arrived at without the development of these com-

putational techniques. It is the sincere hope of the authors that in the near future this program will

be extended from its current form to include additional computational methods that can incorporate

hundreds of few level systems coupled by means of highly occupied photonic states.
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APPENDIX: MATHEMATICAL TRACTS
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A Quantization of Maxwell’s Equations

The relation between Maxwell’s Equations for these and their classical counter parts are best given

in the tabular format of the table below. (Please see (C.4)) To construct the PWF we take the

quantum form of Maxwell’s equations from the table and re-write

~∇×
[
〈γ|
(
~E(+) (~r, t) + ~E(−) (~r, t)

)
|γ〉
]

= −µ0∂t

[
〈γ|
(
~H(+) (~r, t) + ~H(−) (~r, t)

)
|γ〉
]

(A.0.1)

~∇×
[
〈γ|
(
~H(+) (~r, t) + ~H(−) (~r, t)

)
|γ〉
]

= ε0∂t

[
〈γ|
(
~E(+) (~r, t) + ~E(−) (~r, t)

)
|γ〉
]

(A.0.2)

which are two expressions relating the probability densities defined above.

~∇×
[
〈γ| ~E(+) (~r, t) |γ〉+ 〈γ| ~E(−) (~r, t) |γ〉

]
= −µ0∂t

[
〈γ| ~H(+) (~r, t) |γ〉+ 〈γ| ~H(−) (~r, t) |γ〉

]
(A.0.3)

~∇×
[
〈γ| ~H(+) (~r, t) |γ〉+ 〈γ| ~H(−) (~r, t) |γ〉

]
= ε0∂t

[
〈γ| ~E(+) (~r, t) |γ〉+ 〈γ| ~E(−) (~r, t) |γ〉

]
(A.0.4)

This can be explicitly shown by taking advantage that |γ〉 is a complete set of states occupied by a

single photon |γ〉 =
∑

n cn (t) |n〉, such that the identity is given by I =
∑
n

|n〉 〈n|, and introduce

Table A.1: Classical Wave Optics vs Quantum Optics

Classical and Quantum form of Maxwell’s Equations

Classical
~∇× ~E = −∂t ~B
~∇× ~H = ∂t ~D

Quantum
~∇×

[
〈γ|
(
~E(+) (~r, t) + ~E(−) (~r, t)

)
|γ〉
]

= −µ0

[
∂t 〈γ|

(
~H(+) (~r, t) + ~H(−) (~r, t)

)
|γ〉
]

~∇×
[
〈γ|
(
~H(+) (~r, t) + ~H(−) (~r, t)

)
|γ〉
]

= ε0∂t

[
〈γ|
(
~E(+) (~r, t) + ~E(−) (~r, t)

)
|γ〉
]
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it into these expressions

~∇×
[∑
n

〈n| c∗n ~E(+) |γ〉+ 〈γ| ~E(−)
∑
n

cn |n〉
]

= −µ0∂t

[∑
n

〈n| c∗n ~H(+) |γ〉+ 〈γ| ~H(−)
∑
n

cn |n〉
]

(A.0.5)

~∇×
[∑
n

〈n| c∗n ~H(+) |γ〉+ 〈γ| ~H(−)
∑
n

cn |n〉
]

= ε0∂t

[∑
n

〈n| c∗n ~E(+) |γ〉+ 〈γ| ~E(−)
∑
n

cn |n〉
]

(A.0.6)

These can be expressed as four equations for the propagation of a single photon with components〈
~E (~r, t)

〉
and

〈
~B (~r, t)

〉
. This is due to the textbook argument [15] which states that “... since

there is only one photon in |γ〉 ... only the vacuum term will contribute ...”. Explicitly, these four

expressions are

~∇× 〈0| ~E(+) (~r, t) |γ〉 = −µ0∂t 〈0| ~H(+) (~r, t) |γ〉 (A.0.7)

~∇× 〈0| ~H(+) (~r, t) |γ〉 = ε0∂t 〈0| ~E(+) (~r, t) |γ〉 (A.0.8)

and

~∇× 〈γ| ~E(−) (~r, t) |0〉 = −µ0∂t 〈γ| ~H(−) (~r, t) |0〉

~∇× 〈γ| ~H(−) (~r, t) |0〉 = ε0∂t 〈γ| ~E(−) (~r, t) |0〉

These are Maxwell’s equations for the probability of measuring the electric or magnetic fields. The

expressions for ~ϕγ and ~χγ can be expected to respectively represent the electronic and magnetic

wave function (EWF
〈
~E
〉

= ~ΨE (~r, t) + ~Ψ†E (~r, t) & MWF
〈
~H
〉

= ~ΨH (~r, t) + ~Ψ†H (~r, t)) com-

ponents of the PWF, as will be shown below. Therefore we close this chapter with the relationship
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between the Magnetic, Electric, and PWF

〈
~D
〉

=

√
1

2ε

(
~Fγ + ~F †γ

)
(A.0.9)〈

~B
〉

= −i
√

1

2µ

(
~Fγ − ~F †γ

)
(A.0.10)

~Fγ =
1√
2

ε
〈
~D
〉

√
ε

+ i
µ
〈
~B
〉

√
µ

 (A.0.11)

~F †γ =
1√
2

ε
〈
~D
〉

√
ε

+ i
µ
〈
~B
〉

√
µ

 (A.0.12)

where ~Fγ ,
〈
~D
〉

, and
〈
~B
〉

represent the Riemann-Silberstein photonic wave-function, electric field

wave function, and magnetic field wave-function respectively.
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B Energy in the PWF Formalism

B.1 The Hamiltonian from the EWF and MWF

Using the creation and annihilation operators of the EWF and MWF as well as making use of
~k

k
× ε̂~k,σλ = −iε̂~k,σλ

1

Hγ ≡
1

2

(
ε ~E2 +

1

µ
~B2

)
(B.1.1)

=
1

2

[
~ω
2V

(
~ϕ(+)
γ + ~ϕ(−)

γ

)2
+

~ω
2

(
~χ(+)
γ + ~χ(−)

γ

)2
]

(B.1.2)

=
~ω
4V

[(
~ϕ(+)
γ + ~ϕ(−)

γ

)2
+
(
~χ(+)
γ + ~χ(−)

γ

)2
]

(B.1.3)

We focus on

(
~ϕ(+)
γ + ~ϕ(−)

γ

)2
= ~ϕ(+)

γ ~ϕ(+)
γ + ~ϕ(+)

γ ~ϕ(−)
γ + ~ϕ(−)

γ ~ϕ(+)
γ + ~ϕ(−)

γ ~ϕ(−)
γ (B.1.4)(

~χ(+)
γ + ~χ(−)

γ

)2
= ~χ(+)

γ ~χ(+)
γ + ~χ(+)

γ ~χ(−)
γ + ~χ(−)

γ ~χ(+)
γ + ~χ(−)

γ ~χ(−)
γ (B.1.5)

Substituting

~ϕ(+)
γ =

1√
V

∑
~k,σλ

ε̂~k,σλa~k,σλe
−iνktU~k (~r) (B.1.6)

~ϕ(−)
γ =

1√
V

∑
~k,σλ

ε̂∗~k,σλ
a†~k,σλ

eiνktU∗~k (~r) (B.1.7)

1Please see (C.5)
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and

~χ(+)
γ =

1√
V

∑
~k,σλ

−iε̂~k,σλa~k,σλe
−iνktU~k (~r) (B.1.8)

~χ(−)
γ =

1√
V

∑
~k,σλ

iε̂∗~k,σλ
a†~k,σλ

eiνktU∗~k (~r) (B.1.9)

we get that

~ϕ(+)
γ ~ϕ(+)

γ = 0 (B.1.10)

~ϕ(+)
γ ~ϕ(−)

γ =
1

V

∑
~k,σλ

a~k,σλa
†
~k,σλ

(B.1.11)

~ϕ(−)
γ ~ϕ(+)

γ =
1

V

∑
~k,σλ

a†~k,σλ
a~k,σλ (B.1.12)

~ϕ(−)
γ ~ϕ(−)

γ = 0 (B.1.13)

and

~χ(+)
γ ~χ(+)

γ = 0 (B.1.14)

~χ(+)
γ ~χ(−)

γ =
1

V

∑
~k

a~k,σ+
a†~k,σ+

(B.1.15)

~χ(−)
γ ~χ(+)

γ =
1

V

∑
~k

a†~k,σ+
a~k,σ+

(B.1.16)

~χ(−)
γ ~χ(−)

γ = 0 (B.1.17)

159



which yield

~ϕ(+)
γ ~ϕ(+)

γ + ~χ(+)
γ ~χ(+)

γ = 0 (B.1.18)

~ϕ(−)
γ ~ϕ(−)

γ + ~χ(−)
γ ~χ(−)

γ = 0 (B.1.19)

~ϕ(+)
γ ~ϕ(−)

γ + ~χ(+)
γ ~χ(−)

γ =
2

V

∑
~k,+

a~k,σ+
a†~k,σ+

(B.1.20)

~ϕ(−)
γ ~ϕ(+)

γ + ~χ(−)
γ ~χ(+)

γ =
2

V

∑
~k,+

a†~k,σ+
a~k,σ+

(B.1.21)

and we can use these to get

Hγ =
~ω
2V

∑
~k

(
a~k,σ+

a†~k,σ+
+ a†~k,σ+

a~k,σ+

)
(B.1.22)

where by using the identity
[
a~k,σλ , a

†
~k′ ,λ

]
= δ~k,~k′δλ,λ′

Hγ =
~ω
2V

∑
~k,λ

[
a~k,σ+

a†~k,σ+
+
(
a†~k,σ+

a~k,σ+
− a†~k,σ+

a~k,σ+
+ a†~k,σ+

a~k,σ+

)]
(B.1.23)

=
~ω
2V

∑
~k,λ

[
a~k,σ+

a†~k,σ+
+
(
a†~k,σ+

a~k,σ+
− a~k,σ+

a†~k,σ+
+ 1 + a†~k,σ+

a~k,σ+

)]
(B.1.24)

=
~ω
2V

∑
~k

(
2a†~k,σ+

a~k,σ+
+ 1
)

(B.1.25)

which is more commonly expressed as

Hγ =
~ω
V

∑
~k,σλ

(
a†~k,σλ

a~k,σλ +
1

2

)
(B.1.26)

B.2 Energy in the the Riemann-Silberstein PWF

Birula and others claim that the total energy of the photon is contained in the Riemann-Silberstein

photonic wave function (RSPWF). Here we check this and expect to get the same Hγ as above.
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Starting from the definition of the energy according present in previous studies [10, 11]

〈Hγ〉 =

ˆ
V

d3~r
(
~F †γ ~Fγ

)
(B.2.1)

and the RSPWF

~F (±)
γ ≡ 1√

2

(
ε ~E√
ε
± iµ ~H√

µ

)
(B.2.2)

The computation of the energy requires the evaluation of

~F †γ
~Fγ = ~F (−)

γ
~F (+)
γ (B.2.3)

where

~F (−)
γ

~F (+)
γ =

1

2

(
ε ~E∗√
ε
− iµ ~H∗√

µ

)(
ε ~E√
ε

+
iµ ~H√
µ

)
(B.2.4)

=
1

2

(
ε ~E∗ ~E +

ε ~E∗√
ε

iµ ~H√
µ
− iµ ~H∗√

µ

ε~E√
ε

+ µ ~H∗ ~H

)
(B.2.5)

which at first glance we expect to give

Hγ =
1

2

ˆ
V

d3~r
(
~F †γ ~Fγ

)
(B.2.6)

=
1

2

ˆ
V

d3~r
(
ε ~E2 + µ ~H2

)
(B.2.7)

=
1

2

ˆ
V

d3~r

(
ε ~E2 +

1

µ
~B2

)
(B.2.8)

and get the same expression for the energy which we started from above. Inspecting the term

ε ~E∗√
ε

iµ ~H√
µ
− iµ ~H∗√

µ

ε~E√
ε

=
iεµ√
εµ

[(
~Ψ

(+)
E + ~Ψ

(−)
E

)(
~Ψ

(+)
H + ~Ψ

(−)
H

)
−
(
~Ψ

(+)
H + ~Ψ

(−)
H

)(
~Ψ

(+)
E + ~Ψ

(−)
E

)]
(B.2.9)

= i
~ω
2V

[(
~ϕ(+)
γ + ~ϕ(−)

γ

)(
~χ(+)
γ + ~χ(−)

γ

)
−
(
~χ(+)
γ + ~χ(−)

γ

)(
~ϕ(+)
γ + ~ϕ(−)

γ

)]
(B.2.10)
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which upon expansion yields

i
(
~ϕ(+)
γ + ~ϕ(−)

γ

)(
~χ(+)
γ + ~χ(−)

γ

)
= i
[
~ϕ(+)
γ ~χ(+)

γ + ~ϕ(−)
γ ~χ(+)

γ + ~ϕ(+)
γ ~χ(−)

γ + ~ϕ(−)
γ ~χ(−)

γ

]
(B.2.11)

−i
(
~χ(+)
γ + ~χ(−)

γ

)(
~ϕ(+)
γ + ~ϕ(−)

γ

)
= −i

[
~χ(+)
γ ~ϕ(+)

γ + ~χ(+)
γ ~ϕ(−)

γ + ~χ(−)
γ ~ϕ(+)

γ + ~χ(−)
γ ~ϕ(−)

γ

]
(B.2.12)

such that this term is expected to be zero

iεµ√
εµ

(
~E∗ ~H − ~H∗ ~E

)
= i

~ω
2V

([
~ϕ(+)
γ , ~χ(+)

γ

]
+
[
~ϕ(−)
γ , ~χ(+)

γ

]
+
[
~ϕ(+)
γ , ~χ(−)

γ

]
+
[
~ϕ(−)
γ , ~χ(−)

γ

])
(B.2.13)

where using the identity
[
a~k,σλ , a

†
~k′ ,λ

]
= δ~k,~k′δλ,λ′

[
~ϕ(+)
γ , ~χ(+)

γ

]
= 0 (B.2.14)[

~ϕ(−)
γ , ~χ(+)

γ

]
= i (B.2.15)[

~ϕ(+)
γ , ~χ(−)

γ

]
= i (B.2.16)[

~ϕ(−)
γ , ~χ(−)

γ

]
= 0 (B.2.17)

which unexpectedly results in

iεµ√
εµ

(
~E∗ ~H − ~H∗ ~E

)
= −~ω

V
(B.2.18)

and conflicts with the previous result giving

Hγ =
1

2

ˆ
V

d3~r

(
ε ~E2 +

1

µ
~B2 − ~ω

V

)
= ~ω

∑
~k,+

a†~k,σ+
a~k,σ+
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Taking the RS vector in terms of creation and annihilation operators, this result can be quickly

verified from

〈Hγ〉 =

ˆ
V

d3~r
(
~F (−)
γ

~F (+)
γ

)
(B.2.19)

= ~ω
ˆ
V

d3~r
(
~Ψ(−)
γ
~Ψ(+)
γ

)
(B.2.20)

such that the Hamiltonian operator is given by

Hγ = ~ω
ˆ
V

d3~r
(
~F (−)
γ

~F (+)
γ

)
(B.2.21)

where

~F (+)
γ ≡ 1√

V

∑
~k

ε̂~k,σ+
a~k,σ+

e−iνktU~k (~r) (B.2.22)

~F (−)
γ ≡ 1√

V

∑
~k

ε̂~k,σ+
a†~k,σ+

eiνktU∗~k (~r) (B.2.23)

yields

Hγ = ~ω
∑
~k

a†~k,σ+
a~k,σ+

(B.2.24)

Which is not what was expected. This requires an alternative representation of the PWF than the

RS vector.
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B.3 The Hamiltonian from the Riemann-Silberstein PWF with Vacuum Fluctuations

Starting directly from the operator form of the RSPWF and the expression for the energy which

we expect to include the vacuum fluctuation energy

Hγ =
~ω
2

ˆ
V

d3~r

(
~F (−)
γ

~F (+)
γ

) ~F (+)
γ

~F (−)
γ

 (B.3.1)

=
~ω
2

ˆ
V

d3~r
(
~F (−)
γ

~F (+)
γ + ~F (+)

γ
~F (−)
γ

)
(B.3.2)

where

~F (+)
γ ≡ 1√

V

∑
~k,+

ε̂~k,σ+
a~k,σ+

e−iνktU~k (~r) (B.3.3)

~F (−)
γ ≡ 1√

V

∑
~k,+

ε̂~k,σ+
a†~k,σ+

eiνktU∗~k (~r) (B.3.4)

and from the above we already know that

~F (−)
γ

~F (+)
γ =

1

V

∑
~k

a†~k,σ+
a~k,σ+

(B.3.5)

~F (+)
γ

~F (−)
γ =

1√
V

∑
~k

a~k,σ+
a†~k,σ+

(B.3.6)

we can use similar results from above to derive that

~F (−)
γ

~F (+)
γ + ~F (+)

γ
~F (−)
γ =

∑
~k

(
a†~k,σ+

a~k,σ+
+ a~k,σ+

a†~k,σ+

)
(B.3.7)

=
∑
~k,+

(
2a†~k,σ+

a~k,σ+
+ 1
)

(B.3.8)
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such that the Hamiltonian is given by

Hγ = ~ω
∑
~k

(
a†~k,σ+

a~k,σ+
+

1

2

)
(B.3.9)

B.4 Alpha and Beta Matrix Representation of the Dirac Equation for a Maxwell Field

It is beneficial to represent the

~Ψγ =

 ~Ψγ

~Ψ†γ


where each component of this spinor can be represented as

~Ψγ =

 ψ
(+)
γ,σ+

ψ
(−)
γ,σ−


~Ψ†γ =

 ψ
†(−)
γ,σ+

ψ
†(+)
γ,σ−


where

ψ(+)
γ,σ+

= 〈0|
√

~ω
V

∑
~k

ε̂~k,σ+
a~k,σ+

e−iνktU~k (~r) |γ〉

ψ(−)
γ,σ− = 〈γ|

√
~ω
V

∑
~k

ε̂∗~k,σ−a
†
~k,σ−

eiνktU∗~k (~r) |0〉

ψ†(−)
γ,σ+

= 〈γ|
√

~ω
V

∑
~k

ε̂∗~k,σ+
a†~k,σ+

eiνktU∗~k (~r) |0〉

ψ†(+)
γ,σ− = 〈0|

√
~ω
V

∑
~k

ε̂~k,σ−a~k,σ−e
−iνktU~k (~r) |γ〉
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A clear comparison between Maxwell’s equations written in Dirac form and the Wave Equation of

the Riemann-Silberstein wave-function for a free particle shows that [10, 11]

i~∂t

 ~Ψγ (~r, t)

~Ψ†γ (~r, t)

 =

 c~~∇× 0

0 −c~~∇×


 ~Ψγ (~r, t)

~Ψ†γ (~r, t)


(The Wave Equation for the Riemann-Silberstein wave-function) will lend itself well to coupling

between states of the Maxwell Field (on the off-diagonal terms) and contains all the information

of the following two equations [15]

i~∂t

 ~ϕγ

~χγ

 =

 0 −c~~∇×

c~~∇× 0


 ~ϕγ

~χγ


i~∂t

 ~ϕ†γ

~χ†γ

 =

 0 c~~∇×

−c~~∇× 0


 ~ϕ†γ

~χ†γ


It is beneficial to have this representation when referring to single photon states or entangled single

photon states since these fully represent these states when coupling the propagation of this field to

other fields or describing a single photon propagating through inhomogeneous media.
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C Mathematical Disambiguation

C.1 Derivation of the Photon Field Tensor

Here we show that where c−1 =
√
ε0µ0, Maxwell’s equations with sources, in four notation

through the Maxwell Field Tensor for a Minkowski Metric with signature (i,−,−,−), can be

rewritten in terms of a self-dual photon field tensor ∂µGµν = Jν . In previous studies it has been

shown that it is possible to define a self dual tensor from the Maxwell Field Tensor and its dual, in

terms of the PWF operators in the vacuum [46]. For a photonic wave function propagating through

a linear homogeneous medium it is the case that one must satisfy the expression

∂µF
µν =

e

c
ψ̄ (x) γνψ (x)

where ∂µ ≡ ∂
∂xµ

=

(
c−1i∂t ∂x ∂y ∂z

)

Fµν =



0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


and γµ are the Dirac gamma matrices. The dual [83] of Fµν is defined as

FµνD =
1

2
εµναβFαβ

=



0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0


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To define the self-dual photon field tensor we begin with

∂µF
µν = Jν

∂µF
µν
D = 0

which are indeed Maxwell’s equations in four notation .

C.1.1 Gaussian Units

In Gaussian Units Maxwell’s Equations read

 ~∇ · ~E
~∇× ~B − 1

c
∂t ~E

 =

 4πρ

4π
c
~J


 ~∇ · ~B

~∇× ~E + 1
c
∂t ~B

 =

 0

0


multiplying the second set by i and subtracting ~∇ · ~B from the ~∇ · ~E and adding ~∇× ~E + 1

c
∂t ~B

to ~∇× ~B − 1
c
∂t ~E we find

 ~∇ · ~E − ~∇ · i ~B
~∇× ~B − 1

c
∂t ~E + ~∇× i ~E + 1

c
∂ti ~B

 =

 4πρ

4π
c
~J


which simplifies to

 −i~∇ ·
(
~B + i ~E

)
~∇×

(
~B + i ~E

)
+ i1

c
∂t

(
~B + i ~E

)
 =

 4πρ

4π
c
~J


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which in terms of the vector ~z ≡ ~B + i ~E can be expressed as

 −i~∇ ·
(
~z
)

~∇×
(
~z
)

+ i1
c
∂t
(
~z
)
 =

 4πρ

4π
c
~J



C.1.2 SI Units

In SI units, Maxwell’s equations in linear media can now be re-expressed by using the definition

of c−1 =
√
εµ as

 √
εµ~∇ · ~E

−c−1
(√

εµ∂t ~E − c~∇× ~B
)
 =

 µcρfree

µ~Jfree


 ~∇ · ~B

−c−1
(
∂t ~B + c~∇×

[√
εµ~E

])
 =

 0

0


which may be simplified to get

 √
µ~∇ ·

[
ε ~E√
ε

]
−c−1√µ

(
∂t

[
ε ~E√
ε

]
− c~∇×

[
µ ~H√
µ

])
 =

 µcρfree

µ~Jfree

 (C.1.1)

 √
µ~∇ ·

[
µ ~H√
µ

]
−c−1√µ

(
∂t

[
µ ~H√
µ

]
+ c~∇×

[
ε ~E√
ε

])
 =

 0

0

 (C.1.2)

where now defining ~̃D ≡ ε ~E√
ε

and ~̃B ≡ µ ~H√
µ

and simplifying again gives

 µ
1
2 ~∇ · ~̃D

−c−1µ
1
2

(
∂t ~̃D − c~∇× ~̃B

)
 =

 µcρfree

µ~Jfree

 (C.1.3)

 µ
1
2 ~∇ · ~̃B

−c−1µ
1
2

(
∂t ~̃B + c~∇× ~̃D

)
 =

 0

0

 (C.1.4)
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at this point one can multiply the bottom expression by i or −i and subtract or add to get

 µ
1
2

(
~∇ · ~̃D − ~∇ · i ~̃B

)
c−1µ

1
2

(
−∂t ~̃D + c~∇× ~̃B

)
+ c−1µ

1
2

(
∂ti ~̃B + c~∇× i ~̃D

)
 =

 µcρfree

µ~Jfree


which upon simplification becomes

 −i~∇ ·
(
~̃B + i ~̃D

)
i1
c
∂t

(
~̃B + i ~̃D

)
+ ~∇×

(
~̃B + i ~̃D

)
 =

 √µcρfree√
µ~Jfree



where now substituting ~z ≡ ~̃B + i ~̃D = µ0
~H√
µ0

+ i ε0
~E√
ε0

yields

 −i~∇ · ~z

i1
c
∂t~z + ~∇× ~z

 =

 √µcρfree√
µ~Jfree

 (C.1.5)

C.1.3 General Description of the Photon Field Tensor

In order to re-write this expression in terms of a properly normalized single photon field tensor we

expand the four notation for such an expected tensor

∂µG
µν = Jν (C.1.6)

such that for each component µ

∂µG
µ0 = c−1∂tG

00 + ∂xG
10 + ∂yG

20 + ∂zG
30 (C.1.7)

∂µG
µ1 = c−1∂tG

01 + ∂xG
11 + ∂yG

21 + ∂zG
31 (C.1.8)

∂µG
µ2 = c−1∂tG

02 + ∂xG
12 + ∂yG

22 + ∂zG
32 (C.1.9)

∂µG
µ3 = c−1∂tG

03 + ∂xG
13 + ∂yG

23 + ∂zG
33 (C.1.10)
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which comparing to the expression for ~z in either of assigned coordinate systems above yields

− i~∇ · ~z =
(
−ic−1∂t0− i∂xzx − i∂yzy − i∂zzz

)
(C.1.11)(

i
1

c
∂t~z + ~∇× ~z

)1

=
(
ic−1∂tzx + ∂x0 + ∂yzz − ∂zzy

)
(C.1.12)(

i
1

c
∂t~z + ~∇× ~z

)2

=
(
ic−1∂tzy − ∂xzz + ∂y0 + ∂zzx

)
(C.1.13)(

i
1

c
∂t~z + ~∇× ~z

)3

=
(
ic−1∂tzz + ∂xzy − ∂yzx + ∂z0

)
(C.1.14)

which by direct comparison allows us to construct the self-dual tensor 1

Gµν =



0 izx izy izz

−izx 0 −zz zy

−izy zz 0 −zx

−izz −zy zx 0


(C.1.15)

which indeed satisfies the field equation

∂µG
µν = Jν (C.1.16)

and Jν is given the appropriate units.

C.1.4 Maxwell Field Interacting with Quantum Sources

Working solely in Gaussian units throughout this subsection, we reiterate that we have found how

to work ~z and can now recognize that there are two possible ways to define it. In the discussion

above we were in fact working with with ~z+ ≡ i ~F− from the discussion in the text, we still

have to consider the case of ~z− = −i ~F+, where respectively ~F± ≡ ~E ± i ~B. Previous studies

have focused on investigating how this tensor equation can be expressed in terms of a Dirac like

1Note that here the advantage of using a Minkowski Metric with the signature (−i,+,+,+), implemented in the
derivation by Gersten and defining complex time, becomes evident in the definition of Gµν . However, for simplicity
of comparison to the rest of the optics, condensed matter, and particle physics literature we remain in the continued
use of a Minkowski Metric with the signature (+,−,−,−).
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equation [75, 66, 45, 73, 46, 47, 52, 10, 11, 50, 74, 49, 80]. To do so we have to define integer spin

Dirac matrices within a representation given for the Minkowski metric of signature (+,−,−,−).

This set of matrices need to satisfy the following expressions (where ψ̄el ≡ ψ†elγ
0)

~∂µGµν = ~
e

c
ψ̄elγ

νψel (C.1.17)

for both of the cases which arise from the definition of ~F± ~∇·
1
c
∂t + ~∇×

 i ~F− =

 4πρ

4π
c
~J

 (C.1.18)

 ~∇·

−1
c
∂t + ~∇×

− i ~F+ = −

 4πρ

4π
c
~J

 (C.1.19)

where γν and αiel are the traditional Gamma and Dirac Matrices defined in (D.2) and for simplicity

we adopted the convention ~αel ≡


α1
el

α2
el

α3
el

. Here we can recognize that since ~F+ = ~F∗−, these

expressions can in fact be fully described by (C.1.17) and their complex conjugate. Therefore, the

set of matrices γνph that fully describe these expressions have been found [50, 74] to be

γ0
ph =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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γ1
ph =



0 −1 0 0

−1 0 0 0

0 0 0 −i

0 0 i 0



γ2
ph =



0 0 −1 0

0 0 0 i

−1 0 0 0

0 −i 0 0



γ3
ph =



0 0 0 −1

0 0 −i 0

0 i 0 0

−1 0 0 0



where they guessed that the correct four notation for this vector was zν ≡



0

z1

z2

z3


allowed them

to rewrite (C.1.17) as

i~γµph∂µz
ν = ~Jν (C.1.20)
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C.1.5 Conservation of Probability by Continuity Equation

C.1.5.1 Dirac Field Continuity Equation

From (C.1.17) the explicit continuity equation for probability flowing out of a quantum source can

be found through

 i~∇·

−ic−1∂t + ~∇×

 ~F = ie0
µ0√
µ0

cψ†el

 I

αiel

ψel (C.1.21)

by first finding the divergence of

∇ ·
[(
−ic−1∂t + ~∇×

)
~F
]

= ∇ ·
[
ie0

µ0√
µ0

cψ†el

(
αiel

)
ψel

]
(C.1.22)

−ic−1∂t

[
∇ · ~F

]
= ie0

µ0√
µ0

c

(
∇ ·
[
ψ†el

(
αiel

)
ψel

])
(C.1.23)

and substituting ∇ · ~F = e0
µ0√
µ0
cψ†elIψel, to get a conservation law for information flowing into

and out of the quantum source in the form of the continuity equation:

−c−1∂t

[
ψ†elIψel

]
= ∇ ·

[
ψ†el

(
αiel

)
ψel

]
(C.1.24)

which upon integration over all space, using Green’s Theorem, yields

∂t

[ˆ
d3xψ†elψel

]
= 0 (C.1.25)
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C.1.5.2 Maxwell Field Continuity Equation

As opposed to searching for the Divergence of the current ~J , we now look for the rate of change

of
∣∣∣ ~F∣∣∣2 with respect to to time. We therefore make the following operations:

~F †± ·
(
∓ic−1∂t + ~∇×

)
~F± = ±ie0

µ0√
µ0

c ~F †± · ψ†el ~αel ψel (C.1.26)

~F± ·
(
± ic−1∂t + ~∇×

)
~F †± = ∓ie0

µ0√
µ0

c ~F± · ψ†el ~αel ψel (C.1.27)

Where subtracting one from two, we get

± ic−1
(
~F± · ∂t ~F †± + ~F †± · ∂t ~F±

)
±
(
~F± · ~∇× ~F †± − ~F †± · ~∇× ~F±

)
(C.1.28)

= ∓ie0
µ0√
µ0

c
(
~F± + ~F †±

)
· ψ†el ~αel ψel (C.1.29)

which simplifies to

∓ic−1∂t

(
~F± · ~F †±

)
∓ ~∇ ·

(
~F± × ~F †±

)
= ie0

µ0√
µ0

c
(
~F± + ~F †±

)
· ψ†el ~αel ψel (C.1.30)

C.2 Spinor Formulation of Electrodynamics and it’s correspondence to the PWF

We begin using the conversion rules from vector notation to matrix notation

~a×~b = −i (~a · ←→s )~b (C.2.1)

where←→s is given by from

sx =


0 0 0

0 0 −i

0 i 0


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sy =


0 0 i

0 0 0

−i 0 0



sz =


0 −i 0

i 0 0

0 0 0



Given the original set of equations prior to the substitution
~k

k
× ε̂~k,σλ = −iε̂~k,σλ in the original

form

~∇× ~ϕγ = −c−1∂t~χγ (C.2.2)

~∇× ~χγ = c−1∂t~ϕγ (C.2.3)

we rewrite these in terms of their matrix form

− i
(
~∇ ·←→s

)
~ϕγ = −c−1∂t~χγ (C.2.4)

−i
(
~∇ ·←→s

)
~χγ = c−1∂t~ϕγ (C.2.5)

where recognizing that ~p =
~
i
~∇ rearranging terms yields

i~∂t~χγ = −c (←→s · ~p) ~ϕγ (C.2.6)

i~∂t~ϕγ = c (←→s · ~p) ~χγ (C.2.7)
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which defining ~Φγ ≡

 ~ϕγ

~χ†γ

 yields the spinor formulation for the freely propagating PWF as

i~∂t~Φγ =

 0 −c←→s · ~p

c←→s · ~p 0

 ~Φγ (C.2.8)

C.3 Proof that 1√
2

(1± iλ) = e±λ
π
4

Since λ ∈ {−1, 1}

1√
2

(1± iλ) =
1√
2

(
ei0 + e±i

π
2 eπiλ

)
=

e±i
π
4√

2

(
e∓i

π
4 + e±i

π
4 eπiλ

)
=

e±i
π
4√

2

 e∓i
π
4 + e±i

π
4 , λ = 1

e∓i
π
4 − e±iπ4 , λ = −1

introducing the manipulation 1
2i

2i for the case where λ = −1 and 1
2
2 for the case where λ = 1

yields:

1√
2

(1± iλ) =
e±i

π
4√

2

 21
2

(
e∓i

π
4 + e±i

π
4

)
, λ = 1

2i 1
2i

(
e∓i

π
4 − e±iπ4

)
, λ = −1

=
e±i

π
4√

2

 2 cos
(
π
4

)
, λ = 1

∓2i sin
(
π
4

)
, λ = −1

= e±i
π
4

 1, λ = 1

∓i, λ = −1
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again expressing ∓i = e∓i
π
2 yields

1√
2

(1± iλ) =

 e±i
π
4 , λ = 1

e∓i
π
2 e±i

π
4 , λ = −1

=

 e±i
π
4 , λ = 1

e∓i
π
4 , λ = −1

= e±iλ
π
4

where we have what we set out to prove

1√
2

(1± iλ) = e±iλ
π
4

in fact this comes from the fact that the square root of any complex number is also a complex

number. This means that our problem is equivalent to finding the complex form of the
√
i. From

Demoivre’s formula

√
i = cos

(π
4

)
± i sin

(π
4

)
=

1√
2

(1± i)

= e±i
π
4

the lambda can be introduces seamlessly by setting

cos
(
λ
π

4

)
± i sin

(
λ
π

4

)
= cos

(π
4

)
± iλ sin

(π
4

)
=

1√
2

(1± iλ)

= e±iλ
π
4
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C.4 Definition of Electric and Magnetic Field Operators

Starting from the expressions

~E (~r, t) =
∑
~k,λ

ε̂~k,σλE~ka~k,σλe
−iνktU~k (~r) + H.c.

~B (~r, t) =
∑
~k,λ

~k × ε̂~k,σλ
νk

E~ka~k,σλe
−iνktU~k (~r) + H.c.

where

E~k =

√
~νk

2ε0V

and

~B (~r, t) = µ0
~H (~r, t)

we may rewrite the expressions for ~E (~r, t) & ~B (~r, t)

~E (~r, t) =
∑
~k,λ

ε̂~k,σλ

√
~νk

2ε0V
a~k,σλe

−iνktU~k (~r) + H.c.

~H (~r, t) =
1

µ0

∑
~k,λ

~k × ε̂~k,σλ
νk

√
~νk

2ε0V
a~k,σλe

−iνktU~k (~r) + H.c.

Taking advantage of the fact that ε0µ0 =
1

c2
and k =

νk
c

making the substitution

1

µ0

1

νk

√
~νk

2ε0V
=

1

νk

√
1

µ0

√
~νk

2µ0ε0V

=
c

νk

√
1

µ0

√
~νk
2V

=
1

k

√
~νk

2µ0V
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yields

~E (~r, t) =
∑
~k,λ

ε̂~k,σλ

√
~νk

2ε0V
a~k,σλe

−iνktU~k (~r) + H.c.

~H (~r, t) =
∑
~k,λ

~k × ε̂~k,σλ
k

√
~νk

2µ0V
a~k,σλe

−iνktU~k (~r) + H.c.

Following the construction of a photonic state (2.1.11), assumed to be created by the decay of an

atomic or QD state, leads to a sharply peaked single photon state about a frequency ω [15]. This

allows us to treat νk as a slowly varying frequency and replace it by ω in the square root factor.

This leaves us with

〈
~E (~r, t)

〉
=

√
~ω

2ε0V

〈∑
~k,λ

ε̂~k,σλa~k,σλe
−iνktU~k (~r) + H.c.

〉
〈
~H (~r, t)

〉
=

√
~ω

2µ0V

〈∑
~k,λ

~k × ε̂~k,σλ
k

a~k,σλe
−iνktU~k (~r) + H.c.

〉

which under the construction of (2.1.11) as a single photon state lead directly to the Electric and

Magnetic wave functions

~ϕγ (~r, t) ≡
√

2ε0
~ω

~ΨE (~r, t)

~ϕγ (~r, t) = 〈0| 1√
V

∑
~k,λ

ε̂~k,σλa~k,σλe
−iνktU~k (~r) |γ〉

and

~χγ (~r, t) ≡
√

2µ0

~ω
~ΨH (~r, t)

= 〈0| 1√
V

∑
~k,λ

~k

k
× ε̂~k,σλa~k,σλe

−iνktU~k (~r) |γ〉
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C.5 Proof that
~k

k
× ε̂~k,σλ = −iλε̂~k,σλ up to a phase factor

The definition of these helical polarization vectors has been proposed in previous studies [10, 11]

and filling in intermediate steps we start by multiplying (C.2.2) by i & adding (C.2.3) yields

i∂t (~ϕγ + i~χγ) = c~∇× (~ϕγ + i~χγ) (C.5.1)

where adding the conjugate equations yields

− i∂t
(
~ϕ†γ − i~χ†γ

)
= c~∇×

(
~ϕ†γ − i~χ†γ

)
(C.5.2)

which can be rewritten in terms of ~ξγ,± ≡
(
~ϕ†γ ± i~χ†γ

)
as general complex wave equation

± i∂t~ξγ,± = c~∇× ~ξγ,± (C.5.3)

which by

~∇ · ~χγ = 0 (C.5.4)

~∇ · ~ϕγ = 0 (C.5.5)

is shown to also satisfy

~∇ · ~ξγ,± = 0 (C.5.6)

and therefore satisfies

�2~ξγ,± = 0

181



where �2 ≡ ∇2 − c−2∂2
t is the D’Alembertian operator and ~ξγ,± = ~ξ†γ,∓. This means that the

vector wave functions ~ξγ,± can be expressed as superpositions of plane waves

~ξγ,± (~r, t) =

ˆ
d3k

(2π)3

{
~ηγ,±

(
~k
)
e−iωt+i

~k·~r + ~η∗γ,∓

(
~k
)
eiωt−i

~k·~r
}

(C.5.7)

with ω = ck . Using the fact that ~ξγ,± (~r, t) must satisfy (C.5.1) & (C.5.2) respectively, substituting

(C.5.7) into these gives

±i∂t
ˆ

d3k

(2π)3

{
~ηγ,±

(
~k
)
e−iωt+i

~k·~r + H.c.
}

= c~∇×
ˆ

d3k

(2π)3

{
~ηγ,±

(
~k
)
e−iωt+i

~k·~r + H.c.
}

(C.5.8)

which moving the differential operators into the integrals (assuming ~k 9 ~k (~r, t)) require the

evaluations

∂t

[
~ηγ,±

(
~k
)
e−iωt+i

~k·~r
]

= −iω~ηγ,±
(
~k
)
e−iωt+i

~k·~r (C.5.9)

∂t

[
~η∗γ,∓

(
~k
)
eiωt−i

~k·~r
]

= iω~η∗γ,∓

(
~k
)
eiωt−i

~k·~r (C.5.10)

~∇×
[
~ηγ,±

(
~k
)
e−iωt+i

~k·~r
]

= i~k × ~ηγ,±
(
~k
)
e−iωt+i

~k·~r (C.5.11)

~∇×
[
~η∗γ,∓

(
~k
)
eiωt−i

~k·~r
]

= −i~k × ~η∗γ,∓
(
~k
)
eiωt−i

~k·~r (C.5.12)

substituting and using k = ω
c

±i
ˆ

d3k

(2π)
3

{
−ik~ηγ,±

(
~k
)
e−iωt+i

~k·~r + H.c.
}

=

ˆ
d3k

(2π)
3

{
i~k × ~ηγ,±

(
~k
)
e−iωt+i

~k·~r + H.c.
}

(C.5.13)

yields

ˆ
d3k

8π3

[
±k~ηγ,±

(
~k
)
− i~k × ~ηγ,±

(
~k
)]
e−iωt+i

~k·~r =

ˆ
d3k

8π3

[
±k~η∗γ,∓

(
~k
)
− i~k × ~η∗γ,∓

(
~k
)]
eiωt−i

~k·~r
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which is true only when

~k

k
× ~ηγ,±

(
~k
)

= ∓i~ηγ,±
(
~k
)

(C.5.14)

~k

k
× ~η∗γ,∓

(
~k
)

= ±i~η∗γ,∓
(
~k
)

(C.5.15)

Normalizing these, proves that there exists a unit vector that satisfies

~k

k
× ε̂~k,σλ = −iλε̂~k,σλ (C.5.16)

~k

k
× ε̂∗~k,σλ = iλε̂∗~k,σλ

(C.5.17)

and

ε̂∗~k,σλ
· ε̂~k′ ,σλ′ = δ~k.~k′δσλ,σ′λ

These relations can be clearly represented by expressing ε̂~k,σλ in terms of the orthonormal vectors

ε̂~k,i · ε̂~k,j = δij through

ε̂~k,σ+
≡ 1√

2

(
ε̂~k,i + iε̂~k,j

)
(C.5.18)

ε̂~k,σ− ≡
1√
2

(
ε̂~k,i − iε̂~k,j

)
(C.5.19)

ε̂~k,i × ε̂~k,j ≡
~k

k
(C.5.20)

some useful identities of these applied in the text include

ε̂~k,σ+
= ε̂∗~k,σ− (C.5.21)

ε̂~k,σ− = ε̂∗~k,σ+
(C.5.22)
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ε̂~k,i =
1√
2

(
ε̂~k,σ+

+ ε̂~k,σ−

)
(C.5.23)

ε̂~k,j =
i√
2

(
ε̂~k,σ− − ε̂~k,σ+

)
(C.5.24)

ε̂~k,i + ε̂~k,j =
1√
2

[
ε̂~k,σ+

(1− i) + ε̂~k,σ− (1 + i)
]

(C.5.25)

=
[
ε̂~k,σ+

e−i
π
4 + ε̂~k,σ−e

iπ
4

]
(C.5.26)

ε̂∗~k,σ+
ε̂~k,σ+

=
1

2

(
ε̂~k,i − iε̂~k,j

)(
ε̂~k,i + iε̂~k,j

)
(C.5.27)

=
1

2

(
ε̂~k,iε̂~k,i + ε̂~k,j ε̂~k,j + iε̂~k,iε̂~k,j − iε̂~k,j ε̂~k,i

)
(C.5.28)

ε̂∗~k,σ− ε̂~k,σ− =
1

2

(
ε̂~k,i + iε̂~k,j

)(
ε̂~k,i − iε̂~k,j

)
(C.5.29)

=
1

2

(
ε̂~k,iε̂~k,i + ε̂~k,j ε̂~k,j − iε̂~k,iε̂~k,j + iε̂~k,j ε̂~k,i

)
(C.5.30)

ε̂∗~k,σ+
ε̂~k,σ+

+ ε̂∗~k,σ− ε̂~k,σ− =
1

2

(
ε̂~k,iε̂~k,i + ε̂~k,j ε̂~k,j + iε̂~k,iε̂~k,j − iε̂~k,j ε̂~k,i

)
+

1

2

(
ε̂~k,iε̂~k,i + ε̂~k,j ε̂~k,j − iε̂~k,iε̂~k,j + iε̂~k,j ε̂~k,i

)
= ε̂~k,iε̂~k,i + ε̂~k,j ε̂~k,j

= ~1−
~k~k

k2

C.6 Discussion on the Cubic Roots of the Excited State Characteristic Equations

In this section we discuss in detail the results and properties pertaining to the roots of the charac-

teristic equations for the evolution of the excited state/s of quantum sources beyond the Weisskopf

Wigner Approximation.
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C.6.1 Single Photon interacting with Two level sources

We left the discussion for the evolution of this system in (4.3.2.2.3) after expressing the roots

of the characteristic equation, though we did not give the explicit result of these. We omitted

these details to avoid any additional confusion due to obfuscated notation. In this subsection we

explicitly outline what these roots will be explicitly. We left of with the definitions

S =

(
~ωσ
2λ

) 1
3

3

√√√√1 +

√
1 +

4i

27

~
λω2

σ

T =

(
~ωσ
2λ

) 1
3

3

√√√√1−
√

1 +
4i

27

~
λω2

σ

Referring to the discussion (D.9), using Demoivre’s Theorem, it becomes possible to first rewrite

S and T in terms of the dimensionless constant ς ≡ ~
λω2

σ
and

<{α1} = 1

={α1} =
4ς

27

θ1 = arg (α1)

as

S =

(
~ωσ
2λ

) 1
3

3

√
1 + |α1|

1
2 cos

θ1

2
+ i |α1|

1
2 sin

θ1

2

=

(
~ωσ
2λ

) 1
3

3

√(
1 + |α1|

1
2 cos

θ1

2

)
+ i

(
|α1|

1
2 sin

θ1

2

)
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and

T =

(
~ωσ
2λ

) 1
3

3

√
1− |α1|

1
2 cos

θ1

2
− i |α1|

1
2 sin

θ1

2

=

(
~ωσ
2λ

) 1
3

3

√(
1− |α1|

1
2 cos

θ1

2

)
− i
(
|α1|

1
2 sin

θ1

2

)

Referring again to the discussion (D.9) and using Demoivre’s Theorem, we can now completely

separate real and imaginary parts under the cube root to find that by defining

<{α2,±} =

(
1± |α1|

1
2 cos

θ1

2

)
={α2,±} = ±

(
|α1|

1
2 sin

θ1

2

)
θ2,± = arg (α2,±)

we get

S =

(
~ωσ
2λ

) 1
3

|α2,+|
1
3

(
cos

θ2,+

3
+ i sin

θ2,+

3

)

and

T =

(
~ωσ
2λ

) 1
3

|α2,−|
1
3

(
cos

θ2,−

3
+ i sin

θ2,−

3

)

where clearly |α2,+| = |α2,−| = |α2|. Finally though it is impractical to write down all 3 roots, we

will still do so for completeness, though we limit ourselves to writing them down in terms of α2,±

and θ2,± as

• z1

− 1

3
a2 + (S + T ) = iωσ +

(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

[
cos

θ2,l

3
+ i sin

θ2,l

3

]
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• z2

− 1

3
a2 −

(
1− i

√
3
) S

2
−
(

1 + i
√

3
) T

2
= iωσ

−
(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

2

[(
cos

θ2,l

3
− l
√

3 sin
θ2,l

3

)
+ il

(√
3 cos

θ2,l

3
+ l sin

θ2,l

3

)]

• z3

− 1

3
a2 −

(
1 + i

√
3
) S

2
−
(

1− i
√

3
) T

2
= iωσ

−
(
~ωσ
2λ

) 1
3 ∑
l=±

|α2,±|
1
3

2

[(
cos

θ2,l

3
+ l
√

3 sin
θ2,l

3

)
− il

(√
3 cos

θ2,l

3
+ sin

θ2,l

3

)]

C.7 Equation of Motion Integrals in k-space

We can asses the value of the vector

~I±,n (x) =

ˆ
d~k
e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(νk − ωσ − izn)

νke
−i~k·( ~x0−~x)

(
ε̂~k,σ± ε̂

∗
~k,σ±

· ~℘ab
)

(C.7.1)

by setting the coordinate system such that ~k always points along some radial direction from the

origin of a quantum source. We start by defining the unit wave vector as

k̂ ≡ r̂ (C.7.2)

Defining ~k radially fixes the polarization vectors to point along orientations that are orthogonal

to r̂. We choose the polarization vectors so as to retain the required spin nature of the photon by

following the identity (2.1.32) and setting

ε̂~k,σ+
=

1√
2

(
θ̂ + iφ̂

)
(C.7.3)

ε̂~k,σ− =
1√
2

(
θ̂ − iφ̂

)
(C.7.4)
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where for completeness we also reiterate

ε̂~k,i ≡ θ̂

θ̂ = (cos θ cosφx̂+ cos θ sinφŷ − sin θẑ)

ε̂~k,j ≡ φ̂

φ̂ = (− sinφx̂+ cosφŷ + 0ẑ)

In this coordinate system2. Expressing the wave and polarization vectors in terms of Cartesian unit

vectors yields (for compactness we define Cη ≡ cos η, Sη ≡ sin η)

k̂ = SθCφx̂+ SθSφŷ + Cθẑ

ε̂~k,σ+
=

1√
2

[(CθCφx̂+ CθSφŷ − Sθẑ) + i (−Sφx̂+ Cφŷ + 0ẑ)]

ε̂~k,σ− =
1√
2

[(CθCφx̂+ CθSφŷ − Sθẑ)− i (−Sφx̂+ Cφŷ + 0ẑ)]

which simplify into

k̂ = SθCφx̂+ SθSφŷ + Cθẑ (C.7.5)

ε̂~k,σ± =
1√
2

[(CθCφ ∓ iSφ) x̂+ (CθSφ ± iCφ) ŷ − Sθẑ] (C.7.6)

and imply

2By setting θ = 0 and φ = 0 to get r̂ (θ = 0, φ = 0) = ẑ, θ̂ (θ = 0, φ = 0) = x̂, and φ̂ (θ = 0, φ = 0) = ŷ, and
substituting these into the derivation (C.5), one can verify that the definition of these polarization and wave vectors
indeed satisfy the derivation presented in (C.5).
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ε̂∗~k,σ±
· ε̂~k,σ± =

1

2
[(CθCφ ± iSφ) x̂+ (CθSφ ∓ iCφ) ŷ − Sθ ẑ] · [(CθCφ ∓ iSφ) x̂+ (CθSφ ± iCφ) ŷ − Sθ ẑ] (C.7.7)

=
1

2

[(
CθC2

φ + S2
φ

)
+
(
CθS2

φ + C2
φ

)
+ S2

θ

]
(C.7.8)

=
1

2

[
Cθ
(
C2
φ + S2

φ

)
+ S2

θ + S2
φ + C2

φ

]
(C.7.9)

= 1 (C.7.10)

With the polarization vectors defined we can now evaluate (C.7.1). Taking advantage of this co-

ordinate system and defining its orientation such that the displacement vector is oriented along

the z − axis, or ~x − ~x0 = |~x− ~x0| ẑ (see C.1) then ~k · (~x− ~x0) ≡
∣∣∣~k∣∣∣ |~x− ~x0| cos θ. Using the

identities (C.5.27) and (C.5.29) we can then restate the problem in terms of the tensors

ε̂∗~k,σ± ε̂~k,σ± =
1

2


(
C2
θC2

φ ± S2
φ

)
([C2

θ ∓ 1]SφCφ ± iCθ) −Sθ (CθCφ ± iSφ)

([C2
θ ± 1]SφCφ ∓ iCθ)

(
C2
θS

2
φ ∓ C2

φ

)
−Sθ (CθSφ ∓ iCφ)

−Cθ (CθCφ∓ iSφ) −Sθ (CθSφ ± iCφ) S2
θ


At this point the definition of ~℘ab becomes essential for the evaluation of the integrals. Approx-

imating that the orientation of ~℘ab is fixed in time with respect to this coordinate system and

independent of ~k, we can define ~℘ab in general as

~℘ab ≡ |~℘ba| (ιx sin θ′ cosφ′x̂+ ιy sin θ′ sinφ′ŷ + ιz cos θ′ẑ)

≡ |~℘ba|


ιx sin θ′ cosφ′

ιy sin θ′ sinφ′

ιz cos θ′


where α, β, γ are all complex. Using the arguments above, we can use simple linear algebra to
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Figure C.1: Coordinate system orientation of QD transition dipole moment

show that

(
ε̂∗~k,σ±

· ~℘ab
)
ε̂~k,σ±

=
|~℘ba|

2


(
C2
θC

2
φ ± S

2
φ

) ([
C2
θ ∓ 1

]
SφCφ ± iCθ

)
−Sθ

(
CθCφ ± iSφ

)
([
C2
θ ± 1

]
SφCφ ∓ iCθ

) (
C2
θS

2
φ ∓ C

2
φ

)
−Sθ

(
CθSφ ∓ iCφ

)
−Cθ

(
CθCφ∓ iSφ

)
−Sθ

(
CθSφ ± iCφ

)
S2
θ




ιxSθ′Cφ′

ιySθ′Sφ′

ιzCθ′



=
|~℘ba|

2


ιx
(
C2
θC

2
φ ± S

2
φ

)
Sθ′Cφ′ + ιy

([
C2
θ ∓ 1

]
SφCφ ± iCθ

)
Sθ′Sφ′ − ιzSθ

(
CθCφ ± iSφ

)
Cθ′

ιx
([
C2
θ ± 1

]
SφCφ ∓ iCθ

)
Sθ′Cφ′ + ιy

(
C2
θS

2
φ ∓ C

2
φ

)
Sθ′Sφ′ − ιzSθ

(
CθSφ ∓ iCφ

)
Cθ′

−ιxSθ
(
CθCφ ∓ iSφ

)
Sθ′Cφ′ − ιySθ

(
CθSφ ± iCφ

)
Sθ′Sφ′ + ιzS2

θCθ′



Where will define ~℘ab,x ≡ ιx |~℘ba| Sθ′Cφ′ , ~℘ab,y ≡ ιy |~℘ba| Sθ′Sφ′ , ~℘ab,z ≡ ιz |~℘ba| Cθ′ to more easily

keep track of indices. We can now evaluate the integrals defined in terms of these by approximating

to first order that dνk = v0d
∣∣∣~k∣∣∣ is linear and yields νk = v0

∣∣∣~k∣∣∣. Additionally, we make the
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substitution ~k · (~x− ~x0) ≡
∣∣∣~k∣∣∣ |~x− ~x0| cos θ = kr cos θ, where we have defined r = |~x− ~x0|.

C.7.1 Integral Expressions Evaluated for integration over k-space

Ix1,± =
v0 ~℘ab,x

2

ˆ
d3k

(
cos2 θ cos2 φ± sin2 φ

)
keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ

(
cos2 θ cos2 φ± sin2 φ

)
sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.11)

Performing the integration first over φ ∈ [0, 2π] yields

π
´
dkdθ (cos2 θ ± 1) sin θk3eika cos θe−iνk

1
2(tf+t0)

[
e
i(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

next, performing over θ ∈ [0, π] yields

π

ˆ
dkk3e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

[
−
(

[ika cos θ (ika cos θ − 2) + 2]

(ika)3
eika cos θ ±

eika cos θ

ika

)]π
0

= π

ˆ
dkk3e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

[
4i sin (ka)

(iak)3
−

4 cos (ka)

(ika)2
+

2i sin (ka)

(ika)
(1± 1)

]

therefore, using the results in (D.11), this integral has the solution:
For poles in the lower half plane

π

ˆ
dk

[
4i sin (ka)

(ia)3
−

4k cos (ka)

(ia)2
+

2ik2 sin (ka)

(ia)
(1± 1)

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i

v0k
2 (tf−t0)

]
(v0k − ωσ − izn)

=
4π2

a3v0

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
+

4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
+ (1± 1)

2π2

av3
0

(ωσ + izn)2

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
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For poles in the upper half plane

π

ˆ
dk

[
4i sin (ka)

(ia)3
−

4k cos (ka)

(ia)2
+ k2 2i sin (ka)

(ia)
(1± 1)

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i

v0k
2 (tf−t0)

]
(v0k − ωσ − izn)

=
4π2

a3v0

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
+

4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
(1± 1)

2π2

av3
0

(ωσ + izn)2

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

Ix2,± =
v0 ~℘ab,y

2

ˆ
d3k

([
cos2 θ ∓ 1

]
sinφ cosφ± i cos θ

)
keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

ˆ
dkdθdφ

([
cos2 θ ∓ 1

]
sinφ cosφ± i cos θ

)
sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

(C.7.12)

Performing the integration first over φ ∈ [0, 2π] yields

±2πi
´
dkdθ cos θ sin θk3eika cos θe−iνk

1
2(tf+t0)

[
e
i(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

next, performing over θ ∈ [0, π] yields

± 2πi

ˆ
dkk3

[
− (ika cos θ − 1)

(ika)
2 eika cos θ

]π
0

e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

= ±2πi

ˆ
dkk3

[
2 cos (ka)

ika
− 2 sin (ka)

(ika)
2

]
e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

therefore, using the results in (D.11), this integral has the solution:

For poles in the lower half plane

± 2πi

ˆ
dk

[
2k2 cos (ka)

ia
− 2k sin (ka)

i2a2

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= ±4iπ2

av3
0

(ωσ + izn)
2

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
± 4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
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For poles in the upper half plane

± 2πi

ˆ
dk

[
2k2 cos (ka)

ia
− 2k sin (ka)

i2a2

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= ±4iπ2

av3
0

(ωσ + izn)
2

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
± 4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

Ix3,± = −
v0 ~℘ab,z

2

ˆ
d3k sin θ (cos θ cosφ± i sinφ) keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ (cos θ cosφ± i sinφ) sin2 θk3eika cos θ sin[(v0k−ωσ−izn)∆t]

(v0k−ωσ−izn) (C.7.13)

therefore it has the solution:

For ±

Ix,3,± = 0

Iy1,± =
v0 ~℘ab,x

2

ˆ
d3k

([
cos2 θ ± 1

]
sinφ cosφ∓ i cos θ

)
keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ

([
cos2 θ ± 1

]
sinφ cosφ∓ i cos θ

)
sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

Performing the integration first over φ ∈ [0, 2π] yields

∓2πi
´
dkdθ cos θ sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

next, performing over θ ∈ [0, π] yields

∓ 2πi

ˆ
dkk3

[
− (iak cos θ − 1)

(iak)
2 eika cos θ

]π
0

e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

= ∓2πi

ˆ
dkk3

[
2 cos (ka)

(ika)
− 2 sin (ka)

(ika)
2

]
e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

therefore, using the results in (D.11), this integral has the solution:
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For poles in the lower half plane

∓ 2πi

ˆ
dk

[
2k2 cos (ka)

ia
− 2k sin (ka)

i2a2

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= ∓4iπ2

av3
0

(ωσ + izn)
2

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
∓ 4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]

For poles in the upper half plane

∓ 2πi

ˆ
dk

[
2k2 cos (ka)

ia
− 2k sin (ka)

i2a2

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= ∓4iπ2

av3
0

(ωσ + izn)
2

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
∓ 4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

Iy2,± =
v0 ~℘ab,y

2

ˆ
d3k

(
cos2 θ sin2 φ∓ cos2 φ

)
keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ

(
cos2 θ sin2 φ∓ cos2 φ

)
sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.14)

Performing the integration first over φ ∈ [0, 2π] yields

π
´
dkdθ

(
cos2 θ ∓ 1

)
sin θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

next, performing over θ ∈ [0, π] yields

π

ˆ
dkk3

[
−
(

[ika cos θ (ika cos θ − 2) + 2]

(ika)3
eika cos θ ∓

eika cos θ

ika

)]π
0

e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

= π

ˆ
dkk3

[
4i sin (ka)

(ika)3
−

4 cos (ka)

(ika)2
+

2i sin (ka)

(ika)
(1∓ 1)

]
e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

therefore, using the results in (D.11), this integral has the solution:
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For poles in the lower half plane

π

ˆ
dk

[
4i sin (ka)

(ia)3
−

4k cos (ka)

(ia)2
+

2ik2 sin (ka)

(ia)
(1∓ 1)

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i

v0k
2 (tf−t0)

]
(v0k − ωσ − izn)

=
4π2

a3v0

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
+
i4π2

a2v2
0

(ωσ + izn)

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
− (1∓ 1)

2π2

av3
0

(ωσ + izn)2

[
Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]

For poles in the upper half plane

π

ˆ
dk

[
4i sin (ka)

(ia)3
−

4k cos (ka)

(ia)2
+

2ik2 sin (ka)

(ia)
(1∓ 1)

] [e−i(ωσ+izn)tf−i
v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i

v0k
2 (tf−t0)

]
(v0k − ωσ − izn)

= −
4π2

a3v0

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
+

4iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
+ (1∓ 1)

2π2

av3
0

(ωσ + izn)2

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t−

a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

Iy3,± = −
v0 ~℘ab,z

2

ˆ
d3k sin θ (cos θ sinφ∓ i cosφ) keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ (cos θ sinφ∓ i cosφ) sin2 θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.15)

therefore it has the solution:

For ±

Iy,3,± = 0

Iz1,± = −v0 ~℘ab,x
2

ˆ
d3k sin θ (cos θ cosφ∓ i sinφ) keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ (cos θ cosφ∓ i sinφ) sin2 θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.16)

therefore it has the solution:
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For ±

Iz,1,± = 0

Iz2,± = −v0 ~℘ab,y
2

ˆ
d3k sin θ (cos θ sinφ± i cosφ) keikr cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ (cos θ sinφ± i cosφ) sin2 θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.17)

therefore it has the solution:

For ±

Iz,2,± = 0

Iz3,± =
v0 ~℘ab,z

2

ˆ
d3k sin2 θkeikr cos θ sin [(v0k − ωσ − izn) ∆t]

(v0k − ωσ − izn)

This integral is of the form

´
dkdθdφ sin3 θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn) (C.7.18)

Performing the integration first over φ ∈ [0, 2π] yields

2π
´
dkdθ sin3 θk3eika cos θe−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf−ei(νk−ωσ−izn)t0

]
(v0k−ωσ−izn)

next, performing over θ ∈ [0, π] yields

2π

ˆ
dkk3

[
−
(
eika cos θ

(ika)
−

[ika cos θ (ika cos θ − 2) + 2]

(ika)3
eika cos θ

)]π
0

e−iνk
1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

= 2π

ˆ
dkk3

[
4 cos (ka)

(ika)2
−

4i sin (ka)

(ika)3

]
e−iνk

1
2 (tf+t0)

[
ei(νk−ωσ−izn)tf − ei(νk−ωσ−izn)t0

]
(v0k − ωσ − izn)

therefore, using the results in (D.11), this integral has the solution:
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For poles in the lower half plane

2π

ˆ
dk

[
4k cos (ka)

(ia)
2 − 4i sin (ka)

(ia)
3

] [
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= −8iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
+

8π2

a3v0

[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]

For poles in the upper half plane

2π

ˆ
dk

[
4k cos (ka)

(ia)
2 − 4i sin (ka)

(ia)
3

] [
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf ) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)

= −8iπ2

a2v2
0

(ωσ + izn)

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
− 8π2

a3v0

[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

C.7.2 Two Level Analytical Solutions to Vector Integrals

After carrying out the integrations above, we now apply them in order to find the vector expres-

sions we are after. These are given as ~I±,n (r) with the respective expressions given below. For

compactness and clarity, we define the following causal functions for all three cases

ζ+ = π2Θ

(
t+

r

v0

)
e
−i(ωσ+izn)

(
t+ r

v0

)
(C.7.19)

ζ− = π2Θ

(
t− r

v0

)
e
−i(ωσ+izn)

(
t− r

v0

)
(C.7.20)

These terms represent the directionality and causal conditions associated with the reported solu-

tions. The components of the solutions associated with ζ+ represent an incoming wave constrained

to travel at the speed of light in the medium. The components of the solutions associated with ζ−

represent an outgoing wave constrained to travel at the speed of light in the medium. With this

model we therefore have the ability to describe both incoming and outgoing waves in the non-

Markovian limit. Additionally, the results we present contrast with text-book discussions in that

we do not neglect higher order terms than O(2) {r}. Therefore, we are also including near field
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effects in the solutions presented below.

• These objects define the integrals to be calculated with poles in the lower half plane.

I±,n,x (r) =[
(±2i~℘ab,y + (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ± ~℘ab,y)
2i (ωσ + izn)

r
2v0

+
2~℘ab,x
r

3

]
ζ−

−
[

(±2i~℘ab,y − (1± 1) ~℘ab,x)
(ωσ + izn)2

rv2
0

− (~℘ab,x ∓ ~℘ab,y)
2i (ωσ + izn)

r
2v0

− 2~℘ab,x
r

3

]
ζ+

(C.7.21)

I±,n,y (r) =[
(∓2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ∓ ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ−

+

[
(±2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

− (~℘ab,y ± ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ+

(C.7.22)

Iσ±,n,z (r) =[
1

r
3
− i (ωσ + izn)

r
2v0

]
4~℘ab,zζ−

+

[
1

r
3

+
i (ωσ + izn)

r
2v0

]
4~℘ab,zζ+ (C.7.23)
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• These objects define the integrals to be calculated for poles in the upper half plane.

I±,n,x (r) =[
(±2i~℘ab,y − (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ∓ ~℘ab,y)
2i (ωσ + izn)

r
2v0

− 2~℘ab,x
r

3

]
ζ−

+

[
(±2i~℘ab,y + (1± 1) ~℘ab,x)

(ωσ + izn)2

rv2
0

+ (~℘ab,x ± ~℘ab,y)
2i (ωσ + izn)

r
2v0

+
2~℘ab,x
r

3

]
ζ+

(C.7.24)

I±,n,y (r) =[
(∓2i~℘ab,x − (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ± ~℘ab,x)
2i (ωσ + izn)

r
2v0

+
2~℘ab,y
r

3

]
ζ−

+

[
(∓2i~℘ab,x + (1∓ 1) ~℘ab,y)

(ωσ + izn)2

rv2
0

+ (~℘ab,y ∓ ~℘ab,x)
2i (ωσ + izn)

r
2v0

− 2~℘ab,y
r

3

]
ζ+

(C.7.25)

Iσ±,n,z (r) =[
1

r
3
− i (ωσ + izn)

r
2v0

]
4~℘ab,zζ−

−
[

1

r
3

+
i (ωσ + izn)

r
2v0

]
4~℘ab,zζ+ (C.7.26)
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D Mathematical Definitions and Identities

Unless otherwise stated, the definitions presented herein are referenced from [83, 82].

D.1 Pauli Matrices

The Pauli Spin matrices are defined for half-integer spin particles via

σ1 ≡

 0 1

1 0


σ2 ≡

 0 −i

i 0


σ3 ≡

 1 0

0 −1


particles with integer spin have the following integer spin matrices [10, 11, 46, 72] in the SO (3)

representation

s1 =


0 0 0

0 0 −i

0 i 0



s2 =


0 0 i

0 0 0

−i 0 0



s3 =


0 −i 0

i 0 0

0 0 0


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in the SU (2) representation

s1 =


0 1 0

1 0 1

0 1 0



s2 =


0 −i 0

i 0 −i

0 i 0



s3 =


1 0 0

0 0 0

0 0 −1



D.2 Dirac and Gamma Matrices

The Dirac Gamma Matrices for a half-integer spin particle come from the definition of αi and
←→
β

for a Minkowski Metric with signature (+,−,−,−) which are defined by

←→
β ≡

 I 0

0 −I


αi ≡

 0 σi

σi 0


The Gamma Matrices are defined in terms of the Dirac Matrices as

γ0 ≡ ←→
β

γi ≡ αi
←→
β
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and, in turn, the Pauli matrices as follows

γ0 =

 I 0

0 −I


γi =

 0 σi

−σi 0


for the case of integer spin particles the Dirac Gamma matrices correspond the matrices αi and

←→
β

matrices defined as

←→
β ≡

 I 0

0 −I


αi ≡

 0 si

si 0



D.3 Used Representations of the Dirac Delta Function

[83, 82]

δ (x) =

ˆ ∞
−∞

e−2πikxdk

D.4 Useful Properties of the Dirac Delta Function

In this section we express identities and definitions of the Dirac Delta Distribution (Function) used

throughout the text.

Definition in terms of a Fourier Integral:

δ (x) =

ˆ ∞
−∞

e−2πikxdk

=
1

2π

ˆ ∞
−∞

e−ikxdk
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The fundamental equation that defines the derivatives of the “Dirac Delta Function” is:

ˆ
f (x) δ(n) (x) dx ≡ (−1)n

ˆ
∂x [f (x)] δ(n−1) (x) dx (D.4.1)

Additionally and more generally,

ˆ
f (x) δ(n) (x± a) = (−1)n f (n) (±a)

For example the nth derivative of this distribution satisfies:

ˆ
[xnf (x)] δ(n) (x) = (−1)n

ˆ
∂n [xnf (x)]

∂xn
δ (x) dx

xnδ(n) (x) = (−1)n n!δ (x) (D.4.2)

In general, it is straight forward to prove

(x∓ a)n δ(n) (x± a) = (−1)n n!δ (x± a)

D.5 Useful Properties of Fourier Transforms

In this section we express properties of Fourier Transforms that are used through this text.

The Fourier transform is defined by

Fx [f (x)] (k) ≡
ˆ ∞
−∞

f (x) e−2πikxdx

f (x) ≡
ˆ ∞
−∞
F [f (x)] (k) e2πikxdk

Similarly it can be defined by a change of variables as

Fk [f (k)] (x) ≡
ˆ ∞
−∞

f (k) e−2πikxdk

f (k) ≡
ˆ ∞
−∞
F [f (k)] (x) e2πikxdx
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Additionally, these may be defined via another change of variables

F̂x [f (x)] (k) ≡ 1

2π

ˆ ∞
−∞

f (x) e−ikxdx

g (x) ≡ 1

2π

ˆ ∞
−∞
F [f (x)] (k) eikxdk

and

F̂k [f (k)] (x) ≡ 1

2π

ˆ ∞
−∞

f (k) e−ikxdk

g (k) ≡ 1

2π

ˆ ∞
−∞
F [f (k)] (x) eikxdx

D.5.1 The nth Derivative of a Fourier Transform

Taking the nth derivative of F̂k [f (k)] (x) with respect to x yields:

∂(n)
x

[
F̂k [f (k)] (x)

]
=

(
1

2π

) ˆ ∞
−∞

f (k) (−i)n kne−ikxdk

This result yields the following property of the Fourier transform

ˆ ∞
−∞

knf (k) e−ikxdk = 2πin∂(n)
x

[
F̂k [f (k)] (x)

]

D.5.1.1 Evaluating
´∞
−∞ k

ne−ikxdk

This term arises commonly in QFT and is known to give rise to the UV- Catastrophe. Using the

properties of the Fourier transform defined above this integral yields

ˆ ∞
−∞

kne−ikxdk = 2πin∂(n)
x

[
F̂k [f (k) = 1] (x)

]
= 2πin∂(n)

x [δ (x)] (D.5.1)

= 2πinδ(n) (x) (D.5.2)
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D.6 Some Useful Identities of Complex Numbers

Defining a, b, c, d, e, and f as complex numbers where

e ≡ [<{a}<{b} − ={a}={b}] + i [<{a}={b}+ ={a}<{b}]

f ≡ [<{c}<{d} − ={c}={d}] + i [<{c}={d}+ ={c}<{d}]

D.6.1 Multiplication of a, b, c, and d

The multiplication of a, b, c, and d is given by

a ∗ b ∗ c ∗ d = ([<{a}<{b} − ={a}={b}] + i [<{a}={b}+ ={a}<{b}])

∗ ([<{c}<{d} − ={c}={d}] + i [<{c}={d}+ ={c}<{d}])

= [<{e}<{f} − ={e}={f}] + i [<{e}={f}+ ={e}<{f}]

which in terms of a, b, c, and d is given by

[<{e}<{f} − ={e}={f}] = [<{a}<{b} − ={a}={b}] ∗ [<{c}<{d} − ={c}={d}]

− [<{a}={b}+ ={a}<{b}] ∗ [<{c}={d}+ ={c}<{d}]

[<{e}={f}+ ={e}<{f}] = [<{a}<{b} − ={a}={b}] ∗ [<{c}={d}+ ={c}<{d}]

+ [<{a}={b}+ ={a}<{b}] ∗ [<{c}<{d} − ={c}={d}]

and can be simplified to

[<{e}<{f} − ={e}={f}] = <{a}<{b}<{c}<{d}+ ={a}={b}={c}={d}

− <{a}<{b}={c}={d} − ={a}={b}<{c}<{d}

− <{a}={b}<{c}={d} − ={a}<{b}={c}<{d}

− <{a}={b}={c}<{d} − ={a}<{b}<{c}={d}
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and

[<{e}={f}+ ={e}<{f}] = <{a}<{b}<{c}={d} − ={a}={b}={c}<{d}

+ <{a}<{b}={c}<{d} − ={a}={b}<{c}={d}

+ <{a}={b}<{c}<{d} − ={a}<{b}<{c}={d}

− <{a}={b}={c}={d}+ ={a}<{b}<{c}<{d}

D.7 Useful Identities of Complex Numbers

In this section we express some identities of complex numbers which were used in this dissertation.

(a+ ib)c+id = (a+ ib)
c+id

2 ei(c+id) arg(a+ib)

D.8 Roots of the Cubic Equation

In the text we utilize roots of the cubic equation for various purposes. Since this equation has

analytic solutions we find no need to waste compute time in calculating these solutions and present

their analytic representation herein. Given that a cubic equation has the general form

z3 + a2z
2 + a1z + a0 = 0

The analytic roots for this equation are given by defining a series of coefficients and substitutions

(such as Vieta’s substitution). We start by defining

Q ≡ 3a1 − a2
2

9

R ≡ 9a1a2 − 27a0 − 2a3
2

54
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and in terms of these

D ≡ Q3 +R2

S =
3

√
R +
√
D

T =
3

√
R−
√
D

such that the roots are then

z1 = −1

3
a2 + (S + T )

z2 = −1

3
a2 −

1

2
(S + T ) +

1

2
i
√

3 (S − T )

z3 = −1

3
a2 −

1

2
(S + T )− 1

2
i
√

3 (S − T )

or

z1 = −1

3
a2 + (S + T )

z2 = −1

3
a2 −

(
1− i

√
3
) S

2
−
(

1 + i
√

3
) T

2

z3 = −1

3
a2 −

(
1 + i

√
3
) S

2
−
(

1− i
√

3
) T

2

In terms of an the roots are then

• z1

z1 = −1

3
a2

+
3

√√√√9a1a2 − 27a0 − 2a3
2

54
+

√(
3a1 − a2

2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

+
3

√√√√9a1a2 − 27a0 − 2a3
2

54
−
√(

3a1 − a2
2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2
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• z2

z2 = −1

3
a2

− 1

2

3

√√√√9a1a2 − 27a0 − 2a3
2

54
+

√(
3a1 − a2

2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

− 1

2

3

√√√√9a1a2 − 27a0 − 2a3
2

54
−
√(

3a1 − a2
2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

+
1

2
i
√

3
3

√√√√9a1a2 − 27a0 − 2a3
2

54
+

√(
3a1 − a2

2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

− 1

2
i
√

3
3

√√√√9a1a2 − 27a0 − 2a3
2

54
−
√(

3a1 − a2
2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

• z3

z3 = −1

3
a2

− 1

2

3

√√√√9a1a2 − 27a0 − 2a3
2

54
+

√(
3a1 − a2

2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

− 1

2

3

√√√√9a1a2 − 27a0 − 2a3
2

54
−
√(

3a1 − a2
2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

− 1

2
i
√

3
3

√√√√9a1a2 − 27a0 − 2a3
2

54
+

√(
3a1 − a2

2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

+
1

2
i
√

3
3

√√√√9a1a2 − 27a0 − 2a3
2

54
−
√(

3a1 − a2
2

9

)3

+

(
9a1a2 − 27a0 − 2a3

2

54

)2

D.9 High Order Roots of Complex Numbers

High order roots of complex numbers can be written in terms of complex numbers.
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D.9.1 Square Roots of Complex numbers

For example:

(a+ ib)2 =
(
a2 − b2

)
+ 2i (ab)

= c+ id

therefore

√
c+ id = a+ ib

where

c = a2 − b2

d = 2ab

and inverting it we find that a and b must satisfy

a2 =
c+
√
c2 + d2

2

b =
d

2a

D.9.2 Cubic Roots of Complex numbers

For example

(a+ ib)3 = a3 + 3ia2b− 3ab2 − ib3

=
(
a3 − 3ab2

)
+ i
(
3a2b− b3

)
= c+ id
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therefore

3
√
c+ id = a+ ib

where

c = a3 − 3ab2

d = 3a2b− b3

Since working with cubic terms is not so pretty we will work with 4th order terms

ac = a4 − 3a2b2

bd = 3a2b2 − b4

this yields the expressions

−a4 + 3a2b2 + ac = 0

b4 − 3a2b2 + bd = 0

adding these two expressions yields

b4 + db+ ca− a4 = 0

and

a4 − ca− db− b4 = 0
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solving the quadratic formula for a and b respectively yields

b2 =
−d±

√
d2 − 4 (ac− a4)

2

a2 =
c±

√
c2 + 4 (bd+ b4)

2

substituting these back into the expressions for c & d yields

c = a3 − 3a
−d±

√
d2 − 4 (ac− a4)

2

d = 3
c±

√
c2 + 4 (bd+ b4)

2
b− b3

such that each can be inverted for a and b respectively to yield

10a6 − 3a4d− 11a3c+ 3cda+ c2 = 0

32b6 + 12cb4 + 32db3 + 12db+ 4d2 = 0

D.9.3 nth order roots of complex numbers from Demoivre’s Theorem

optionally, we could have used Demoivre’s theorem to find

(c+ id)
1
n = r

1
n

(
cos

θ

n
+ i sin

θ

n

)

where r =
√
c2 + d2, and θ = tan−1 d

c
. This simplifies matters greatly. For example, for the case

of the square root we use n = 2

(c+ id)
1
2 =

4
√
c2 + d2

(
cos

[
tan−1 d

c

2

]
+ i sin

[
tan−1 d

c

2

])
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For the case of the cubic root where n = 3

(c+ id)
1
3 =

6
√
c2 + d2

(
cos

[
tan−1 d

c

3

]
+ i sin

[
tan−1 d

c

3

])

As an example we show the case for n = 2 and n = 3

D.10 Solving Ordinary Differential Equations by Formal Integration

It is some times the case that is useful to solve ordinary differential equations through formal

integration. A simple example of how to go about this integration is given by

dN (t)

dt
= λN (t)

where, λ is a constant. Formally integrating this expression on the interval [t0, t] yields

ˆ t

t0

dN (t′)

dt′
dt′ = λ

ˆ t

t0

N (t′) dt′

which upon carrying out the formal integration on the LHS yields

N (t)−N (t0) = λ

ˆ t

t0

N (t′) dt′

It is evident that the interval [t0, t] may be shifted in any direction, even, for example [t−∆t, t+ ∆t].

This would imply that for any time t this expression may be rewritten as

N (t+ ∆t) = λ

ˆ t+∆t

t−∆t

N (t′) dt′ +N (t−∆t)

D.11 Useful Countour Integrals

Since in several cases we consider the conversion of infinite discrete sums in k space to continuous

ones, we are often faced with the necessity to evaluate improper integrals. Some of these can be

evaluated by means of Countour Integration which take advantage of Cauchy’s Integral Theorem.
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D.11.1 For those improper integrals which are of the form

ˆ ∞
−∞

dk

kn cos (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


and satisfy the contours found in (D.1), we can find their physically sensible closed forms in terms

of a, ∆t, and zn so long as we constrain ourselves to causal results. To do this, we first expand

cos ka ≡ 1
2

[
eika + e−ika

]
.

(a) Upper Half Plane Contour Integration (b) Lower Half-Plane Contour Integration

Figure D.1: Contour Integration Paths

Upon making the expansion, and defining ∆t = tf − t0 we are left to evaluate the integrals:

I1 =
1

2
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]

I2 =
1

2
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]

I3 =− 1

2
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]
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Causal Solutions

y=(−ct) |~r|y=(ct) |~r|

Figure D.2: Causality Conditions

I4 =− 1

2
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]

For the case where we consider the cases in (D.1) corresponding to poles (ωσ + izn) = a±ib in the

lower or upper half plane, when mapping v0k ≡ z to the complex plane, the possible combinations

which give causal results are tabulated in (D.1). Causality is determined according to values of |~r|

that satisfy the conditions associated with the light cone presented in figure D.2. Integrating yields

the following results, (here Θ (t) is the traditional step function which conserves causality)

1. 1
2
e−i(ωσ+izn)tf

´∞
−∞ dk

[
kn e

ik( v0∆t
2 +a)

(v0k−ωσ−izn)

]
:

(a) Upper half plane requires ={k} > 0 and v0∆t
2
− (−a) ≤ 0

I1 =
1

2
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]

=
1

2
e−i(ωσ+izn)tf

[
2πi

vn+1
0

(ωσ + izn)n e
i(ωσ+izn)

(
∆t
2

+ a
v0

)]
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Table D.1: Causal & Non-Causal Contours

Exponential ={k} Constraints Evaluation

eik(
v0∆t

2
+a) +, upper half v0∆t

2
− (−a) ≥ 0 Not Causal, Incoming Wave

eik(
v0∆t

2
+a) +, upper half v0∆t

2
− (−a) ≤ 0 Causal, Incoming Wave

eik(
v0∆t

2
−a) +, upper half v0∆t

2
− a ≥ 0 Causal, Outgoing Wave

eik(
v0∆t

2
−a) -, lower half v0∆t

2
− a ≤ 0 Not Causal, Outgoing Wave

e−ik(
v0∆t

2
−a) +,upper half v0∆t

2
− a ≤ 0 Not Causal, Outgoing Wave

e−ik(
v0∆t

2
−a) -,lower half v0∆t

2
− a ≥ 0 Causal, Outgoing Wave

e−ik(
v0∆t

2
+a) -,lower half v0∆t

2
− (−a) ≤ 0 Causal, Incoming Wave

e−ik(
v0∆t

2
+a) -,lower half v0∆t

2
− (−a) ≥ 0 Not Causal, Incoming Wave

We therefore conclude that the result of this contour integral is

I1 =
iπ

vn+1
0

(ωσ + izn)n Θ

(
tf −

∆t

2
− a

v0

)
e
−i(ωσ+izn)

(
tf−∆t

2
− a
v0

)

2. 1
2
e−i(ωσ+izn)tf

´∞
−∞ dk

[
kn e

ik( v0∆t
2 −a)

(v0k−ωσ−izn)

]
:

(a) Upper half plane requires ={k} > 0 and v0∆t
2
− a > 0 :

I2 =
1

2
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]

=
1

2
e−i(ωσ+izn)tf

[
2πi

vn+1
0

(ωσ + izn)n e
i(ωσ+izn)

(
∆t
2
− a
v0

)]

We therefore conclude that the result of this contour integral is

I2 =
iπ

vn+1
0

(ωσ + izn)n Θ

(
tf −

∆t

2
+
a

v0

)
e
−i(ωσ+izn)

(
tf−∆t

2
+ a
v0

)

3. −1
2
e−i(ωσ+izn)t0

´∞
−∞ dk

[
kn e

−ik( v0∆t
2 −a)

(v0k−ωσ−izn)

]
over the
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(a) Lower half plane requires ={k} < 0 and v0∆t
2
− a > 0, yields

I3 =− 1

2
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]

= −1

2
e−i(ωσ+izn)t0

[−2πi

vn+1
0

(ωσ + izn)n e
−i(ωσ+izn)

(
∆t
2
− a
v0

)]

We therefore conclude that the result of this contour integral is

I3 =
iπ

vn+1
0

(ωσ + izn)n Θ

(
t0 +

∆t

2
− a

v0

)
e
−i(ωσ+izn)

(
t0+ ∆t

2
− a
v0

)

4. 1
2
e−i(ωσ+izn)t0

´∞
−∞ dk

[
kn e

−ik( v0∆t
2 +a)

(v0k−ωσ−izn)

]
(a) Lower half plane requires ={v0k} < 0 andv0∆t

2
− (−a) ≤ 0 , yields

I4 =
1

2
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]

=
1

2
e−i(ωσ+izn)t0

[−2πi

vn+1
0

(ωσ + izn)n e
−i(ωσ+izn)

(
∆t
2

+ a
v0

)]

We therefore conclude that the result of this contour integral is

I4 =− πi

vn+1
0

(ωσ + izn)n Θ

(
t0 +

∆t

2
+
a

v0

)
e
−i(ωσ+izn)

(
t0+ ∆t

2
+ a
v0

)

The final result, where t =
tf+t0

2
and ∆t = tf − t0, then t = tf − ∆t

2
, or t = t0 + ∆t

2
, is given for

the following conditions

• for poles in the lower half plane is

ˆ ∞
−∞

dk

kn cos (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


=

iπ

vn+1
0

(ωσ + izn)n
[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
−Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]
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• for poles in the upper half plane is

ˆ ∞
−∞

dk

kn cos (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


=

iπ

vn+1
0

(ωσ + izn)n
[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
+ Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]

D.11.2 For those improper integrals which are of the form

ˆ ∞
−∞

dk

kn sin (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


and satisfy the contours found in (D.1), we can find their physically sensible closed forms in terms

of a, ∆t, and zn so long as we constrain ourselves to causal results. To do this, we first expand

sin ka ≡ 1
2i

[
eika − e−ika

]
. Upon making the expansion, and defining ∆t = tf − t0 we are left to

evaluate the integrals:

I1 =
1

2i
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]

I2 =− 1

2i
e−i(ωσ+izn)tf

ˆ ∞
−∞

dk

[
kn

eik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]

I3 =− 1

2i
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
−a)

(v0k − ωσ − izn)

]

I4 =
1

2i
e−i(ωσ+izn)t0

ˆ ∞
−∞

dk

[
kn

e−ik(
v0∆t

2
+a)

(v0k − ωσ − izn)

]
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For the case where we consider the cases in (D.1) corresponding to poles (ωσ + izn) = a±ib in the

lower or upper half plane, when mapping v0k ≡ z to the complex plane, the possible combinations

which give physical results are again tabulated in (D.1). It is clear that these are of the same

form as the previous 4 integrals, off by a phase of ei
π
2 or e−i

π
2 . Therefore, the results follow the

same constraints in the complex plane as before. We evaluate these from inspection of the leading

coefficients of the results above as divided by the appropriate leading factor corresponding tho the

• for poles in the lower half plane is

ˆ ∞
−∞

dk

kn sin (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


=

π

vn+1
0

(ωσ + izn)n
[
Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)
+ Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)]

• for poles in the upper half plane is

ˆ ∞
−∞

dk

kn sin (ka)

[
e−i(ωσ+izn)tf−i

v0k
2 (t0−tf) − e−i(ωσ+izn)t0−i v0k2 (tf−t0)

]
(v0k − ωσ − izn)


=

π

vn+1
0

(ωσ + izn)n
[
Θ

(
t+

a

v0

)
e
−i(ωσ+izn)

(
t+ a

v0

)
−Θ

(
t− a

v0

)
e
−i(ωσ+izn)

(
t− a

v0

)]
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