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ABSTRACT

The undirected graphical model or Markov Random Field (MRF) is one of the more pop-

ular models used in computer vision and is the type of model with which this work is concerned.

Models based on these methods have proven to be particularly useful in low-level vision systems

and have led to state-of-the-art results for MRF-based systems. The research presented will de-

scribe a new discriminative training algorithm and its implementation.

The MRF model will be trained by optimizing its parameters so that the minimum energy

solution of the model is as similar as possible to the ground-truth. While previous work has relied

on time-consuming iterative approximations or stochastic approximations, this work will demon-

strate how implicit differentiation can be used to analytically differentiate the overall training loss

with respect to the MRF parameters. This framework leads to an efficient, flexible learning algo-

rithm that can be applied to a number of different models.

The effectiveness of the proposed learning method will then be demonstrated by learning

the parameters of two related models applied to the task of denoising images. The experimental

results will demonstrate that the proposed learning algorithm is comparable and, at times, better

than previous training methods applied to the same tasks.

A new segmentation model will also be introduced and trained using the proposed learning

method. The proposed segmentation model is based on an energy minimization framework that is
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novel in how it incorporates priors on the size of the segments in a way that is straightforward to

implement. While other methods, such as normalized cuts, tend to produce segmentations of sim-

ilar sizes, this method is able to overcome that problem and produce more realistic segmentations.
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CHAPTER 1
INTRODUCTION

The human visual system can perceive and understand the world around with apparently

very little difficulty. In the field of computer vision , researchers attempt process and understand

digital representation of images in a similar manner using various computer algorithms or models

[Mar82]. While much has been accomplished in the field, there is still a significant amount of work

to be done before a system is developed which could be able to interpret images at a level remotely

close to that of humans.

The problems in the computer vision field can be divided into two areas: low-level and

high-level vision. In low-level vision one is concerned with understanding an image at a pixel

level. Some examples of low-level vision tasks may include image segmentation and edge detec-

tion. On the other hand, high-level vision is concerned with providing a richer description and

understanding of an image. One example of high-level vision is scene and object recognition.

High-level vision applications typically use the low-level results to provide this semantic descrip-

tion of what is ’seen’ in the image. As shown in Figure 1.1, a low-level task might be to find the

edges in the image. A high-level vision task, on the other hand, might be to classify the image, that

is, to determine that it is an images of peppers.
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(a) (b)

Figure 1.1: A low-level vision task might be to find the edges in (a). The edges found using

the Canny algorithm are shown in (b). A high-level vision task, on the other hand, might be to

determine what is actually in the image, that is, it is an image of peppers.

The focus of this work will lie in the area of low-level vision. One of the tools that has a

wide range of applications in low-level computer vision is the graphical model. These probabilis-

tic models fall into two categories: directed(Bayesian networks) or undirected(Markov Random

Fields). The undirected graphical model or Markov Random Field (MRF) is one of the more pop-

ular models used in computer vision and is the model with which this work is concerned. Models

based on these methods have proven to be particularly useful in low-level vision systems and have

led to state-of-the-art results for MRF-based systems. These models depend on various parameters

whose values have to be determined manually or by training the model over some test data. One

of the main contributions of this work will be a new approach for discriminatively training MRF

2



(a) (b)

Figure 1.2: This figure shows (a) a simple 4 edge connected setup and (b) a more complex 8 edge

connected setup between pixels. The number of edges are based on the number of pixels connected

to the center node xi,j .

parameters. It will be shown that this proposed learning algorithm is flexible and, at the same time,

efficient in learning parameters for the MRF.

1.1 Motivation

A Markov Random Field consists of a set of nodes which correspond to variables. These

nodes are connected to each other with undirected links. In vision applications, the MRF nodes can

conveniently correspond to pixels or groups of pixels. Figure 1.2 shows two examples of possible

setups with pixel xi,j as the center node. Figure 1.2a the center node xi,j is connected to four other

pixels. In Figure 1.2b, the center node is connected to eight other pixels. The connections between

pixels are undirected.
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1.1.1 Markov Random Fields

Markov Random Fields are formally defined as follows:

If F is a family of random variables on the set S then F is said to be a Markov Random Field

[Li01] on S with respect to a neighborhood system N if and only if the following two conditions

are satisfied:

P (f) > 0, ∀ ∈ F Positivity (1.1)

and

P (fi|fS\i) = P (fi|fNi
) Markovianity (1.2)

Here fi represents the ith configuration of F and S\i is the set of all variables except i. Ni

represents the all neighbours of i.

Typically, MRF models are posed in a probabilistic framework and have been shown to be

mathematically equivalent to Gibbs distributions [Mou74, HC71]. The Hammersley and Clifford

theorem allows us to specify a MRF as a Gibbs distribution as

p(x; θ) =
1

Z
exp

(
−

Nc∑
k=1

Vk(xk; θ)

)
(1.3)

where the sum is over all Nc cliques, k, in the graph. A set of nodes form a clique when all pairs

of nodes in the set are connected by a link. Each function is a clique potential function associated

with clique xk. The potential functions are also dependent on a set of parameters, θ. The term

1

Z
, also known as the partition function, is a normalization constant that ensures the probability
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density integrates or sums to 1 and is defined as

Z =
∑

x

exp

(
−

Nc∑
k=1

Vk(xk; θ)

)
(1.4)

Equation 1.3 is usually represented using an energy function E(xk; θ) as

p(x; θ) =
1

Z(θ)
exp (−E(x; θ)) (1.5)

where

Z =
∑

x

exp (−E(x; θ)) (1.6)

and

E(x; θ) =
Nc∑
k=1

Vk(xk; θ) (1.7)

1.1.2 Inference

The presence of Z leads to a key problem encountered in the use of MRF models: inference

and parameter estimating. Inference is the task of determining the unobserved or hidden variables

given the observed variables. This can be viewed as either finding the solution with the highest

probability, often referred to as the maximum-a-posteriori (MAP) solution, or the task of estimating

the marginal probability distribution of every variable in the MRF.

The fundamental difficulty in working with MRF models is the fact that when the graph

representation of the MRF has loops or cycles, both types of inference are, in all but a few cases,

NP-complete and intractable for the size of problems that are typically encountered in low-level

vision[BVZ01, Wai06]. This is due to the fact that Z has to be computed by summing over all
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possible configurations; a task which is intractable with most problems in low-level vision. This

practical intractability has large ramifications on the problem of estimating MRF model parameters

and many MRF models usually have parameters which are hand-specified due to the fact that

inference is usually intractable.

Unlike maximum-likelihood learning in MRF models, which require the ability to estimate

the marginal probability distributions of the node cliques in the model, other non-probabilistic

methods such as [Col02] or [TLJ06a], require the ability to find the MAP solution. The method

presented in this thesis is based on a non-probabilistic method.

1.2 Goals and Research Outline

This thesis1 will introduce a new approach for discriminatively training MRF parameters.

The MRF model will be trained by optimizing its parameters so that the minimum energy solution

of the model is as similar as possible to the ground-truth. While previous work has relied on

time-consuming iterative approximations [Tap07] or stochastic approximations [LH08], It will

be demonstrated how implicit differentiation, can be used to analytically differentiate the overall

training loss with respect to the MRF parameters. This leads to an efficient, flexible learning

algorithm that can be applied to a number of different models.

The effectiveness of the proposed learning method will then be demonstrated by learning

the parameters of two related models applied to the task of denoising images. Denoising refers to

1This work contains material previously published in [ST09]
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the recovery and restoration of an image from one which has been corrupted by noise. The two

models used for the research are the Robust Derivative [Tap07] and Field of Experts [RB05] mod-

els. Research was done using use those two models as examples to investigate how the proposed

learning method can be practically applied. The necessary derivatives for each model used in the

research are presented and the training process is explained. Results will be presented showing

that the proposed learning algorithm produces comparable and at times better performance over

other learning methods.

In addition to the introduction of a new learning algorithm, we will also introduce a new

segmentation model. The novelty of this new segmentation model is how it incorporates priors

on the size of the segments in a way that is straightforward to implement. Unlike related systems

based on minimizing a criterion, in this model, the number of segments are not specified and the

system produces more realistic segmentations. Using this new segmentation model, we will further

investigate and demonstrate the effectiveness and flexibility of the proposed learning method by

using it to train the proposed segmentation model.

1.3 Organization of Dissertation

The rest of dissertation will present the learning method and show its effectiveness in two

different applications. A discussion of related works will be presented in chapter 2. This will

help give the reader additional background information and help place this work in context. The

proposed learning model is described in chapter 3. The main steps and necessary derivatives are
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shown using a generalized model. Next, in chapter 4, it is shown how two related models can be

trained using the proposed method. The results presented will show how this proposed method

compares will with other work in this area. Another application is demonstrated in chapter 5.

A new segmentation model is presented and is then trained using the proposed method. This

will further demonstrate the flexibility of the proposed training method. Finally, chapter 6 will

summarize the research presented and provide some possible areas for future work.
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CHAPTER 2
LITERATURE REVIEW AND RELATED WORK

Recent years have seen the introduction of several new approaches for learning the param-

eters of continuous-valued Markov Random Field models [LH08, Hin02, SP07, RB05, TLA07,

WF07]. As mentioned in earlier in the introduction, learning the parameters of continuous-valued

Markov Random Field models is normally done by either a maximum likelihood approach or a

discriminative training approach where the training loss is minimized.

This chapter gives a brief overview of some approaches taken to learn the parameters of a

Markov Random Field. Section 2.1 will review the maximum likelihood approach while Section

2.2 will describe current discriminative training approaches.

2.1 Maximum Likelihood Approaches

When taking the Maximum Likelihood approach the goal is to maximize the likelihood

M(θ) = p(x|y, θ)), where x represents the hidden or unobserved quantity, y represents the ob-

served quantity and θ represents the model parameters. Taking the log and using Equation 1.3 we

get
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logM(θ) = log p(x|y, θ))

= − logZ −
Nc∑
k=1

Vk(xk; θ) (2.1)

While it is possible to differentiate the second term in Equation 2.1 in order to proceed with

what is now a minimization problem, as stated earlier, it is generally intractable to do so for the

first term − logZ. This is especially the case in models which contain loops. Since this value is

intractable to compute, one has to resort to various approximation techniques.

2.1.1 Sampling Methods

One popular approximation technique is to use sampling. The approach proposed by Roth

and Black [RB05] to learn the parameters of the Field of Experts model uses a Markov chain Monte

Carlo(MCMC) sampling and the idea of contrastive divergence [Hin02] to estimate the expectation

over the model distribution. Using this estimate Roth and Black [RB05] perform gradient ascent on

the log-likelihood to update the parameters. Regular Markov chain Monte Carlo sampling can take

a long time to converge. Hinton [Hin02] introduced the method of contrastive divergence where

the Markov chain is only run for a few steps. Though, when compared to regular MCMC sampling

techniques, contrastive divergence simplifies the process it still, however, produces a bias in the

estimates [WA02, KAH05]. Also, this method only computes approximate gradients and there is

no guarantee that the contrastive divergence method converges.
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2.1.2 Most Probable Explanation(MPE) Approximation

The method proposed by Scharstein and Pal [SP07] uses most-probable-explanation (MPE)

estimates to compute approximate expectation gradients to learn parameters of a Conditional Ran-

dom Field(CRF) model.

This approach, however, produces stability issues with models with a large number of pa-

rameters. The method proposed in this dissertation seeks to overcome that weakness and is able to

effectively train a model with a large number of parameters. In their proposed method, Scharstein

and Pal [SP07] use the fast alpha-expansion graphs cuts algorithm [BVZ01] to minimize their

function to obtain their MPE estimate which is then used to calculate the approximate expectation.

This method is similar to that used by Kumar et al.[KAH05] where the expectations are estimated

using simple piecewise constant functions. Sutton et al. [SMR07] have also done similar work

but used loopy belief propagation instead of graph cuts to estimate the MPE and then approximate

expectations.

2.2 Optimizing the Training Loss

One approach where the training loss is minimized and is closely related to the proposed

method in this thesis is the Variational Mode Learning approach proposed in by Tappen[Tap07].

As in my proposed method, the parameters are learnt by minimizing the training loss using the
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following optimization framework:

min
θ

L(x, t)

s.t. x = arg min
x
− log p(x|y; (θ))

(2.2)

In this setup, the loss functionL(x, t) penalizes the difference between t, the training image,

and x, the current estimate. Since the negative log likelihood, arg min
x
− log p(x|y; (θ)) is not

differentiable with respect to θ, it is replaced with an approximate solution. A series of variational

optimization steps is treated as a continuous function and differentiating the result with respect

to the model parameters. The key advantage of the proposed approach over Variational Mode

Learning, is that the result of the variational optimization must be recomputed every time the

gradient of the loss function is recomputed which often required 20-30 steps. This translates into

20 to 30 calls to the matrix solver each time a gradient must be recomputed. On the other hand, the

method proposed in this work only requires one call to the matrix solver to compute a gradient.

Another approach proposed by Li and Huttenlocher [LH08] to learn the parameters of a

continuous-state MRF model of optical flow uses simultaneous perturbation stochastic approxima-

tion (SPSA) [Spa92] to minimize the training loss across a set of ground truth images instead of

the maximum likelihood approach. The motivation for minimizing the training loss instead of the

maximum likelihood is similar to ours. Since an approximation method has to be used to deter-

mine expectation and then maximum likelihood, the results from a minimization of the maximum

likelihood tends to reflect that fact and might be noisy or unpredictable. SPSA is an iterative opti-

mization method where at each iteration all the model parameters are randomly perturbed and the

function being minimized is evaluated using those perturbed values to determine the direction of

12



descent. The model parameters are then updated approximately. When using SPSA it is difficult

to determine exact convergence. Multiple runs are usually required to reduce the variance of the

learnt parameters. Also, SPSA requires various coefficients which have to be ’tweaked’ to get

optimal performance. While there are guidelines on how those coefficients can be chosen [Spa95],

it is still a matter of trial and error in determining the right values to achieve the best performance.

In another closely related work, Do et al. [DFN07] were able to learn hyper-parameters,

rather than parameters, of a Conditional Random Field (CRF) model by using a chain-structured

model. Using a chain-structured model makes it possible to compute the hessian of the CRF’s

density function, thus enabling the method to learn hyper-parameters. In this workHere, we con-

sider problems where the density makes it impossible to compute this hessian, as is the case in

non-Gaussian models with loops. Because we cannot compute the Hessian, we cannot learn hyper-

parameters.
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CHAPTER 3
GRADIENT-BASED MRF LEARNING

3.1 Introduction

In this chapter the learning method is described using a general, generic framework. Using

this general framework, it will be shown how the gradient vector of the loss can be computed

with respect to some parameter θi using the implicit differentiation method. Once the gradient

of the loss is computed, the optimizing of the parameters can proceed. We will show how the

optimization can be implemented using standard techniques.

3.2 Basic Learning Model

Similar to the discriminative, max-margin framework proposed by Taskar et al. [TCK05]

and the Energy-Based Models [LH05], we learn the MRF parameters by defining a loss function

that measures the similarity between the ground truth t and the minimum energy configuration of

the MRF model. Throughout this paper, we will denote this minimum energy configuration as x*.
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This discriminative training criterion can be expressed formally as the following minimiza-

tion:

min
θ

L(x*(θ), t)

where x*(θ) = arg min
x

E(x, y;w(θ))
(3.1)

The MRF model is defined by the energy function E(x, y;w(θ)), where x denotes the

current state of the MRF, the observations are denoted y, and parameters θ. The function w(·)

serves as a function that transforms θ before it is actually used in the energy function. It could be

as simple as w(θ) = θ or could aid in enforcing certain conditions. For instance, it is common

to use an exponential function to ensure positive weighting coefficients, such as w(θ) = eθ for a

scalar θ, as employed in work like [RB05]. Our primary motivation for introducing w(·) here is to

aid in the derivation below.

Note that if E(x, y;w(θ)) is non-convex, then one can only expect x* to be a local min-

imum. Practically, we have found that our method is still able to perform well when learning

parameters for non-convex energy functions, as we will show in Section 5.4.

3.3 Gradient Derivations

Taskar et al. have shown that for certain types of energy and loss functions, the learning

task in Equation 2.2 can be accomplished with convex optimization algorithms [TCK05, TLJ06b].

However, the similarity of Equation 3.1 to solutions for learning hyper-parameters, such as [DFN07,

Ben00, KSC07, CVB02], suggests that it may be possible to optimize the MRF parameters θ using
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simpler gradient-based algorithms. In the hyper-parameter learning work, the authors were able

to use implicit differentiation to compute the gradient of a loss function with respect to hyper-

parameters.

In this section, we will show how the same implicit differentiation technique can be applied

to calculate the gradient of L(x*(θ), t) with respect to the parameters θ. This will enable us to use

basic gradient descent techniques to learn the parameter θ. In chapter 4, it will be shown how this

technique can be applied to a specific, filter-based MRF image prior.

3.3.1 Calculating the Gradient with Implicit Differentiation

We will begin by showing how the gradient vector of the loss can be computed with respect

to some parameter θi using the implicit differentiation method used in hyper-parameter learning.

We start by calculating the derivative vector of x*(θ) with respect to θi. Once we can differentiate

x*(θ) with respect to θ, a basic application of the chain rule will enable us to compute
∂L

∂θi
.

Because x*(θ) = arg min
x

E(x, y;w(θ)), we can express the following condition using x*:

∂E(x; y, w(θ))
∂x

∣∣∣∣
x∗(θ)

= 0 (3.2)

This simply states that the gradient at a minimum must be equal to the zero vector. For

clarity in the remaining discussion, we will replace
∂E(x, y;w(θ))

∂x
,with the function g(x, w(θ)),

such that
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g(x, w(θ)) ,
∂E(x, y;w(θ))

∂x

Notice that we have retained θ as a parameter of g(·), though it first passes through the

function w(·). We retain θ because it will be eventually be treated as a parameter that can be

varied, though in Equation 3.2 it is treated as a constant.

Using this notation, we can restate Equation 3.2 as

g(x∗(θ), w(θ)) = 0 (3.3)

Note that g(·) is a vector function of vector inputs. If x is anN×1 vector then g(·) is also anN×1

vector.

We can now differentiate both sides with respect to the parameter θi. After applying the

chain rule, the derivative of the left side of Equation 3.3 is

∂g

∂θi
=

∂g

∂x∗
∂x∗

∂θi
+
∂g

∂w

∂w

∂θi
(3.4)

Note that if x and x∗ are N × 1 vectors, then
∂g

∂x∗
is an N ×N matrix.

A result of Equation 3.3 is that
∂g

∂θi
= 0. Using this result, we can now solve for

∂x∗

∂θi
:

0 =
∂g

∂x∗
∂x∗

∂θi
+
∂g

∂w

∂w

∂θi

∂x∗

∂θi
= −

(
∂g

∂x∗

)−1
∂g

∂w

∂w

∂θi
(3.5)

Note that because θi is a scalar,
∂g

∂w

∂w

∂θi
is an N × 1 vector.
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The matrix
∂g

∂x∗
is easily computed by recognizing that g(x∗, w(θ)) is the gradient of E(·),

with each term from x replaced with a term from x∗. This makes the
∂g

∂x∗
term in the above

equations just the Hessian matrix of E(x) evaluated at x*.

Using Equation 3.5 and applying the chain rule leads to the derivative of the overall loss

function with respect to θi:

∂L(x*(θ), t)
∂θi

=
∂L(x*(θ), t)

∂x∗
T ∂x∗

∂θi

= −∂L(x*(θ), t)
∂x∗

T ( ∂g

∂x∗

)−1
∂g

∂w

∂w

∂θi

= −∂L(x*(θ), t)
∂x∗

T

(HE(x*))−1 ∂g

∂w

∂w

∂θi
(3.6)

In the above Equation 3.6, we have used HE(x*) to represent the Hessian of E(x) evaluated at x*.

Now that we have
∂L(x*(θ), t)

∂θi
, we have all the necessary derivatives for the optimizations

required by the learning algorithm.
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3.4 Learning Algorithm

One of the benefits of the proposed formulation is that it provides us with a convenient

framework to learn the parameter θ using basic optimization routines. The following describes the

necessary steps in the learning procedure.

1. Compute x∗(θ) for the current parameter vector θ. Recall that x∗(θ) is the minimum of

the energy function, E(x, y;w(θ)). This minimization can be accomplished using common

optimization routines such as gradient descent or non-linear conjugate gradient optimization.

2. Compute the Hessian matrix at x∗(θ), HE(x*).

3. Compute the training loss, L(x*(θ), t)

4. Compute the gradient of the training loss with respect to x*,
∂L(x*(θ), t)

∂x∗
.

5. Compute the gradient of the L(·) with respect to θ using Equation 3.6. As will be described

in Section 3.4.1, performing the computations in the correct order can lead to significant

gains in computational efficiency.

Once we have
∂L(x*(θ), t)

∂θ
, we can use it to update the parameter, θ. The process can then

be repeated until convergence.
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3.4.1 Computational Considerations

Previous authors have pointed out two important points regarding Equation 3.6 [DFN07,

TLA07]. First, the Hessian does not need to be inverted. Instead, only the value
∂L(x*(θ), t)

∂ x∗
T

HE(x*)−1

needs to be computed. This can be accomplished efficiently in a number of ways, including itera-

tive methods like conjugate-gradients.

Second, by computing
∂L(x*(θ), t)

∂x∗
T

HE(x*)−1 rather than HE(x*)−1 ∂g

∂w

∂w

∂θi
, only one

call to the solver is necessary to compute the gradient for all parameters in the vector θ.

The first observation to make here is to realize that since
∂L(x*(θ), t)

∂x∗
is a N × 1 vector

and HE(x*) is symmetric we have the following:

∂L(x*(θ), t)
∂x∗

T

HE(x*)−1 = HE(x*)−1∂L(x*(θ), t)
∂x∗

(3.7)

We then let HE(x*)−1∂L(x*(θ), t)
∂x∗

= v which can be rewritten as

HE(x*)v =
∂L(x*(θ), t)

∂x∗
(3.8)

This simply is your regular matrix equation system, Av = b, where A = HE(x*) and

b =
∂L(x*(θ), t)

∂x∗
. Thus, solving for v in Equation 3.8 gives the product

∂L(x*(θ), t)
∂x∗

T

HE(x*)−1

without explicitly calculating HE(x*)−1.
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3.4.2 Advantages of Discriminative Learning

Typically, MRF models have been posed in a probabilistic framework. Likewise, parameter

learning has been similarly posed probabilistically - often in a maximum likelihood framework.

In many models, computing the partition function and performing inference are intractable, so

approximate methods, such as the tree-based bounds of Wainwright et. al [WJW05] or Hinton’s

contrastive divergence method [Hin02], must be used.

A key advantage of the discriminative training criterion is that it is not necessary to com-

pute the partition function or expectations over various quantities. Instead, it is only necessary

to minimize the energy function. Informally, this can be seen as reducing the most difficult step

in training from integrating over the space of all possible images, which would be required to

compute the partition function or expectations, to only having to minimize an energy function.

A second advantage of this discriminative training criterion is that it better matches the

MAP inference procedure typically used in large, non-convex MRF models. MAP estimates are

popular when inference, exact or approximate, is difficult. Unfortunately, parameters that maxi-

mize the likelihood may not lead to the highest-quality MAP solution. This issue will be further

explored using the Field of Experts model in Section 4.6.3.
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3.5 Summary

This chapter has presented the proposed learning algorithm using a generalized framework.

It was shown how we can learn the MRF parameters by defining a loss function that measures the

similarity between the ground truth t and the minimum energy configuration of the MRF model.

The derivative of the loss function with respect to the MRF parameters can be found explicitly

using implicit differentiation. This enables us to use an optimization routine like gradient-descent

to determine the MRF parameters such that the quality of MAP estimates are directly optimized.

22



CHAPTER 4
APPLICATION IN DENOISING IMAGES

4.1 Introduction

This chapter demonstrates the effectiveness of the proposed learning algorithm by applying

the method to learn the parameters of two related denoising models: the Robust Derivative [Tap07]

and Field of Experts [RB05] models. Denoising can be described as the process of recovering an

original image from one which has been corrupted by noise. Figure 4.1 gives an example of

original image and a noisy one where artificial white gaussian noise of standard deviation, σ = 25

was added. We begin by describing the models used and how the parameters are determined using

the proposed method. In addition to presenting the training process of the two models, results will

also be presented which demonstrate the effectiveness of the training procedure.

4.2 Background: Field of Experts Model(FoE)

Recent work has shown that image priors created from the combination of image filters and

robust penalty functions are very effective for low-level vision tasks like denoising, in-painting, and

de-blurring [LFD07, RB05, Tap07]. The Field of Experts model is defined by a set of linear filters,

f1, ...fNf
, and their associated weights, α1, ..., αNf

. The Lorentzian penalty function, ρ(x) =
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(a) (b)

Figure 4.1: This figure shows the (a) original image compared to (b) one with artificial white

Gaussian noise of standard deviation σ = 25.

log(1+ x2) is used to define the clique potentials. This leads to a probability density function over

an image, x, to be defined as:

p(x) =
1

Z
exp

− Nf∑
i=1

αi

Np∑
p=1

ρ(xp ∗ fi)

 (4.1)

where Np is the number of pixels, Nf is the number of filters and (xp ∗ fi) denotes the result of

convolving the patch at pixel p in image x with the filter fi.

When applied to denoising images, the probability density in Equation 4.1 is used as a prior

and combined with a Gaussian likelihood function to form a posterior probability distribution of

an image given by:

p(x|y) = 1

Z
exp

− Nf∑
i=1

αi

Np∑
p=1

ρ(xp ∗ fi)−
1

2σ2

Np∑
p=1

(xp − yp)
2

 (4.2)
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where σ is the standard deviation of the Gaussian noise and y is a noisy observation of x.

4.2.1 Background: Robust Derivative Model

The Robust Derivative model is a variant of the Field of Experts model. However, unlike

the FoE model, the Robust Derivative model combines a fixed set of high-order image derivative

filters, f1, ...fNf
, with the Lorentzian penalty function, ρ(x) = log(1 + x2). We arrive at the final

form of the energy function, E(x, y;α, β), by adding parameters to adjust the weight of different

filters and control the shape of the penalty function leads to the final form of the energy function :

E(x, y;α, β) =
Np∑
p=1

(xp − yp)
2 +

Nf∑
i=1

exp(αi)

Np∑
p=1

ρ((xp ∗ fi), βi) (4.3)

where Np is the number of pixels, ρ(z, β) = log(1 + (βz)2), and (xp ∗ fi) denotes the result of

convolving the patch at pixel p in image x with the filter fi.

The set of first, second and third derivative filters used in the implementation of the model

are shown in Figure 4.2.

The underlying idea behind the Robust Derivative Model is that the image can be modeled

with a piecewise smooth prior. As described in [BR96], using the Lorentzian robust penalty is

equivalent to using a quadratic penalty on the derivative values, combined with a line-process

variable that allows for sharp breaks, which corresponds to edges in the image [GG84]. The
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Figure 4.2: The set of first, second and third derivative filters used in the implementation of the

Robust Derivative model.

advantage of this model is that it is easily interpretable and performs comparably to similar models

such as the Field of Experts model or the model proposed recently by Weiss and Freeman [WF07].

4.3 Learning: Robust Derivative Model

In this section, we will describe how the parameters of the Robust Derivative model can

be learnt using the gradient-based learning method. The model will be trained to denoise images

with varying degrees of additive noise. We will begin with this model since it involves fewer

parameters than the Field of Experts model. The results show that the training method is in fact

effective. When compared with the Field of Experts model the Robust Derivative model trained

using the proposed approach produces competitive results even though less parameters are needed.
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4.3.1 Calculating Gradients in the Robust Derivative Model

For clarity, I will begin by describing how to compute derivatives in the Robust Derivative

Model by considering a model with one filter. The derivative of Equation 4.3 with respect to x is

given by:

∂E(x)
∂x

= eαf− ∗ 2β2(x ∗ f)
1 + (β(x ∗ f))2

+ 2(x− y). (4.4)

Rather than using the convolution notation from Equation 4.4, convolution of x with a filter

f will be denoted as the product of a doubly-Toeplitz matrix F and x. F is a NpxNp matrix, where

Np represents the number of pixels in x. From this point in the derivations, x will be a Npx1 vector

formed by stacking the rows of the image to form one column.

Using this notation, the gradient of the energy function E(x), with respect to x is written

as:

∂E(x)
∂x

= F Tρ′(u) + 2(x− y), (4.5)

where ρ′(z) is a function that applied element-wise to the vector u = Fx. This function has the

form

ρ′(z) = exp(α)
2β2z

1 + (βz)2
. (4.6)

Following the steps in Chapter 3, the derivative vector of x* with respect to the parameter

α is computed from the combination of the derivative of Equation 4.5 and the Hessian of E(x*).

Recall that at x∗ we have
∂E(x)
∂x

∣∣∣∣
x*
= 0. That is,
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F Tρ′(u) + 2(x∗ − y) = 0. (4.7)

Differentiating both sides of Equation 4.7 with respect to the parameter α and rearranging

we have,

0 = F Tρ′(u∗) + F TWF
∂x*
∂α

+ 2I
∂x*
∂α

0 = F Tρ′(u∗) +
(
F TWF + 2I

) ∂x*
∂α

∂x*
∂α

= −
(
F TWF + 2I

)−1
F Tρ′(u∗). (4.8)

Here, W refers to a NpxNp diagonal matrix where the entries [W ]i,i along the diagonal are

computed by applying the function

ρ′′(z) =
2β2(1 + (βz)2)− 2β2z(2βz(β))

(1 + (βz)2)2
(4.9)

to the entries of the vector u∗ = Fx*. The expression in Equation 4.8 is easily extended to a set of

different filters, f1 . . . fNf
, and the corresponding matrices, F1 . . . FNf

.

If the loss function, L(x*, t, θ), is the pixel-wise squared error

L(x*(θ), t) =
Np∑
p=1

(xp − tp)2 (4.10)

then the overall expression for finding the derivative of the loss function with respect to α becomes

∂L(x*, t, θ)
∂α

= 2(x*− t)T
∂x*
∂α

= −2(x*− t)T
(
F TWF + 2I

)−1
F Tρ′(u∗). (4.11)
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4.4 Evaluating Denoising Results using the Robust Derivative model

Testing was done on two datasets. The first set comprised of 68 images also from the

Berkeley database[MFT01] and the second test set were images used by Portilla et. al. [PSW03]

in their denoising experiments. Similar to [RB05] we assume a known noise distribution when

performing our experiments.

There were 40 training images taken from the Berkeley segmentation database[MFT01].

We chose four 51x51 patches from each training image, giving us a total of 160 training patches.

In order to compare the results, the test images were denoised using the Field of Experts

implementation provided by Roth and Black. Those experiments were run for 5000 iterations per

image with a step size η = 0.6.

The denoising performance in this set of experiments was primarily measured using the

peak signal-to-noise ratio(PSNR) values. The PSNR is a popular metric used to evaluate denoising

performance and is defined as

PSNR = 10 log10

2552

√
mse

(4.12)

Themse is the mean squared error calculated pixelwise between the original image and the

test image. The square root of the mse gives the standard deviation.

Performance was compared on the Berkeley dataset with noisy images created by adding

Gaussian noise at standard deviation of σ = 15 and σ = 25. There was similar performance when

denoising images compared to Field of Experts as shown in Table 4.1. Overall, the model trained

using the proposed method performed almost as well as Field of Experts on images with σ = 15
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Table 4.1: This table compares the average RMS error and PSNR on images from the Berkeley

dataset between our model and the FoE model.

σ = 15 σ = 25

Model Average Average Average Average

RMS Error PSNR RMS Error PSNR

Our Model 8.02 30.33 10.79 27.92

Field of Experts 7.90 30.44 10.81 27.71

and slightly better at σ = 25. Figures 4.3 and 4.4 show that the results are also visually similar to

that of Field of Experts.

Our results in terms of the peak signal-to-noise ratio on the second test dataset[PSW03]

are given in Table 4.2 . Again, our results are close to those reported by Roth and Black using

the Field of Experts model. We attain similar results on most of the images and in the other cases

our result was either below or above their results by at most 0.3dB. A visual comparison for an

example image from that dataset is shown in Figure 4.5.
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Figure 4.3: An example from the Berkeley dataset comparing the Field of Experts model to our

denoising model. (a) Original image (b) Noisy image, σ = 25, PSNR = 20.16 (c) Denoised image

using FoE model, PSNR = 28.40 (d) Denoised image using our model, PSNR = 28.71.

31



(a) (b)

(c) (d)

Figure 4.4: Another example from the Berkeley dataset comparing the Field of Experts model to

our denoising model. (a) Original image (b) Noisy image, σ = 25, PSNR = 20.17 (c) Denoised

image using FoE model, PSNR = 24.84 (d) Denoised image using our model, PSNR = 25.16.
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(a) (b)

(c) (d)

Figure 4.5: Comparing the Field of Experts model to Robust Derivative model trained using the

proposed method. The example here is an image from the Portilla dataset. (a) Original image (b)

Noisy image, σ = 25, PSNR = 20.26 (c) Denoised image using FoE model, PSNR = 28.71 (d)

Denoised image using our model, PSNR = 28.85.

33



Table 4.2: PSNR in dB for denoised images from [PSW03] using the Robust Derivative model

trained using our method

σ Lena Barbara Boats House Peppers

10 34.98 32.48 33.05 34.97 34.34

15 33.23 29.98 31.23 33.44 32.25

20 31.93 28.21 29.84 32.15 30.70

25 30.85 26.66 28.75 31.05 29.51

4.5 Learning: Field of Experts Model

4.5.1 Energy and Loss Function Formulation

As stated in Section 3.2 the MRF parameters are learnt by minimizing a loss function that

measures the similarity between the ground truth t and the minimum energy configuration of the

MRF model. We use the negative log-posterior given in Equation 4.2 to form the energy function

as:

E(x, y;α, β) =
Nf∑
i=1

eαi

Np∑
p=1

log(1 + (Fixp)2) +

Np∑
p=1

(xp − yp)
2. (4.13)

Here, multiplication with a doubly-Toeplitz matrix Fi is used to denote convolution with a filter

fi. Each filter, Fi, is formed from a linear combination of a set of basis filters B1, , .., BNB
. The
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parameters β determine the coefficients of the basis filters, that is, Fi is defined as

Fi =

NB∑
j=1

βijBj. (4.14)

This formulation allows the filters, Fi, ..FNf
, to be learnt via the parameters β as well as their

respective weights via α.

In the following section, the loss function, L(x∗(θ), t), is assumed to be the pixelwise

squared error between the x and t. That is,

L(x∗(θ), t) =
Np∑
p=1

(xp − tp)2, (4.15)

where the parameters α and β are grouped into a single vector θ. It should be noted that the

proposed formulation is flexible enough to allow the user to choose a loss function that matches

their notion of image quality.

4.5.2 Calculating Gradients in the FoE Model

As in Section 4.3, I will describe how to compute the required derivatives in the denoising

formulation by considering a model with one filter. In this case the gradient of the energy function

E(x, y;α, β) can then be written as

∂E(x, y;α, β)
∂x

= F Tρ(u) + 2(x− y), (4.16)

where ρ(u) is a function that is applied element-wise to the vector u = Fx and defined as

ρ(z) = exp(α)
2z

1 + z2
. (4.17)

35



Following the steps in Section 3.3.1 leads to the derivative of x∗ with respect to the param-

eter β. Since when evaluated at x∗, that is,
∂E(x, y;α, β)

∂x

∣∣∣∣
x∗

= 0, we have

0 = F Tρ(u∗) + 2(x∗ − y) (4.18)

differentiating with respect to β gives

0 = BTρ(u∗) + F Tγ(u∗)Bx +
(
F TWF + 2I

) ∂x∗

∂β
. (4.19)

Solving for
∂x∗

∂βj
gives

∂x∗

∂β
= −

(
F TWF + 2I

)−1 (
BTρ(u∗) + F Tγ(u∗)Bx

)
, (4.20)

where W is a NpxNp diagonal matrix and a [W ]i,i entry is determined by applying the function

γ(z) = exp(α)
2− 2z2

(1 + z2)2
(4.21)

element-wise to the vector u∗ = Fx∗.

This leads to the overall expression for computing the derivative of the loss function with

respect to β to be defined as

L(x∗(θ), t)
∂β

= −(x∗ − t)T
(
F TWF + 2I

)−1
Cβ, (4.22)

where Cβ = (BTρ(u∗) + F Tγ(u∗)Bx∗).

In a similar manner, the expression for the derivative of x∗ with respect to the parameter α

is computed by first differentiating Equation 4.18 with respect to α to get

0 = F Tρ(u∗) +
(
F TWF + 2I

) ∂x∗

∂α
. (4.23)
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Solving for
∂x∗

∂α
gives

∂x∗

∂α
= −

(
F TWF + 2I

)−1
F Tρ(u∗) (4.24)

and derivative of the loss function with respect to α can be defined as

L(x∗(θ), t)
∂α

= −(x∗ − t)T (F TWF + 2I)−1Cα, (4.25)

where Cα = F Tρ(u∗).

The above equations can be easily extended for multiple filters, f1, ...fNf
, and their corre-

sponding doubly-Toeplitz matrices, F1, ...FNf
.

4.6 Evaluating denoising results using the Field of Experts model

Similar to the experiments using the Robust Derivative model, tests were done using the

images from the Berkeley segmentation database[MFT01] identified by Roth and Black in their

experiments. We used the same 40 images for training and 68 images for testing. Since the

proposed approach made it possible to train on larger patches than those used by Roth and Black,

the results reported in this paper are all from training the system using four randomly selected 51

x 51 patches from each training image, giving a total of 160 training patches. Figure 4.6 shows a

few of the training images and Figure 4.7 shows a few examples of the patches used for training.

A set of 24 filters with dimension 5 x 5 pixels were learnt using the same basis as Roth and Black.

Training was also done using 2000 randomly selected 15x15 patches with slightly lower results.
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Figure 4.6: A few examples of the training images used from the Berkeley segmentation database.

[MFT01] A total of 40 different images were used in the training process.

4.6.1 Implementation Highlights

The training was implemented in Matlab along with MatLabMPI [Kep04] which provided

parallel computing support. Since this algorithm can easily be parallelized, one can make more

efficient use of available computing resources. Training took about 8-10 hours on average using

10 CPUS.

4.6.2 Denoising Results

In order to compare the results, the test images were also denoised using the Field of Ex-

perts(FoE) implementation provided by Roth and Black. The parameters in this implementation
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Figure 4.7: A few examples of the 51x51 pixels training patches used. These patches were ran-

domly chosen from the 40 training images.

were learnt using the contrastive divergence method mentioned in Chapter 2 and uses gradient as-

cent to denoise images. For convenience, this system will be referred to as FoE-GA (for gradient

ascent). The experiments were run for 2500 iterations per image as suggested by Roth and Black

using a step size η = 0.6. Another denoising system was also implemented using the same pa-

rameters from the FoE-GA system but using conjugate gradient descent instead of gradient ascent.

This system will be referred to as FoE-CG (for conjugate gradient) and results are reported when

the system converges at a local minimum.
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Figure 4.8: Scatterplots comparing the PSNR between our results and Field of Experts’ using

contrastive divergence on the test images with Gaussian noise of standard deviation, σ = 15 . A

point above the line means performance is better than FoE-GA. As can be seen, our performance

is generally better than FoE-GA. On the other hand,FoE-CG does worse than FoE-GA

As shown in Figures 4.8 and 4.9, performance was similar and, at times, better at conver-

gence when compared to FoE-GA across the test images when the MAP inference is allowed to

terminate at a local minimum. It should be reiterated that FoE-GA terminates after a fixed number

of iterations, which is chosen to maximize performance and not when the system reaches a local

minimum. When compared to FoE-CG our performance is noticeably better. This shows a signifi-

cant and important difference using my proposed training method: if the minimization is allowed
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Figure 4.9: Scatterplots comparing the PSNR between our results and Field of Experts’ using

contrastive divergence on the test images with Gaussian noise of standard deviation, σ = 25. A

point above the line means performance is better than FoE-GA. As can be seen, our performance

is generally better than FoE-GA. On the other hand,FoE-CG does worse than FoE-GA

to terminate at a local minimum then the performance is much better. Convergence is also achieved

much faster using the proposed training method as shown in Table 4.3. The same stopping criteria

was used for testing results and FoE-CG. Figure 4.10 shows how the PSNR and the energy changes

during the course of the minimization for the image shown in Figure 4.16.
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Figure 4.10: This figure shows the relationship between the energy and the PSNR during the

minimization for the test image shown in figure 4.16.

In addition to calculating the PSNR, we also computed the perceptually based structural

similarity index (SSIM)[WBS04] to measure the denoising results. The SSIM metric values vary

between 0 and 1, where 1 is the best.

Tables 4.4 and 4.5 give the average PSNR and SSIM index computed from the denoised

images for σ = 25 and σ = 15. Figures 4.11 and 4.12 show examples in which our results are

better in terms of PSNR and SSIM. Visually, the texture is preserved better in our denoised images.

However, in images which are composed of relatively smooth regions then FoE-GA and FoE-CG

produce better results as can be seen in Figure 4.14.
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Table 4.3: This table shows the average number of conjugate gradient iterations taken before con-

vergence when performing denoising on the 68 test images. All iterations have the same complex-

ity; so in this case fewer iterations means faster performance.

FoE-CG Ours

σ = 25 1874 227

σ = 15 1009 94

Table 4.4: This table compares the average PSNR and SSIM index on the test images between our

results and FoE-GA/CG for images with Gaussian noise of standard deviation, σ = 25.

System Average PSNR Average SSIM

Ours 27.86 0.7760

FoE-GA 27.75 0.7632

FoE-CG 27.17 0.7266

Table 4.5: This table compares the average PSNR and SSIM index on the test images between our

results and FoE-GA/CG for images with Gaussian noise of standard deviation, σ = 15.

System Average PSNR Average SSIM

Ours 30.58 0.8555

FoE-GA 30.56 0.8592

FoE-CG 30.21 0.5358
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.13: An example from the Berkeley dataset comparing denoising results between the dif-

ferent systems. Top row: Full size images. Bottom row: closeup view of a selected patch. From

left to right: Original image, Noisy image, Our denoised image, FoE-GA denoised image, FoE-CG

denoised image
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Table 4.6: Denoising results given by the PSNR in dB for the images from [PSW03]

σ Lena Barbara Boats House Peppers

5 38.31 37.39 36.56 38.09 37.78

10 35.23 33.32 33.50 35.27 34.38

15 32.89 29.83 31.02 32.65 31.47

20 31.67 28.13 29.74 31.34 30.05

25 30.57 27.27 28.88 30.55 29.15

50 27.52 23.32 25.36 26.92 25.37

The trained model was also tested on images from a second dataset used by Portilla et al.

[PSW03]. The results for additive gaussian noise at σ = 5, 10, 15, 20, 25, 50 are shown in Table

4.6. Figures 4.15,4.16, 4.17 and 4.18 show some qualitative results for images from the Portilla

dataset.

For completeness, we also report the performance our implementations of other methods,

which were mentioned in Chapter 2, applied to learning the parameters of the FoE model for

denoising. As shown in Table 4.7 our proposed training approach produced the best testing results.

The performance differences between our results and the other training methods are statistically

significant at a 95% level using a signed rank test.
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(a) (b) (c)

Figure 4.15: The example here is an image from the Portilla dataset. (a) Original image (b) Noisy

image, σ = 25, PSNR = 21.53 (c) Denoised image using our model, PSNR = 28.88.

(a) (b) (c)

Figure 4.16: The example here is an image from the Portilla dataset. (a) Original image (b) Noisy

image, σ = 25, PSNR = 20.26 (c) Denoised image using our model, PSNR = 27.27.
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(a) (b) (c)

Figure 4.17: The example here is an image from the Portilla dataset. (a) Original image (b) Noisy

image, σ = 50, PSNR = 14.12 (c) Denoised image using our model, PSNR = 26.92.

(a) (b) (c)

Figure 4.18: The example here is an image from the Portilla dataset. (a) Original image (b) Noisy

image, σ = 50, PSNR = 14.16 (c) Denoised image using our model, PSNR = 27.52
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Table 4.7: This table compares the results among the various methods used to learn the parameters

of the FoE denoising model. The test images all had gaussian noise of standard deviation, σ = 15.

Note that the FoE-GA results are obtained by terminating the optimization early, rather than finding

the MAP solution in the FoE model. This ties the model to a specific optimization procedure.

Training System Average PSNR

Scharstein and Pal [SP07] 29.56

SPSA[LH08] 29.87

Foe-CG 30.21

Variational Mode Learning[Tap07] 30.25

FoE-GA 30.55

Ours 30.58

4.6.3 Learning Advantage

In the original Field of Experts implementation , the parameters were trained in a maximum-

likelihood fashion, using the Contrastive Divergence method to compute approximate gradients.

Using this model, the best results, with the highest PSNR, are found by terminating the mini-

mization of the negative log-likelihood of the model before reaching a local minimum. As can be

seen from Figure 4.19, if the FoE model trained using contrastive divergence is allowed to reach

a local minimum then the performance decreases significantly. This happens because maximum-
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Figure 4.19: This figure shows the difference between training the FoE model using contrastive

divergence and our proposed method. At termination, that is at a local minima, our training method

produces results that are very close to the maximum PSNR achieved over the course of the mini-

mization on images with additive Gaussian noise, σ = 15.
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likelihood criterion that was used to train the system is related, but not directly tied to the PSNR

of the MAP estimate.

The argument is that if the intent is to use MAP estimates and evaluate the estimates using

some criterion, like PSNR, a better strategy is to find the parameters such that the quality of MAP

estimates are directly optimized. Returning to the Field of Experts model in the previous paragraph,

if the goal is to maximize PSNR, maximizing a likelihood and then hoping that it leads to MAP

estimates with good PSNR values is not the best strategy. It can be argued that one should instead

choose the parameters such that the MAP estimates have the highest PSNR possible. It should be

noted that our method is not tied to the PSNR image quality metric - any differentiable image loss

function can be used. As Figure 4.19 shows, when the FoE model is trained using our proposed

approach, the PSNR achieved when the minimization terminates is very close to the maximum

PSNR achieved over the course of the minimization. This is important because the quality of the

model is not tied to a particular minimization scheme. Using the model trained with our method,

different types of optimization methods could be used, while maintaining high-quality results.

4.6.4 Inpainting

The trained model was also used to perform inpainting in a similar manner to what is

done by Roth and Black [RB05]. The goal here is to remove unwanted parts of an image such as

scratches and occluding objects while keeping the reconstructed parts as realistic as possible. Only

the FoE prior is used thus making the energy function to be minimized as follows:
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Figure 4.20: This figure shows the masks used when computing the gradients. Only the gradients

corresponding to the white pixels were updated during the minimization process Top: Original

image. Bottom: Image Masks

E(x, y;α, β) =
Nf∑
i=1

eαi

Np∑
p=1

log(1 + (Fixp)2). (4.26)

Rather than updating all the pixels in the image, only the gradient of pixels specified by a

user supplied mask are updated. Examples of the masks are shown in Figure 4.20. The gradient

of all pixels outside of the mask are set to zero during the minimization. The minimization in this

case was done using gradient descent with the ’bold driver’ method.

There was no additional learning done for the inpainting. The same parameters learnt for

denoising were used for inpainting. Since the parameters were learnt for the denoising of gray
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Figure 4.21: This figure shows the results when our trained model was applied to inpainting. Top:

Original image. Bottom: Restored image

scale images, the colour images used for the inpainting were converted to the YCbCr color space.

Each channel was then minimized separately and the results recombined at the end.

Figure 4.21 shows the inpainting results which are qualitatively similar to those in [RB05].

This shows that even though the model is trained differently it is still able to perform the same

tasks as well as, or even better, than the FoE model trained using contrastive divergence.

55



4.7 Summary

To summarize, we have introduced a new approach for discriminatively training MRF pa-

rameters. In this approach, the MRF parameters are directly optimized so that the MAP solution

scores as well as possible. This new approach allows one to develop a framework that is flexible,

intuitively easy to understand and relatively simple to implement.

We have demonstrated the effectiveness of the proposed approach by using it to learn the

parameters for the Field of Experts model for denoising images. The performance of the model

trained using the proposed method compares well with the results of the Field of Experts model

trained using contrastive divergence when applied to the same tasks.
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CHAPTER 5
ENERGY-BASED SEGMENTATION

5.1 Introduction

Image segmentation is one of the fundamental tasks in computer vision. Segmented images

play an important role in a wide range of applications such as object classification or identification.

However, this is not a trivial task due to the diversity and complexity in images and as a result,

segmentations from current methods are generally not up to par with human segmentations of

natural images.

Segmentation methods can be broadly grouped into two main categories: (i) object-specific

segmentation [HZC04, KTZ05, LW06, VT07] and (ii) general segmentation techniques that are

driven by local image features, such as edges or pixel color. Graph-based methods, such as [SM00,

Wei99, WL93], are a particularly powerful and popular family of segmentation approaches because

they make it possible to control the overall system behavior with local affinities that can properly

handle edges and other boundaries.

We present a general segmentation system based on an energy minimization framework that

is novel in how it incorporates priors on the size of the segments in a way that is straightforward

to implement. For a segmentation system based on minimizing a criterion, such as the normalized

cuts method, the criterion must incorporate the size of the segments. As pointed out by Shi and
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Malik[SM00], if the energy function does not consider the size of the segments, the result of the

minimization will tend to result in tiny segments. Thus, the normalized cuts criterion is structured

to prefer segmentations where the segments are roughly the same size.

However, recent work by Sudderth et al.[SJ09] has pointed out that the size of segments in

natural images tend to follow a heavy-tailed distribution. This distribution can be interpreted as

stating that natural images tend to have many smaller segments with a few large segments. Interest-

ingly, these properties can also be seen in the scale invariant properties [TO03] of natural images,

histograms of contour lengths [RM03], in addition to the segment areas [MFT01] of human seg-

mentations. Building on this, Sudderth et al. propose a probabilistic method for segmentation, built

on the Pitman-Yor process [PY97]. As shown by Sudderth et al.[SJ09], this model is able to pro-

duce segmentations that match human-created segmentations better than those produced with the

normalized cuts methods. The segmentations themselves are produced using a series of variational

updates.

We describe the general model in more detail in Section 5.2. As will be shown, unlike

Sudderth et al.[SJ09], the segmentation is achieved using gradient-based optimization of an energy

function which is straightforward to implement with standard techniques. The effectiveness of our

proposed model is demonstrated in Section 5.4. We will show that the method produces segmen-

tations which overcome the uniform segment size limitations of normalized cuts and are also of

comparable quality to Sudderth et al.[SJ09], while being easier to implement.

58



5.2 General algorithm

In this work, the segmentation problem is setup as a multi-class labeling task using an

energy minimization framework. Each image is represented with a set of continuous-valued re-

sponses per segment. The goal is to determine the response image, xk, for each segment, k, which

is then converted to probabilities using a softmax function to produce the final classification. While

the number of segments is not specified, the process begins with at most ten segments per image

and the system automatically refines the number of segments.

5.2.1 Softmax

Since we are using a multi-class formulation we use a multinomial logistic model or soft-

max function [Fig05], to transform the response images to probabilities. The probability of a pixel

p belonging to class k is given by the softmax function [Bis06] defined as:

p(Ck|xp) = ykp =
exkp∑
c̄ e

xc̄p
(5.1)

where xkp represents the response for pixel p in segment k.

5.2.2 Cost function formulation

In this section we describe the underlying cost function and the contribution of the different

terms of which it is comprised.
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5.2.2.1 Primary cost function

At the heart of the segmentation model is the cost function, E(x), defined as:

E(x) = K1

Nk∑
k

∑
<p,q>

w(p,q)(xkp − xkq)
2 (5.2)

+ K2

Nk∑
k

−Sk log

(
1

Np

Np∑
p

exkp∑
c̄ e

xc̄p

)

+ K3

Np∑
p

− log

Nk∑
k

(
exp

(
exkp∑
c̄ e

xc̄p

))
,

where Np is the number of pixels and Nk is the current number of segments being considered. The

parameters w(p,q) and Sk are discussed in Sections 5.2.3.1 and 5.2.3.2

This cost function is comprised of three terms, described below, whose contribution to the

overall function is determined by the parameters Ki.

We can use the definition of the probability ykp in Equation 5.1 to rewrite Equation 5.2 more

concisely as

E(x) = K1

Nk∑
k

∑
<p,q>

wk(p, q)(xkp − xkq)
2 (5.3)

+ K2

Nk∑
k

−λkSk log

(
1

Np

Np∑
p

ykp

)

+ K3

Np∑
p

− log

Nk∑
k

(
exp

(
ykp
))
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and its derivative as

∂E

∂xjp
= 2K1wj(p, q)(xjp − xjq) (5.4)

− K2

Nk∑
k

λkSk

(
Np∑
i

yki

)−1

ykp(Ijk − yjp)

− K3

(
Nk∑
k

exp
(
ykp
))−1

· exp
(
ykp
)
· ykp(Ijk − yjp),

where Ijk are elements of the identity matrix.

In this formulation, we can now use a standard numerical optimization routine to minimize

the cost function to determine the optimal response images. We use conjugate gradient to perform

the experiments in this work.

5.2.3 Decomposition of the cost function

In this section we give a more detailed explanation of each of the terms in the cost function.

For clarity, we define the three terms in Equation 5.3 as: (i) Smoothness term (ESm), (ii) Segment-

Size Prior term (ESSP ) and (iii) Separation term (ESep).

5.2.3.1 Smoothness term

ESm =

Nk∑
k

∑
<p,q>

w(p,q)(xkp − xkq)
2 (5.5)
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This term implements inter-pixel relationships and has a smoothing effect on the responses. Local

feature cues are incorporated in this term since it is weighted by w, which is defined using the

probability of boundary(Pb) [MFM04] values of the images based on color and texture. We define

w as:

wp,q = exp(−γ‖Pb(p)− Pb(q)‖) (5.6)

The parameter γ determines how strong the difference between pixels counts. This weight-

ing encourages discontinuities or breaks in the response images at points which correspond to

higher probability of boundary values.

5.2.3.2 Segment-Size prior term

ESSP =

Nk∑
k

−Sk log

(
1

Np

Np∑
p

exkp∑
c̄ e

xc̄p

)
(5.7)

This term enforces the prior on the size of the segments. The size of the segments are

specified with the parameters Sk. While Sk values do not have to be exact matches to the proportion

of the segment in the image, they do,however, need to be specified in descending order of size. The

contribution of this term is demonstrated in Figure 5.1. We show the resulting segmentations with

S specified as well as a result with the segment-size term turned off. In order to model a heavy-

tailed distribution we use S = 1/k, where segments, k = 1 to N , are specified in decreasing order

of size. Since the segmentation is also highly affected by the image-specific cues in the smoothness

term it is not necessary for this term to precisely match the distribution of segment sizes.
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Figure 5.1: Segmentation results showing the effect of the segment-size term. (a) Image showing

edge boundaries from the segmentation with the segment-size term turned on (b) Segmentation

with segment-size term turned on (c) Segmentation with segment-size term turned off

This term is based on the log Dirichlet distribution, which is the conjugate prior for the

multinomial distribution. Because the Dirichlet distribution is a distribution over distributions, it is

used to measure whether the distribution of pixels in segments matches the sizes defined with the

Sk terms.

While Sudderth et al.[SJ09] points out that the Pitman-Yor process can model distributions

with heavier tails, we have found that basing this term on a Dirichlet distribution works well and

makes implementation easier.

5.2.3.3 Separation term

ESep =

Np∑
p

− log

Nk∑
k

(
exp

(
exkp∑
c̄ e

xc̄p

))
(5.8)
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In this formulation there are two ways of satisfying the segment-size prior constraints. If,

for example, we wish to get two segments, A and B, with sizes corresponding to 55% and 45% of

the image respectively, then two scenarios would satisfy the segment size constraint:

1. Having 55% of pixels with probability 1 and the remaining 45% with probability 0 of be-

longing to segment A and vice versa for segment B

2. Having all pixels with a probability of 0.55 belonging to segment A and all pixels with a

probability 0.45 belonging to segment B.

In computing the size of a segment we make the assumption that a pixel would move

towards probability 1 in a chosen segment while moving to 0 in the remaining segments. This is

not the case in scenario (2), so, as a result, we introduce the separation term to avoid scenario (2).

This term is based on a differentiable approximation of the maximum defined as max(a, b, ..., c) ≈

log(ea + eb + ... + ec). In our setup, minimizing Equation 5.8 helps to move the probability of a

pixel belonging to a certain segment towards 1 while minimizing its probability across the other

segments. In other words, it forces the pixel to choose one segment as in scenario (1).
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5.3 Implementation details

5.3.1 Enforcing segment size constraints

In order to enforce the segment size constraints, our model expects the segments to be

in decreasing order of size. To enforce this restriction, we propose two methods: (i)sorting and

(ii)fusion moves.

5.3.1.1 Sorting and pruning

In sorting, after a fixed number of iterations, we compute the probabilities for each of the

current response images and generate an intermediate segmentation. The segments are then sorted

according to their proportional size in the image.

For additional speed, after sorting, the response images for segments that account for less

than a chosen percentage of the image can be eliminated. Based on empirical evidence, we suggest

a choice of 5%. The sorting and pruning procedure is outlined in Figure 5.2. The pruning of

segments helps the system to dynamically adjust the number of segments under consideration

thereby speeding up the final optimization stage since there are less segments to consider.

It should be noted that the number of segments remaining after these two steps is not nec-

essarily the final number of segments in the image. As can be seen in Figure 5.2, four segments

were left after the sorting and pruning stages, however, only two segments were in the final seg-
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Figure 5.2: This figure shows the main steps in the segmentation process when sorting and pruning

are used. In this case, six of the ten original segments were eliminated during the sorting phases.
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mentation. The fewer segments we have to consider the faster the final optimization stage will

be.

5.3.1.2 Fusion moves

This method allows the segments to grow or shrink appropriately to match the size con-

straints. The cost function defined earlier in Equation 5.2 is modified to introduce fusion moves.

Motivation for the fusion moves comes from graph-cut based methods like α-expansion [BVZ01]

or LogCut [LRB07]. Related work using this idea of fusion moves on stereo problems has recently

been proposed by [TPC, LRR09] where two proposed solutions are fused to form a more accurate

solution. Inspired by this approach, we use the same principle to fuse two response images so that

the overall energy function is minimized.

Given a response image from the intermediate segmentation, xα, representing label α, a

fusion move between another label, β, produces a new response image, xnα. This move is defined

as:

xnα = (1− φ(zn))xα + φ(zn)(x
β), (5.9)

where φ(zn) is defined as the logistic function φ(zn) =
1

1 + exp(−zn)
. In this setup, a pixel, p, in

xnα either retains its original value or takes the value of the corresponding pixel in xβ depending

on the value of zn(p). If the value of zn is small(less than −10) then φ(zn) ≈ 0, whereas more

positive values of zn move φ towards 1.
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Substituting xnα appropriately in x leads to E(x) now being dependent on z. As a result, in

the optimization, we minimize E by differentiating with respect to zn. The gradient is calculated

using the chain rule as

∂E

∂zn
=

∂E

∂xnα
∂xnα

∂φ

∂φ

∂zn
(5.10)

To avoid any bias towards a particular segment, the fusion moves between the response

images are performed in random order. This was done twice to allow the response image values to

stabilize adequately. Also, z is uniformly initialized to −10 making φ(zn) ≈ 0. This means that

initially xnα = xα.

The effect of the fusion moves are shown in Figure 5.3. In this figure the results are shown

after each stage in the segmentation process.

5.3.2 Superpixels

To speed up the segmentation process we performed the optimization on superpixels rather

than all the pixels in the image. The images are over-segmented into about 500-600 superpix-

els using the watershed function from Matlab(R) applied to the probability of boundary(Pb) map

provided by Martin et al. [MFM04]. We can introduce the superpixels into our formulation by

constructing a superpixel matrix, S, similar to that used by Tappen et al. [TSD08]. Our optimiza-

tion is performed using the intermediate image xs, and we recover the full response image, x, at

the end using x = Sxs.
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Figure 5.3: Results from two images showing examples of the intermediate results in the segmen-

tation process when fusion is used. From left to right: initial segmentation, segmentation after

fusion step, final segmentation
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Since the distribution of segment labels are measured over the actual number of pixels in

the image we also need to recover the probabilities per pixel using a similar relationship, p =

Sps, where p represents the probability per pixel and ps represents the probability per superpixel.

Multiplying by the superpixel matrix copies the current value of the superpixel to the member

pixels in the full-size representation.

In our experience, using superpixels improves speed but does not sacrifice performance.

5.3.3 Learning

The segmentation system was trained using the method proposed in Chapter 3. The dis-

criminative setup is formulated as the following minimization:

min
θ

L(x*(θ), t)

where x*(θ) = arg min
x

E(x; θ).
(5.11)

The parameters are represented by θ and in this case, training was done to learn the pa-

rameters Ki and γ in Equation 5.2. The loss function used was the negative log-likelihood defined

as:

L(x*(θ), t) =
Nk∑
k

Np∑
p

log(1 + exp(−tkpykp)). (5.12)

The ground-truth probability of a pixel, p, belonging to segment k is represented by tkp. The

probability of the pixel belonging to segment k is ykp calculated using Equation 5.1.

Learning was done using the cost function defined in Equation 5.2, after the initial sorting

or fusing steps using the intermediate segmentation as the input. The learning was done at this
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stage since we would not be able to compute the necessary gradients, required for the learning

procedure, between the sorting or fusion steps if it was done earlier in the process. Being able to

learn the parameters not only provides the benefit of avoiding hand-tuned parameters but allows

one to take advantage and use the labeled datasets currently available. There was also an increase

of at least 0.05 in the average Rand index using the learnt parameters compared to the best hand-

tuned results.

5.4 Experiments and results

The segmentation algorithm was tested using images from Oliva and Torralba’s [TO03]

scene category dataset from the LabelMe database1. Three scene categories were used: tall build-

ings, mountains and coastal images. This is the same dataset used by Sudderth et al. [SJ09] and

results are compared in a similar fashion against the multi-scale normalized cuts clustering method

[CBS05], with varying numbers of segments ranging from 2 - 10.

The results presented in this section were obtained using the learnt parameters with fusion

moves to enforce the correct ordering of segments. One optimization step was performed to obtain

a basic initial segmentation. For the sake of overall speed, the optimization in this step is not

allowed to converge completely. The fusion move optimization is then done to allow segments to

adjust sizes appropriately. The third and final optimization step is similar to the first except it is

allowed to converge.

1Available at http://labelme.csail.mit.edu/browseLabelMe/spatial_envelope_
256x256_static_8outdoorcategories.html.
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Figure 5.4: Scatter plot comparing the Rand index of our segmentations vs. NCut(6) segmentations

for 200 mountain images
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Figure 5.5: Average Rand Indexes for 200 mountain images for NCut(2-10)

The segmentation results and the NCuts segmentations were compared against the LabelMe

human segmentation using the standard Rand Index[Ran71] defined as:

RI(S, S ′) = 1− 1(
N
2

)(1
2
(
∑
i

(
∑
j

pij)
2 +

∑
j

(
∑
i

pij)
2)−

∑
i,j

p2
ij), (5.13)

where pij is the number of pixels with label i in segment S and label j in segment S ′. N represents

the total number of pixels in the image.

Figures 5.5 and 5.7 show the average Rand Index of the segmentations produced using our

method and the normalized cuts segmentations computed on 200 randomly chosen mountain and

tall building images.
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Figure 5.6: Scatter plot comparing the Rand index of our segmentations vs. Ncut(6) segmentations

for 200 tall building
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Figure 5.7: Average Rand Indexes for 200 tall building images for NCut(2-10)

While a complete direct comparison to [SJ09] cannot be shown due to the unavailability

of the data, the segmentations produced using this new approach are in most cases just as good or

better to those produced using the system from Sudderth et al. [SJ09]. A comparison between a

few images extracted directly from Sudderth et al. [SJ09] is shown in Figure 5.8.

In addition to using the LabelMe dataset, experiments were also conducted using the Berke-

ley Segmentation Dataset(BSDS) [MFT01]. The dataset contains 200 training images and 100 test

images along with ground-truth segmentation from multiple human subjects. In this set of ex-

periments, the segmentations were evaluated using the probabilistic Rand Index and Variation of

Information[Mei05]. The probabilistic Rand Index is computed by averaging the standard Rand

Index[Ran71] among the different ground-truth segmentations for each image. The Variation of
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Figure 5.8: Sample results comparing our results to images extracted from [SJ09]. From Top to

Bottom: LabelMe human segments, original image with boundaries inferred from our segmenta-

tion, our segmentation, PY- Edge segmentation [Best viewed in color]
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Figure 5.9: Sample results from the mountain images. From left to right: LabelMe human seg-

ments, original image with boundaries inferred from our segmentation, our segmentation, NCut(4),

NCut(6) [Best viewed in color]
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Figure 5.10: Sample results from the tall building images. From left to right: LabelMe human seg-

ments, original image with boundaries inferred from our segmentation, our segmentation, NCut(4),

NCut(6) [Best viewed in color]
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Figure 5.11: Sample results from the coastal images. From left to right: LabelMe human seg-

ments, original image with boundaries inferred from our segmentation, our segmentation, NCut(4),

NCut(6) [Best viewed in color]
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Table 5.1: Here results are shown comparing segmentation methods against their respective

ground-truths using the probabilistic Rand Index(PRI) and Variation of Information(VI) bench-

marks.

Method PRI VI

Ours 0.80 1.73

Multiscale NCuts 0.75 2.16

Mean Shift 0.78 1.78

gPb-owt-ucm2 0.81 1.68

Information (VI) benchmark is based on the entropy between two segmentations and is defined as

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′), (5.14)

where H represents the entropies and I the mutual information between two segmentations C and

C ′. The smaller the VI value, the closer the segmentations being compared are to each other.

As shown in Table 5.1, the algorithm performs the best when compared to the multi-

scale normalized cuts [CBS05] and mean shift [CMM02] algorithms. Results from Arbelaez et

al.[AMF09] have also been included. Arbelaez et al. [AMF09] proposed a two step segmentation

method that produces segmentations from contours using an oriented watershed transform and an

ultrametric contour map. While our proposed segmentation method also uses contours as an in-

put, we are able to generate comparable segmentations using a relatively straightforward energy

minimization framework.
2Averages are taken from [AMF09] and are based on all 300 BSDS images
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5.5 Summary

A new approach for segmenting images using low-level features was presented in this chap-

ter. The segmentation problem is setup in a energy minimization framework that is easy to imple-

ment and maintain. This approach is intrinsically multi-class and provides better segmentations

unlike previous data-driven methods which tend to produce similar sized segments. It is also able

to automatically discover the segments present without any user input.
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CHAPTER 6
CONCLUSION

This thesis introduces a new approach for discriminatively training MRF parameters. The

MRF model is trained by optimizing its parameters so that the minimum energy solution of the

model is as similar as possible to the ground-truth. We demonstrate how implicit differentiation,

can be used to analytically differentiate the overall training loss with respect to the MRF param-

eters. This leads to an efficient, flexible learning algorithm that can be applied to a number of

different models.

The effectiveness of the proposed learning method is demonstrated by learning the param-

eters of two related models applied to the task of denoising images. The two models used are the

Robust Derivative [Tap07] and Field of Experts [RB05] models. Those two models are used as

examples to show how the proposed learning method can be practically applied. It is also shown

that the proposed learning algorithm produces comparable and, at times, better performance over

other learning methods.

In addition to the introduction of a new learning algorithm, a new segmentation model is

also introduced. The novelty of this new segmentation model is how it incorporates priors on the

size of the segments in a way that is straightforward to implement. Unlike related systems based

on minimizing a criterion, the number of segments are not specified and the system produces more
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realistic segmentations. The effectiveness and flexibility of the proposed learning method is shown

by using it to train the proposed segmentation model.
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