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ABSTRACT

Experimental nonlinear dynamics is an important area of study in the modern engineering

field, with engineering applications in structural dynamics, structural control, and structural

health monitoring. As a result, the discipline has experienced a great influx of research efforts

to develop a versatile and reliable experimental methodology. A technical challenge in many

experimental studies is the procurement of a device that exhibits the desired nonlinear behavior.

As a result, many researchers have longed for a versatile, but accurate, testing methodology that

has complete freedom to simulate a wide range of nonlinearities and stochastic behaviors.

The objective of this study is to develop a reconfigurable test setup as a tool to be used

in a wide range of nonlinear dynamic studies. The main components include a moving mass

whose restoring force can accurately be controlled and reprogrammed (with software) based

upon measured displacement and velocity readings at each time step. The device offers control

over nonlinear characteristics and the equation of dynamic motion. The advantage of having

such an experimental setup is the ability to simulate various types of nonlinearities with the

same test setup. As a result, the data collected can be used to help validate nonlinear modeling,

system identification, and stochastic analysis studies.

A physical test apparatus was developed, and various mechanical, electrical, and program-

ming calibrations were performed for reliable experimental studies. To display potential uses

for the reconfigurable approach, examples are presented where the device has been used to

create physical data for use in change detection and deterioration studies. In addition, a demon-

stration is presented of the device’s ability to physically simulate a large-scale orifice viscous

damper, commonly used in vibration mitigation in bridges and buildings. For a large-scale vis-

cous damper, physical testing is required to ensure structural design properties. However, due

to the large scale of the dampers, expensive dynamic loading tests can be carried out at a very
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limited number of facilities. Using the reconfigurable test setup, the dynamic signature of the

large-scale viscous damper can accurately be simulated with pre-collected data.

The development of a system capable of emulating the restoring force of a nonlinear device

with software is a novel approach and requires further calibration for increased reliability and

accuracy. A discussion regarding the challenges faced when developing the methodology is

presented and possible solutions are recommended.

The methodology introduced by this apparatus is very promising. The device is a valuable

experimental tool for researchers and designers, allowing for physical data collection, modeling,

analysis, and validation of a wide class of nonlinear phenomena that commonly occur in a wide

variety of engineering applications.
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1 INTRODUCTION

1.1 Motivation and Objective

Experimental nonlinear dynamic systems is an important area of study in modern engineering.

As a result, many researchers have spent effort researching various topics within the field, in-

cluding: buildings under strong earthquake excitations, bolted joints whose deformations induce

friction forces, aerospace structures incorporating joints, and computer disk drives (Ibrahim and

Pettit, 2005). In the structural engineering field, applications include structural design, struc-

tural dynamics, structural control, and structural health monitoring (SHM). Despite the diversity

in the field, each research project shares a common component - data collection - requiring the

use of a carefully designed, controlled, and documented testing device capable of reproducing

the desired dynamic behavior.

The researcher may choose to procure a device capable of replicating the desired nonlinear

characteristics. For instance, Yun et al. (2009) employed large-scale orifice viscous dampers for

data collection purposes in a change detection study. However, these devices are very expensive

to procure, large space is required to house, and very heavy-duty machinery is needed to excite

them. A great limitation with the use of a nonlinear viscous damper is that these devices are

usually capable of producing one predetermined type of nonlinear behavior. For instance, a

viscous damper is incapable of physically simulating a nonlinear spring. The same is also true

of a nonlinear spring as it is unable to simulate a nonlinear damper.

An alternative to the utilization of a pre-fabricated device is for the researcher to build their

own apparatus. However, much time is often spent designing, fabricating, and calibrating the

experimental device before efforts can be placed on the targeted scope of the project. If the

desire to study an alternative dynamic behavior arises, another test setup must be assembled.
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An approach by Yun and Masri (2008) to conduct a stochastic uncertainty analysis included

the use of an actively controlled magnetorheological (MR) damper. By varying input current

into the device, Yun and Masri were able to control the dynamic behavior of the device, in-

cluding uncertainty. While Yun and Masri were able to calibrate their system identification and

change detection algorithms with the complex, reconfigurable nonlinear system, a number of

limitations prevent the use of a MR damper in another project; the range of dynamic models

is not interchangeable. Even though the nonlinear characteristics (in other words, the system

parameters) can be modified, the overall equation of motion data cannot (Yun and Masri, 2008).

Another reconfigurable test approach was studied by Caffrey et al. (2004). To create a

dynamic response, a time-varying dry-friction is applied in conjunction with a spring. However,

similar to the use of a MR damper, Caffrey’s device is not able to model a great range of

nonlinear dynamic response types as the equation of motion is invariable.

With the previous discussion in mind, the purpose of this investigation is to produce a re-

configurable test setup with the ability to model a variety of stochastic time-varying, nonlinear

dynamic characteristics where the user has the ability to not only vary the nonlinear character-

istics, but also the equation of motion.

1.2 Approach

This study will contain two distinct components: an analytical study and a physical study.

The analytical study has been completed to analyze the effects of uncertainty with regards to

system identification. First, a number of models will be created using software. From these

simulations, synthetic data sets of input force, restoring force, acceleration, velocity, and dis-

placement will be found. Next, known amounts of uncertainty will be synthetically added.

System identifications will be performed by Least Squares Estimation and the Restoring Force

Method. An analysis will be performed to determine the effects of the uncertainty with regards
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Theoretical Systems

System Identification Physical System

Reliable and Accurate Testing Device

Dynamic ModelingUncertainty Limitations

Figure 1.1: Verification process flow chart.

to system identification and physical modeling.

In a physical study, a reconfigurable test apparatus will be fabricated using an electromag-

netic device controlled by a feedback controller. Once the physical apparatus is constructed,

various mechanical, electrical, and programming calibrations will be conducted to quantify the

accuracy and limitations for reliable experimental studies. The culmination of the research

results in a case study where the Reconfigurable Test Setup is used to replicate a series of

linear and nonlinear dynamic behaviors, including a gap-space nonlinearity and an orifice vis-

cous damper. The usage of the reconfigurable approach is further documented by the creation of

change detection and deterioration data. The entire verification process is outlined in Figure 1.1.

1.3 Scope

Chapter 2 of the paper is a brief introduction to necessary background information on the

study, including: dynamic models, dynamic loading, orthogonality, system identification, un-

certainties present in structural dynamics, and history regarding the development of previous

techniques used to physically simulate nonlinear behavior. Chapter 3 analyzes system identi-

fication algorithms on a number dynamic models with varied measurement and system uncer-

3



tainties. An analysis is made regarding their effects upon an identification and physical model

creation. Chapter 4 discusses the components of the Reconfigurable Test Setup. Chapter 5

describes a number of studies conducted to calibrate and improve the accuracy of the Reconfig-

urable Test Setup. Chapter 6 presents practical uses for the Reconfigurable Test Setup, including

the physical simulation of time variant and invariant deterioration of a nonlinear model. Also

discussed are the efforts made using device to simulate a primarily velocity-dependent nonlin-

ear model, a viscous damper. Chapter 7 discusses number of suggestions for implementation

on future evolutions of the Reconfigurable Test Setup to improved physical simulation perfor-

mance.
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2 BACKGROUND

In an effort to provide all readers with pertinent background information regarding the sub-

ject, a lengthy “background” chapter was included in this report. Each section of this chapter

can be viewed as a separate entity, solely designed to provide the reader a basic introduction to

the study, classification, and identification of dynamic systems.

2.1 Dynamic Modeling

The number of independent displacements required to define the positions of all included

masses relative to their original position is called “degrees of freedom.” By the aid of com-

puter analysis software, mechanical structures, such as buildings and bridges, can be simplified

into models using a number lumped masses with various degrees of freedom. The Reconfig-

urable Test Setup system has been designed to represent a single mass, single-degree of freedom

(SDOF) nonlinear system.

The physical modeling of a SDOF system is a challenging endeavor. A constant-mass,

SDOF system can be represented by:

mü(t) + r(u(t), u̇(t)) = f(t) (2.1)

where f(t) is the exciting force, m is the mass, and r(u(t), u̇(t)) is the restoring force compo-

nent which is a function of displacement and velocity. Equation 2.1 can be used to represent

numerous models where displacement and velocity exhibit a wide variety of relationships to

function as the restoring force. A simplified mathematical model can be seen in Figure 2.1.

Equation 2.1 can be rewritten as:

5
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Physical Measurements
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Figure 2.1: Model of a nonlinear single degree of freedom (SDOF) system.
.

r(u(t), u̇(t)) = f(t)−mü(t) (2.2)

in order to solve for the components of the restoring force.

When a dynamic model behaves linearly, Equation 2.1 can be expressed as

mü+ cu̇+ ku = f(t) (2.3)

where c and k represent the damping and stiffness constants, respectively. A phase plot showing

the displacement and restoring force relationship is seen in Figure 2.2(a). For simplification in

future notation, u(t) has been shortened to u, u̇(t) to u̇, and ü(t) to ü.

A classical simple example of a nonlinear system is the Duffing oscillator. The equation of

motion is described as:

mü+ cu̇+ k1u+ k3u
3 = f(t) (2.4)
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(b) Duffing Model

Figure 2.2: Displacement vs. restoring force phase plots for (a) linear and (b) Duffing models.
A linear model exhibits a linear relationship between restoring force and displacement, while a
Duffing model has cubic tendencies.

where k1 and k3 are stiffness coefficients. Note that because displacement has an exponential

term, the properties of a Duffing system are usually dominated by the displacement cubed term

at large excitation levels. A Duffing model provides an example of a nonlinear spring and its

displacement and restoring force relationship is shown in Figure 2.2(b).

2.1.1 Forcing Function Types

A dynamic structure is generally excited with two types of loading: free and forced vibra-

tions. In a free vibration, the overall motion of the system is only excited by an initial input

influence. A forced vibration, on the other hand, will continuously provide external excitation.

The Reconfigurable Test Setup provides only a displacement-based force excitation.

In order to investigate the amplitude and frequency dependency of nonlinear systems, dif-

ferent types of excitation can be applied. The first type forcing function considered in this study
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is monotonic sinusoidal excitation, given by the equation:

f(t) = A sin(2πft) +B (2.5)

where A is the scale, B is the offset, and f is the frequency. The resulting forcing function is

given in Figure 2.3(a). A sine function will generate data measurements of the model according

to one amplitude and one frequency.

The second type of forcing function considered in this study is beat excitation, given by:

f(t) = A(sin(2πft) + sin(2π(f + ∆f∂t)) +B (2.6)

where f and ∆f are frequencies that determine the amplitude gain, respectively, and ∆f << f .

The resulting motion is given by Figure 2.3(b). Beat excitation will generate data measurements

of the dynamic model according to a range of amplitudes and one frequency.

The third type of forcing function considered in this study is sine-sweep or “chirp” excita-

tion, given by the equation:

f(t) = A

[
sin

(
2π

(
1

2

)[
f2
tf

]
t+ f1

)
t

]
+B (2.7)

where f1 and f2 are the beginning and ending frequencies, respectively, and tf is the final

testing time. The resulting forcing function is shown in Figure 2.3(c). Chirp excitation will

generate data measurements of the dynamic model according to one amplitude and a range of

frequencies.

Beat and chirp excitation will only provide a variation of amplitudes and frequencies, re-

spectively. However, many dynamic models behave exhibit different characteristics under a
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range of amplitudes and frequencies. To generate a number of possible behavior outcomes un-

der a range of excitation amplitudes and frequencies, a broadband random distribution force can

be utilized. Its motion is governed by the equation:

f(t) = Ay(t) +B (2.8)

where y(t) is a {t x 1} vector whose distribution follows the standard normal (the size depends

upon the sampling rate and total sampling time). As compared to a simple sine excitation where

uniform displacement, velocity, and acceleration values would be obtained for each test, random

excitation will produce constantly altered values at each time step. Therefore, using a forcing

function with variable properties is advantageous to use when a large sample of data undergoing

various amplitudes and frequencies is desirable. A plot showing a broadband random force vs.

time is shown in Figure 2.3(d).

2.1.2 Relationships between Measurements

For the response of dynamic systems, the displacement and velocity are orthogonal, with

the phase difference of π/2. Thus a velocity vs. displacement phase plot will be result in a

circle (Figure 2.4(a)), meaning no statistical correlation exists. A similar representation of the

phase plot can be seen if the magnitudes of displacement and velocity are graphed with time

(Figure 2.4(b)). Displacement and acceleration have a phase difference of π, meaning that the

two are inversely proportional (i.e. one’s maximum occurs simultaneously at the other’s mini-

mum) and have a correlation in their values. By taking acceleration, velocity, and displacement

measurements of the system, system identification methods can be used to describe the dynamic

profile of the model.

9



0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

D
is

p
la

c
e
m

e
n
t 
(c

m
)

(a) Sine Excitation

5 6 7 8 9 10 11 12 13 14 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

D
is

p
la

c
e
m

e
n
t 
(c

m
)

(b) Beat Excitation

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

D
is

p
la

c
e
m

e
n
t 
(c

m
)

(c) Chirp Excitation
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(d) Broadband Random Excitation

Figure 2.3: Various excitation types considered in this study.
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Figure 2.4: Plots demonstrating the relationships between displacement, velocity, and acceler-
ation. (a) shows the orthogonality between displacement and velocity. (b) details shows the
difference in phases between each: displacement and velocity differ in phase by π/2 and dis-
placement and acceleration differ in phase by π.

2.1.3 Types of Uncertainty

A number of types of uncertainty may exist in the field of structural dynamics. In the con-

struction, design, and/or modeling of structure, sources of uncertainties include: imperfections,

external load effects, and the interaction between loads and the structure. These types of uncer-

tainties have a significant influence on the structural response. Therefore, it is extremely useful

to study their influences and are critical for the design and maintenance of a structure (Balthazar

et al., 2008).

Two distinct types of ambiguity are generally considered in engineering risk analysis: inher-

ent randomness (or aleatory uncertainty) and subjective (or epistemic) uncertainty (Ayyub and

Klir, 2006). Of the two, epistemic uncertainty is of main concern with the implementation of the

Reconfigurable Test Setup. Epistemic uncertainty primarily exists due to the lack of complete

information about regarding a engineering endeavor. This uncertainty can be reduced if addi-

tional knowledge is gained. However due to various technological and feasibility restrictions,
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the intrinsic uncertainty often cannot be reduced (Ang and Tang, 1975).

Within this discussion, epistemic uncertainty can be further partitioned into uncertainties

that may exist in the physical simulation of a dynamic model: measurement uncertainty and

system uncertainty.

Measurement Uncertainty

In a physical system, measurements are taken by sensors which are polluted by noise from

a variety of sources. Furthermore only displacement or acceleration is measured in many in situ

health monitoring applications. When other response states are then derived from the recorded

data, thereby proliferating the effects of measurement noise (Yun et al., 2009). However be-

cause the Reconfigurable Test Setup utilizes direct measurements for displacement, velocity,

and acceleration, no propagation will occur as the effects will be additive. The uncertainty

of these measurements is time-uncorrelated (white noise) because the amount of noise present

will remain constant throughout an experiment given the carefully controlled settings of the

laboratory.

System Uncertainty

System characteristic uncertainty can also add a degree of error into a system identifica-

tion. However, as opposed to measurement uncertainty which is primarily polluted by a time-

uncorrelated noise, system uncertainty (with respect to system models) is often caused in two

ways: excessive model-order reduction and environmental effects (Yun and Masri, 2008, 2009).

In the confines of the laboratory, environmental changes are assumed negligible and are there-

fore not considered in the Reconfigurable Test Setup study.

Excessive model-order reduction may cause error in system identifications because in many

applications, it is not possible to characterize the dynamic motion of each system by a simple
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equation. Consider the true system parameters are designated as p. The significance of system

uncertainty due to modeling error can be categorized with regards to the correlation of the

system complexity, O(p), and the model complexity, O(q). The relationship between O(p) and

O(q) will fall into one of three conditions (Yun and Masri, 2008):

1. O(p) > O(q), where the system complexity is greater than the model complexity (i.e.

underfitting)

2. O(p) = O(q), where the system complexity is equal to the model complexity (i.e. perfect

fitting)

3. O(p) < O(q), where the system complexity is less than the model complexity (i.e. over-

fitting)

Because the components of p are usually unknown, the modeling is generally either underfit

or overfit. Depending upon the system identification method, a statistical bias may be intro-

duced into the identification with an imperfect model (Mendel, 1995). In a physical simulation

sense, system uncertainty in the Reconfigurable Test Setup may exist due to the under or over

simplification of complex models.

In the Restoring Force Method (to be discussed in Section 2.2.2) the restoring force of a

dynamic system is modeled with a series of coefficients. Yun and Masri (2008) compared the

identification results using fifth order polynomials versus twentieth order polynomials for a

magneto-rheological (MR) damper. The MR damper was identified with the model orders of

5 and 20 out of the highest order of 20 (O(5/20 and O(20/20), respectively) to investigate the

effects of model-order reduction. Figure 2.5(a) shows the velocity-force plot of the measured

response. Figure 2.5(b) shows with a reduced-ordered model, although the majority of the traces

of the velocity-force plot can be identified, the details of the traces fail to be identified due to
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Figure 2.5: A non-parametric system identification with different model orders (Yun et al.,
2009).

the highly nonlinear behavior of the MR damper. Figure 2.5(c) shows that with the higher

O(20/20), the discontinuous nonlinearity is much more accurately identified (Yun and Masri,

2008). It must be noted the solution time required to solve for the twentieth order polynomials

was much larger than to generate a solution with fifth order polynomials.

In most real-world applications of non-parametric system identifications, the desired mod-

eling precision will dictate the modeling order. While a higher-ordered analysis will provide

the most accurate representation of nonlinear characteristics, reliable change detection with the

use of reduced-ordered models of orthogonal basis functions prove to be more time and cost

efficient than a higher-order analysis (Yun et al., 2009). System identification with orthogonal

basis functions will be evaluated in Section 3.3.

2.2 System Identification

The purpose of a system identification technique is to determine the dynamic properties of

a system by creating a mathematical model based upon recorded data. Over time, researchers

have created a number of the methods to describe the behavior of a system and two levels of

identification have been developed: general system identification and component level identi-
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fication. In general system identification, the goal is to detail how the overall structure will

respond to excitation (Hart and Yao, 1976). For instance, Yun et al. (2008) utilized the Nat-

ural Excitation Technique in conjunction with Eigensystem Realization Algorithm to extract

modal parameter information of a long-span suspension bridge. With this data, mode shapes

and frequencies for the entire bridge can be found under various types of excitation. For specific

information regarding these studies, the reader is referred to Yun et al. (2008) and Nayeri et al.

(2009).

This study, on the other hand, will focus upon component level system identification, where

the objective is to quantify and model the restoring capabilities of a system. More specifically

this study will concentrate upon the single mass, single degree of freedom case, thus its appli-

cation will include the physical modeling of springs and dampers (Tasbihgoo et al., 2007).

A number of confines exist on parametric identification. At the start of the determination,

various assumptions must be made regarding the predicted behavior of the system and cannot be

changed throughout the identification process. Thus by making these assumptions, the system

is being “forced” to behave a certain way. Consequently, substantial error will arise if the

assumptions made at the start do not closely match the actual behavior of the system. For

example, if a Duffing model was analyzed as a linear model in the form of Equation 2.3, a poor

classification would result because a very influential term is omitted (displacement-cubed).

The confines of parametric system identification can be alleviated by the use of non-parametric

identification, which will be explained in Section 2.2.2. Unlike parametric system identifica-

tion, non-parametric system identification techniques do not require a priori information about

the restoring capabilities of a dynamic model.
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2.2.1 Parametric System Identification by Least Squares Estimation

To perform parametric system identification, Least Squares Estimation (LSE) will be used.

LSE is an optimal estimator for determining the optimal value of {θ} with only the presence

of input force measurement uncertainty. The unknown dynamic coefficients are estimated in

a batch solution (thus requiring all data to be recorded before parameters can be found). A

limitation of this method is that the results of the identification are a singular value for each

coefficient. Thus, system changes that occur during measurement collection are averaged into

the final identification. Similarly, the method assumes that no uncertainty exists in recorded

measurements, only in the applied force. Thus if the measurements taken are not completely

“clean” (which cannot always be assured) and are desired to be utilized in a LSE identification,

the assumptions will be violated.

The equation for Least Squares Estimation that describes a dynamic system begins with the

generic linear model:

{Z(t)} = [H(t)]{θ}+ {V (t)} (2.9)

where {Z(t)} is an {N x 1} vector detailing the applied force, [H(t)] is a [N x n] matrix collection

of measurements, {θ} is a {n x 1} vector giving the dynamic coefficients, and {V(t)} is a {N x

1} giving the uncertainty present in the force. The goal of Least Squares Estimation is to find

the most likely value of {θ}, designated as {θ̂}. A cost function can be applied to Equation 2.9

such that

J(θ̂) = [Z(t)− Ẑ(t)]T [W (t)][Z(t)− Ẑ(t)]T (2.10)

is minimized, where [W(t)] is a weighting matrix used to place more emphasis upon selected
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measurements and is required to be symmetric and positive definite. Through linear manipula-

tion, the weighted least squares solution to Equation 2.9 that optimizes Equation 2.10 is

{θ̂WLS} = [H(t)TW (t)H(t)]−1H(t)TW (t)Z(t) (2.11)

Should all measurements be considered equally (i.e. [W(t)] is equal to the identity matrix,

[I(t)]), Equation 2.11 can be simplified into:

{θ̂LS} = [H(t)TH(t)]−1H(t)TZ(t) (2.12)

In a parametric identification, the method described by Equation 2.12 will provide an accu-

rate computation of the values of {θ}. However there are a few limitations on this model: (1)

Least Squares Estimation assumes that [H(t)] is deterministic. Frequently this is not the case as

some level of noise is usually present in any measured value; and (2) The force vector, {Z(t)},

and the force uncertainty vector, {V(t)} become incorporated when Equation 2.9 is transformed

into Equation 2.11. In many real-world applications the exact amount of noise is unknown, but

always present. Because of the derivation of the equation, uncertainty in {Z(t)} exists.

2.2.2 Non-Parametric System Identification with Restoring Force Method

The system identification procedures considered in the previous section were parametric,

meaning the only terms describing the dynamic properties were those included in their respec-

tive equations. A common technical challenge in system identification applications is accurate

mathematical representation (or modeling) of a nonlinear dynamic system is usually unknown.

The restrictions of having to make assumptions in a parametric identification technique can

be alleviated by using non-parametric methods that do not require a priori knowledge (mean-

ing a reasonable estimation about the system’s behavior) about the system, and the modeling
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processes are data-driven. For this reason, the method remains valid even if the system is trans-

formed (often through deterioration) into another type of nonlinearity. Because the analysis

method is model-free, however, physical interpretation with most non-parametric approaches

is not straightforward since there are no direct relationships between the identified model and

system characteristics. For example, in Artificial Neural Networks (ANN) the model complex-

ity is not uniquely defined, even with a successful identification (Masri et al., 2000). System

identification results obtained by RFM, however, are able to be physically interpreted as verified

in Yun and Masri (2008), Yun and Masri (2009), and Yun et al. (2009).

Introduced by Masri and Caughey (1979), the Restoring Force Method is an approach used

to identify a variety of dynamic phenomena. The restoring force of Equation 2.2 can be approx-

imated by a series of two-dimensional Chebyshev polynomials:

r(u(t), u̇(t)) ≈ r̂(u(t), u̇(t)) =
MX∑
i=0

NY∑
j=0

C̄ijTi(ū)Tj(¯̇u) (2.13)

where Tn is the nth order Chebyshev Polynomial and the normalized values of u and u̇ are the

normalized displacement and velocity in the range [-1, 1] given by:

ū =

 u−
(
umax+umin

2

)
(
umax+umin

2

)


¯̇u =

 u̇−
(
u̇max+u̇min

2

)
(
u̇max+u̇min

2

)
 .

By restricting the range from [-1, 1], orthogonality in the Chebyshev polynomials is preserved

(Datta and Mohan, 1995). C̄ ij is the normalized Chebyshev coefficient given by
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Cij =


(2/π)2v i and j 6= 0

(2/π2)v i or j = 0

(1/π2)v i = j = 0

 ,

where

v =

∫ 1

x=−1

∫ 1

y=−1

f(x, y)Ti(x)Tj(y)w(x)w(y) dxdy

but for convenience of computation and by making the transformation x = cos θ, y = cos φ, v is

discretized into:

v =
MX2∑
k=−1

MY 2∑
l=−1

fkl cos [i(∆θ)(k − 1)] cos [j(∆φ)(l − 1)] ∆θ∆φ

where

∆θ = π
MX2

∆φ = π
NX2

and

fkl = f(cos θk, cos φl)

θk = (k − 1)∆θ

φl = (l − 1)∆φ

where MX2 and MY2 are user defined parameters (essentially giving the “resolution” of the

analysis) based upon discretization resolution.
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Once the normalized Chebyshev coefficients are identified, they can be converted into an

equivalent power series, resulting in:

r̂p(u(t), u̇(t)) =
MX∑
i=0

NY∑
j=0

āijū
i ¯̇uj =

MX∑
i=0

NY∑
j=0

aiju
iu̇j (2.14)

where āij is a normalized power series coefficient, aij is a de-normalized power series coefficient

and r̂p(u(t), u̇(t)) is the restoring force identified with a power series (Mason and Handscomb,

2002; Yun et al., 2009). The normalized power-series coefficients, āij, and denormalized power-

series coefficients, aij, are convenient for physical interpretation because they are directly related

to parametric stiffness or damping characteristics. On the other hand, the orthogonal Chebyshev

polynomials, C̄ ij, have a number of desirable features that are ideal for condition assessment and

health monitoring purposes: (1) they are statistically unbiased with respect to model complex-

ity; and (2) the distributions of orthogonal coefficients can be reliably used to detect changes

(even if a reduced-order model is used in the system identification process).

2.3 Previous Reconfigurable Test Approaches

In the experimental nonlinear dynamics field, researchers defend new findings based upon

acquired data. Thus the procurement of a device capable of providing the desired dynamic

restoring force is essential. However, a number of confines exist on attaining many of these

apparatuses:

• The devices are often very large. In the case of a nonlinear viscous damper - nearly 15

feet long and weighing many tons - thus creating many logistical (transportation, storage,

etc) difficulties.

• In addition, many of these devices require large forcing inputs (some as high as 650 kip)

for excitation which many facilities simply do not have.
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• Should a different model be desired to examine, either the properties of the current device

must be altered (if it is even possible) or a new device must be procured.

In the past, a number of viable options exist for the creation of physical dynamic data. The

researcher may choose to procure a specific physical device capable of simulating the target

dynamic model. Although physical data will be able to be captured, a number of drawbacks to

this approach exist: these devices often require large space to house and specific machinery to

excite. Furthermore, the range of dynamic models produced by the device is most likely very

rigid. Photographs of a 250 kip viscous damper used for research purposes at the University of

California, Berkeley can be seen in Figure 2.6 (Yun et al., 2008).

Alternatively, the researcher may choose to create a custom device, but much time and ef-

fort will be spent designing, assembling, and calibrating the device. Rapid prototyping, which

involves repeated and automatic assembling of physical objects, shows promise in quickly man-

ufacturing a number of physical devices. (Wright, 2000). The drawback, however, is that for

every system change desired, a new device must be created.

The Yun and Caffrey apparatuses can be considered previous generations of the Recon-

figurable Test Setup, an extended summary of their features are presented in Sections 2.3.1

and 2.3.2. Each of the discussed approaches are described in Table 2.1.

2.3.1 Yun and Masri Apparatus

In a 2008 experimental study aimed at verifying a change detection method with the pres-

ence of system uncertainty, Yun and Masri utilized a SDOF magnetorheological (MR) damper,

for the creation of change detection data. A MR damper is a semi-active energy dissipation

device commonly used in a variety of civil engineering applications. The properties of the

damper’s output force can be precisely controlled by the input current it receives. By varying

the input current by broadband random excitation, the MR damper could effectively create a
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(a)

(b)

Figure 2.6: Photographs of a viscous damper on a testing machine at the University of Califor-
nia, Berkeley (Yun et al., 2008).
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Table 2.1: Previous Options for Physically Creating Nonlinear Dynamic Data

Modeling Device Advantages Disadvantages
Acquiring a specific Will fit exact needs of Device may be difficult to
device research or desired use acquire, house, excite

Creation of a Will fit exact needs of Much time and effort required
custom device research or desired use to design, fabricate, and

calibrate each component

Device will often not have
utility after the study is
complete

Rapid Prototyping A variety of dynamic models can To achieve a wide range of
be physically created dynamic models, a large number

of devices may need fabrication

Dynamic model deterioration
difficult to implement

Yun and Masri Ability to vary dynamic parameters Requires the procurement of
Apparatus a MR damper and other

specialized equipment

Ability to simulate deterioration Inability to vary the
equation of motion

Caffrey device Ability to model various Inability to vary the
dynamic systems stiffness

On-board DAQ, parameter variation, Inability to vary the
and excitation control equation of motion
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(a) Photograph of the MR damper (b) The MR damper installed on the actuator

Figure 2.7: Elements of the Yun and Masri (2008) experimental setup that allows for the modi-
fication of dynamic properties.

number of physical data sets required for intended research goals. Photos of a MR damper can

be seen in Figure 2.7 (Yun and Masri, 2008).

The dynamic modeling of restoring properties by an electromagnet served as partial inspi-

ration for the Reconfigurable Test Setup. Similar to the MR damper, variation of the input

current allows for control over the restoring properties. However a MR is limited in its range

of dynamic models that it can simulate, as the device is not manufactured for this purpose. For

example, a MR damper is incapable of replicating a nonlinear spring.

2.3.2 Caffrey Apparatus

A reconfigurable testbed was pioneered by Caffrey et al. (2004). It is capable of modeling a

variety of generic, nonlinear phenomena such as dry-friction, time-varying hysteretic phenom-

ena, elastic nonlinearities, and nonlinear viscous forces. The goal of the Caffrey study was to

simulate the nonlinear response of SDOF systems with generic type of nonlinearities to utilize

and calibrate an on-line identification algorithm.

Photographs of the Caffrey apparatus are shown in Figures 2.8 and 2.9. To provide the

stiffness to the system, a spring was utilized. To simulate the damping characteristics of the
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Figure 2.8: Photograph of the Caffrey nonlinear test apparatus (Caffrey et al., 2004).
.

system, a time-varying normal force was applied to a bar between two edges that produces a

dry friction. The degree of damping was controlled by the amount of normal force applied upon

the bar by a computer-controlled electro-mechanical device.

By collecting data at varying degrees of damping and comparing the results, the researchers

could calibrate their proposed reduced-order nonlinear model. By varying the amount of dry

friction, the dynamic properties of the system change, thereby allowing the device to simulate

a number of different dynamic models at once, essentially simulating the properties that it nor-

mally would have taken an inventory of hundreds of different physical nonlinear systems. Thus,

the Caffrey apparatus is advantageous to employ when one needs access to a number of differ-

ent damping characteristics (Caffrey et al., 2004). However, it does have limited bounds in the

variety of dynamic models it can emulate.

The goal of the Reconfigurable Test Setup project is to simulate a variety of real-world

systems requiring great versatility in its restoring force components. In the Caffrey device, the

stiffness of the system was limited to the stiffness of the spring, thereby greatly limiting its

application. To model a specific real-world application, the researcher would need to find a
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Figure 2.9: Photograph of the time-varying friction force actuator (Caffrey et al., 2004).
.
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spring with the exact stiffness, thereby limiting the modeling capabilities of the apparatus to the

amount of springs in researcher’s inventory.

The Caffrey device, despite lacking complete dynamic modeling flexibility, does provides a

framework of components required in the Reconfigurable Test Setup, including a: (1) embed-

ded DAQ system; (2) restoring force control program; and (3) on-board system identification

techniques. Each of these components are crucial inclusions of a functional reconfigurable

testbed.
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3 ANALYTICAL STUDY: SYSTEM IDENTIFICATION FOR NONLINEAR

OSCILLATORS

The Reconfigurable Test Setup involves the replication of nonlinear dynamic models. Be-

cause this study pertains to the physical simulation of restoring force, uncertainties will be

present. The physical and software components of the setup, introduced in Chapter 4, were

chosen to limit uncertainty as much as possible. Despite these measures, unknown levels of

measurement uncertainty may pollute recorded signals. Additionally as the Reconfigurable Test

Setup continually expands its range of experimental applications, reduced ordered modeling is

a realistic and beneficial option, especially in data creation for change detection or deterioration

studies of highly nonlinear devices.

To explore the limits and constraints of the various parametric and nonparametric system

identification methods to be used, a number of dynamic models were created theoretically. In

each of these models, the dynamic model properties are inputs into the system. Various types

of uncertainty will then be intentionally added to models in order to analyze and quantify the

limitations of system identification and discuss its effects upon force replication.

3.1 Simulation of Nonlinear Dynamic Models

Two types of dynamic restoring force types will be analyzed in the theoretical study: linear

and Duffing. By including these two types of nonlinearities, a broad spectrum of dynamic

systems will be covered. Numerous types of dynamic models exist but by including a type

whose motion is governed by a particular term and one whose motion is equally controlled by

all terms, the limitations and strengths of system identification can be demonstrated.

To create the theoretical models, Simulink, a dynamic systems analysis tool that operates

simultaneously with MATLAB, was utilized. Embedded into each Simulink code is a variety
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of solution methods that are able to numerically approximate solutions for a differential equa-

tion. The Runge-Kutta method was chosen to solve the theoretical models because it is an

accurate procedure for obtaining an approximate solution to dynamic problems. The Runge-

Kutta method gives an accurate approximation of the system of terms that can be determined

in a computer-friendly manner - first and second order analysis - whose calculations are al-

ready required (to generate acceleration, velocity, and displacement). In these calculations, a

fourth-order Runge-Kutta procedure (Zill et al., 2006) takes the form:

yn+1 = yn + h
6
(k1 + 2k2 + 3k3 + k4)

k1 = f(xn, yn)

k2 = f(xn + 1
2
h, yn + 1

2
hk1)

k3 = f(xn + 1
2
h, yn + 1

2
hk2)

k4 = f(xn + h, yn + hk3)

y
′

= f(x, y)

(3.1)

where h is a fixed step size that is small enough to ensure a smooth fitting between the data

points, particularly important since the Runge-Kutta method is a numerical approximation.

Should the step size be large, error would compound very quickly and result in faulty and

unstable results. The values of xn and yn are displacement and velocity values, respectively,

with the starting values equal to the specified initial conditions.

A linear model follows the relationship specified by Equation 2.3 and its behavior is gov-

erned by the values of the stiffness and damping coefficients. To model in Simulink, Equa-

tion 2.3 can easily be manipulated to be solved for in terms of acceleration:

ü(t) =
f(t)

m
− c

m
u̇(t)− k

m
u(t) (3.2)
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Figure 3.1: Simulink model of linear SDOF system undergoing forced excitation.

The Simulink model for a linear system is seen in Figure 3.1 where the equal sign of Equa-

tion 3.2 can be considered the circular summation command in the center of the figure (labeled

as “A”). On the right hand side, acceleration is integrated twice - resulting in velocity (labeled

as “B”) and displacement (labeled as “C”). The velocity and displacement are multiplied by

their respective coefficients and proceed into the circular summation command. The process is

then repeated with the previous values found for displacement and velocity. The output of the

simulation is a series of displacement, velocity, and acceleration measurements.

To create a Duffing Model in Simulink, Equation 2.4 was modified into:

ü(t) =
f(t)

m
− c

m
u̇(t)− k1

m
u(t)− k3

m
u(t)3 (3.3)

where the values of c, k1, and k3 (the viscous damping and stiffness coefficients, respectively)

and are each input at the onset of the modeling process. The Simulink model for Duffing Model

is seen in Figure 3.2 and can be interpreted similarly to Figure 3.1.
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Figure 3.2: Simulink model of Duffing system undergoing forced excitation.

3.2 Measurement Uncertainty: Analysis and Discussion

To explore the effects of measurement uncertainty on the system identification methods,

broadband white noise (following a normal distribution to the root-mean square of the mea-

surement signal) is intentionally added to the results. A comparison of noise-less and noise-

polluted displacement vs. time measurements of identical, generic linear models can be seen

in Figure 3.3. In this analysis, the parametric system identification technique, Least Squares

Estimation will be explored and its limitations and strengths will be analyzed. To discuss these

limitations, the results must be compared by quantifiable means. Normalized mean-square-error

(NMSE) was utilized and is calculated by

NMSE(f̂)(%) =
100

Nσ2
f

N∑
i=1

(fi − f̂i)2 (3.4)

where f i is the measured force, f̂ i is the identified force, N is the number of data points, and σf
2
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is the variance of the measured force (Worden, 1990). NMSE will provide a unitless indicator

that details the difference between the actual and created force values to give a measurement of

the “goodness of fit” and is reported as a percentage of error from the target value (f i). The value

in using this type of analysis is the magnitude, regardless of sign, of the difference between

the actual and identified force is calculated, resulting in a non-subjective error examination

(Yun et al., 2008). The lower the result of the NMSE, the better the particular identification

technique performed in that particular instance. A valid comparison between NMSE’s can only

be made between trials of an equal sampling time as additional or less sampling time may lead

to improved or reduced goodness of fit results.

The following parameters will be used in each simulation:

• Each simulation will last 300 seconds with a time step of 0.01 seconds and be repeated

for 100 iterations.

• Each model was excited by a broadband random root-mean-square force, with a frequency

range of 0.1 HZ to 5 HZ. The force has a scale of 1.0 and an offset of 0.0.

• Model Input Parameters

For the linear case, m = 1.0 kg, c = 0.05 kg/s, and k = 1.0 kg/s2.

For the Duffing case, m = 1.0 kg, c = 0.05 kg/s, k1 = 1.0 kg/s2, and k3 = 1.0 kg/mm2/s2.

and each of the following sections will contain two parts:

1. First, the specific details of the case study will be presented along with the actual results.

2. A discussion will be included to analyze the meaning and ramifications of the findings.
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Figure 3.3: Dynamic response of a generic linear model (a) without noise and (b) with 5% RMS
broadband white noise in the displacement measurements.

To be able to quantifiably discuss the repercussions of measurement uncertainty present in

measurements, all recorded data (displacement, velocity, acceleration, input force, and restoring

force) will be normalized by the equation:

DATnorm =
DATact −DATmean

σ
(3.5)

where DATact is the actual data recorded, DATmean is the mean of the data, and σ is the standard

deviation of the data. DATnorm is then compiled into the measurement ([H]) matrix of Equa-

tion 2.12 and solved as previously described. The results are normalized system identifications,

which are then denormalized to achieve the actual system identification values. By making the

noise introduction process unitless, direct comparisons can be made between final system iden-

tification values with noise affecting different measurements. For instance, placing 5% RMS

broadband white noise upon displacement measurements has different units and consequences
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Table 3.1: System Identifications of Linear and Duffing Models with No Uncertainty

Linear Model Duffing Model
Parameter True Identification Parameter True Identification

m 1.00 1.0000 m 1.00 1.0000
c 0.05 0.0500 c 0.05 0.0500
k 1.00 1.0000 k1 1.00 1.0000

NMSE 0.0000 k3 1.00 1.0000
NMSE 0.0000

than adding 5% RMS Gaussian white noise upon the velocity. Henceforth, all data in the fol-

lowing case studies will be normalized, allowing system identifications for different scales of

data to be compared.

3.2.1 System Identification without Uncertainty

To begin, system identifications were performed on linear and Duffing models data without

measurement uncertainty. Least Squares Estimation was utilized and the results are shown in

Table 3.1. This study is designed to serve as a basis for later comparison.

Discussion

With no uncertainty, LSE provides an exact match for the input system parameters and the

identified force is exactly equal to the actual force (shown in Figure 3.4(a). This analysis verifies

that without measurement uncertainty, LSE can accurately identify the parametric coefficients

and the resulting restoring force. This analysis also proves that the system identification meth-

ods were implemented correctly and without uncertainty present, the NMSE returned is zero.

Furthermore, the parameter inputs are correctly identified to the fourth decimal place.

3.2.2 Measurement Uncertainty in the Force Vector

In this analysis, force control uncertainty was introduced. Although including noisy force

control does not violate the assumptions of Least Squares Estimation, it may cause a discrep-
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Table 3.2: System Identification of a Duffing Model with 5% RMS Gaussian Noise acting on
the Forcing Function for 100 iterations

Parameter True Mean Std. Dev.
m 1.00 1.0001 0.0005
c 0.05 0.0500 0.0002
k1 1.00 1.0000 0.0010
k3 1.00 1.0001 0.0006

Mean NMSE 0.2499
Std. Dev. NMSE 0.0021

ancy in the identification of the restoring force. The goal of this exercise is to determine the

effect that force control noise has upon parameter identification process. Duffing model mea-

surements were polluted with 5% RMS Gaussian white noise acting upon the input force vector

over a period of 100 iterations. During each iteration, the model was subjected to a broadband

random force for 300 seconds with a time step of 0.01 seconds. The system identification results

and mean NMSE are shown in Table 3.2.

Discussion

Despite the presence of measurement noise in the input force vector, system identifications

of the parametric coefficients are within a ten-thousandth of a decimal point of the “true” val-

ues. A non-zero NMSE is calculated because the recalculated force will not exactly replicate

the noisy input force. In this study, the noise acting upon the force input follows a normal distri-

bution. Because LSE seeks to minimize the square of the identified errors, the identified force

will produce a smooth estimation of the force that is generally unresponsive to the noise in the

input force. This is demonstrated in Figure 3.4(b).

3.2.3 Violation of the Deterministic LSE Model

In this analysis, known amounts of measurement uncertainty was synthetically introduced

into the displacement, velocity, and acceleration data. The basic function of a least square
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Table 3.3: System Identification of a Linear Model with 5% RMS Gaussian Noise acting on
Displacement Measurements for 100 iterations

Parameter True Mean Std. Dev.
m 1.00 0.9892 0.4940 x10-3

c 0.05 0.0501 0.2824 x10-3

k 1.00 0.9859 0.6033 x10-3

Mean NMSE 1.1766
Std. Dev. NMSE 0.0100

Table 3.4: System Identification of a Duffing Model with 5% RMS Gaussian Noise acting on
Displacement Measurements for 100 iterations

Parameter True Mean Std. Dev.
m 1.00 0.8836 0.0022
c 0.05 0.0501 0.0007
k1 1.00 0.9122 0.0050
k3 1.00 0.8673 0.0029

Mean NMSE 11.5724
Std. Dev. NMSE 0.1782

estimation is to minimize the square of the error when estimating the model parameter. For

this reason, the estimator is very sensitive to outliers caused by a non-deterministic measure-

ment set. Although including noisy measurements of displacement, velocity, and acceleration,

violates the assumptions of LSE, the goal of this analysis is to determine the effect that mea-

surement noise takes on system identification. These results will be compared to the results of

Sections 3.2.1 and 3.2.2.

First, a linear model with 5% RMS Gaussian white noise in the displacement measurements

is presented. Next, Duffing model measurements polluted with 5% RMS Gaussian white noise

acting upon the displacement, velocity, and acceleration data in individual measurements is

shown. The system identification results are shown in Tables 3.3, 3.4, 3.5, and 3.6.

Discussion

The introduction of noise into any of the measurement vectors is a violation of the assump-
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Table 3.5: System Identification of a Duffing Model with 5% RMS Gaussian Noise acting on
Velocity Measurements for 100 iterations

Parameter True Mean Std. Dev.
m 1.00 1.0000 0.3223 x10-4

c 0.05 0.0500 0.1443 x10-4

k1 1.00 1.0000 0.7372 x10-4

k3 1.00 1.0000 0.3167 x10-4

Mean NMSE 0.0031
Std. Dev. NMSE 2.361 x10-5

Table 3.6: System Identification of a Duffing Model with 5% RMS Gaussian Noise acting on
Acceleration Measurements for 100 iterations

Parameter True Mean Std. Dev.
m 1.00 0.9438 0.0013
c 0.05 0.0501 0.0005
k1 1.00 0.9416 0.0026
k3 1.00 0.9446 0.0016

Mean NMSE 5.5475
Std. Dev. NMSE 0.0423

tions of LSE. LSE assumes that in a particular model, a certain input will result in a deterministic

output at every time step. Because this is not the case, error is introduced into the solution. The

repercussions of this violation result in an identified coefficient value that is different from the

original input, regardless of which measurement vector contains noise. Figure 3.4(c) demon-

strates that with noisy measurement inputs, the resulting identified force deviates from the input

force.

3.3 Modeling Order: Analysis and Discussion

In this analysis, system identifications of a nonlinear Duffing model are performed using

Least Squares Estimation and the Restoring Force Method. The modeling parameters used

were, m = 1.0 kg, c = 0.5 kg/s, k1 = 1.0 kg/s2, and k3 = 0.15 kg/mm2/s2. Each analysis will

be performed three times with different modeling orders: underfit, perfect fit, and overfit (for
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Figure 3.4: System identification with Least Squares Estimation of dynamic models: (a) with-
out measurement uncertainty; (b) with 5% uncertainty in the input force; and (c) with 5%
uncertainty in the displacement measurements. Plot (a) provides a smooth identified force that
follows the input force. Plot (b) is not a violation of Least Squares Estimation and produces a
smooth identified force that roughly follows the mean of the noisy force. Plot (c) is a violation
of Least Squares Estimation and produces a noisy identified force.
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background into modeling order, see Section 2.1.3). Because a Duffing model has a third-order

nonlinear term, a “perfect” model will include a third-order analysis. Underfit was chosen to be

a first-order identification, and overfit will be a sixth-order identification.

It is obvious that a reduced-ordered identification will result in much more error than a per-

fect model and generally, a higher-ordered analysis will provide a more accurate identification.

However, the goal of this study is to determine which type of identification performs the best

for change detection purposes. Three types of identification polynomials will be considered:

power series via Least Squares Estimation, normalized Chebyshev polynomials via the Restor-

ing Force Method, and power series via Least Squares Estimation. To be able to properly control

the modeling order of Least Squares Estimation, the restoring force was estimated by a power

series:

r(u(t), u̇(t)) ≈ r̂(u(t), u̇(t)) =
MX∑
i=0

NY∑
j=0

Aiju(t)iu̇(t)j (3.6)

whereMX andNY are the modeling orders of displacement and velocity, respectively, andAij

is the identified coefficient. To determine Aij , u(t)iu̇(t)j was input into the [H] (measurement)

matrix of Equation 2.12. Table 3.7 displays the mean and standard deviations of the identified

coefficients over 100 iterations. Table 3.8 shows the stochastic effects of model-order reduction.

Discussion

Table 3.8 compares the identified coefficients of the perfect fit case to the underfit and overfit

model-orders. The results are showcased as a percentage, given by the equation Perfect Fit
Case

. A

valid change detection method should produce similar identified coefficients regardless of the

modeling-order. Ideally, the mean and standard deviations of each set of identified coefficients

should be 100% of each other.
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Table 3.7: Mean Identified Power Series Coefficients via Least Squares Estimation, Cheby-
shev Polynomial Coefficients via Restoring Force Method, and Power Series Coefficients via
Restoring Force Method Coefficients for a Duffing Model for 100 Iterations.

Underfit Case
Term Power Series via LSE Chebyshev Polynomials via RFM Power Series via RFM
(i,j) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
(1,0) 1.2271 0.0071 5.3663 0.2539 1.5803 0.0679
(0,1) 0.4707 0.0056 1.9633 0.2262 0.4126 0.0477

Perfect Fit Case
Term Power Series via LSE Chebyshev Polynomials via RFM Power Series via RFM
(i,j) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
(1,0) 1.0639 0.0168 5.3663 0.2593 1.3468 0.0845
(0,1) 0.4762 0.0106 1.9633 0.2262 0.5150 0.0450
(3,0) 0.0988 0.0043 0.3039 0.1178 0.0435 0.0132

Overfit Case
Term Power Series via LSE Chebyshev Polynomials via RFM Power Series via RFM
(i,j) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
(1,0) 1.1114 0.0384 5.3363 0.2947 0.8693 0.0738
(0,1) 0.5094 0.0215 2.1348 0.2626 0.4794 0.0403
(3,0) 0.0827 0.0207 0.2011 0.1048 0.2011 0.0301
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Table 3.8: Modeling Order Comparison. Each (%) column shows the percentage of Perfect Fit
Case

.

Power Series via Least Squares Estimation
Term Mean (Case) Std. Dev. (Case)
(i,j) Underfit (%) Overfit (%) Underfit (%) Overfit (%)
(1,0) 86.70 95.72 236.61 43.75
(0,1) 101.17 93.48 189.29 49.30
(3,0) N/A 119.48 N/A 20.77

Chebyshev Polynomials via Restoring Force Method
Term Mean (Case) Std. Dev. (Case)
(i,j) Underfit (%) Overfit (%) Underfit (%) Overfit (%)
(1,0) 100.00 100.56 100.00 87.99
(0,1) 100.00 92.97 100.00 86.14
(3,0) N/A 84.28 N/A 112.40

Power Series via Restoring Force Method
Term Mean (Case) Std. Dev. (Case)
(i,j) Underfit (%) Overfit (%) Underfit (%) Overfit (%)
(1,0) 85.22 154.93 124.45 114.50
(0,1) 124.81 107.43 94.33 111.62
(3,0) N/A 21.63 N/A 43.85
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The power series coefficients determined from Least Squares Estimation and the power

series coefficients determined from the Restoring Force Method both show bias. For the Least

Squares power series coefficients, similar mean values were identified for each model-order.

However, the standard deviation for the first-order stiffness (1,0) term went from 236.61% in

an underfit model to 43.75% for the overfit case. The overfit case performed similarly, as the

coefficient decreased from 189.29% to 49.30%. The first order damping coefficient (0,1) yielded

similar results. Because the standard deviations were widely distributed, confidence intervals

are difficult to establish, which are critical in a health monitoring application.

The power series coefficients computed from the Restoring Force Method also showed a

statistical bias, especially in the third order stiffness (3,0) term. The mean coefficient for the

perfect case was identified at 21.63% of the overfit case. Similarly, its standard deviation was

identified at 43.85% of the perfect case. Using this data, the variation of the identified param-

eters suggests that a system change has occurred; which, because the same Duffing model was

tested for each, has not. The variation is due to the modeling order complexity of the identifi-

cation.

The normalized Chebyshev polynomials, on the other hand, showed both the mean and

standard deviations of the identified coefficients are the roughly the same for all three modeling

orders. Because statistical independence is preserved, the orthogonal-based coefficients provide

an accurate basis for change detection, even at reduced-orders.

Figure 3.5 provides a good indication of each power series modeling order bias. Although

no significant statistical correlations are observed between first-order stiffness and first-order

damping (Figures 3.5(a), (c), and (e), a strong relationship is observed between first-order

stiffness and third-order stiffness for both power series identifications (Figures 3.5(b) and (f).

Conversely, the normalized Chebyshev coefficients show no noticeable statistical bias (Fig-

ure 3.5(d)). The results of this analysis confirm that the reduced-ordered identified coefficients
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using orthogonal basis functions can be reliably used for change detection of an uncertain single

mass, SDOF nonlinear system.

As the Reconfigurable Test Setup evolves and is used to simulate complicated nonlinear

models, orthogonal based functions should be utilized within the Restoring Force Calculator. It

will not be possible to use the normalized Chebyshev polynomials as normalization of displace-

ment and velocity is not possible in real-time. However a number of orthogonal based functions

exist, including Hermite and Legendre polynomials (Koekoek et al., 2010).

Another interesting result of this study was when the modeling order was increased to a

tenth-order analysis for Least Squares Estimation. The solution process for Least Squares in-

volves inverting the measurement matrix. At high ordered analyses, instability is encountered

as a result of a singular matrix because inverting a matrix with singular values is impossible.

This is one of the many reasons why in system identification, the model-order should not be

blindly increased.
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Figure 3.5: Sample scatter plots of power series coefficients from Least Squares Estimation,
normalized Chebyshev Coefficients from the Restoring Force Method, and power series via the
Restoring Force Method. Each is shown with a modeling order of 6 for displacement and veloc-
ity. (a) is of Least Squares Estimation power series coefficients between first-order stiffness and
first-order damping. (b) is of Least Squares Estimation power series coefficients between first-
order stiffness and third-order stiffness. (c) is of Restoring Force Method normalized Cheby-
shev coefficients between first-order stiffness and first-order damping. (d) is of Restoring Force
Method normalized Chebyshev coefficients between first-order stiffness and third-order stiff-
ness. (e) is of Restoring Force Method power series coefficients between first-order stiffness
and first-order damping. (f) is of Restoring Force Method power series coefficients between
first-order stiffness and third-order stiffness.
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4 DESCRIPTION OF THE RECONFIGURABLE TEST SETUP

The Reconfigurable Test Setup is designed for simulating a SDOF nonlinear dynamic sys-

tem. Physically, the setup includes a moving mass that is excited by a linear servo motor. The

mass is connected at a fixed point to an electromagnetic element that functions as the restoring

force for the system. The motion of the linear servo motor and data acquisition (DAQ) is con-

trolled through software, referred to as the Reconfigurable Test Setup Control Code (RTSCC).

As an experiment is performed, the values of displacement and velocity are directly mea-

sured in real-time. The recorded data is sent to the restoring force control algorithm, which

calculates the “current” value of the restoring force. This process is outlined in Figure 4.1. Fig-

ures 4.2 and 4.3 are a photograph and a schematic of the experimental test setup, respectively.

A diagram of the operational control and connection types for the setup described in Figure 4.4

seen in Figure 4.5.

4.1 Hardware

In this section, the main physical components of the test apparatus are described. The uses

and control of each of these devices will provide precise control, recording, and analysis of each

test.

4.1.1 Restoring Force Generator

The simulation restoring force with a calibrated electromagnet is the key breakthrough of

the Reconfigurable Test Setup system because of its great modeling versatility. With its use, a

broad spectrum of damping and stiffness characteristics can be achieved by varying the amount

of supplied current. In this study, this device will be referred to as the “restoring force generator”

or the “restoring force electromagnet.”
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Figure 4.1: Modeling of a nonlinear single degree of freedom system with the Reconfigurable
Test Setup.

.

Figure 4.2: Photograph of the assembled Reconfigurable Test Setup.
.
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Figure 4.3: Three-dimensional model of the Reconfigurable Test Setup’s main components.
.
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 !! ! + ! !, ! ! = !(!) (3) 

 
where !(!, !) is an arbitrary nonlinear restoring force function with random system parameters !; 
! is a constant moving mass; and !(!) is the excitation force applied on the moving mass.   

The main components of the proposed reconfigurable test apparatus are shown in Figure 
3.  At each time step, the current value of the arbitrary nonlinear function, !(!, !), which is 
completely programmable using software on the reconfigurable restoring force control computer, 
can be calculated based on the current sensor measurements of the displacement (!) and velocity 
(!).  In the research of the parameter uncertainty, the current restoring force value can be 
randomized with the uncertain system parameters (!) that are extracted from the probability 
density functions of interest.  The restoring force controller physically controls the reconfigurable 
electromagnetic device in force-control mode.  The electromagnetic device is connected to a 
constant moving mass (!), and the excitation force, !(!), is applied on the mass using an 
actuator, whose motion is controlled by the actuator controller. 

The PIs have developed prototypes of the reconfigurable test apparatuses for single-
degree-of-freedom (in lateral motion) and two-degree-of-freedom (in coupled lateral and 
rotational motions). Figure 4 shows sample nonlinearities measured from the developed 
reconfigurable test apparatus.  Using the reconfigurable test apparatus, the equation-of-motion for 
various classes of nonlinear dynamic systems can be simulated with different system parameters.  
The reconfigurable test apparatus can also be used as a part of larger structures to understand how 
the stochastic nonlinear effects of the reconfigurable component propagate to adjacent 
components and structures. 
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ẋ

ẍ
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(a) Electromagnet (b) Control Box

Figure 4.6: Physical components of the restoring force generator (electromagnet).

The restoring force generator is made of two physical components: a force generator and

control box. Each is shown in Figure 4.6. To simulate the restoring force, the force gener-

ator repels an internal bar by an electromagnetic force to a degree determined by the control

program. To provide accurate restoring force results in real-time, the control program samples

displacement and velocity measurements at a high rate to ensure that an appropriate force is

being applied to a certain displacement and velocity. This is especially critical when dealing

with a complex, nonlinear system where the restoring force could vary greatly depending upon

small variances of displacement and/or velocity.

In Figure 4.6(b), a number of BNC ports are shown. An internal linear variable differential

transformer (LVDT) reads displacement values and its output port is seen on the far right of

the photo, labeled “position output.” The value of the restoring force determined by the control

program is input into the device through the middle BNC port, labeled “force input.” The left

BNC port (“position input”) is not used in this application. The multi-pin, black connection

connects the control box to the electromagnet.
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Figure 4.7: Image of an optical table (Courtesy of Thorlabs, Inc., Newton, NJ).

4.1.2 Optical Table

To mitigate vibrational interference, an optical table was used. A photograph of the device

is shown in Figure 4.7. The function of an optical table is to eliminate relative motion between

the components secured to the surface of the table. Thus, the vibrations caused by the linear

servo motor will not cause the entire table to vibrate violently. Should isolation not occur,

measurement sensors would be subjected to large vibrations introducing large noise components

in their respective outputs.

Additionally, minor sources of noise may be caused by uncontrollable sources of vibra-

tion such as air conditioners, experimentation in adjacent laboratories, and even the pounding

of a researcher’s footsteps. The table also isolates the experiment as a whole from ambient

background laboratory vibrations, which are typically in the 4 to 100 Hz range in a multistory

building. Since large frequency differences preclude energy transfer from one form into another,

the resonant frequency of the optical table is well above 100 Hz, thus eliminating the chances of

any energy coupling between the tabletop and its support system (Thorlabs, 2010). The optical

also serves as a rigid base on which all of the Reconfigurable Test Setup components can be

mounted to provide long-term stability.
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Figure 4.8: Photograph of the moving mass.

4.1.3 Moving Mass

The rigid, oscillating mass functions as the test specimen in the Reconfigurable Test Setup

and seen in Figure 4.8. Acceleration, velocity, and displacement measurements are taken from

its surface. It also provides the link between the actuator and the restoring force generator. The

oscillating mass was raised and leveled to the actuator to avoid secondary forces that may be

introduced due to a misalignment of the applied force and moveable mass.

As excitation is provided, the oscillating mass is free to move in a single-degree of freedom

manner. The movement is impeded by a negligible amount of frictional forces because it is

mounted upon a linear bearing system. As shown in Equation 2.1, dynamic models include an

inertia term and to properly replicate a variety of different models, additional mass can easily

be installed.

4.1.4 Linear Servo Motor

The excitation force of the Reconfigurable Test Setup system is controlled by a linear servo

motor manufactured by Parker Automation. To program the motion of the actuator, Parker’s
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Figure 4.9: Photograph of the linear servo motor.

Motion Planner syntax was used to send a series of commands to the servo designed to “follow”

an analog input signal. The script code is embedded into the Reconfigurable Test Setup control

code written in LabVIEW. Components of the command code include:

• Following lowpass filter

• Distance scaling

• Motion tare

For further explanation of each of these components, see Section 4.2.1.

4.1.5 Measurement Sensors

The overall purpose of the Reconfigurable Test Setup is to reliably and accurately replicate

the restoring properties of a system in real-time. Therefore, a crucial component of the Recon-

figurable Test Setup is its inclusion of direct measurement sensors. Direct measurements are

crucial due to the presence of hysteresis, where the effects of an input are experienced with a

lag time, which can cause a misrepresentation of a model’s physical effects (Worden, 1990).
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(a) Linear Velocity Transducer
(LVT)

(b) Accelerometer (c) Force Gauge

Figure 4.10: Velocity, acceleration, and force sensors used on the Reconfigurable Test Setup for
direct measurement. A displacement sensor is also included in the apparatus and is located
within the restoring force generator. Photographs courtesy of Schaevitz Technologies, Inc.
(Pennsauken, NJ), Endevco Corporation (San Juan Capistrano, CA), and Kistler Instruments
(Singapore), respectively.

A collection of sensors was assembled for direct measurement including: a linear variable

differential transformer (LVDT) that is housed in the restoring force generator’s silver box,

a linear velocity transducer (LVT), an accelerometer, and two force gauges: one to measure

the excitation force and another to measure the restoring force. Photos of each are shown in

Figure 4.10. Wire shielding has been provided to limit external noise contamination and can be

best seen in Figure 4.2.

4.1.6 Data Acquisition Systems

To accurately control the test and acquire data, specialized computer equipment was pur-

chased through National Instruments. The function of each piece is summarized in Table 4.1.

In order to control each of the components, a software program was written. Chosen for its

ability to communicate easily with various types of machinery, National Instrument’s graphical

computer programming language, LabVIEW, has the ability to control the entire testing process.
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Table 4.1: LabVIEW Components of the Reconfigurable Test Setup DAQ System

Device Use
Contains an Intel Celeron 575 processor that
will allow for high speed data collection. Also

PXIe 8101 Controller contains standard USB, Ethernet, and computer
monitor connections that are important for
setting up the tests.
A DAQ device that allows for high data
throughput and low latency. Similarly, it
features independent analog and digital timing

PXIe 6363 Signal Conditioner engines (for use in sensor readings),
timers. An accurate and powerful internal
clock is imperative for structural dynamic tests
to allow for accurate displacement, velocity,
and acceleration measurements.

PXI 1062Q Chassis Functions as the “device stable”
Allows for BNC input access for sensor

BNC 2120 Terminal Block recording and contains a signal generator that
is used in a variety of purposes.

4.2 Software

The Reconfigurable Test Setup system requires data measurements in two areas: to record

physical measurements, deemed the Reconfigurable Test Setup Control Code (RTSCC); and an-

other to calculate the effects of the restoring force, referred to as the Restoring Force Calculator.

RTSCC is a computer code written with LabVIEW software. The physical simulation of the

restoring force, on the other hand, will be controlled by an algorithm written in C. In this code,

physically recorded measurements will be read and utilized to calculate the real-time value of

the restoring force.

At this time, the RTSCC and Restoring Force Calculator codes are housed in separate

CPU’s. Thus, they are running at different internal clocks. Synchronization between the two

programs is crucial in the modeling of a nonlinear model’s restoring force with software. As

this methodology is improved in the future, improvements in this area must be made.
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Figure 4.11: Snapshot of the user interface menu.

In following sections, the RTSCC and Restoring Force Calculator codes are described.

4.2.1 Reconfigurable Test Setup Control Code

The program has the capability to record and graph sensor measurements from a number

of analog inputs and may automatically interface with MATLAB software to provide system

identification analysis. Each element of the LabVIEW is essential in providing reliable and

meaningful data. The components of the control code are described and shown in the following

sections. A snapshot of the user interface menu is shown in Figure 4.11.
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User Interface Coding

When the user chooses the type of actuator motion, the corresponding options for that type

of motion will appear on the user interface. Similarly, all other selections from other cases will

disappear. For instance if the user chooses monotonic sinusoidal wave excitation, the following

user controls will be available for modification: amplitude, offset, frequency and phase. Similar

coding also allows the user to:

• Turn on and off data tare

• Turn on and off on-board system identification

– Parametric with Least Squares Estimation

– Non-parametric with the Restoring Force Method

• Turn on and off the linear servo motor after completion of data acquisition

This section of LabVIEW code is shown in Figure 4.12.

Linear Servo Motor Control

As previously mentioned, the type of excitation applied to a dynamic system may greatly

affect its response. For optimal flexibility, the linear servo motor has been programmed to follow

an analog voltage signal that is generated by the LabVIEW control code. Possible analog wave

generation types include: monotonic sinusoidal, square, chirp, beat, broadband random with a

Gaussian distribution, broadband random with uniform distribution, sawtooth, and triangle. To

add further types of motion, the user may also input a file containing displacement locations

or define movement in an equation. To ensure accurate physical motion, the analog output
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Figure 4.12: LabVIEW code designed to control user interface for a user-friendly selection of
testing parameters.
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Table 4.2: Motion Planner Control Code

Commands Functions
DEL AIFOL Delete existing Analog Input Following program
DEF AIFOL Define Analog Input Following “AIFOL” program
ANIMAS1-1 Define analog input master as expansion I/O block 1, pin 1

FOLMAS+12 Master is set to follow an analog Input value
FFILT3 Set the following filter to 50 Hz to smooth following

FPFILT20 Set the following position filter to 20 Hz to smooth following
FOLRN1 Axis 1 will turn 1 counts for 1 count of ADC value
FOLRD1 The denominator of the ratio
FOLMD0 Master distance

D - Make positive voltage values go towards the electromagnet
PSET0 Zero out motor and encoder positions

MA1 Absolute position mode
MC1 Continuous mode

DRIVE1 Turn on the drive
FOLEN1 Enable following

GO1 Start following
END End program

voltage signals are sent to the actuator at 10000 Hz. Because this updating rate is faster than

the updating rate of the actuator (2 ms), motion will occur without a “lag time” and not incur

excess noise. If a lag time between DAQ and excitation were to exist, added characterization

uncertainty of a physical simulation would result. This section of LabVIEW code is shown in

Figure 4.13.

In order for the linear servo motor to respond to the analog voltage signals, a control code

must be written in its native language (Parker Motion’s Motion Planner Software). The Motion

Planner code is given and described in Table 4.2.

Equipment Safety Features

The Reconfigurable Test Setup control program contains three features specifically pro-

grammed to ensure longevity of the electromagnet and the linear servo motor: “zero padding,”
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Figure 4.13: LabVIEW code designed output a variety of motion types. The analog output from
this code is then sent to the linear servo motor, which will “follow” the sent signal.
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“ramp up,” and “actuator relaxation time.” The function of the zero padding feature is to make

sure that the actuator starts it motion from a set position - in this case, the middle of the range

of motion of the electromagnet. Without this feature it would be possible to begin the test at

the far ends of the electromagnet’s range of motion. Then through the course of the test, the

linear servo motor would literally “slam” and eventually damage the electromagnet while the

experiment was running.

The ramp up feature tapers the magnitude of the actuator motion so that the test does not

begin with an instantaneous thrust. Such a movement could possibly damage the linear servo

motor or the electromagnet. Another beneficial feature of the ramp up is that the actuator will

end its motion at the same position as it began. Therefore when performing a series of tests,

each individual motion plan will begin at the same starting position.

Lastly, the actuator relaxation time provides a “resting period” for the entire device in be-

tween tests. This is especially critical if the user is running a number of tests where voltage

values are repeatedly delivered to the electromagnet in excess of 6 volts in magnitude (the value

of 6 volts was found through experience and is for this electromagnet only). Repeated nonstop

testing at these levels will raise the surface temperature of the electromagnet and possibly cause

damage. By allowing a “cool down period,” the electromagnet has time to dissipate heat caused

through its normal operation.

Data Acquisition Code

Analog input readings of voltage are recorded from the various sensors installed within the

Reconfigurable Test Setup. Similarly, the linear servo motor’s motion is dictated by analog

output voltage values. The timing of the analog input/analog output (AIAO) events is critical

because should the two signals have different internal clocks, it would not be possible to corre-

late the sensor readings to a particular instance of actuator movement. Therefore, the sampling
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Figure 4.14: LabVIEW code designed to output and acquire analog voltage signals to and from
an external device (the BNC 2120 Terminal Block).

rate of the entire AIAO process is constant through the course of a testing session. The upload

rate to the linear servo motor has been set at 10000 Hz, which will deliver voltage signals faster

than its 0.2 ms update rate. This section of LabVIEW code is shown in Figure 4.14.

Data Calibration

The sensors attached to the Reconfigurable Test Setup system record measurements in terms

of voltage. These readings then must be converted into meaningful measurements. The “scale”

converts voltage into the required units of the sensor’s output (for example cm/s for the linear

velocity transducer (LVT)) while the “offset” provides the slope intercept. Current calibration

factors are shown in Table 4.3. This section of LabVIEW code that calibrates the data is shown

in Figure 4.15.
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Figure 4.15: LabVIEW code designed to convert analog measurement signals into calibrated
units.

Table 4.3: Reconfigurable Test Setup Control Code Calibration Factors

Channel Channel Name Units Scale Offset
0 Displacement cm 0.28 0.00
1 Velocity cm/s 1.04 0.00
2 Acceleration g 1.00 -1.44
3 Input Force N -1.00 0.00
4 Restoring Force N -34.5 -0.75
5 Programmed Restoring Force V 1.00 0.00
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Graphical Analysis

Once the data is calibrated, it is organized into meaningful graphs and phase diagrams.

Three phase plots are generated and displayed upon the user interface: velocity vs. displace-

ment, displacement vs. restoring force, and velocity vs. restoring force. The code also generates

a compiled plot of all sensor readings. Lastly a spectral density plot is generated, displaying the

frequency components of acquired signals.

The primary benefit of the generation of these graphs is that it allows the researcher to

view the characteristics at the conclusion of the performed test. This information is critical

for troubleshooting purposes - especially the spectral density plot, which identifies if high-

frequency noise is present in the recorded measurements. This section of LabVIEW code is

shown in Figure 4.16.

4.2.2 Restoring Force Calculator Code

To simulate the physical restoring force of the Reconfigurable Test Setup, a sophisticated

computer code was written in the C language. This program is referred to as the Restoring

Force Calculator. In this section, its user interface and the nonlinear dynamic models currently

programmed into the algorithm are described.

A great benefit of this system is the user has the ability to add new dynamic models into

its library. Another key feature of the Restoring Force Calculator is its ability to sample data

at a high rate. The accurate calculation of the instantaneous value of the restoring force is

critical because the properties of a nonlinear dynamic model may change with slight variations

of displacement and velocity. The process of reading velocity and displacement measurements

and the subsequent calculation of the restoring force is repeated throughout the simulation, as
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Figure 4.16: LabVIEW code designed to output recorded data into meaningful graphical anal-
ysis.
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the current measurements are used to calculate the next value of the restoring force.

User Interface

The user interface is the top-level program for the device. Each feedback option is listed and

the user simply needs to choose the appropriate nonlinear behavior type and the desired dynamic

coefficients. After setting these values, the user is able to commence the physical simulation of

the restoring force. The user interface for the Restoring Force Calculator is shown on the next

page:
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1H:\Research\Thesis Work\Spring 2011 Progress Report...LaTeX\Conversion\fig\Code\UserINTERFACEalgorithm.cpp

/*********************************************************************

* This is the main control panel for the RECONFIGURABLE TEST SETUP   *

*********************************************************************/

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <time.h>

#include <assert.h>

#include "nidaqmx.h"

#include "feedback1.h"

#include "feedback2.h"

#include "feedback3.h"

#include "feedback4.h"

int main()

{

 float64     gap;

 float64     coef1;

 float64     coef2;

 float64  coef3;

 int   type;

 type=4;

 switch(type)

 {

  case 1:    //Linear and Cubic Stiffness Terms

  {

   coef1 = 0.75; // Values for linear part

   coef2 = 0.30; // Values for cubic part

   feedback1(coef1,coef2);

   break;

  }

  case 2:    //Gap-Space Nonlinearity

  {

   gap= 1.00;  // Gap size: 10.= 1 inch 

   coef1 = 0.0; // Values IN the gap

   coef2 = 1.0; // Values beyond gap

   feedback2(gap,coef1,coef2);

   break;

  }

  case 3:    //Trilinear Nonlinearity

  {

   gap= 1.5;  // Gap size: 10.= 1 inch

   coef1 = 0.0; // Values IN the gap

   coef2 = 2.0; // Values beyond gap (to the right of the gap)

   coef3 = 1.0; // Value before the gap (to the left)

   feedback3(gap,coef1,coef2,coef3);

   break;

  }

  case 4:    //Simplified Design Method

  {

   coef1 = 3.0; // Value of C (damping coefficient)

   coef2 = 0.30; // Value of n (degree of nonlinearity) 

   coef3 = 0.05; // Value of k (damper stiffness)

   feedback4(coef1,coef2,coef3);

   break;

  }

  default: printf("Bad input type = %d\n", type);

 }    

 return 0;

}
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Restoring Force Calculator

The Restoring Force Calculator codes are a series of routines that designate the nonlinear

behavior of the restoring force electromagnet. The code features DAQ functions (to capture the

current displacement and velocity values) as well as a number of error checks to ensure that the

DAQ is functioning properly. The length of time to run the restoring force program may also be

changed within these codes.

For safety of the restoring force modeler, all calculated feedback values are restricted to

values capable of being safely replicated by the electromagnet (between -10 and 10 volts). The

currently programmed feedback options are summarized in Table 4.4. They include: linear,

Duffing, gap-space nonlinearity (to be introduced in Section 5), trilinear nonlinearity (a mod-

ification of the gap-space nonlinearity), and a nonlinear viscous damper (to be introduced in

Section 6.2).

To display an example, the Restoring Force Calculator code written for a linear or Duffing

model is shown on the next two pages:
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1H:\Research\Thesis Work\Spring 2011 Progress Report...\Conversion\fig\Code\Linear-Duffing Model Code.cpp

/*********************************************************

*  RECONFIGURABLE TEST SETUP FOR a linear/duffing model  *       

*********************************************************/

#include <stdio.h>

#include <conio.h>

#include <time.h>

#include <assert.h>

#include "nidaqmx.h"

#include "feedback1.h"

// POLYNOMIAL CASE

int feedback1(float64 coef1, float64 coef2)

{

 int32       error=0, read=0, write=0;

 TaskHandle  taskHandle=0;

 TaskHandle  taskHandle2=1;

 TaskHandle  taskHandle3=3;

 TaskHandle  taskHandle4=4;

 float64     datain1[1000]={0}, datain=0;

 float64     doffset=0, dtotal=0;

 float64     dataout1=0, dataout2=0;

 float64     disp, d4, d3, d2, d1, d0, fstiff;

 uInt32      data2[5005];

 char        ch, errBuff[2048]={'\0'};

    const char  triggerSource[] = "PFI0";

    const char  chan_in[]="Dev1/ai0";

    const char  chan_out[]="Dev1/ao0";

 int      TestLength = 1000000000;

    int32       icode=0;

 FILE        *out;

 int         Iicnt, icnt, i;

// taskHandle4 creates and configures a timer to create digital pulses for output

 DAQmxErrChk (DAQmxCreateTask(" ", &taskHandle4));

 DAQmxErrChk (DAQmxCreateCOPulseChanFreq(taskHandle4,"Dev1/Ctr1","",DAQmx_Val_Hz,DAQmx_Val_Low,0.0,

1000000.,.1));

 DAQmxErrChk (DAQmxCfgImplicitTiming(taskHandle4,DAQmx_Val_ContSamps,10000));

    DAQmxStartTask(taskHandle4);

 icnt=0;

// taskHandle and taskHandle2 create the AI/AO channels

 DAQmxErrChk (DAQmxCreateTask(" ", &taskHandle));

 DAQmxErrChk (DAQmxCreateTask(" ", &taskHandle2));

 

 DAQmxErrChk (DAQmxCreateAIVoltageChan(taskHandle,chan_in,"",DAQmx_Val_Diff,-10.0,10.0,DAQmx_Val_Volts,

NULL));

 DAQmxErrChk (DAQmxCreateAOVoltageChan(taskHandle2,chan_out,"",-10.0,10.0,DAQmx_Val_Volts,NULL));

    DAQmxStartTask(taskHandle);

    DAQmxStartTask(taskHandle2);

/*****************************************************************************************************/

 d4 = 0; d3 = 0; d2 = 0; d1 = 0; d0 = 0;

 for (Iicnt = 0; Iicnt <= 999; Iicnt++)      //This is to calculate the offset

 {

 DAQmxReadAnalogScalarF64(taskHandle,-1.0, &datain1,NULL);

 

 for (i = 0; i < 999; ++i)

  {

   dtotal += datain1[i];

   doffset = dtotal/1000;
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2H:\Research\Thesis Work\Spring 2011 Progress Report...\Conversion\fig\Code\Linear-Duffing Model Code.cpp

   d1 = datain1[999]; d2 = datain1[998]; 

   d3 = datain1[997]; d4 = datain1[996];

  }

 }

 

 /***************BEGIN TEST*********************************/

 while(icnt++ < TestLength)

 {

  if (icnt > 1)

  {

   //Recycling data points

   d4 = d3, d3 = d2, d2 = d1, d1 = d0;        

  }

  DAQmxReadAnalogScalarF64(taskHandle,-1.0, &datain,NULL);

  d0 = datain;

  disp=0.25*d0 + 0.25*d1 + 0.25*d2 + 0.25*d3;

  /*******Generate the force in polynomial case*********/

  fstiff=coef1*disp+coef2*disp*disp*disp;

  dataout2 = fstiff*-1.0;

  if(dataout2 < -10.) 

   dataout2 = -10.;

  if(dataout2 > 10.) 

      dataout2 = 10.;

  DAQmxWriteAnalogScalarF64(taskHandle2,"YES",-1.0,dataout2,NULL);

 }

 read=0;

 if( read>1 )

 {

  printf("Outputting to file\n");

  out = fopen("c:/jpc/out2.txt","w");

  icnt=0;

  while(icnt++ < 5000)

  {

     fprintf(out,"%d   %u\n",icnt,data2[icnt]);

  }

 }

Error:

 if( DAQmxFailed(error) )

  DAQmxGetExtendedErrorInfo(errBuff,2048);

 if( DAQmxFailed(error) )

  printf("DAQmx Error: %s\n",errBuff);

 printf("End of program, press any key to quit now\n");

 while( !_kbhit() ) {}

 ch = _getch();

 return 0;

}
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Table 4.4: Current Nonlinear Feedback Types

Designation Description or Equation
Simple Spring Contains a linear stiffness term

Input: k
Nonlinear Spring Contains linear and cubic stiffness terms

Inputs: k1 and k3

Spring with Gap (Bilinear) User may specify the size of the gap as well
as the stiffnesses inside and outside the gap
Inputs: gap size, kinside, and koutside

Spring with Gap (Trilinear) User may specify the size of the gap as well
as the stiffnesses before, inside, and after the gap
Inputs: gap size, kbefore, kinside, and kafter

Simplified Damper Modeled by Equation 6.5. Inertia and stiffness
terms required to physically simulate the damper
Inputs: c, n, and k
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5 PHYSICAL STUDY: CALIBRATION

The methodology presented in this research study is a new approach to the physical simu-

lation of dynamic models. Once the Reconfigurable Test Setup was constructed, the accuracy,

reliability, and limitations of the device must be quantified. In this chapter, a number of steps

taken for calibration purposes are presented.

The restoring force determines the characteristics of dynamic systems. Because the goal of

the Reconfigurable Test Setup is to have great flexibility in the modeling process, it is imperative

that the computer code written to control the restoring force be accurate in the replication of

the restoring force and robust enough to handle a number of nonlinear behaviors. To create

the control program, the Microsoft Visual C program was utilized. C is a free-form, general

purpose computer coding language that can be compiled into binary for rapid processing. It

was chosen because of its popularity within the coding community (for quick implementation

by a large number of users) and its high processing speed, which is crucial for the real-time

computations performed by the Restoring Force Calculator.

The C program contains a user interface program where one can choose the type of restoring

force capability the Reconfigurable Test Setup will have, as well the values of the parametric

coefficients. Once chosen, a subroutine processes the measured displacement and velocity val-

ues and outputs a corresponding force value. The user also has the ability to add a number

of subroutines to the project work file, essentially allowing the Reconfigurable Test Setup to

replicate an endless number of dynamic models.

In the determination of the modeling accuracy of the restoring force apparatus, three restor-

ing force measurements are acquired and compared. The “physically recorded” restoring force

is a direct measurement from the restoring force gauge, which is located between the electro-
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Table 5.1: Types and Sources of Restoring Force Measurements

Designation Abbrev. Source Description
Restoring force This value is measured directly

Physically recorded RFC gauge from the restoring force gauge,
detailing electromagnetic output.
After directly sampling displacement

Calculated IRFC C real-time and velocity values, the restoring force
calculation is calculated via software and

value calculated is then
sent to the electromagnet.
This value is calculated after
completion of the physical testing

Theoretical THEO Post-analysis using measured displacement and velocity
calculation values as inputs into the desired

dynamic equation. It will not contain
noise and will serve as an idealized case.

magnet and the moving mass. It details the force coming from the electromagnet. It will be

designated as the physically recorded restoring force (RFC). The “calculated” restoring force

value is calculated by the Restoring Force Calculator. As displacement and velocity measure-

ments are supplied, the Restoring Force Calculator performs its computations and outputs the

value into the controller of the electromagnet. This value will be designated as the calculated

restoring force (IRFC). The “theoretical” restoring force is computed after the testing is com-

pleted. This value is theoretically perfect, as the recorded displacement and velocity values

input into the desired dynamic model. These values will be designated as the theoretical restor-

ing force (THEO). Each type of restoring force value is summarized in Table 5.1. RFC and

IRFC are shown pictorially in Figure 5.1.

A dynamic model of considerable interest within the structural dynamics field is the dead-

space (or gap-space) nonlinearity. Characteristics such as these are commonly found in me-

chanical devices where a small “gap” in its physical components may cause a “dead-space” in

the device’s output (Yun and Masri, 2008). A true gap-space nonlinearity will have a restor-
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Parker 412LXR Aura Systems Restoring 

Restoring Force

Calculator

x , ẋ

(Displacement and 

Velocity Readings)

Restoring Force

r(x ,ẋ)

Key

Physical Connection

Analog Connection

IRFC is an output of the 

Restoring Force Calculator

Parker 412LXR

Excitation Control

Aura Systems Restoring 

Force Generator
Moving Mass

Installed Sensors

LVT (Schaevitz)

Accelerometer (Endevco)

Two load cells (Kistler)

-Restoring Force

-Input Force

Reconfigurable Test Setup Control Code

(National Instruments) with embedded

System Identification Techniques via 

MATLAB

Motion Control

Internal LVDT (Aura)

RFC is physically measured 

between the moving mass and 

the electromagnet

Figure 5.1: This is a modification of Figure 4.5 where the locations of RFC and IRFC have been
superimposed. The physically recorded restoring force (RFC) is physically measured by a load
cell located between the Restoring Force Electromagnet and the moving mass. The calculated
restoring force (IRFC) is an output of the Restoring Force Calculator. The theoretical restoring
force (THEO) is not calculated during the test and is therefore not shown. It is calculated post-
analysis using physically recorded displacement and velocity values.
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Figure 5.2: Displacement vs. restoring force phase plot for a gap-space nonlinearity. Charac-
teristics such as these are commonly found in mechanical devices where a small gap between
physical components can cause a “dead-space” for restoring force output. This type of dynamic
model is able to be physically simulated by the Reconfigurable Test Setup.

ing output of zero in the “gap region.” However, it is also possible to have an altered stiffness,

deemed a “trilinear dynamic model.” The motion for a true gap-space nonlinearity is described

(for a gap in a linear spring) by

r(u(t), u̇(t)) =


k1u if u < −gap

0 if −gap ≤ u ≤ gap

k1u if u > gap

 . (5.1)

where gap is the size of the mechanical gap. A gap-space nonlinearity is shown (as a displace-

ment vs. restoring force) in Figure 5.2. The physical simulation of a gap-space nonlinearity has

long been a challenge for researchers; but with the Reconfigurable Test Setup, it is possible.

In Figure 5.3, three types of dynamic models created by the Reconfigurable Test Setup

are displayed: linear, Duffing, and gap-space nonlinearity. Each has a restoring force solely
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dependent upon displacement, thus a displacement vs. restoring force phase plot detail the

governing system characteristics. Figures 5.3(a), (b), and (c) show three linear models with

increasing stiffness values, which is demonstrated by the increasing slope of the restoring force.

Figures 5.3(d), (e), and (f) show three Duffing models with increasing k3 terms. In each model,

k1 remains the same. In Figure 5.3(d), the k3 term is very small, meaning the resulting dynamic

characteristics behave predominantly linear. On the other hand, Figure 5.3(f) has a much more

dominant k3 term, resulting in a much more nonlinear output. Gap-space models of increasing

gap-size can be seen in Figures 5.3(g), (h), and (i).

5.1 Calibrating the Restoring Force Calculator

The Reconfigurable Test Setup device was calibrated to ensure test reliability. All mea-

surement wires were properly shielded and grounded to prevent electrical noise. As described

in Section 4.1.1, the controller of the electromagnet provides force and displacement oriented

control, and the controller was calibrated by the manufacturer (Aura Systems) for force control.

The following sections describe a number of steps taken to improve and quantify the relia-

bility of the Restoring Force Calculator.

5.1.1 Input Data Smoothing

To provide an accurate determination of the value of the restoring force in real-time, the

Restoring Force Calculator samples displacement and velocity measurements at very high sam-

pling frequency. This is done to ensure the real-time calculated force is being applied at a

certain recorded displacement and velocity. However it is possible that the use of uncontrolled

measurements from the sensors may leave the physical simulations more susceptible to mea-

surement uncertainty (i.e. electrical spikes). In the initial calibration of the Reconfigurable Test

Setup, only direct algorithm controls were utilized. Two approaches of input data processing

considered: raw data and moving average.
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Figure 5.3: Sample nonlinear models created by the Reconfigurable Test Setup. Row 1 de-
tails three linear models with increasing stiffnesses; Row 2 displays three Duffing models with
increasing k3 terms; and Row 3 plots three gap space nonlinearities of various gap sizes.
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The first type of filtering considered for implementation is moving average filtering, which

smoothes data by replacing each data point with the average of the previously recorded steps.

This process is given by the difference equation

mcorr =
1

N
(mi +mi−1 +mi−2 +mi−3 +mi−4) (5.2)

where mcorr is the smoothed measurement value, i is the iteration number, and N is the number

of filtered points (Proakis and Manolakis, 2006). For the determination of which filtering type

provided the least amount of errors, N was taken as 5.

The second type of filtering considered for implementation is the moving median filtering,

which is adept at eliminating outliers from data. Its process is described by

mcorr = median(mi,mi−1,mi−2,mi−3,mi−4) (5.3)

where (mi,mi-1, ...mi-4) are sorted from least to greatest at each time step and the median is

chosen. For comparison to moving average filtering, the median was selected out of the previous

five recorded data points.

In this analysis, a Duffing model was utilized. Each test lasted 140 seconds and the models

were excited with a broadband random force between 0.1 and 5 HZ. This process was repeated

twenty times for each smoothing type considered: no smoothing (or “raw”), moving average,

and moving median. In this analysis, the Restoring Force Calculator computed restoring force

(IRFC) and theoretically calculated (THEO) values will be compared to determine which pro-

vided the most accurate smoothing. To measure the goodness of fit, mean square error (MSE)

will be utilized, calculated by Equation 5.4.
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Table 5.2: Restoring Force Calculator Smoothing over 20 Iterations

Filter Type Mean MSE(%) Average Loop Time (in ms)
No Smoothing 0.4933 0.000015

Moving Average 0.4058 0.000015
Median 0.4203 0.000016

MSE(%) = 100×
∑N

i=1(f
i
m − f ith)2∑N

i=1(f
i
th)

2
(5.4)

where i is the ith data point, N is the total number of data points, fm is the measured data set,

and f th is the theoretical value.

Discussion

Figure 5.4 details the results of the different smoothing types analyses, while Table 5.2

summarizes the mean-square analyses and details the average elapsed time per loop. Median

average filtering provided similar MSE results to the moving average analysis. But due to

the extra lines of code needed to “sort” data readings, the average time per loop was slightly

larger. It was therefore decided to implement moving average filtering into each of the control

algorithm codes.

Since it was determined that a moving average would be the smoothing type of choice

(for this specific dynamic model and excitation combination), an investigation was made to

determine the optimal number of terms to include. Therefore an analysis was conducted for

weighted moving averages with ten different window sizes (one data point, two data points,

..., ten data points). Each test lasted over two minutes long and the models were subjected to

broadband random excitation from a range of 0.1 to 5 Hz. Twenty data sets were recorded for

each weighted average level. The mean MSE and corresponding standard deviations are shown

in Table 5.3 and summarized in an error bar plot in Figure 5.5. As in the previous analysis,
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Figure 5.4: Duffing model created by the Restoring Force Calculator with different types of
smoothing. In the figures on the left, the red dots represent the Restoring Force Calculator
computation (IRFC) and the black line is a measure of the post-analysis calculated theoretical
value (THEO). Figures on the right show the compiled results of the goodness of fit analyses
over 20 iterations. Figures (a) and (b) are results using raw data points, Figures (c) and (d) are
results using moving average filtering, and Figures (e) and (f) are results using median average
filtering.
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the Restoring Force Calculator computed restoring force (IRFC) and theoretically calculated

(THEO) values will be compared to determined the optimal number of included weighted terms.

The results of the analysis show that the weighing of four data points proved to provide the

best filtering results. Thus, Equation 5.2 must be taken where N = 4. It is theorized that too few

data points leads to susceptibility to measurement noise and too many points cause an output

lag when the model is excited at high frequencies.

In future studies, it is recommended that more advanced control algorithms be considered

an evaluated. One method of particular interest is Spencer’s 21-point moving average, a local

cubic-polynomial smoother. A unique feature of Spencer’s formula is the inclusion of nega-

tive weights, included to enhance “edge” smoothing. Unlike Equation 5.2 and 5.3 however,

Spencer’s formula requires data points before and after the smoothed point. Spencer’s formula

is given by (Gavin, 1993; Cleveland and Loader, 1994; Henderson, 1916):

1
350

(60mi + 57(mi−1 +mi+1) + 47(mi−2 +mi+2) + 33(mi−3 +mi+3)+

mfilt = 18(mi−4 +mi+4) + 6(mi−5 +mi+5)− 2(mi−6 +mi+6)− 5(mi−7 +mi+7)−

5(mi−8 +mi+8)− 3(mi−9 +mi+9)− (mi−10 +mi+10)).

(5.5)

To be a viable for implementation in the Reconfigurable Test Setup, two issues must be

considered and resolved: lag time and future predictions. Lag time within the Restoring Force

Calculator will hamper its abilities to update in real-time. Also because the Restoring Force

Calculator and the Reconfigurable Test Setup Control Code (RTSCC) are housed in separate

CPU’s, a timing discrepancy will cause difficulty in data analysis. The use of Spencer’s formula

will also require the use of an accurate future value predictor. The future value forecasts must
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Figure 5.5: Compiled MSE values for a series of experimental tests to determine the optimal
number of data points to include in the Restoring Force Calculator data smoothing process.
Mean MSE error and corresponding standard deviations are graphed against the number of
weighted terms included over 20 iterations. It can be seen that 4 points performed the best,
as too few data points leads to susceptibility to noise and too many points cause an output lag
when the model is excited at high frequencies.

be guaranteed for a variety of dynamic models otherwise faulty smoothing will result.

5.1.2 Interaction between the Restoring Force Electromagnet and the Linear Servo Motor

The interaction between the linear servo motor (which provides displacement-oriented in-

put force) and the Restoring Force Generator is very complex. Because they are governed by

separate controllers, coordination between the two is imperative so that conflict is minimized.

For calibration, this interaction must be quantified.

As these two devices interact, small variations in displacement will result in fluctuations in

the Restoring Force Calculator output (i.e. the value of IRFC) and correspondingly into the

actual electromagnet output (RFC). It is theorized that this instability may be resolved by the
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Table 5.3: Compiled MSE values and Standard Deviations to Determine the Number of Data
Points to Include for Smoothing.

Terms Included Mean MSE Std. Dev.
1 0.4933 0.0160
2 0.4187 0.0083
3 0.4411 0.0102
4 0.3805 0.0113
5 0.4058 0.0159
6 0.3955 0.0100
7 0.3990 0.0075
8 0.4254 0.0097
9 0.3882 0.0100
10 0.3936 0.0098

utilization of a more resilient linear servo motor, as its position would be less influenced by

the restoring force provided by the electromagnet thereby providing consistent output force for

given displacement and/or velocity measurements.

In order to simulate a “stronger” linear servo motor, a series of gap-space models were

considered with various stiffnesses: lower input stiffness would relate to a stronger motor and

higher stiffnesses to a weaker motor. Five models were chosen with increasing linear stiff-

ness (k = 0.00, 0.50, 1.00, 2.00, and 4.00). Each model was subjected to broadband random

excitation for 140 seconds and 20 data sets were assembled. A goodness of fit analysis will

be performed between the Restoring Force Calculator computed restoring force (IRFC) and

theoretically calculated (THEO) values. Recorded data is shown in Figure 5.6.

Discussion

As shown in Figure 5.7 and Table 5.4, the modeling error rises with the linear stiffness.

This is seen in the linear areas beyond the gap, as the algorithm shows a progressively greater

disbursement of output force. The results of the analysis prove that a more forceful linear servo

motor will improve the modeling accuracy of the Reconfigurable Test Setup. As the approach
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Figure 5.6: Gap-space models with different stiffness terms created by the Restoring Force
Calculator. In this figure, the various models are compared to their theoretical values as well
as with each other. As the stiffness is reduced (or the control of the actuator is increased), less
noise is present in the measurements.
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Figure 5.7: Mean and standard deviation mean square error of gap-space models over 20 iter-
ations each. It is shown that with less output electromagnet force (hence simulating a stronger
linear servo motor), the modeling accuracy of the Reconfigurable Test Setup is improved. It is
therefore recommended that as future studies are planned, an improved linear servo motor be
procured.

described in this study evolves, it is therefore recommended that a linear servo with greater

displacement control and not susceptible to the electromagnetic output force be procured and

utilized to provide the input force.

5.1.3 Effects of Excitation Frequency

In this investigation, the goal is to compare the Reconfigurable Test Setup’s ability to repli-

cate a nonlinear model undergoing different frequencies of excitation. A series of tests were

conducted with a Duffing model undergoing a series of monotonic sinusoidal excitations: 0.5,

1.0, 2.5, and 5 Hz Each test lasted a total 40 seconds, designed so that each excitation level

had at least 15 cycles. In this analysis, a mean square error between theoretical restoring force

(THEO) and Restoring Force Calculator computed restoring force (IRFC) will be used to de-
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Table 5.4: Compiled MSE values Over 20 Iterations to Explore Linear Servo Motor and Elec-
tromagnet Interaction

Data Set Linear Stiffness Mean MSE MSE Std. Dev.
Gap No. 1 0.0 0.0007 0.0000
Gap No. 2 0.5 0.4198 0.0058
Gap No. 3 1.0 0.5402 0.0102
Gap No. 4 2.0 0.6091 0.0099
Gap No. 5 4.0 0.6839 0.0160

termine each excitation frequency’s goodness of fit. The results are shown in Figure 5.8 and

Table 5.5.

Discussion

The error in the analysis rises as the excitation increases; although it must be noted that even

at 5 Hz of excitation, the goodness of fit was still within 1%. It is possible that the upload rate

of the Restoring Force Calculator is not fast enough and at high frequency levels of excitation,

this effects of the “lag” is highlighted. It is also feasible that the linear servo motor experiences

additional noise while performing motion at high frequency. Because the linear servo motor

moving much faster, the interaction between it and the electromagnet also may cause added

uncertainty.

The last possible theory for the additional amount of noise is due to the DAQ scan rate

of the Reconfigurable Test Setup Control Code (RTSCC). For this test, it was set at 200 Hz.

Figure 5.9 displays displacement vs. velocity phase plots under excitation frequencies of 1 and

5 Hz, respectively. At lower frequency excitation, a full phase plot is captured. However when

the excitation is increase to 5 Hz, the phase plot appears “choppy.” This suggests that the chosen

scan rate for this test was not fast enough.

With the above discussion in mind, it is difficult to precisely determine why the goodness of

fit decreased as excitation frequency increased. In future studies, the source of additional error
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Figure 5.8: Mean and standard deviation mean square error of Duffing models of increasing
excitation frequency. Data was compiled from a set of 20 iterations per frequency.

Table 5.5: Compiled MSE values (of IRFC and THEO restoring force values) over 20 Iterations
to Explore the Effect of Excitation Frequency

Excitation Frequency (Hz) Mean MSE MSE Std. Dev.
0.50 0.3328 0.0104
1.0 0.3371 0.0086
2.50 0.3914 0.0085
5.00 0.6475 0.0143

must be identified and improved upon.

5.2 Electromagnet Calibration

To calibrate the restoring force electromagnet, known voltage values (-10 to 10 volts in

1 volt increments) were input into the Aura Control Box and the moving mass was excited

with broadband random excitation for 30 seconds. This process was repeated for 20 iterations.

Despite the range of excitation, because the input voltage remains constant for each trial, the
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(a) 0.5 Hz Excitation (b) 5.0 Hz Excitation

Figure 5.9: Displacement vs. velocity phase plots for a Duffing model undergoing different
frequencies of excitation. The groupings of measurements in Figure (b) highlight the need for
a higher DAQ scan rate in this test.

output of the electromagnet should also remain constant. The mean of the recorded data sets

were compiled shown in Figure 5.10(a).

The results show that the electromagnet’s force output behaves nonlinearly, a common oc-

currence in many actuators. To determine appropriate scale and offset values, the force output

was restricted to its linear range (shown in Figure 5.10(b)) and a linear regression was per-

formed. The conversion factor between input voltage and restoring force is given in Equa-

tion 5.6.

This analysis shows that the output of the electromagnet is not linear. In future studies, it is

important that the chosen electromagnet be linear in its output force. With the current device,

the its nonlinearity may cause physical simulation issues (i.e. an increase in Restoring Force

Calculator computed value (IRFC) does not result in an exact increase in actual electromagnet

simulated restoring force (RFC)).
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Figure 5.10: Plot of input voltage values and the corresponding measurements recorded by the
restoring force gauge.

Electromagnet Force Output = 0.1218 ∗ Input Voltage− 1.8561 (5.6)

5.3 Actuator Noise and Post Filtering

In this analysis, the goal is determine if the linear servo motor or the electromagnet is con-

tributing high frequency noise into recorded measurements. To perform the test, the accelerom-

eter was utilized. During each of these tests, a broadband random excitation ranging from 0.1

to 5 Hz provided displacement orientated input motion for a length of two minutes.

First, the accelerometer was placed upon the non-moving surface of the linear servo motor.

In this way, the ambient vibration caused by its motion could be recorded. Then by performing

a Fast Fourier Transform (FFT), a determination of the frequencies of the ambient vibrational

noise was possible. The results are shown in Figure 5.11(a), where a signal between 90 and
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100 Hz is clearly visible. Next, the accelerometer was placed upon the surface of the moving

mass, but without an active restoring force (i.e. the restoring force electromagnet remained off).

Thus acceleration measurements recorded data from only the motion of the linear servo motor.

The FFT, shown in Figure 5.11(b), details a nearly uniform increase in frequency contributions

from that of Figure 5.11(a). Last, with the accelerometer remaining upon the moving mass, the

restoring force generator was activated. The FFT, shown in Figure 5.11(c), comprises of very

similar frequency contributions as Figure 5.11(b).

The results of Figure 5.11 demonstrate that the linear servo motor provides a considerable

content of high frequency vibrational interferences into the measurement signal. The Restoring

Force Electromagnet, on the other hand, does not.

Due to the presence of high frequency signal components in the physical measurements,

post-processing may be utilized to filter out unwanted data interferences. In this study, a Band-

pass Butterworth filter will be utilized. It includes both lowpass and highpass filtering abilities

and the use of a Butterworth filter does not distort the measured response. The motion frequency

of the broadband random excitement ranged from 0.1 to 5 Hz, therefore these frequency contri-

butions are desirable. Therefore by setting the lowpass frequency to 0.01 Hz and the highpass

to 30 Hz, desired response components will not be omitted.

Figure 5.12 details the differences between an unfiltered and filtered recorded data set. Fig-

ure 5.12(b) shows the variety of high-frequency noise present in the measurements. By restrict-

ing the acceptable frequencies (Figure 5.12(d)), a much cleaner signal results.
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(a) Actuator Ambient Noise
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(b) Movement without Restoring Force
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(c) Movement with Restoring Force

Figure 5.11: Fast Fourier Transforms (FFT) of acceleration measurements. Figure (a) was
taken from the surface of the linear servo motor. Figure (b) was taken from the moving mass
without engagement of the restoring force. Figure (c) was taken from the moving mass with
an active restoring force. This analysis displays the presence of high frequency noise in the
measurements. Notice that the activation of the restoring force generator causes little difference
between signal components. Because the excitation frequencies vary from 0.1 to 5 Hz, it is
theorized that through post-filtering with a Butterworth Filter between 0.01 and 30 Hz, a much
cleaner signal will result.
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(b) FFT of Unfiltered

(c) Filtered
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(d) FFT of filtered

Figure 5.12: A gap-space nonlinear model shown before and after post processing with cutoff
frequencies of 0.01 and 30.0 Hz. When comparing Figures (b) and (d), the utilization of the
Butterworth Bandpass filter eliminates the contamination of high-frequency noise resulting in
more distinctive characterization.
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6 PHYSICAL STUDY: APPLICATIONS

The overall goal of this research project is to showcase that the Reconfigurable Test Setup

is a viable tool for the physical creation of nonlinear dynamic data. In this chapter, a number

of practical applications that the Reconfigurable Test Setup can be used for are presented and

evaluated.

6.1 Damage Simulation

A possible use for the Reconfigurable Test Setup is to create physical data that can be used

in a change detection analysis, one of the goals of structural health monitoring (SHM). Accord-

ing to Yun and Masri, the development of a reliable SHM methodology is imperative for two

major purposes: (1) to avoid structural failure by detecting changes in the physical system com-

monly caused by deterioration, impact, and other structural modifications; and (2) to establish

effective time schedules for routine maintenance. In a 2008 study, Yun and Masri demonstrated

the normalized Chebyshev polynomials of the Restoring Force Method proved successful at

detecting genuine systems changes (Yun and Masri, 2008). This analysis was also confirmed

by the theoretical study discussed in Section 3.3.

Parameter Change without Time Dependency

To be able to reliably produce physical data that can be used in a change detection analysis,

the MSE between the physically measured (RFC) and the Restoring Force Calculator computed

restoring force (IRFC) must be similar for the two models. If this is the case, it is demonstrated

that the Reconfigurable Test Setup can accurately replicate similar dynamic models.

Duffing models were physically created with a nonlinear stiffness term (k3) of 0.30, dubbed

the “unchanged” model. The unchanged model was excited with a broadband random force
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(a) Duffing Model where K3 = 0.20 (b) Duffing Model where K3 = 0.30

Figure 6.1: Duffing models physically created by the Reconfigurable Test Setup to demonstrate
its ability to create physical data for change detection analysis. Over the course of 20 iterations,
a Duffing model with k3 of 0.30 had a mean MSE(%) of 14.02 compared to the Restoring Force
Calculator computed value, while the Duffing model with k3 = 0.20 had a mean MSE of 14.83.
In each figure, the red dots represent physically recorded restoring force values (RFC) and the
black line represents the Restoring Force Calculator computed value (IRFC).

for a period of one minute and 20 tests were performed. Then the nonlinear stiffness term was

decreased to 0.20 and the process was repeated. The second model was dubbed the “changed”

model. In each analysis, k1 was set at 0.75. This process was repeated 20 times and the mean

MSE was recorded.

It was found that the unchanged model had a MSE of 14.02% with a standard deviation of

1.4114% and the changed model had a MSE of 14.83% with a standard deviation of 0.8966%.

Displacement vs. restoring force phase plots of the identified values can be seen in Figure 6.1.

Parameter Change with Time Dependency

In a real-world application, the deterioration of an installed energy dissipation device could
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lead to a number of undesirable structural health outcomes, including catastrophic failure. In

the past, much effort has been spent devising structural health monitoring approaches to alert

critical maintenance personnel should a system change occur. However, it is very difficult to

analyze the physical behavior of a structure under a damage case because of the inability to

precisely control the deterioration rate.

Perhaps the most advantageous use of the Reconfigurable Test Setup test setup is its ability

to physically simulate “damage” or “deterioration” scenarios of a nonlinear device. By insert-

ing a “decay” or “growth” function (depending upon the intended damage expectation) into

the Restoring Force Calculator, the deterioration rate can be precisely controlled and physical

measurements recorded.

In a real world scenario, the deterioration of a nonlinear spring will lead to the softening

of the parametric coefficients and the decaying of each (k1 and k3) was explored. To control

the softening rate, the equation for experimental decay used in this analysis. It is given by the

equation:

N(t) = N0(Ae
−λ t +B) (6.1)

where N(t) is the current value of the parameters (either k1 or k3 depending on the analysis),

t is the algorithm loop number (i.e. time), N 0 is the original value of the coefficient, A is the

scale factor, B is the offset, and λ is the decay rate (Hall and Selinger, 1981). The values of A,

B, and λ were chosen such that the original coefficient would decay from its original value to

25% of its original value. Exponential decay was chosen so that the deterioration rate would

decay rapidly at the beginning of the test and then slow considerably near the end.

The properties of the decay allow for the researcher to analyze the effects of a fast or slow

deterioration with a single experimental setup. However because the decay rate is a nonlinear
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Table 6.1: Comparison between Update Rates of “Decaying” and “Undecaying” Simulations

Type Average Loop (ms) Average Elapsed Time (s)
“Decaying” 0.000016 59.9553

“Undecaying” 0.000015 63.4797

computation and a number of extra confining commands are required to allow for its compu-

tation, the elapsed time for update rate is dramatically reduced. To determine the effects of an

increased processing loop, the “decaying calculation” simulation were recorded twenty times.

For a basis of comparison, an “undecaying calculation” was also timed. The results are shown

in Table 6.1.

Although the difference between average loop length is only 0.000001 ms, difference be-

tween the two over an elapsed time of sixty seconds is over 3.5 seconds. Because the updating

rate is much slower, additional uncertainty is introduced into the control algorithm. This is an

issue that further complicates the successful reproduction of a damage scenario.

Two time-correlated damage condition analyses were performed: one with decay of the

linear coefficient, and anther with decay of the nonlinear coefficient. Each test was excited

with a broadband random force and lasted 540 seconds. The recorded data was split into nine

- sixty second increments. The time variation of the linear and nonlinear stiffness terms and

corresponding section increments are shown in Figures 6.2(a) and 6.2(b).

Figures 6.3 and 6.4 show the variation of the nonlinear models as the coefficients decay. By

viewing time lapsed phase plots, it is shown how the properties of the dynamic model change.

The decrease of the linear coefficient results in increasing dominance of the cubic term. Thus,

Figure 6.3 becomes increasingly nonlinear in its dynamic behavior. Conversely, the decay of

the cubic term (Figure 6.4) leads to a much more linear shaped model.

In a physical study, the ability for the Reconfigurable Test Setup to decay its dynamic prop-

erties is very important for a variety of reasons. To perform a similar study without the recon-
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(a) Decay of k1
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(b) Decay of k3

Figure 6.2: Decaying rate of coefficients k1 and k3.
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figurable test setup, a number of factors will limit proper experimentation: (1) physical decay

of an actual energy dissipation device is very difficult to achieve without actually damaging the

item. This process would obviously be very expensive; (2) experimental quantification of the

decay rate of a physical device will be unknown; (3) the actual decay of the device may take a

long period of time.

The reconfigurable test setup has the ability to showcase the deterioration of its parameters

and perform its deterioration in a controllable time window, making feasibility studies a more

realistic option. The studies are also completely repeatable, so confidence levels (of the global

effects of a deteriorated system) can be determined.

6.2 Physical Simulation of Nonlinear Viscous Damper

This chapter will demonstrate a practical application of the Reconfigurable Test Setup by

modeling a nonlinear orifice viscous damper (hereinafter viscous damper), a very versatile en-

ergy dissipation device.

6.2.1 Background of Viscous Dampers

A viscous damper requires no auxiliary power, as they are completely self-contained. Origi-

nally developed for military and demanding industrial applications, a viscous damper is a device

commonly installed on civil structures to passively dissipate energy generally produced by wind

or seismic activities. Similarly, viscous dampers have shown the ability to provide sufficient

damping at large velocities while limiting peak damper forces (Lin and Chopra, 2002).

The components of a viscous damper are shown in Figure 6.5 and generally consist of a

piston rod, a chamber filled with a compressible silicon fluid, and a control valve. A high

strength resin seal and a seal retainer keep the silicon fluids contained in the chambers (Soong

and Dargush, 1997). Ultimately, the dynamic performance characteristics of a damper depend
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(a) Segment 1 (b) Segment 2 (c) Segment 3

(d) Segment 4 (e) Segment 5 (f) Segment 6

(g) Segment 7 (h) Segment 8 (i) Segment 9

Figure 6.3: Time-lapse exponential decay of the linear stiffness term (k1) of a nonlinear spring as
modeled by the Reconfigurable Test Setup. The black line details the Restoring Force Calculator
computed restoring force value (IRFC) and the red dots detail the physically recorded restoring
force value (RFC).
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(a) Segment 1 (b) Segment 2 (c) Segment 3

(d) Segment 4 (e) Segment 5 (f) Segment 6

(g) Segment 7 (h) Segment 8 (i) Segment 9

Figure 6.4: Time-lapse exponential decay of the cubic stiffness term (k3) of a nonlinear spring as
modeled by the Reconfigurable Test Setup. The black line details the Restoring Force Calculator
computed restoring force value (IRFC) and the red dots detail the physically recorded restoring
force value (RFC).
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Figure 1. Components of a typical orificed viscous damper (Soong and Dargush, 1997).

control valves, rod make-up accumulator, and accumulator housing (Figure 1). For effective
energy dissipation, the viscous damper employs small orifices on its piston head so that the
fluid (usually compressible silicon oil) is forced to pass the orifices, when the piston recipro-
cates. The relationship between velocity and damping force follows a clear constitutive law
at relatively low frequencies (Constantinou et al., 1993).

In general, the viscous damper is utilized in a civil structure to control seismic, wind-
induced and thermal expansion motions, and it is usually arranged in one of the following
configurations: (1) a diagonal or chevron bracing element of steel or concrete trusses, (2) a
part of the wind/rain cable stays of suspension bridges, (3) a part of a tuned mass damper to
reduce the structure vibration, (4) a part of a base isolation system to add energy dissipation,
and (5) as a device for allowing free thermal movement. The viscous damper can be used
in the construction of a new building, or the retrofit of an existing structure. In the case
of structural retrofit, utilizing a viscous damper is frequently the only measure that will not
prolong lane closure and traffic interruption (Caltrans, 2003). Thanks to its effective energy
dissipation capability and wide range of application, the importance of viscous dampers in
vibration control has increased. Various applications of the viscous damper and other passive
control devices have been reported worldwide (Aiken, 1996� Housner et al., 1997� Kitagawa
and Midorikawa, 1998� Kareem et al., 1999� Chen and Duan, 2000� Wolfe et al., 2002�
Spencer Jr. and Nagarajaiah, 2003� Park and Koh, 2001� Ou and Li, 2004).

In the USA, after the Loma Prieta earthquake in 1989, the California Department of
Transportation (Caltrans) initiated seismic vulnerability assessment and subsequently retro-
fitting of all major California toll bridges (Caltrans, 2003). In order to improve the dynamic
characteristics of a specific bridge, viscous dampers were employed in some retrofit projects
(Sheng and Lee, 2003). An example is the massive retrofit effort recently completed on the
San Francisco–Oakland Bay Bridge, West Spans Suspension Bridge. More than 100 full-
scale viscous dampers (max. force: 3115 kN, max. stroke: �584 mm) were installed at
the truss-to-tower connections of the suspended spans as anti-seismic dissipators. Another
example of Caltrans’ retrofit projects is the Vincent Thomas Bridge, which employed full-
scale viscous dampers to limit the deformation of the suspended trusses (Baker, 1998).

In Europe, full-scale viscous dampers are also widely used for structural vibration con-
trol. A recent example of the viscous damper in new bridge construction is the Rion-Antirion

Figure 6.5: Components of a typical fluid orifice viscous damper (Soong and Dargush, 1997).

upon the configuration of the small orifices on its piston head. In order to dissipate an applied

force, small orifices on the piston head require the fluid to pass through the orifices in tandem

with the piston motion. Recently developed fluids have high strength, low viscosity, are stable

over a broad temperature range, and are insensitive to impurities commonly introduced during

manufacturing (Taylor, 1996).

Viscous dampers have a long life span, as they have been used for over 100 years in very

demanding applications, notably in aerospace and military applications (Taylor, 1996). They

can be installed on a new or retrofitted on an existing variety of structures, including (Yun et al.,

2008):

• diagonal component of a truss.

• portion of a cable stay on a suspension bridge.

• portion of a tuned mass damper (for vibration reduction).

• portion of a base isolation system.

Because of their ability to mitigate forces, viscous dampers are becoming increasingly pop-

ular to incorporate into the design of large civil structures. Photographs of nonlinear viscous
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dampers installed in a variety of in-field applications can be seen in Figure 6.6. Figure 6.6(a)

is from the Pacific Bell North Area Operations Center. This building includes a total of 62 vis-

cous fluid dampers each with a capacity of 130 kN. Together these devices will provide enough

structural damping to withstand a catastrophic earthquake. The building is essential because it

serves as the area’s emergency facility (Soong and Dargush, 1997). Figures 6.6(b) and (c) are

installed on the Richmond-San Rafael Bridge in San Francisco, California. On this project, 28

viscous fluid dampers each with capacities over 1000kN were installed on a bridge originally

built in the 1950’s. Their inclusion will allow the structure to withstand a “maximum credible

earthquake” (Taylor Device, Inc.).

The use fluid viscous dampers also have a number of recent documented successes. In the

aftermath of the March 2011 earthquake which heavily impacted Japan, Taylor Devices has

reported that of the 22 buildings and bridges currently installed with dampers, each site has

survived the earthquake without suffering any major structural damage (Clifford, 2011). Other

notable uses of viscous dampers are found in (Spencer, 1999; Park and Koh, 2001; Wolfe et al.,

2002; Agrawal et al., 2003; Li and Ou, 2008; Cheng et al., 2010).

A sizeable drawback of the use of viscous dampers is that its failure may result in a struc-

tural collapse. Because of the numerous dependencies upon a properly working device, in-situ

viscous damper health evaluation is crucial (Borcherdt, 2005). Many current in-situ inspection

practices involve a physical inspection. Although these tests are performed by an experienced

professional, minimal knowledge can be gained regarding the performance capabilities by a vi-

sual inspection. The inspector will often only be able to determine that the structural connection

is in good condition and that no viscous fluid leakage has occurred (Tasbihgoo, 2006). There-

fore, either physical testing or on-site health monitoring of a damping system is vital to ensure

the safety of the public.

For a large-scale viscous damper, physical testing is a very expensive process to remove
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(a) Pacific Bell North Area Operations Center (b) Side view of Richmond-San Rafael Bridge in San
Francisco, CA

(c) Underneath view of Richmond-San Rafael Bridge
in San Francisco, CA

Figure 6.6: Photographs of viscous dampers in various structural damping applications. (Photos
courtesy of Taylor Devices, North Tonawanda, NY.)
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the device from its field position and transport it to a testing laboratory. Additionally, few

laboratories have the equipment or the size needed to properly test these large devices. In this

section, it will be demonstrated how the dynamic signature of the large-scale viscous damper

can be simulated by the compact reconfigurable test setup.

6.2.2 Simplified Mathematical Modeling

The restoring force of a nonlinear viscous damper can be modeled as (Wolfe et al., 2008):

f(t) = Csgn(u̇)|u̇|n + p(u, u̇, ü, T ) + ε(t) (6.2)

where f(t) is the damping force, c is the damping coefficient, n is the exponent that defines the

damping nonlinearity (n = 1 for linear; n < 1 for softening; and n > 1 for hardening), T is the

internal temperature of the damper, and ε(t) is a random identification residual. The signum

function extracts the sign of a number (-1 for u̇ > 1, 0 if u̇ = 0, and 1 for u̇ > 1). This equation

is also applicable for design purposes (Hart and Wong, 2000; Minyamoto and Hanson, 2002).

However because the behavior of a damper is a function of a number of parameters, a simpler

method describing its motion for in-situ applications is desirable.

The dynamic properties of a viscous damper specified by the manufacturers must meet ac-

ceptable design requirements. Although numeral quality-assurance test procedures have been

developed, the guidelines published by the Highway Innovative Technology Center (HITEC)

remain the most popular in practice (HITEC, 1996, 1999b,a). The Reconfigurable Test Setup

modeling application will focus upon a number of static, dynamic, and stability tests for various

energy dissipation devices.

A viscous damper’s damping characteristics follow a nonlinear constitutive law at relatively

low frequency expressed as
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f(t) = Csgn(u̇)|u̇|n (6.3)

and is referred to as the Simplified Design Method. Damper manufacturers use this equation to

specify the energy dissipation capacity of the damper, by specifying the damping ratio, c, and

its nonlinearity parameter, n, which defines the hysteresis loop shape (Lin and Chopra, 2002).

To determine the device’s frequency dependency, HITEC testing guidelines specify a series of

monotonic sinusoidal tests at different frequencies and a constant displacement amplitude. The

parameters of the model are identified by Equation 6.3 which is valid when the inertia (mü) and

the stiffness (ku) terms are insignificant and the frequency of the excitation is low.

Should these assumptions be untrue, other possible modeling equations include:

f(t) = mü+ Csgn(u̇)|u̇|n (6.4)

and

f(t) = mü+ Csgn(u̇)|u̇|n + ku (6.5)

where m is the mass of the damper piston and k is the identified linear stiffness. The first equa-

tion compensates for numerical instabilities during analytical testing. These issues typically are

not encountered in practice because the mass of the piston is negligible compared to the mass

of the overall structure. The second equation takes into account the stiffness of the damper, as

resent research has shown can significantly contribute to the force applied by the damper (Yun

et al., 2008; Wolfe, 2002). Displacement can play a key role in the determining of a viscous

damper’s output force due to its internal design (Wolfe et al., 2008).
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Figure 6.7: Simplified mathematical model of a nonlinear viscous damper.
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(a) Softening Viscous Damper
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(b) Linear Viscous Damper
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(c) Hardening Viscous Damper

Figure 6.8: Velocity vs. restoring force phase plots for (a) softening, (b) linear, and (c) harden-
ing nonlinear viscous dampers. A softening damper will have a n less than 1, a linear damper
will have a n equal to 1, and a hardening damper will have a n greater than 1.

The industry standard, however, for the design and modeling of viscous dampers remains

with Equation 6.3. Figure 6.7 details how the damper test assembly can be configured to func-

tion as a simplified mathematical model. As shown, a nonlinear viscous damper will display a

nonlinear relationship between velocity and restoring force very similar to Figure 2.1 (Tasbih-

goo et al., 2007). Figure 6.8 detail the shapes of: (a) a softening viscous damper; (b) a linear

viscous damper; and (c) a hardening linear damper.
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Figure 6.9: Recorded displacement and velocity measurements of a nonlinear damper under-
going monotonic sinusoidal excitation. When velocity nears zero, the interaction between the
restoring force generator and the linear servo motor becomes uncertain. It is theorized that a
“stronger” linear servo motor will limit the modeling instability.

6.2.3 Velocity Dependent Modeling using the Reconfigurable Test Setup

The physical modeling of a solely velocity-dependent dynamic model is somewhat different

than a displacement-dependent model. The primary reason for the difference is because unlike

displacement, velocity is a derived measurement value and is therefore much more susceptive

to small changes in magnitude and sign. The faults of the current setup at modeling a nonlinear

damper are best demonstrated in Figure 6.9, which displays recorded displacement and velocity

over time. In this particular example, the damper is being excited by a monotonic sinusoidal

excitation. When the linear servo motor reaches the peak of its path and velocity approaches

zero, instability exists within the dynamic simulation. This causes uncertainty in the system

until the input force begins moving at a higher magnitude velocity. This instability could be

resolved by an increased stiffness term, but the equation of dynamic motion will be altered.
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A possible remedy to the uncertainty of the modeling of nonlinear dampers at low velocities

is the application of a broadband random force. As discussed in HITEC (1996), it is much

more advantageous to excite a damper under a variety of frequencies. This is also beneficial in

viscous damper modeling with the Reconfigurable Test Setup as the use of a broadband random

excitation will result in rapid changes in velocity due to frequent, random changes in frequency.

In Figure 6.10, a variety of velocity-dependent nonlinear models physically simulated (RFC)

by the Reconfigurable Test Setup are displayed. Because each model is solely dependent upon

velocity, the velocity vs. restoring force phase plots detail the governing system characteristics.

Each has been excited by a broadband random force ranging from 0.1 to 5 HZ. Similarly, a

Bandpass Butterworth post-processing filter (ranging from 0.01 to 30 HZ) has been applied.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: A number of nonlinear damping models physically simulated (RFC) by the Recon-
figurable Test Setup system. Row 1 details three “softening” models (n = 0.25, 0.50, and 0.75,
respectively); Row 2 displays a linear damper (Figure 6.10d) and two increasingly “harden-
ing” models (n = 1.25 and 1.50 respectively); and Row 3 plots three highly nonlinear damping
models (n = 3, 5, and 6 respectively).
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7 SUMMARY AND CONCLUSIONS

7.1 Summary

The overall goal of this study was to develop and present a robust and versatile system

that is able to replicate the dynamic properties of a variety of physical systems. The major

components of the apparatus include a reprogrammable restoring force generator and corre-

sponding restoring force calculator, a sophisticated data acquisition system with a number of

direct-measurement sensors, and a linear servo motor capable of providing a variety of excita-

tion types.

To explore the effects of uncertainty upon dynamic model creation and system identifica-

tion, a number of dynamic models were synthetically created using software. Parametric and

nonparametric system identifications were then performed on the data. System uncertainty,

when present only on the input force vector, did not affect the identified coefficients, but error

was present in the force recreation. It was demonstrated that measurement uncertainty had both

undesirable effects upon the system identification and recreation of the force. A study was also

presented to verify the change detection ability of orthogonal basis functions with a reduced

order model.

Much effort was devoted to calibrating the Reconfigurable Test Setup. It was discovered

that real-time smoothing with a weighted average improved the accuracy of the Restoring Force

Calculator. Additionally, the procurement of a more “sturdy” linear servo motor would decrease

the uncertainty in the electromagnet/linear servo motor interaction, thus improving repeatabil-

ity and accuracy of the physical simulation. It was also demonstrated that the frequency of

excitation had little effect upon the accuracy. Lastly it was established that the electromagnet

has a nonlinear relationship between input voltage and output force. Considerable simulating
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improvements can be achieved with an electromagnet with a linear output relationship.

Despite the number of improvements needed on the current configuration of the test setup,

it was demonstrated that the Reconfigurable Test Setup is capable of physically simulating a

variety of dynamic models. In this study, two possible uses were demonstrated: change detec-

tion and physical system deterioration. Because the control of these models are easily repro-

grammable with software, the setup also has the ability serve as a cross-cutting tool in a variety

of research purposes including: system identification, health monitoring, stochastic quantifica-

tion, and model validation.

A discussion was presented regarding the current modeling techniques of velocity-dependent

nonlinear dynamic models, specifically a nonlinear viscous dampers. It was demonstrated the

test setup has the ability to physically model a range of dampers. However due to the nature

of precisely controlling a model heavily dependent upon a derived measurement state, further

calibration of the test setup is required.

The work presented in this study demonstrate a number of potential uses of the Reconfig-

urable Test Setup as a viable tool for the simulation and identification of problems involving

single degree of freedom dynamic phenomena. The Reconfigurable Test Setup shows great po-

tential as a research tool for those working in the applied mechanics, educational, or research

fields.

7.2 Challenges Presented in the Physical Simulation of Restoring Properties with

Software

The creation of a device capable of reproducing the physical restoring properties of a dy-

namic model with software is a very challenging endeavor. As this project is an introductory

study, a number of challenges have been met. Although a number of solutions methods to these

difficulties have been proposed, they are by no means perfected. With further analysis into these
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issues, a more reliable test-setup will result.

The method does however, show great promise in its abilities and real-world functionalities.

But with the ideology’s introduction into in-field applications, comes the added difficulty of

performing experimentation outside the confines of a laboratory. The following is a list of

difficulties that must be overcome for a reliable real-time simulation device:

1. Input measurements must be free of measurement noise.

• Physical simulation of restoring properties is highly dependent upon directly recorded

measurements. The presence of measurement noise leads to great error introduction

into output results. Further complicating the matter is the fact that velocity and

displacement measurements are utilized in real time to calculate the value of the

restoring force.

• Because a degree of noise will be present in all physically recorded measurements,

the researcher must take steps to ensure contamination is kept to a minimum. Wires

must be shielded and grounded. Real-time filtering is an option that shows promise

but its implementation will not reduce computation time. In this study real-time

weighted averaging was explored and it was determined for a displacement-dependent

nonlinearity, a four-term weighted average proved most accurate.

2. Synchronization between timing clocks of Restoring Force Calculator and data ac-

quisition control must be achieved.

• Recorded displacement and velocity measurements are sent directly to both devices.

A lag between the two will cause a discrepancy between the calculated output force

(which is based upon displacement and velocity readings) and recorded displace-

ment and velocity readings. The lag will create hysteretic results.
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• Synchronization is increasingly crucial as the reconfigurable test setup is used for

more complex analysis types. For instance in a deterioration study, the current co-

efficient needs to be recorded along with measured restoring force so the two can

be quantitatively compared. Desynchronization will lead to additional error. The

achievement of synchronized clocks is crucial for reliable damage simulation based

upon software. A possible solution to the issue of synchronization is the consolida-

tion of the data acquisition, excitation, and Restoring Force Calculator codes into a

single CPU.

3. Input force must not be affected by restoring force.

• For repeatability purposes, it is critical that the input force is not affected by the

restoring force output. Failure to do so will lead to unwanted hysteresis effects.

• Through experience in working with the apparatus, a visual inspection of an oper-

ating test will show no obvious signs of its motion being affected. However small

variations are easily noticed in displacement/force interactions shown by phase plots

- particularly when the forcing motion changes frequencies and amplitudes of exci-

tation. Because of the nature of the dynamic models, the input force/restoring force

interaction is increasingly critical to limit with velocity dependent dynamic models.

4. Algorithm update rate must remain as fast as possible.

• The updating rates of the reconfigurable setup’s components must be maximized so

that real-time updating of the dynamic model is possible. However, an increasingly

high updating rate also introduces more uncertainty into the analysis. Therefore, a

balance between modeling accuracy and updating rate must be reached.

5. Restoring force generator must be specifically designed for dynamic modeling.
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• The restoring force generator (the controller and electromagnet) utilized in this study

was originally designed to be operated in a manufacturing environment. Because

this was its intended use, high output force precision and controller updating rate

were not top criteria in its design considerations. Thus the physical modeling ac-

curacy of the current test setup is limited by the controller’s performance. In future

studies, a custom device with output accuracy and updating rate as chief design

features is recommended for usage.

• Similarly, the device’s output force does not follow a linear calibration, which is

essential for accurate physical simulation.

6. Superfluous vibrations must be minimized.

• A number of measures were taken keep vibrations to a minimum, including: per-

forming the experimentation on an industrial device whose purpose is to limit vibra-

tion (an optical table), shielding connection wires, and lowpass filtering the analog

signal sent to the input. Despite these efforts high-frequency vibrations were still

present in the test setup, primarily due to the linear servo motor. For enhanced

modeling accuracy, these interferences must be diminished.

7.3 Future Studies Planned using the Reconfigurable Test Setup

A number of future studies with the Reconfigurable Test Setup are planned for the develop-

ment of a wide range of experimental nonlinear dynamic studies. As an immediate need, the

device will require further calibration to increase accuracy and reliability of the force output.

The current configuration must also be improved, as noted by the shortcomings discussed in

Section 7.2.

Although deterioration of system parameters was discussed in this study, a possible appli-

cation of the device is the ability to have the system parameters of the restoring force as random
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variables, so that the uncertainty effects upon the dynamic response can be studies experimen-

tally.

The deterioration and random variable methodologies can also be applied to a physical

structure, as the methodology introduced by the Reconfigurable Test Setup can be taken into

the field. In this way, the propagation effects of the uncertainty can be determined through the

coupled structure. Since the deterioration rate or uncertainty bounds are either known or able

to be determined, the effects upon the attached structure can also able to be experimentally

quantified.

7.3.1 Sample Applications

The Reconfigurable Test Setup has the potential to be a valuable tool for experimental stud-

ies in a wide range of engineering fields. In this section, three real-world applications using the

Reconfigurable Test Setup are described.

Deterioration of a Viscous Damper installed on a Bridge

Civil Engineering Application

As described in Section 6.2.1, viscous dampers are becoming increasingly popular to in-

corporate into the design of large civil structures due to their ability to mitigate dynamic forces.

For this reason, the study of nonlinear viscous dampers and other devices of this type is im-

perative. In the past, much effort has been spent to devise reliable structural health monitoring

approaches to detect changes in the properties of these devices.

However, significant efforts must also be placed upon analyzing the additional forces in-

curred by surrounding structural members as a result of a damper’s deterioration. For exper-

imental quantification and analysis, the Reconfigurable Test Setup can be installed upon the

actual structure to perform a deterioration study. Figure 7.1 details the locations of viscous
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(a) Elevation view

(b) Viscous dampers installation

Figure 7.1: Installation of viscous dampers upon a long-span bridge. Figures drawn from plans
originally designed by Arup (2011).

dampers installed upon a generic, long-span bridge. Using the design criteria from the installed

viscous dampers, the Reconfigurable Test Setup can physically simulate its attributes and dete-

riorate in a controlled manner. In this way, the stochastic effects of complex nonlinear dynamic

components that propagate through adjacent components can be experimentally quantified.

With the knowledge gained from this type of study, “critical elements” can be identified for

design modification. Additionally, the bridge maintenance plan may be able to be modified,

allowing for the maintenance budgets to be more efficient.

Design of an Automobile Suspension

Mechanical Engineering Application

The Reconfigurable Test Setup is able to physically simulate a wide range of nonlinear phe-
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nomena. Thus, it can be used to aide and verify engineering designs. An example of this appli-

cation can be considered for the design of an automotive shock absorber, shown in a simplified

model in Figure 7.2.

One engineering design application example would be if an automobile designer wanted

to determine what damper properties would provide the smoothest driving experience when

installed in parallel with an existing spring. In a traditional study, the engineer in charge of the

project would likely gather a number of available dampers and attach the spring to each one.

Then the two devices would be subjected to a load and the results would be analyzed. The

process would repeat itself numerous times and the “best fit” would be chosen. Undoubtedly

the procedure will yield a result, but the process would be very time consuming and the chosen

solution would come from the physical devices actually analyzed.

On the other hand, the pre-existing spring could attached in parallel to the Reconfigurable

Test Setup and the excitation of a rough-road test could be applied to the system. The researcher

would have the ability to easily vary the damping characteristics of the apparatus, determine

which work best, and select a physical damper with the similar characteristics. In this way, a

wide range of system characteristics could be evaluated in a time efficient manner with a single

test setup.

Recoil Study of a Mounted Turret

Military Application

Many military-use devices, such as tanks, turreted artillery, and missile launching com-

ponents are subject to severe impulse loads when delivering their payload. To ensure proper

functioning of the device, these forces must be dissipated effectively. According to Chen and

Wereley (2004), active damper fluids (such as magnetorheological or electrorheological) are

preferred over passive alternatives (such as viscous fluids) due to superior performance in dissi-
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Figure 7.2: Elevation view showing the location of shock absorbers installed on a vehicle chas-
sis.

Figure 7.3: Model of a mounted turret (Chen and Wereley, 2004).

pating large impulse loads. Figure 7.3 details a model of a typical mounted turret where energy

dissipation is provided by the spring (labeled as “A”) and a passive damper (labeled as “B”)

(Chen and Wereley, 2004).

General military convention suggests with decreased recoil, increased target accuracy and

firing rate can be achieved. In the weapon design and prototyping phase, the use of the Recon-

figurable Test Setup would allow a military researcher to experimentally couple a range of active

damping system characteristics with a certain caliber weapon. As the two are experimentally

combined and evaluated, a more efficient design can be explored.
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8 APPENDIX

The Reconfigurable Test Setup approach introduced in this research project will be the basis

of conference paper to be presented at the 6th International Conference on Bridge Maintenance,

Safety and Management (IAMBAS 2012). The conference will be held from July 8-12, 2012,

in Villa Erba, Lake Como, Italy. Included is the accepted abstract for this paper, entitled “Non-

linear Dynamic Modeling with a Reconfigurable Test Setup.”

Also included are two conference papers that have been coauthored during my graduate re-

search. They will be introduced at the International Symposium on Innovation & Sustainability

of Structures in Civil Engineering (ISISS 2011). The conference will be held from October

28-30, 2011 at Xiamen University, Xiamen, China. Included are the full versions of the confer-

ence papers, entitled “A Non-Parametric Identification Methodology for Large-Scale Nonlinear

Dynamic Systems with Uncertain Measurements” and “System Identification and Classification

of Stochastic Change Detection of Uncertain Nonlinear Systems with Reduced-Order Models,”

respectively.
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Experimental nonlinear dynamics is an important area of study in the field of structural engineering 

and structural health monitoring. A great challenge is the inability of a physical device to have 

complete freedom to simulate a wide range of nonlinearities. As a result, many researchers have 

longed for a versatile, but accurate, test apparatus capable of validating nonlinear modeling, system 

identification, and stochastic analysis studies. 

The objective of our study is to develop a reconfigurable test setup as a tool to be used in a 

wide range of nonlinear dynamic studies. The main components include a moving mass whose 

restoring force can accurately be controlled and reprogrammed (with software) based upon directly 

measured displacement and velocity readings at each time step. The device offers control over 

nonlinear characteristics (coefficients) and the equation of dynamic motion. The advantage of having 

such an experimental setup is the ability to simulate various types of nonlinearities with the same test 

setup. As a result, data collected can be used to help validate dynamic models or system 

identification methods. 

To display a practical application of the device, a case study is presented to physically 

simulate an orifice viscous damper, commonly used in vibration mitigation in bridges and buildings. 

For a large-scale viscous damper, physical testing is needed to ensure proper working functionality; 

however it is a very expensive process and few laboratories have the equipment needed to properly 

test these large devices. Conversely with the use of the compact reconfigurable test setup, the 

dynamic signature of the large-scale viscous damper can be simulated with pre-collected data. 

The apparatus is a useful tool for researchers and designers, allowing for physical data 

collection for system identification or uncertainty quantification purposes. 
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Abstract: In the field of structural dynamics, the data recorded by measurement sensors are often polluted by 
measurement uncertainty, commonly referred to as “noise.” The effect of the measurement uncertainty is 
frequently oversimplified to be simple additive Gaussian noise in many studies. In addition, for civil structures, 
such as large-scale nonlinear viscous dampers, stochastic quantification, which requires the collection of a 
large number of data sets, is often infeasible due to high costs associated with repeated physical testing even in 
laboratories equipped with large loading frames. A methodology is proposed for change detection of a dynamic 
model in the presence of uncertain measurements with limited physical data. It was demonstrated that reliable 
change detection is possible with the Restoring Force Method, a non-parametric system identification 
technique, because: (1) small changes of a nonlinear system are detectable; (2) physical interpretations are 
possible; and (3) the uncertainty of detected changes are quantifiable without a priori system characteristic 
knowledge. 
Keywords: large-scale viscous damper, change detection, non-parametric identification, data resampling, 
Restoring Force Method, Bootstrap Method 
 

1. INTRODUCTION 
A number of types of uncertainty may exist in the field of structural dynamics that have an adverse effect upon 
system identification. These uncertainties can generally be classified into two broad categories: measurement 
uncertainty and system parameter uncertainty. This study pertains to measurement uncertainty, commonly 
referred to as “noise.” In real-world applications, measurements are taken by sensors which are often polluted 
by noise from a variety of sources. In many cases of in-situ monitoring, only a limited set of data (e.g., 
displacement or acceleration) is measured, depending on the measurement feasibility, and other necessary 
response states are numerically obtained through digital signal processing techniques. In such cases, the effects 
of measurement noise are not simply additive, and propagate throughout the response states.  
 
Due to recent innovations in web-based communication and remote sensing, the practicality of a real-time 
remote monitoring system is feasible for civil infrastructure projects. For robustness, the designed change 
detection methodology should be able to deal with complicated noise effects. In addition, for full-scale 
(nonlinear) viscous dampers, stochastic quantification requires a large data set and often is infeasible due to 
high costs associated with repeated physical testing. 
 
The objective of this study is the proposal of a methodology for change detection of a dynamic model in the 
presences of limited physical data. Overall, the proposed methodology will provide contributions to the health 
monitoring field in the following three ways: 
 

• Enabling the interpretation of physical significance of detected changes, one can quantify the 
significance of the changes at the full-structure level as well as at the component level. This attribute 
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remains even when the dampers' evolving properties change into different classes of nonlinearity, due 
to various types of deterioration. 

• With more reliable condition assessment methodologies, one can minimize unnecessary removal of 
undamaged dampers. Damper removal from civil structures is time-consuming and expensive due to 
their large physical size. 

• Since the methodology proposed in this study employs non-parametric and data-driven system data 
processing techniques, the same approach is applicable to other types of nonlinear components, such 
as different types of energy dissipating devices, base isolators, and nonlinear joints. 

 

2. Experimental Study 
Three different large-scale nonlinear viscous dampers were tested at two different test facilities: the 66.7 kN 
viscous damper was tested at the University of California, Berkeley (designated as Damper A), and the 2001.6 
kN and 2891.3 kN viscous dampers were tested at the University of California, San Diego (designated as 
Damper B and C, respectively). The testing protocols of each are outlined in Table 1.  
 

Table 1. Nonlinear viscous dampers used in this study 
Parameters Damper A Damper B Damper C 
Recorded Measurements Acceleration, Force Displacement, Force Displacement, Force  
Damping Characteristics Linear Nonlinear Nonlinear 
Time-Invariancy Time-invariant Time-invariant Time-varying 

Stiffness Response 

   

Damping Response 

   
 

3. Non-Parametric System Identification 
 
A non-parametric SI approach, the Restoring Force Method (RFM), was chosen to be utilized in this study due 
to its ability to characterize a wide range of nonlinearities (Masri and Caughey, 1979). Using RFM, the 
restoring force of a single-degree-of-freedom nonlinear dynamic system can be modeled as 
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where r(x,ẋ) is the restoring force of the nonlinear dynamic system, !!"  is the normalized Chebyshev 
coefficient, Ti is the ith order Chebyshev polynomial, P and Q are the highest input modeling orders of the 
Chebyshev polynomial of the normalized displacement (!) and velocity (!), respectively, within the range of 
[-1,1]. Once the normalized Chebyshev coefficients are identified, they can be converted into the equivalent 
power series coefficients: 
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Thus, three kinds of equivalent coefficients are available using the RFM: normalized Chebyshev coefficients 
(C!"), normalized power series coefficients (a!") and de-normalized power series coefficients (a!"). The basis 
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functions for C!"  are orthogonal, while the basis functions for a!"  and aij are non-orthogonal. The 
orthogonality of the basis functions significantly influences the stochastic properties of the identified 
coefficients, and as well as the performances of the system change detection capability (Yun and Masri, 2008). 
 

4. Statistical Change Detection 

4.1. Identification of Viscous Dampers 
 
The classification of a nonlinear, time-varying system (Damper C) requires partitioning of the measured 
response. As shown in Fig. 1, the time history was broken into 8 segments (where 10 cycles of response were 
recorded in each). Deterministic studies were performed upon each of the dampers and it was demonstrated 
that RFM was applicable to each and physical interpretations could be made without a priori knowledge. (Yun 
et. al, 2009). 
 

 
Fig. 1. Partitioning of the time history of the measured force of Damper C for system identification. 

 
 
4.2. Uncertainty estimation of damper identification 
 
A Monte Carlo simulation was performed to generate 3,000 unique data sets where 5% additive zero-mean 
Gaussian noise was introduced in terms of the root-mean-square (RMS) of the recorded measurement state. 
Since only acceleration or displacement was recorded during the tests, the velocity was numerically obtained to 
estimate the restoring force of the viscous damper. Consequently, the noise was propagated throughout the 
numerically obtained velocity – resulting in non-additive-Gaussian-noise. Additive and non-additive Gaussian 
noise is compared in Fig. 2. After the synthetic introduction of noise, system identifications of each damper 
were performed with RFM. A sample system identification for Damper C is shown in Fig. 3.  
 
 

     
                        (a)                   (b)                  (c) 
Fig. 2. Noisy response time histories. (a) and (b) detail measured displacement and force polluted with 5% 
zero-mean additive Gaussian random noise. (c) The velocity is obtained through numerical differentiation of 
the polluted displacement, detailing the noise effects are much more complicated than simple additive noise. 
 
Fig. 4. shows the statistical correlation between identified coefficients. Although no correlation is seen between 
first order damping a!"   and linear stiffness a!"   , a strong bias is seen between the linear   a!"   and cubic 
damping a!" .   Examination of Figs. 4(c) and (d) illustrate that no significant statistical correlations are 
observed between the identified normalized Chebyshev coefficients. Thus, the normalized Chebyshev 
coefficients of the RFM (C!") prove to be a valid change indicator because statistical independence is preserved 
due to its orthonormal basis function (Yun et. al, 2009). 
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Fig. 3. A sample identification result for the noisy measurement data using the Restoring Force Method. 

 

 
        (a)                     (b)                   (c)                   (d) 

Fig. 4. Sample scatter plots of the normalized power series coefficients (a!") and normalized Chebyshev 
coefficients (C!")    of the noisy response of a nonlinear, time-variant damper. 

 
The distribution of the identified, normalized Chebyshev coefficients for Damper C were obtained. The 
distribution of the most dominant coefficient, C!!, is shown in Fig. 5. As the measured response decreases 
with time, so does the mean of the identified coefficients. The standard deviation, however, remains relatively 
constant throughout the. In an in-field monitoring application, by assembling the distribution of the identified 
coefficients:  

• One can accurately check if a genuine system change has occurred through comparison of the mean 
of the identified coefficients; 

• One can interpret physical meaning of detected system change.  In this particular example, it is 
shown that the actual changes are due to the degradation of damping rather than stiffness without 
physical knowledge of the degrading damper; and 

• The uncertainty of system change detection is quantifiable through comparison of the standard 
deviation. The orthogonality of the Chebyshev polynomials allows avoiding computationally 
challenging multiple integral including the coefficients of all series expansion terms.  Instead, single 
integral for each coefficient term can be performed for statistical testing. 

 

 
Fig. 5. Histogram and probability density functions of C!" for different time windows.  

 

5. Data Recycling 

5.1. The Bootstrap Method 
 
The uncertainty quantification presented in Section 4 required a very large data set. However, collecting 
sufficient data sets of large-scale viscous dampers for reliable statistical estimation is very difficult and 
expensive. The Bootstrap method is a statistical data recycling technique for the uncertainty estimation of 
identification parameters. This method is commonly used where the estimation of parameter uncertainty is 
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needed, but an insufficient amount of data is available for a statistically reliable uncertainty quantification. 
Excellent introductory literature on the Bootstrap method can be found in Davison and Hinkley (1997). 
 
5.2. Resampling of Data Process 
 
Single data sets of Dampers A, B, and C were recycled with the Bootstrap method using the following 
procedures. However, different procedures are required depending upon whether force and displacement 
(Damper A) or force and acceleration (Dampers B and C) were measured. The procedures are summarized in 
Fig. 6. 
 

 
(a) With measured displacement and force (Dampers B and C) 

 

 
(b) With measured acceleration and force (Damper A) 

 
Fig. 6. Bootstrap resampling procedures with measured (a) displacement and force and (b) acceleration and 

force 
 

5.3. Comparison of Recycled and Physically Recorded Data 
 
A sample comparison between the original and Bootstrap-resampled data is shown in Table 2. For 
displacement and force initial measurements, the recycled data show slightly larger dispersion than the original 
data. However, as shown in Table 3, the error estimates with the Bootstrap method are larger than those with 
physical tests – meaning the Bootstrap method yields more conservative results. 
 
For acceleration and force initial measurements, the range of the Bootstrap-resampled velocity is nearly 
identical to the physically recorded velocity in the velocity-force plot. However, the resampled displacement is 
approximately twice that of the physically recorded displacement, giving strong indications of a statistical 
biasness as the secondary integration is performed. It is therefore recommended the Bootstrap method only be 
used should displacement and force be the physically recorded measurements.  
 

6. Conclusion 
The methodology discussed in this paper is applicable to various nonlinear systems with uncertainty because 
no a priori knowledge is required. The normalized Chebyshev coefficients (of the RFM) can be used as an 
indicator to detect and quantify the uncertainty bounds of system changes. Physical interpretations of the 
detected changes are also possible. Bootstrapping data was also explored with noisy measurements and it was 
found that system identification could be estimated reasonably accurately, provided displacement and force are 
measured. 
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Table 2. A comparison of the original and Bootstrap-resampled data. The upper half of the table displays 
displacement-force plots, while the lower half shows the velocity-force plots. 

 
Type Damper A Damper B Damper C 

Original 

   

Bootstrap 

   

Original 

   

Bootstrap 

   
 
 

Table 3. Bootstrap estimations of errors for the coefficients identified using the Restoring Force Method 
 

Type Damper A Damper B Damper C 
Physical Bootstrap Ratio Multiple Bootstrap Ratio Physical Bootstrap Ratio 

!!" 0.19 0.32 1.68 14.26 17.35 1.22 32.17 42.14 1.31 
!!" 0.16 0.31 1.94 8.60 12.22 1.42 17.17 26.21 1.53 
!!" 0.14 0.32 2.29 14.09 18.63 1.32 28.40 37.81 1.33 
!!" 0.10 0.20 2.00 9.14 12.49 1.37 20.71 27.47 1.33 
!!" 0.69 1.44 2.09 115.28 149.10 1.29 245.46 311.77 1.27 
!!" 0.74 1.64 2.22 86.03 104.55 1.22 198.68 235.09 1.18 
!!" 2.32 4.76 2.05 360.35 474.97 1.32 786.05 983.70 1.25 
!!" 2.26 5.67 2.48 322.88 395.84 1.23 669.23 823.17 1.23 
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Abstract A reliable structural health monitoring (SHM) methodology is proposed to detect relatively small 
changes in uncertain, time-varying, nonlinear systems. Using a nonlinear magneto-rheological (MR) damper, 
effective system changes and uncertainties were precisely controlled over the course of 4000 physical tests. 
The tested MR damper was identified with the Restoring Force Method (RFM), a non-parametric system 
identification method involving two-dimensional orthogonal polynomials. Classification results shows that the 
identified coefficients with orthogonal basis functions can be used as reliable indicators for detecting small, 
genuine system changes with reduced-order models. An optimal design procedure is also proposed and for the 
classification of detected system changes. The use of the MR damper to create physical change detection data, 
while suitable in this study, does not have complete freedom to simulate a wide range of nonlinearities. To 
allow for the physical modeling of a wide range of nonlinear models, the authors also introduce an 
experimental setup whose restoring force can accurately be controlled and reprogrammed (with software) 
based upon directly measured displacement and velocity readings at each time step. 

Keywords: magneto-rheological damper, Restoring Force Method, Support Vector Machines, change 
detection, non-parametric identification, system uncertainty 

 

1. Introduction 
The structural health monitoring (SHM) for a complex physical system presents a number of challenges 
including: the structure’s nonlinear dynamic characteristics, system parameter and measurement uncertainties, 
and the need to reliably detect small changes in system characteristics. Moreover, in many field applications, 
the physical complexity of timely deteriorating dynamic systems is unknown, so that mathematical models 
with reduced-order complexity are commonly used.  
 
The significance of modeling error can be classified according to the relationship of the system complexity, 
O(p), and the model complexity, O(q). If the true system parameters, p, are uncertain, the relationship between 
O(p) and O(q) can be represented in one of the following states: 
 

i. O(p) > O(q): the system complexity is greater than model complexity (underfitting); 
ii. O(p) = O(q): the system complexity is equal to than model complexity (perfect fitting); 

iii. O(p) < O(q): the model complexity is greater than system complexity (overfitting). 
 
In practice because p is often unknown, system identification is rarely perfect fitting. Mita and Hagiwara (2003) 
demonstrated when the system identification is either underfitting or overfitting, the identified q is generally 
statistically biased rendering change detection inaccurate.  
 
To develop a reliable structural health monitoring methodology applicable for in-field applications, these 
obstacles must be overcome. The method must: (1) be versatile enough to deal with timely deteriorating 
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systems, whose physical characteristics are unknown after deterioration; (2) have the ability to detect system 
changes using reduced-order models; (3) allow for physical interpretations of the changes; and (4) have the 
capability of uncertainty quantification where depending on the confidence level of damage detection, 
appropriate action can taken. 
 
With the above discussion in mind, the objective of this study is to develop a reliable change detection 
methodology for uncertain nonlinear systems. 
 

2. Experimental Study 
The properties of a semi-active magneto-rheological (MR) damper are controllable through changing the 
magnitude of the input current fed to the damper’s electromagnet. A total of 4000 tests were performed with 
different means and standard deviation of input current. During the tests, the displacement (!), velocity (!), and 
force (!) were measured separately. A schematic of the instrumentation system architecture is shown in Fig. 1. 
 

 
Fig. 1. Schematic of the instrumentation system architecture for the magnetorheological (MR) damper test 

apparatus. 
 

3. Introduction to the Restoring Force Method 
 
A non-parametric system identification (SI) approach, the Restoring Force Method (RFM), was used in this 
study due to its ability to characterize a wide range of nonlinearities (Masri and Caughey, 1979). Using RFM, 
the restoring force of a single-degree-of-freedom nonlinear dynamic system can be modeled as 
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where r(x,ẋ) is the restoring force of the nonlinear dynamic system, !!"  is the normalized Chebyshev 
coefficient, !•  is the ith or jth order Chebyshev polynomial, P and Q are the highest input modeling orders of 
the Chebyshev polynomial of the normalized displacement and velocity, respectively, within the range of [-1,1]. 
Once the normalized Chebyshev coefficients are identified, they can be converted into the equivalent power 
series coefficients: 
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Thus, three kinds of equivalent coefficients are available using the RFM: normalized Chebyshev coefficients 
(!!"), normalized power series coefficients (!!"), and de-normalized power series coefficients (!!"). The basis 
functions for !!" are orthogonal, while the basis functions for !!" and aij are non-orthogonal. 
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4. MR Damper Identification 
 
4.1. Physical interpretations without a priori knowledge 
 
The MR damper used in this study had very complicated nonlinearities: a hysteretic nonlinearity due to the 
viscous action of the MR fluid combined with a dead-space nonlinearity due to a mechanical gap in the damper 
near the damper's neutral position (i.e., x ≈ 0) and the viscous nonlinearity due to the MR damper 
characteristics within the remaining displacement range.  
 
The MR damper was identified with the model orders of O(5/20) and O(20/20) to investigate the effects of 
model-order reduction. Fig. 2 shows the velocity-force plot of the measured and identified response with 
modeling orders of 5 and 20 (Fig. 2 (a)-(c), respectively). It is demonstrated that with a 5th order analysis the 
majority of the traces of the hysteresis and damping softening-related nonlinearity in the velocity-force plot can 
be identified. However, the details of the traces (largely due to the dead-space nonlinearity) fail to be identified. 
Using the basis functions of the Chebyshev polynomials, “smooth" (or continuous) nonlinearities can be 
identified using a relatively small number of the series expansion terms. However, for a discontinuous 
nonlinearity, such as the dead-space nonlinearity, a relatively large number of the series expansion terms are 
usually needed of the same basis functions. Fig. 2 (d) shows that with a higher modeling order, the 
discontinuous nonlinearity is fairly accurately identified. In SHM applications, the system complexity, O(p), is 
generally unknown, so that the identification results using reduced-order models would be statistically biased, 
which results in unreliable system condition assessment. 
 

 
              (a) Measured           (b) 5th Order ID         (c) 20th Order ID         

 
Fig. 2 - A sample identification result for the MR damper using the Restoring Force Method with different 

model complexities. 
 
4.2. Physical interpretations without assuming system models 
 
Greater system identification accuracy can be achieved with a higher modeling order. However, in the area of 
change detection, focus must be placed upon the major properties of the device. The unbiasness of the 
identified coefficients using the orthogonal basis functions is critical for implementing the change detection in 
uncertain nonlinear systems: the probability of the identified coefficients should be a function of the system 
uncertainty, not a function of the model complexity. When the unbiasness is guaranteed, the identified 
coefficients of a reduced-order model can be safely used for change detection. Consequently, change detection 
could be observed even with the model complexity of O(p) ≠ O(q).  
 
According to Yun and Masri (2008), the identified restoring forces for reduced-order and higher-order models 
can be expressed as 
       

                         hheellelh rrr ψφψφψφ ˆˆˆˆˆˆˆ =+=+=                               (3) 
 
where !! and !! are the restoring force components identified with a reduced-order model and higher-order 
model, respectively, !! is the residual between !! and !!, !! and !! are the identified model parameters 
for the higher-order and reduced-order models, respectively, !! is the identified model parameters for the 
residual, !! and !! are the basis functions for the higher and reduced-order models, and !! is the basis 
function for the restoring force residual. The identified model parameters can be estimated as 
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where •  is the inner product of two functions, !! = 1, and !! =

!!,!!

!!,!!
. Therefore, the biasness of the 

reduced-order model parameter (!!) depends on the significance of the term !!!! . For the RFM, the 
orthogonality of the Chebyshev polynomial basis functions is guaranteed with the normalized displacement  
and velocity within the range of [-1, 1]. Consequently, the identified !!" become unbiased because !! and 
!! are orthogonal, and !!!! = 0. Consequently, ! !! = !! is unbiased when !! and !! are orthogonal. 
 
Fig. 3 shows a comparison of term-wise identification results, with two different modeling orders, for the 
normalized Chebyshev polynomial basis functions. In the figure, the first row shows the term-wise 
identification results with the O(5/20) for the linear damping (a), cubic damping (b) and linear stiffness terms 
(c), and the second row shows the same term-wise identified restoring forces with the O(20/20) and the results 
with O(5/20) and O(20/20) are nearly identical.  
 

 
              (a) 1st Damping Term  (b) 3rd Damping Term  (c) 1st Stiffness Term 

 
              (d) 1st Damping Term  (e) 3rd Damping Term  (f) 1st Stiffness Term 

 
Fig. 3. Term-wise identification results with the modeling orders of O(5/20) (a-c) and O(20/20)(d-f) with the 

normalized Chebyshev polynomial basis functions. 
 
Table 1 shows the stochastic effects of the model-order reduction on identified coefficients with the Chebyshev 
and power series polynomials. The comparison shows clearly that the identified Chebyshev coefficients are not 
biased with respect to the model complexity. Thus, the use of the RFM's Chebyshev polynomials with 
reduced-order models can reliably be used to detect changes in the system (Yun and Masri, 2008). 
 

Table 1. Stochastic effects of model-order reduction on the coefficient identification with orthogonal and 
non-orthogonal basis functions after 4000 tests. The (%) column shows the percentage of !(!/!")

!  (!"/!")
. 

 
Chebyshev polynomials (orthogonal) 

Term 
(i,j) 

Mean Std. Dev. 
O(5/20) O(20/20) (%) O(5/20) O(20/20) (5) 

(0,1) 1618.9 1637.2 98.9 53.5 54.2 98.6 
(1,0) 624.1 668.2 93.4 43.2 48.0 90.0 
(0,3) 14.6 15.6 93.9 17.3 17.2 100.7 

Power series polynomials (non-orthogonal) 
(0,1) 3612.9 4615.9 78.3 167.7 1036.3 16.1 
(1,0) 1210.8 1163.7 104.0 115.6 968.1 11.9 
(0,3) -5026.6 -24603.5 20.4 467.5 39334.8 1.19 
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The unbiasness of the identified coefficients using the orthogonal basis functions is important for health 
monitoring because change detection is observed even at lower-ordered identification. Fig. 4 shows that even 
with only two identified coefficients (!!" and !!"), bivariate probability density functions can still accurately 
represent physical changes in the MR damper.  

 
 

Fig. 4. Bivariate Gaussian distributions of the identified Chebyshev coefficients of two dominant terms  
 

4.3. Classification of change detections 
 
A reliable change detection method must be able to classify the detected changes. In this study, four different 
input currents and 2 different standard deviations were delivered to the MR damper, allowing for eight 
classification possibilities.  
 
Support vector classification (SVC) was conducted on the identified orthogonal and non-orthogonal basis 
functions to detect effective changes (input current and standard deviation) of the MR damper. In Fig. 5, plots 
(a) and (b) shows the results of the orthogonal and non-orthogonal based coefficients, respectively, and plot (c) 
details normalized computation time. In plots (a) and (b), the ○ and ▲ represents a lower and higher system 
uncertainty level, respectively.  
 
By this comparison, it is clear the orthogonal coefficients were more robust and accurate in system change 
detection. Regardless of model order, orthogonal basis coefficient provided a higher classification. 
Additionally, classification precision continued to rise as the modeling order increased meaning that they can 
be used as excellent indicators for detecting (small) effective changes. With this information, an optimal 
classifier design procedure can be designed subject to three thresholds: classification precision, model order, 
and computation time can be established for a particular health monitoring case (Yun and Masri, 2009).  
 

     
                      (a)                  (b)                   (c) 

 
Fig. 5. The precisions of the support vector classification (SVC) for (a) orthogonally and (b) non-orthogonally 
based coefficients. In these comparisons, physical damper parameters with two different uncertainty levels are 

compared (○ represents a higher level of uncertainty then ▲). The number of features is the number of terms of 
the series expansions used in the classification. (c) Details the system identification dependence upon 

computation time, normalized with respect to the smallest time. 
 

5. Novel Reconfigurable Testing Approach 
 
A great limitation on the system uncertainty study is that the MR damper does not have complete modeling 
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freedom. It would be very beneficial to have a versatile, but accurate, reconfigurable test apparatus capable of 
replicating a wide range of nonlinear behavior. An ongoing study by the authors seeks to develop such a device 
where the restoring force can accurately be controlled and reprogrammed based upon directly measured 
displacement and velocity readings at each time step. The device offers control over nonlinear characteristics 
and the equation of dynamic motion. A sample of restoring force vs. displacement phase plots created with the 
reconfigurable test setup is seen in Fig. 4. 
 
The advantage of having such an experimental setup is the ability to simulate various types of nonlinearities 
with the same test setup. Similarly, controlled system uncertainties can be incorporated into the output of the 
restoring force, allowing for the realistic simulation of structural damage or deterioration. 
 

 
        (a) Linear Model           (b) Duffing Model         (c) Dead-Space Model 

 
Fig. 4. Restoring force vs. displacement phase plots created by a reconfigurable test setup. A versatile device 

such as this will allow for a wide variety of system uncertainty studies. The creation of the device is an ongoing 
research project by the authors. 

 

6. Conclusions 
This methodology is applicable to various nonlinear systems for change detection analysis because no a priori 
knowledge of physical characteristics of target systems is required. The normalized Chebyshev (orthogonal) 
coefficients of the RFM can be used as an indicator because they are statistically unbiased, able to detect 
system changes, and physical interpretation is possible. Detection errors were also analyzed to evaluate the 
performance of the developed health monitoring methodology. An optimal design procedure was also proposed 
to classify system changes. 

The magnetorheological damper used to create physical change detection data proved useful in this study. 
However, its equation of dynamic motion is limited to that of a nonlinear damper. For the physical creation of a 
wide range of nonlinear models, the authors also introduced an experimental setup whose restoring force can 
accurately be controlled and updated in real-time based upon directly measured displacement and velocity 
readings. 
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