
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2005 

Coverage Path Planning And Control For Autonomous Mobile Coverage Path Planning And Control For Autonomous Mobile 

Robots Robots 

Mohanakrishnan Balakrishnan 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Balakrishnan, Mohanakrishnan, "Coverage Path Planning And Control For Autonomous Mobile Robots" 
(2005). Electronic Theses and Dissertations, 2004-2019. 429. 
https://stars.library.ucf.edu/etd/429 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/429?utm_source=stars.library.ucf.edu%2Fetd%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


COVERAGE PATH PLANNING AND CONTROL FOR AUTONOMOUS MOBILE ROBOTS   
 
 
 
 
 
 
 

By 
 
 
 

MOHANAKRISHNAN BALAKRISHNAN 
B.S. University of Madras, 2001 

 
 
 

A thesis submitted in partial fulfillment of the requirements  
For the degree of Master of Science  

in the Department of Electrical Engineering  
in the College of Engineering & Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 
 
 
 

Summer Term 
2005 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2005 Mohanakrishnan Balakrishnan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii 



ABSTRACT 

Coverage control has many applications such as security patrolling, land mine detectors, 

and automatic vacuum cleaners. This Thesis presents an analytical approach for generation of 

control inputs for a non-holonomic mobile robot in coverage control.  Neural Network approach 

is used for complete coverage of a given area in the presence of stationary and dynamic 

obstacles. A complete coverage algorithm is used to determine the sequence of points. Once the 

sequences of points are determined a smooth trajectory characterized by fifth order polynomial 

having second order continuity is generated.  And the slope of the curve at each point is 

calculated from which the control inputs are generated analytically. Optimal trajectory is 

generated using   a method given in research literature and a qualitative analysis of the smooth 

trajectory is done. Cooperative sweeping of multirobots is achieved by dividing the area to be 

covered into smaller areas depending on the number of robots.  Once the area is divided into sub 

areas, each robot is assigned a sub area for cooperative sweeping.       
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CHAPTER ONE: INTRODUCTION 

Coverage control has many applications and the applications are ever increasing. Some of 

them are security patrolling, land mine detectors and automatic vacuum cleaning. A great 

number of different techniques has been and are still developed in order to carry out efficient 

robot path planning. One of the most popular planning methods is based on the potential function 

utilization where robot is modeled as a moving particle, inside an artificial potential field that 

reflects free collision space structure into the robot workspace. There are also many cellular 

decomposition based approaches to complete coverage. The fundamental concept is to 

decompose the workspace into a collection of nonoverlapping cells, and then, the robot searches 

this connectivity graph that represents the adjacency relation among cells. A novel neural 

network approach was also proposed for complete coverage path planning of a mobile non-

holonomic robot. The state space of the topologically organized neural network is the two 

dimensional Cartesian workspace of a cleaning robot. The proposed neural network model is 

capable of planning real time complete coverage paths with obstacle avoidance in an 

unstructured indoor environment. In [2], Yi Guo and Zhihua Qu proposed a method for complete 

coverage in which minimum number of circles is used to cover a bounded region. The complete 

coverage takes place by selecting the circle, which has the smallest distance from its center to the 

boundary.   Then feasible trajectories and steering control are then generated so that the robot 

moves collision free and covers all circles.   

In [5], Paolo Fiorini and Zvi Shiller proposed a method computing the time optimal trajectory for 

a robot among stationary obstacles, subject to robots dynamic constraints. In [6], J-P. Laumond, 

S. Sekhavat and M. Vaisset proposed optimization using cost function. In [7],H.Delingette 

1 



proposed optimization based on energy minimization. Aurelio Piazzi “optimal trajectory 

planning with quintic splines” deals with the generation of optimal paths for the automated 

steering of autonomous vehicles. The path is parameterized by quintic η - splines, devised to 

guarantee the overall second order geometric continuity of a composite path interpolating an 

arbitrary sequence of points. Starting from the closed loop form η - parameterization of the 

spline an optimization criterion is proposed to design smooth curves. The aim is to plan curves 

where the curvature variability is kept as small as possible.  

1.1 Potential Field Method For Complete Coverage 

The artificial potential method is a useful tool in path planning. The main idea is to 

construct an attractive potential field at the goal, and repulsive potentials on the obstacles. The 

path is then followed by a weighted sum of potentials. Numerous artificial potential functions 

have been proposed in the past decade but they all suffer from the problem of local minima. This 

limits the applicability of artificial potential methods.  

Distance Transform Approach Distance transform for planning paths for mobile robot 

applications was first reported by A.Zelinsky and R.A. Jarvis [8]. This approach consider the 

task of path planning to find paths from the goal location back to the start location. The path 

planner propagates a distance wave front through all free space grid cells in the environment 

from the goal cell. The distance wave front flows around obstacles and eventually through all 

free space in the environment. For any starting point within the environment representing the 

initial position of the mobile robot, the shortest path to the goal is traced by walking down hill 

via the steepest descent path. If there is no downhill, and the start cell is on a plateau then it can 
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be concluded that no path exists from the start cell to the goal cell. To achieve the complete 

coverage path planning behavior, instead of descending along the path of steepest   descent to the 

goal, the robot follows the path of steepest ascent. In other words the robot moves away from the 

goal keeping track of the cells it has visited. An advantage of this complete strategy is that the 

start and goal can be specified. While this strategy does not the guarantee complete coverage 

path will be an optimum, the complete coverage produces a reasonable path with minimal 

secondary visits to grid cells.  

Path Transform Approach  In the path transform approach, instead of propagating a 

distance from the goal wave front through free space, a new wave front is propagated which was 

a weighted sum of the distance from the goal together with a measure of the discomfort of 

moving too close to obstacles. This had the effect of producing a transform which has the 

desirable properties of potential fields without suffering from the local minima problem. The 

path transform can be regarded as a numeric potential field. The distance transform is extended 

to include safety from obstacles information in the following way. Firstly, the distance transform 

is inverted into an obstacle transform where the obstacle cells become the goals. The resulting 

transformation yields for each free cell in the data structure is the minimal distance from the 

center of the free space cell to the boundary of an obstacle cell.  Finally a second distance 

transform is generated through free space from the goal location using a new cost function.  This 

cost function is referred to as the path transform. The path transform for each cell is the 

minimum propagated path cost to the goal. The path transform forms a better contour path for a 

robot to implement a path of complete coverage than the contour path generated by the original 

distance transform. A similar result to path transforms called numeric potential fields was 

reported by Barraquand and Latombe [9]. The numeric potential is computed in three steps. 
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Firstly, an obstacle transform is computed of the free space, from which a distance skeleton is 

extracted.  Joining the highest values in the obstacle transform yields a distance skeleton and a 

distance transform is computed from the goal cell to all members cell of the distance skeleton. 

Thirdly another distance transform is computed from the distance skeletons to all the remaining 

free space cells in the environment. This method can guide the robot through narrow free space 

channels that are close to the goal thus endangering the robot. This problem is countered by 

removing channels that are narrow but the completeness of solution is lost. The path transform 

does not suffer this drawback.  

1.2 Neural Network Approach For Complete Coverage 

Simon X. Yang and Chaomin Luo [10] proposed a novel neural network approach for complete 

coverage path planning of a single robot and multiple cleaning robots, which is based on a neural 

network model for conventional real time path planning for a mobile robot. The state space of 

the topologically organized neural network is the two dimensional Cartesian work space of a 

cleaning robot. The dynamics of each neuron is characterized by a shunting equation derived 

from the Hodgkin and Huxley’s membrane model for a biological neural system. There are only 

local lateral connections among neurons. The varying environment is represented by the dynamic 

activity landscape of the neural network. The proposed model is computationally simple and is 

capable of planning real time complete coverage paths with obstacle avoidance. By properly 

defining the external inputs from the varying environment and the internal neural connections, 

the neural activities of the unclean areas and obstacles are guaranteed to stay at the peak and the 

valley of the activity landscape of the neural network, respectively. The unclean areas globally 
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attract the robot in the entire state space through neural activity propagation. The two 

dimensional work space in the proposed approach is discretized into squares as in most other 

complete coverage models. The diagonal length of each discrete area is equal to the robot 

sweeping radius that is the size of the effector or foot print. Thus sweeping an area can be 

achieved by traversing the center of that area represented by a discrete point. Once the robot 

visits a discreet point, it is assumed that the robot has covered the discrete area of that point. If a 

cleaning robot covers every discrete point in a workspace, the robot path is then considered as a 

complete coverage path in the workspace. The proposed neural network model shares some 

common ideas with the standard artificial potential path planning techniques.  

1.3 Generation of Control Inputs of a Nonholonomic mobile Robot in Complete Coverage  

 It is well known in robotics that, if the number of generalized coordinates equals the 

number of input commands, one can use a nonlinear static state feedback law in order to 

transform exactly the nonlinear kinematics and/or dynamics into a linear system. In general, the 

linearity of the system equations is displayed only after a coordinate transformation in the state 

space. On the linear side of the problem, it is rather straightforward to complete the synthesis of 

a stabilizing controller.  

Actually two types of exact linearization problems can be considered for a nonlinear 

system with outputs.  Beside the possibility of transforming via feedback the whole set of 

differential equations into a linear system, one may seek a weaker result in which only the input-

output differential map is made linear.  Necessary and sufficient conditions exist for the 
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solvability of both problems via static feedback, while only sufficient conditions can be given for 

the dynamic feedback case. 

Consider a generic non-linear system  

                                                                                                      (1.1) 

                                                                    

( ) ( )uxgxfx +=
.

( )xhz =                                                           (1.2)  

Where  x  is the system state,u  is the input, and  is the output to which we wish to 

assign a desired behavior. Assume the system is square, i.e., the number of inputs equals the 

number of outputs. 

z

The input-output linearization problem via static feedback is finding a control law of the 

form  

                                                     ( ) ( ) ,rxBxau +=                                                    (1.3)                       

With  nonsingular and ( )xB r  an external auxiliary input of the same dimension as u, in 

such a way that the input-output response of the closed-loop system is linear. In the multi-input 

case, the solution to this problem automatically yields input-output decoupling, namely, each 

component of the output  will depend only on a single component of the input z .r    

In general, a nonlinear internal dynamics, which does not affect the input-output 

behavior, may be left in the closed-loop system.  This internal dynamics reduces to the so-called 

clamped dynamics when the output  is constrained to follow a desired trajectory. In the 

absence of internal dynamics, full state linearization is achieved. Conversely, when only input-

output linearization is obtained, the boundedness/stability of the internal dynamics should be 

analyzed in order to guarantee a feasible output tracking. 

z
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If static feedback does not allow solving the problem, one can try to obtain the same results by 

means of a dynamic feedback compensator of the form.                                                 

                                                      ( ) ( ) ,rxBxau +=                                                          (1.4)                         

                                                                                                           (1.5) ( ) ( ) ,,,
.

rxDxc ξξξ +=

Where ξ  is the compensator state of appropriate dimensions.  

 

There are also distinguished methods for motion planning such as differential geometric and 

differential algebra techniques, geometric phase, control input parameterization, optimal control 

approach, etc.  The idea behind the differential geometric and differential algebra techniques is to 

generate motions in the directions of iterated Lie brackets by employing typical inputs [12]. 

Monaco and Noramnd-Cyrot first proposed to use piece-wise constant inputs in motion planning 

in [23].  In [11], sinusoids are used as inputs in the motion planning. In [12], a motion-planning 

algorithm is proposed for nonholonomic systems based on the concept of differential flatness. 

For differential flat non-linear systems, the motion-planning problem is equivalent to finding the 

output functions, which satisfy the boundary conditions posed on initial and final states.  For 

nonholonomic Chaplygin systems, various techniques based on the different geometric phase 

approach.  In this thesis, a smooth trajectory is generated using the method presented in [1] and 

the slope of the curve at each point is calculated for, which the control inputs are generated.  
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1.4 Optimal analysis of trajectory  

H. Delingette and M. Hebert proposed optimization based on energy minimization in [7]. An 

algorithm based on the deformation of a curve by energy minimization allows solving general 

geometric constraints. In [6] J-P. Laumond, S. Sekhavat used a cost fuction to obtain the 

optimum trajectory. In [3] Aurelio Piazzi proposed a method for generation of optimal paths for 

automated steering of autonomous vehicles using quintic η - splines.  The path is parameterized 

by η - splines, devised to guarantee the overall second order geometric continuity of a composite 

path interpolating an arbitrary sequence of points. Starting from the closed-form η - 

parameterization of the spline, an optimization criterion is proposed to design smooth curves. 

The aim is to plan curves where the curvature variability is kept as small as possible. With good 

approximation in a flatness based control scheme, this corresponds to minimize the change-rate 

of the steering control.   
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CHAPTER TWO:  MOBILE ROBOT MODEL AND PROBLEM 
STATEMENT 

In this chapter a qualitative study of non-holonomic system and a kinematic model for the rear 

wheel drive, front wheel steered robotic car is derived.  

                 

2.1 Nonholonomic Constraints 

If a system has restrictions in its velocity, but these restrictions do not cause restrictions in its 

positioning, the system is said to be non-holonomically constrained. Viewed another way the 

systems local movement is restricted, not its global movement. Mathematically this means that 

the velocity constraints cannot be integrated to position constraints. 

The most familiar example of a non-holonomic system is demonstrated by parallel parking 

maneuver. When a driver arrives next to the parking space, he cannot simply slide his car 

sideways into the parking space. The car is not capable of sliding side ways and this is the 

velocity restriction.  However by moving the car backward and forward and turning the wheels 

the car can be brought in to the space. Ignoring the restrictions caused by external objects, the car 

can be located at any orientation, despite lack of side ways movement. The non-holonomic 

constraints of each wheel of the mobile robot are shown in Figure 2.3. The wheel velocity is in 

the direction of rolling. There is no velocity in the perpendicular direction. This model assumes 

that there is no wheel slippage. 
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Figure 2.1. The velocity constraint on a rolling wheel with no slippage 

With a holonomic system, return to the original internal configuration means return to the 

original system position. With a non-holonomic system, return to the original internal 

configuration does not guarantee return to the original system position.  More generally the 

system outcome for a non-holonomic system is path dependent.  This has several implications 

for the implementation of control system. 

2.2 Kinematic model of a non-holonomic mobile robot 

The exact position and orientation of the car in some global coordinate system can be described 

by four variables. Fig. 2.4.shows each of the variables. The ( )yx,  coordinates give   the exact 

position and orientation of the car in some global coordinate system can be described by four 

variables.  Fig. 2.4.shows each of the variables. The ( )yx,  coordinates give   the location of the 

10 



center of the rear axel. The cars angle with respect to the x -axis is given by θ . The steering 

wheels angle with respect to the cars longitudinal axis is given byφ .  Due to the constraints the 

velocity of the car in the  directions is given as                                   ( yx, )

                                                                                                                       (2.1) θcos1

.
ux =

                                                                                                                             (2.2) θsin1

.
uy =

  where  is the linear velocity of the rear wheels.  1u

The location of the center of the front axle ( )11 y,x  is given by 

                                                       θcos1 lxx +=                                                                   (2.3) 

                                                       θsin1 lyy +=                                                                   (2.4) 

And the velocity is given by  

                                                                                                                       (2.5) θθ sin
...

1 lxx −=

                                                                                                                     (2.6) θθ cos
...

1 lyy −=

Applying the no slippage constraint to the front wheels gives     

                                                                                                      (2.7)          ( ) (θ + )φφθ =+ cossin 1

.

1

.
yx

Inserting equation 2.5 and 2.6 into equation 2.7 and solving for 
.

θ  gives 

                                                                 1

. tan u
l
φθ =                                                               (2.8) 

The complete kinematic model is then given by equation                                                         (2.9) 
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Figure 2.2. A car like robot 

                                                                     

                                                             +                                        (2.9)                           =
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Where  is the linear velocity of the rear wheels and  is the angular velocity of the steering 

wheels. 

1u 2u
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2.3 Problem Statement   

Given an arbitrary region  with stationary or moving obstacles, the coverage control is to find 

a control algorithm such that the mobile robot covers the region 

Ω

Ω  considering the presence of 

obstacles over a finite time. Thus given a sequence of points ( )ii yx ,  ( )mi ≤≤0 , which the 

robot has to follow so that it completely covers the given convex region, our first objective is to 

generate control inputs  and , where  is the linear velocity of the driving wheel and  is 

the steering velocity of the front wheels. Our next objective is to qualitatively analyze the smooth 

trajectory so obtained and finally develop an algorithm for cooperative sweeping of multirobots.    

1u 2u 1u 2u
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    CHAPTER THREE: COMPLETE COVERAGE DESIGN METHODS  

3.1 Complete Coverage Design       

Given an arbitrary region  with stationary or moving obstacles, the coverage control is to find 

a control algorithm such that the mobile robot covers the region 

Ω

Ω  considering the presence of 

obstacles over a finite time.  In [2], the authors propose an algorithm to completely cover a 

region  with circles in two-dimensional plane. It is shown that the disk placement described in 

[2] has a minimum number of disks to cover a rectangle. An algorithm is also proposed to find a 

complete coverage path to any given convex connected region without obstacles, i.e., a sequence 

of points ( )  ( ) .  

Ω

ii yx , mi ≤≤0

 

Figure 3.1 Complete coverage design 
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Figure 3.2 Complete coverage design B 

3.2 Complete Coverage Using Neural Network Approach 

In [10], a novel neural network approach is proposed for complete coverage path planning with 

obstacle avoidance of cleaning robots in non stationary environments.  The dynamics of each 

neuron in the topologically organized neural network is characterized by a shunting equation 

derived from Hodgkin and Huxley’s membrane equation. The robot path is autonomously 

generated from the activity landscape of the neural network and the previous location. The model 

algorithm is computationally simple.   
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The proposed neural network model is expressed topologically in a discretized workspace  Ω  of 

a cleaning robot. The location of the  neuron in the state space of the neural network, which is 

denoted by a vector , uniquely represents an area in

thi

2Rqi ∈ Ω .  In the proposed model, the 

excitatory input results from the unclean areas and the lateral neural connections, whereas the 

inhibitory input results from the obstacles only.  The dynamics of the neuron in the neural 

network can be characterized by a shunting equation as  

thi

                          [ ] −+
=

+ +−+−+−= ∑ ])[()][)((
1 iij

k

j ijiii
i IxDxwIxBAx

dt
dx

                           (3.1) 

where k is the number of neural connections of the  neuron to its neighboring neurons within 

the receptive field. The external input   to the  neuron is defined as  

thi

iI thi

                                                                                       (3.2) 

otherwiseI

areaobstacleanisitifEI

areauncleananisitEI

i

i

i

,0=

−=

=

 where E >> B is a very large positive constant. The terms +
=

+ ∑+ ][][
1 j

n

j iji xwI     and  are 

the excitatory and inhibitory inputs, respectively. Function   is a linear threshold function 

defined as  = max { , and the nonlinear function    is defined as   = max 

{ }. The connection weight      between the   and the   neurons can be defined as  

−][ iI

+][a

+][a }0,a −][a −][a

0,a− ijw thi thj

                                                 =   ijw ji qqf −                                                                         (3.3)      

where ji qq −  represents the Euclidean distance between vectors  and  in the state space, 

and  can be any monotonically decreasing function, such as a function defined as  

iq jq

)(af
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                                                  00,)( raif
a

af <<=
μ                                                           (3.4) 

                                                                                                                    (3.5) 0,0)( raifaf ≥=

where μ  and  are positive constants. The neuron has lateral connections only to its 6 

neighbors. For a given current location in the state space  denoted by , the next robot 

location  is obtained by  

0r

S cp

np

                                        },...2,1,max{ kjcyxx jjpn =+=                                                       (3.6) 

where c is a positive constant, and k  is the number of neighboring neurons of the  neuron. 

Variable   is the neural activity of the  neuron and   is defined as  

cp

jx thj jy

                                                      
π
θ j

jy
Δ

−=1                                                                         (3.7) 

where  ],0[ πθ ∈Δ j  is the absolute angle change between the current and next moving 

directions.  

                             )tan(),tan( , pppcpppcpcpjpcpjj xxyyaxxyya −−−−−=Δθ                       (3.8) 

After the robot reaches its next location, the next location becomes a new current location.  
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Figure 3.3 Complete coverage design C 
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Figure 3.4 Complete coverage with obstacles 

3.3 Complete coverage in the presence of dynamic obstacles.   

The proposed neural network approach in [24] is capable of generating complete coverage paths 

in the presence of moving obstacles. In the proposed neural network model, the excitatory input 

results from the target and its neighboring neurons. The inhibitory input results from the 

obstacles only. Thus the dynamics of the    neuron in the neural network is characterized by a 

shunting equation as 

thi
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                              [ ] −+
=

+ +−+−+−= ∑ ])[()][)((
1 iij

k

j ijiii
i IxDxwIxBAx

dt
dx

                  (3.9) 

Where k is the total number of neurons in the neural network. The terms   

and  are the excitatory and inhibitory inputs, respectively. The external input   to the  

neuron is defined as  

+
=

+ ∑+ ][][
1 j

n

j iji xwI

−][ iI iI thi

                                                                                     (3.10) 

otherwiseI

areaobstacleanisitifEI

areauncleananisitEI

i

i

i

,0=

−=

=

       where E >> B is a very large positive constant. The proposed model requires the complete 

knowledge of the dynamic environment, which can be obtained from the various sensors. The 

neural connection weight   is not only a function of distance but also a function of robot 

orientation. The activity landscape of the neural network dynamically changes due to the varying 

external inputs from the target and the obstacles. The robot motion is planned from the dynamic 

activity landscape by a steepest gradient ascent rule.  For a given present robot location in  , 

denoted by , the next robot location , is obtained by 

ijw

S

cp np

                                            },...2,1,max{ kjcyxx jjpn =+=                                               (3.11) 

where c is a positive constant, and k  is the number of neighboring neurons of the  neuron. 

Variable   is the neural activity of the  neuron and   is defined as  

cp

jx thj jy

                                                      
π
θ j

jy
Δ

−=1                                                                     (3.12) 

                         )tan(),tan( , pppcpppcpcpjpcpjj xxyyaxxyya −−−−−=Δθ                       (3.13) 
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Figure 3.5 Robot path in the presence of dynamic obstacles 
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Figure 3.6 Robot path in the presence of dynamic obstacles B 
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Figure 3.7 Robot path in the presence of dynamic obstacles C 
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Figure 3.8 Robot path in the presence of dynamic obstacles D 

 

22 



0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

 

Figure 3.9 Robot path in the presence of dynamic obstacles E 

3.4 Cooperative Sweeping of MultiRobots 

It has long been known that for any polygon there is a collection of smaller polygonal pieces that 

can be arranged to form different polygons. This collection of smaller pieces is known as 

dissection.  For Example a square may be partitioned into four polygonal pieces which can be 

rearranged to form equilateral triangle of the same areas. In [25], geometric dissection is used to 

cut geometric figures into smaller pieces, which can be rearranged to form other figures. The 

basic idea of dividing a polygon into triangles can be extended to dividing a polygon based on 

circles.  In [2], the authors propose an algorithm to completely cover a region  with circles in 

two-dimensional plane. It is shown that the disk placement described in [2] has a minimum 

number of disks to cover a rectangle.  If N circles are used to cover a region .  For  number 

Ω

Ω n
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of robots to patrol the region, the number of circles that each robot has to travel is calculated as                         

,

 

robotsnfornNf 1)/( −

numberwholenearesttooffroundedresulttherepresentsnNfwhere )/(

The   robot has to travelthn ))1)(/(( −− nnNfN . The areas are divided as 

 

 

regionfulltheeringcirclesofnumbertotaltheisN cov

robotsofnumbertheisn

)/int( nNNm −= ,  )/int( nNx =

intpostarttheselect  

intint postartposelectedset =  

)int( mthanlessselectedspoofnumbertotalWhile

)int( xthanlessselectedspoofnumbertotalwhile  

listtoaddandselectedspoofneighborsfind int  

selectedpoasselectedneighborsset int  

spoofnumbertotalcount int  

end  

selectedspoofnumbertotaltheupdate int  

listseperateainsposelectedthestore int  
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selectedspolasttheto

alsoandvertexeredunatoclosestiswhichpothefind

int

covint
 

intint poselectedasstepaboveinobtainedpotheset  

end  

listlastaformsporemainingThe int  . 

Once the actual area is divided into sub areas, each robot is assigned a particular sub area     to 

get a complete coverage of the actual area. 
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 Figure 3.10 Polygon to be dissected 
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Figure 3.11 Dissection part A 
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Figure 3.12 Dissection part B 
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Figure 3.13 Dissection part C 
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Figure 3.14 Dissection part D 
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 CHAPTER FOUR: SMOOTH CURVES AND OPTIMAL ANALYSIS 

4.1 Generation of Smooth Trajectory 

Trajectory generation for the first two sequence of points is slightly different from the trajectory 

generation for the rest of the points in the sequence because in any path planning approach the 

robot  will have an initial configuration which has to be taken into taken into account. The initial 

angle made by the centre of the wheel axle with the X-axis is used as the initial  dxdy /  and the 

initial 2

2

dx
yd

 is an input data from which the trajectory is generated. For the rest of the sequence, 

the slope and the rate of change of slope are calculated.        

In this section [1] is used to calculate the slope of a curve at its initial and final points. The 

method considers a local subset of six points to define sequentially a local polynomial 

approximation to the curve between points 3 and 4 of the local subset. Define a cumulative 

polygon approximation to arc length, or Euclidean distance, as: 

  
⎪⎭

⎪
⎬
⎫

=−−−−−+−=

=

6,...,3,2;2)1(2)1(1

01

kkykykxkxksks

s
               (4.1)                                        

by choosing a power series of the form and we have  

                                                                                                           (4.2) ∑
=

−=
n

i

i
i sAsx

1

1)(

                                                                                                           (4.3) ∑
=

−=
n

i

i
i sBsy

1

1)(
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The procedure is to use three overlapping cubic fits of x  and y  as functions of pseudo-arc 

length. We divide the six data points into 3 parts: left, middle and right. They are in the form of    

                                                                                         (4.4) 3
4

2
321 sAsAsAAx +++=

                                                                                         (4.5) 3
4

2
321 sBsBsBBy +++=

where  in the equations are known and the coefficients of them can be calculated as                s

                                                                                          (4.6)       LLL XSA 1−= LLL YSB 1−=

                                                                                    (4.7) MMM XSA 1−= MMM YSB 1−=

                                                                                      (4.8) RRR XSA 1−= RRR YSB 1−=

where the left middle and right coefficients are defined as a 4 x 1 matrix and denoted as  

                                                                     (4.9) .,  ,  ,

4

3

2

1

4

3

2

1

RML

B
B
B
B

B

A
A
A
A

A

L

L

L

L

L

L

L

L

L

L →

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

And the left, middle and right data matrices are defined as    

                                                                                  (4.10) yxxxxxX T
L →= ];[ 4321

                                                                                 (4.11) yxxxxxX T
M →= ];[ 4321

                                                                                  (4.12) yxxxxxX T
R →= ];[ 4321

and  to be inverted in (4.6), (4.7),(4.8) are   S

                                                                                               (4.13) 

⎥
⎥
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⎦
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⎣
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3
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4
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3
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2
2

4
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3
1

2
1

1
1
1
1

sss
sss
sss
sss

SL
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                                                                                               (4.14) 
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⎥
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                                                                                                (4.15) 
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The initial slope of the curve is obtained as  

                                              ⎥⎦
⎤

⎢⎣
⎡ += 333 2

1 s
ds

dxs
ds
dxs

ds
dx ML                                          (4.16) 

                                              ⎥⎦
⎤

⎢⎣
⎡ += 333 2

1 s
ds

dys
ds

dys
ds
dy ML                                          (4.17) 

The final slope of the curve is obtained as 

                                              ⎥⎦
⎤

⎢⎣
⎡ += 444 2

1 s
ds

dxs
ds

dxs
ds
dx RM                                          (4.18) 

                                               ⎥⎦
⎤

⎢⎣
⎡ += 444 2

1 s
ds

dys
ds

dys
ds
dy RM                                          (4.19)     

The initial rate of change of the slope is obtained as 

                                             ⎥
⎦

⎤
⎢
⎣

⎡
+= 32

2

32

2

32

2

2
1 s

ds
xd

s
ds

xd
s

ds
xd ML                                      (4.20) 

                                             ⎥
⎦

⎤
⎢
⎣

⎡
+= 32

2

32

2

32

2

2
1 s

ds
yd

s
ds

yd
s

ds
yd ML                                     (4.21) 
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The final rate of change of the slope is obtained as 

                                            ⎥
⎦

⎤
⎢
⎣

⎡
+= 42

2

42

2

42

2

2
1 s

ds
xd

s
ds

xd
s

ds
xd ML                                       (4.22)  

                                           ⎥
⎦

⎤
⎢
⎣

⎡
+= 42

2

42

2

42

2

2
1 s

ds
yd

s
ds

yd
s

ds
yd ML                                        (4.23) 

The above initial and final conditions become the boundary conditions. 

                                            

Consider an equation of the form  

                          ( ) ( ) ( ) ( ) 5432 6)5(4)3(21 sAsAsAsAsAAx +++++=                         (4.20) 

                         ( ) ( ) ( ) ( ) 5432 6)5(4)3(21 sBsBsBsBsBBy +++++=                           (4.21) 

The coefficients of the above equations can be obtained from the boundary conditions. For a non 

holonomic mobile robot the boundary conditions are as follows  

            ( ) ( ) ( ) ( ) 5432 6)5(4)3(21 iiiiii sAsAsAsAsAAx +++++=  ; yx →                            (4.21) 

       ( ) ( ) ( ) ( ) 1
5

1
4

1
3

1
2

11 6)5(4)3(21 ++++++ +++++= iiiiii sAsAsAsAsAAx  ; yx →                  (4.22) 

                432 )6(5)5(4)4(3)3(2)2( iiii
i sAsAsAsAA

ds
dx

++++= ; yx →                           (4.23) 

                 1
4

1
3

1
2

1
1 )6(5)5(4)4(3)3(2)2( ++++
+ ++++= iiii

i sAsAsAsAA
ds

dx
 ; yx →             (4.24) 

                          32
2

)6(20)5(12)4(6)3(2 iii
i sAsAsAA

ds
xd

+++= ;  yx →                         (4.25)   

                      3
1

2
112

1
2

)6(20)5(12)4(6)3(2 +++
+ +++= iii

i sAsAsAA
ds

xd
;  yx →                    (4.26) 
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where  and  represent the initial and final  coordinates. Rewriting the 

above equation in matrix from. 

),( ii yx ),( 11 ++ ii yx ),( yx
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The coefficient matrix A can be found from  

                                                                                                                             (4.30) XSA 1−=

The coefficient matrix B can be found from   
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                                                   YSB 1−=

Therefore   

                                 ( ) ( ) ( ) ( ) 5432 6)5(4)3(21 sAsAsAsAsAAx +++++=                           (4.31) 

                                 ( ) ( ) ( ) ( ) 5432 6)5(4)3(21 sBsBsBsBsBBy +++++=                             

Represents a smooth trajectory between given set of points. 
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Figure 4.1 Smooth trajectory 
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Figure 4.2 Smooth trajectory B 
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Figure 4.3 Smooth trajectory C 

 

4.2 Optimal analysis of trajectory    

An optimal trajectory is obtained by minimizing the change-rate of the curvature. The path is 

parameterized by a quintic η -spline, devised to guarantee the overall second order geometric 

continuity of a composite path interpolating an arbitrary sequence of points. Starting from the 

closed form η - parameterization of the spline, an optimization criterion is proposed to design 

smooth curves. The aim is to plan curves where the curvature variability is kept as small as 

possible. Closed from expressions of the η - spline can be presented as follows  

                                                                                                                      (4.32) ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
uy
ux

up
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4
4

3
3

2
210)( uxuxuxuxuxxux +++++=

                                                                       (4.34) 5
5

4
4

3
3

2
210)( uyuyuyuyuyyuy +++++=

Where 

Axx =0                                                                                                                              (4.35)                        

Ax θη cos11 =                                                                                                                     (4.36)                        

)sincos(
2
1 2

132 AAAx θκηθη −=                                                                                             (4.37)                         
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2
36()(10 2

2
2

142313 −+−−+−−=  (4.38) 

 BBAABAAB xxx θκηθκηθηηθηη sinsin
2
3cos)7(cos)

2
38()(15 2

2
2

142314 +−−+++−−=      (4.39)       

BBAABAAB xxx θκηθκηθηηθηη sin
2
1sin

2
1cos)

2
13(cos)

2
13()(6 2

22
142315 −+−−+−−=     (4.40)        
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2
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2
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2
13()(6 2

22
142315 −+−−+−−=    (4.46) 

Subscripts A and B indicate the assigned interpolating conditions relative to the spline endpoints  

while  is a vector. ),(][ 4321 +∞−∞=Η∈= Tηηηηη
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It is clear that with a proper selection ofη , it is possible to obtain a wide number of shapes for 

the path, all of then satisfying the interpolating conditions at the curve. This suggests choosing 

the four parameters according to some sort of optimality criterion.  η  is selected by minimizing 

the change–rate of the curvature. By minimizing dsd /κ , where κ  represents the curvature and 

is given by  

                                                            
2/3

.
2

.
2

......

))()(( yx

yxyx

+

−
=κ                                                      (4.47) 

                                                                
||||

/
.
p

dud

ds

d κκ
=                                                            (4.47) 

The variability of   the steering angle can be indirectly reduced by minimizing the maximum of 

|/| dsdκ  along the whole path. Thus the optimization problem can be formulated as  

                                                 
ds
dκmaxmin     ,                         (4.48) ]1,0[∈Η∈ uandη

       Subject to 

                                                                                                                         (4.49)      0||)(||
.

>up

 The minimax problem can be converted into a semi infinite problem by adding to vector η  an 

auxiliary variable 5η . The optimization then becomes  

                                                      5minη                                                                                 (4.50) 

Subject to  

                                           5η
κ

≤
ds
d                                                                (4.51) ];1,0[∈∀ u
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                                                                                                            (4.52) 0||||
.

>p ].1,0[∈∀ u

The interpolating conditions are obtained from the curve for which qualitative analysis has to be 

done. The curves are then compared graphically to obtain an overall qualitative analysis. The 

results obtained infer that the smooth trajectory obtained from [3] and the optimal curve so 

obtained are qualitatively the same. 
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Figure 4.4 Optimal curve 
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Figure 4.5 Optimal curve B  
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CHAPTER FIVE: GENERATION OF CONTROL INPUTS  

   This Chapter deals with the generation of control inputs for the mobile autonomous robot. 

From the smooth trajectory, the slope is calculated and by mathematical operations     and      

are obtained where  is the linear velocity of the driving wheels and  is the steering velocity

1u 2u

1u 2u . 

                                                                                 (5.1) 5
6

4
5

3
4

2
321 sAsAsAsAsAAx +++++=

                                                                                (5.2) 

the equations (5.1) and (5.2) represent segment of a curve for which the control inputs are to be 

generated. From the Robot dynamic equations control input    is given by (5.3) 
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the control input   is given by  2u
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    Figure 5.1 Robot trajectory 
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Figure 5.2 Robot trajectory 
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Figure 5.3 Robot trajectory 
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CHAPTER SIX: SIMULATION RESULTS 

6.1 Complete Coverage Design   

 

 

Figure 6.1 Complete coverage design 
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Figure 6.2 Complete coverage design B 

 

 

Figure 6.3 Complete coverage design C  
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6.2 Generation of Smooth Curves 

 

 

Figure 6.4 Smooth trajectory 

 

Figure 6.5 Smooth trajectory B  
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Figure 6.6 Smooth trajectory C 
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6.3 Qualitative Analysis    

 

Figure 6.7 Qualitative analysis 

 

Figure 6.8 Qualitative analysis B 
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6.4 Dynamic Obstacle Avoidance 
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Figure 6.9 Robot path in the presence of dynamic obstacles 
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Figure 6.10 Robot path in the presence of dynamic obsatcles  B 
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6.5 Generation of Robot Trajectory 
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Figure 6.11 Robot path trajectory 
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Figure 6.12 Robot trajectory  B 

 

 

Figure 6.13 Robot path trajectory C 
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   6.6 Cooperative Sweeping of Multi Robots  
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Figure 6.14 Area to be swept  
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Figure 6.15 Cooperative sweeping 

   

Figure 6.16 Cooperative sweeping B 
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Figure 6.17 Cooperative sweeping C 

 

 

Figure 6.18 Cooperative sweeping D 
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CHAPTER SEVEN: CONCLUSION 

7.1 Contribution 

In this Thesis an algorithm for complete coverage of a given area in the presence of stationary 

and dynamic obstacles has been presented. A smooth trajectory is then constructed from which 

the control inputs are generated analytically. Also a qualitative analysis of the smooth trajectory 

is done. Finally for cooperative sweeping of multi robots, the given area is divided into sub areas 

depending on the number of robots and each robot is assigned a particular area for sweeping.  

7.2 Future work 

In this thesis only convex boundary is considered hence future work lies in including all types of 

boundaries for complete coverage.  This algorithm works on the fact that the map of the area is 

known and hence work can be extended to areas for which map is not available. The controller 

design does not include feedback, future work lies in including feedback of the controlled 

variables in the controller design.  Future direction will also include implementation on a real 

mobile robot system.  The obstacle avoidance or dynamic obstacle avoidance depends on the fact 

that the sensor data gives a accurate information on the position of the dynamic obstacles. Hence 

future work lies in minimizing dynamic obstacle avoidance based on the accuracy of the sensor 

data.  
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APPENDIX: MATLAB CODE 
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% this is the main function for complete coverage  

dummysum = 1; 

[xa ,  ya] =  neural_pointsinboundary(dummysum )  

[xb ,  yb] =  neural_pointsinboundaryb(dummysum )  

[xc ,  yc] =  neural_pointsinboundaryc(dummysum )  

[xd ,  yd] =  neural_pointsinboundaryd(dummysum )  

hold on; 

obs_plot(dummysum ) 

trajectoryabcd(xa,ya,xb,yb,xc,yc,xd,yd) 

 

% this is the neural selection  function  

clc; 

%axis([ 0 20 0 20 ] ); 

axis([ 0 36 0 45 ] ); 

% Statement to draw a rectangle 

rectangle('position',[0,0,45,45]); 

hold on; 

% xw  x axis value of rectangle is 10 

% yw y axis value of retangle is 10 

xw = 45; 

yw = 45; 

% value of radius of the circle /disk 
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rc = 1; 

%calculate number of disk needed in each column and row 

column = yw / (sqrt(3) * rc); 

i = 0; 

while i < (column - 1); 

i = i + 1; 

end 

if ( column - i) <= .5 

actualcolumn = i + 1; 

else  

actualcolumn = i + 2; 

end 

%debugging ok till this point 

row = xw/( 1.5 * rc); 

i1 = 0; 

while  i1 < (row-1); 

i1 = i1 + 1; 

end 

if (row - i1)<= (2/3) 

actualrow = i1 + 1; 

else  

actualrow = i1 + 2; 

end 
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% debugging ok till this point 

% generating circles most important part 

% variable p is indexing variable for xc, yc. 

p = 0;  

for h = 1 : actualcolumn 

for g = 1 : actualrow   

if rem(h,2) == 0   

xc = .5 + (h - 1) * (3/2) * rc; 

yc =  (sqrt(3)/2)*rc + (g -1) * (sqrt(3) * rc); 

p = p + 1; 

xmatrix(p) = xc; 

ymatrix(p) = yc; 

theta = linspace(0,2*pi,40); 

x = xc - (cos(theta)); 

y = yc - (sin(theta)); 

plot(x,y) 

else  

xc = .5 + (h - 1) * (3/2) * rc ; 

yc =  (g - 1) * (sqrt(3)*rc); 

p = p + 1; 

xmatrix(p) = xc; 

ymatrix(p) = yc; 

theta = linspace(0,2*pi,40); 
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x = xc - (cos(theta)); 

y = yc - (sin(theta)); 

plot(x,y)   

end 

end 

end 

% debugging ok till this point 

% till this point debug sucessfull 

% boundary points and storeing them. 

hold on; 

boundaryx = [ 0   30  36.2  36.2    25   20   5    2    0   0 ]; 

boundaryy = [ 0   1   5       35    45   45   28   20   15   0 ]; 

%plot(boundaryx,boundaryy) 

hold on; 

boundaryx = [0 , 18,18,16,8,6,1.7,0,0 ]; 

boundaryy = [0 ,.5,16,19,19,19,19,15,0 ]; 

%plot(boundaryx,boundaryy) 

 % to find points which are inside the polygonal area. 

IN = inpolygon(xmatrix,ymatrix,boundaryx,boundaryy) 

[IN ON] = inpolygon(xmatrix,ymatrix,boundaryx,boundaryy) 

dummy = actualrow * actualcolumn  

noofpoints = 1; 

for ix = 1:dummy 
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if IN(ix) == 0 

dumv = 0; 

else IN(ix) == 1 

importantx(noofpoints) = xmatrix(ix)    

importanty(noofpoints) = ymatrix(ix) 

importantpf(noofpoints) = 0; 

noofpoints = noofpoints + 1; 

end 

end 

 

% assign initila neural volt. 

% total number of points is 37  

points_covered  = 1; 

[neuralvolt , clean, unclean ]  = initialneural(22)  

 startx = .5000; 

 starty = 1.7321; 

 clean(1) = 1; 

 unclean(1) = 0; 

 stepx = 0; 

 stepy = 0; 

 var = 0 

 sx = 0; 

 sy = 0; 
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 p = 2; 

 while(points_covered < 109) 

%while(points_covered < 46 ) 

 [clean,unclean ] = moveing_obstacles(clean , unclean,points_covered)  

 %while(points_covered < 6 ) 

  var = var + 1; 

[ neighborx , neighbory ,neighbor_neuralvolt, no_neighbor,neighbor_clean, 

neighbor_unclean,startx,starty ] = neighborxy( startx , starty , importantx , importanty ,clean 

,unclean, neuralvolt,stepx,stepy,points_covered )  

  [ neighborx, neighbory,neighbor_neuralvolt] = neuralvoltage( neighborx , neighbory , 

neighbor_neuralvolt , no_neighbor, neighbor_clean, neighbor_unclean,startx, starty,sx,sy,p )  

[ next_x ,  next_y,sequence_pointx,sequence_pointy ] = 

nextnode(neighborx,neighbory,neighbor_neuralvolt,no_neighbor,var); 

sequen_pointx(var) = sequence_pointx; 

sequen_pointy(var) = sequence_pointy; 

X = [ startx , next_x ]; 

Y = [ starty , next_y ]; 

%plot(X, Y) 

p = points_covered + 1; 

stepx(p) = next_x; 

stepy(p) = next_y; 

sx = stepx; 

sy = stepy; 
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points_covered = points_covered + 1; 

[startx,starty,next_x,next_y,clean,unclean] =  update( 

importantx,importanty,neighbor_neuralvolt,startx,starty,next_x,next_y,clean, unclean); 

[neuralvolt]  = updateneuralvolt(importantx,importanty,neighborx, neighbory, 

neighbor_neuralvolt, no_neighbor,neuralvolt); 

end 

stepx(1) =0.5000; 

stepy(1) = 1.7321; 

xa = stepx; 

ya = stepy; 

%trajectory(x,y) 

% This main function for optimal anlaysis 

e0 = [ 1 ; 1 ;1;1;1]; 

[e,fval] = fseminf(@myfun,e0,2,@mycon); 

eta = [ e(1) e(2) e(3) e(4) ] 

function  [ X_plot , Y_plot ,X2, Y2 , ka, kb, theta_a , theta_b,e1,e2, e3, e4] = xy_coor(dummy) 

 

hold on; 

hold on; 

a =    [0.0000   12.0417  -11.8958    4.6458   -0.8542    0.0625]; 

b =   [12.4130  -34.2321   33.6427  -15.0231    3.1634   -0.2526]; 

% the following comments are for understanding statements.  

% a and b are the coefficients for the equation 

63 



% x = a(1) + a(2)*s + a(3)*s^2 + a(4)*s^3 + a(5)*s^4 + a(6)*s^5 

% y = b(1) + b(2)*s + b(3)*s^2 + b(4)*s^3 + b(5)*s^4 + b(6)*s^5 

% the above equation is obtained from smooth curves. 

% the above coefficients are for first curve generated. 

% so for each curve we have different set of a,b values. 

% value of s3 = 2 and value of s4 = 3; 

syms s; 

a_3db = (( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )^3*(2*b(3) + 6*b(4)*s + 

12*b(5)*s*s + 20*b(6)*s^3) ); 

a_2bda = (( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )^2*( b(2) + 2*b(3)*s + 

3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )*(2*a(3) + 6*a(4)*s + 12*a(5)*s*s + 20*a(6)*s^3)); 

a_5 = ( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )^5; 

b_2 = ( b(2) + 2*b(3)*s + 3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )^2; 

a_3 = ( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )^3; 

theta = atan(( b(2) + 2*b(3)*s + 3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )/( a(2) + 2*a(3)*s + 

3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )); 

cos_teta = cos(atan( b(2) + 2*b(3)*s + 3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )/( a(2) + 2*a(3)*s 

+ 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )); 

sin_teta = sin(atan( b(2) + 2*b(3)*s + 3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )/( a(2) + 2*a(3)*s 

+ 3*a(4)*s*s + 4*a(5)*s^3 +5*a(6)*s^4 )); 

num = cos_teta*(a_3db - a_2bda) 

den = a_5 + a_3*b_2 

input_u2 = diff(atan(num/den) , s) 
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in_u1 =(a(2)+2*a(3)*s+3*a(4)*s^2+4*a(5)*s^3+5*a(6)*s^4)/cos(atan( b(2) + 2*b(3)*s + 

3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )/( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 

+5*a(6)*s^4 )) 

inu1 =(b(2)+2*b(3)*s+3*b(4)*s^2+4*b(5)*s^3+5*b(6)*s^4)/sin(atan( b(2) + 2*b(3)*s + 

3*b(4)*s*s + 4*b(5)*s^3 +5*b(6)*s^4 )/( a(2) + 2*a(3)*s + 3*a(4)*s*s + 4*a(5)*s^3 

+5*a(6)*s^4 )) 

inx =  cos_teta*in_u1  

iny =  sin_teta*inu1  

p = 2 : .001 : 3; 

% input u2 is the steering rate  

in_u2 = subs(input_u2, s, p) 

plot(p , in_u2,'red') 

hold on; 

syms s; 

% this is used for generation of trjecory 

function [ x_tra ,  y_tra ] =generate(in_u1,in_u2,theta,phi) 

 

% Finding the optimal curve useing the quintic splines curve method. 

% the initial conditions are found from smooth curves method. 

syms a1; 

syms a2; 

syms a3; 

syms a4; 
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syms a5; 

syms a6; 

syms b1; 

syms b2; 

syms b3; 

syms b4; 

syms b5; 

syms b6; 

syms s; 

x = a1 + a2*s + a3*s^2 + a4*s^3 + a5*s^4 + a6*s^5; 

y = b1 + b2*s + b3*s^2 + b4*s^3 + b5*s^4 + b6*s^5; 

dx = diff(x , s); 

dy = diff(y,s); 

ddx = diff(dx , s); 

ddy = diff(dy , s); 

ka  = (dx*ddy - ddx*dy)/( (dx)^2 + (dy)^2 )^(3/2) 

%a = [ -14.5000   55.3750  -56.9792   26.1875   -5.5208    0.4375 ]; 

%b = [   3.4641    7.1447   -6.7237    2.6342   -0.4932    0.0361 ]; 

a1 = -14.5000  ; a2 = 55.3750   ; a3 = -56.9792    ; a4 =    26.1875   ; a5 =   -5.5208  ; a6 =      

0.4375  ; 

b1 = 3.4641  ; b2 =  7.1447  ; b3 = -6.7237  ; b4 =      2.6342       ; b5 =    -0.4932   ; b6 =  0.0361 

; 

s =  2; 
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s =  3; 

theta = atan(( b2 + 2*b3*s + 3*b4*s*s + 4*b5*s^3 +5*b6*s^4 )/( a2 + 2*a3*s + 3*a4*s*s + 

4*a5*s^3 +5*a6*s^4 )) 

ka   

% find value of ka and theta. 
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