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ABSTRACT

Due to their convenience, computers have become a standard in society and therefore, need

the utmost care. It is convenient and useful to model the behavior of digital virus outbreaks that oc-

cur, globally or locally. Compartmental models will be used to analyze the mannerisms and behav-

iors of computer malware. This paper will focus on a computer worm, a type of malware, spread

within a business network. A mathematical model is proposed consisting of four compartments la-

beled as Susceptible, Infectious, Treatment, and Antidotal. We shall show that allocating resources

into treating infectious computers leads to a reduced peak of infections across the infection pe-

riod, while pouring resources into treating susceptible computers decreases the total amount of

infections throughout the infection period. This is assuming both methods are receiving resources

without loss. This result reveals an interesting notion of balance between protecting computers

and removing computers from infections, ultimately depending on the business executives’ goals

and/or preferences.
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CHAPTER 1: INTRODUCTION

Due to their convenience, computers have become a standard in society and therefore, need the

utmost care. Not only in a physical sense (hardware) but in a mental state as well (software). This

paper will focus on the latter which is affected by malware, although there have been cases of

hardware malfunctions from malware programs such as Stuxnet [1] or programs from the group,

Equation [2]. Due to the dynamic similarities between digital and biological virus disease spread,

we shall utilize compartmental models [3]. By modeling the spread of a worm in a business com-

puter network, we will attempt to find the most optimal method at minimizing a worm’s total

spread.

We start by formulating a basic model with a combination of other models used in both biological

and digital virus spreads. Once the simple case has been investigated and concluded, we will ex-

amine further by introducing another process/flow in the compartmental model which introduces

the possibility of computers avoiding the infection phase.

Since we are trying to model a worm outbreak over a local business network, we are going to

make some assumptions to simplify the model. We must have the company maintain normal busi-

ness operations, otherwise the company could simply shut down temporarily and pour all resources

into fixing the error immediately. By assuming continuous business operations, our model can bet-

ter simulate a virus spread since infections can still occur. Our model is based off a single virus

outbreak as opposed to a multiple worms/viruses spreading throughout the network. Lastly, we

require the company to have some sort of software capability of combating the network worm.
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CHAPTER 2: MODEL PRELIMINARIES

Compartmental models was introduced in 1927 by Kermack and McKendrick [3] to simulate a

biological disease spread among a population at a basic level. Compartmental modeling is the

characterization of different phases an individual experiences during a disease spread. The gov-

erning equations of the model are formed by the different rates at which subjects transfer between

different phases/compartments. The first form of this model that was introduced was the SIR

(Susceptible-Infectious-Removed) model.

Figure 2.1: Compartmental flow diagram of the Susceptible-Infectious-Removed model

dS

dt
= −βSI

dI

dt
= βSI − αI

dR

dt
= αI,

where S = S(t), I = I(t), R = R(t) represent the number of susceptible, infectious, and re-

covered, respectively, individuals at time t; β is the disease transmission coefficient and α is the

recovery rate. Some interesting things can be determined by examining the model carefully. Long

term sizes among the different compartments can be determined. Interestingly enough, the suscep-

tible class, S, does not necessarily tend to 0 but can remain finite as t→∞, i.e., S∞ > 0. [This is

proven later in the paper from a similar model.] Here we denote ft := f(t) and f∞ := limt→∞ f(t).
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However, the infection class, I , will tend to 0 and the removed class,R, will tend toN−S∞, where

N is the total population size. Aside from the final sizes of the compartments, there is a parame-

ter called the basic reproduction number, which can tell us whether the disease spread will be an

epidemic or not, denoted as R0 [4] [5]. It turns out for this particular model, R0 =
βS(0)
α

with the

following conclusions:

R0 ≤ 1⇒ no epidemic

R0 > 1⇒ epidemic.

Note that these conclusions are typical with basic reproduction numbers in general.

We will mention other models by introducing different types of compartments. First, a biological

disease model labeled the SITR (Susceptible-Infectious-Treatment-Removed) with a new compart-

ment, T relating to a treatment class/phase [6, Chapter 2]. The other model is a computer virus

spread model labeled SAI (Susceptible-Antidotal-Infectious) that adds a new compartment labeled

A to represent an antidotal class/phase [7]. Our model will be a composition between the SITR and

the SAI models used while keeping the computer virus spread scenario in mind. Thus we have our

model, the SITA model (Susceptible-Infectious-Treatment-Antidotal).
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CHAPTER 3: OUR MODEL AND ANALYTICAL STUDIES

Our model, represented by Figure 3.1, is described by the following ordinary differential equations:

dS

dt
= −βSI − τSS (3.1)

dI

dt
= βSI − τII (3.2)

dT

dt
= τSS + τII − γT (3.3)

dA

dt
= γT, (3.4)

where S = S(t), I = I(t), T = T (t), A = A(t) represent the number of susceptible, infectious,

treatment, and antidotal computers, respectively, at time t; β is the disease transmission coefficient

and γ is the treatment rate. Notice, we have two control parameters, τS and τI , which are defined

as protection rate and removal rate respectively. These are the parameters we would ultimately

like to optimize.

Theorem 3.1. Solutions of (3.1) - (3.4) with non-negative initial conditions S0, I0, T0, A0 ≥ 0,

satisfy S(t), I(t), T (t), A(t) ≥ 0.

Proof. By the standard theory of differential equations [8], the solution to (3.1)-(3.4) with non-

negative initial conditions S0, I0, T0, A0 ≥ 0 exists uniquely. From (3.1), dS
dt
|S=0 = 0 implying

S(t) ≥ 0 for all t ≥ 0. Similarly, from Equations (3.2) - (3.4), we have dI
dt
|I=0 = 0, dT

dt
|T=0 ≥ 0,

and dA
dt
|A=0 ≥ 0. Thus I(t) ≥ 0, T (t) ≥ 0, and A(t) ≥ 0 for all t ≥ 0.

4



Figure 3.1: Compartmental flow diagram of the Susceptible-Infectious-Treatment-Antidotal model

Similar to the basic reproduction number R0 from the SIR model, we will find the control repro-

duction number. From (3.2), we have

dI

dt
= βSI − τII = (

βS

τI
− 1)τII,

thus we define

Rc =
βS0

τI
. (3.5)

Similarly, we have

Rc ≤ 1⇒ no epidemic

Rc > 1⇒ epidemic.
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Before going further, let us quickly define the total population size.

Definition 3.2.

N = S + I + T + A,

where N is the total number of computers.

Adding (3.1) - (3.4) gives dN
dt

= 0, which implies N(t) = N0 for t ≥ 0.

One of our global results we have is the final size in the treatment class.

Lemma 3.3 (Treatment Final Size). The number of computers in treatment over time approach

zero, i.e., T (t)→ 0 as t→∞.

Proof. Assume a small set of computers are never completely treated, T∞ > 0, then

∫ ∞
0

T (t)dt = lim
t→∞

∫ t

0

T (s)ds =∞.

Integrating (3.4) from t = 0 to t =∞ gives

A∞ − A0 = γ

∫ ∞
0

T (t)dt =∞.

Thus, A∞ =∞, but A∞ is bounded above by N0, namely, A∞ ≤ N = N0. This is a contradiction,

and hence T∞ = 0.

3.1 Case 1: Protection Denied

Here, we are assuming no computers are being pulled from the Susceptible class into the Treatment

class, meaning no computers being protected from the worm virus spread, i.e., τS = 0. We would

6



like to determine final sizes for our classes and if there are any equilibrium solutions in the model.

Lemma 3.4 (Equilibrium Solution). If τS = 0, there is a line of equilibrium solutions.

Proof. At equilibrium, the rate of change vanishes. Thus, setting (3.1)-(3.2) to zero gives

dS

dt
= −βSI = 0

dI

dt
= (βS − τI)I = 0.

Solving S and I leads to I = 0 and S = α for any non-negative constant α ≤ N0. Thus (S, I) =

(α, 0) for 0 ≤ α ≤ N0 form a line of equilibrium solutions.

Lemma 3.5 (Infectious Final Size). If τS = 0, the number of infectious computers over time

approach zero, i.e., I(t)→ 0 as t→∞.

Proof. Assume a finite amount of computers remain infected over the infection period, i.e., I∞ >

0, then

∫ ∞
0

I(t)dt = lim
t→∞

∫ t

0

I(s)ds =∞.

Integrating (3.4) gives

A∞ − A0 = γ

∫ ∞
0

T (t)dt.

On the other hand, integrating (3.3) yields

T∞ − T0 = τI

∫ ∞
0

I(t)dt− γ
∫ ∞
0

T (t)dt,

7



thus

γ

∫ ∞
0

T (t)dt = T0 − T∞ + τI

∫ ∞
0

I(t)dt.

Since T0 = T∞ = 0, we have

A∞ = τI

∫ ∞
0

I(t)dt =∞, (3.6)

which contradicts with the fact that A∞ ≤ N0.

Theorem 3.6 (Susceptible Final Size). If τS = 0, the number of susceptible computers over time

is positive.

Proof. From (3.1) and (3.2), we obtain

dI = (
τI
βS
− 1)dS.

Integrating from t = 0 to t =∞ gives

∫ ∞
0

dI(t) =

∫ ∞
0

(
τI
βS
− 1)dS(t).

Thus, we have

I∞ − I0 =
τI
β
lnS∞ − S∞ −

τI
β
lnS0 + S0.

Since I0 ≈ 0, I∞ = 0 andRc =
βS0

τI
, we have

Rc(1−
S∞
S0

) = lnS0 − lnS∞. (3.7)

8



Hence, we conclude S∞ > 0.

Another important result we would like to examine is the total amount of infections over the entire

infection period.

Theorem 3.7. If τS = 0, the total amount of infections, also known as final disease size (FDS),

of the worm outbreak has the relation

FDS = τI

∫ ∞
0

I(t)dt.

Proof. With S∞ satisfying the relation (3.7), note that

S∞ + I∞ + T∞ + A∞ = N,

where N is the total population size. Since I∞ = T∞ = 0, it follows that A∞ = N − S∞,

representing the total amount of infections. This is equivalent to removing those that were not

infected in the total population. By (3.6), we have N − S∞ = A∞ = τI
∫∞
0
I(t)dt.

This makes sense, since τI represents the removal rate (computer per unit time), 1
α

represents the

average infection period (time per unit computer), and
∫∞
0
I(t)dt represents the amount of infec-

tions across the disease outbreak, with repeats. So dividing by the average infection period removes

repeats and gives us our result.

9



3.2 Case 2: Protection Applied

Now we are assuming computers are being protected from the computer worm transferring sus-

ceptible computers into a treatment class by way of digital quarantine. As in the first case, we shall

prove some final size results. Firstly, we study the first two equations of our system, i.e., (3.1) and

(3.2).

Lemma 3.8. If τS > 0, there is a unique equilibrium solution at (S, I) = (0, 0) for (3.1) - (3.2).

Proof. Set equations (3.1) - (3.2) to zero,

dS

dt
= −βSI − τSS = S(−βI − τS) = 0

dI

dt
= βSI − τII = I(βS − τI) = 0.

Since τS > 0, τI > 0, it follows S(t) = I(t) = 0.

Theorem 3.9 (Final Size Relation). If τS > 0, (0, 0) is globally asymptotically stable for (3.1) -

(3.2).

Proof. First, we show local asymptotic stability. The Jacobian is

J =

−βI − τS −βS

βI βS − τI


and its evaluation at (0, 0) gives

J(0,0) =

−τS 0

0 −τI

 .

10



Since τS, τI > 0, we see that the matrix has two eigenvalues, −τS and −τI . Thus, (S, I) = (0, 0)

is locally asymptotically stable [9]. For global attractivity, adding (3.1) - (3.2) gives

(S + I)′ = −τSS − τII ≤ −τ(S + I),

where τ = min{τS, τI} > 0. Integrating the above inequality gives

S(t) + I(t) ≤ ce−τt.

By letting t → ∞, we have S(t) + I(t) → 0, as t → ∞. Since S(t) ≥ 0, I(t) ≥ 0, we have

lim
t→∞

S(t) = 0 and lim
t→∞

I(t) = 0, i.e., (S(t), I(t)) → (0, 0) as t → ∞. Local stability and global

attractivity together imply the global stability of (0, 0).

We have established that the solution of our model approaches a steady state solution. Now the

question becomes, can we adjust these control parameters to minimize the final virus size. Another

interesting aspect we will examine is reducing the maximum amount of infections over the infec-

tion period, meaning a company may want a control strategy such that the maximum number of

computers that can be infected is bounded above by some threshold. Let us first prove the existence

of a maximum with the following:

Lemma 3.10. The number of infectious computers I(t) achieves its maximum value at some mo-

ment t̂, and the maximum value is denoted as Imax = I(t̂).

Proof. The trivial case is true, i.e., I(t) = 0. If not, notice the behavior on I(t) and how it depends

on the control reproduction number,Rc, this leads into two cases.

Case 1: Let Rc ≤ 1, i.e., βS0 − τI ≤ 0. Since dS
dt
< 0 for all t ≥ 0, we have S(0) = S0 ≥ S(t).

11



Hence, βS − τI ≤ βS0 − τI ≤ 0. From (3.2), we have

dI

dt
= I(βS − τI) ≤ I0(βS0 − τI) ≤ 0.

Thus, I(t) is monotone non-increasing and Imax = max
t≥0

I(t) = I(0) = I0.

Case 2: LetRc > 1, i.e., βS0 − τI > 0. By equation (3.2),

dI

dt

∣∣∣
t=0

= I0(βS0 − τI) > 0.

This means that the amount of infections are increasing initially, producing an epidemic. However,

since S(t) decreases, i.e., dS
dt

= −βSI − τSS < 0 whenever S > 0, there exists t = t̂ such that

βS(t̂) − τI = 0, and βS(t̂) − τI < 0 for t > t̂. Hence dI
dt

= I(βS − τI) < 0 for t > t̂. This

implies I(t) increases when t < t̂ and decreases when T > t̂, yielding a maximum value of I(t) at

t = t̂.

To examine this result,we shall first derive a useful expression.

Lemma 3.11. (First Integral of SITA Model) Our model admits a First Integral,

V (S, I) = β(S + I)− τI ln(S) + τS ln(I) = constant.

Proof. From equations (3.1) - (3.2), we have

dI

dS
=

βSI − τII
−βSI − τSS

=
−I(βS − τI)
S(βI + τS)

,

thus,

βI + τS
I

dI =
βS − τI

S
dS.

12



Integrating gives

∫
(β +

τS
I
)dI =

∫
(−β +

τI
S
)dS,

namely,

βI + τS ln(I) = −βS + τI ln(S) + c,

where c is the constant of integration. Solving for c gives

β(S + I)− τI ln(S) + τS ln(I) = c.

This gives us a very important result, for any time t, the resulting values for S and I satisfy this

expression. Consequently, this means we can choose any points in time and plug into the derived

expression.

Corollary 3.12. We have the following result:

β(S0 + I0)− τI lnS0 + τS ln I0 = β(Ŝ + Imax)− τI ln Ŝ + τS ln Imax, (3.8)

where Ŝ = S(t̂) with I(t̂) = Imax.

With this corollary, we would like to observe some behavior regarding the maximum number of

infections at any point in time in relation to our control parameters, τS, τI . Hence, we have the

following theorem:

Theorem 3.13. Assume that Rc > 1, then the maximum number of infections across the infection

13



period, at time t = t̂, is decreasing if there is an increase in the protection rate and/or the removal

rate, τS and τI respectively.

Proof. Differentiating (3.8) with respect to τS gives

ln I0 = β
∂Imax
∂τS

+ ln Imax +
τS
Imax

∂Imax
∂τS

.

Thus,

∂Imax
∂τS

=
ln I0

Imax

β + τS
Imax

.

Since Imax > I0, we have ln I0
Imax

< 0. Therefore ∂Imax

∂τS
< 0, implying that Imax is decreasing as

τS increases. On the other hand, differentiating (3.8) with respect to τI gives

− lnS0 = β
∂Imax
∂τI

− ln Ŝ +
τS
Imax

∂Imax
∂τI

.

Hence,

∂Imax
∂τI

=
ln Ŝ

S0

β + τS
Imax

.

Since Ŝ < S0, we have ln Ŝ
S0

< 0. Hence, ∂Imax

∂τI
< 0, implying that Imax is decreasing as τI

increases.

This implies any more resources that are poured into extracting susceptible or infectious computers

will, in fact, reduce the peak of infections.

However, we still have yet to examine what would happen to the final virus size when we tune

14



our parameters which will be studied numerically in the next chapter, and succeeding this is an-

other numerical study we determine what the optimum distribution between τS and τI would be

given some initial constraint, namely τS + τI = constant = τ . Numerical simulations are carried

out in the next chapter to explore these issues.

15



CHAPTER 4: NUMERICAL STUDIES

Matlab was used to simulate the solutions of our model using the command ‘ode45’, which uses

an explicit Runge-Kutta method, the Dormand-Prince pair [10] [11]. The following values for our

parameters were chosen: N = 1000, I0 = 100, S0 = N − I0 = 900, τS, τI ∈ [.5, 1], γ = .1,

β = 0.0039, and the unit of time t is one day.

4.1 Control Strategies Unconstrained

In Section 3.2, we established the fact that our peak infections should decrease if there is an in-

crease of the protection rate and/or the removal rate. Numerical simulations are carried out for

varying values, [0.5, 1], of removal rate τI and protection rate τS . Specifically, Figure 4.1 shows

the decrease of peak infection for fixed τI with varying τS , Figure 4.2 shows the decrease of peak

infection for fixed τS with varying τI , and Figure 4.3 displays the change of peak infection in terms

of varying τS and varying τI .

Figure 4.1: Peak infections with varying removal rate and fixed protection rate

16



Figure 4.2: Peak infections with varying protection rate and fixed removal rate

Figure 4.3: 3-D surface plot of peak infections with varying protection and removal rates

The next set of plots (Figures 4.4-4.6) show the relation between the final disease size and control

parameters τS and τI . In particular, this complements the missing qualitative study on this. All

simulation results show the monotone dependence, that is, increasing τS or τI would decrease the

final disease size, and we only show one typical set of plots here.

17



Figure 4.4: Final disease sizes with varying removal rate and fixed protection rate

Figure 4.5: Final disease sizes with varying protection rate and fixed removal rate

18



Figure 4.6: Final disease sizes with varying protection and removal rates

4.2 Control Strategies Constrained

Since the resources to treat or to protect computers is often limited, it is more interesting to consider

the case with a constraint on τS and τI . In this section, we may assume τS + τI = τ , where τ is a

positive constant representing the available resources for either treatment or protection. We would

like to determine which parameter values, τS and τI can minimize peak infections and final disease

size . In the simulations, we chose τ = 1.5.

For Figure 4.7, the peak infection values tend to be smaller as τS and τI become larger. However,

based on the curvature, one can see that the smallest value is located around the upper left corner

of the contour image. Since we only focus on values satisfying our constraint, the most upper left

value on the black line represents our peak infections minimum. In this case, the control parameter

values that correspond to this minimum peak infection would be τI = 1, τS = 0.5. That is, if more

sources were allocated to removing infectious computers from the functional network, the lower

the maximum number of infections that can be across the entire infection period.

19



Figure 4.7: Contour plot of the peak infections over τS and τI with constraint

Figure 4.8: Contour plot of the final virus size over τS and τI with constraint

For Figure 4.8, this behaves similarly to our peak infections contour in regards to a lower final virus

size being caused by an increase in both τS and τI . However, the curvature on this contour plot

angled toward the lower right. Following along the constraint line, we find that the minimum for

20



the final virus size occurs at the parameter values: τI = .5, τS = 1. Based on our initial parameters,

the total amount of infections across the entire infection reaches a minimum if resources are poured

into protecting more susceptible than infectious computers.

21



CHAPTER 5: CONCLUSIONS/FUTURE WORK

Based on our initial parameter values, we have seen that peak infections tend to decrease and are

minimized when more resources are allocated into removing infectious computers to avoid fur-

ther disease spread. Conversely, reducing the final virus size would require more resources being

distributed into protecting susceptible computers from being infected. From the infectious distribu-

tion perspective, it would appear an increase of τS contracts the function since the peak infections

increase but reduce the final virus size. Conversely, an increase of τI appears to expand the in-

fectious distribution by lowering the peak infections but ultimately increasing the final virus size.

The challenge comes into play when the decision needs to be made as to which control parameter

should receive a majority of resources.

The key to determining where resources should be distributed depends on the goals of the busi-

ness’ shareholders. If there is to be some tolerance as to how many computers are allowed to be

infected at any point in time, then resources should go into removing infectious computers, note

this also implies a reduction in average infection period per computer. Imposing this type of in-

fectious constraint would be practical if the company were to assume regular business operations

while trying to meet demands on time. Alternatively, if there is a long term concern in regards to

damage of the computer network, then resources should be more focused on protecting computers

from infectious computers. Ultimately, the preferences and short/long term goals of the company

executives affect which control strategy to take.

To allow improvement in the model, we have proposed some concepts to account for other factors

not addressed initially. Inject demographic data regarding the arrival of new purchased computers

or the deletion of outdated computers. One could impose a continuous constraint for the maximum

22



number of computers allowed to be in the Treatment class at any point in time, utilizing optimiza-

tion techniques would be helpful here. There is the possibility of allowing some computers to never

be completely treated, perhaps due to lack of resources or some business constraints; this can be

thought of as a factory reset, i.e., Treatment→ Susceptible. Initially, we had assumed the company

had a means of combating the virus on computers individually, to account for previous points in

time, we may allow τS to be piece-wise where τS = 0 until a means of removal is acquired, thus

τS = constant at junction t = t. An interesting and more robust approach would be to allow our

control parameters to vary with respect to time, i.e., τs = τS(t), τI = τI(t). We can broaden our as-

sumptions by allowing to different treatment classes to tackle susceptible and infectious computers

separately. Intuitively, this seems viable since susceptible computers may just need an anti-virus

update which is much faster than diagnosing and fixing an infectious computer. As a final thought,

allowing the model to cover a multi-viral outbreak would provide some interesting insight into

a more refined control strategy, this implemented by simply allowing computers with some new

anti-virus program to be susceptible to other viruses, i.e., Antidotal → Susceptible. With more

observational research, we hope to condition our model to be more robust.
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