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ABSTRACT

Numerical methods for solving linearly damped Hamilton@adinary differential equations are
analyzed and compared. The methods are constructed fromelhnown Stormer-Verlet and
implicit midpoint methods. The structure preservationgendies of each method are shown ana-
lytically and numerically. Each method is shown to presersgmplectic form up to a constant and
are therefore conformal symplectic integrators, with eaetthod shown to accurately preserve the
rate of momentum dissipation. An analytical linear st&pdinalysis is completed for each method,
establishing thresholds between the value of the dampiefficent and the step-size that ensure
stability. The methods are all second order and the pretsemvaf the rate of energy dissipation is
compared to that of a third order Runge-Kutta method thas do¢preserve conformal properties.
Numerical experiments will include the damped harmonidllagor and the damped nonlinear

pendulum.
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CHAPTER 1: INTRODUCTION

For this thesis we provide a comparison between numericdaods used in modeling Hamiltonian
systems with linear dissipation, generally interpretedriaion. There are many practical appli-
cations for systems of this type. As an example, it was notedpaper by Holmberg, Andersson
and Erdemir [11] that in passenger automobiles one-thith@ffuel energy is used to overcome
friction with 28% of the fuel energy being direct frictional losses in plaagssas the engine, trans-
mission, and tires. One main objective in the design of thepmnents of these systems would be
to minimize losses due to friction and therefore increaeiefhcy. The dynamics of some of these
mechanical systems can be well represented by a Hamiltevitarlinear dissipation and it is for
that purpose that the numerical methods used in the modeditigese systems and especially the
modeling of the energy losses be as accurate as possiblert@iytar interest would be numerical
methods that will accurately preserve the rate of dissypah the system. This practical applica-
tion, as well as many others, serves as motivation for tlésithand the continual improvement in

the accuracy and efficiency of the numerical methods usedtiehsuch systems.

In this thesis, we are interested in comparing numericahods used to approximate systems
of ordinary differential equations of the forndiz = f(2),z(to) = 2° ¢ R%. Wherez(t,) is

the solution at the time,. We designate the approximated solutionzaswherez" ~ z(t,) for

n > 0. We typically assume the initial timg = 0 and that all subsequent time steps are defined by
t, = t,_1+Atforn > 1. We also assume that the solutiafisare defined for all time steps> t,.

In addition, we define dependent variableand p that are used to designate column vectors of
positions and momenta respectively in a Euclidean sBdcavhered is the dimension. We utilize
these notations when we apply the numerical methods to deoater systems of differential
equations arising from Newton’s second lay, = f(q). We write the first order form of the

differential equationg, = p andp, = g(q), where the time derivative af(t) is denoted by;, and
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that of p(t) is p;. We next define a vectar= [¢, p]” and a vector fieldf (z) = . We can

then apply our numerical method to the equatipp- f(z).

As shown earlier, we know there is value and practical appba in being able to accurately and
efficiently model the sometimes complex systems found indisluch as physics and engineer-
ing. However, with such systems it may be difficult or impre&ltto obtain an analytical solution
because the amount of work necessary may be prohibitivédotekly model the system or es-
tablish the long term behavior of such a complex system. Aschim [1], with the exception of
a few special cases, most models are not exactly integrapkcally those that are nonlinear. In
these situations we can apply a numerical method and obteaproximation of the solution, or
modeling of events, within an acceptable tolerance levdlp&ticular interest are conservative
physical systems such as Hamiltonian systems, as they cepl®sentative of a wide range of
practical applications and the conservative propertigh@fnumerical methods used to approxi-
mate such systems. Obviously, it is desirable that any nigalenethod used for approximating

the solution offer accuracy, stability and be as efficienp@ssible.

The continued development of new numerical methods, imgar@ant and modification of existing
methods, and the thorough comparison of methods provides aad increases the understanding
of the strengths and weaknesses of the methods availabhe taser. For that purpose we will
provide an analysis and comparison of two types of numenhods and apply those methods
to a linear and a nonlinear ordinary differential equatioBsth types of methods are structure-
preserving methods and are composed from classical well kmethods, those being the Stormer-

Verlet method (sometimes called the leap-frog method) hadnhplicit midpoint method.

The construction of symplectic methods with a damping coiefiit ofy = 0 can be accomplished

through the process of splitting the Hamiltonian into a sunexplicitly solvable Hamiltonian



vector fields [1]. A symplectic method is then created from ¢bmposition of the corresponding
flow maps. Symplectic methods are structure preservingausttihat is they will exactly preserve
the symplectic structure of a Hamiltonian ordinary differal equation, which is equivalent to
preserving the phase space area [1]. Other invariant grep@f the governing equations are also
often preserved by symplectic methods, such as momentuptairans. It has also been proven
that over long time intervals symplectic methods will presethe total energy of a system up
to an exponentially small error. Due to their superior resii practice, symplectic methods are
preferred by scientists and engineers for simulating awasge dynamics in many applications,
such as celestial mechanics, molecular dynamics, eleatyoatism, optics, and many systems that
involve wave motion. A well known disadvantage to sympleatiethods is they will loose orders
of accuracy and structure-preserving properties when gutaneoefficient ofy > 0 is introduced.
For that reason, we want to extend symplectic integratioorédolems with damping in order to
develop numerical methods that will become the preferraddsird by scientists and engineers to

use in applications with the presence of frictional forces.

The methods in this thesis have a damping coefficient of 0 and were obtained through the
construction of symplectic methods by splitting [1, 10] agess in which each of these methods
has been used as the symplectic method used to approxireaterthervative part of a Hamiltonian
system and then composed with a exact time flow map that istag@dvide the exact solution to
the dissipative part of the system. A thorough descriptidhese types of systems can be found in
[6] but in simplest terms also noted in [6] they can be desttis systems with coordinatesp),

a separable HamiltoniaH (¢, p) = T'(p) + V (¢), and the following equations of motion.

¢ = V,T'(p), pr=—VV(q) = 2p (1.1)

whereq,p ¢ R? andy > 0. For these Hamiltonian systems with linear dissipation ae write



them in the compact form:

Jzy = V,.H(z) — Dz, (1.2)

0 -l 0 I
wherez = [q,p]T withg,p e R4, v >0,J = , andD = 2~ as found in
I 0 0 0

[1, 8]. Through a process detailed in the work of Moore [3] slgstem of equations (1.1) can be

written in the following form.
q = V,T'(p) +vq — 4, pe=—-VV(g) —vp — . (1.3)
Utilizing these equations of motion (1.3) along with a n@parable Hamiltonian of the form

H.(q,p) =T(p) +V(q) +vqp, (1.4)

we note

V,H=V,T+~q,  V,H=V,V+9p.

Therefore, utilizing this Hamiltonian (1.4) the system gtiations (1.2) is equivalent to
Jzy =V, H, (2) — Iz (1.5)

We can also show that Hamiltonian systems that can be wiittehe compact form (1.5) are
conformal symplectic systems. We know from the work of Mdhlaa and Perlmutter [6] and
that of Moore [3] that a differential equatian = ¢(y) is said to be conformal symplectic if the

following relation holds:

ow = —2yw  or equivalently w(t) = e *"w(0) (1.6)



and if it is satisified forv = dy A Jdy. Utilizing this definition, we show that a Hamiltonian system

with linear dissipation (1.5) as shown above is conformaighectic.

To continue we will need to utilize the following propertiesthe wedge product as found in [1].
Whereda, db, dc are k-vectors of differential one-forms 6.

Skew-Symmetryda A db = —db A da

Bilinearity: for anya, 3 ¢ R? da A (adb + Bdc) = ada A db + Bda A de.

Also, for any symmetric matrif, da A Ada = 0.

We begin by writing the associated variational equatioreneh? H., is the Hessian matrix

Jdz = 0°H,(2)dz — vddz.

Therefore,

dz Nddz = dz N O2H (2)dz + dz A —ddz,
dz NJddz, = dz N\ —yJddz,

dz NJddz, = —dz N yIddz.

Noting thatd? H, (z) is symmetric and the wedge product is skew-symmetric.



Now taking a partial derivative,

Oy(dz NJddz) = dzy N Idz + dz N\ ddz
=JVdz ANdz + dz A Jddz
= —dz ANIVdz + dz AN ddz
=dz N —=3"dz + dz AN ddz

Where we have utilized that the fact that
0 -l 0 | 0 -l

J= JJT = and-J* = =J
I 0 -1 0 I 0

Then by Substitution,

O(dz NJddz) = —2v(dz N\ Jdz).

Again by substitution using = dz A Jdz we have,

ow = —2yw.

Therefore, we have shown that Hamiltonian systems of tha o, = V,H(z) — 7Jz satisfy the
definition (1.6) of a conformal symplectic system.

We are interested in Hamiltonian systems with the presehdarmping and where the symplectic
form will dissipate exponentially. These systems are aersid to be conformal symplectic sys-
tems [6, 3]. For this thesis we consider numerical methodsreserve such properties and are
therefore considered to be conformal symplectic integsatdumerical methods give us a way to
approximate the flow-maps of a system of differential equretifrom one time step to another. As

found in [1] any reasonable numerical method will presehgegdymplecticness relation up to an



error that is proportional to the local truncation error.steyns that are conservative and have a

damping coefficient of = 0 have the symplecticness condition as found in [1]

dg" A dp™tt = dg™ A dp™. (1.7)

If the symplecticness condition is preserved exactly timentumerical method can be thought of
as a symplectic integrator.

Systems without the presence of damping have been wellestumlit less is known about those
systems that have a damping coefficient- 0. There is value in furthering the study of such
systems and real-world applications that can benefit ina@vipg the numerical methods used to
approximate them, such as dissipative systems in whictidnial forces are present. As defined in

[3] a numerical method is a conformal symplectic integréttre following relation holds,

dqn+1 A dpn-l-l — 6—27Atdqn /\dpn (18)

Or, another way that this can be thought of is as found in [6{aefields are considered conformal
if their flow preserves a symplectic form up to a constant. Wesklow that the numerical methods
in this thesis will satisify this defintion and are therefomnformal symplectic integrators.

Two of the conformal methods featured in this study have Istedied and presented by others
[4, 7] and both will be presented in greater detail in thisstbe In the previous work done both
methods were compared analytically and numerically to watwn existing numerical methods.
The conformal method using the Stormer-Verlet method her ftow map of the symplectic in-
tegrator was presented as one of three integration scheynk®wddin and Soderlind [7] as part
of a study of the geometric integration of Hamiltonian systeperturbed by Rayleigh damping
and such systems are conformal symplectic systems. It wagnsthat the methods in the study

showed preservation of dissipation in angular momentur,headl an asymptotically correct en-



ergy dissipation rate for small values of the dissipatioefficient. In that study, the method was
compared to and found to be superior to explicit Runge-Kotédhods of the same order, with
numerical results using Heun’s method for comparision. Werefer to this method throughout

this thesis as CSV1. This method uses the formulation 1.2.

We will also use as one of numerical methods in this thesisarskconformal method developed
using the Stormer-Verlet method for the flow map of the sygufit integrator. We will refer to
this method as the Conformal Stormer-Verlet method-2 oWZSThe method is referenced from

the presubmission paper by Moore, Bhatt and Floyd [8] argirttethod uses the formulation 1.5.

The other conformal method in our study, which uses the lkitgMidpoint method for the flow
map of the symplectic integrator, will be referred to thrbagt as the Conformal Implicit Midpoint
Method [2] or CIMP. The CIMP method in this thesis is a geneagion of the method that was
presented in detail by Sun and Shang [4] as part of the stustyunture-preserving algorithms for
Birkhoffian systems. Birkhoffian systems include Hamileansystems with weak linear damping
and therefore the results of that work are relevant to thidyst The method was shown to be
conformal symplectic [3] and the numerical results shoviredability to simulate the energy dis-
sipation better than the implicit midpoint rule. Both medsdave been compared to well known

existing methods and found to be superior.

There are questions that arise from the studies mentioned.ddes the Conformal Implicit Mid-

point method compare with the Conformal Stormer-Verletirods? Are there situations in which
the explicit Stormer-Verlet methods perform as well ortéethan the implicit method? How do
these second order methods compare to a higher order métabts thot structure-preserving?
Another question of interest arises from the fact that wenkae the value of the damping coef-
ficient increases the stability and or reliability of a nuroarmethod can be in doubt. Therefore,

an obvious question arises, can a relationship betweeratfaengters of a numerical method such



as step-size and the damping coefficient be derived to estadihbility thresholds beyond stat-
ing "for sufficiently small values of the damping coefficientA goal of this thesis is to provide

answers to questions such as these. The main contributidnis thesis are:

e A comparison of the Stormer-Verlet methods with the Comi@lrimplicit midpoint method.
Analytically we show the structure preservation propsrtéed prove the methods are con-
formal symplectic integrators [3] and that the rate of motuendissipation is preserved
[1, 2, 3]. Numerically we provide a comparison of the methadien applied to a linear

damped harmonic oscillator and a nonlinear damped pendulum

e An analytical linear stability analysis will be completast the methods by establishing the
thresholds between parameters of the methods in which gemealues of the method lie
in the left half of the complex plane when applied to a dampanonic oscillator, a suffi-
cient condition for stability. The stability analysis foa@ method provides the correlation
between the damping coefficient and the time step-size anditres us the ability to define
and understand the parameters in which the explicit cordb8tormer-Verlet methods will
continue to produce acceptable results in line with thoga@tonformal implicit midpoint

method.

e Comparison of the preservation of the rate of energy disisipaf the CIMP, CSV1 and

CSV2 methods with a third order Runge-Kutta method that tstracture-preserving.
e Analytic and numerical results reveal each of the conformathods have relatively the

same level of accuracy, but the explicit methods are mucte rafficient.

An extension of this study would be to expand the numericalyais to include more sophisticated

ODE systems as well as PDE applications. Such an expansioldwe the natural progression



to give a more thorough understanding of the significancaéefindings and verification that the

results hold across multiple scenarios.
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CHAPTER 2: NUMERICAL METHODS

The conformal symplectic methods in this thesis have beastoacted by the process of Hamilto-
nian splitting as suggested by [1, 9, 10]. In the process dfisg the Hamiltonian part is approx-
imated by a symplectic methadt! = 1x,(2%) with z = [, p|T andw A, being the flow map of a
symplectic integrator, and the non-Hamiltonian part bydkact timer flow map [3, 1, 8]. These
two flow maps are composed together to form the conformal $gatip method. We next present
each of the methods and the structure preservation prepatieach. We provide an example of

the process involved in the construction of numerical méshaeith the CSV1 method.

2.1 Conformal Implicit Midpoint method

The first method presented is the Conformal Implicit Midpomethod as found in the work by

Sun and Shang [4]. A generalized form of the well known Imphadpoint method is as follows.

Zn-i—l —n Zn—l—l + 2"

wherez = [q,p]T. For the conformal form we first consider a Hamiltonian systeith Hamilto-
nian of the formA., (¢, p) = V(¢) + T'(p) + vgp With the corresponding equations of motion (1.3).
Or equivalently, written in the compact form 1.5 and using litmplicit Midpoint Method (2.1) to

discretize 1.5 we obtain,

Zn-i—l —on Zn—l—l + 2" Zn—l—l + 2"
S e () () ey

To form a conformal symplectic form of the implicit midpointethod we discretize the Hamil-

tonian part with the Implicit Midpoint Method and the non4Hitonian part with the exact flow

11



map and then compose these two flow maps together we haverttezinal method shown below.
We will refer to this method as the CIMP method a generalipethfof the method as found in the

paper by Sun and Shang [4]. With= At the discretization can be written as:

“’—hn—l—l_*—whn b+l e LS
J(”z h“z):w[(e” ;e2z> (2.3)

0 -l

wherez = [q,p]TWithq,p eRY, v>0,)=
I 0

2.1.1 Conformal Symplecticity

In order to prove that the CIMP method is conformal symptedtiis sufficient to show that

(W) AJ (W#) = 0 and then to verify that it satisfies the definition of a con-

formal symplectic integrator (1.8).

Theorem 2.1.1 The Conformal Implicit Midpoint method is conformal synapile

Proof Writing the associated variational equation

P eFdamt — eFdam _8H et p e (e demt 4 e dan
h e 2 2

12



Therefore,

e%hdznﬂ + e%hdz” AJ w Tdz" — e dz ez alz”Jrl + e dz A
2 h
2 A o eFdmt 4 e den
z Y 2 2
eFdt e dn AJ e d 1 — e dn _
2 h N

We carry out the wedge product on the left hand side to obtain,

ah ah ah —ah —h Fh
€2 e 2 e 2 —e 2 e 2 e2
—ah —h
e 2 —e 2
+ 5 dz""NJ ( - z") =0

vh

—1
n+1 n+1 n+1 d d n+1 d d o
_th ANJdz"T + 2hd AJddz" + 57, %% A Jdz 2h Z"ANJddzZ" =0

ez AJd2T + —d2 TP A I 4 d2t A AT+ —e A A JdE =0

"N Jd 3T AT A+ d2t AT 4+ —e A A JdE =0

Note, we have utilized a property of the wedge prodiict (Adb) = (A”da) A db for anynan

matrix A. Also, utilizing the fact thatJ” = J we have,

AN I+ IV A A2+ d2t AT 4+ —e A A JdZ =0
AN Id T £ IV A2 + - ddZM T A2+ —e A2t A JdR = 0
MY AN I —e A NI =0

Az A Jd2" T = e A Jd2™ = 0.

13



Therefore we have,

Az A JdM = e A A Jd2"

We have proven using the definition of conformal symplectethods (1.8) and as defined in

[3, 9, 10], that the CIMP method is conformal symplectic. |

To consider a specific example we provide a discretizatior{Ifd) with the Hamiltonian (1.4)

H.(q,p) = T(p) + V(q) + vgp. Therefore, we can write a generalized form of the method as

follows:
n+l _ —vh n __ ﬂ n+1 —vh n ﬁ n+1 —vh,n
q e =5 ("' +e q)+2VpT(p + e ") (2.4)
n - n _fyh n - n h n - n
P et = —= (M e ") = SV (¢ e )

Consider the ordinary differential equation for a dampeuirtwaic oscillator
G+ 29 +w?q =0 (2.5)

With T'(p) = % andV(q) = # and then with the CIMP method (2.4) being applied to (2.5), we
obtain the following:
n+l _ ,—vh n _ ﬂ n+1 —vh n ﬁ
(q +e q ) + 5
—~h
pn+l . e—’yhpn _ 7 (pn+1 + e—’thn) _

(pn+1 4 e—'yhpn) ’ (26)
hw2 n — n

7(‘1 +1+€ th )

Further, if we solve for”*! andp™*! and write this method as a matrix equation we have:

1+ﬁ2—@ h q"
1+7%) : . . @)
— hw? (1_ 'y_h)z_ hw pn

qn+1 e_fyh
1

— 2R? I h2w2

n+1 1 1

14



We can show as an example of a specific casenebrem 2.1.1 that this discretization does satisfy
the definition of a conformal symplectic integrator (1.8).

—~h 2,2
n+1 n+l __ 67 7h2_hw n n
dg"™ A dp"tt = (1—724h2+h22’2> K(l+—2) 1 )dq —i—hdp}/\

6_A{h 27.n 7h 2 h2w2 n
(1_72h2+h2w2> |:_hw dg +<< _7) - 4 dp”| .

4 4

For simplicity let us defin@ = 1 — 2% | 2%* Then our variational equations become

—vh 2,2
dqn-i-l /\dpn-i-l _ (eq) ) |i((1 + %)2 _ hTw) dqn + hdpn} A
e . ~vh h2w? "
< % ) [—thdq + ((1 — 7)2 —~ )dp }

—vh h h2w? e ~vh h2w?
dn—i—l dn+1: € 1 L2_ da™ 1__2_ dn™
"t Ndp ( p 1+5) 1 UANAY s 1--) )

e e 9

) (00 ) o

<
() (122152 (- r- 50
<

15



continuing,

o~ 27h h h2.2 h h2w?
dg™t A dptt = ( = ) [((1 + 77)2 - ) <( — 7—)2 — ) + hzwz] dq™ A dp"

2 4
n+1 ntl e 2
dq"T Ndp"T = | ——

Q)Z

Vhia by B? by b Rt)
1+ L0201 — 22 1- a4+ 2 dq™ A dp".
s Zpa- 2 B D T+ B e nap

With the previous definition o® it follows that
h vh h2w? vh vh hiw?

2= |(1+ 2 = 2y 1- Mg+ 28 .

e+ Gra- e Sha- s B+

Simplifying we have

dqn-i-l A dpn+1 — 6—2’yhdqn A dpn

Therefore, by the definition of conformal symplectic int#grs as defined in [3] and presented
in this thesis (1.8) we have shown as a specific example teaCtMP method is a conformal

symplectic integrator.

2.1.2 Preservation of Angular Momentum Dissipation

We next show that the CIMP method (2.3) preserves the rat®mfbomal angular momentum
dissipation. Consider the Hamiltonian for the N-body pewsblas found in [1] and with the non-

separable Hamiltonian (1.4) to obtain

I

1o ||ps
Hig.p) =5, ~
i=1 v

N-1 N N
+2 > eullla—al)+7 ) dpe (2.8)
=1

i=1 j=i+1
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This system has the corresponding equations of motion amslfou1]

i1
dth_mpZ
@ 4 —4q
==t ) o,
i#j vy

We next prove that the CIMP method (2.3) preserves the ratomformal angular momentum
dissipation. We begin by noting that methods that conséwéatal conformal angular momentum

will satisfy the following relation.

S xprt)y =e" Z (¢" xp") (2.9)

Theorem 2.1.2 The Conformal Implicit Midpoint method (2.3) with Hamiltan (2.8) preserves

the rate of angular momentum dissipation, i.e. the methdidfges (2.9).

Proof For simplicity let us define

8y
_l’_
Nl
I
N —
/N

2k
e2qj"+1+e2q;‘).

Writing the discrete equations for the CIMP method (2.3) Wwtam

(e 2 q;l+1 e;hq‘?) B i<€ 2 p?“l‘l +€T’th?> n (6 2 q;"i‘l _'_e%hq‘;]')
h ~m 2 7 2 ’

~yh —~h h —~h
5 n+1 7pn+1+€_ n

(e pj  —e¢€=2 p?) :_ZSO;J'(HQZH _qj 2”)( nts n+%)_ (eV ' 2 pj>
h S gtogy ¢ TN T
1

17



Let us define

n+i
nir wulle  —q; *3)
Tij = il .y .
l * —aq; °
Then our discrete equations become
(e'YQ}Lq;,-i-l eT’thjn> B L(eW;Lp;L—’_l_‘_e;}Lp‘?) +7(6'Y2}Lq‘;r‘rl_l_e 3 qj)
h Com, 2 2 ’
h —h —oh
<e%p?+1 _ e%p?> _ —Zrﬁ—i_%(q?—i_% B qm_%) B ry<e 5 p;b-i-l +e > p;‘>
h " J ! 2

Now, finding the cross products and taking the sum to get tia¢ angular momentum

2
7=1
h —~h h —~h h
:i[i<e%p;ﬁ+l+e 2 p;l)_l_,y(e%q]n'f‘l_'_e 2 q]>] y (621);‘4‘1_'_6 ; ;L
_ m 2 2 2
j=1
N n —h n LS
- S (S
_ 2 2 ’
7j=1
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and then finding the next cross product

i<ew2Lq§L+l+eg q3"> (62]9?“ wp])
= 2 h ’
N —~h
. 62q‘?+1+6 2 q] n+2 n _ TH-% _ e2p?+l_‘_e 3 p]
Jj=1 i#£]
N ntd, ntl o ontl ez pitt ez p]
=> g 2><[—Z”- g, " —q 2)—7( 5 )}
Jj=1 i#£]
N N e LU P | —ah
nt n+ n n4+ +1 €2Dp; +ez p
=S (A )« o (FE ),
J=1 i#] J=1
N N LU | n
ntdl o ngl gl oyl ntd e2p; terp;
S DN AECURS IR ED WA sl
J=1i#j j=1
N L | h
+1 +1 41 41 +1 +1 ezp; +ez2p
S () (T,
J=1 i#j Jj=1
N N ah —oh
B e nt3 e® Pt +e 2 Py
=D D T X ) g Xy 5 :
=1 i j=1

Notice, the first term can be written as a sum of pairs of termis i ;

n—l—% n—l—% n+% n—l—% n—l—% n+%
Tij 4 Xq Ty X g,

n+tl n+i .
We also notice thaifijJr2 = rjf? as these values are only dependent upon the absolute distanc

between the steps. Therefore,

ntg ntg  ndg | ndg ondg o ondg
Ty 4 Xt Ty g Cxgq =0,

19



and then for our cross product we have

) A N G
X —
h
Jj=1
N et qf+1+e%wq? e2p;’+1+e%hp§b
> ) < )
: 2 2
7j=1
Therefore,
i(ﬁz q;”l e;hq?) y <e?p?+1+e p?)_'_
: h 2
7=1
N e’Y_thn—i-l e g e'Yth;L—i-l e%wp?
>( ) = ( ) =0
: 2 h
7j=1
i\f:[(ewth;”l eghqgl> y <ew2hp;‘+1 —l—eghp?>
: h 2
7j=1
_l_ <677hqj"+1 -+ eghan) (e 2 p;H'l eighp? B 0
5 )]

Utilizing properties of the cross product we obtain

Jj=1

20
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Expanding the cross products,

M =

() (g ) = (4 < pp) = (7 x )
1

.
Il

_|_

(g xp) = () + (g xp) = e (g x )| =0

26" (g %) =27 g < )] =0,

<
Il
—

M-

N
27" (an-i-l x p;H_l _ 226—’#1 (an x p;L) ’

11t

<
Il
,_.

n+1 n+1 ’\/h
e’ (q] X p] E e % pj

M) =

(4" x pj™!) = Z e (g x pj).

.
Il
—

Therefore, we have proven that the Conformal Implicit Mishpanethod satisfies the relation for

conservation of total angular momentum (2.9) because

M=

n+1 n+1 __ _—2vh
(@ >xpitt) =e E pxpi).
1

J

2.2 Conformal Stormer-Verlet methods

2.2.1 Conformal Strmer-Verlet Method-1

The next method presented is a Conformal Stormer-Verl¢hoageas found in work by Modin and
Soderlind [7]. Consider the conformal Hamiltonian syst&itin separable Hamiltonian

H(q,p) = T(p) + V(q), with the corresponding equations of motion.

¢ = V,T'(p), pr=—VV(q) —2p (2.10)
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whereg, p e R? andy > 0. Animportant distinction between this Hamiltonian and trentiltonian
used with the Conformal Implicit Midpoint method is thatdhiamiltonian is separable. As found
in [1, 9, 10] the equation (2.10), through the process ottamdj, can be split into the Hamiltonian
part and the non-Hamiltonian part. The Hamiltonian parhgej = V,T'(p) , p: = —V,V (¢) and
the non-Hamiltonian pag;, = 0, p;, = —2vp. The Hamiltonian part can be approximated using
the standard Stormer-Verlet method as the symplectigiater, and the non-Hamiltonian part can
be solved exactly.

The exact time flow map for the non-Hamiltonian part is

q
®.(¢q,p) =

—2vT

e p

The generalized form of the well known Stormer-Verlet noetlised to approximate the Hamilto-

nian part has the following flow map as found in [1, 7, 8] is dbofes,

1 n At n
Pt =p" - — VaV(d"),
¢ = ¢+ AV, T (p ), (2.11)
At

! n
pn—i-l :pn+2 _ 7qu(q +1>.

One way to compose the two mapspis; = P2 0 Va0 Payo Wherew y, is the timeAt flow
map of the Stormer-Verlet method (2.11). Applyitg,/» to a point(¢”, p") of phase space, we

first compute a pointg, p)

n

[

n ,n q
:(I)At/Q(q D ):

e—fyAt n

a1

p
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Apply ¥ 5, to this point to get another poid, p)

i o g+ AV, T(p— 5V, V()
Z\I’Atoq)Atﬂ(q P = A A A
P p— AV, V(q) — AV, V(G + AV, T(5 — AV, V(7))

qn+1 qA
— (pAt/? o \IlAt o (pAt/Q(qn?pn) =

n+1 e—'yAtﬁ

Substituting forg and p gives us the numerical method as found in the work by Modin and

Soderlind [7].

At

P = ey TVqV(CJ”),
¢ =@+ AT (p2), (2.12)
LAt

pn+1 — 6—’YAt pn+§ _ 7qu'(qn-i-l) )

We will reference this method as the Conformal Stormetéfenethod-1 or CSV1.

2.2.1.1 Conformal Symplecticity

We prove that the CSV1 is a conformal symplectic method byveig that the method (2.12)

satisfies the definition of a conformal symplectic integré1o8).

Theorem 2.2.1 The Conformal Sirmer-Verlet method (2.12) is a conformal symplectic irdegy.

23



Proof We begin by writing the variational equations for the metk@d 2)

At
dpn-‘r% — e—'yAtdpn _‘/qq( n)dqn’

dg™™ = dg" + Atdp™*:

At
dpn—i-l —e —yAt <dpn+2 _ _‘/qq( n+1)dqn+1>.

Again, utilizing the properties of the wedge product as daarlier we obtain

A = g e (= SV
_ g
= ¢ VA <dq" + Atdp"JF%) A dp"+%
- e_VAtdq" A dp"+%
= g (¢ = Vo)
e N

= e A g A dp™.

Therefore, by the definition of conformal symplectic integrs as defined in (1.8) and (1.6) we

have proven that the CSV1 method is a conformal sympledigmtor. |

2.2.1.2 Preservation of Angular Momentum Dissipation

We next show that the method (2.12) preserves the rate obooaf angular momentum dissipa-

tion. Consider the Hamiltonian for the N-body problem asiidin [1]

||2

N—-1 N
+3°3 willa - gl)- (2.13)

i=1 j=i+1

1N
D=2
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This system has the corresponding equations of motion amslfou1]

d 1
dtql_mp“
‘P qi — 4j
- e

This Hamiltonian system is in the form &f (¢, p) = T'(p) + V(¢q) and therefore can be applied
to the methods in this thesis that were constructed usinggliging techniques described earlier.
We want to show that the method will conserve the total con&dangular momentum by proving

that the relation (2.9) holds.

Theorem 2.2.2 The Conformal Strmer-Verlet Method-1 (2.12) preserves the rate of con&drm

angular momentum dissipation.

Proof Writing the discrete equations for the method (2.12) andythhen Hamiltonian (2.13)

ntd At At (p;j(qun_q;LH)( n_ ")
7 Y
2 gt —apll

n+1 n+1
n+l e_»yAt pn-i-% + At Z @Z](HC_I —g; ||)

n+1 n+1
by = J 9 ||qn+1 q@.;.l || (qj + —q; + )
i#j J
For simplicity let us define
vt _ euller = ) 2.15)
K g+t =g
o eiylla — gl
Y g — ¢}l
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Then our discrete equations become

n+s —~A
p; 2 — e t n Z _ql :
i#]
At n—+

1

Q;H_ _q] +_( p; 2)7
J

+1_ _—yAt | nt3 e n+1

pt=e + Z
i#]

Then the total angular momentum can be found by

Y1 o ontl _ R RV "+% n(
St = gt (e e
L i#j

— ¢ VAt Z ntl o ( p”+2 4+ = Z 7_n-i-l
i#j

— ¢ VAt [Z nt+l o " ZZ ntl

J=1 i#j
Expanding on the second term we have,

N

l\'}\b—‘

n+1 n+l __ _—vAt n—|—1
G xpt = [Z

Jj=1 Jj=

—e 7At|:§ n+1 "

1 i#j

J=1 i#j

As shown in the proof ol heorem 2.1.2 we have the relation,

n+1 n+1 n+1
q;

n+1 __
X q;

n+1 n+1
+ Tji X gj

26

) 1 " At

ZZ n+1( n+l o (q]ﬂ—i—l
ZZ n+1( n+1

qz"“)]

n+1

— g )
— g )

§ n+1 n+1

i#]

n+1

q?“))]

n+1 (qn—l—l qn—l—l)]
(3

qu“)}

= 0.



Utilizing this result, we continue with the proof

2 qn+1 % p;H-l e —yAt E n+1

m
j=1 J
N 1
__—vAt n nT3
e E qi X p;
i=1

nal
Using substitution foijr2

an—l-l > pn+1 —wAt iv:qn > ( —wAt n At Z _ q >
J J ) )

i#£]
At &
= A Zq] X eV e (7) SN gl x (g — qp),
s J=1 i)
N At
=AY g — e ( ) > e
Jj=1 J=1 i#j

We reference the proof dftheorem 2.1.2 to show,
Tzrjlan X qz + 7 zqz X QJ 0.
Utilizing this result, we have the desired relation and firtise proof

N

n+1 nt+l _ —2 At n n

E q ij ! : :q] ij
=1

Therefore, we have proven that the CSV1 method preservemtbeof dissipation of angular

momentum (2.9) as defined in [1]. |}
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2.2.2 Conformal Strmer-Verlet Method-2

The next method presented in this thesis is another confdtdamer-Verlet method. To our
knowledge, this method has not been presented in a publisbdd[8]. Similar to the Confor-
mal Implicit Midpoint method the Hamiltonian is not sepdealnd is of the formH,(¢,p) =
V(q) + T'(p) + vgp. Construction of the method requires the Hamiltonian patie discretized
with a conformal symplectic integrator and the non-Hamniiém part with the exact flow map. The
method is then constructed through a careful compositighese two flow maps. In order to dis-
tinguish this Stormer-Verlet method from (2.12) we ca# thethod CSV2. For the discretization
of the Hamiltonian part we use a generalized form of the r8&i¥\erlet method or sometimes

known as the generalized Leapfrog method as found in [1].

ptr=p —7VqH( *2.4"),

n+1 n g V. H n+s n V. H n+% n+1

" =" pH(P""2,q") + V,H(p" " 2,¢") |,
p“—p*?—?VqH( N}
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Using these two flow maps we construct the method that we tefes CSV2 given by

D) 2
At —yAt At —vAt 1
(-5 rr = (1) v amreh ] a9
Pl = e Kl _ 77) e — 7qu(q +1)} )

2.2.2.1 Conformal Symplecticity

We now prove that the CSV2 method is conformal symplectichomsng that the method (2.16)

satisfies the definition of a conformal symplectic integré1o8).

Theorem 2.2.3 The CSV2 method is a conformal symplectic integrator (defim¢9]).

Proof We begin by writing the variational equations for the metf@d2).

A —yAt A
<1 + Lt) dpm‘% —e = dp" — quq(q")dq",

2
A —At A —yAt
<1 - %) A"t =75 Kl + %) e dg + AtTpp(p“%)dp”*%} :
dpn-i-l —e 2 [(1 _ %) dp +5 _ 7‘/qq(q +1)dq +1:| )
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First we find, utilizing properties of the wedge product wg ge

wAt At n
dp 5 qu ( )d )

At
<1+72 )dq Adp™t = dg" A

At 1o
—Via(q")dq"),

=dq" N e%mdp" +dq" A (— 5

=dq" N e%mdp".

Then,

At —YAt At —yAt
(1 - —72 ) dp"tE Ndgt = dpttE peTE Kl + = ) 7 dg" + AT, (p" ) dp™E |
= dp™t2 A (e Ea (1 + _72At) e dq")
+ dpn+% A e%mAtTpp(anr%)dPnJr%a

At
_fyAt <1_'_ 72 )dpn—l-% /\dq’n’

and
- At t At
dg"™ A dp™Tt = dg" Ae 1At (1 _ 72 )dpn+% T dg"T A —e e . SV (Y dg
At
= dq"“ N 6 2 (1 — —’)/2 ) dpn+%>
—e b (1 — %At) dg™™ A dp™te,
— e 5 (1 “Y?t) dp"Jr Adg™t
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By substitution,

2

= e T {(1 + %N) dp"tz A dq"} ,

= eifigAt |:<1 + %At) dqn /\dpnﬂ'%} ,

At At
dqn-i-l /\dpn-i-l = —¢ EA [6—7At (1 + v )dpn-i—% /\dqn:| ’

—3yAt

—yAt
=e 2 (dq" A erp"> ,

= et (dq"™ N dp").

We have the desired relation

dqn+1 A dpn—l-l — e—2fyAt (dqn /\dpn> )

Therefore, by the definition of conformal symplectic integrs as defined in (1.8) we have proven

that the Conformal Stormer-Verlet method-2 is a conforsyahplectic integrator. [

2.2.2.2 Preservation of Angular Momentum Dissipation

We next show that the method (2.16) preserves the rate obooaf angular momentum dissi-
pation. Using the same Hamiltonian for the N-Body problemi 82 with the same corresponding
equations of motion (2.14), we prove that the CSV2 methosgrkes the rate of conformal angular

momentum dissipation by satisfying the relation (2.9).

Theorem 2.2.4 The CSV2 method preserves the rate of conformal angular momedissipation.

Proof Writing the discrete equations for the method (2.16) andyikien Hamiltonian (2.13) we
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<1+7At) p@+% YAt At So;y(Han_q]nH) n

2 . —_— g
; Pj (4 —4),
2 =l =4l

YALN =1t VALY aar o At pgl
(1_7)%. A AR A e

J

wit_ = | (A ey At gD
T 9 p; -~ — 9 an-i-l qn—i-l H (qj — )
J

i#]

Again, for simplicity let us use a substitution defined ear{2.15) and substitute ifj;“ andT{;*.

Therefore, our discrete equations become

f}/At n+l —yAt n At n
(1+T)pj T=e -5 2 g — ),

_ LAt ntl _ =28t 'VAt %At n g nt1
(1 2 ) qj + mj (p] ) ’

’}/At n-{-l At n n n
[ j 2 _ 7 le-i-l(q] +1 —q +1) )
i#j

n+1
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The total angular momentum can be found by

n n n —yAt f}/At n+3 At n n n
ZQHXPJH Zqﬂ (”2 [(1_7)%2_7 7_+1(qj+1 q2+1)]>’

i#j

j=1
N
—yAt At n n_|_l
- < T )Zq]“x;)] g
j=1
—At ’VAt
g 2 1_—
(=)

_ 673;/At (1 _I_ ’}/At

N
__—2yAt n n
=e g q; X pr.
i=1

Note, we have shown earlier that in the proof of (Theoren2 f2r the method CSV1 that

N
Z qn+1 Z n+1 n+1 Zn+1 — 0and qu Z ) =0,

i#] J=1 i#]

and those steps have not been included in this proof. Thexei® have the desired result

N
n+1 n+l __ _—2vAt n n
E XpiT =e g q; X pj.
j=1

We have proven that the Conformal Stormer-Verlet methgade3erves the rate of dissipation of
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angular momentum (2.9) as defined in [1].]]
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CHAPTER 3: STABILITY ANALYSIS

As found in [1] a numerical method is asymptotically stabae growth of the solution is asymp-
totically bounded. Providing a relationship between thepeeters of a numerical method in which
the method is asymptotically stable provides the user vighatbility to understand the ranges of
values available and still ensure stability. We go beyomrdphrase, "for sufficiently small values
of the damping coefficient” and provide an exact relatioween the step-size and the damping

coefficient to ensure stability.

We can find an asymptotic stability threshold by determiniregrelationship between the parame-
ters of the method in which the eigenvalues of the propagatiatrix for the method are in the unit
disk. We consider only linear stability, meaning we detemnan asymptotic stability condition
for the Conformal Stormer-Verlet methods (2.12) , (2.1&]) #or the Conformal Implicit Midpoint
method (2.3) when applied to the damped harmonic oscill@omparison of the eigenvalues for
the ODE with the eigenvalues for the numerical methods ptesgén this thesis will give a better
understanding and a unique perspective on how well the rdstiygproximate the solution.

Consider the ordinary differential equation for the dampadnonic oscillator
Qu + 27q + w?q = 0. (3.1)

If we assume initial conditions @f(0) = 1 andq’(0) = 0 and if we let3 = \/w? — 72 with w > ~

then we have a solution for the damped harmonic oscillattmeform.

q(t) = e "(cos(Bt) + %sm(ﬁt))

Now consider the conformal Hamiltonian system with separbdamiltonian
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H(q,p) =T(p) + V(q), where
@ = V,T(p), pe=—V,V(g) — 27p.

For the damped harmonic oscillator we havg) = % andV(q) = # it follows thatg;, = p,

pe = —w?q — 2yp andg, = p,. We can now write the following matrix equation.

qt i 0 1 q
= e ,
D —w® =2y | | p
with
g(t) = e " (cos(t) + %sz’n(ﬁt)), (3.2)

it follows that

@ = —e"yt(%)sm(ﬁt)

We can now write the matrix equation which is a result of (2u2)l the given initial conditions

q(t) o cos(ft) + sin(Bt) %sm(ﬁt) Q0

p(t) =< sin(3t) cos(Bt) — Lsin(Bt) | | po

or this matrix equation could be presented as, wiMris called the propagation matrix for the

method
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The eigenvalues of 2z2 matrix can be written in terms of the trace and the deterntiaaifollows

_tr(M) £ Vir(M)? — 4det(M)

Ay = 5 (3.3)

or through simple algebraic manipulation this equatiortifiereigenvalues can be written as

M = %tr(M) 4 \/ (%tr(M))z _ det(M). (3.4)

For the simple harmonic oscillator

det(M) = e {(cos(ﬂt) + %sin(ﬁt})(cos(ﬂt) — %srm(ﬁt)) + ;—zsinQ(ﬂt) :
—2t 2 w? =% 2
det(M) =e [cos (Bt) + 7 sin®(pt)| .
With 5 = y/w? — 42 then this reduces
det(M) = e, (3.5)
It is also easily found that
%tr(M) = e cos(Bt). (3.6)

Utilizing these relations and (3.4) we find the eigenvaluwedhe damped harmonic oscillator with

the given initial conditions are

A = e (cos(Bt) £ \/cos?(Pt) — 1). (3.7)

Analysis of the eigenvalues reveals it is useful to compahees ofi ¢ (M) for each of the methods

in question with the (3.7). Therefore, as an additional foolanalysis we look at the Taylor
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expansion o%tr(M) value from (3.6) which yields

%tr(M) =1—~yAt+ % (272 — w2) At + % (37w2 — 473) At

1 1
% (w* = 3w™y* + 371) At* + 0 (20w?y* — 167° — Byw?) At” + O(AL°).  (3.8)

3.1 Conformal Implicit Midpoint method

When the Conformal Implicit Midpoint method was applied @ tdamped harmonic oscillator

(3.1), we found the matrix equation (2.7) which is statedrafa simplicity.

n A 2w? n
i B [ AL ] (1+ 'yTt)z _ At4 At q
o _ PAR At2w? 2,2 n

pn+1 1 - + =1 —Atw2 (1 . ’YTAt)2 . At4 P

Utilizing the equations for the eigenvalues (3.3) and (8:d)oegin by finding the determinant

—2vAt
Det(M) = o .
(1 o ft + Atzw2>
A 2,2 A A 2,2
K(H 72At>2 — t4w ) ((1 — %)2 — t4w ) +At2w2} ,
e~ 27At 72At2 At202 2
DetM) = AR | A2 <1 T 1 T ) .
<1 -1t T)
Therefore
Det(M) = e™ 212, (3.9)
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Next, we finditr(M)

%MM)ZE o 1+7M2—At%2+1—1&2—&2“2
2 2 <1_wm2+A&ﬁ) 2 4 2 4 |
b 4 4 —
1 —yAt 2At2 At2 2
St (M) = - ¢ p R e e N
(1+2F (w2 —1?)) 2 2
Lir(ar) = o g (14 AL Al
2 (1+ 22 (w2 —42)) 4 4 7

1 B 1Az (W? —~?)
§tr(M) = ¢ VAt A | (3.10)
1+ 55 (W —7?)

With Ay = $tr(M) + \/(%tr(M))2 — det(M) it follows that the eigenvalues for the Conformal

Implicit Midpoint method are

or with g = /w? — ~2 and some algebraic simplification the eigenvalues can l&wras
4 — A?S? 4 — Ar2p2\°
R ZA AN I i _
e = T ] o
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3.1.1 Stability Relation

A requirement for stability is2tr(M)| < e7 74!, with

1 1— AL (W2 — 42
§tT(M):6—-yAt< 4 (W ’Y) .

1+ATt2(w2—72)

The stability relation requires

2
—~yAt _ATt<w2_/72)
¢ At2 9 2
1+ 5 (W2 —7?)

Therefore we have the stability relation for the Confornmaplicit Midpoint Method

—yAt

<e

At?w? A2
>
2 2

(3.12)

The result (3.12) shows the relation can never be violated/fo- v and At > 0 therefore, the
CIMP method is unconditionally stable. This can be seen g Bil which shows the stability
relation (3.12) holds for all values ofif the conditionsv > v andAt > 0 are not violated.

In addition we can also look at the Taylor series expansiojtaf)/) of the Conformal Implicit

Midpoint method for comparison with the exact value. Theldageries expansion of (3.10) yields

1 1 1
§tr(M) =1—~yAt+ 5 (27 — w2) At? + 6 (37w2 — 473) At? (3.13)

1 1
+ 5 (107" — 127%w* 4 3w?) At* + 90 (—267° + 407°w® — 157w*) At° + O(AL°).

Comparison of this Taylor series expansion (3.13) expansith the expansion (3.8) shows

1 1
itT(M) - QtT(MCIMP) = O(At4)
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Figure 3.1:CIMP stability relation withy = 0: .25 : 3.25, At = 0:.025 : 1 andw = 3.51
3.2 Conformal Stormer-Verlet methods

To continue the stability analysis we will also find the eiga@nes for the Conformal Stormer-

Verlet methods when applied to the damped harmonic osmillat

3.2.1 Conformal Strmer-Verlet Method-1

With T'(p) = % andV (q) = # and then applying the CSV1 method to the ordinary diffesgnti

equation for a damped harmonic oscillator (2.5) we obtagnfétiowing:

Atw?
pn-‘r% — 6—'yAtpn _ 5 qn’
qn—l—l — qn 4 Atpn—i_%,
2
pn—i-l — 6—'yAt pn—i-% _ Al;w n+1
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Written as a matrix equation

n+1 YAL AW n
1 — oA c (1 2 ) At 1

pn—i-l <Atzw4 - Ath) e—’yAt (1 . At;w2> pn

We begin by finding the determinant

2, 2\ 2 4, 4
det(M) — e—Z'yAt [(1 . AtQCU ) _ (At4u) B At%ﬂ)] ’

4,4 4. 4
det(M) = e~ A {1 — AtPw? + At4w - At4w + Athz] :
Therefore,
det(M) = e 27A¢, (3.14)

Next, we findtr (M)

1157"(M) . At +e A (] — Al

2 2 2 ’
1 1 At?w?

- MY==-1[1~= 1 —2vAt

jrn =5 (1= 255 ) (e e,

1 1 Atw?

§t’l"(M) — 5 —yAt (1 w ) (e—yAt +e 'yAt) ’

with cosh(y) = <= and substituting we have

At?w?

%w(M) — ¢ TA <1 ) cosh(vAt). (3.15)
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With A, = Ltr(M)+ \/(%tr(M))2 — det(M) it follows that the eigenvalues for the CSV1 method

are

2,2 252\ 2
AL = e A (1 — At;u ) cosh(vAt) + \l e~ At ((1 — At;} ) cosh?(yAt) — 1)

A2 Af2002)\ 2
<1 — t2w ) cosh(yAt) £ \/(1 — t2w ) cosh?(yAt) — 1

—~yAt

(3.16)

)\i:e

3.2.1.1 Stability Relation

Requiring| $tr(M)| < e=7A* with,

At?w?

%wwﬂ:e”m<1— )mmWAw

implies

Af202
'e"ym (1 - t2w ) cosh(yAt)‘ < e VAl

At?w?
. e—’yAt < e—’yAt 1—

) cosh(yAt) < e 74!

2 2
-1< <1 - At;u ) cosh(vAt) < 1

. At2w2
Solving for =5,

2 2
—sechyAt < 1 — < sechyAt
2 2
—1 — sechyAt < — < sechyAt — 1
2 2
1 — sechyAt < < 1+ sechyAt
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Therefore, we have the stability relation for the CSV1

Af202
1 — sech(vAt) < v

< 1+ sech(~vAt) (3.17)

The result (3.17) shows the relation can be violatedifar v and At > 0 therefore with these
conditions, the CSV1 method is conditionally stable. This be seen in Fig. 3.2 which shows the
stability relation (3.17) is violated as the step-sixeincreases.

In addition we can also look at the Taylor series expansidif)/) of the CSV1 for comparison

2.5

N

—~———

1+ sech(yAt) ] \

1.5~

2 2

n A2 w2 ’ =
1 BEwYZ—0 | v=35  y=30

1-sech(yAt -
0.5 - -]

0 ? 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Step Size: At

Figure 3.2:CSV1 stability relation withy = 0: .25 : 3.5, At = 0:.025 : 1 andw = 3.51

with the exact value. Taylor expansion of (3.15) yields

1 1 1
§t7’(M) =1—-—~vAt+ 5 (27% —w?) A + 6 (37w® — 49%) A¢?
1 1
+ 5 (87" — 127°w?) At + 20 (407°w® — 149°) At° + O(AL°). (3.18)
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Comparison of this Taylor series expansion (3.18) expansith the expansion (3.8) shows

1 1
§tT’(M) — §tr(MCSV1) = O(At4)

3.2.2 Conformal Strmer-Verlet Method-2

With T'(p) = % andV(q) = # and then applying the CSV2 (2.16) to the damped harmonic

oscillator (2.5) we obtain the following:

Written as a matrix equation

t

(definingy = 229" — A?e ™5 (14 288)% _ Ap? (1 - 220)% 75,

gt e—VAL

pn+1 - 2 <1 _ v2ft2>
2 (1 + VTN)Z AR 2At q"
Y 2 (1 — 7TAt)z — A2 5 p"
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The determinant is

2
—yAt 2 At
det(M) = | —5— [ 2 (1 n Lm) _ AW S
2 <1 _ VQM) 2
2
(2 (1 . %N) - At%ze”z“) . 2Aw],

—2vAt 2 2
SSI Y

D)

Therefore,

det(M) = e 241, (3.19)

Next, we finditr(M)

1 1 —yAt
R =3 (eA)
9 (1 _ 22 )

At)? - At\? -
(2 (1 + 77) — AtszewTAt + 2 (1 — 77) — At?we éAt) )

1 —vAt ZAL? yAt —yAt
—tr(M) = S (4 <1 + L) - Atsz(e% te b )) ,
2 4 (1 _ ’YQAtQ) 4

4

1 A A
§tr(M) = A (( : ) — v cosh(vt)) :

2AL2 2 A2
(—28) 20—

Therefore we have

1 _ 4 + y2At? 2A w2 vAt
- — YAt . =
2tr(M) e <4 — AP (1A cosh( 5 ) ). (3.20)
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Defining¢ = (j‘:ziﬁg — (42_%;2;:2) cosh(VTAt)) it follows that the eigenvalues for the CSV2 are

Ay = e (gb + \/ﬁ) . (3.21)

3.2.2.1 Stability Relation

Requiring|$¢r(M)| < e=7A! with,

2 2 2,2
%tr(M) o <4+7 At 2At%w h(yAt)).

1— AR (4—2Ar) Mg

implies

_ 4 + 2 AL 2At%w? At _
YAt _ h(Ll=2 yAt
'6 (4 —2A2 (4 —~2At2) cosh( 2 V)| <€

_ _ 4 + 2 AL 2At%w? At _
AL < YAt o h(Ll=— < YAt

‘ ¢ (4 —AE (1 rap MG ) <e
4 + 2 At? 2At2w? yAt

-1 - h(— 1

< (4 —AE  d— A NG <

Solving for#,
VAL — 4 < 44+ A2 — 2At2w2cosh(%m) <4 — AL
VALE — 8 < Y2AE — 2At2w2005h(%m) < —v*At?
—-8< —2At2w2cosh(%m) < —29*A#?
2v2AL < 2At2wzcosh(%m) <8
VAR < At%ﬂcosh(%m) <4

At At
V2 At*sech (%) < At*w? < 4sech (%) )
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Therefore, we have the stability relation for the Confor@&rmer-Verlet Method-2

< 2sech <77At) (3.22)

2 A 42 2 9
VAL ~vAt At*w
5 sech < 5 ) < 5

The result (3.22) shows the relation can be violatedufor- v and At > 0 and therefore is
conditionally stable. This can be seen in Fig. 3.3 which shtie stability relation (3.22) is
violated for larger values as the value of the step-siZ¢ increases.

In addition we can also look at the Taylor series expansidftef)/) of the Conformal Stérmer-

e wz)/zf/
2 —

15 2 sech((y A 1)/2) / -I =

(2 b sech((yA 1)/2) ) / ;

0.5 _ _
=

O *{,;jé ’/'///»——//_—{////v/—/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Step Size: At

Figure 3.3:CSV2 stability relation withy = 0: .25 : 3.5, At =0:.025:1,w = 3.51

Verlet Method-2 for comparison with the exact value. Taggpansion of (3.20) yields

%tT(M) =1- ”yAt + % (272 _ w2) At2 + é (3%12 . 473) At3

5 4 772W2 4 13 5 5o 13 5 6
—" — At — - — At A°). 3.23
* (127 16 \BY T w Toln. (329
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Comparison of this Taylor series expansion (3.23) expansith the expansion (3.8) shows
1 1 .
§t7’(M) — §tr(MCSV2) = O(At )

In the stability analysis we found the exact eigenvaluesHerdamped harmonic oscillator (3.7).
Applying each of the numerical methods to the damped harcrastillator example we also found
the eigenvalues for the CSV1 method (3.16), the eigenvdtudhe CSV2 method (3.21) and for
the CIMP method (3.11). Analysis of the eigenvalue equat®d) shows that the accuracy of
the approximated eigenvalues from each of the methods isndiemt upon how well each of the
methods approximate the value &f-(1/) as the determinant for each of the methods was found
to be the same. The error it (M) for each of the methods is seen in Fig. 3.4 for various values

of y. Theltr(M) error seen in Fig. 3.4 is calculated as
1 1 1
itr(M)Error = |§t7’(M) — itr(MmLmﬂ

For small values off we see in Fig. 3.4 that the CSV1 method and the CSV2 methodrpednly
slightly better at approximatingtr(M) than the CIMP method. As gamma grows large enough
we see a crossing of the values such that the Conformal linjglidpoint method performs better

at the approximation oftr(M).
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Figure 3.4Z%tr(M) error of approximated eigenvalues with= 0 to 1 with At = .025,w = 1.
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CHAPTER 4: NUMERICAL EXPERIMENTS

4.1 Damped Harmonic Oscillator

For a numerical example let us again consider the dampedomécrascillator (2.5), given by
G + 27q: + w?q = 0.

With T'(p) = % andV(q) = % we apply each of the numerical methods in this thesis to the
equation.

Applying the CSV1 method to the damped harmonic oscilla2ds)(we obtain the following sys-

tem:
n+i - n AtCUQ n
prtE = e R — 5 q"
¢ = ¢+ Atpt, (4.1)
2
Pt = At |:pn+é _ Az;w n+1

Also, applying the CSV2 method to the damped harmonic @doill(2.5), we obtain the following

system:

2 2
A —yAt A —yAt 1
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And, applying the CIMP method to the damped harmonic ogoillg.5), we obtain the following:

JAN At
qn+1 6—7Atqn 72 (qn-l-l 6—’YAtqn) : <pn+l 6—’YAtpn)’
n — n ,y t T — n t 2 n — n
P +1 e *yAtp 2A <p +1 e 'yAtp ) A;’ (q +1 e *yAtq ) (43)

Utilizing these systems of equations (4.1,4.2,4.3) as liperizhms for the approximation of the
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Figure 4.1:Numerical solutiong(¢) vs. Exact forA¢ = .0125,v = .025 andw = 1.

solution of the damped harmonic oscillator (2.5) we obtam tesults as seen in Fig. 4.1. From
Fig. 4.1, in each row the graph on the left represents the ricadesolutiong(t) plotted with the
exact solution and the graph of the right represents thereificey.,..:(t) — quppros(t) fOr each
of the methods in this thesis. The top row represents the noahsolution of the CSV1 method
plotted with the exact solution, the second row represdrgsnumerical solution of the CSV2
method and the third row represents the CIMP method. Usigtaiphs on the left in Fig. 4.1, we
can see that each of these algorithms approximates theéosodiitthe damped harmonic oscillator

well and on the right we see that the plots of the differen¢e.(t) — gappro(t) Show the CSV1
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and CSV2 methods with nearly equal results and approximatia solutiony(t) slightly better
than the CIMP method.

0.5 T
Exact
a —CSV1
Z 05
- WAANNAANNAANNNNANANNNAANNNNNANNY
0.5
0 10 20 30 40 50 60 70 80 920 100
Exact
—CSV2
0.5 ! | ! ! \ \/\/\A
0

10 20 30 40 50 60 70 80 90 100

05 ‘

H (a.p)
o
(6, ]

Exact
—CIMP

H,(@.p)
o
(6]

0 10 20 30 40 50 60 70 80 90 100

Figure 4.2:Energy H(q,p) comparisons witht = .0125,y = 0.0 andw = 1.

To provide further verification of the analytical resultslan verify conservative properties of the
CSV1, CSV2 and CIMP methods we check the total energy whelegidp the damped harmonic
oscillator (3.1) withy = 0. We see in Fig. 4.2 that the total energy for the CSV1 and CS¥thaus
stays within a band foy = 0, while the CIMP method the total energy is exact. Foratfeorder
CIMP method total energy is exactly preserved because thidegm is linear and for the CSV1
and CSV2 methods, the total energy is nearly conservedwith0. In Fig. 4.3 fory > 0, the
graphs on the left show a comparison of the exact total engitythat of the numerical method,
and on the right we show the differené&,...(¢, p) — Happrox (¢, p)- AS with the approximation
of the solution in Fig. 4.1, it appears that each of the methddl,4.2,4.3) also do well in the
approximation of the total energy of the system as seen ogrtgghs on the left in Fig. 4.3. The
graphs on the right in Fig. 4.3 show the differe€g....(¢, p) — Happroz(¢, p) for the CSV1 (4.1)
and CSV2 (4.2) methods to be essentially equal. The dift&éh.,...(¢,p) — Happroz(q, p) fOr
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Figure 4.3:Energy H(q,p) comparisons witht = .0125,y = .0001 andw = 1.

the CIMP (4.3) method is seen to be essentially zero.

To examine further how well these numerical schemes (2%48) approximate the solution of
the damped harmonic oscillator and to provide a more aceg@hparison between them, we will
examine the error in the numerical approximations of theesalution. To accomplish the com-
parison of the error in the approximations we look at thetnedaerror between the approximation
and the exact solution for various valuesyds seen in Fig. 4.4. In Fig. 4.4 we see that in the long
time that the CIMP, CSV1 and CSV2 methods have basicallydheegelative error. The relative
error is calculated ¢/ — | /|u| whereU is the approximated solution ands the exact solution.

In Fig. 4.4 we see that for small valuespthe CSV1 method and the CSV2 method have slightly
lower relative error than the CIMP method, as seen in thedapand second row left of Fig. 4.4.
As v increases we see a narrowing of the differences betweendtieons until the initial relative
error is better with the CIMP method than with the other twdhmods. This pattern continuesas
increases with the time required for this crossing of thatnet error values to occur increasing as

well until eventuallyy has reached a high enough value to where the crossing of apbgdoes
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not occur and the relative error in the CIMP method is bektanthe relative error in the other two

methods and this is seen in Fig. 4.4 bottom right.
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Figure 4.4:Relative ErrofU — u| /|u| with At = .0125,w = 1.

We have shown in the Fig. 4.2 the total enefgfy, p) with v = 0. In Fig. 4.5 we add a comparison
with a higher order method, the 3rd order Runge-Kutta me{RiB). As in Fig. 4.2, for the™?
order CIMP method total energy is exactly preserved becthes@roblem is linear and for the
CSV1 and CSV2 methods, the total energy is nearly conservtdyw= 0, as seen in the top
graph of Fig. 4.5. The 3rd order Runge-Kutta shows it doepassess the conservative properties
of the CSV1, CSV2 and CIMP methods, and can not produce gsudtsadespite being a higher
order method. Further verification can be seen in the bott@plgof Fig. 4.5, where we look at
the difference .,.act (¢, p) — Happroz (¢, p). The bottom graph in Fig. 4.5 shows a clear drift in the
total energyH (¢, p) for the 3rd order Runge-Kutta method when> 0 that is not seen with the
other methods (4.1,4.2,4.3).

For the preservation of the rate of energy dissipation w&ilhyj look at a comparison of the phase
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Figure 4.5:Energy H(q,p) withAt = .0125,w = 1 top: v = 0 bottomzy = .0001

diagrams for each of the methods. It was noted that the CS8V2Cand the CIMP methods all
appear to not be impacted to a great extent by the step sisegchblowever, as seen in Fig. 4.6 the
rate of dissipation in the 3rd order Runge-Kutta method viiasve to be dependent upon the step
size. As the step size increased we see a significant diferi@rthe size of the hole in the middle
of the phase diagrams of the 3rd order Runge-Kutta methodrapared to the CSV1,CSV2 and

Conformal Implicit Midpoint method, indicating a differeain the rate of dissipation. For further
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Figure 4.6:Phase space graph&) vs p(t) with At = .5 and~y = .005.

verification of the results in the rate of energy dissipatsnseen in Fig. 4.6 we consider the

function

d(t) = In (max(U(t))) + t, (4.4)

whereU (t) denotes the numerical solution. In Fig. 4.7 we see the pibtg#© for the CSV1,
CSV2, CIMP and the 3rd order Runge-Kutta methods. It is notédg. 4.7 that no drift is present
in the CSV1, CSV2 and the CIMP methods, while there is a cleérid the dissipation rate for
the 3rd order Runge-Kutta method. This is an important tessithe CSV1, CSV2, and CIMP
methods are second order methods and show preservatioa ddtthof dissipation of the energy
while the 3rd order Runge-Kutta method shows a clear drifvérate of dissipation.

We conclude from the these results that methods with higtuardruncation error are not neces-
sarily more accurate, and numerical structure-presenvasi an important consideration even for

dissipative systems.
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Figure 4.7:Drift in rate of energy dissipatiord(t)with At = .5 and~y = .005.

4.2 Damped Nonlinear Pendulum

As a second numerical example let us consider the ordindfigreintial equation for a damped

nonlinear pendulum, given by

qu + 2vq + sin(q) = 0. (4.5)

With T'(p) = % andV(q) = — cosq we apply the CSV1,CSV2, and the CIMP methods to the
equation of the damped nonlinear pendulum. For the CSV1adetthen applied to the damped

nonlinear pendulum (4.5) we have the following system ofagiqgus:

At
pn—i-% — e—'yAtpn _ 7 sin qn7
¢ =g+ Atpta, (4.6)
pn—i-l — e—'yAt pn—i-% At

5 ) n+1
— —/—singq .
2
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Applying the CSV2 method to (4.5) we obtain the followingt&ys of equations:

At - At
(1 + L) P = e — osin (¢,

2 2
At —yAt At —At 1
—At At 1 At
pn+1 = QTA |i<1 — 77) pn+§ _ 7 sin (qn-i-l)} )

And when we apply the CIMP method to (4.5) we have the follgnsgstem of equations:

(e%qfﬂ - 677}1(1?) - (Q%P}“l + e%hpy> +7(e”—$q;”1 + e%hqﬂn) (4.8)
h N 2 5 : .
(Jpw — 6;hp?) — —sin (6%“1 + 62%“) B (6%}”1 + eJ’Lp?>
h > v 5 |

Due to the complexity of using the actual exact solution feamparison with our approximated
solutions from the methods in question, we used for the es@lation a 4th order Runge-Kutta-
Fehlberg method approximation of the solution with thrédfiget to ensure that the solution error
was bounded betweednOe~1° and1.0e~12. We will refer to this numerical solution as the "exact”

solution.

Utilizing these systems of equations (4.6,4.7,4.8) asrdlguos for the approximation of the solu-
tion of the damped nonlinear pendulum (4.5) we obtain thalteseen in Fig. 4.8. In Fig. 4.8,
on the left we see the exact solution plotted with the nuraésolutiong(t) for each of the meth-

ods and on the right we see the differeqcg...(t) — quppro«(t). The results in Fig. 4.8 show the

differencege,act (t) — approz (t) for each numerical method to be equal.

For another observation on the effectiveness of the CSVY2G#d CIMP methods in approxi-
mating the solution we consider the phase space graph obtiimaar pendulum with the presence

of damping as seen in Fig. 4.9. In this figure, we use a time @t®pof At = .025 and for the
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Figure 4.8: Pendulum: Numerical Solutiongt) vs Exact forAt = .0125,~y = .025

damping coefficient a value of = .05. We see in Fig. 4.9 that with the given initial conditions
and the parameters noted earlier, an exponential decay ofdition of the pendulum towards the
origin, an effect of the damping of this pendulum. It appearsig. 4.9 that each of the methods
does equally well in approximation of the exponential desithe motion. In fact, if we look at
zoomed in view of Fig. 4.9 as seen in Fig. 4.10 we see that tMPChethod is slightly closer to
the exponential decay of the exact solution but the diffeeda so small that it is insignificant and

we can effectively say that the methods are nearly equakin #pproximation.

In Fig. 4.11 we look at the rate of the energy dissipation agalraconsider the function (4.4). It
is seen that there is no drift in the rate of dissipation for aiithe methods as expected, based on

the analytical analysis performed earlier in Chapter 2.

Looking at the approximations for the total energy of thetesys we see on the left side of
Fig. 4.12 that as expected, the CSV1, CSV2, and CIMP methggsaa to perform well in their

approximations of the total enerdy(q, p) when compared to the exact value. As further verifi-
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Figure 4.10: Pendulum: Phase spagg) vs p(t) graph forAt = .025,~v = .05

cation, we look at the error in the approximations of thelteteergy by calculating the difference
Heraet(q, p) — Happroo (¢, p) @nd plotting the results as seen in the right side of Fig..4Th2 differ-
ence in total energy graphs on the right side in Fig. 4.12 shewnethods to be nearly equal. For
further comparison, in Fig. 4.13 we show the total energietdhceH....:(q,p) — Happroz(¢, 0)
for all the methods together using the same parameters. Wit no one method out performs
the other methods in the approximation of the total energi ®@ach method at some point being
slighter superior to the other two. There does appear to Biglatlg smaller slope in the error

curve of the CIMP method until the point that the damping ef$blution has taken affect and the
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Figure 4.11: Drift in rate of energy dissipatiori(t) for At = .025,v = .0025

results are less reliable.
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Figure 4.12: Pendulum: Total Energ¥ (¢, p) with At = .025,v = .02

For a final comparison of the methods we show the operatimssc In Table. 4.1 we show, for
various values of the damping coefficientthe number of function calls for each method. As
expected for an implicit method the CIMP method consisyesitiowed a significant increase in

the number of function calls when compared to the explicvVC&nd CSV2 methods.
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Figure 4.13: Total Energy ErmotH qct(¢, p) — Happroz (¢, p) With At = .025,v = .02

Table 4.1:Number of function calls varying the damping coefficierand At = .025.

E | 0 | .00005 [ .0005 [.005 [J.05 |5 \
CIMP 15325 | 15351 | 15353 | 14753 || 14155 | 11119
Csvi 8000 [8000 | 8000 |8000 | 8000 | 8000
Csv2 8000 [8000 |8000 |8000 [ 8000 | 8000
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CHAPTER 5: CONCLUSION

Two explicit methods based upon the Stormer-Verlet metdmatione implicit method based upon
the implicit midpoint method were shown to be conformal seunfic integrators and it was proven
they each preserved the rate of angular momentum dissip@imwther finding of significance was
seen in Fig. 4.7 when the rate of dissipation of the methodscsapared to that of a 3rd order
Runge-Kutta. In those findings, it was obvious that a cled#t ufr the rate of dissipation was

present in the higher order Runge-Kutta method that was resept in the 2nd order Conformal

Stormer-Verlet methods or the 2nd order Conformal ImpMidpoint method.

An analytical linear stability analysis was completed facle method providing thresholds between
the values of the damping coefficientand the step-sizé\t in order to ensure stability. The
importance here, is that an actual relation between theypgeieas was established instead of relying
upon the use of sufficiently small values of the damping ccieffit. \Verification of the higher
computational costs associated with the Conformal Impliédpoint method was included in the

comparison of the methods.

The analytical and numerical results of thesis show thaCtveormal Stormer-Verlet methods and
the Conformal Implicit Midpoint methods produce similasués when applied to a damped har-
monic oscillator and a damped nonlinear pendulum. Of ingraxé here, is that the two Stormer-
Verlet methods are explicit methods and therefore havelesn@mputational costs than the Con-
formal Implicit Midpoint method. Given the similarity of éhresults produced by each of the
methods, it would seem within the scope of this thesis thatwo explicit Stormer-Verlet meth-

ods are an attractive alternative when selecting a nunieniethod.

A more thorough understanding of these methods could bedfoyrfurther study using Hamil-

tonian ODE and PDE systems with linear dissipation that mawee practical application. At the
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very least, it seems apparent that further study into thiditsabf the results is warranted to see if

the results continue to remain consistent across more @mgstems of equations.
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