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ABSTRACT

Numerical methods for solving linearly damped Hamiltonianordinary differential equations are

analyzed and compared. The methods are constructed from thewell-known Störmer-Verlet and

implicit midpoint methods. The structure preservation properties of each method are shown ana-

lytically and numerically. Each method is shown to preservea symplectic form up to a constant and

are therefore conformal symplectic integrators, with eachmethod shown to accurately preserve the

rate of momentum dissipation. An analytical linear stability analysis is completed for each method,

establishing thresholds between the value of the damping coefficient and the step-size that ensure

stability. The methods are all second order and the preservation of the rate of energy dissipation is

compared to that of a third order Runge-Kutta method that does not preserve conformal properties.

Numerical experiments will include the damped harmonic oscillator and the damped nonlinear

pendulum.
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CHAPTER 1: INTRODUCTION

For this thesis we provide a comparison between numerical methods used in modeling Hamiltonian

systems with linear dissipation, generally interpreted asfriction. There are many practical appli-

cations for systems of this type. As an example, it was noted in a paper by Holmberg, Andersson

and Erdemir [11] that in passenger automobiles one-third ofthe fuel energy is used to overcome

friction with 28% of the fuel energy being direct frictional losses in places such as the engine, trans-

mission, and tires. One main objective in the design of the components of these systems would be

to minimize losses due to friction and therefore increase efficiency. The dynamics of some of these

mechanical systems can be well represented by a Hamiltonianwith linear dissipation and it is for

that purpose that the numerical methods used in the modelingof these systems and especially the

modeling of the energy losses be as accurate as possible. Of particular interest would be numerical

methods that will accurately preserve the rate of dissipation in the system. This practical applica-

tion, as well as many others, serves as motivation for this thesis and the continual improvement in

the accuracy and efficiency of the numerical methods used to model such systems.

In this thesis, we are interested in comparing numerical methods used to approximate systems

of ordinary differential equations of the form,d
dt
z = f(z), z(t0) = z0 ǫ R

d. Wherez(tn) is

the solution at the timet
n
. We designate the approximated solution aszn wherezn ≈ z(tn) for

n ≥ 0. We typically assume the initial timet0 = 0 and that all subsequent time steps are defined by

tn = tn−1+∆t for n ≥ 1. We also assume that the solutionszn are defined for all time stepst ≥ t0.

In addition, we define dependent variablesq andp that are used to designate column vectors of

positions and momenta respectively in a Euclidean spaceR
d, whered is the dimension. We utilize

these notations when we apply the numerical methods to second order systems of differential

equations arising from Newton’s second law,qtt = f(q). We write the first order form of the

differential equationsqt = p andpt = g(q), where the time derivative ofq(t) is denoted byqt and
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that ofp(t) is pt. We next define a vectorz = [q, p]T and a vector fieldf(z) =







p

g(q)






. We can

then apply our numerical method to the equationzt = f(z).

As shown earlier, we know there is value and practical application in being able to accurately and

efficiently model the sometimes complex systems found in fields such as physics and engineer-

ing. However, with such systems it may be difficult or impractical to obtain an analytical solution

because the amount of work necessary may be prohibitive to effectively model the system or es-

tablish the long term behavior of such a complex system. As noted in [1], with the exception of

a few special cases, most models are not exactly integrable especially those that are nonlinear. In

these situations we can apply a numerical method and obtain an approximation of the solution, or

modeling of events, within an acceptable tolerance level. Of particular interest are conservative

physical systems such as Hamiltonian systems, as they can berepresentative of a wide range of

practical applications and the conservative properties ofthe numerical methods used to approxi-

mate such systems. Obviously, it is desirable that any numerical method used for approximating

the solution offer accuracy, stability and be as efficient aspossible.

The continued development of new numerical methods, improvement and modification of existing

methods, and the thorough comparison of methods provides value and increases the understanding

of the strengths and weaknesses of the methods available to the user. For that purpose we will

provide an analysis and comparison of two types of numericalmethods and apply those methods

to a linear and a nonlinear ordinary differential equations. Both types of methods are structure-

preserving methods and are composed from classical well know methods, those being the Störmer-

Verlet method (sometimes called the leap-frog method) and the implicit midpoint method.

The construction of symplectic methods with a damping coefficient ofγ = 0 can be accomplished

through the process of splitting the Hamiltonian into a sum of explicitly solvable Hamiltonian
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vector fields [1]. A symplectic method is then created from the composition of the corresponding

flow maps. Symplectic methods are structure preserving methods, that is they will exactly preserve

the symplectic structure of a Hamiltonian ordinary differential equation, which is equivalent to

preserving the phase space area [1]. Other invariant properties of the governing equations are also

often preserved by symplectic methods, such as momentum or rotations. It has also been proven

that over long time intervals symplectic methods will preserve the total energy of a system up

to an exponentially small error. Due to their superior results in practice, symplectic methods are

preferred by scientists and engineers for simulating conservative dynamics in many applications,

such as celestial mechanics, molecular dynamics, electromagnetism, optics, and many systems that

involve wave motion. A well known disadvantage to symplectic methods is they will loose orders

of accuracy and structure-preserving properties when a damping coefficient ofγ > 0 is introduced.

For that reason, we want to extend symplectic integration toproblems with damping in order to

develop numerical methods that will become the preferred standard by scientists and engineers to

use in applications with the presence of frictional forces.

The methods in this thesis have a damping coefficient ofγ > 0 and were obtained through the

construction of symplectic methods by splitting [1, 10] a process in which each of these methods

has been used as the symplectic method used to approximate the conservative part of a Hamiltonian

system and then composed with a exact time flow map that is usedto provide the exact solution to

the dissipative part of the system. A thorough description of these types of systems can be found in

[6] but in simplest terms also noted in [6] they can be described as systems with coordinates(q, p),

a separable HamiltonianH(q, p) = T (p) + V (q), and the following equations of motion.

qt = ∇pT (p), pt = −∇qV (q)− 2γp (1.1)

whereq, p ǫ R
d andγ > 0. For these Hamiltonian systems with linear dissipation we can write
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them in the compact form:

Jzt = ∇zH(z)− Dz, (1.2)

wherez = [q, p]T with q, p ǫ R
d , γ > 0 , J =







0 -I

I 0






, andD = 2γ







0 I

0 0






as found in

[1, 8]. Through a process detailed in the work of Moore [3] thesystem of equations (1.1) can be

written in the following form.

qt = ∇pT (p) + γq − γq, pt = −∇qV (q)− γp− γp. (1.3)

Utilizing these equations of motion (1.3) along with a non-separable Hamiltonian of the form

Hγ(q, p) = T (p) + V (q) + γqp, (1.4)

we note

∇pH = ∇pT + γq, ∇qH = ∇qV + γp.

Therefore, utilizing this Hamiltonian (1.4) the system of equations (1.2) is equivalent to

Jzt = ∇zHγ(z)− γJz. (1.5)

We can also show that Hamiltonian systems that can be writtenin the compact form (1.5) are

conformal symplectic systems. We know from the work of McLachlan and Perlmutter [6] and

that of Moore [3] that a differential equationyt = g(y) is said to be conformal symplectic if the

following relation holds:

∂tw = −2γw or equivalently w(t) = e−2γtw(0) (1.6)
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and if it is satisified forw = dy∧Jdy.Utilizing this definition, we show that a Hamiltonian system

with linear dissipation (1.5) as shown above is conformal symplectic.

To continue we will need to utilize the following propertiesof the wedge product as found in [1].

Whereda, db, dc are k-vectors of differential one-forms onℜd.

Skew-Symmetry:da ∧ db = −db ∧ da

Bilinearity: for anyα, β ǫ ℜd, da ∧ (αdb+ βdc) = αda ∧ db+ βda ∧ dc.

Also, for any symmetric matrixA, da ∧ Ada = 0.

We begin by writing the associated variational equation, where∂2zHγ is the Hessian matrix

Jdzt = ∂2zHγ(z)dz − γJdz.

Therefore,

dz ∧ Jdzt = dz ∧ ∂2zHγ(z)dz + dz ∧ −γJdz,

dz ∧ Jdzt = dz ∧ −γJdz,

dz ∧ Jdzt = −dz ∧ γJdz.

Noting that∂2zHγ(z) is symmetric and the wedge product is skew-symmetric.
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Now taking a partial derivative,

∂t(dz ∧ Jdz) = dzt ∧ Jdz + dz ∧ Jdzt

= JTdzt ∧ dz + dz ∧ Jdzt

= −dz ∧ JTdzt + dz ∧ Jdzt

= dz ∧ −JTdzt + dz ∧ Jdzt

= 2dz ∧ Jdzt.

Where we have utilized that the fact that

J =







0 -I

I 0






, JT =







0 I

-I 0






and-JT =







0 -I

I 0






= J

Then by Substitution,

∂t(dz ∧ Jdz) = −2γ(dz ∧ Jdz).

Again by substitution usingw = dz ∧ Jdz we have,

∂tw = −2γw.

Therefore, we have shown that Hamiltonian systems of the form Jzt = ∇zH(z)− γJz satisfy the

definition (1.6) of a conformal symplectic system.

We are interested in Hamiltonian systems with the presence of damping and where the symplectic

form will dissipate exponentially. These systems are considered to be conformal symplectic sys-

tems [6, 3]. For this thesis we consider numerical methods that preserve such properties and are

therefore considered to be conformal symplectic integrators. Numerical methods give us a way to

approximate the flow-maps of a system of differential equations from one time step to another. As

found in [1] any reasonable numerical method will preserve the symplecticness relation up to an
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error that is proportional to the local truncation error. Systems that are conservative and have a

damping coefficient ofγ = 0 have the symplecticness condition as found in [1]

dqn+1 ∧ dpn+1 = dqn ∧ dpn. (1.7)

If the symplecticness condition is preserved exactly then the numerical method can be thought of

as a symplectic integrator.

Systems without the presence of damping have been well studied but less is known about those

systems that have a damping coefficientγ > 0. There is value in furthering the study of such

systems and real-world applications that can benefit in improving the numerical methods used to

approximate them, such as dissipative systems in which frictional forces are present. As defined in

[3] a numerical method is a conformal symplectic integratorif the following relation holds,

dqn+1 ∧ dpn+1 = e−2γ∆tdqn ∧ dpn. (1.8)

Or, another way that this can be thought of is as found in [6] vector fields are considered conformal

if their flow preserves a symplectic form up to a constant. We will show that the numerical methods

in this thesis will satisify this defintion and are thereforeconformal symplectic integrators.

Two of the conformal methods featured in this study have beenstudied and presented by others

[4, 7] and both will be presented in greater detail in this thesis. In the previous work done both

methods were compared analytically and numerically to wellknown existing numerical methods.

The conformal method using the Störmer-Verlet method for the flow map of the symplectic in-

tegrator was presented as one of three integration schemes by Modin and Söderlind [7] as part

of a study of the geometric integration of Hamiltonian systems perturbed by Rayleigh damping

and such systems are conformal symplectic systems. It was shown that the methods in the study

showed preservation of dissipation in angular momentum, and had an asymptotically correct en-
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ergy dissipation rate for small values of the dissipation coefficient. In that study, the method was

compared to and found to be superior to explicit Runge-Kuttamethods of the same order, with

numerical results using Heun’s method for comparision. We will refer to this method throughout

this thesis as CSV1. This method uses the formulation 1.2.

We will also use as one of numerical methods in this thesis a second conformal method developed

using the Störmer-Verlet method for the flow map of the symplectic integrator. We will refer to

this method as the Conformal Störmer-Verlet method-2 or CSV2. The method is referenced from

the presubmission paper by Moore, Bhatt and Floyd [8] and this method uses the formulation 1.5.

The other conformal method in our study, which uses the Implicit Midpoint method for the flow

map of the symplectic integrator, will be referred to throughout as the Conformal Implicit Midpoint

Method [2] or CIMP. The CIMP method in this thesis is a generalization of the method that was

presented in detail by Sun and Shang [4] as part of the study instructure-preserving algorithms for

Birkhoffian systems. Birkhoffian systems include Hamiltonian systems with weak linear damping

and therefore the results of that work are relevant to this study. The method was shown to be

conformal symplectic [3] and the numerical results showed the ability to simulate the energy dis-

sipation better than the implicit midpoint rule. Both methods have been compared to well known

existing methods and found to be superior.

There are questions that arise from the studies mentioned. How does the Conformal Implicit Mid-

point method compare with the Conformal Störmer-Verlet methods? Are there situations in which

the explicit Störmer-Verlet methods perform as well or better than the implicit method? How do

these second order methods compare to a higher order method that is not structure-preserving?

Another question of interest arises from the fact that we know as the value of the damping coef-

ficient increases the stability and or reliability of a numerical method can be in doubt. Therefore,

an obvious question arises, can a relationship between the parameters of a numerical method such

8



as step-size and the damping coefficient be derived to establish stability thresholds beyond stat-

ing ”for sufficiently small values of the damping coefficient” . A goal of this thesis is to provide

answers to questions such as these. The main contributions of this thesis are:

• A comparison of the Störmer-Verlet methods with the Conformal Implicit midpoint method.

Analytically we show the structure preservation properties and prove the methods are con-

formal symplectic integrators [3] and that the rate of momentum dissipation is preserved

[1, 2, 3]. Numerically we provide a comparison of the methodswhen applied to a linear

damped harmonic oscillator and a nonlinear damped pendulum.

• An analytical linear stability analysis will be completed for the methods by establishing the

thresholds between parameters of the methods in which the eigenvalues of the method lie

in the left half of the complex plane when applied to a damped harmonic oscillator, a suffi-

cient condition for stability. The stability analysis for each method provides the correlation

between the damping coefficient and the time step-size and this gives us the ability to define

and understand the parameters in which the explicit conformal Störmer-Verlet methods will

continue to produce acceptable results in line with those ofthe conformal implicit midpoint

method.

• Comparison of the preservation of the rate of energy dissipation of the CIMP, CSV1 and

CSV2 methods with a third order Runge-Kutta method that is not structure-preserving.

• Analytic and numerical results reveal each of the conformalmethods have relatively the

same level of accuracy, but the explicit methods are much more efficient.

An extension of this study would be to expand the numerical analysis to include more sophisticated

ODE systems as well as PDE applications. Such an expansion would be the natural progression

9



to give a more thorough understanding of the significance of the findings and verification that the

results hold across multiple scenarios.
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CHAPTER 2: NUMERICAL METHODS

The conformal symplectic methods in this thesis have been constructed by the process of Hamilto-

nian splitting as suggested by [1, 9, 10]. In the process of splitting the Hamiltonian part is approx-

imated by a symplectic methodzi+1 = ψ∆t(z
i) with z = [q, p]T andψ∆t being the flow map of a

symplectic integrator, and the non-Hamiltonian part by theexact timeτ flow map [3, 1, 8]. These

two flow maps are composed together to form the conformal symplectic method. We next present

each of the methods and the structure preservation properties of each. We provide an example of

the process involved in the construction of numerical methods with the CSV1 method.

2.1 Conformal Implicit Midpoint method

The first method presented is the Conformal Implicit Midpoint method as found in the work by

Sun and Shang [4]. A generalized form of the well known Implicit midpoint method is as follows.

zn+1 − zn

∆t
= f

(

zn+1 + zn

2

)

, (2.1)

wherez = [q, p]T . For the conformal form we first consider a Hamiltonian system with Hamilto-

nian of the formHγ(q, p) = V (q) + T (p)+ γqp with the corresponding equations of motion (1.3).

Or equivalently, written in the compact form 1.5 and using the Implicit Midpoint Method (2.1) to

discretize 1.5 we obtain,

J
(

zn+1 − zn

∆t

)

= ∇H

(

zn+1 + zn

2

)

− γJ
(

zn+1 + zn

2

)

. (2.2)

To form a conformal symplectic form of the implicit midpointmethod we discretize the Hamil-

tonian part with the Implicit Midpoint Method and the non-Hamiltonian part with the exact flow
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map and then compose these two flow maps together we have the numerical method shown below.

We will refer to this method as the CIMP method a generalized form of the method as found in the

paper by Sun and Shang [4]. Withh = ∆t the discretization can be written as:

J

(

e
γh
2 zn+1 − e

−γh
2 zn

h

)

= ∇H

(

e
γh
2 zn+1 + e

−γh
2 zn

2

)

(2.3)

wherez = [q, p]T with q, p ǫ R
d , γ > 0 , J =







0 -I

I 0






.

2.1.1 Conformal Symplecticity

In order to prove that the CIMP method is conformal symplectic it is sufficient to show that
(

eγhdzn+1−dzn

h

)

∧ J
(

eγhdzn+1+dzn

2

)

= 0 and then to verify that it satisfies the definition of a con-

formal symplectic integrator (1.8).

Theorem 2.1.1 The Conformal Implicit Midpoint method is conformal symplectic

Proof Writing the associated variational equation

J

(

e
γh

2 dzn+1 − e
−γh

2 dzn

h

)

= ∂2zHγ

(

e
γh

2 zn+1 + e
−γh

2 zn

2

)(

e
γh

2 dzn+1 + e
−γh

2 dzn

2

)
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Therefore,

(

e
γh

2 dzn+1 + e
−γh

2 dzn

2

)

∧J

(

e
γh

2 dzn+1 − e
−γh

2 dzn

h

)

=

(

e
γh

2 dzn+1 + e
−γh

2 dzn

2

)

∧

∂2zHγ

(

e
γh

2 zn+1 + e
−γh

2 zn

2

)(

e
γh

2 dzn+1 + e
−γh

2 dzn

2

)

(

e
γh

2 dzn+1 + e
−γh

2 dzn

2

)

∧J

(

e
γh

2 dzn+1 − e
−γh

2 dzn

h

)

= 0.

We carry out the wedge product on the left hand side to obtain,

e
γh

2

2
dzn+1 ∧ J

(

e
γh

2

h
dzn+1

)

+
e

γh

2

2
dzn+1 ∧ J

(

−e
−γh

2

h
dzn

)

+
e

−γh

2

2
dzn ∧ J

(

e
γh

2

h
dzn+1

)

+
e

−γh

2

2
dzn ∧ J

(

−e
−γh

2

h
dzn

)

= 0

eγh

2h
dzn+1 ∧ Jdzn+1 +

−1

2h
dzn+1 ∧ Jdzn +

1

2h
dzn ∧ Jdzn+1 +

−e−γh

2h
dzn ∧ Jdzn = 0

eγhdzn+1 ∧ Jdzn+1 +−dzn+1 ∧ Jdzn + dzn ∧ Jdzn+1 +−e−γhdzn ∧ Jdzn = 0

eγhdzn+1 ∧ Jdzn+1 + -JTdzn+1 ∧ dzn + dzn ∧ Jdzn+1 +−e−γhdzn ∧ Jdzn = 0

Note, we have utilized a property of the wedge productda ∧ (Adb) = (ATda) ∧ db for anynxn

matrixA. Also, utilizing the fact that-JT = J we have,

eγhdzn+1 ∧ Jdzn+1 + Jdzn+1 ∧ dzn + dzn ∧ Jdzn+1 +−e−γhdzn ∧ Jdzn = 0

eγhdzn+1 ∧ Jdzn+1 + Jdzn+1 ∧ dzn + -Jdzn+1 ∧ dzn +−e−γhdzn ∧ Jdzn = 0

eγhdzn+1 ∧ Jdzn+1 +−e−γhdzn ∧ Jdzn = 0

eγhdzn+1 ∧ Jdzn+1 = e−γhdzn ∧ Jdzn = 0.
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Therefore we have,

dzn+1 ∧ Jdzn+1 = e−2γhdzn ∧ Jdzn.

We have proven using the definition of conformal symplectic methods (1.8) and as defined in

[3, 9, 10], that the CIMP method is conformal symplectic.

To consider a specific example we provide a discretization for (1.5) with the Hamiltonian (1.4)

Hγ(q, p) = T (p) + V (q) + γqp. Therefore, we can write a generalized form of the method as

follows:

qn+1 − e−γhqn =
γh

2

(

qn+1 + e−γhqn
)

+
h

2
∇pT

(

pn+1 + e−γhpn
)

(2.4)

pn+1 − e−γhpn =
−γh

2

(

pn+1 + e−γhpn
)

−
h

2
∇qV

(

qn+1 + e−γhqn
)

Consider the ordinary differential equation for a damped harmonic oscillator

qtt + 2γqt + ω2q = 0 (2.5)

With T (p) = p2

2
andV (q) = w2q2

2
and then with the CIMP method (2.4) being applied to (2.5), we

obtain the following:

qn+1 − e−γhqn =
γh

2

(

qn+1 + e−γhqn
)

+
h

2

(

pn+1 + e−γhpn
)

, (2.6)

pn+1 − e−γhpn =
−γh

2

(

pn+1 + e−γhpn
)

−
hω2

2

(

qn+1 + e−γhqn
)

.

Further, if we solve forqn+1 andpn+1 and write this method as a matrix equation we have:







qn+1

pn+1






=

[

e−γh

1− γ2h2

4
+ h2ω2

4

]







(1 + γh
2
)2 − h2ω2

4
h

−hω2 (1− γh
2
)2 − h2ω2

4













qn

pn






. (2.7)
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We can show as an example of a specific case ofTheorem 2.1.1 that this discretization does satisfy

the definition of a conformal symplectic integrator (1.8).

dqn+1 ∧ dpn+1 =

(

e−γh

1− γ2h2

4
+ h2ω2

4

)

[(

(1 +
γh

2
)2 −

h2ω2

4

)

dqn + hdpn
]

∧

(

e−γh

1− γ2h2

4
+ h2ω2

4

)

[

−hω2dqn +

(

(1−
γh

2
)2 −

h2ω2

4

)

dpn
]

.

For simplicity let us defineΦ = 1− γ2h2

4
+ h2ω2

4
. Then our variational equations become

dqn+1 ∧ dpn+1 =

(

e−γh

Φ

)[(

(1 +
γh

2
)2 −

h2ω2

4

)

dqn + hdpn
]

∧

(

e−γh

Φ

)[

−hω2dqn +

(

(1−
γh

2
)2 −

h2ω2

4

)

dpn
]

dqn+1 ∧ dpn+1 =

(

e−γh

Φ

)(

(1 +
γh

2
)2 −

h2ω2

4

)

dqn ∧

(

e−γh

Φ

)(

(1−
γh

2
)2 −

h2ω2

4

)

dpn

+

(

e−γh

Φ

)

(hdpn) ∧

(

e−γh

Φ

)

(

−hω2dqn
)

dqn+1 ∧ dpn+1 =

[

(

e−γh

Φ

)2(

(1 +
γh

2
)2 −

h2ω2

4

)(

(1−
γh

2
)2 −

h2ω2

4

)

]

dqn ∧ dpn

−

[

(

e−γh

Φ

)2

h2ω2

]

dpn ∧ dqn

dqn+1 ∧ dpn+1 =

[(

e−2γh

Φ2

)(

(1 +
γh

2
)2 −

h2ω2

4

)(

(1−
γh

2
)2 −

h2ω2

4

)]

dqn ∧ dpn

+

[(

e−2γh

Φ2

)

h2ω2

]

dqn ∧ dpn
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continuing,

dqn+1 ∧ dpn+1 =

(

e−2γh

Φ2

)[(

(1 +
γh

2
)2 −

h2ω2

4

)(

(1−
γh

2
)2 −

h2ω2

4

)

+ h2ω2

]

dqn ∧ dpn

dqn+1 ∧ dpn+1 =

(

e−2γh

Φ2

)

[

(1 +
γh

2
)2(1−

γh

2
)2 +

h2ω2

2
(1−

γh

2
)(1 +

γh

2
) +

h4ω4

16

]

dqn ∧ dpn.

With the previous definition ofΦ it follows that

Φ2 =

[

(1 +
γh

2
)2(1−

γh

2
)2 +

h2ω2

2
(1−

γh

2
)(1 +

γh

2
) +

h4ω4

16

]

.

Simplifying we have

dqn+1 ∧ dpn+1 = e−2γhdqn ∧ dpn.

Therefore, by the definition of conformal symplectic integrators as defined in [3] and presented

in this thesis (1.8) we have shown as a specific example that the CIMP method is a conformal

symplectic integrator.

2.1.2 Preservation of Angular Momentum Dissipation

We next show that the CIMP method (2.3) preserves the rate of conformal angular momentum

dissipation. Consider the Hamiltonian for the N-body problem as found in [1] and with the non-

separable Hamiltonian (1.4) to obtain

H(q, p) =
1

2

N
∑

i=1

‖pi‖
2

mi
+

N−1
∑

i=1

N
∑

j=i+1

ϕij(‖qi − qj‖) + γ

N
∑

i=1

qTi pi. (2.8)
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This system has the corresponding equations of motion as found in [1]

d

dt
qi =

1

mi
pi

d

dt
pi = −

∑

i 6=j

ϕ
′

(‖qi − qj‖)

‖qi − qj‖
(qi − qj)− 2γpi.

We next prove that the CIMP method (2.3) preserves the rate ofconformal angular momentum

dissipation. We begin by noting that methods that conserve the total conformal angular momentum

will satisfy the following relation.

N
∑

j=1

(qn+1
j × pn+1

j ) = e−2γh
N
∑

j=1

(qn × pn). (2.9)

Theorem 2.1.2 The Conformal Implicit Midpoint method (2.3) with Hamiltonian (2.8) preserves

the rate of angular momentum dissipation, i.e. the method satisfies (2.9).

Proof For simplicity let us define

q
n+ 1

2

j =
1

2

(

e
γh

2 qn+1
j + e

γh

2 qnj

)

.

Writing the discrete equations for the CIMP method (2.3) we obtain

(e
γh

2 qn+1
j − e

−γh

2 qnj
h

)

=
1

mj

(e
γh

2 pn+1
j + e

−γh

2 pnj
2

)

+ γ
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)

,

(e
γh

2 pn+1
j − e

−γh

2 pnj
h

)

= −
∑

i 6=j

ϕ
′

ij(‖q
n+ 1

2

i − q
n+ 1

2

j ‖)

‖q
n+ 1

2

i − q
n+ 1

2

j ‖
(q

n+ 1
2

j − q
n+ 1

2

i )− γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

.
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Let us define

τ
n+ 1

2

ij =
ϕ

′

ij(‖q
n+ 1

2

i − q
n+ 1

2

j ‖)

‖q
n+ 1

2

i − q
n+ 1

2

j ‖
.

Then our discrete equations become

(e
γh

2 qn+1
j − e

−γh

2 qnj
h

)

=
1

mj

(e
γh

2 pn+1
j + e

−γh

2 pnj
2

)

+ γ
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)

,

(e
γh

2 pn+1
j − e

−γh

2 pnj
h

)

= −
∑

i 6=j

τ
n+ 1

2

ij (q
n+ 1

2

j − q
n+ 1

2

i )− γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

.

Now, finding the cross products and taking the sum to get the total angular momentum

N
∑

j=1

(e
γh

2 qn+1
j − e

−γh

2 qnj
h

)

×
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

=

N
∑

j=1

[ 1

mj

(e
γh

2 pn+1
j + e

−γh

2 pnj
2

)

+ γ
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)]

×
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

=
N
∑

j=1

γ
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)]

×
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

,
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and then finding the next cross product

N
∑

j=1

(e
γh

2 qn+1
j + e

−γh

2 qnj
2

)

×
(e

γh

2 pn+1
j − e

−γh

2 pnj
h

)

,

=

N
∑

j=1

(e
γh

2 qn+1
j + e

−γh

2 qnj
2

)

×
[

−
∑

i 6=j

τ
n+ 1

2

ij (q
n+ 1

2

j − q
n+ 1

2

i )− γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)]

,

=

N
∑

j=1

q
n+ 1

2

j ×
[

−
∑

i 6=j

τ
n+ 1

2

ij (q
n+ 1

2

j − q
n+ 1

2

i )− γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)]

,

=

N
∑

j=1

q
n+ 1

2

j ×
(

−
∑

i 6=j

τ
n+ 1

2

ij (q
n+ 1

2

j − q
n+ 1

2

i )
)

+

N
∑

j=1

q
n+ 1

2

j × γ
(e

γh
2 pn+1

j + e
−γh
2 pnj

2

)

,

= −

N
∑

j=1

∑

i 6=j

q
n+ 1

2

j × τ
n+ 1

2

ij (q
n+ 1

2

j − q
n+ 1

2

i ) +

N
∑

j=1

q
n+ 1

2

j × γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

,

= −
N
∑

j=1

∑

i 6=j

τ
n+ 1

2

ij

(

q
n+ 1

2

j × q
n+ 1

2

j − q
n+ 1

2

j × q
n+ 1

2

i

)

+
N
∑

j=1

q
n+ 1

2

j × γ
(e

γh
2 pn+1

j + e
−γh
2 pnj

2

)

,

=

N
∑

j=1

∑

i 6=j

τ
n+ 1

2

ij q
n+ 1

2

j × q
n+ 1

2

i +

N
∑

j=1

q
n+ 1

2

j × γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

.

Notice, the first term can be written as a sum of pairs of terms with i < j

τ
n+ 1

2

ij q
n+ 1

2

j × q
n+ 1

2

i + τ
n+ 1

2

ji q
n+ 1

2

i × q
n+ 1

2

j

We also notice thatτ
n+ 1

2

ij = τ
n+ 1

2

ji as these values are only dependent upon the absolute distance

between the steps. Therefore,

τ
n+ 1

2

ij q
n+ 1

2

j × q
n+ 1

2

i + τ
n+ 1

2

ji q
n+ 1

2

i × q
n+ 1

2

j = 0,
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and then for our cross product we have

N
∑

j=1

(e
γh

2 qn+1
j + e

−γh

2 qnj
2

)

×
(e

γh

2 pn+1
j − e

−γh

2 pnj
h

)

=

−

N
∑

j=1

(e
γh

2 qn+1
j + e

−γh

2 qnj
2

)

× γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)]

.

Therefore,

N
∑

j=1

(e
γh

2 qn+1
j − e

−γh

2 qnj
h

)

×
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

+

N
∑

j=1

(e
γh

2 qn+1
j + e

−γh

2 qnj
2

)

×
(e

γh

2 pn+1
j − e

−γh

2 pnj
h

)

= 0,

N
∑

j=1

[(e
γh
2 qn+1

j − e
−γh
2 qnj

h

)

×
(e

γh
2 pn+1

j + e
−γh
2 pnj

2

)

+
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)

×
(e

γh

2 pn+1
j − e

−γh

2 pnj
h

)]

= 0.

Utilizing properties of the cross product we obtain

N
∑

j=1

[(

e
γh

2 qn+1
j −e

−γh

2 qnj

)

×
(

e
γh

2 pn+1
j +e

−γh

2 pnj

)

+
(

e
γh

2 qn+1
j +e

−γh

2 qnj

)

×
(

e
γh

2 pn+1
j −e

−γh

2 pn
)]

= 0.
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Expanding the cross products,

N
∑

j=1

[

eγh
(

qn+1
j × pn+1

j

)

+
(

qn+1
j × pnj

)

−
(

qnj × pn+1
j

)

−
(

e−γhqnj × pnj
)

+ eγh
(

qn+1
j × pn+1

j

)

−
(

qn+1
j × pnj

)

+
(

qnj × pn+1
j

)

− e−γh
(

qnj × pnj
)

]

= 0,

N
∑

j=1

[

2eγh
(

qn+1
j × pn+1

j

)

− 2e−γh
(

qnj × pnj
)

]

= 0,

N
∑

j=1

2eγh
(

qn+1
j × pn+1

j

)

=
N
∑

j=1

2e−γh
(

qnj × pnj
)

,

N
∑

j=1

eγh
(

qn+1
j × pn+1

j

)

=

N
∑

j=1

e−γh
(

qnj × pnj
)

,

N
∑

j=1

(

qn+1
j × pn+1

j

)

=

N
∑

j=1

e−2γh
(

qnj × pnj
)

.

Therefore, we have proven that the Conformal Implicit Midpoint method satisfies the relation for

conservation of total angular momentum (2.9) because

N
∑

j=1

(

qn+1
j × pn+1

j

)

= e−2γh

N
∑

j=1

(

qnj × pnj
)

.

2.2 Conformal Störmer-Verlet methods

2.2.1 Conformal Störmer-Verlet Method-1

The next method presented is a Conformal Störmer-Verlet method as found in work by Modin and

Söderlind [7]. Consider the conformal Hamiltonian systemwith separable Hamiltonian

H(q, p) = T (p) + V (q), with the corresponding equations of motion.

qt = ∇pT (p), pt = −∇qV (q)− 2γp (2.10)
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whereq, p ǫ Rd andγ > 0. An important distinction between this Hamiltonian and the Hamiltonian

used with the Conformal Implicit Midpoint method is that this Hamiltonian is separable. As found

in [1, 9, 10] the equation (2.10), through the process of splitting, can be split into the Hamiltonian

part and the non-Hamiltonian part. The Hamiltonian part beingqt = ∇pT (p) , pt = −∇qV (q) and

the non-Hamiltonian partqt = 0 , pt = −2γp. The Hamiltonian part can be approximated using

the standard Störmer-Verlet method as the symplectic integrator, and the non-Hamiltonian part can

be solved exactly.

The exact time flow map for the non-Hamiltonian part is

Φτ (q, p) =







q

e−2γτp






.

The generalized form of the well known Störmer-Verlet method used to approximate the Hamilto-

nian part has the following flow map as found in [1, 7, 8] is as follows,

pn+
1
2 = pn −

∆t

2
∇qV (qn),

qn+1 = qn +∆t∇pT (p
n+ 1

2 ), (2.11)

pn+1 = pn+
1
2 −

∆t

2
∇qV (q

n+1).

One way to compose the two maps isφ∆t = Φ∆t/2 ◦ Ψ∆t ◦ Φ∆t/2 whereΨ∆t is the time∆t flow

map of the Störmer-Verlet method (2.11). ApplyingΦ∆t/2 to a point(qn, pn) of phase space, we

first compute a point(q̄, p̄)







q̄

p̄






= Φ∆t/2(q

n, pn) =







qn

e−γ∆tpn






.
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Apply Ψ∆t to this point to get another point(q̂, p̂)







q̂

p̂






= Ψ∆t ◦ Φ∆t/2(q

n, pn) =







q̄ +∆t∇pT (p̄−
∆t
2
∇qV (q̄))

p̄− ∆t
2
∇qV (q̄)−

∆t
2
∇qV (q̄ +∆t∇pT (p̄−

∆t
2
∇qV (q̄))







ApplyingΦ∆t/2 to this point gives us,







qn+1

pn+1






= Φ∆t/2 ◦Ψ∆t ◦ Φ∆t/2(q

n, pn) =







q̂

e−γ∆tp̂






.

Substituting forq̄ and p̄ gives us the numerical method as found in the work by Modin and

Söderlind [7].

pn+
1

2 = e−γ∆tpn −
∆t

2
∇qV (q

n),

qn+1 = qn +∆t∇pT (p
n+ 1

2 ), (2.12)

pn+1 = e−γ∆t

[

pn+
1
2 −

∆t

2
∇qV (qn+1)

]

.

We will reference this method as the Conformal Störmer-Verlet method-1 or CSV1.

2.2.1.1 Conformal Symplecticity

We prove that the CSV1 is a conformal symplectic method by showing that the method (2.12)

satisfies the definition of a conformal symplectic integrator (1.8).

Theorem 2.2.1 The Conformal Störmer-Verlet method (2.12) is a conformal symplectic integrator.
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Proof We begin by writing the variational equations for the method(2.12)

dpn+
1

2 = e−γ∆tdpn −
∆t

2
Vqq(q

n)dqn,

dqn+1 = dqn +∆tdpn+
1

2 ,

dpn+1 = e−γ∆t
(

dpn+
1
2 −

∆t

2
Vqq(q

n+1)dqn+1
)

.

Again, utilizing the properties of the wedge product as noted earlier we obtain

dqn+1 ∧ dpn+1 = dqn+1 ∧ e−γ∆t
(

dpn+
1
2 −

∆t

2
Vqq(q

n+1)dqn+1
)

= e−γ∆tdqn+1 ∧ dpn+
1
2

= e−γ∆t
(

dqn +∆tdpn+
1
2

)

∧ dpn+
1
2

= e−γ∆tdqn ∧ dpn+
1

2

= e−γ∆tdqn ∧
(

e−γ∆tdpn −
∆t

2
Vqq(q

n)dqn
)

= e−γ∆te−γ∆tdqn ∧ dpn

= e−2γ∆tdqn ∧ dpn.

Therefore, by the definition of conformal symplectic integrators as defined in (1.8) and (1.6) we

have proven that the CSV1 method is a conformal symplectic integrator.

2.2.1.2 Preservation of Angular Momentum Dissipation

We next show that the method (2.12) preserves the rate of conformal angular momentum dissipa-

tion. Consider the Hamiltonian for the N-body problem as found in [1]

H(q, p) =
1

2

N
∑

i=1

‖pn‖
2

mi
+

N−1
∑

i=1

N
∑

j=i+1

ϕij(‖qi − qj‖). (2.13)
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This system has the corresponding equations of motion as found in [1]

d

dt
qi =

1

mi
pi,

d

dt
pi = −

∑

i 6=j

ϕ
′

(‖qi − qj‖)

‖qi − qj‖
(qi − qj). (2.14)

This Hamiltonian system is in the form ofH(q, p) = T (p) + V (q) and therefore can be applied

to the methods in this thesis that were constructed using thesplitting techniques described earlier.

We want to show that the method will conserve the total conformal angular momentum by proving

that the relation (2.9) holds.

Theorem 2.2.2 The Conformal Störmer-Verlet Method-1 (2.12) preserves the rate of conformal

angular momentum dissipation.

Proof Writing the discrete equations for the method (2.12) and thegiven Hamiltonian (2.13)

p
n+ 1

2

j = e−γ∆tpnj +
∆t

2

∑

i 6=j

ϕ
′

ij(‖q
n
i − qnj ‖)

‖qni − qnj ‖
(qnj − qni ),

qn+1
j = qn +

∆t

mj
(p

n+ 1

2

j ),

pn+1
j = e−γ∆t

[

p
n+ 1

2

j +
∆t

2

∑

i 6=j

ϕ
′

ij(‖q
n+1
i − qn+1

j ‖)

‖qn+1
i − qn+1

j ‖
(qn+1

j − qn+1
i )

]

.

For simplicity let us define

τn+1
ij =

ϕ
′

ij(‖q
n+1
i − qn+1

j ‖)

‖qn+1
i − qn+1

j ‖
, (2.15)

τnij =
ϕ

′

ij(‖q
n
i − qnj ‖)

‖qni − qnj ‖
.
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Then our discrete equations become

p
n+ 1

2

j = e−γ∆tpnj +
∆t

2

∑

i 6=j

τnij(q
n
j − qni ),

qn+1
j = qnj +

∆t

mj
(p

n+ 1
2

j ),

pn+1
j = e−γ∆t

[

p
n+ 1

2

j +
∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

]

.

Then the total angular momentum can be found by

N
∑

j=1

qn+1
j × pn+1

j =

N
∑

j=1

qn+1
j ×

(

e−γ∆t

[

p
n+ 1

2

j +
∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

])

= e−γ∆t
N
∑

j=1

qn+1
j ×

([

p
n+ 1

2

j +
∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

])

= e−γ∆t
[

N
∑

j=1

qn+1
j × p

n+ 1
2

j +

N
∑

j=1

qn+1
j ×

(

∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

)

]

= e−γ∆t
[

N
∑

j=1

qn+1
j × p

n+ 1
2

j +
∆t

2

N
∑

j=1

∑

i 6=j

qn+1
j × τn+1

ij

(

qn+1
j − qn+1

i

)

]

.

Expanding on the second term we have,

N
∑

j=1

qn+1
j × pn+1

j = e−γ∆t
[

N
∑

j=1

qn+1
j × p

n+ 1
2

j +
∆t

2

N
∑

j=1

∑

i 6=j

τn+1
ij

(

qn+1
j ×

(

qn+1
j − qn+1

i

)

)]

= e−γ∆t
[

N
∑

j=1

qn+1
j × p

n+ 1

2

j −
∆t

2

N
∑

j=1

∑

i 6=j

τn+1
ij

(

qn+1
j × qn+1

i

)]

.

As shown in the proof ofTheorem 2.1.2 we have the relation,

τn+1
ij qn+1

j × qn+1
i + τn+1

ji qn+1
i × qn+1

j = 0.
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Utilizing this result, we continue with the proof

N
∑

j=1

qn+1
j × pn+1

j = e−γ∆t
N
∑

j=1

qn+1
j × p

n+ 1
2

j

= e−γ∆t
N
∑

j=1

(

qnj +
∆t

mj
(p

n+ 1
2

j )

)

× p
n+ 1

2

j

= e−γ∆t

N
∑

j=1

qnj × p
n+ 1

2

j

Using substitution forp
n+ 1

2

j

N
∑

j=1

qn+1
j × pn+1

j = e−γ∆t
N
∑

j=1

qnj ×

(

e−γ∆tpnj +
∆t

2

∑

i 6=j

τnij(q
n
j − qni )

)

,

= e−γ∆t

N
∑

j=1

qnj × e−γ∆tpnj + e−γ∆t

(

∆t

2

) N
∑

j=1

∑

i 6=j

τnijq
n
j × (qnj − qni ),

= e−2γ∆t
N
∑

j=1

qnj × pnj − e−γ∆t

(

∆t

2

) N
∑

j=1

∑

i 6=j

τnijq
n
j × qni .

We reference the proof ofTheorem 2.1.2 to show,

τnijq
n
j × qni + τnjiq

n
i × qnj = 0.

Utilizing this result, we have the desired relation and finish the proof

N
∑

j=1

qn+1
j × pn+1

j = e−2γ∆t
N
∑

j=1

qnj × pnj .

Therefore, we have proven that the CSV1 method preserves therate of dissipation of angular

momentum (2.9) as defined in [1].

27



2.2.2 Conformal Störmer-Verlet Method-2

The next method presented in this thesis is another conformal Störmer-Verlet method. To our

knowledge, this method has not been presented in a publishedwork [8]. Similar to the Confor-

mal Implicit Midpoint method the Hamiltonian is not separable and is of the formHγ(q, p) =

V (q) + T (p) + γqp. Construction of the method requires the Hamiltonian part to be discretized

with a conformal symplectic integrator and the non-Hamiltonian part with the exact flow map. The

method is then constructed through a careful composition ofthese two flow maps. In order to dis-

tinguish this Störmer-Verlet method from (2.12) we call the method CSV2. For the discretization

of the Hamiltonian part we use a generalized form of the Störmer-Verlet method or sometimes

known as the generalized Leapfrog method as found in [1].

pn+
1

2 = pn −
∆t

2
∇qH(pn+

1

2 , qn),

qn+1 = qn +
∆t

2

[

∇pH(pn+
1

2 , qn) +∇pH(pn+
1

2 , qn+1)
]

,

pn+1 = pn+
1

2 −
∆t

2
∇qH(pn+

1

2 , qn+1).

For the discretization of the non-Hamiltonian part we use the exact flow map

Φτ (q, p) =







q

e−γτp






.
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Using these two flow maps we construct the method that we referto as CSV2 given by

(

1 +
γ∆t

2

)

pn+
1

2 = e
−γ∆t

2 pn −
∆t

2
∇qV (qn),

(

1−
γ∆t

2

)

qn+1 = e
−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qn +∆t∇pT (p
n+ 1

2 )

]

, (2.16)

pn+1 = e
−γ∆t

2

[(

1−
γ∆t

2

)

pn+
1
2 −

∆t

2
∇qV (q

n+1)

]

.

2.2.2.1 Conformal Symplecticity

We now prove that the CSV2 method is conformal symplectic by showing that the method (2.16)

satisfies the definition of a conformal symplectic integrator (1.8).

Theorem 2.2.3 The CSV2 method is a conformal symplectic integrator (defined in [9]).

Proof We begin by writing the variational equations for the method(2.12).

(

1 +
γ∆t

2

)

dpn+
1
2 = e

−γ∆t

2 dpn −
∆t

2
Vqq(q

n)dqn,

(

1−
γ∆t

2

)

dqn+1 = e
−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 dqn +∆tTpp(p
n+ 1

2 )dpn+
1

2

]

,

dpn+1 = e
−γ∆t

2

[(

1−
γ∆t

2

)

dpn+
1
2 −

∆t

2
Vqq(q

n+1)dqn+1

]

.
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First we find, utilizing properties of the wedge product we get,

(

1 +
γ∆t

2

)

dqn ∧ dpn+
1

2 = dqn ∧

[

e
−γ∆t

2 dpn −
∆t

2
Vqq(q

n)dqn
]

,

= dqn ∧ e
−γ∆t

2 dpn + dqn ∧ (−
∆t

2
Vqq(q

n)dqn),

= dqn ∧ e
−γ∆t

2 dpn.

Then,

(

1−
γ∆t

2

)

dpn+
1
2 ∧ dqn+1 = dpn+

1
2 ∧ e

−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 dqn +∆tTpp(p
n+ 1

2 )dpn+
1
2

]

,

= dpn+
1

2 ∧

(

e
−γ∆t

2

(

1 +
γ∆t

2

)

e
−γ∆t

2 dqn
)

+ dpn+
1
2 ∧ e

−γ∆t

2 ∆tTpp(p
n+ 1

2 )dpn+
1
2 ,

= e−γ∆t

(

1 +
γ∆t

2

)

dpn+
1
2 ∧ dqn,

and

dqn+1 ∧ dpn+1 = dqn+1 ∧ e
−γ∆t

2

(

1−
γ∆t

2

)

dpn+
1
2 + dqn+1 ∧ −e

−γ∆t
2

∆t

2
Vqq(q

n+1)dqn+1,

= dqn+1 ∧ e
−γ∆t

2

(

1−
γ∆t

2

)

dpn+
1
2 ,

= e
−γ∆t

2

(

1−
γ∆t

2

)

dqn+1 ∧ dpn+
1
2 ,

= −e
−γ∆t

2

(

1−
γ∆t

2

)

dpn+
1
2 ∧ dqn+1.
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By substitution,

dqn+1 ∧ dpn+1 = −e
−γ∆t

2

[

e−γ∆t

(

1 +
γ∆t

2

)

dpn+
1

2 ∧ dqn
]

,

= −e
−3γ∆t

2

[(

1 +
γ∆t

2

)

dpn+
1
2 ∧ dqn

]

,

= e
−3γ∆t

2

[(

1 +
γ∆t

2

)

dqn ∧ dpn+
1
2

]

,

= e
−3γ∆t

2

(

dqn ∧ e
−γ∆t

2 dpn
)

,

= e−2γ∆t (dqn ∧ dpn) .

We have the desired relation

dqn+1 ∧ dpn+1 = e−2γ∆t (dqn ∧ dpn) .

Therefore, by the definition of conformal symplectic integrators as defined in (1.8) we have proven

that the Conformal Störmer-Verlet method-2 is a conformalsymplectic integrator.

2.2.2.2 Preservation of Angular Momentum Dissipation

We next show that the method (2.16) preserves the rate of conformal angular momentum dissi-

pation. Using the same Hamiltonian for the N-Body problem (2.13) with the same corresponding

equations of motion (2.14), we prove that the CSV2 method preserves the rate of conformal angular

momentum dissipation by satisfying the relation (2.9).

Theorem 2.2.4 The CSV2 method preserves the rate of conformal angular momentum dissipation.

Proof Writing the discrete equations for the method (2.16) and thegiven Hamiltonian (2.13) we

31



have

(

1 +
γ∆t

2

)

p
n+ 1

2

j = e
−γ∆t

2 pnj −
∆t

2

∑

i 6=j

ϕ
′

ij(‖q
n
i − qnj ‖)

‖qni − qnj ‖
(qnj − qni ),

(

1−
γ∆t

2

)

qn+1
j = e

−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qnj +
∆t

mj
(p

n+ 1
2

j )

]

,

pn+1
j = e

−γ∆t
2

[

(

1−
γ∆t

2

)

p
n+ 1

2

j −
∆t

2

∑

i 6=j

ϕ
′

ij(‖q
n+1
i − qn+1

j ‖)

‖qn+1
i − qn+1

j ‖
(qn+1

j − qn+1
i )

]

.

Again, for simplicity let us use a substitution defined earlier (2.15) and substitute inτn+1
ij andτn+ij .

Therefore, our discrete equations become

(

1 +
γ∆t

2

)

p
n+ 1

2

j = e
−γ∆t

2 pnj −
∆t

2

∑

i 6=j

τnij(q
n
j − qni ),

(

1−
γ∆t

2

)

qn+1
j = e

−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qnj +
∆t

mj
(p

n+ 1
2

j )

]

,

pn+1
j = e

−γ∆t

2

[

(

1−
γ∆t

2

)

p
n+ 1

2

j −
∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

]

.
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The total angular momentum can be found by

N
∑

j=1

qn+1
j × pn+1

j =
N
∑

j=1

qn+1
j ×

(

e
−γ∆t

2

[

(

1−
γ∆t

2

)

p
n+ 1

2

j −
∆t

2

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i )

])

,

=

N
∑

j=1

qn+1
j × e

−γ∆t

2

(

1−
γ∆t

2

)

p
n+ 1

2

j ,

= e
−γ∆t

2

(

1−
γ∆t

2

) N
∑

j=1

qn+1
j × p

n+ 1
2

j ,

= e
−γ∆t

2

(

1−
γ∆t

2

)

N
∑

j=1

(

e
−γ∆t

2

(

1− γ∆t
2

)

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qnj +
∆t

mj
(p

n+ 1
2

j )

]

)

× p
n+ 1

2

j ,

= e
−3γ∆t

2

(

1 +
γ∆t

2

) N
∑

j=1

qnj × p
n+ 1

2

j ,

= e
−3γ∆t

2

(

1 +
γ∆t

2

) N
∑

j=1

qnj ×
1

(

1 + γ∆t
2

)

(

e
−γ∆t

2 pnj −
∆t

2

∑

i 6=j

τnij(q
n
j − qni )

)

,

= e
−3γ∆t

2

(

1 +
γ∆t

2

) N
∑

j=1

qnj ×
e

−γ∆t

2

(

1 + γ∆t
2

)pnj ,

= e−2γ∆t

N
∑

j=1

qnj × pnj .

Note, we have shown earlier that in the proof of (Theorem 2.2.2) for the method CSV1 that

N
∑

j=1

qn+1
j ×

∑

i 6=j

τn+1
ij (qn+1

j − qn+1
i ) = 0 and

N
∑

j=1

qnj ×
∑

i 6=j

τnij(q
n
j − qni ) = 0,

and those steps have not been included in this proof. Therefore, we have the desired result

N
∑

j=1

qn+1
j × pn+1

j = e−2γ∆t
N
∑

j=1

qnj × pnj .

We have proven that the Conformal Störmer-Verlet method-2preserves the rate of dissipation of

33



angular momentum (2.9) as defined in [1].
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CHAPTER 3: STABILITY ANALYSIS

As found in [1] a numerical method is asymptotically stable if the growth of the solution is asymp-

totically bounded. Providing a relationship between the parameters of a numerical method in which

the method is asymptotically stable provides the user with the ability to understand the ranges of

values available and still ensure stability. We go beyond the phrase, ”for sufficiently small values

of the damping coefficient” and provide an exact relation between the step-size and the damping

coefficient to ensure stability.

We can find an asymptotic stability threshold by determiningthe relationship between the parame-

ters of the method in which the eigenvalues of the propagation matrix for the method are in the unit

disk. We consider only linear stability, meaning we determine an asymptotic stability condition

for the Conformal Störmer-Verlet methods (2.12) , (2.16) and for the Conformal Implicit Midpoint

method (2.3) when applied to the damped harmonic oscillator. Comparison of the eigenvalues for

the ODE with the eigenvalues for the numerical methods presented in this thesis will give a better

understanding and a unique perspective on how well the methods approximate the solution.

Consider the ordinary differential equation for the dampedharmonic oscillator

qtt + 2γqt + ω2q = 0. (3.1)

If we assume initial conditions ofq(0) = 1 andq′(0) = 0 and if we letβ =
√

ω2 − γ2 with ω > γ

then we have a solution for the damped harmonic oscillator ofthe form.

q(t) = e−γt(cos(βt) +
γ

β
sin(βt)).

Now consider the conformal Hamiltonian system with separable Hamiltonian
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H(q, p) = T (p) + V (q), where

qt = ∇pT (p), pt = −∇qV (q)− 2γp.

For the damped harmonic oscillator we haveT (p) = p2

2
andV (q) = w2q2

2
it follows thatqt = p,

pt = −w2q − 2γp andqtt = pt. We can now write the following matrix equation.







qt

pt






= e−γt







0 1

−ω2 −2γ













q

p






,

with

q(t) = e−γt(cos(βt) +
γ

β
sin(βt)), (3.2)

it follows that

qt = −e−γt(
ω2

β
)sin(βt).

We can now write the matrix equation which is a result of (3.2)and the given initial conditions







q(t)

p(t)






= e−γt







cos(βt) + γ
β
sin(βt) 1

β
sin(βt)

−ω2

β
sin(βt) cos(βt)− γ

β
sin(βt)













q0

p0






,

or this matrix equation could be presented as, whereM is called the propagation matrix for the

method






q(t)

p(t)






=M(t)







q0

p0






.
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The eigenvalues of a2x2 matrix can be written in terms of the trace and the determinant as follows

λ± =
tr(M)±

√

tr(M)2 − 4det(M)

2
(3.3)

or through simple algebraic manipulation this equation forthe eigenvalues can be written as

λ± =
1

2
tr(M)±

√

(
1

2
tr(M))2 − det(M). (3.4)

For the simple harmonic oscillator

det(M) = e−2γt

[

(cos(βt) +
γ

β
sin(βt))(cos(βt)−

γ

β
sin(βt)) +

ω2

β2
sin2(βt)

]

,

det(M) = e−2γt

[

cos2(βt) +
ω2 − γ2

β2
sin2(βt)

]

.

With β =
√

ω2 − γ2 then this reduces

det(M) = e−2γt. (3.5)

It is also easily found that
1

2
tr(M) = e−γtcos(βt). (3.6)

Utilizing these relations and (3.4) we find the eigenvalues for the damped harmonic oscillator with

the given initial conditions are

λ± = e−γt(cos(βt)±
√

cos2(βt)− 1). (3.7)

Analysis of the eigenvalues reveals it is useful to compare values of1
2
tr(M) for each of the methods

in question with the (3.7). Therefore, as an additional toolfor analysis we look at the Taylor
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expansion of1
2
tr(M) value from (3.6) which yields

1

2
tr(M) = 1− γ∆t +

1

2

(

2γ2 − ω2
)

∆t2 +
1

6

(

3γω2 − 4γ3
)

∆t3

1

24

(

ω4 − 3ω2γ2 + 3γ4
)

∆t4 +
1

120

(

20ω2γ3 − 16γ5 − 5γω4
)

∆t5 +O(∆t6). (3.8)

3.1 Conformal Implicit Midpoint method

When the Conformal Implicit Midpoint method was applied to the damped harmonic oscillator

(3.1), we found the matrix equation (2.7) which is stated again for simplicity.







qn+1

pn+1






=

[

e−γ∆t

1− γ2∆t2

4
+ ∆t2ω2

4

]







(1 + γ∆t
2
)2 − ∆t2ω2

4
∆t

−∆tω2 (1− γ∆t
2
)2 − ∆t2ω2

4













qn

pn







Utilizing the equations for the eigenvalues (3.3) and (3.4)we begin by finding the determinant

Det(M) =







e−2γ∆t

(

1− γ2∆t2

4
+ ∆t2ω2

4

)2







[(

(1 +
γ∆t

2
)2 −

∆t2ω2

4

)(

(1−
γ∆t

2
)2 −

∆t2ω2

4

)

+∆t2ω2

]

,

Det(M) =







e−2γ∆t

(

1− γ2∆t2

4
+ ∆t2ω2

4

)2







(

1−
γ2∆t2

4
+

∆t2ω2

4

)2

.

Therefore

Det(M) = e−2γ∆t. (3.9)
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Next, we find1
2
tr(M)

1

2
tr(M) =

1

2





e−γ∆t

(

1− γ2∆t2

4
+ ∆t2ω2

4

)





[

(

1 +
γ∆t

2

)2

−
∆t2ω2

4
+

(

1−
γ∆t

2

)2

−
∆t2ω2

4

]

,

1

2
tr(M) =

1

2

(

e−γ∆t

(

1 + ∆t2

4
(ω2 − γ2)

)

)

(

2 +
γ2∆t2

2
−

∆t2ω2

2

)

,

1

2
tr(M) =

1

2

(

e−γ∆t

(

1 + ∆t2

4
(ω2 − γ2)

)

)

2

(

1 +
γ2∆t2

4
−

∆t2ω2

4

)

,

1

2
tr(M) =

(

e−γ∆t

(

1 + ∆t2

4
(ω2 − γ2)

)

)

(

1−
∆t2

4

(

ω2 − γ2
)

)

.

Therefore for this method

1

2
tr(M) = e−γ∆t

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

)

. (3.10)

With λ± = 1
2
tr(M) ±

√

(1
2
tr(M))2 − det(M) it follows that the eigenvalues for the Conformal

Implicit Midpoint method are

λ± = e−γ∆t

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

)

±

√

√

√

√

(

e−γ∆t

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

))2

− e−2γ∆t,

λ± = e−γ∆t







1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

±

√

√

√

√

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

)2

− 1






,

or with β =
√

ω2 − γ2 and some algebraic simplification the eigenvalues can be written as

λ± = e−γ∆t





4−∆t2β2

4 + ∆t2β2
±

√

(

4−∆t2β2

4 + ∆t2β2

)2

− 1



 . (3.11)
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3.1.1 Stability Relation

A requirement for stability is
∣

∣

1
2
tr(M)

∣

∣ < e−γ∆t, with

1

2
tr(M) = e−γ∆t

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

)

.

The stability relation requires

∣

∣

∣

∣

∣

e−γ∆t

(

1− ∆t2

4
(ω2 − γ2)

1 + ∆t2

4
(ω2 − γ2)

)∣

∣

∣

∣

∣

< e−γ∆t.

Therefore we have the stability relation for the Conformal Implicit Midpoint Method

∆t2ω2

2
>

∆t2γ2

2
(3.12)

The result (3.12) shows the relation can never be violated for ω > γ and∆t > 0 therefore, the

CIMP method is unconditionally stable. This can be seen in Fig. 3.1 which shows the stability

relation (3.12) holds for all values ofγ if the conditionsω > γ and∆t > 0 are not violated.

In addition we can also look at the Taylor series expansion of1
2
tr(M) of the Conformal Implicit

Midpoint method for comparison with the exact value. The Taylor series expansion of (3.10) yields

1

2
tr(M) = 1− γ∆t +

1

2

(

2γ − ω2
)

∆t2 +
1

6

(

3γω2 − 4γ3
)

∆t3 (3.13)

+
1

24

(

10γ4 − 12γ2ω2 + 3ω4
)

∆t4 +
1

120

(

−26γ5 + 40γ3ω2 − 15γω4
)

∆t5 +O(∆t6).

Comparison of this Taylor series expansion (3.13) expansion with the expansion (3.8) shows

1

2
tr(M)−

1

2
tr(MCIMP ) = O(∆t4).
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Figure 3.1:CIMP stability relation withγ = 0 : .25 : 3.25, ∆t = 0 : .025 : 1 andω = 3.51

3.2 Conformal Störmer-Verlet methods

To continue the stability analysis we will also find the eigenvalues for the Conformal Störmer-

Verlet methods when applied to the damped harmonic oscillator.

3.2.1 Conformal Störmer-Verlet Method-1

With T (p) = p2

2
andV (q) = w2q2

2
and then applying the CSV1 method to the ordinary differential

equation for a damped harmonic oscillator (2.5) we obtain the following:

pn+
1

2 = e−γ∆tpn −
∆tω2

2
qn,

qn+1 = qn +∆tpn+
1

2 ,

pn+1 = e−γ∆t

[

pn+
1
2 −

∆tω2

2
qn+1

]

.
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Written as a matrix equation







qn+1

pn+1






= e−γ∆t







eγ∆t
(

1− ∆t2ω2

2

)

∆t
(

∆t3ω4

4
−∆tω2

)

e−γ∆t
(

1− ∆t2ω2

2

)













qn

pn







We begin by finding the determinant

det(M) = e−2γ∆t

[

(

1−
∆t2ω2

2

)2

−

(

∆t4ω4

4
−∆t2ω2

)

]

,

det(M) = e−2γ∆t

[

1−∆t2ω2 +
∆t4ω4

4
−

∆t4ω4

4
+ ∆t2ω2

]

.

Therefore,

det(M) = e−2γ∆t. (3.14)

Next, we find1
2
tr(M)

1

2
tr(M) =

1

2

(

1−
∆t2ω2

2
+ e−2γ∆t

(

1−
∆t2ω2

2

))

,

1

2
tr(M) =

1

2

(

1−
∆t2ω2

2

)

(

1 + e−2γ∆t
)

,

1

2
tr(M) =

1

2
e−γ∆t

(

1−
∆t2ω2

2

)

(

eγ∆t + e−γ∆t
)

,

with cosh(y) = ey+e−y

2
and substituting we have

1

2
tr(M) = e−γ∆t

(

1−
∆t2ω2

2

)

cosh(γ∆t). (3.15)
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With λ± = 1
2
tr(M)±

√

(1
2
tr(M))2 − det(M) it follows that the eigenvalues for the CSV1 method

are

λ± = e−γ∆t

(

1−
∆t2ω2

2

)

cosh(γ∆t)±

√

√

√

√e−2γ∆t

(

(

1−
∆t2ω2

2

)2

cosh2(γ∆t)− 1

)

λ± = e−γ∆t





(

1−
∆t2ω2

2

)

cosh(γ∆t)±

√

(

1−
∆t2ω2

2

)2

cosh2(γ∆t)− 1



 . (3.16)

3.2.1.1 Stability Relation

Requiring
∣

∣

1
2
tr(M)

∣

∣ < e−γ∆t with,

1

2
tr(M) = e−γ∆t

(

1−
∆t2ω2

2

)

cosh(γ∆t)

implies

∣

∣

∣

∣

e−γ∆t

(

1−
∆t2ω2

2

)

cosh(γ∆t)

∣

∣

∣

∣

< e−γ∆t

− e−γ∆t < e−γ∆t

(

1−
∆t2ω2

2

)

cosh(γ∆t) < e−γ∆t

− 1 <

(

1−
∆t2ω2

2

)

cosh(γ∆t) < 1

Solving for ∆t2ω2

2
,

−sechγ∆t < 1−
∆t2ω2

2
< sechγ∆t

−1 − sechγ∆t < −
∆t2ω2

2
< sechγ∆t− 1

1− sechγ∆t <
∆t2ω2

2
< 1 + sechγ∆t

43



Therefore, we have the stability relation for the CSV1

1− sech(γ∆t) <
∆t2ω2

2
< 1 + sech(γ∆t) (3.17)

The result (3.17) shows the relation can be violated forω > γ and∆t > 0 therefore with these

conditions, the CSV1 method is conditionally stable. This can be seen in Fig. 3.2 which shows the

stability relation (3.17) is violated as the step-size∆t increases.

In addition we can also look at the Taylor series expansion of1
2
tr(M) of the CSV1 for comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Step Size: ∆ t

1 + sech(γ ∆ t)

1 − sech(γ ∆ t)

(∆ t2 ω2)/2 γ = 3.5 γ = 3.0

Figure 3.2:CSV1 stability relation withγ = 0 : .25 : 3.5, ∆t = 0 : .025 : 1 andω = 3.51

with the exact value. Taylor expansion of (3.15) yields

1

2
tr(M) = 1− γ∆t+

1

2

(

2γ2 − ω2
)

∆t2 +
1

6

(

3γω2 − 4γ3
)

∆t3

+
1

24

(

8γ4 − 12γ2ω2
)

∆t4 +
1

120

(

40γ3ω2 − 14γ5
)

∆t5 +O(∆t6). (3.18)
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Comparison of this Taylor series expansion (3.18) expansion with the expansion (3.8) shows

1

2
tr(M)−

1

2
tr(MCSV 1) = O(∆t4).

3.2.2 Conformal Störmer-Verlet Method-2

With T (p) = p2

2
andV (q) = w2q2

2
and then applying the CSV2 (2.16) to the damped harmonic

oscillator (2.5) we obtain the following:

(

1 +
γ∆t

2

)

pn+
1
2 = e

−γ∆t

2 pn −
∆tω2

2
qn,

(

1−
γ∆t

2

)

qn+1 = e
−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qn +∆t(pn+
1
2 )

]

,

pn+1 = e
−γ∆t

2

[(

1−
γ∆t

2

)

pn+
1
2 −

∆tω2

2
qn+1

]

.

Written as a matrix equation

(definingψ = ∆t3ω4

2
−∆tω2e

−γ∆t

2

(

1 + γ∆t
2

)2
−∆tω2

(

1− γ∆t
2

)2
e

−γ∆t

2 ).







qn+1

pn+1






=

e−γ∆t

2
(

1− γ2∆t2

4

)







2
(

1 + γ∆t
2

)2
−∆t2ω2e

−γ∆t

2 2∆t

ψ 2
(

1− γ∆t
2

)2
−∆t2ω2e

−γ∆t
2













qn

pn






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The determinant is

det(M) =





e−γ∆t

2
(

1− γ2∆t2

4

)





2
[

(

2

(

1 +
γ∆t

2

)2

−∆t2ω2e
−γ∆t

2

)

(

2

(

1−
γ∆t

2

)2

−∆t2ω2e
−γ∆t

2

)

− 2∆tψ
]

,

det(M) =







e−2γ∆t

(

2
(

1− γ2∆t2

4

))2







[

4

(

1 +
γ∆t

2

)2(

1−
γ∆t

2

)2
]

.

Therefore,

det(M) = e−2γ∆t. (3.19)

Next, we find1
2
tr(M)

1

2
tr(M) =

1

2





e−γ∆t

2
(

1− γ2∆t2

4

)





(

2

(

1 +
γ∆t

2

)2

−∆t2ω2e
−γ∆t

2 + 2

(

1−
γ∆t

2

)2

−∆t2ω2e
−γ∆t

2

)

,

1

2
tr(M) =





e−γ∆t

4
(

1− γ2∆t2

4

)





(

4

(

1 +
γ2∆t2

4

)

−∆t2ω2(e
γ∆t

2 + e
−γ∆t

2 )

)

,

1

2
tr(M) = e−γ∆t





(

1 + γ2∆t2

4

)

(

1− γ2∆t2

4

) −
∆t2ω2

2
(

1− γ2∆t2

4

) cosh(
γ∆t

2
)



 .

Therefore we have

1

2
tr(M) = e−γ∆t

(

4 + γ2∆t2

4− γ2∆t2
−

2∆t2ω2

(4− γ2∆t2)
cosh(

γ∆t

2
)

)

. (3.20)
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Definingφ =
(

4+γ2∆t2

4−γ2∆t2
− 2∆t2ω2

(4−γ2∆t2)
cosh(γ∆t

2
)
)

it follows that the eigenvalues for the CSV2 are

λ± = e−γ∆t
(

φ±
√

φ2 − 1
)

. (3.21)

3.2.2.1 Stability Relation

Requiring
∣

∣

1
2
tr(M)

∣

∣ < e−γ∆t with,

1

2
tr(M) = e−γ∆t

(

4 + γ2∆t2

4− γ2∆t2
−

2∆t2ω2

(4− γ2∆t2)
cosh(

γ∆t

2
)

)

.

implies

∣

∣

∣

∣

e−γ∆t

(

4 + γ2∆t2

4− γ2∆t2
−

2∆t2ω2

(4− γ2∆t2)
cosh(

γ∆t

2
)

)∣

∣

∣

∣

< e−γ∆t

− e−γ∆t < e−γ∆t

(

4 + γ2∆t2

4− γ2∆t2
−

2∆t2ω2

(4− γ2∆t2)
cosh(

γ∆t

2
)

)

< e−γ∆t

− 1 <

(

4 + γ2∆t2

4− γ2∆t2
−

2∆t2ω2

(4− γ2∆t2)
cosh(

γ∆t

2
)

)

< 1

Solving for ∆t2ω2

2
,

γ2∆t2 − 4 < 4 + γ2∆t2 − 2∆t2ω2cosh(
γ∆t

2
) < 4− γ2∆t2

γ2∆t2 − 8 < γ2∆t2 − 2∆t2ω2cosh(
γ∆t

2
) < −γ2∆t2

− 8 < −2∆t2ω2cosh(
γ∆t

2
) < −2γ2∆t2

2γ2∆t2 < 2∆t2ω2cosh(
γ∆t

2
) < 8

γ2∆t2 < ∆t2ω2cosh(
γ∆t

2
) < 4

γ2∆t2sech

(

γ∆t

2

)

< ∆t2ω2 < 4sech

(

γ∆t

2

)

.
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Therefore, we have the stability relation for the ConformalStörmer-Verlet Method-2

γ2∆t2

2
sech

(

γ∆t

2

)

<
∆t2ω2

2
< 2sech

(

γ∆t

2

)

(3.22)

The result (3.22) shows the relation can be violated forω > γ and∆t > 0 and therefore is

conditionally stable. This can be seen in Fig. 3.3 which shows the stability relation (3.22) is

violated for larger valuesγ as the value of the step-size∆t increases.

In addition we can also look at the Taylor series expansion of1
2
tr(M) of the Conformal Störmer-
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γ = 3.0

Figure 3.3:CSV2 stability relation withγ = 0 : .25 : 3.5, ∆t = 0 : .025 : 1 , ω = 3.51

Verlet Method-2 for comparison with the exact value. Taylorexpansion of (3.20) yields

1

2
tr(M) = 1− γ∆t +

1

2

(

2γ2 − ω2
)

∆t2 +
1

6

(

3γω2 − 4γ3
)

∆t3

+

(

5

12
γ4 −

7γ2ω2

16

)

∆t4 +

(

13

48
γ2ω2 −

13

60
γ4
)

∆t5 +O(∆t6). (3.23)
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Comparison of this Taylor series expansion (3.23) expansion with the expansion (3.8) shows

1

2
tr(M)−

1

2
tr(MCSV 2) = O(∆t4).

In the stability analysis we found the exact eigenvalues forthe damped harmonic oscillator (3.7).

Applying each of the numerical methods to the damped harmonic oscillator example we also found

the eigenvalues for the CSV1 method (3.16), the eigenvaluesfor the CSV2 method (3.21) and for

the CIMP method (3.11). Analysis of the eigenvalue equation(3.4) shows that the accuracy of

the approximated eigenvalues from each of the methods is dependent upon how well each of the

methods approximate the value of1
2
tr(M) as the determinant for each of the methods was found

to be the same. The error in1
2
tr(M) for each of the methods is seen in Fig. 3.4 for various values

of γ. The 1
2
tr(M) error seen in Fig. 3.4 is calculated as

1

2
tr(M)Error = |

1

2
tr(M)−

1

2
tr(Mnum)|.

For small values ofγ we see in Fig. 3.4 that the CSV1 method and the CSV2 method perform only

slightly better at approximating1
2
tr(M) than the CIMP method. As gamma grows large enough

we see a crossing of the values such that the Conformal Implicit Midpoint method performs better

at the approximation of1
2
tr(M).
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Figure 3.4:12 tr(M) error of approximated eigenvalues withh = 0 to 1 with ∆t = .025, ω = 1.
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CHAPTER 4: NUMERICAL EXPERIMENTS

4.1 Damped Harmonic Oscillator

For a numerical example let us again consider the damped harmonic oscillator (2.5), given by

qtt + 2γqt + ω2q = 0.

With T (p) = p2

2
andV (q) = w2q2

2
, we apply each of the numerical methods in this thesis to the

equation.

Applying the CSV1 method to the damped harmonic oscillator (2.5) we obtain the following sys-

tem:

pn+
1

2 = e−γ∆tpn −
∆tω2

2
qn,

qn+1 = qn +∆tpn+
1

2 , (4.1)

pn+1 = e−γ∆t

[

pn+
1
2 −

∆tω2

2
qn+1

]

.

Also, applying the CSV2 method to the damped harmonic oscillator (2.5), we obtain the following

system:

(

1 +
γ∆t

2

)

pn+
1
2 = e

−γ∆t
2 pn −

∆tω2

2
qn,

(

1−
γ∆t

2

)

qn+1 = e
−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qn +∆t(pn+
1
2 )

]

, (4.2)

pn+1 = e
−γ∆t

2

[(

1−
γ∆t

2

)

pn+
1
2 −

∆tω2

2
qn+1

]

.
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And, applying the CIMP method to the damped harmonic oscillator (2.5), we obtain the following:

qn+1 − e−γ∆tqn =
γ∆t

2

(

qn+1 + e−γ∆tqn
)

+
∆t

2

(

pn+1 + e−γ∆tpn
)

,

pn+1 − e−γ∆tpn =
−γ∆t

2

(

pn+1 + e−γ∆tpn
)

−
∆tω2

2

(

qn+1 + e−γ∆tqn
)

. (4.3)

Utilizing these systems of equations (4.1,4.2,4.3) as the algorithms for the approximation of the

0 20 40 60 80 100
−1

0

1

t

q(
t)

 

 

0 20 40 60 80 100
−2

0

2
x 10

−4

t

q ex
ac

t(t
) 

−
 q

cs
v1

(t
)

0 20 40 60 80 100
−1

0

1

t

q(
t)

 

 

0 20 40 60 80 100
−2

0

2
x 10

−4

t

q ex
ac

t(t
) 

−
 q

cs
v2

(t
)

0 20 40 60 80 100
−1

0

1

t

q(
t)

 

 

0 20 40 60 80 100
−2

0

2
x 10

−4

t

q ex
ac

t(t
) 

−
 q

ci
m

p(t
)

Exact
CSV1

Exact
CSV2

Exact
CIMP

Figure 4.1:Numerical solutionsq(t) vs. Exact for∆t = .0125, γ = .025 andω = 1.

solution of the damped harmonic oscillator (2.5) we obtain the results as seen in Fig. 4.1. From

Fig. 4.1, in each row the graph on the left represents the numerical solutionq(t) plotted with the

exact solution and the graph of the right represents the differenceqexact(t) − qapprox(t) for each

of the methods in this thesis. The top row represents the numerical solution of the CSV1 method

plotted with the exact solution, the second row represents the numerical solution of the CSV2

method and the third row represents the CIMP method. Using the graphs on the left in Fig. 4.1, we

can see that each of these algorithms approximates the solution of the damped harmonic oscillator

well and on the right we see that the plots of the differenceqexact(t) − qapprox(t) show the CSV1
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and CSV2 methods with nearly equal results and approximating the solutionq(t) slightly better

than the CIMP method.
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Figure 4.2:Energy H(q,p) comparisons with∆t = .0125, γ = 0.0 andω = 1.

To provide further verification of the analytical results and to verify conservative properties of the

CSV1, CSV2 and CIMP methods we check the total energy when applied to the damped harmonic

oscillator (3.1) withγ = 0. We see in Fig. 4.2 that the total energy for the CSV1 and CSV2 methods

stays within a band forγ = 0, while the CIMP method the total energy is exact. For the2nd order

CIMP method total energy is exactly preserved because the problem is linear and for the CSV1

and CSV2 methods, the total energy is nearly conserved withγ = 0. In Fig. 4.3 forγ > 0, the

graphs on the left show a comparison of the exact total energywith that of the numerical method,

and on the right we show the differenceHexact(q, p) − Happrox(q, p). As with the approximation

of the solution in Fig. 4.1, it appears that each of the methods (4.1,4.2,4.3) also do well in the

approximation of the total energy of the system as seen on thegraphs on the left in Fig. 4.3. The

graphs on the right in Fig. 4.3 show the differenceHexact(q, p)−Happrox(q, p) for the CSV1 (4.1)

and CSV2 (4.2) methods to be essentially equal. The differenceHexact(q, p) − Happrox(q, p) for
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Figure 4.3:Energy H(q,p) comparisons with∆t = .0125, γ = .0001 andω = 1.

the CIMP (4.3) method is seen to be essentially zero.

To examine further how well these numerical schemes (4.1,4.2,4.3) approximate the solution of

the damped harmonic oscillator and to provide a more accurate comparison between them, we will

examine the error in the numerical approximations of the exact solution. To accomplish the com-

parison of the error in the approximations we look at the relative error between the approximation

and the exact solution for various values ofγ as seen in Fig. 4.4. In Fig. 4.4 we see that in the long

time that the CIMP, CSV1 and CSV2 methods have basically the same relative error. The relative

error is calculated as|U−u| /|u| whereU is the approximated solution andu is the exact solution.

In Fig. 4.4 we see that for small values ofγ the CSV1 method and the CSV2 method have slightly

lower relative error than the CIMP method, as seen in the top row and second row left of Fig. 4.4.

As γ increases we see a narrowing of the differences between the methods until the initial relative

error is better with the CIMP method than with the other two methods. This pattern continues asγ

increases with the time required for this crossing of the relative error values to occur increasing as

well until eventuallyγ has reached a high enough value to where the crossing of the graphs does
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not occur and the relative error in the CIMP method is better than the relative error in the other two

methods and this is seen in Fig. 4.4 bottom right.
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Figure 4.4:Relative Error|U − u| /|u| with ∆t = .0125, ω = 1.

We have shown in the Fig. 4.2 the total energyH(q, p)with γ = 0. In Fig. 4.5 we add a comparison

with a higher order method, the 3rd order Runge-Kutta method(RK3). As in Fig. 4.2, for the2nd

order CIMP method total energy is exactly preserved becausethe problem is linear and for the

CSV1 and CSV2 methods, the total energy is nearly conserved with γ = 0, as seen in the top

graph of Fig. 4.5. The 3rd order Runge-Kutta shows it does notpossess the conservative properties

of the CSV1, CSV2 and CIMP methods, and can not produce good results despite being a higher

order method. Further verification can be seen in the bottom graph of Fig. 4.5, where we look at

the differenceHexact(q, p)−Happrox(q, p). The bottom graph in Fig. 4.5 shows a clear drift in the

total energyH(q, p) for the 3rd order Runge-Kutta method whenγ > 0 that is not seen with the

other methods (4.1,4.2,4.3).

For the preservation of the rate of energy dissipation we initially look at a comparison of the phase
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Figure 4.5:Energy H(q,p) with∆t = .0125, ω = 1 top: γ = 0 bottom:γ = .0001

diagrams for each of the methods. It was noted that the CSV1, CSV2, and the CIMP methods all

appear to not be impacted to a great extent by the step size chosen. However, as seen in Fig. 4.6 the

rate of dissipation in the 3rd order Runge-Kutta method was shown to be dependent upon the step

size. As the step size increased we see a significant difference in the size of the hole in the middle

of the phase diagrams of the 3rd order Runge-Kutta method as compared to the CSV1,CSV2 and

Conformal Implicit Midpoint method, indicating a difference in the rate of dissipation. For further
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Figure 4.6:Phase space graphsq(t) vsp(t) with ∆t = .5 andγ = .005.

verification of the results in the rate of energy dissipationas seen in Fig. 4.6 we consider the

function

d(t) = ln (max(U(t))) + γt, (4.4)

whereU(t) denotes the numerical solution. In Fig. 4.7 we see the plots of d(t) for the CSV1,

CSV2, CIMP and the 3rd order Runge-Kutta methods. It is notedin Fig. 4.7 that no drift is present

in the CSV1, CSV2 and the CIMP methods, while there is a clear drift in the dissipation rate for

the 3rd order Runge-Kutta method. This is an important result as the CSV1, CSV2, and CIMP

methods are second order methods and show preservation of the rate of dissipation of the energy

while the 3rd order Runge-Kutta method shows a clear drift inthe rate of dissipation.

We conclude from the these results that methods with higher order truncation error are not neces-

sarily more accurate, and numerical structure-preservation is an important consideration even for

dissipative systems.
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Figure 4.7:Drift in rate of energy dissipationd(t)with ∆t = .5 andγ = .005.

4.2 Damped Nonlinear Pendulum

As a second numerical example let us consider the ordinary differential equation for a damped

nonlinear pendulum, given by

qtt + 2γq + sin(q) = 0. (4.5)

With T (p) = p2

2
andV (q) = − cos q we apply the CSV1,CSV2, and the CIMP methods to the

equation of the damped nonlinear pendulum. For the CSV1 method when applied to the damped

nonlinear pendulum (4.5) we have the following system of equations:

pn+
1
2 = e−γ∆tpn −

∆t

2
sin qn,

qn+1 = qn +∆tpn+
1
2 , (4.6)

pn+1 = e−γ∆t

[

pn+
1
2 −

∆t

2
sin qn+1

]

.
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Applying the CSV2 method to (4.5) we obtain the following system of equations:

(

1 +
γ∆t

2

)

pn+
1

2 = e
−γ∆t

2 pn −
∆t

2
sin (qn),

(

1−
γ∆t

2

)

qn+1 = e
−γ∆t

2

[(

1 +
γ∆t

2

)

e
−γ∆t

2 qn +∆t(pn+
1
2 )

]

, (4.7)

pn+1 = e
−γ∆t

2

[(

1−
γ∆t

2

)

pn+
1
2 −

∆t

2
sin (qn+1)

]

.

And when we apply the CIMP method to (4.5) we have the following system of equations:

(e
γh

2 qn+1
j − e

−γh

2 qnj
h

)

=
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

+ γ
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)

, (4.8)

(e
γh

2 pn+1
j − e

−γh

2 pnj
h

)

= − sin
(e

γh

2 qn+1
j + e

−γh

2 qnj
2

)

− γ
(e

γh

2 pn+1
j + e

−γh

2 pnj
2

)

.

Due to the complexity of using the actual exact solution for comparison with our approximated

solutions from the methods in question, we used for the exactsolution a 4th order Runge-Kutta-

Fehlberg method approximation of the solution with thresholds set to ensure that the solution error

was bounded between1.0e−10 and1.0e−12. We will refer to this numerical solution as the ”exact”

solution.

Utilizing these systems of equations (4.6,4.7,4.8) as algorithms for the approximation of the solu-

tion of the damped nonlinear pendulum (4.5) we obtain the results seen in Fig. 4.8. In Fig. 4.8,

on the left we see the exact solution plotted with the numerical solutionq(t) for each of the meth-

ods and on the right we see the differenceqexact(t) − qapprox(t). The results in Fig. 4.8 show the

differenceqexact(t)− qapprox(t) for each numerical method to be equal.

For another observation on the effectiveness of the CSV1, CSV2 and CIMP methods in approxi-

mating the solution we consider the phase space graph of the nonlinear pendulum with the presence

of damping as seen in Fig. 4.9. In this figure, we use a time stepsize of∆t = .025 and for the
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Figure 4.8: Pendulum: Numerical Solutionsq(t) vs Exact for∆t = .0125, γ = .025

damping coefficient a value ofγ = .05. We see in Fig. 4.9 that with the given initial conditions

and the parameters noted earlier, an exponential decay of the motion of the pendulum towards the

origin, an effect of the damping of this pendulum. It appearsin Fig. 4.9 that each of the methods

does equally well in approximation of the exponential decayof the motion. In fact, if we look at

zoomed in view of Fig. 4.9 as seen in Fig. 4.10 we see that the CIMP method is slightly closer to

the exponential decay of the exact solution but the difference is so small that it is insignificant and

we can effectively say that the methods are nearly equal in their approximation.

In Fig. 4.11 we look at the rate of the energy dissipation and again consider the function (4.4). It

is seen that there is no drift in the rate of dissipation for any of the methods as expected, based on

the analytical analysis performed earlier in Chapter 2.

Looking at the approximations for the total energy of the systems we see on the left side of

Fig. 4.12 that as expected, the CSV1, CSV2, and CIMP methods appear to perform well in their

approximations of the total energyH(q, p) when compared to the exact value. As further verifi-
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Figure 4.9: Pendulum: Phase spaceq(t) vsp(t) graph for∆t = .025, γ = .05
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Figure 4.10: Pendulum: Phase spaceq(t) vsp(t) graph for∆t = .025, γ = .05

cation, we look at the error in the approximations of the total energy by calculating the difference

Hexact(q, p)−Happrox(q, p) and plotting the results as seen in the right side of Fig. 4.12. The differ-

ence in total energy graphs on the right side in Fig. 4.12 showthe methods to be nearly equal. For

further comparison, in Fig. 4.13 we show the total energy differenceHexact(q, p) − Happrox(q, p)

for all the methods together using the same parameters. We find that no one method out performs

the other methods in the approximation of the total energy, with each method at some point being

slighter superior to the other two. There does appear to be a slightly smaller slope in the error

curve of the CIMP method until the point that the damping of the solution has taken affect and the
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Figure 4.11: Drift in rate of energy dissipationd(t) for ∆t = .025, γ = .0025

results are less reliable.

0 20 40 60 80 100
−1

0

1

t

H
(q

,p
)

 

 

Exact
CSV1

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

t

H
ex

ac
t(q

,p
) 

−
 H

C
S

V
1(q

,p
)

0 20 40 60 80 100
−1

0

1

t

H
γ(q

,p
)

 

 

Exact
CSV2

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

t

H
ex

ac
t(q

,p
) 

−
 H

C
S

V
2(q

,p
)

0 20 40 60 80 100
−1

0

1

t

H
γ(q

,p
)

 

 

Exact
CIMP

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

t

H
ex

ac
t(q

,p
) 

−
 H

C
IM

P
(q

,p
)

Figure 4.12: Pendulum: Total EnergyH(q, p) with ∆t = .025, γ = .02

For a final comparison of the methods we show the operational costs. In Table. 4.1 we show, for

various values of the damping coefficientγ, the number of function calls for each method. As

expected for an implicit method the CIMP method consistently showed a significant increase in

the number of function calls when compared to the explicit CSV1 and CSV2 methods.
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Table 4.1:Number of function calls varying the damping coefficientγ and∆t = .025.

γ 0 .00005 .0005 .005 .05 .5

CIMP 15325 15351 15353 14753 14155 11119
CSV1 8000 8000 8000 8000 8000 8000
CSV2 8000 8000 8000 8000 8000 8000
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CHAPTER 5: CONCLUSION

Two explicit methods based upon the Störmer-Verlet methodand one implicit method based upon

the implicit midpoint method were shown to be conformal symplectic integrators and it was proven

they each preserved the rate of angular momentum dissipation. Another finding of significance was

seen in Fig. 4.7 when the rate of dissipation of the methods was compared to that of a 3rd order

Runge-Kutta. In those findings, it was obvious that a clear drift in the rate of dissipation was

present in the higher order Runge-Kutta method that was not present in the 2nd order Conformal

Störmer-Verlet methods or the 2nd order Conformal Implicit Midpoint method.

An analytical linear stability analysis was completed for each method providing thresholds between

the values of the damping coefficientγ and the step-size∆t in order to ensure stability. The

importance here, is that an actual relation between the parameters was established instead of relying

upon the use of sufficiently small values of the damping coefficient. Verification of the higher

computational costs associated with the Conformal Implicit Midpoint method was included in the

comparison of the methods.

The analytical and numerical results of thesis show that theConformal Störmer-Verlet methods and

the Conformal Implicit Midpoint methods produce similar results when applied to a damped har-

monic oscillator and a damped nonlinear pendulum. Of importance here, is that the two Störmer-

Verlet methods are explicit methods and therefore have smaller computational costs than the Con-

formal Implicit Midpoint method. Given the similarity of the results produced by each of the

methods, it would seem within the scope of this thesis that the two explicit Störmer-Verlet meth-

ods are an attractive alternative when selecting a numerical method.

A more thorough understanding of these methods could be found by further study using Hamil-

tonian ODE and PDE systems with linear dissipation that havemore practical application. At the
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very least, it seems apparent that further study into the validity of the results is warranted to see if

the results continue to remain consistent across more complex systems of equations.
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