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ABSTRACT 

Optical testing in adverse environments, ophthalmology and applications where 

characterization by curvature is leveraged all have a common goal: accurately estimate 

wavefront shape.  This dissertation investigates wavefront sensing techniques as applied to 

optical testing based on gradient and curvature measurements.  Wavefront sensing involves the 

ability to accurately estimate shape over any aperture geometry, which requires establishing a 

sampling grid and estimation scheme, quantifying estimation errors caused by measurement 

noise propagation, and designing an instrument with sufficient accuracy and sensitivity for the 

application. 

Starting with gradient-based wavefront sensing, a zonal least-squares wavefront 

estimation algorithm for any irregular pupil shape and size is presented, for which the normal 

matrix equation sets share a pre-defined matrix. A Gerchberg–Saxton iterative method is 

employed to reduce the deviation errors in the estimated wavefront caused by the pre-defined 

matrix across discontinuous boundary. The results show that the RMS deviation error of the 

estimated wavefront from the original wavefront can be less than λ/130~ λ/150 (for λ equals 

632.8nm) after about twelve iterations and less than λ/100 after as few as four iterations.  The 

presented approach to handling irregular pupil shapes applies equally well to wavefront 

estimation from curvature data.  

A defining characteristic for a wavefront estimation algorithm is its error propagation 

behavior. The error propagation coefficient can be formulated as a function of the eigenvalues of 

the wavefront estimation-related matrices, and such functions are established for each of the 

basic estimation geometries (i.e. Fried, Hudgin and Southwell) with a serial numbering scheme, 
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where a square sampling grid array is sequentially indexed row by row.  The results show that 

with the wavefront piston-value fixed, the odd-number grid sizes yield lower error propagation 

than the even-number grid sizes for all geometries. The Fried geometry either allows sub-sized 

wavefront estimations within the testing domain or yields a two-rank deficient estimation matrix 

over the full aperture; but the latter usually suffers from high error propagation and the waffle 

mode problem.  Hudgin geometry offers an error propagator between those of the Southwell and 

the Fried geometries. For both wavefront gradient-based and wavefront difference-based 

estimations, the Southwell geometry is shown to offer the lowest error propagation with the 

minimum-norm least-squares solution. Noll’s theoretical result, which was extensively used as a 

reference in the previous literature for error propagation estimate, corresponds to the Southwell 

geometry with an odd-number grid size.  

For curvature-based wavefront sensing, a concept for a differential Shack-Hartmann (DSH) 

curvature sensor is proposed.  This curvature sensor is derived from the basic Shack-Hartmann 

sensor with the collimated beam split into three output channels, along each of which a lenslet 

array is located. Three Hartmann grid arrays are generated by three lenslet arrays.  Two of the 

lenslets shear in two perpendicular directions relative to the third one. By quantitatively 

comparing the Shack-Hartmann grid coordinates of the three channels, the differentials of the 

wavefront slope at each Shack-Hartmann grid point can be obtained, so the Laplacian curvatures 

and twist terms will be available.  The acquisition of the twist terms using a Hartmann-based 

sensor allows us to uniquely determine the principal curvatures and directions more accurately 

than prior methods.  Measurement of local curvatures as opposed to slopes is unique because 

curvature is intrinsic to the wavefront under test, and it is an absolute as opposed to a relative 

measurement. A zonal least-squares-based wavefront estimation algorithm was developed to 
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estimate the wavefront shape from the Laplacian curvature data, and validated.  An 

implementation of the DSH curvature sensor is proposed and an experimental system for this 

implementation was initiated. 

The DSH curvature sensor shares the important features of both the Shack-Hartmann slope 

sensor and Roddier’s curvature sensor. It is a two-dimensional parallel curvature sensor. Because 

it is a curvature sensor, it provides absolute measurements which are thus insensitive to 

vibrations, tip/tilts, and whole body movements.  Because it is a two-dimensional sensor, it does 

not suffer from other sources of errors, such as scanning noise.  Combined with sufficient 

sampling and a zonal wavefront estimation algorithm, both low and mid frequencies of the 

wavefront may be recovered.  Notice that the DSH curvature sensor operates at the pupil of the 

system under test, therefore the difficulty associated with operation close to the caustic zone is 

avoided.  Finally, the DSH-curvature-sensor-based wavefront estimation does not suffer from the 

2π-ambiguity problem, so potentially both small and large aberrations may be measured.  
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CHAPTER ONE: INTRODUCTION  

 In the introductory part of this dissertation, a brief history of optical testing techniques 

will be reviewed with an emphasis on quantitative wavefront testing. The research motivation 

will then be given, and the outline of the dissertation will be summarized. 

1.1 Historical review of optical testing 

In modern optics, optical testing refers to the optical measurement of surface errors or 

optical system aberrations. The testing accuracy sets the limit of the working accuracy. An 

optical element or surface, especially an aspheric surface, can only be made as good as it can be 

tested. In most cases the goal is to determine the optical path differences (OPD) of the wavefront 

that either passed through the optical system under test or reflected from the optical surface 

under test. The shape of the optical surfaces under test can be either flat, spherical, conic, and 

aspheric or free form, among which aspheric and free form surface tests are typically more 

complex. Wavefront measurement is becoming more and more demanding today, because it is 

not only a key technique in measuring optical surfaces and optical systems, but also one of the 

main parts in active/adaptive optics, ophthalmology, and laser wavefront and media turbulence 

characterizations.  

The history of optical testing can be dated back to at least the 17th century when Galileo 

Galilei (1564-1642, Italy) tried to make telescopes for viewing celestial bodies. The optical 

testing problem that he faced at that time remains the challenge for the telescope makers today. 

One of the oldest optical testing method is the Knife-edge test, which was invented by Foucault 
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(1852, France).1,2,3   It is a Schlieren method that tests the wavefront aberrations by examining 

the shadow or intensity distribution in the Schlieren field. The advantages of the Knife-edge test 

are its high sensitivity and simplicity both in apparatus and in qualitative interpretation (Ojeda-

Castaneda 1992).4  It was the primary technique for testing mirror surface errors before the 

invention of the quantitative methods, and it is still an important test in amateur optical workshop 

today. The Schlieren tests also include the Caustic test (Platzeck & Gaviola 1939),5,6,7 and the 

Ronchi test (Ronchi 1923)1. 

Instead of the qualitative Schlieren tests, the Hartmann test is an important quantitative 

method (Hartmann 1900).1  In the reminder part of this chapter, we will first review the 

Hartmann test followed by the Shack-Hartmann wavefront sensor and pyramidal wavefront 

sensor. Then we will briefly review interferometric tests with a focus on shearing interferometry 

and phase shifting interferometry. 

1.1.1 Hartmann test  

As shown in Figure 1.1,1  a Hartmann screen is a screen with many holes, which is put at 

the pupil or a location that conjugates to the pupil of an optical system under test or over the 

major surface under test. The light passing through the screen holes will generate an array of dots 

on the image plane, whose position distribution is affected by the system aberrations.  The 

Hartmann test measures transverse aberrations and it is not sensitive to the piston error.  The 

relationship between wavefront aberrations ( )y,xW  and the ray aberrations ( xδ , yδ ) at the image 

plane can be expressed as8 

 ( )L
x

yxW
x ∂

∂
=δ

,          (1. 1a) 
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 ( )L
y

yxW
y ∂

∂
=δ

,       (1.1b) 

where L is the distance from the exit pupil to the image plane.  A wavefront integration algorithm 

is needed to integrate these measurements in the x- and y-directions. The distribution patterns of 

the holes on the Hartmann screen comes in many varieties, such as the classical radial pattern, a 

helical pattern and a square-array pattern. 9   Due to its uniformity in data sampling and 

convenience in wavefront estimation, the Hartmann screen with a square-array pattern is the 

most common. With the advent of CCD camera, which is essentially an array of quadrant 

detectors, the traditional Hartmann test is improved and becoming an increasingly popular 

quantitative method for optical testing. 

 

Figure 1.1  Hartmann test (Adopted from D. Malacara) 

Because the holes on the Hartmann screen are small, the focused Hartmann spots are 

affected by diffraction. Historically, it has been time-consuming to measure the focused spot 

centroid. However, the natural rectangular grid of the CCD camera can be matched to the screen-

hole pattern to yield rapid data acquisition. 
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1.1.2 Shack-Hartmann sensor and Pyramid wavefront sensor 

Roland Shack and Ben Platt expanded the concept of the Hartmann test by re-imaging the 

aperture onto a lenslet array located at the exit pupil (Shack and Platt 1971), 10 yielding a popular 

wavefront sensor known as the Shack-Hartmann (S-H) sensor. The concept of the S-H sensor 

and a Hartmann grid array are illustrated in Figure 1.2.  Comparing with the classical Hartmann 

test, a lenslet array replaces the traditional Hartmann screen to concentrate the light energy inside 

each hole to form an array of focused Hartmann grid points, which dramatically improves the 

spot position measurement accuracy.  Shifts in the positions of the grid points can be shown to be 

proportional to the mean wavefront gradient over each sub-pupil.  With a CCD detector in the 

image plane as the photon detector to replace the traditional photographic plate, the Hartmann 

spot centroiding accuracy and the speed of the data sampling are dramatically increased. 11 

Shack and Platt proposed the S-H sensor while working on a classified laser project for 

the U.S. Air Force in an attempt to improve satellite images blurred by atmospheric turbulence.10 

Equipped with a modern computer to process the sampled data and with a wavefront estimator, 

the S-H sensor has become a real-time wavefront sensor for optical shop testing, active/adaptive 

optics, and ophthalmic diagnoses. 

Compared with the Hartmann test, the S-H wavefront sensor has the following merits: (1) 

It offers better photon efficiency; (2) The position of a S-H grid point is only proportional to the 

average wavefront slope over each sub-aperture, and it is thus independent of higher-order 

aberrations and intensity profile variations; (3) The Shack-Hartman sensor is a real-time, parallel 

wavefront sensor; (4) Its working wavelength range varies from infrared band to ultraviolet band. 
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(a) 

 

(b) 

Figure 1.2  (a) The concept of the S-H sensor and (b) a sampling grid 

 

Usually a reference wavefront is needed for the S-H sensor to calibrate the wavefront 

measurement, as illustrated in Figure 1.2(a).  Quantitatively comparing the coordinates of each 

S-H grid point from the measurement beam with that from the reference beam yields wavefront 

slopes in x- and y- directions as 
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where ( ref
ix , ref

iy ) ( i=1,2,…,m, m=t × t is the total number of grid points) is the Hartmann grid 

coordinates of the reference beam,  ( mea
ix , mea

iy ) is the Hartmann grid coordinates of the 

measurement beam, and f  is the focal length of the lenslet array.   

 

Figure 1.3  The spot centroiding in a quad cell in a CCD target 

 

 The centroiding of the S-H spot on the CCD camera can be simulated with a model of 

quad-cell, as shown in Figure 1.3.  Given a Hartmann spot with diameter d, its centroid 

coordinate in a quad cell can be computed by 
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where 1,2,3,4)(iI i =  is the intensity of each quarter area of the quad cell as shown in Figure 1.3.  
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 Figure 1.4  Quad cell in S-H WFS versus quadrant in pyramid WFS  

(Adopted from Bauman)   

A recent variation of the S-H sensor is the pyramid wavefront sensor (PWFS), which was 

invented by R. Ragazzoni (Ragazzoni 1996).12, 13  A four-faceted pyramidal prism is used in the 

nominal focal plane of the optical system to divide the focal image into four quadrants, which is 

analogous to using a quad cell to divide a S-H spot in the CCD camera, except for the order 

reverse of the optical element layouts between the two sensors (Bauman 2003).14 As shown in 

Figure 1.4,14 the circle indicates the beam footprint on the wavefront sensor. For a S-H sensor 

each sub-aperture on the CCD camera is a quad cell, while in a pyramid wavefront sensor each 

pixel in each of the four pupils represents a quadrant of the quad cell. The pyramid wavefront 

sensor uses a circular scan of the image to increase the measurement dynamic range, while in a 

S-H sensor an increase of dynamic range can be achieved by employing a sub-aperture that is 

larger than a quad cell to measure each S-H spot centroid. It was shown that the pyramid sensor 

has a higher sensitivity with respect to a S-H sensor for the scenario of small wavefront 
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aberrations (Ragazzoni & Farinato 1999).15  However, fabricating the pyramidal prism for the 

pyramid wavefront sensor has proven to be difficult. 

1.1.3 Interferometric tests 

Modern interferometry can be dated from the Michelson interferometer, which was 

invented by Albert Abraham Michelson (1887).16,17  The classical interferometric tests in many 

cases provide direct measurement of the optical path difference (OPD). Interferometry needs at 

least two coherent wavefronts to interfere each other to generate an interferogram that records 

the wavefront deformations. The two wavefronts could be either the reference wavefront and the 

wavefront under test, or the wavefront under test and its duplicated wavefront with an offset 

(shear).  

For the first kind of interferometric tests, the reference wavefront is usually a perfectly 

spherical or flat wavefront. The difference between the wavefront from the surface/system under 

test and the reference wavefront is the wavefront OPD,1 which is a direct measure of the 

wavefront error of the optical system under test. A perfect reference wavefront is quite important 

for the first kind of interferometric tests, and the generation of a perfect reference wavefront is 

difficult. 

Shearing interferometry provides an alternate solution to this problem by using a copy of 

the wavefront under test to replace the reference wavefront. The relative dimensions or 

orientation of the reference wavefront must be changed (sheared) in some way with respect to 

the wavefront under test.18  As such, an interferogram can be obtained from the interference of 

the two sheared wavefronts. The most popular one is the lateral shearing interferometer, in which 
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the duplicated wavefront is laterally displaced with respect to the original one. This relation 

suggests that the parameters being directly measured are wavefront differences (WFD) in the 

shearing directions of the wavefront, from which we can infer everything of the wavefront 

except the piston term.19, 20, 21  The disadvantage of shearing interferometry is that it requires 

phase unwrapping and integration, and it requires separate x and y channels with a narrow 

wavelength band. 

 Phase shifting interferometry (PSI), also known as phase measuring interferometry, fringe 

scanning interferometry, real-time interferometry, AC interferometry and heterodyne 

interferometry, is not a specific optical interferometry configuration, but rather a data collection 

and analysis method that can be applied in a variety of interferometric testing scenarios 

(Greivenkamp and Bruning, 1992).22  It was initiated by Carre in 1966 and later developed for 

optical testing in the early 1970s (Crane 1969, Bruning et al 1974, and Wyant 1975),22, 23, 24, 25  

PSI estimates the wavefront phase at each point of a sampling grid array from the intensities 

measured from a series of interferograms with introduced reference phase shifts, such as 900-

optical phase changes of 0, π/2, π, 3π/2 for the four-step-algorithm. The problem of finding the 

fringe centers and reading the order of the fringes as done in the traditional interferometric 

testing is avoided; as a result the PSI precision is much better than the precision of a static fringe 

analysis.1  Here the accuracy is independent of the fringe pattern and the fringe frequency in the 

interferogram.22  Usually phase shifting is achieved in steps or in a continuous manner by 

moving the reference mirror along the axis of wavefront propagation. As proved by Kafri, if 

everything else is perfect, a short coherence length and a long sampling time will improve the 

accuracy (Kafri 1989).26  However, both a short coherence length and a long sampling time make 
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the interferometer more sensitive to mechanical vibrations and external changes. Therefore PSI 

is not useful for testing systems in the presence of vibrations or turbulence. 

It is to be noticed that the difficulty associated with the standard interferometric 

measurements as well as the slope-based wavefront measurements, such as the S-H test, is their 

sensitivity to rigid body rotations and displacements of the surface under test, and thus such 

techniques are well-known to be vibration sensitive. 

1.2 Recovery of the mid-spatial frequency: Modal or Zonal? 

 The shape of the wavefront error can be thought to be a combined contribution from the 

errors of the following groups of spatial frequencies: the low spatial frequencies, which 

contribute to the figure of wavefront; the mid-spatial frequencies, which contribute to the 

“waviness” of wavefront; and the high spatial frequencies, which contribute to the roughness of 

wavefront. 27,28 The low spatial frequencies characterize wavefront errors of less than 6 cycles 

per aperture, the mid-spatial frequencies characterize wavefront errors of more than 6 cycles but 

less than 20 cycles per aperture and the high-spatial frequencies characterize wavefront errors of 

more than 20 cycles per aperture.  Among them, the recovery of the wavefront mid-spatial 

frequency errors is more interesting because it can help bringing the accuracy of wavefront 

estimation to the next stage of the art, given that the low-spatial-frequency-based wavefront 

estimations have been investigated extensively. 

 Wavefront errors can be quantitatively characterized by the power spectral density (PSD) 

function of the wavefront, which is defined as the ensemble average of the squared modulus of 

the wavefront function in the spatial domain.29  The PSD function quantifies the spectral power 



13 

of each spatial frequency in the pupil, which is actually a weight function for different spatial 

frequency errors.  As we will detail in Chapter 3, the wavefront values can be either evaluated at 

each local point by zonal estimation or estimated as a set of orthogonal polynomials over the 

whole test pupil by modal estimation. If a wavefront function is modal estimated with Zernike 

polynomials, its PSD function can be computed by the following formula (Levine et al 1998)30 

( ) ( )∑=
n

2
n fafPSD       (1. 4) 

Where f is the spatial frequency in the Fourier domain, and ( )fan  is the Fourier transform of a 

Zernike polynomial coefficient. 

 In this dissertation, a characteristic frequency is defined as the average of the peak PSD 

frequency values of a number of aberration realizations represented in the Zernike basis for a 

given Zernike order, where the Zernike coefficients are generated by a Gaussian distribution for 

each case. 31 The characteristic frequency for a Zernike-based function of a given order is a target 

aberration spatial-frequency (i.e. the dominant spatial frequency) that one may match to a given 

Zernike order in unit of cycles per aperture.31  A numerical simulation suggests that the 

characteristic frequency can be expressed as a linear function of the Zernike order as (Dean & 

Bowers) 31 

64.11787.0 += orderchar Zf .     (1.5) 

For a given Zernike order N, the total number of terms of the Zernike polynomials is given by 

(N+1)(N+2)/2.  For the mid-spatial-frequency wavefront errors of 6-20 cycles per aperture, the 

Zernike order needed for representing such wavefront errors is 25 to 103 according to Eq.(1.5), 

which corresponds to 351 to 5460 terms of the Zernike polynomials! Therefore, the recovery of 
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the mid to high spatial frequencies with a modal approach becomes impractical given that such a 

modal estimation requires solving for thousands of aberration basis coefficients. 

 Typically modal methods are good for the recovery of low spatial frequencies. One of the 

advantages of the modal estimations is that the wavefront can be conveniently expressed as a set 

of orthogonal polynomials, such as the Zernike polynomials, which individual term represents a 

specific optical aberration. As a disadvantage, the orthogonality requirement of the Zernike 

polynomials over the sampling geometry is a problem.  Strictly speaking, the Zernike 

polynomials are not orthogonal over a discrete set of sampling points inside a circular pupil, or a 

pupil with central obscuration.  Nevertheless, the tolerance on the pupil obscuration can be taken 

up to thirty percent for example, without much effect on the Zernike coefficients. However, the 

orthogonality of the Zernike polynomials can be seriously affected by the radial non-symmetry 

of the pupil. 

 A higher-order modal decomposition can be thought to provide a better approximation to 

the wavefront estimation, but this improvement is limited due to the fact that high frequencies or 

‘‘spiky’’ phase data cannot be accurately represented by a Zernike basis (or any other basis) for a 

fixed number of data values across the pupil.  Dean & Bowers showed that for modal fitting of a 

deformable mirror with Zernike polynomials, the Zernike order needs to go up to 50 (i.e.1326 

terms!) for the RMS fit error to reaches λ/100 with a mid-spatial frequency wavefront error of 10 

cycles/ aperture. 31 

 The alternate to modal estimation is zonal estimation, which is advantageous to move 

wavefront estimation to the next level of accuracy. With zonal estimation, more sampling points 

are also required for the retrieval of the mid-spatial frequencies.  However, the slope/curvature 

data sampling can be made as dense as needed without much computational burden for zonal 
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wavefront estimation, because the zonal method estimates the wavefront locally instead of 

globally across the pupil in a modal method.  For the zonal methods, the finite difference method 

can be adopted for numerically solving a Poisson equation. With the finite difference method, a 

wavefront value is a direct weighted average of its neighboring wavefront values corrected by 

the increments gained from the neighboring slope measurements as we will detail in Chapter 3. 

With curvature measurements, we will show in Chapter 6 that the zonal wavefront estimation 

becomes very simple and elegant.  Besides, there is no orthogonality requirement for zonal 

wavefront estimation, thus any irregular pupil shapes may be considered as long as the boundary 

conditions are satisfied. For these reasons mentioned above, we will focus on the zonal 

wavefront estimation in this dissertation.  

1.3 Vibrational effects 

 Mechanical vibrations (harmonic and nonharmonic) are often the principal source of 

image degradation. 32, 33  Image motion or image blur caused by vibrations is common when the 

imaging systems are located on a moving vehicle. Generally random vibrational motions are a 

combination of many complex motions, including linear, quadratic and exponential motions, and 

the intensity of each kind can be characterized by the power spectrum of the vibrations.  In 

airborne and terrestrial reconnaissance, astronomy, robotics, machine vision, and computer 

vision systems, this motion degradation is generally much more severe than that from electronics 

and optics.34 

 Vibrations degrade the image of optical systems, so does misalignment. They are often 

the main error sources in optical testing, such as in a S-H sensor.35  The effect of misalignment 
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errors on the RMS wavefront error measured in a S-H sensor are detailed in a recent paper 

(Curatu & Curatu and Rolland 2006).36 

 The impact of vibrations on optical testing is especially severe in the PSI technique, in 

which the required data acquisitions at different phase steps make the PSI measurements more 

vulnerable to vibration errors, and the accuracy of the PSI method is mainly restricted by the 

vibrations during the measurements. 37  Various efforts have been made to depress the vibrations 

and improve the measurement accuracy.  The methods that have been proposed for suppressing 

the vibrations include (1) taking the measurements fast enough to essentially freeze out 

vibrations (Wizinowich 1990);38 (2) reducing the sensitivity of PSI to external vibrations by 

simultaneously acquiring two complementary interferograms (Deck 1996);39 (3) using a filter-

based deconvolution to restore vibration-degraded video imagery (Barnard et al 1999);40  (4) 

adopting longer sampling windows and higher frame rates (Ruiz et al 2001);41  (5) realizing the 

required phase shift by quarter-wave plates and polarizers to avoid motion errors (Ngoi et al 

2001);42 (6) using an active control loop to compensate for effects of vibrations (Zhao & Burge 

2001); 43  (7) data postprocessing (Huntley 1998), 44  and (8) numerical optimization method 

(Milman 2002).45  

1.4 Motivation 

 Application requirements across various disciplines are always the original motivation to 

move the technology of shape sensing forward.  Questions fermented in applications for 

wavefront testing technique include: How should one (1) handle the wavefront apertures that are 

not round or square?  (2) estimate wavefronts with a sampling geometry or methodology that has 
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the lowest noise propagation? (3) move wavefront testing to next level of accuracy? (4) recover 

of the mid-spatial frequency error and (5) remove or reduce the effect of vibration and 

misalignments?  

  In this dissertation, our research is focused on how to optimize wavefront estimation 

with the above mentioned concerns. A zonal wavefront estimation algorithm without any 

required apriori knowledge of the pupil shape is developed, which provides a solution for 

wavefront estimation with irregular pupil shape.  In order to reduce the wavefront estimation 

error, the error propagations in wavefront estimation with different geometries are studied, and 

the lowest error propagator for wavefront estimation is explored.   

 Considering a surface with a regular mesh, the slope measurement at each mesh location 

is a linear approximation of the surface with a tangential plane, while the local curvature is a 

quadratic approximation to the surface with an osculating quadric spherical surface.46  As a 

consequence, the local curvature measurements are believed to yield a better recovery of the 

mid-spatial-frequency errors than from the local gradient data.27 The principal curvatures and 

their directions, which can be computed from the local Laplacian curvatures and the twist 

curvature terms, provide a better characterization of wavefront local shape. In addition, a 

curvature sensor as opposite to a slope sensor yields vibration-insensitive measurements.  For 

these reasons, a new sensor called differential Shack-Hartmann curvature sensor is proposed and 

developed in this dissertation. 

1.5 Dissertation outline 

 The remainder of the dissertation will be arranged as follow: 
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 Chapter 2 summarizes the previous related work performed on curvature measurements, 

which includes Roddier’s curvature sensor, the hybrid wavefront curvature sensor, and the 

curvature profiling technique. 

 Chapter 3 reviews previous wavefront estimation techniques, which include wavefront 

estimation algorithms from slope or curvature data based on the least-squares or Fourier 

transform method. The wavefront phase retrievals from wavefront irradiance measurements are 

also reviewed, which include the Gerchberg-Saxton method, Misell method, and phase diversity 

techniques. 

 Chapter 4 describes a new least-squares-based wavefront estimation algorithm from slope 

data for any irregular pupil shape. The mathematical framework for a pre-defined wavefront 

estimation matrix without knowledge of the pupil shape is given, and examples for two different 

pupil shapes are illustrated. 

 Chapter 5 quantitatively investigates error propagation in wavefront estimation. The 

functions that depict the error propagation behavior for different estimation geometries are 

established based on the matrix eigenvalue technique. 

 In Chapter 6, a new wavefront curvature sensor is proposed, called differential Shack-

Hartmann (DSH) curvature sensor. The algorithm for zonal wavefront estimation from curvature 

measurements is given, and the mathematical framework for evaluating the principal curvatures 

is presented.  

 Chapter 7 provides a validation of the proposed zonal curvature-based wavefront 

estimation algorithm.  An Error analysis of the experimental system for the DSH curvature 

sensor is also given. 
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 Chapter 8 summarizes the contributions of the research presented in this dissertation and 

discusses future directions. 
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CHAPTER TWO: REVIEW OF CURVARTURE SENSING  

In this chapter, we will focus on the popular quantitative wavefront sensors that are based 

on measurement of wavefront curvature, the second derivative of wavefront.  Wavefront 

curvature is an intrinsic parameter of wavefront. Unlike the slopes (gradients or the first order 

derivatives of shape), which vary with the surface orientation change, the surface normal 

curvature is insensitive to tip/tilt or orientation change of the surface. 

 In this chapter, the curvature sensing techniques will be briefly reviewed, which include 

Roddier’s wavefront curvature sensor, the Coherent Gradient Sensing method, a hybrid 

wavefront curvature sensor, and the curvature profiling technique. 

2.1 Roddier’s wavefront curvature sensor 

Considering a surface with a regular mesh, and given two arbitrary but orthogonal 

directions referred to the x- and y- directions, the local curvatures of the wavefront surface 

)y,x(W  along the x- and y- directions cx and cy are given by  
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In 1988, Francois Roddier proposed a method to measure the local curvature of a 

wavefront surface by measuring the difference in illumination at the two planes located before 

and after the focal point (Roddier 1988).47  The principle of this sensor is illustrated in Figure 

2.1.48  Later, this method was extended to wavefront sensing with an extended reference source 

by comparing the Fourier transforms of two oppositely defocused images instead of measuring 

the difference in illumination (Kupke, Roddier and Mickey 1998).49, 50  

 

(a) Image space 

 

(b) Object space 

Figure 2.1 The illustration of Roddier’s curvature sensing (from Malacara) 
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2.1.1 Methodology evolution  

In the early 1980s, Teaque’s (Teaque 1982, 1983) 51 , 52  and Steible’s (1984) 53 work 

established how to retrieve phase information from a focused image and a defocused image 

formed by a non-coherent imaging system. They showed that if a diffracting aperture is much 

larger than the wavelength, a paraxial beam (monochromatic or incoherent) propagating along 

the z-axis can be written as a differential equation as 48 

 0
z

E(x,y,z)ik2E(x,y,z)k2E(x,y,z) 22 =
∂

∂
++∇ ,    (2. 3) 

where k=2π/λ is the wave number. One solution to this equation is of the form  

{ } ))(ikW(x,y;zexpI(x,y;z)E(x,y,z) 2/1= ,    (2. 4)  

where I(x, y; z) is the distribution of the illumination at a location z along the beam, and W(x, y; 

z) is the wavefront at a distance z from the origin. Substituting E(x,y,z) of Eq.(2.4) into Eq.(2.3), 

and equating real and imaginary parts to zero separately, yields52 
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=∇  is the gradient operator. Eq.(2.5) is the wavefront transport equation, 

and Eq.(2.6) is the irradiance transport equation. The WI∇∇ term in Eq.(2.6) is called the prism 

term, representing the irradiance variation caused by a transverse shift of the beam due to the 

local tilt of the wavefront, and the term WI 2∇ is called the lens term, which can be interpreted as 

the irradiance variation caused by the convergence or divergence of the beam, whose local 
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curvature is proportional to W2∇ . Eq. (2.6) was originally derived for coherent light, but it is 

also valid for an incoherent extended light source when the source is uniform and symmetric.53  

Solutions to Eq.(2.6) are available. A Fourier transform-based phase retrieval method was 

reported by Ichikawa et al (1988).54 Teaque (1983) provided a solution based on a Green’s 

function, whose boundary value is constrained to be zero at the edge.54  By the use of the 

Neumann boundary condition, another Green’s function-based solution was given by Woods and 

Greenaway (2003).55   

The irradiance transport equation shows that one can estimate the wavefront local 

curvature by measuring the axial irradiance.  If we assume that the illumination over the pupil 

plane is uniformly equal to 0I  ( 0I =∇ ) everywhere but at the pupil edge, we have the boundary 

condition 

c0II δ−=∇ n ,      (2. 7) 

where cδ  is a linear Dirac distribution around the pupil edge, and n is a unit vector perpendicular 

to the edge and pointing outward.  

Combining Eq.(2.6) and Eq.(2.7) yields (Roddier 1990)56 
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where W/W ∇⋅=∂∂ nn , and P(x, y) is defined as the pupil function, whose value is one inside 

the pupil and zero outside. The irradiances at two defocused pupil images are given as 
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By combining Eq.(2.10) with Eq.(2.8), Roddier obtained  
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where zΔ  is the distance from the pupil plane to the defocused plane P1 or P2 viewed from the 

object space.  A plane at a distance zΔ  from the pupil can be Fourier transformed to a plane at a 

distance from the focus.  Roddier proved that (1993)57   

l
l)f(fz −

=Δ ,       (2. 12) 

where f is the system focal length and l is the defocus distance of the defocused plane. Then he 

obtained the well-known equation for curvature sensing given by 
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Specifically, 
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 As pointed by D. Malacara et al., the operations on the irradiances in the two measured 

images must correspond to the same point on the pupil plane (Malacara 1998).48 As such, one of 

the defocused image is rotated 1800 with respect to the other. The above derivation is based on 

geometrical approximation, which is valid only when the irradiance measurements are made 

close to the pupil. 47, 58 Chanan obtained an equation that is the same as Eq.(2.11) by making an 
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integration on the focal plane based on the method of stationary phase provided by Born & Wolf 

(Chanan 2000).59, 60  

2.1.2  Implementations 

In principle, the two out-of-focus images should be measured simultaneously, or within a 

time interval much shorter than the expected wavefront evolution time. In optical testing 

applications, this time constant is determined by the vibrational environment that is to be 

overcome. One implementation of curvature sensing is to employ two beam splitter prisms and 

one right angle prism to separate out the two extra-focal images and direct them on one detector 

array.61 The advantage of this approach is that both images are detected at the same time, and this 

approach involves no moving parts, therefore it is very stable. This approach may suffer, 

however, from chromatic and geometric aberrations (spherical and astigmatism) introduced by 

prisms if it is not properly configured.  

Another implementation is to employ a variable curvature membrane mirror driven 

acoustically at 7 kHz to switch between the re-imaging of the two defocused beam cross sections 

onto a detector. 62, 63  This oscillating membrane is located at the focus of the optical transfer 

lens. When the membrane mirror is flat, the light reflected from this mirror will re-image the 

telescope pupil onto the detector; when the mirror is inflated, the pupil image will be defocused 

on the detector in either direction. Because the distance to the focus changes continuously as the 

membrane vibrates, a stroboscopic technique or a fiber-optic LED transmitter is used to freeze 

the position of the mirror when the membrane vibrates back and forth. In one cycle of the 

membrane oscillation, the detector needs to record both intra focal and extra focal distributions 
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of the light beam. This process usually makes the system quite noisy, and to-date this 

implementation has not been very successful. 

Besides the above configurations, Ervin Goldfain proposed a curvature sensor with a 

single-detector/single-image setup with partially coherent light (Goldfain 1998),64  in which the 

twin images were computed from the mutual intensity in the paraxial image plane according to 

the propagation laws of mutual intensity along the optical axis. 

2.1.3 Advantages and disadvantages 

 The advantage of the curvature sensing method given by Roddier is its opto-mechanical 

simplicity and the fact that no lenslet arrays or re-imaging systems are needed. Also the 

sensitivity of the curvature sensor is comparable to that of the S-H test,58, 65  and it can be 

changed continuously by varying the defocus distance l.  The most impressive advantage of such 

a curvature sensor is that the signal from the curvature sensor can be amplified and directly 

applied to the mirror actuator in a deformable mirror system without any wavefront estimation 

process.66   

The potential disadvantage of Roddier’s curvature sensing method as it is applied to 

optical testing is the error propagation in the wavefront estimation algorithm (Roddier 1990).56  

Its performance is limited not only by the quality of the detector used for irradiance 

measurements but also by the separation between measurement planes used for the calculation of 

the axial derivative of intensity (Soto, Acosta & Ríos 2003).67  From the finite difference point of 

view, if the separation between measurement planes is small, the axial derivative should be more 

precise, but the spatial resolution of the sampling is low. On the other hand, if the distance 
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between the planes is large, the spatial resolution of the sampling will be increased, but the 

calculation of the derivative is less precise.  Therefore, there exists an optimum separation 

distance between the intensity measurement planes.  

The determination of the defocus distance is also affected by seeing blur and the caustic 

zone. The defocus image diameter should be twice as large of the seeing blur, and the defocused 

image planes should be taken outside the caustic zone, because inside the caustic zone the rays 

coming from different sample pupil points intersect.57  Unfortunately the size of the caustic zone 

depends on the aberrations of the optics under test, and the evaluation of an optimum position for 

the defocused measurement planes depends on the apriori knowledge of the phase to be 

measured.  Besides the difficulty in determining the defocused distance, the exact position of the 

optical focus can be hard to determine, especially for slow f-ratios. Therefore, the distances of 

the measurement interfaces to the focus and their sizes may not be identical. As discussed above, 

how to determine the twin measurement interfaces is critical to the proper operation of Roddier’s 

curvature sensor.  In 2003 a formula was presented by Soto et al. for determining the ideal 

defocused measurement planes when only a minimum knowledge of the phase is available.67  In 

2003, a derivative of Roddier’s curvature sensor, which consists in directly measuring the 

Zernike components of an aberrated wavefront, was introduced (Neil, Booth &Wilson 2000). 

68,69 

2.2 Special wavefront curvature sensors 

 In this section, we briefly review other special curvature sensing techniques, the Coherent 

Gradient Sensing method and a hybrid technique for wavefront curvature sensing. 
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2.2.1 CGS wavefront curvature sensor 

Coherent Gradient Sensing (CGS) is a diffraction-based, full-field, real-time, wavefront 

sensing approach for measuring wavefront curvature (Tippur 1992).70  CGS is especially useful 

for measuring curvatures of micro-mechanical structures and thin films in electronic devices and 

for studying the properties of materials and the stress distribution. CGS yields curvature data 

over the entire surface area of interest and it is insensitive to rotation or displacement of the 

object under test. A reflection-mode CGS setup is shown schematically in Figure (2.2).71  The 

coherent collimated laser beam is directed to the surface under test and reflected. The beam then 

passes through two identical Ronchi gratings (40 lines/mm) separated by a distance Δ, and the 

interference between two wavefronts sheared in a distance ω  takes place.  A lens is used to 

image the wavefront fringes on the image plan, while focusing the diffracted light to form 

distinct diffraction spots on a filter plane. A filtering aperture is used in the filter plane to select a 

diffraction order of interest and block the other orders. A video camera is used to receive the 

fringe map, which is a contour plot of the wavefront gradient field. The video image is digitized 

and processed to extract information on the curvature of the surface under test.  

If the Ronchi grating lines are oriented along the x1 axis, the working principle of the 

CSG curvature sensor is illustrated in Figure 2.3.72  The incident beam on the primary grating G1 

is diffracted into several wavefronts denoted as E0, E1, E-1, E2, E-2, etc,  which are further 

diffracted by grating G2. Various sets of parallel diffracted beams are combined by the filtering 

lens to form diffraction spots D1, D0, and D-1, etc.  An aperture pupil is placed on the filter plane 

to select the order of interest. 
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Figure 2.2  Schematic for a reflection CGS curvature sensor (Adopted from Kolawa) 

 

 The constructive interference maybe expressed as72 

L,2,1,0n  ,λn)x,xW()x,xW( (2)(2)
2121 ±±==−ω+    (2. 14) 

where )( 2n represents the integer identifying fringes observed for shearing along the  x2 direction. 

And Δ= θω , where Δ is the interval between two gratings; p/λ=θ  is small, where p is the 

grating period.  For sufficiently smallω , the authors obtained 
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∂  (2. 15) 
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Figure 2.3  The principle of a CSG curvature sensor (from Kolawa, et al) 

 

This equation shows that the wavefront slopes in the 2x  direction are obtained. By 

rotating the two gratings in 090  , we can obtain the wavefront slopes in 1x  direction.  Generally, 

in the  1x  or  2x  directions, we have 

{ }.1,2 and ,2,1,0n    ,pn
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∂ α
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α
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A detailed Fourier optics analysis proved that the image plane of a CGS sensor is a 

gradient field of the wavefront under test70, from which the curvature information can be 

extracted by a finite difference method.  For small curvatures, 1W2 <<∇ , a curvature tensor αβκ  

along the unit tangent vectors a1 and a2 can be approximated as 70 
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where αβκ is the symmetric curvature tensor, whose component 11κ and 22κ  are termed as normal 

curvatures, and 2112 κκ =  as twist curvature terms.  

2.2.2 Hybrid wavefront curvature sensor 

The hybrid wavefront curvature sensor to be described here measures the curvatures and 

gradients of the wavefront using a configuration that resembles a Shack–Hartmann sensor 

(Paterson & Dainty 2000).73   An array of astigmatic lenslets is used to generate an array of foci 

on a single detector plane. The shape of each focused spot is related to the local wavefront 

curvature as shown in Figure 2.4,73  and a quad-cell detector is used to measure each spot.  

When a parallel wavefront (i.e. there is no wavefront curvature) is incident on a lenslet, 

the focus is shown in Figure (2.4a). If the incident wavefront has curvature, the balance between 

the two diagonal cells is broken. The normalized difference between the sums of the signal 

intensities from diagonal elements of the quad cell yields an estimation of the local wavefront 

Laplacian, which is given as 

4321

4321
c ssss

sssss
+++
−+−

=  .      (2. 18) 

The normalized difference between the right and left half (or upper and lower) of the quad cell 

yields a measure of the wavefront gradient given by 
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Figure 2.4  The foci in the hybrid wavefront curvature sensor  

 The foci were generated by a single astigmatic lenslet with (a) an un-aberrated wavefront, 

(b) a negative-curvature wavefront and (c) a positive-curvature wavefront; (d) shows the labeling 

convention of the quad-cell element. (Adopted from Paterson & Dainty) 

2.2.3 Curvature profiling technique 

A non-contact 1-D curvature profiling technique that measures test surface curvature on a 

point-by-point basis was proposed and implemented (Glenn 1990).27, 74 , 75  It simultaneously 

measures the local slopes at two slightly displaced surface locations with optical probes to obtain 

the surface slope differentials.  This technique was further developed by Weingaertner and 

Schulz et al as the Large Area Curvature Scanning (LACS) method, which uses an extended-area 

optical probe to replace the point-sized optical probe.76,77,78,28   By scanning the test surface, a 

profile of curvature was built, and the height profile could be deduced. 
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Figure 2.5  The differential measurement of slope  

(Adopted from Glenn) 

 

The optical schematic for the differential measurement of slope is shown in Figure 2.5.27 

A calcite plate was used to produce two parallel beams with opposite linear polarization, and a 

polarizing beam splitter was placed in the reflected path from the test piece to separate the two 

measurement beams before they were focused by the collimation lens onto two separate 

detectors. The “zero” curvature positions on the two detectors could  be calibrated before hand, 

and the difference between sensed positions on the detectors, which is proportional to the 

difference of the test piece slopes at the two measurement locations, were used to calculate the 

curvature at each test point. The schematic layout of the curvature profiling instrument is shown 

in Figure 2.6,27 where the steering mirror is used for scanning the test surface, and the movable 

detector is used to accommodate the focused spots on the centers of the two detectors. 
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Figure 2.6  Schematic layout of the curvature profiling instrument  

(Adopted from Glenn) 

 

The curvature profiling instrument measures the mid-frequency surface errors, whose 

spatial periods span from a fraction of a millimeter to a hundred or more millimeters.27  

Curvature is an intrinsic property of the test piece which is independent of its position and 

angular orientation, and such property makes this approach fundamentally insensitive to all types 

of vibration and drift in both surface height and surface slope.  It is a self-reference test where no 

reference surface is needed. The slope detectors can be two dimensional in order to measure both 

the normal curvature (longitudinal or lateral) and the twist curvature term.   

The disadvantages of this approach are listed below.  (1) It is a one-dimensional point-by-

point measurement, which limits the temporal working bandwidth. (2) To reach the highest 

performance, it is necessary to calibrate the steering mirror intrinsic curvature and the calcite 

residual power, which is a complex problem since the steering mirror rotates in two dimensions. 

(3) This approach measures the curvature of the test surface only, which corresponds to the mid-

spatial frequency errors, and it loses the information about the low spatial frequency errors, such 

as spherical aberration and astigmatism. This technique demonstrates sub-angstrom accuracy and 
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λ/1000 sensitivity with the differential distance of 0.3mm and a sample spacing of 10 μm on a 

test piece of 10mm.74 

2.3 Summary 

 Curvature is intrinsic and absolute parameter of wavefront and the curvature 

measurements is usually vibration insensitive.  In this chapter, we reviewed four curvature 

sensing techniques, the Roddier curvature sensor, the CGS wavefront curvature sensor, a hybrid 

curvature sensor, and a 1-D curvature profiling technique.  Of all these sensors the 1-D curvature 

profiling technique measures the second derivatives only,  Roddier’s curvature measurements 

include both wavefront Laplacian inside the pupil and wavefront gradient around the boundary, 

and the others measure both the second derivatives and the first derivatives of the wavefront.  

Currently Roddier’s curvature sensor is mainly applied in astronomy for adaptive optics system 

to take the advantage of the analog nature of its sensor signal to the deformation of the 

deformable mirror. The curvature profiling technique is used as a unique instrument in 

profilometry which is immune to vibrations. So far the CGS and the hybrid wavefront curvature 

sensors have not been widely used in applications. More features of curvature sensing will be 

explored as a new wavefront curvature is proposed and implemented in Chapter 6. 
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CHAPTER THREE: REVIEW OF WAVEFRONT ESTIMATION 
TECHNIQUES 

 In this chapter, we will first review wavefront estimation techniques that are based on 

wavefront parameter measurements, specifically the first and second derivative measurements 

(i.e. wavefront slope (gradient) and curvature measurements).  Wavefront estimation converts the 

wavefront parameter measurements into wavefront OPD, or wavefront phase by multiplying the 

OPD by the optical wave number 2π/λ.  Mathematically it is a Neumann boundary problem of 

Poisson’s equation. 11  

 The wavefront phase retrieval methods that are based on the irradiance measurements are 

also reviewed. The phase retrieval methods include Gerchberg-Saxton and Misell methods, and 

the phase diversity technique, all of which employ phase deconvolution algorithms with iterative 

Fourier transform operations. The phase retrieval algorithms are usually computational intensive.  

3.1 Neumann boundary problem in wavefront estimation 

Consider that the measured gradient function of a wavefront is ( )y,xg , which includes the 

real wavefront gradient W∇ and the random additive measurement noise ( )y,xn , i.e.  

( ) ( ) ( )y,xy,xWy,x ng +∇= ,      (3.1) 

where W is the wavefront under estimation, and ∇  is the gradient operator.  In a least-squares 

sense, the task of wavefront estimation is to find a wavefront ( )y,xW  that minimizes the 

difference between W∇ and ( )yx,g , which is equivalent to minimize the functional integral  
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( ) ( )[ ]∫∫
Ω

−∇= dxdyyx,y,xWJ 2g ,     (3.2) 

where Ω  is the wavefront testing area, either a composite field or a simply connected field, in 

2ℜ with boundary i

n

1i
0 CC U

=

+=Ω∂ and closure Ω∪Ω∂=Ω  as shown in Figure 3.1. In the 

following part we will show that wavefront estimation is a functional extremum problem in the 

calculus of variations.60 

 

Figure 3.1 The testing aperture for wavefront estimation 

  Let ( )Ω2C  denote the space of all functions ℜ→Ω:W , such that W has continuous 

derivatives of second order, and let’s define a functional 

( ) ( ) ( )[ ] ( )[ ]2yx
2

yx yx,yWxWyx,yx,W,WWy,x,F gg −+=−∇=
rr ,  (3.3) 

where xWWx ∂∂= , and yWWy ∂∂= . If F is a smooth function of x, y, xW  and yW , then the 

functional integral becomes ( ) ℜ→Ω2C:J  with the form 

( )[ ] ( )dxdyW,Wy,x,Fyx,WJ yx∫∫
Ω

= .     (3.4) 

 For the slope or Laplacian curvature-based wavefront estimations, the Neumann 

boundary conditions should be satisfied. Therefore, the permissible function set for the solutions 

to this problem is  
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To obtain an extremum for the function ( )[ ]yx,WJ  in Eq. (3.4), the Euler-Lagrange equation 

should be satisfied,79  i.e.  
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Applying Equation (3.3) in Equation (3.6) yields  
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or 

( ) ( )x,yfx,yW2 =⋅∇=∇ g ,     (3.8) 

which is a Poisson equation. The wavefront estimation problem can then be described as a 

Neumann boundary problem of the Poisson’s equation stated as 11 

( )

( ) ( )    Ωx,y  
yx,W

        yx,fW

0
Ω

2
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⎩

⎪
⎨

⎧

=

=∇

g
n ∂∂

∂ .     (3.9) 

 We have supposed that the wavefront function W has at least second order derivatives 

that are continuous on a closed regionΩ , so the solution to the Neumann boundary problem 

exists and is unique, except for an additive constant. 

 As implied by Eq.(3.9), we can estimate the wavefront by measuring either the wavefront 

gradient ( )yx,g  or wavefront curvature ( )yx,f , but it is difficult to find an analytic solution for 

this problem, so a numerical solution is sought in practice. By employing a finite difference 

method, the wavefront testing domain can be discretized into a regular mesh grid. We can either 
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evaluate the wavefront value at each local point that best fits the measurement data (i.e. the zonal 

wavefront estimation) or evaluate the estimated wavefront as a set of orthogonal polynomials 

over the whole pupil under test (i.e. the wavefront modal estimation). 

3.2 Slope-based wavefront estimations 

 As we discussed in Chapter 1, a zonal estimation is advantageous in mid-spatial 

frequency recovery, and it is also convenient for accommodating irregular pupil shapes. 

Basically, there are three sampling geometries available for wavefront estimation from slope 

data: the Hudgin geometry,♫  the Southwell geometry, and the Fried geometry as shown in 

Figure 3.2, where the small circles symbolize the wavefront values and the small arrows are 

wavefront slope measurements in the x- and y-directions. 

 

Figure 3.2   Sampling geometries for wavefront estimation  

(1) Hudgin geometry (2) Southwell geometry (3) Fried geometry. 

                                                 

 

♫ In recent literature, Hudgin was published as Hutchins 
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3.2.1 Zonal slope-based wavefront estimation 

 The zonal slope-based wavefront estimation can be performed either by a least-squares 

fitting method or by a Fourier transform method.  The zonal least-squares estimation is usually a 

numerical solution to Poisson’s equation with the finite difference method. The Poisson’s 

equation can be expressed by a system of difference equations defined on the sampling grid. 

Since a partial derivative is an ordinary derivative taken with respect to one variable while the 

other variable is held fixed, we can write 

( ) ( ) ( ) ( )
2

j1ijij1i
ji2

2

a
,yxW,yxW2,yxW

,yx
x
W +− +−

≈
∂
∂ ,   (3.10) 

where a is the grid interval. Similarly for the y-derivative we can write, 

( ) ( ) ( ) ( )
2

1jiji1ji
ji2

2

a
,yxW,yxW2,yxW

,yx
y
W +− +−

≈
∂
∂ .   (3.11) 

 

 

Figure 3.3   Five-point stencil 

 



41 

 Substituting Eqs.(3.10) and (3.11) into Eq.(3.9), we obtain a discretization approximation 

to Poisson’s equation with an precision order of ( )2aO , 

( ) ( ) ( ) ( ) ( ) ( )ji
2

j1i1jiji1jij1i y,xfay,xWy,xWy,xW4y,xWy,xW =++−+ ++−− .  (3.12) 

Each equation involves five unknown wavefront values, whose relative locations 

represent the weights with which the five unknowns are combined as shown in Figure 3.3. This 

geometry is called the five-point stencil in the finite difference method, which can be used for 

approximating the Poisson’s equation.11, 80 The right side of this equation is wavefront curvature, 

which can either be obtained from direct measurements or numerically estimated from the slope 

measurements. 

Fourier transforms of the slopes of a wavefront, for example in the x-direction, can be 

given as 

( ) ( ) ( ){ }y,xWFT2iξ
x

y,xWFT ⋅πξ=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂ ,    (3.13) 

where ξ is the spatial frequency associated to the x-dimension. Similarly, we can obtain the 

Fourier transform of slopes in the y-direction as 

( ) ( ) ( ){ }y,xWFT2i
y
x,yWFT ⋅πη=η
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where η is the spatial frequency associated with the y-dimension. We then obtain the Fourier 

transform-based formula for wavefront estimation from slope data as48 
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3.2.1.1 Least-squares fitting method 

The zonal wavefront estimation technique can be traced back to 1974 when Rimmer 

formulated to estimate the wavefront from static shearing interferograms sampled on a 

rectangular array of points (Rimmer 1974).81 The estimation geometry Rimmer adopted was 

actually known later on as the so-called Hudgin geometry (Hudgin 1977), 82  in which the 

wavefronts are evaluated at each grid points while the WFDs are measured between two 

neighboring grid points. The wavefront estimation matrix was established using a least-squares 

fitting method. An iterative relaxation method was employed to solve this equation. With the 

Hudgin geometry, a real-time wavefront reconstructor for adaptive optics was built (Hardy, 

Lefebvre & Koliopoulos 1977).83  J. Wyant showed that the wavefront measurement accuracy of 

this geometry depends only on the radiance of the shearing light source and not upon the angular 

subtense of the source (Wyant 1975).84 

For the Fried geometry, the wavefront value at each grid point is evaluated while the 

slopes (or WFDs) at the center of each grid cell are measured (Fried 1977). 85  The slope data 

between each pair of neighboring grid points is estimated as an average of two slope data at the 

centers of the two neighboring grid cells. Given a generalized square array of the sampling grid, 

Hunt formulated the wavefront estimation matrix equation for the Hudgin and Fried geometries 

(Hunt 1979).86  Hunt, Hudgin and Fried all found that the error propagation in the estimation 

shared the form of β+α )Nln( , where N is the number  of the sampling grid size, and α and β  

are constants that depend on the sampling geometry adopted . Noll revealed that the logarithmic 

behavior of the error is a fundamental property of the Green’s function for a Neumann boundary 

problem of a Poisson’s equation, and that the offset of the results from Hudgin and Fried is 
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caused by neglecting the contribution from the boundary condition (Noll 1978).87 We will show 

in Chapter 5 that parity of the sampling array dimension also contributes to the error propagation 

in wavefront estimation. 

The Southwell geometry is characterized by taking the wavefront slope measurements 

and wavefront values estimation at the same nodes (Southwell 1980).88  The wavefront slope 

data at the midpoint between each pair of neighboring points is estimated as an average of the 

slope data at these two neighboring points. Southwell formulated the error propagation for zonal 

wavefront estimation and showed its superiority over other geometries. However, Wallner 

formulated a different opinion regarding the performance between different wavefront estimation 

geometries (Wallner 1983). 89  In Chapter 5, we will discuss error propagation for different 

wavefront estimation geometries in detail. 

Hudgin82, Hardy et al,83 Fried, 85 Hunt,86 Southwell88, and Su et al 90 all showed that a 

least-squares based estimation scheme of a wavefront value iW  can be expressed as  

)dcbaDCBA)(G/1(Wi +−−++++= ,   (3.16) 

where A, B, C and D are the wavefront values at the four adjacent nodes of  iW ;  a, b, c and d are 

the adjacent WFDs between iW  and its adjacent nodes. G will be 4 if iW  is an interior node, and 

3 and 2 if iW  is an edge or corner node, respectively.  The wavefront inside the pupil is the 

average of its four nearest neighbors plus the average of the four connecting WFDs with the 

appropriate signs in the WFDs. This is actually the discretized approximation of Poisson’s 

equation, a general form for slope-based least-squares wavefront estimation. 

Herrmann formulated the matrix equations for wavefront estimation for Hudgin and Fried 

geometries and showed that the ranks of the estimation matrices for the two geometries are m-1 



44 

and m-2, respectively (Herrmann 1980), 91 where m is the total number of wavefront grid points. 

Since the estimation matrix is rank-deficient, Herrmann suggested using singular value 

decomposition (SVD) to obtain the Moore-Penrose inverse of the estimation matrix, which is a 

least-squares solution with the minimum norm (LSMN).  Besides the LSMN solution, he 

suggested to set a “zero point” for the wavefront to make the estimation matrices full-rank, at 

which the wavefront value is assigned to zero or other constant.  Herrmann’s method of 

evaluating the LSMN solution by forcing the wavefront mean value to be zero is limited, because 

a wavefront that has a minimum norm does not necessarily have a zero mean value. 

The Fried geometry perfectly matches with the lenslet array of the S-H sensor and 

actuator array of a deformable mirror, yielding currently the most popular configuration in 

adaptive optics. But wavefront estimation with the Fried geometry suffers from waffle mode (or 

checkerboard mode), which will be further detailed in Chapter 5. 

3.2.1.2 Fourier transform method 

  A Fourier transform-based algorithm for wavefront estimation from slopes was proposed 

(Roddier & Roddier 1991).92  In order to remove the boundary effect in the Fourier transform 

process due to the limited size and shape of the pupil function, Gerchberg-Saxton iterations were 

used to extrapolate the fringes outside of the test pupil (Roddier & Roddier 1987). 93  The 

Gerchberg-Saxton algorithm is an iterative irradiance-based wavefront estimation method that is 

widely used in phase retrieval, which will be further detailed in Section 3.4.  The flow chart of 

the Gerchberg’s fringe extrapolation algorithm is illustrated in Figures 3.4, and Figure 3.5 shows 

a comparison between the interferograms before and after the extrapolation of the fringes.  Based 
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on Gerchberg’s extrapolation, an iterative Fourier transform-based wavefront estimation from 

slope data can be performed, whose flow chart is illustrated in Figure 3.6. 

 

Figure 3.4   The flow chart of Gerchberg’s fringe extrapolation algorithm. 

(from Roddier & Roddier 1987) 

 

(a)      (b) 

Figure 3.5   An example of interferogram extrapolation (from Roddier & Roddier1987) 

(a) Interferogram before fringe extrapolation (b) Interferogram after fringe extrapolation  
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Figure 3.6   Flow Chart for the iterative FT-based wavefront estimation from slope data 

(from Roddier & Roddier 1991) 

3.2.2  Modal slope-based wavefront estimation 

In modal estimation, a wavefront is decomposed into a linear combination of whole-

aperture basis functions, such as Zernike polynomials, 94  Karhunen-Loeve functions, 95 , 96 , 97 

Legendre polynomials,88 Fourier Series,98 etc.  Thus a wavefront can be expressed as 

( ) ( )y,xZay,xW k

M

0k
k∑

=

=       (3.17) 

where ka are the coefficients to be determined, and ( )y,xZ k are two-dimensional functions that 

are orthogonal over the discretely sampled aperture. The Zernike circle polynomials are such a 
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set of orthogonal functions over a unit circle, which was first introduced by Zernike (Zernike 

1934)99 and was later studied by Brinkman, Nijber, Bhatia and Wolf, Mahajan, et al.60  In a polar 

system, the modified Zernike circle polynomials given by Noll can be written as94, 100, 101, 102. 
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where 10 ≤ρ≤  and π≤θ≤ 20 . The radial degree n and the azimuthal frequency m should 

satisfy nm ≤  and nm −  even. The index k=1, 2, 3… is a mode ordering number, and 

( ) m/2mnnk ++= .  Born and Wolf showed that 60  
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Therefore the modified Zernike polynomial can be written in the following form 

( ) ( )
( ) ( ) ...3sin83cos8cos238sin238               

 2sin62cos6123sin2 cos21,Z
3333

222
k

θρ+θρ+θρ−ρ+θρ−ρ+

θρ+θρ+−ρ+θρ+θρ+=θρ
 (3.20) 

According to Mahajan, the Zernike circular polynomials (3.18) can be written in a 

simpler form as 103,104,105 

( ) ( ) ( ) ( )θimexpρR1nθ,Z m
n

2/1
k +=ρ .    (3.21) 

The orthogonality of the Zernike polynomials means that the inner product of any Zernike 

polynomials is zero when the inner product is performed over a unit circle, which is94  

( ) ( ) kll
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δ=θρρθρθρ

π
∗π

∫ ∫ ,     (3.22) 

where klδ is zero for lk ≠  and 1 for lk = . 
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The merit of the Zernike polynomials is that each term represents a specific wavefront 

aberration. For example, the constant 1 represents the piston error, terms θρ sin and θρcos  are 

wavefront tip/tilt, and term θρ 2sin2 and θρ 2cos2  are astigmatism, etc. Furthermore, the 

Zernike polynomials are orthogonal to each other over a unitary (i.e. normalized to 1) circular 

pupil without central obscuration. Then the variance of the wavefront is given by the sum of the 

squared aberration coefficients.106   

3.2.2.3 Least-squares based modal estimation 

If a wavefront is given by Eq. (3.17), then the derivatives of the wavefront are given by 

( ) ( )yx,Zayx,W k

M

1k
k∇=∇ ∑

=

.     (3.23) 

By matching the gradient data measured in wavefront sensing at each discrete node 

( )TN1 ggG L= , where 1,2,...N,i
y
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ii
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∂
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+
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∂

=
rrg , we have a matrix equation 

GDA = ,       (3.24) 

where D  is the gradient matrix, and ( )TM1 aa L=A is the coefficient vector to be 

determined. In the least-squares sense, both Cubalchini (1979) 107 and Jan Herrmann (1981) 

derived the corresponding normal equation as108  

GDDAD TT = .       (3.25) 

If matrix D  has its full column rank, then the least-squares solution is 109  

GDD)(DA T1T −=         (3.26) 
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The Zernike polynomials are orthogonal only on a unit disk. They are not orthogonal 

over an irregular shaped pupil, such as a pupil with a central obscuration which is a common 

case for an astronomical telescope. Furthermore, the Zernike polynomials are not strictly 

orthogonal over discrete points in a unit circle disk, and all of the derivatives of the Zernike 

polynomials are not orthogonal. Therefore, it is not proper to estimate the mode coefficients 

directly from the slope data or curvature data by least-squares estimations.  

Cubalchini studied the effect of cross correlation between the modal estimates as a result 

of the non-orthogonality of the derivatives of the Zernike polynomials (Cubalchini 1979). He 

showed that the modal estimation is sensitive to the number of slope measurements used and 

their sampling geometry adopted. Although the set of basis functions needs not to be necessarily 

orthogonal to each other, they should be independent (Hardy 1998).110 Jan Herrmann further 

pointed out that the aberration cross coupling problem, caused by the lack of linear independence 

of the column vectors of the matrix D, can be avoided if a least-squares estimate is performed 

with an increased number of modes (Hermann 1981).108  To make a polynomial orthogonal, a 

process called Gram-Schmidt orthogonalization can be employed (Wang and Silva 1980)100.  

With the Gram-Schmidt orthogonalization, the Zernike orthogonal polynomials over circular 

apertures can be extended to an annular aperture,103, 104, 105 or an hexagonal aperture,111,112 or 

other general-shape apertures.113 

Gavrielides first proposed to construct polynomials that are orthogonal to the gradient of 

the Zernike polynomials for modal estimation (Gavrielides 1982).114  Given that the constructed 

polynomials ( )θρ∗ ,lV  and the gradient of the Zernike polynomials ( )θρ∇ ,Zk  are orthogonal to 

each other, their inner product satisfies 
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( ) ( ) kl
*
lk ρ,θρ,θZ δ=⋅∇ V .        (3.27) 

If the gradient data measured is ( )ρ,θG , then the Zernike coefficients can be computed by 
( ) ( )ρ,θρ,θa kk

∗⋅= VG  .          (3.28) 

The constructed polynomials ( )ρ,θkV  were given by an integral of a product of the 

gradient of a Green function defined on the unit circle and a Zernike polynomial. 114 

Alternate to Gavrielides’ method, Acosta et al proposed to introduce an auxiliary vector 

function ( )rkF  whose gradient is orthogonal to the basis function (Acosta, Bara, Rama and Rios, 

1995) 115, which is 

( ) ( )rrF kk ψ*=⋅∇ ,          (3.29) 

where ( )rkψ  is a basis function. Then the modal expansion coefficients of a wavefront W can be 

computed in terms of a weighted integral of the wavefront slopes. Therefore, if kW F is 

continuously differential in σ and its boundary C, according to the divergence theorem, then 

( )

( ) ( )( )
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By carefully choosing kF  the integral along boundary C in the above equation can be made to 

vanish. Then 

( )∫ ∫σ σ⋅∇
ψ
−

= dW1a k
k

k F ,     (3.31) 
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where W∇ is the wavefront gradient.  As a result, the value of ka can be obtained by a numerical 

evaluation of this integral.  More studies on this topic by Solomon et al can be found (Solomon 

et al 2001). 116 

Southwell adopted the Legendre polynomials to expand a phase function88 

( ) ( )yx,Lnayx,φ kk

M

0k
k∑

=

=        (3.32) 

where ka are the coefficients to be determined, kn  are the normalized constants, and  ( )y,xLk are 

the orthogonal basis functions over the discretely sampled aperture, which are constructed from 

production of the Legendre polynomials. The slope function is obtained by differentiating 

Eq.(3.32), whose terms turned out to be another Legendre polynomials thus are still orthogonal.  

Based on the Legendre polynomials, Grediac proposed a method that can be used for wavefront 

estimation for slope or curvature measurements over a rectangular area (Grediac 1997).117   

3.2.2.4 Fourier transform-based modal estimation 

Freischlad and Koliopoulos proposed a Fourier transform-based modal wavefront 

estimation method (Freischlad & Koliopoulos 1985, 1986).118, 119  A set of complex exponential 

basis functions with   

 ( ) ( ) 1Nq,p0 ,Nn,m1     ,qnpm
N

i2exp
N
1n,mZ pq −≤≤≤≤⎥⎦

⎤
⎢⎣
⎡ +
π

= , (3.33) 

were adopted. They are orthogonal over a square discrete data array, so are their derivatives. 

Expanded in complex exponential basis functions, the wavefront is the inverse discrete Fourier 

transforms (DFT-1) of the expansion coefficients pqa , i.e.  
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( ) ( ) ( )pq
1

pq

1N

0q,p
pq aTDFn,mZan,mW −

−

=

== ∑ .    (3.34) 

Then the expansion coefficients pqa  are the discrete Fourier transform (DFT) of the wavefront 

( )n,mW , i.e. 

( ) ( ) ( )[ ]n,mWTDFn,mZn,mWa pq
*

N

1n,m
pq == ∑

=

   (3.35) 

where the asterisk * denotes the complex conjugate.  

 In order to obtain the coefficients pqa , Eq.(3.34) is differentiated , yielding 

 ( ) ( )n,mZan,mW pq

1N

0q,p
pq∑

−

=

∇=∇ ,      (3.36) 

where the discrete gradient can be obtained by the noisy measurements, i.e. nS +∇= W , and n  

is the measurement noise. 

 For the Hudgin geometry,  
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Matching the measured slope data )n,m(S  in the x-and y-directions with Eqs.(3.36) and (3.37) 

provides  
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Solving this equation in a least-squares sense, we obtain the estimate of coefficients pqa  as 
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Applying the obtained coefficients into Eq.(3.34), the wavefront estimate is then available.   

 The error propagation of modal estimation is comparable to that of the zonal estimation, 

except that most of the error occurs in sharp peaks at the edges and corners in the modal 

estimation, because a N×N array has only (N-1)×N gradient data for the Hudgin geometry. To 

generate the missing data, a periodicity requirement is assumed. The average difference of each 

row or column should be zero. This method can be easily extended to rectangular sampling 

arrays, but it is difficult to generalize it to irregular arrays over which the complex exponentials 

are not orthogonal. The Fourier transform-based modal estimation algorithm is efficient; and its 

computational complexity is approximately proportional to the number of grid points N2. 

In order to handle the irregular pupil shaped applications, Freischlad extended this 

algorithm for general pupil shapes (Freischlad 1992).120  In Freischlad’s method, additional least-

squares matrix equations were required for generating the missing slope data to extend an 

irregular shaped pupil to a square shaped domain. The condition of integrability was used for 

generating the missing WFDs outside of the original pupil, which satisfies the condition that 

summation of the WFDs around each grid cell should be zero. 

3.2.3 Radon transform-based modal estimation 

Aksenov and Isaev proposed a modal wavefront phase estimation method based on the 

Radon transform (Aksenov & Isaev 1992).121  If the wavefront slope in the x- and in y- directions 
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=ν , then according to the inverse Radon transform 

the wavefront phase can be expressed as121 
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If the wavefront phase in a circular pupil can be expressed as a sum of the Zernike polynomials 

)y,x(a)y,xW( k
1k

kψ= ∑
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,     (3.41) 

then ka can be defined as121 

( ) ρρϕρψϕρϕ
+

π
=

ψ

ψ
= ∫∫

π
d,),W(d

1n
RW,

a k

R

0

2

0

2

k

*
k

k .   (3.42) 

Computing the above integration yields the coefficients of the Zernike polynomials. More 

simulation studies on Radon transform-based wavefront estimation were presented (Dam and 

Lane 2002).122 

3.3 Curvature-based wavefront estimations 

 Curvature-based wavefront estimation was not reported in the previous literature until 

recently, because the wavefront curvature sensing was not popular before F. Roddier invented a 

curvature sensor based on axial differential irradiance measurements.47 Since then, curvature-

based wavefront estimation has become an active topic of research in wavefront sensing. 

Curvature is a characteristic parameter of wavefront, and the curvature-based wavefront sensing 

is vibration insensitive, which is an important feature for in-situ wavefront sensing and optical 

workshop testing. 
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3.3.1  Zonal curvature-based wavefront estimation 

As discussed in Section 3.1, curvature-based zonal wavefront estimation is a numerical 

solution to the Poisson’s equation with Neumann boundary. It is a particular type of elliptical 

partial differential equation (PDE) with a non-unique solution. Curvature-based zonal wavefront 

estimation can be performed with either a least-square method or with a Fourier-transform-based 

method.  

For the curvature-based zonal wavefront estimation with a least-squares method, a finite-

difference solution to the PDE may be obtained by replacing the curvature terms ( )ji y,xf  in 

Eq.(3.12) with direct curvature measurements.  

For the curvature-based zonal wavefront estimation with a Fourier-transform based 

method, the wavefront Laplacian is given as 

2

2

2

2
2

y
(x,y)W

x
(x,y)W(x,y)W 

∂
∂

+
∂

∂
=∇ ,    (3.43) 

and the Fourier transforms of Laplacian curvatures are given by 
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⎧

∂
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Therefore, the Fourier transform of the wavefront Laplacian is 

{ } { })y,xW(FT)(4),()y,xW(FT 2222 ⋅η+ξπ−=ηξ∇  .   (3.46) 

Following this method, Roddier and Roddier obtained the curvature (Laplacian)-based wavefront 

estimation formula as92 
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3.3.1.1 Least-squares-based zonal estimation 

On the basis of the finite difference method, N. Roddier presented an iterative least-

squares-based algorithm for wavefront estimation from curvature data (N Roddier 1991).123  To 

speed up the solution convergence, N Roddier employed the successive over-relaxation (SOR) 

method in the iterative algorithm for all the points inside the pupil area. Since the test pupil has 

central obscuration, the boundary condition given at the outer edge was applied for wavefront 

estimation, and no boundary condition was needed for the inner edge. The wavefront values 

inside the central obscuration were estimated with zero curvature by algorithm interpolations. 58 

3.3.1.2 Fourier transform-based zonal estimation 

 Roddier and Roddier proposed a curvature-based algorithm for zonal wavefront 

estimation with Roddier’s curvature sensor (Roddier & Roddier 1991).92  This algorithm starts 

with the curvature data sampled inside the test domain and the curvature set to zero outside of 

the domain. The wavefront Laplacians are estimated by taking the difference between the 

illuminations in symmetrically defocused planes. The radial derivatives are forced to zero within 

a narrow band surrounding the boundaries, while the inner slopes are forced to be equal to the 

edge signal. Then a Fast Fourier Transform (FFT) is applied and an iterative process is 

performed as shown in Figure 3.7.  
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Figure 3.7  Flow Chart of iterative FT-based wavefront estimation from curvature data 

 (from Roddier & Roddier) 

For Roddier’s curvature sensor, the wavefront estimation from curvature data is valid 

only for small magnitude of the aberrations and it becomes inaccurate for large aberrations47,57  

To improve the estimation accuracy for a wavefront with large aberrations, an iterative process 

can be employed by compensating the effect of the estimated aberrations on the defocused 

images as a simulation of an active optics control loop. The residual wavefront estimated in each 

iteration is added to the estimated wavefront in the 1st iteration until the noise level is reached. 57 
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3.3.2  Modal curvature-based wavefront estimation 

In curvature-based modal estimation, the wavefront aberrations are represented by a 

linear combination of a set of orthogonal basis functions, such as the Zernike polynomials. To 

evaluate the modal coefficients, the first- and second-order derivatives of the Zernike 

polynomials must be employed to fit the slope data at the boundary and the curvature data inside 

the test pupil. The problem lies in that the first- and second-order derivatives of the Zernike 

polynomials are not orthogonal, and the modal estimation is not unique.  

 

Table 3.1  The Zernike polynomials and their 1st to 2nd derivatives 
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Han proposed to estimate the wavefront without solving the Poisson equation for the 

curvature signal (Han 1995). 124    As shown in Table 3.1, the Laplacian of some Zernike 

polynomials are zero.124   Han named the polynomials that have zero Laplacian as B-mode terms, 

and the others terms as L-mode terms.124  Therefore, the Laplacian region, which is the inside of 

the test pupil, does not contain any information about the B-mode terms whose information is 

only contained in the boundary region.  Han estimated the L-mode terms from the Laplacian 

region co-aligned with the B-mode terms from the boundary region. As pointed by Han, the 

problems lying in this algorithm are the non-orthogonality of the L-mode terms and the difficulty 

in separating the boundary region from the Laplacian region.124 

Similar to Han’s work, Gureyev et al decomposed the wavefront phase expressed by the 

Zernike polynomials into two orthogonal parts. One part was composed of the diagonal Zernike 

polynomials (i.e. m=n) whose Laplacian are zero, and the other part was composed of the non-

diagonal Zernike polynomials (i.e. nm ≠ ) whose Laplacian are nonzero (Gureyev, Roberts and 

Nugent 1995).125  They showed that the wavefront phase of the diagonal terms depends on the 

wavefront slopes at the boundary and the boundary values of the non-diagonal terms, while the 

wavefront phase of the non-diagonal terms depends only on the nonzero wavefront curvature 

inside the aperture.  Both the wavefront phase and the wavefront curvature could be expanded 

into a series of Zernike polynomials, and a matrix was found to convert the coefficients of the 

wavefront phase into the coefficients of the wavefront curvature.  The modal phase retrieval 

could be performed with the matrix method over a circular aperture. 

  As we introduced in Sect.3.2.2, Gavrielides first proposed in 1982 to construct a set of 

polynomials that are orthogonal to the gradient of the Zernike polynomials in modal 

estimation.114 Then the modal coefficient is the inner product of the auxiliary function and the 
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differential measurements over the testing area. Voitsekhovich similarly proposed to introduce an 

auxiliary set of polynomials that are orthogonal to some differentials of the wavefront (such as 

the 2nd derivatives) for Roddier’s curvature sensing (Voitsekhovich 1995). 126  Following the 

work on the slope-based modal estimation given by Acosta et al,128,115 which was to introduce an 

auxiliary vector function whose gradient is orthogonal to the basis function,  Rios et al proposed 

to introduce an auxiliary set of basis functions m)1,2,(k k L=ξ  whose Laplacians are orthogonal 

to basis functions such as the Zernike polynomials m)1,2,(kk L=ψ  over the testing 

domainσ (Acosta, Bara,  Rama, and  Rios1995).127, 128  The auxiliary function is chosen in such a 

way that it satisfies the following equation set 

( ) ( )
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⎨
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∈=∂ξ∂
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whereσ is the test pupil and c  is its boundary. Then they obtained the modal coefficients by 

employing Green's second identity as , 
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 In order to evaluate the above multiple integrals, a numerical integration method called 

Albrecht’s cubature was adopted for the integral within the pupil regionσ , combining with a 

composite trapezoidal rule for the integral along the pupil boundary (Bara, Rios& Acosta 

1996).129 This method provides a more accurate result with smaller number of measurements 

than those of other usual integration routine, such as the Gauss-Legendre, Simpson’s rule and the 

composite trapezoidal rule.  Nevertheless, the problem in this algorithm is that the Zernike 

polynomials are not strictly orthogonal over the discrete set of sampling points. 
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3.4 Phase retrieval techniques 

  The amplitude-based wavefront sensing, usually called the phase retrieval problem, is an 

old problem in optics. It estimates the wavefront by measuring the irradiances at the pupil or 

image plane, and find applications from Fourier transform spectroscopy, x-ray crystallography, 

particle scattering and electron microscopy to optical imaging. The earliest report in the literature 

can be dated back to the beginning of the 1960s (Wolf 1962,130 O’Neill and Walther 1962,131 

Walther 1962,132 Dialetis and Wolf 1967,133 and Greenaway 1977134). For coherent imaging, the 

advent of the laser and the technique of off-axis holography pioneered by Leith and Upatnieks 

solved this problem (Leith & Upatnieks 1962, 135  Wolf 1970, 136 ). For incoherent imaging, 

Gerchberg and Saxton proposed a Fourier transform-based iterative algorithm for the evaluation 

of the amplitude and phase from the irradiance measurements at the pupil and image planes 

(Gerchberg & Saxton 1971, 1972) 137 , 138 , which became a first practical method for phase 

retrieval in optics.  The Gerchberg-Saxton algorithm involves iterative Fourier transform back 

and forth between the object and the Fourier domain, while applying the measured data or known 

constraints in each domain. Later on Fienup modified the Gerchberg-Saxton algorithm to speed 

up the convergence and developed an algorithm called the input-output approach (Fienup 

1974).139,140, 141 

As an alternate to the Gerchberg-Saxton algorithm, the wavefront phase can also be 

estimated from the irradiance measurement of a single image. When the measurement is made at 

the image plane, the irradiance distribution should be related to the complex pupil function 

through a Fourier transform. By comparing the computed image irradiance with the measured 

image irradiance, the wavefront phase at the pupil can be identified. As a metric to search for the 
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solution, a merit function can be defined as a mean squared sum of the difference between the 

computed and the measured irradiance values. Given that the detector noise is Gaussian, the 

wavefront phase retrieval problem is how to search a solution that minimizes this merit function 

in the sense of the maximum-likelihood. This method was independently proposed by Gonsalves 

and Southwell (Gonsalves 1976,142 Southwell 1977143).  

 At this point, the phase retrieval problem became a numerical computational problem 

rather than an optics problem. It is generally computationally intensive. The numerical method, 

such as the steepest decent gradient method, can be applied in the solution search.140,143  Usually, 

the phase retrieval is valid for small aberrations only, unless one can constrain the numerical 

solution in a limited space, because there is a 2π-phase ambiguity for the large aberrations.  

The phase diversity method was actually initiated by Misell (Misell 1973),144,145,146 when 

Misell proposed an iterative phase retrieval algorithm from the irradiance measurements of the 

images taken at two different defocused values. The iterative scheme, which is closely related to 

the Gerchberg-Saxton algorithm, was established between the two images by convolution.  

Because the irradiance measurements were performed in the image space, and the knowledge of 

the amplitude function in the pupil is not required, the Misell algorithm is more convenient than 

the Gerchberg-Saxton algorithm for phase retrieval in practice. Roddier & Roddier modified the 

Misell algorithm by taking the irradiance measurements of image at three different defocus 

values to improve the convergence, while minimizing the effect of misalignment errors on the 

CCD camera in the analysis of the imaging capability of the Hubble Space Telescope (Roddier & 

Roddier 1993).147 

However, the phase diversity method is nowadays referred to as another phase 

deconvolution technique that was proposed by R. A. Gonsalves (Gonsalves 1979).148, 149,150 The 
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phase diversity technique can provide a joint estimation of object and phase aberrations by 

collecting two incoherent images: one is the traditional paraxial image, and another is an image 

with given quadratic defocus error. This method is good for both point and extended objects.  

Extensive simulation studies including noise effect were performed by Paxman et al,151, 152 and 

some simulation and experimental investigations, including closed-loop adaptive optics 

experimental demonstration was presented by Kendrick and Jefferies et al. 153,154 

3.4.1 Gerchberg-Saxton and Misell methods 

In this section, we first review the Gerchberg-Saxton method and then briefly review the 

Misell algorithm, which is much related to the Gerchberg-Saxton method.  

3.4.1.1 Gerchberg-Saxton method 

The Gerchberg-Saxton method evaluates the wavefront phase by an iterative procedure 

that constrains the wavefront amplitudes to the irradiance measurements in both the image and 

the pupil planes that form a Fourier transform pair. Given that the wavefront amplitude is 

proportional to the square root of the measured wavefront intensity, detectors are needed to 

record the irradiances at the image plane and pupil plane in the Gerchberg-Saxton method.  

The principle of the Gerchberg-Saxton method is shown in Figure 3.8.59 An array of 

random numbers are generated between –π and +π as the initial phase values at the image plane. 

These are combined with the sampled image amplitudes to synthesize a complex discrete 

function. By employing the FFT algorithm given by Cooley and Tukey (Cooley & Tukey 
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1965),155 this complex function is Fourier transformed into the pupil plane. The computed phases 

at the sample points are combined with the sampled pupil amplitude function to form a new 

estimate of the complex function in the pupil plane. The iteration then continues until it 

converges to a solution when the complex function of the Fourier transform pair satisfies the 

irradiance measurements in both pupil and image planes. The Gerchberg-Saxton algorithm is the 

basic algorithm for a variety of phase retrieval methods. 

 

Figure 3.8  Gerchberg-Saxton algorithm (Adopted from Chanan) 

 

The Gerchberg-Saxton algorithm is paraxial imaging-based, which can be generalized to 

accommodate for both paraxial and non-paraxial imaging systems (Yang et al 1994).156 This 

method is easy to implement, and it is sensitive to piston errors. However, it is nonlinear, 

computationally intensive, and requires the wavelength band to be narrow. The uniqueness of the 

solution can also be a problem. Adding an arbitrary but constant phase to any function whose 

irradiance in the image and pupil planes are the same as the measured irradiance will yield a new 

complex function that still satisfies the Fourier transform between the image plane and the pupil 
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plane. It also has a 2π-phase ambiguity problem. The dynamic range of the phase measurements 

is limited between –π and +π, and the method fails if the dynamic range exceeds 2π. Finally, as 

pointed by Fienup,139  the convergence of the Gerchberg-Saxton algorithm is slow.    

3.4.1.2 Misell algorithm 

Instead of employing an iterative scheme between the image and pupil planes as in the 

Gerchberg-Saxton algorithm, Misell established an iterative scheme between the focused image 

and a given defocused image. The Misell algorithm is shown in Figure 3.9, and the iterative 

procedures are shown as follows: 144 

1. The complex wave function ( )r1ψ at the focused image plane is formed with its 

amplitude obtained from measurement and its phase values randomly assigned between π−  and 

π+ .  

2. Evaluate the convolution ( ) ( ) ( )rrr G*ψψ 12 =′  to obtain a wave function ( )r2ψ′ at the 

defocused image plane. The quadratic defocus phase term ( )rG  is defined by 144 
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2
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where 00 /2k λπ= , 0λ is the wavelength of the light source, fΔ is the defocus value between the 

two images, and ( )yx ,νν=ν  is the spatial frequency in the Fourier domain.  

3.  Compare the computed amplitude of ( )r2ψ ′  with the actual image amplitudes from 

measurement. If the difference is not acceptable, replace the computed amplitude with the 

measurement and retain the phase terms to form a new wave function ( )r2ψ . 
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Figure 3.9  Misell algorithm  

 

4.  Evaluate another convolution ( ) ( ) ( )rrr G*ψψ 21 ′=′  to obtain a new function ( )r1ψ ′  at 

the focused image plane, where the quadratic defocus phase term ( )rG′  is defined by 
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5. Compare the computed amplitudes of ( )r1ψ ′  with the measured amplitudes at the 

focused image plane. If the difference is appreciable, then a new wave function ( )r1ψ at the 

focused image plane is formed with the amplitude of ( )r1ψ ′  replaced with the measurement and 

the phase term retained. Then going to Step 2, and the iteration continues.  

The iteration is completed when a specified small difference between the computed and 

the measured amplitudes is satisfied. In this algorithm the absolute defocus values are not 

required, only the relative defocus value between images is measured.  
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3.4.2 Phase diversity technique 

As initiated by Misell, phase diversity is a phase-retrieval algorithm that uses a pair of 

intensity images at different defocused values: One image can be the conventional focal-plane 

image ( )y,xI1 , and another one can be the image with a known defocused value ( )y,xI 2 . The 

optical layout of a phase diversity system is shown in Figure 3.10.151 

 

Figure 3.10  Optical layout of a phase diversity system (from. Paxman et al) 

For an extended object, the images at different defocus planes are 

( ) ( ) ( ) ( ) .2,1i     ,y,xny,xP*y,xOy,xI iii =+=    (3.52) 

where ( )y,xO  is the incoherent object under estimation, ( )y,xPi  is the PSF of having a diversity, 

which is the squared modulus of the Fourier transform of the corresponding complex pupil 

function, and ( )y,xni  is the measurement noise. The complex pupil function in Fourier space can 

be written as 

( ) ( ) ( ) ( )( )v,uθiv,uφiexpv,uAv,uψ ii += ,    (3.53) 

where ( )v,uA  is the zero-one pupil function, ( )v,uφ is the phase function under estimate, and 
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( )v,uθi  is the given quadratic defocus phase term, which is zero for the focused image. 

Gonsalves introduced an error metric as 149 

( ) ( ) ( )[ ]∑ ∫∫
=

−=
2

1i

2

ii dxdyy,xP̂*y,xÔy,xIE     (3.54) 

where ( )y,xÔ and ( )y,xP̂i  are the estimates of the object function and the PSF for different 

defocus values. Now the phase retrieval becomes how to find a solution ( )v,uφ  that minimizes 

the E-metric in Eq. (3.54), which is identical to the solution search in the phase retrieval with one 

image observation.142,143,149 Paxman et al showed that this is equivalent to the maximum-

likelihood estimate.151 According to Parseval’s theorem, the E-metric can be computed in the 

spatial frequency domain and the Fourier transform of ( )y,xÔ  should satisfy 

( )
( ) ( )

( )∑

∑

=

=

∗

= 2

1i

2

i

i

2

1i
i

v,uP̂

v,uIv,uP̂
v,uÔ .        (3.55) 

Then applying Eq.(3.55) in Eq. (3.54), the E-metric becomes 148 

( ) ( ) ( ) ( )

( ) ( )
dudv

v,uP̂v,uP̂

v,uP̂v,uIv,uP̂v,uI
E

2

2

2

2

1

1221

∫∫
+

−
=       (3.56) 

 Extensive studies on the optimal diversity selection were given by Dean and Bowers31 

and Dolne et al 157. By making the maximum contrast of the defocused PSF image, Dean and 

Bowers showed that the optimal diversity defocus value can be determined by 31 

( ) L
m

,3,2,1,0n,
1n24

â
2
0

max =
ν±

= ,    (3.57) 

where 0ν is the dominant spatial frequency of the wavefront under test. We should avoid the 

diversity defocus values that yield minimum contrast of the defocused PSF image, which are 
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determined by31 

L,3,2,1,0n,
n8

â
2
0

min =
ν±

= ,     (3.58) 

They showed that the phase retrieval convergence is relatively quick for small defocus values, 

but the large-defocused phase retrieval is more accurate, which is advantageous for the recovery 

of higher-spatial-frequency phase aberrations. 31 

 Brady and Fienup proposed a phase retrieval algorithm for any arbitrary desired plane, 158 

and more extensive studies on the phase diversity by many authors can be found in recent 

literatures. 159,160,161,162,163,164,165,166,167,168,169,170,171,172  

3.5 Comparisons and Summary 

 In this section, we compare the phase retrieval and the phase diversity techniques with 

the S-H slope sensor and Roddier’s curvature sensor.   

3.5.1 Phase diversity technique and the S-H sensor 

 The phase diversity technique employs two or more channels of diversity data to 

determine the phase aberrations, which provides information that makes the phase aberrations 

more uniquely identified than would a standard single channel of conventional image data. 173,  

In summary, except for its intensive computation, the phase diversity method has the following 

practical advantages over standard techniques such as the S-H slope sensor:  (1) The phase 

diversity method requires minimum of optics, and (2) the phase diversity method is vibration-

insensitive. (3) The spatial scales on the aberrations sensed can be easily changed. (4) The phase 
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diversity method can be used for phase retrieval with both point or extended sources. (5) The 

phase diversity method can work for phase retrieval with a discontinuous wavefront, such as in a 

segmented mirror figure testing.  

3.5.2 Phase diversity technique and Roddier’s curvature sensor 

  Roddier’s curvature sensor measures the irradiance of the wavefront near the focus for 

estimating curvature information, which belongs to amplitude-based wavefront sensing. 

Campbell, et al asserted that if the two intensity measurements are taken symmetrically about the 

system input pupil (or equivalently about the image focal plane), the phase diversity method 

becomes a curvature-sensing algorithm (Campbell, et al 2004).174  

 However, because the wavefront estimation for Roddier’s curvature sensor is directly 

based on wavefront curvature not on wavefront amplitude, Roddier’s curvature sensor and the 

phase diversity method are different in principle.175 (1)Their wavefront estimation algorithms are 

different. The phase diversity method provides a joint estimate of the object and the wavefront 

aberrations, whereas the Roddier curvature sensor yields the estimate of wavefront aberrations 

only. (2)  Their data measurements are performed at different distances from the focal plane. The 

plane of phase diversity measurement is only several wavelengths away from the focal plane, 

which is inside of the caustic zone, but Roddier’s curvature sensor measures data symmetrically 

in two planes which are at least several hundreds of wavelengths away from the focal plane to 

keep away from the caustic zone. (3) The phase diversity requires no apriori knowledge of the 

object and works well with extended objects, whereas the Roddier curvature sensor requires the 

object to be a point source. (4) The phase diversity can work with a continuous or discontinuous 
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wavefront, but Roddier’s curvature sensor works with continuous wavefront only. (5)  Roddier’s 

curvature sensor works well with both monochromatic light and broadband light, whereas the 

phase diversity works with monochromatic light. The expansion to broadband would require 

further investigations.175 

 Whenever a parameter is being estimated by using random data, the accuracy of the 

estimate is fundamentally limited by the randomness of the data. This is intuitive and quantified 

by the Crame´r–Rao theorem. 176  The smallest possible unbiased estimator variance for a given 

estimation problem is given as the Crame´r–Rao lower bound (CRLB).177,178,179  Fienup showed 

that by applying the CRLB the measurements of the phase diversity inherently possesses more 

information on phase aberrations than Roddier’s curvature sensor,175 which works on a large 

defocus. Therefore, the wavefront estimation with phase diversity can achieve a higher accuracy.  

3.5.3 Summary 

 Wavefront phase retrieval methods are based on irradiance measurements, which employ 

phase deconvolution algorithms with iterative Fourier transform operations. The intensive 

computation for phase retrieval from image irradiance measurements is the main disadvantage of 

the phase diversity technique.  However, with the developments of computing technology and 

the phase retrieval technique, there is potential for the phase diversity technique to yield a real-

time wavefront sensing technique.  
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CHAPTER FOUR: ITERATIVE SLOPE-BASED WAVEFRONT 
ESTIMATION FOR ANY SHAPED PUPILS 

Various methods and algorithms for wavefront estimation have been reviewed in Chapter 

3. Of most interest among them are those that can handle general pupil shapes. Such algorithms 

can be categorized into either FT-based algorithms or linear least-squares-based algorithms.  For 

FT-based algorithms, Gerchberg and Saxton in 1972 proposed iterative phase retrievals from 

amplitude measurements in the aperture and the image planes.137  Freischlad and Koliopoulos in 

1985 proposed a DFT-based modal estimation from wavefront slope measurements for square-

shaped pupils. 118,119  Later on, Freischlad extended this algorithm to handle general pupil shapes 

by introducing additional least-squares equations for creating the missing slope data outside of 

the original pupil to make a square one.120  Roddier & Roddier proposed a FFT-based algorithm 

for irregular shaped pupils by extrapolating the wavefront slopes outside the pupil using the 

Gerchberg-Saxton method.92 ,93 Zou and Zhang established a pre-defined linear least-squares-

based matrix equation for any pupil shape by setting the slope data outside the original pupil to 

zero (Zou & Zhang 2000),11  but this method introduces large deviation errors in the estimated 

wavefront (i.e. up to λ/4 peak-to-valley), which may not be acceptable for most optical tests.  

Usually, changes in the pupil shape or size will cause changes in the wavefront 

estimation matrix and require a new setup of the wavefront estimation process for each new size 

or shape, which can be time-consuming in optical testing, especially when the grid size is large. 

Thus, a mathematical formulation that can automatize the wavefront estimation for any size and 

shape pupil would not only improve the efficiency of the testing process but also minimize 

potential errors necessarily associated in setting up a new wavefront estimation matrix.  
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While the Zou and Zhang’s least-squares algorithm suffers from large deviation errors 

due to the discontinuity across the original pupil boundaries, its strength is that it creates a pre-

defined matrix for wavefront estimation, and provides an immediate basis function for effective 

wavefront  estimation from slope measurements for any pupil shape or size. By adding a 

Gerchberg-Saxton iterative process, in this chapter we propose to develop an iterative algorithm 

for wavefront estimation based on the pre-defined matrix equation. This process will enable 

extrapolating the slope data outside the pupil, and thereby satisfy the continuity of the wavefront 

slope inside the extended domain, which is required by Neumann boundary problem.  

4.1  Proposed wavefront estimation algorithm for any size and pupil shape 

 The pre-defined wavefront estimation matrix established by Zou and Zhang11 will be 

used in this chapter for wavefront estimation in the proposed method.  The Southwell sampling 

geometry will be adopted because of its superiority over other geometries in error propagation as 

we will discussed in Chapter 5. As illustrated in Figure 3.2, the Southwell geometry is 

characterized by taking the wavefront slope measurements and wavefront values estimation at 

the same nodes. 

4.1.1 Pre-defined matrix equation for wavefront estimation 

 In a problem with discrete slope measurements as a starting point, a 2-D array of discrete 

values wi (i=1, 2, 3,… t×t) was used to map the estimated wavefront values. An interlaced array 

of j nodes was introduced to facilitate the estimation of wavefront slopes at the midpoints 
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between wavefront nodes.  Figure 4.1 shows the geometry in one direction (e.g. the y-direction) 

with both the nodes i and the interlaced nodes j.  The slope data between two neighboring points 

is assumed to change linearly with distance,90 which allows performing linear interpolation to 

estimate the slope between nodes. 

 

Figure 4.1  The double sampling grid systems illustrated in the y-direction 

   

 Suppose the wavefront travels in the x-direction, the wavefront slopes at the nodes i in 

the y and z directions are denoted as 
iys and izs (i=1, 2, 3… t×t-1, i≠t), respectively. The slope 

at node j in the y-direction is then estimated as an average of the slopes at nodes i and i+1 by 

)(
2
1

1+
+=

iyiyyj sss ,      (4.1) 

where the slope syj could also be expressed as a quotient of the wavefront value difference at 

nodes i and i+1 and their separation a, so that  

a
wws ii

yj
−

= +1  .      (4.2) 

By combining Eq.(4.1) and Eq.(4.2) the relationship between the wavefront slopes and the 

wavefront values at i+1 and i is established as 
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)(
2 11 ++ +=−

iyiyii ssaww .     (4.3) 

Similarly in the z direction, according to the sign convention shown in Figure 4.1, the 

relationship follows 

)( tiziztii ssaww ++ +=−
2

.     (4.4) 

 

Figure 4.2  The domain extension for an irregular-shaped pupil 

 

 The pre-defined wavefront estimation model of Zou and Zhang follows these steps:11 

1.  Without loss of generality, the regular square net has a t×t= m grid points. 

2. Furthermore, the original sampling domain Ω0 (i.e. exit pupil, simply connected 

domain or multiple connected domains) is embedded into a regular square domain Ω1 

that contains the sampling domain Ω0. Then the square domain Ω1 can be thought as 

being composed of two parts: the real part Ω0 and the imaginary part Ω1\Ω0, both 

shown in Figure 4.2. 
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3. The grid points in Ω1 are indexed sequentially from 1 to m row by row (the grid 

points could also be indexed equivalently column by column as an alternative). This 

numbering mode is referred to as the serial number scheme (SNS). 

4. The slopes were set to zero in the imaginary part Ω1\Ω0.  

 

 With such a numbering mode, Eq. (4.3) and Eq.(4.4) can be written in matrix form as  
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or 

SCW = ,     (4.5b) 

where iic ,1+  and itid ,+  are defined as  

( )

( )⎪
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⎧

+=

+=

++

++

iztizi,ti

iy1iyi,1i

ss
2
ad

ss
2
ac

.    (4.6)  

The corresponding normal equation set can be written as 
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SCCWC TT = .     (4.7) 

 The original test pupil is embedded into a larger square domain to obtain the pre-defined 

matrix that is good for any test pupil shape. After the “zero point” of the estimated wavefront is 

determined, the matrix equation becomes positive. The Cholesky decomposition method can be 

employed in solving the normal matrix equation. However, results are limited by up to λ/4 peak-

to-valley deviation errors, which are shown in Figure 4.3. 
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Figure 4.3  Non-iterative wavefront estimation with pre-defined matrix  

(a) Ground-truth or original wavefront (b) Wavefront estimated by the non-iterative pre-defined 

matrix equation (c) Wavefront deviation error map as the difference between (a) and(b) 

 

In Figure 4.3 (a), the original wavefront is an estimated wavefront that is considered to 

represent ground truth for wavefront estimation as will be further explained in Section 4.2.  The 

estimated wavefront from slope data with the pre-defined matrix equation is shown in Figure 4.3 

(b).  The difference between the estimated and the original wavefronts is shown in Figure 4.3(c), 

which represents the deviation errors associated with the domain extension made across the 

boundary. Therefore, while the domain extension technique is quite useful for developing a 

regular pre-defined estimation matrix for any irregular pupil shapes, the challenge lies in how to 
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remove the deviation errors in the estimated wavefront. A least-squares-based Gerchberg-Saxton 

iterative process will be established to make a smooth slope extrapolation and thereby minimize 

the deviation error in the estimated wavefront. 

4.1.2 Wavefront slope computations   

 The proposed algorithm will first require calculating slope data in the extended domain from 

the estimated wavefront in iteration in order to enable an iterative process. Such computations 

will be first presented. 

 Slope computation from a given wavefront could be thought simply as the inverse problem 

of wavefront estimation from slope data.  In this case, one would inverse the equations 

established in Section 4.1.1 to obtain a matrix equation set for slope computation.  However, 

such a resultant matrix is rank-deficient, which is intrinsically linked to the Southwell geometry 

chosen for the problem. The Southwell geometry is optimal in terms of noise propagation and 

thus will be conserved in the algorithm. Therefore, additional independent equations will be 

needed for slope extractions from a given wavefront. Such equations are chosen to be established 

based on curvature estimates. We shall first describe the matrix formulation for the wavefront 

slope computations in the y-direction, and then provide the matrix formulation for the z-direction 

computation. 

4.1.2.1 Wavefront y-slope computation 

 For the slope at the midpoint between the nodes i and i+1, Eq. (4.3) may be written as 
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 jyi1yi ess =++  ,           (4.8) 

where 

( )i1ij ww
a
2e −= + ,i=1, 2 …m-1, but  i≠t, 2t, 3t,….m.   (4.9) 

In matrix form, Eq. (4.8) may be written as 

  ESA y =1 ,       (4.10) 

which is not a full-rank matrix equation set.  Curvature-based equations are then considered to 

determine a unique solution for slope computation.  As illustrated in Figure 4.1, the curvature at 

a midpoint node j+1 is proportional to the slope difference between adjacent points i+1 and i+2. 

According to Figure 4.1, we have 

1j1i y2i y fss +++ =− ,      (4.11) 

where  

 ( )i1i2i3i1j wwww
a2

1f +−−= ++++      (4.12) 

 If Eq. (4.12) is divided by the grid separation a, it will actually be a discrete approximation 

of the wavefront curvature at node j+1, which is of O(a3) precision as shown in Eq. (A12) in 

APPENDIX.  In matrix form, Eq. (4.11) may be expressed as  

  FSA =y2 .       (4.13) 

 Combining Eq. (4.10) and Eq. (4.13), a matrix-form equation set may be written as 

  UAS =y ,       (4.14) 

where   
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[ ]Tym2y1y sss L=yS ,      (4.16) 
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with  

( )1111 ,,,diag DDDA L= ,        (4.18) 

( )222 D,,D,DA Ldiag 2 = ,      (4.19) 
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Then the normal equation set for wavefront slope extraction in the y-direction can be written as 

UAASA y
TT = .       (4.22) 

4.1.2.2 Wavefront z-slope computation 

 Similarly, the slope-based equations along the z-direction are given by 

jti ,zi ,z gss =+ + , i=1, 2,...,m-t,      (4.23) 
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where 

( )tiij ww
a
2g +−= .      (4.24) 

In matrix form, Eq. (4.23) may be written as  

G  SB =z1        (4.25) 

which is not a full-rank matrix equation.  To get a full-rank equation set, the curvature-based 

equations can added 

tjt2i ,zti ,z hss +++ =− ,      (4.26) 

 where  

( )t3it2itiitj ww w w
a2

1h ++++ +−−= ,    (4.27) 

and i=1,2,… t; t+1, t+2, ... 2t-3,…, m-3t.  The derivation of Eq. (4.27) is given as Eq.(A14) in 

APPENDIX.  In matrix form, Eq.(4.26) becomes 

  HSB =z2 .        (4.28) 

Combining Eqs. (4.25) and (4.28) in a matrix-form equation set, we obtain 

VBS =z ,       (4.29) 

where  
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[ ]Tzm2z1zz sss L=S ,     (4.31) 
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Then the normal equation set for the z-direction slope extraction may be written as 

VBBSB T
z

T = .       (4.36) 

4.1.3 Least-squares -based Gerchberg-Saxton iterative algorithm  

 Given the pre-defined linear least-squares matrix equation sets established for wavefront 

slope computation and wavefront estimation, we shall now detail the least-squares-based 

Gerchberg-Saxton iterative wavefront estimation algorithm, which is illustrated in the flow chart 

in Figure 4.4 (Zou and Rolland 2005).180  Using Eq. (4.7), as shown in Figure 4.2, the wavefront 

values are first estimated from the slope data in 1Ω , which are the original slope measurements 

inside the original pupil and zero outside it. The matrix equation sets given by Eqs. (4.22) and 

(4.36) then serve to compute the slopes in the y- and z- directions from the estimated wavefront 
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in 1Ω . The computed slopes are compared with the original slope data within 0Ω . If the 

differences are negligible (i.e. less than a termination criterion), the estimated wavefront over 1Ω  

is output, where only the wavefront within 0Ω is of interest.  Otherwise, the computed slope data 

in 0Ω are replaced with the original measured slope data, while the computed slope data in the 

extended area 1Ω \ 0Ω (i.e. outside 0Ω but within 1Ω ) are kept unchanged. Based on the updated 

slope data, the wavefront estimation for the next iteration is performed. The iterative process 

continues until the established termination criterion is reached.  

 Such an iterative process is referred to as a Gerchberg-Saxton-type iteration, because the 

iterative process bears analogy to the Gerchberg-Saxton algorithm, which consists of substituting 

the computed amplitude of a complex function with the sampled amplitude across iterations until 

both amplitude and phase converge to a solution.137  The iterative algorithm presented in this 

dissertation substitutes the computed slope data in the test pupil with the sampled raw slope data 

iteratively until the estimated wavefront converges to a solution.   

 The algorithm proposed here bears similarity to the algorithm proposed by Roddier and 

Roddier (1991) 92 in the sense that both algorithms use Gerchberg-Saxton-type iterations to 

extrapolate the wavefront slope function outside the boundary.  The basic difference between the 

two algorithms lies in that the Roddier and Roddier’s algorithm is based on the Fourier 

transform, which is also the case of the Gerchberg-Saxton algorithm, but the algorithm proposed 

here is based on the linear least-squares equations. Therefore, a significant advantage of the 

algorithm proposed here is that it does not suffer from the 2π-phase ambiguity, while the Fourier 

transform-based algorithms do. 
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  Figure 4.4  Flow chart of the least-squares-based Gerchberg-Saxton-type iterative 

wavefront estimation algorithm 
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the original pupil 0Ω and the extended domain 01 ΩΩ \  are not continuous, and such 

discontinuity yields severe errors in the wavefront estimation not only close to the edge of the 
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not interfere with the internal region of 0Ω . The iterative algorithm converges quickly to an 

unbiased solution, while at the same time the smoother the wavefront surface under construction 

the smaller the residue deviation error as expected, and the fewer iterations needed.  The 

deviation error of this unique solution will decrease to zero in theory, but the measurement noise 

prohibits it from reaching zero, so it staggers to its minimum. 

4.2  Examples and Results 

 Two examples are presented for validating and assessing the capability of the proposed 

algorithm across irregular shaped pupils: one with a circular 30-mm-diameter pupil, and another 

with the same size pupil but with a 10% central obscuration inside.  Both data sets were acquired 

from a previous experiment reported in a previous paper.11 The sampling grids for both cases had 

a pitch area of 2×2mm2. They were located at the pupil position, which was conjugated to a 500-

mm diameter mirror under test. The wavefront with 10% central obscuration was obtained by 

considering the slope data within the unobstructed part of the pupil only.  

 In order to establish the ground truth for each example, we estimated the wavefront from the 

same set of slope data without domain extension but with the conventional iterative or direct 

solution methods, such as the Jacobi iterative method, the Gauss elimination method, or the 

Cholesky decomposition method, etc.11, 181  All these methods yield exactly the same estimated 

wavefront, which we thus consider to represent the ground truth (i.e. the original wavefront, for 

example in Figure 4.3: (a)), against which the proposed iterative wavefront estimation algorithm 

could be assessed .   
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4.2.1 Case 1: Circular pupil without central obscuration 

 A circular pupil without obscuration is a simply connected domain. The considered 30-mm 

diameter pupil with an array of 161 S-H grid points is shown in Figure 4.5.  The grid points 

outside the circular pupil in the square domain are the imaginary points. The ground-truth 

wavefront is shown in Figure 4.5(b).   

 The deviation error maps of the wavefront estimated by the proposed Gerchberg-Saxton-

type iterative algorithm through several iterations (i.e. i=0, 1, 2, 3, 4, 13) are shown in Figure 

4.6.  Results show that for λ= 632.8nm, the RMS deviation errors were reduced from λ/16 to 

λ/129 after 13 iterations, where it reaches its minimum. The residual deviation error is 12% of its 

original value and 88% of the deviation error was removed. 
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(a)       (b) 

Figure 4.5 (a) A 30-mm diameter circular pupil within the extended domain 1Ω . (b) The 

ground-truth wavefront within the circular pupil 0Ω  on a vertical scale of ±1µm. 
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i=3, rms=λ/86   i=4, rms=λ/105  i=13, rms=λ/129  

Figure 4.6 Wavefront deviation error (on scale of ±1µm) for a 30 mm-diameter circular pupil 

with iterations i=0, 1, 2, 3, 4, and 13, respectively (λ=632.8nm).  

4.2.2 Case 2: Circular pupil with a 10% central obscuration 

 A 30-mm circular pupil with a 10% central obscuration is shown in Figure 4.7.  Such a 

percent of obscuration is common for astronomical telescope mirrors.  The deviation error maps 

of the wavefront values estimated by the proposed Gerchberg-Saxton-type iterative algorithm 

through several iterations (i.e. i=0, 1, 3, 5, 7, 10) are shown in Figure 4.8.  Results show that for 

λ= 632.8nm the RMS deviation errors were reduced from λ/14 to λ/154 after 10 iterations, where 

it reaches its minimum. The residual deviation error is 9% of its original value, and 91% of the 

deviation error was removed. 
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 Figure 4.7 (a). A 30-mm diameter circular pupil with a 10% central obscuration.  

(b). A ground-truth wavefront at this pupil 0Ω  on a vertical scale of ±1µm (right). 
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Figure 4.8 Wavefront deviation error (on scale of ±1µm) for a 30 mm-diameter circular pupil 

with a 10% central obscuration through iterations i=0, 1, 2, 3, 4, 10, respectively (λ=632.8nm). 
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4.2.3 Algorithm convergence 

 The deviation error reduction through Gerchberg-Saxton-type iterations was found to be 

efficient.  Specifically, the final deviation errors after a maximum of 4 iterations for the two 

examples considered are less than λ/100 for λ equal to 632.8nm, as shown in Figures 4.6 and 4.8.  

The convergence indicated by the RMS wavefront error in units of wavelength as a function of 

the number of iterations is plotted in Figure 4.9.  Such a finding is high performance for optical 

testing, and the algorithm can be said to be very efficient.   
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 Figure 4.9  Plot of RMS deviation errors as a function of the number of iterations 



90 

4.3  Computational complexity 

 In the proposed iterative wavefront estimation algorithm, there are three linear matrix 

equation sets that need to be solved at each iteration: One is the matrix equation set for 

wavefront estimation from the slope data, and the other two are the matrix equation sets for y-

slope and z-slope computations from the estimated wavefront across iterations. The three matrix 

equation sets are highly sparse. If we define a fill-in factor, an indicator of matrix sparseness, as 

the quotient of the number of nonzero elements to the total number of the matrix elements, then 

the fill-in factor of the wavefront estimation matrix CCT is 3)/t4t5( − , and the fill-in factors of 

the slope computation matrices AAT and BBT are both 3)/t4(t + . For example, the fill-in factors 

of the wavefront estimation matrix and the slope computation matrices are 4.6% and 1.4% 

respectively for t=10, and they decrease to 0.05% and 0.01% at t=100. Besides their high 

sparsity, all three matrices are symmetrical, positive and banded, once the wavefront “zero-

point” has been determined for the wavefront estimation. 

4.3.1 Computational complexity of the proposed iterative algorithm  

 The computational complexity includes the spatial complexity and the time complexity. 

The spatial complexity is a measure of memory needed for computation when the algorithm 

runs, whereas the time complexity measures how much computation (thereby computation time) 

is needed for the algorithm to converge to the solution. 
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4.3.1.1 Spatial complexity  

 The extremely regular and symmetrical banded matrices of the three linear equation sets 

allow mapping the estimation matrix as a function of the index number of the matrix rows and 

columns, because the nonzero elements in these matrices are regularly patterned with the 

numbers 4,3,2,1,-1 only.  Thus the problem of matrix storage is avoided in solving each equation 

except for about 3t  elements memory space reserved for the banded Cholesky decomposition 

of CCT , which is a much smaller part in comparison with the 2/t 4  element space needed for a 

conventional Cholesky decomposition. Naturally, a memory space of 2t3 elements is necessary 

in each linear equation for storing the slope data and the wavefront values. 

4.3.1.2 Time complexity (Impact on computation time) 

 Before we discuss the computational complexity of our algorithm, we shall introduce 

“FLOPS”, an abbreviation of “Floating-Point Operations”, to denote the arithmetic operations 

that a computer performs, such as multiplications, additions (or subtractions).182   

 The positive definite slope-extraction matrices AAT  and BBT are banded diagonal matrices 

with their semi-bandwidths of 2 and t, respectively.  In computing the slope data from a given 

wavefront, it is an advantage to employ a direct solution method, such as the Cholesky method, 

because we can decompose the matrices AAT  or BBT  into two unique triangular matrices once 

and for all by several steps of derivation.  Therefore no more Cholesky decompositions are 

needed in computation.  The computations needed in solving the two systems of equations are 

substitutions, and the corresponding arithmetic cost is approximately a product of m4 with the 
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bandwidth,182 which yields 28t FLOPS for AAT  and 3t4  FLOPS for BBT .  As a comparison, 

the computational cost needed for substitutions in solving an equation without exploiting the 

band structure is 4t2 FLOPS. 182 

 To solve the matrix equation set for wavefront estimation, we need to set a “zero-point” for 

the wavefront under estimation to make the matrix CCT positive and definite so that we can 

make Cholesky decomposition with CCT , which is a banded sparse matrix with a bandwidth of 

t2 . An algorithm for solving the wavefront estimation equations based on the banded Cholesky 

decomposition needs about 34 t4t + FLOPS in total, where 4t  FLOPS is used for decomposition 

and 3t4  FLOPS for substitutions.182 As a comparison, a solving algorithm based on the 

conventional Cholesky decomposition without exploiting the band structure of the matrix yields 

about 6t
3
1  FLOPS for decomposition and 4t2  FLOPS for substitutions. 

 Other direct solution methods are also available in solving the above three equation sets, 

such as Gaussian Elimination and SVD methods, but such methods are more computationally 

intensive.  Generally, the conventional Gaussian Elimination method has a cost of about 6t
3
2  

FLOPS, and the SVD method needs about 6t12  FLOPS.183  Because the SVD method yields a 

unique LSMN for a rank deficient least-squares problem, it is a good method in practice if the 

computational complexity is not a constraint. 

 An alternative to solving the matrix equation set is to use iterative methods, such as the SOR 

method, which is said to be one of the most efficient among the classical iterative methods.  The 

convergence rate of the SOR method is closely related to the problem model, the discretization 

mesh size, the relaxation factor, and the grid indexing orders. However, the iterations needed for 
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the optimal SOR method to converge to a solution within a precision of 810−  can be estimated 

by 181, 182 

t3)1(t94.2))
1t
π21(log(8R 1

10ωb ≈+≈
−

−−= − .   (4.37) 

So if it requires approximately 2t5 FLOPS operations in iteration,181 the computational cost 

needed for solving Eq. (4.7) with the optimal SOR method is about 3t15  FLOPS.  

  Comparing with the banded Cholesky decomposition method, which needs 34 t4t +  FLOPS 

of cost for solving Eq. (4.7), the SOR method is computationally more intensive for a small grid 

size (t<11), and less intensive for a large grid size (t>11). The complexity of the optimal SOR 

method increases as a cubic curve, whereas the complexity of the banded Cholesky method 

increases with a quartic curve.  

4.3.2 Complexity comparison with the FFT-based iterative algorithms 

4.3.2.1 Comparison of time complexity 

 The fast Fourier transform (FFT) of a data set of length q2m =  (q is a positive integer) 

requires about (m)logm 2  complex multiplications, which is equivalent to (m)logm5 2  FLOPS of 

arithmetic operations according to a detailed analysis (Brigham 1988).184, 185  The FFT-based 

iterative algorithm proposed by Roddier and Roddier(1991) needs to compute two FFTs besides 

the computations of the y- and the z-slopes from the wavefront at each iteration.92  Therefore, if 

we suppose that the computation of the slope extractions takes the same computational cost in 
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both algorithms and we ignore this cost, the computational cost needed in one iteration of the 

FFT-based iterative algorithm is about 2
2 )t7)t(log20( + FLOPS, which is usually much smaller 

than that of the optimal SOR-based (i.e. 3t15 FLOPS) iterative algorithm. Thus, based on the 

computational complexity evaluation of one iteration, the FFT-based algorithm is superior in 

performance to the proposed algorithm, which could be significant for large values of grid-array 

size t (t× t=m).  

  At the same time, the required number of iterations for each algorithm will significantly 

affect the overall computational time.  The number of iterations is a factor of the overall grid-

array size and measurement noise levels, etc.  The FFT-based algorithms usually converge 

slowly; for example, the Gerchberg-Saxton algorithm needs at least tens to hundreds or even 

thousands of iterations to converge to a solution, while we found that the algorithm proposed in 

this paper converges to less than λ/100 deviation error with only four iterations. 

4.3.2.2 Comparison of spatial complexity 

 It has been established that the space complexity required for a Fast Fourier Transform 

(FFT) is ( )4tO , which is used for the storage of complex matrix arrays.  As a comparison, the 

spatial complexity for the Gerchberg-Saxton-type iterative algorithm we have proposed with the 

banded Cholesky solution method is only ( )3tO .  

Some relatively subtle difference between the Roddier & Roddier (1991) algorithm and 

the algorithm proposed here is the fact that in performing FFTs, the square array matrix satisfies 

m=2q, and therefore m must be even.  In the case of the proposed algorithm, there is no such 
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requirement, and we have shown that odd matrix sizes yield lower error propagation than even 

matrix sizes.   

4.4  Error propagation estimation 

 If we ignore the perturbations introduced by the computer rounding errors, wavefront errors 

may occur from two sources: the algorithm discretization errors, which depend on the basic 

estimation scheme adopted, and the wavefront sensor measurement error such as the CCD 

centroiding error.  The discretization errors of the wavefront estimation scheme adopted were 

discussed in a previous literature.11  In this section, we qualitatively study the propagation of the 

wavefront measurement error in wavefront estimation by evaluating the condition number of the 

wavefront estimation matrix. The quantitative analysis of the error propagation in wavefront 

estimation will be detailed in Chapter 5.  

 The condition number of a wavefront estimation matrix is an amplification factor for the 

error propagation in wavefront estimation.  Regarding the pre-defined wavefront estimation 

matrix equation in Eq. (4.7), the condition number of CCT  can be defined as  

( )[ ]1T
2

T
2

T lub)(lub:)cond( −
= CCCCCC ,    (4.38)  

where )(lub2 ⋅  is a matrix norm defined (for example, for matrix C) by 

[ ] 2/1T
2/1

T

TT

0X2 )(max)(lub CC
XX
CXCXC ρ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

≠
,   (4.39) 

which is a corresponding matrix norm of  the Euclidian norm of a vector X ( ) 2/1T XXX
2
= . 

Then we have 
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[ ]1TTT )()()cond( −ρρ= CCCCCC ,     (4.40) 

where )( T CCρ  is the spectral radius of CCT . Since max
T )( λ=ρ CC , then [ ] 1

min
1T )( −− λ=ρ CC , 

where maxλ  and minλ are the maximum and minimum eigenvalues of the matrix CCT , 

respectively.  Therefore the condition number of CCT can be written as 

min

maxT )cond(
λ
λ

=CC  .     (4.41)  

If matrix CCT  is invertible, the wavefront estimation error ( )Tm21 ΔwΔwΔwΔ L=W can 

be estimated by  

( ) WFD
T1T ΔΔ SCCCW −

= ,      (4.42) 

where WFDΔS is the WFD measurement error vector. Applying Euclidian norm on both sides of 

Eq. (4.42) yields 181, 11, 186 

[ ]
( ) 2WFD

2

2
1

T

2
Δ

lub
)cond(Δ S

C
CCW ≤ .    (4.43) 

 In Chapter 5, we will show that SCS Δa
2
1Δ sWFD = for the Southwell geometry, where a is 

the pitch size of the sampling grid array, ( )Tm21 ΔsΔsΔsΔ L=S is the wavefront slope 

error vector, and sC is a matrix used to convert a slope vector to a WFD vector. Therefore 

[ ] ( )
( ) 2

2
1

min

msxS
2

2
1

2

s22
1
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2
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2
1Δ
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lub)cond(a

2
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CCCW

λ
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⎦

⎤
⎢
⎣

⎡
≤ ,  (4.44) 

where maxSλ  is the maximum eigenvalue of matrix s
T

s CC .  

 If the wavefront slope errors are independent and have the same variance 2
sσ , then  
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where wσ′  is the RMS value of the estimated wavefront error,  and sσ′  is the RMS value of the 

wavefront slope measurement error. Applying Eqs. (4.45) and (4.46) in Eq.(4.44) yields  

s

2
1

min

msxS
w a

2
1

σ′
λ
λ

≤σ′ .       (4.47) 

  Eq.(4.44) and Eq.(4.47) provide estimations of the wavefront error, which can be 

expressed by the matrix eigenvalues. The condition number of the estimation matrix is an 

indicator of error propagation. When the condition number is large (i.e. it is an ill-conditioned 

problem), a small error in the slope measurements can cause a large error in the estimated 

wavefront.  

Since the normal equation matrix is symmetric, the classical Jacobi method can be 

employed to compute the eigenvalues.187  For the wavefront estimation matrix in Eq. (4.7), the 

eigenvalues of this matrix are sensitive to the variation of the wavefront “zero-point” position, 

the matrix dimension size, and even the number parity of the matrix dimension.  As shown in 

Figure 4.10, when the “zero point” is fixed at the center of wavefront, a curve of the condition 

number can be obtained by computing the matrix eigenvalues.  By making a least-squares fitting 

of this curve, a formula for the condition number of the wavefront estimation matrix is available: 
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T CC ,          (4.48) 

where t is  the matrix dimension number (t×t=m) .  Results show that the wavefront estimation 

has a better performance in error propagation when the dimension number of the estimation 

matrix is odd.  Therefore, an odd-number sampling grid array is preferable in wavefront 

estimation. When the matrix dimension becomes larger, the Jacobi method converges slowly.  It 

takes about 68000 iterations to obtain the eigenvalues with 10-7 accuracy for the case of t=15. 
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Figure 4.10 The condition number of normal estimation matrix versus grid dimension size. 

 

The above analysis is also applicable to the error propagation of slope computation 

provided by Eqs. (4.22) and (4.36).  The eigenvalues of the two slope-computation matrices in 
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Eqs.(4.22) and (4.36) are found to be 22 − , 22+  and 4 when t> 4, and the eigenvalues are 

22 −  and 22+  only for t =4.  Thus the condition numbers of these two matrices are 

both 836224 .)/( ≈−  for t>4, and 8352222 .)/()( ≈−+  for t=4.  Therefore, such condition 

numbers indicate that the error propagation in the y- (or equivalently z-) slope computation is 

very stable and very slow. 

4.5  Summary 

 Klaus Freischlad in 1992 pointed out that a wavefront estimation algorithm that is suitable 

for practical optical testing must have the following characteristics:120  (1) The wavefront 

estimates must be unbiased;  (2) The error propagation coefficient must be slow; (3) The 

computation must be efficient, especially for large datasets; (4) The necessary memory space 

should be small enough to be applicable in the laboratory; Finally, (5) the algorithm should be 

easily adaptable to various pupil shapes. In this chapter with the domain extension technique, a 

pre-defined wavefront estimation matrix and the associated pre-defined slope-computation 

matrices for any pupil shape or size were obtained.  A Gerchberg-Saxton-type iterative process 

based on the linear least-squares estimation has been implemented to obtain a practical unbiased 

wavefront estimation algorithm for any pupil shape, which combines the accuracy of the 

Gerchberg-Saxton-type iterative wavefront slope extrapolation technique with the efficiency of 

linear sparse matrix.  

 In summary, the proposed iterative algorithm has the following features: (1) To our 

knowledge it is the first time that the Gerchberg-Saxton iterations were implemented by linear 
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least-squares matrix estimations. (2) It does not have the 2π-phase ambiguity problem that all 

FT-based Gerchberg-Saxton algorithms suffer from, so it is good for phase retrieval with large 

aberrations. (3) It provides a once-for-all pre-defined wavefront estimation matrix that is good 

for any pupil size without apriori knowledge of the pupil shape. (4) It is a fast-converging 

iterative algorithm, which was demonstrated with some examples, that converges much faster 

than the FT-based Gerchberg Saxton algorithm. (5) It has high estimation accuracy. The 

deviation error can be less than λ/150 as shown in the examples. (6) Its error propagation is slow 

in wavefront estimation.  An analysis of error propagation showed that the wavefront estimation 

matrix is well-conditioned, yielding low propagation errors.  

 A U.S. patent has been filed in the United States of America regarding this iterative 

wavefront estimation algorithm.188  
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CHAPTER FIVE: QUANTIFICATIONS OF ERROR PROPAGATION IN 
WAVEFRONT ESTIMATION 

5.1 Introduction 

As discussed in Chapter 3, the wavefront estimation is a numerical solution to the 

Neumann’s boundary problem of Poisson equation. Using a 2-D finite difference grid to cover 

the testing domain, one can discretize this problem, and evaluate the wavefront values at each 

grid point by solving a difference equation set defined on the grid. The matrix equation set for 

this problem, as shown in Eq. (4. 5b), can be expressed as  

SCW = ,      (5. 1)  

where C is the wavefront estimation matrix, W is the vector of wavefront values, and S is the 

vector of the WFD between the neighboring grid points, which can be converted from the 

wavefront slope vector G  by 

MGS aμ= ,       (5. 2) 

where μ is a constant related to the given geometry, a is the pitch size of the sampling grid,  

and M is the conversion matrix for a given geometry.  

  Owing to the measurement noise, Eq.(5.1) has weak solutions only, and an unbiased 

least-squares approximation can be employed.  The normal matrix equation for the least-squares 

solution is 

SCCWC TT = ,      (5. 3) 
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which is a discretization form of the Poisson equation as shown in Eq. (3.8). It shall be noted that 

the Tikhonov regularized least-squares solution, adopted widely in other applications such as 

adaptive optics, provides a biased estimate that would not be desirable in optical testing. 189 

The noisy WFD vector can be written as NSS += 0 , where 0S is the vector of the true 

WFD values, and N is the measurement noise of the WFD.  If the induced wavefront error from 

measurement noise N is ε , then the estimated wavefront can be written as εWW += 0 , where 

0W is the true wavefront values. The error propagation coefficient provides a quantitative metric 

for evaluating wavefront estimation. As defined in the previous literature,87,88,120  the error 

propagation coefficient η  is the ratio of the mean variance of the wavefront estimation error 

2
wσ given by  

/mσ 2

2
2
w ε= ,        (5. 4) 

where
2
⋅ is the Euclidian norm and m is the total number of grid points ( ttm ×= for a square 

array, t is the grid size), to the mean variance of the WFD measurement error 2
nσ

 , i.e. 

2
n

2
w

σ
ση = .      (5. 5) 

This definition is referred to as the WFD-based error propagation coefficient, which is a 

quantitative indicator of the error propagator in the WFD-based wavefront estimation.  In this 

chapter, we present a general formulation for the WFD-based error propagation coefficient with 

the matrix eigenvalue method (Zou and Rolland, 2004, 2006).190,191  With the serial numbering 

wavefront estimation scheme introduced, the general error propagation formulation is 

implemented for the Hudgin geometry, the Southwell geometry and the Fried geometry.190  

Based on the WFD-based error propagation coefficient formulation, the definition of the slope-
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based error propagation coefficient is introduced and formulated for each of the basic estimation 

geometries. 190 

5.2 Brief review of previous work 

Wavefront estimation can be performed on the three introduced geometries: the Hudgin 

geometry,82 the Southwell geometry,88  and the Fried geometry.85 As shown in Figure 3.2, the 

slope measurements (or alternatively the WFD measurements) are denoted by small arrows, and 

the grid points are denoted by small circles in each of the geometries.  The slope measurements 

are performed at the mid-point between each pair of neighboring grid points in the Hudgin 

geometry, and at the center point circled by each four neighboring grid points in the Fried 

geometry. The Southwell geometry is characterized by taking the wavefront slope measurements 

and the wavefront value estimations at the same nodes. It was given by Southwell that this latter 

geometry has the lowest error propagation in wavefront estimation across relatively small grid 

sizes,88  as shown in Figure 5.1.  

Let us focus the previous analysis of error propagation on the zonal wavefront estimation 

induced by the WFD measurements with different geometries.  As shown in Figure 5.1, the error 

propagation coefficient was shown to be logarithmic dependent on the grid size t.88,82,85  From 

Eq. (35) in Ref. 85, we obtained the result given by Fried as 

ln(t)3206.06558.0Fried +=η ,     (5. 6) 

and from Eq.(32) in Ref.82, we got the result given by Hudgin as  

ln(t)10305610Hudgin .. +=η .     (5. 7) 



104 

For the Southwell geometry, we least-squares fit our discrete coordinate measurements of curve 

A in Fig.2 on page1003 of Ref.88 given by Southwell, and obtained 

ln(t)29630104470Southwell .. +−=η .    (5. 8) 

 By using a general Green’s function and neglecting the boundary conditions, Noll 

analytically derived that the error propagation is a logarithmic dependent function of its grid size 

t.  For a square aperture with the phase value at the origin set to be zero, the coefficient was can 

be obtained by 87 

ln(t)318010720Noll .. +=η .     (5. 9) 

 

Figure 5.1 Previous results on error propagation 
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In modal estimation with discrete Fourier transform, Freischlad and Koliopoulos also 

showed that the error propagation satisfies a logarithmic dependence of ln(t)
π
1aη modal S;H, += for 

the Hudgin geometry and the Southwell geometry, and a logarithmic dependence of 

1)-ln(t
π
3aη modF; += for the Fried geometry. 119  On the basis of the Hudgin geometry and a fast 

FT-based algorithm, which requires an even size, Freischlad confirmed that it is almost identical 

to Noll’s theoretical result with 120  

ln(t)1097530Freischlad π
η += . .    (5. 10) 

Hunt extended Hudgin’s method for error coefficient prediction in terms of the discrete 

Fourier transform and obtained a result that shares the constant term with Noll and the 

logarithmic term with Fried and Hudgin, which yields little difference from both Noll’s and 

Freischlad’s results.86 

Figure 5.1 shows that the Southwell geometry is superior to all the other geometries 

regarding the error propagation when t is small, but the Hudgin geometry tends to be slightly 

superior to the Southwell geometry when the grid array size t becomes large (when t>30).  

5.3 Formulation of the error propagation with matrix method 

Given Eq.(5.1) and considering that in the case of zero noise Eq.(5.1) reduces to 00 CWS = , 

the WFD error N and the induced wavefront error ε  should satisfy the equation  

NCε = .      (5. 11) 

In a general case, the least-squares solution for Eq. (5.11) can be written as 
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NCε +=  ,      (5. 12) 

where +C  is the Moore-Penrose pseudo-inverse of matrixC .  Given the relationship between the 

WFD vector and the wavefront slope vector provided by Eq. (5.2), similarly the WFD error N  

and the wavefront slope noise N′ should satisfy  

NMN ′= aμ .      (5. 13) 

Starting with the expression of the mean variance given by Eq. (5.4), the Euclidian norm 

for a statistical wavefront error vector is defined as    

( )2
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T
2
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2
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tr εεε =⎟⎟
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⎞
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⎝

⎛
ε≡ ∑

=

,    (5. 14) 

where the bracket ⋅ denotes the averaging operator, ( )⋅tr  is the matrix trace. And   

( ) ( )TTTTTT aa ++++ μ′′μ== CMNNMCCNNCεε ,   (5. 15) 

where TNN ′′  is given by 189 
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If we simply assume that the wavefront slope noise is random, independent, and has zero 

mean with the same variance 2
sσ , the ensemble statistical average of the slope errors yields  

⎩
⎨
⎧

=
≠

==
ji     when,σ
ji     when ,0

δσnn 2
s

ij
2
sji .    (5. 17) 

So the slope noise covariance matrix is given by 
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INN 2
s

T σ=′′ ,      (5. 18) 

where I is the identity matrix. Therefore, Eq.(5.15) yields 

( )TT2
s

22T a ++σμ= CMMCεε .    (5. 19) 

Accordingly the mean variance of the wavefront estimation error 2
wσ is given by,  

{ } ( )[ ]TT
2
s

22
T2

2
2
w tr

m
atr

m
1

m
1σ ++=== CMMCεεε σμ .  (5. 20) 

Similarly, the variance of the WFD measurement error 2
nσ is given by 

{ } T
2
s

22
T2

2
2
n tr

m
atr

m
1

m
1σ MMNNN σμ

=== .   (5. 21) 

With the definition of the error propagation coefficient given in Eq. (5.5), we can write   

( )[ ]
[ ]T

T

2
n

2
w

tr
tr

σ
ση

MM
MCMC ++

== .     (5. 22a) 

This equation is useful for the computation of the error propagation coefficient.  It can be noted 

that Eq.(5.22a) can also be written in the form of the Frobenius norm187 as 

2

F

2

Fη
M

MC+

=  .     (5.22b) 

 Equations (5.22) provide a generalized expression for the error propagation coefficient in 

zonal wavefront estimation. This formula is good for either the slope measurements or the direct 

WFD measurements, because we can convert either the slope measurements or any other specific 

WFD measurements into the wavefront value difference between each pair of the neighboring 

grid points, which is actually the direct WFD measurement in the Hudgin geometry.  
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Figure 5.2 Grid array with serial numbering scheme 

 In next Section, the serial number scheme (SNS) will be adopted for wavefront 

estimation in studying the error propagation for each of the basic geometries. The SNS, as 

adopted in Chapter 4 and the previous literatures189,11, makes wavefront estimation become a 

standardized process.  Instead of numbering the estimation grid array with 2-D coordinates ( )ji,  

as previously provided, 82,85,88,120 the grid array is indexed sequentially from 1 to m row by row as 

illustrated in Figure 5.2 for a square domain.  With such a numbering mode, a regular and 

banded sparse estimation matrix is pre-defined, which resembles Hunt’s matrix formulation.11, 86 

5.4 Quantification of Wavefront difference-based error propagation 

 In this section, the WFD-based error propagators for Hudgin, Southwell and Fried 

geometries are formulated and their behaviors compared. As alternative to the WFD-based 

definition, the wavefront slope-based error propagators are also defined, and the formulations for 

different geometries are derived. 
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5.4.1 Wavefront difference-based error propagators  

 For the WFD-based wavefront estimation, we apply the general formula of the error 

propagation coefficient we developed for the three basic estimation geometries: the Hudgin 

geometry, the Southwell geometry and the Fried geometry. With SNS the wavefront estimation 

matrix for each of the geometries is established, and the eigenvalues for each of the estimation-

related matrix are numerically computed, from which the formulas of the WFD-based error 

propagation coefficients are obtained. 

5.4.1.1 Hudgin Geometry 

 In the Hudgin geometry, the wavefront slopes are measured at the mid-point 

between two neighboring grid points, and the WFD between each pair of neighboring grid 

points in the x-and y-directions can be estimated as 

⎩
⎨
⎧

=
=

++

++

ags
ags

ti,iti,i

,i1i,i1i

yy

xx ,      (5. 23) 

where a  is the pitch size of the sampling grid array, 
,i1ixg

+
is the wavefront slope in the x-

direction at the midpoint between point i and point 1i + , and 
tiiyg

+,
is the wavefront slope in 

the y-direction at the midpoint between point ti + and point i .  With the SNS mode the 

wavefront estimation equations can be written in the x-direction as 

integerkt, k ,...,m,  i2,1, isww
,i1ixi1i ≠==−

++ ,   (5. 24) 

and in the y-direction as 

t-2,..m 1,i  ,sww
tii,ytii ==−

++ .              (5. 25) 
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When written in matrix form, the estimation equation set for the Hudgin geometry is 

given by 

SHW = ,      (5. 26) 

where H is the wavefront estimation matrix, S=aG is the WFD vector, and G is the wavefront 

slope vector. In comparison with Eq. (5.2), S=aG yields 1=μ and IM = , where I is the identity 

matrix. According to Eqs. (5.22a) and (5.22b), where C equals H for the Hudgin geometry, 

η takes the form  

( )[ ]
[ ] ( )[ ] 2

F

T
T

m
1tr

m
1

tr
trη ++

++

=== HHH
I
HH

H .  (5. 27) 

In optical testing, it is the wavefront shape from a reference, not the absolute wavefront 

piston values, that is desirable. Thus it is common to set a point on the wavefront as the reference 

point, namely the “zero point”, at which the wavefront value is assigned to zero or other 

constant. Setting a “zero point” for the wavefront will not affect the estimated shape, as any 

piston value in the estimation can be subtracted.   

The rank of matrix HHT  is 1−=γ m .11  Matrix HHT  will become of full rank ( m=γ ) 

if a “zero point” is set for the wavefront. If HHT is of full rank in column, then its generalized 

inverse matrix is TT HH)(HH 1−+ = , and  ( )[ ] [ ]1TT
trtr −++ = H)(HHH .  If the nonzero eigenvalues 

of matrix ( )HHT  are 0λ i >,H  ( )1,2,..γi = , then the nonzero eigenvalues of matrix ( )+HHT are 

0λ 1
i >

−
,H ( )1,2,..γi = . The WFD-based error coefficient for the Hudgin geometry can be therefore 

expressed as 

( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==η ∑

γ

=

−+

1i

1
i,

T λ
m
1tr

m
1

HH HH .    (5. 28) 
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This result is somewhat similar to the result obtained by Southwell for modal wavefront 

estimation. Southwell formulated the error propagation in the modal estimation, showing that the 

mean-square phase error is proportional to the trace of ( ) 1−+AA .88 

The numerical methods, such as the Jacobi and the SVD methods, can be employed to 

evaluate the matrix eigenvalues. The Jacobi method approximates the eigenvalues of 

symmetric matrices by reducing the off-diagonal elements to zero, while the SVD method 

approaches the eigenvalues by decomposing the matrix into a diagonal matrix multiplied by an 

orthonormal matrix on each side. 

The eigenvalues of matrix HHT are sensitive with the position of the wavefront “zero 

point”, the matrix dimension size, and the number parity of the matrix dimension. In this 

problem, the “zero point” mentioned is located at the center point of the estimation grid array 

for all geometries, at which the matrix has its smallest condition number.11 Given that the 

coefficients in matrix HHT  are pre-defined, the eigenvalues of matrix HHT  for different grid 

sizes can be computed numerically. The simulation results are plotted in Figure 5.3.  

Fitting the numerical results (up to t=50) in the least-squares sense, we obtain the error 

propagation coefficients for the Hudgin geometry as  

(t)ln0.33160.32220.6672)-(tln3171.03797.0odd,H +≈+=η , odd) is t (   (5. 29)   

and 

(t)ln0.48560.30490.2136)-(tln4795.03294.0even,H +≈+=η . even) is (t   (5. 30) 

When no “zero point” is appointed, the rank of the matrix HHT is 1mγ −= . The solution 

space for the matrix equation has one degree of freedom. With the Moore-Penrose pseudo-

inverse of the matrix HHT , we obtained the LSMN solution, which is a least-squares solution 
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that holds the same wavefront shape as that with a set “zero point” but has the minimum 

Euclidian norm of the wavefront values.  In that case, we computed the eigenvalues of the 

estimation matrix with SVD, and obtained the simulation results with data up to t=50 as 

(t)ln0.17640.26051.1208)-(tln1593.03252.0LSMN,H +≈+=η .  (5. 31) 

 

Figure 5.3 WFD-based error propagators for the Hudgin geometry 

 

 Figure 5.3 confirms that the behavior of the error propagation is logarithmic dependent 

on the grid size as previously established in the literature.82,87 The error propagation curves for 

the SNS with the “zero point” given (curves 2 and 3) are higher than the curves of Noll’s result 

(Curve 0) and the Hudgin results (Curve 1).  However, the error propagation curve for the SNS 
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with the LSMN solution (Curve 4) is the lowest of all, nevertheless, at the expense of extensive 

computations; moreover, it is approaching the Hudgin result when the grid size increases.  For 

wavefront estimation with a “zero point” set, an odd-number grid size is preferable for the 

Hudgin geometry.  

5.4.1.2 Southwell Geometry 

 In the Southwell geometry the slope measurements and the wavefront estimate are 

located at each grid point. As Southwell did,88  the average of the measured slopes over two 

neighboring grid points is adopted as an estimate of the slope at the mid-point. The wavefront 

estimation equation set can be obtained with the SNS in the x-and y-directions as 

 ), g(g
2
aww

1ii xxi1i +
+=−+      (5. 32) 

where i=1,2,…,m-1( with kti ≠ , k is an integer), and 
ixg is the slope data in the x-direction, and  

), g(g
2
aww

tii yytii +
+=− +      (5. 33) 

where t-2,..m 1,i = , and 
iyg is the slope data in the y-direction.   In matrix form,  

HSHW = ,      (5. 34) 

where matrix H is the same wavefront estimation matrix as for the Hudgin geometry, and HS  is 

the WFD vector , which is given by GCS sH a
2
1

= . Comparing HS with Eq.(5.2), we 

obtain 21 /=μ and sCM = . It should be noted that matrices sC and H are closely related: 

matrix sC can be obtained by changing the sign of the coefficient “-1” in matrix H .  
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According to Eq. (5.22), we have 
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where [ ] ( ) ( )tm41tt4tr T −=−=HH . Given ( ) TT HHHH
++ = ,192  then the WFD-based error 

propagation coefficient for the Southwell geometry is expressed as  
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Finally,  

( ) ⎟⎟
⎠

⎞
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⎝

⎛
=η ∑

γ

=1i
is,S λ

t-m4
1 ,     (5. 37) 

where i s,λ (i=1,2,… γ ) are the nonzero eigenvalues of matrix ( )[ ] s
T

2
TT

s CHHHHC +  , and γ is 

the  rank of this matrix. 

When a “zero point” is set, HHT is invertible, and we have m=γ and ( ) T1T HHHH
−+ = . 

The simulation results are shown in Figure 5.4.  We least-squares fit the numerical results (up to 

t=50), and obtain the error propagation coefficients for the Southwell geometry as  

(t)ln0.29521428.00.06186)-(tln2936.01489.0odd,S +≈+=η , ) odd is (t   (5. 38) 

and 

)t(ln0.410.2861)7673.2(tln4662.004941.0even,S +≈++=η . even) is t (   (5. 39) 

When no “zero point” is appointed, the LSMN solution is sought to make the Euclidian 

norm of the wavefront minimum. We computed the eigenvalues of the estimation matrix for this 

case by SVD up to t=50, and obtained the error propagation coefficient as 

(t)ln0.14550.2170.2562)(tln1487.0205.0LSMN, +≈++=ηS   (5. 40) 
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Figure 5.4 WFD-based error propagators for the Southwell geometry 

 

 In Figure 5.4, when a wavefront “zero point” is assigned, the error propagation curve for 

the SNS is above the curve of Noll’s result (Curve 0) for the even-number grid sizes (Curve 3),  

and it is equivalent to (or slightly below) it for the odd-number grid sizes (Curve 2). Although 

both of the above mentioned two error propagators (Curve2 and Curve 3) are shown to be worse 

than the Southwell’s result (Curve 1), the error propagator of the LSMN solution (Curve 4), 

when no “zero point” is set for the wavefront,  is showed to be clearly better for the large grid 

size(t>8). Similar to the Hudgin geometry, an odd-number grid size is preferable for the 

Southwell geometry when a “zero point” is assigned. 
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5.4.1.3 Fried Geometry 

 In the Fried geometry, the grid for wavefront slope (or alternatively WFD) measurements 

and the grid for wavefront estimation are interleaved by a distance of a/2 both in the x- and in the 

y-directions as shown in Figure 3.2. Fried proposed that the phase difference across the thj) (i,  

aperture element in the x-direction (or in the y-direction) can be estimated as the average of the 

phase differences along its two parallel borders in the x-direction (or in the y-direction).85  To 

compare the work in this dissertation with Fried’s result, a similar WFD estimation equation set 

as found in Fried’s work was established.  For the Fried geometry with the SNS, we have 

 , s2wwww
jxti1tii1i =−+− ++++      (5. 41) 

  , s2wwww
jy1titi1ii =−−+ ++++     (5. 42) 

where i=1,2,…,m-t-1, with kti ≠ ( k is an integer); ags
jj xx = and ags

jj yy =  are the WFDs in 

the x- and in the y- directions,  and j=1,2,…(t-1)2, where (t-1)2 is the total  number of the 

measurement elements in the grid array.  Writing them in matrix form, we obtain 

SFW = ,      (5. 43) 

where F is a pre-defined matrix for wavefront estimation for the Fried geometry, S=2aG is the 

WFD vector, and G is the wavefront slope vector. As defined in Eq. (5.2), we obtain 2=μ , 

and IM = , where I is the identity matrix. Given Eqs. (5.22), the WFD-based error propagation 

coefficient for the Fried geometry can be written as 
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[ ] ( )[ ]+++

== FF
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tr
trη .     (5. 44) 
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Herrmann showed that the rank of the normal matrix FFT  is m-2.91  If the nonzero 

eigenvalues of FFT are 0i ,F >λ (i=1, 2, … γ ), where γ is the rank of matrix FFT ,then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=η ∑

γ

=

−

1i

1
iF λ

m
1

F, .      (5. 45) 

When a grid point is frozen as the “zero point”, the rank of matrix FFT  

becomes 1m −=γ , and the piston value term of the estimated wavefront is defined. However, 

there is still one degree of freedom in the least-squares solution space, called the “waffle mode”, 

at which the wavefront at the estimation grid points can be pushed up and down with the same 

value in a checkerboard pattern, while it still satisfies the WFD estimation equation set defined in 

Eqs.(5.41) and (5.42).  In other words, the Fried geometry can not sense the waffle mode error of 

the wavefront,193 which is not desirable in optical testing. 

 Given a “zero point” for the wavefront, the LSMN solution is to seek a least-squares 

solution in a one dimensional (1-D) solution space that makes the Euclidian norm of the 

wavefront shape minimum. While no “zero point” is assigned for the wavefront, we have 

2m −=γ , and the LSMN solution is to seek a least-squares solution in a two-dimensional 

solution space (LSMN (2-D)) to minimize the Euclidian norm of the wavefront shape, which 

includes both the overall piston mode and the waffle mode errors. Theoretically, when the 

wavefront shape is flat, the LMSN solution can get rid of the waffle mode error. However, since 

the waffle mode error usually coexists with the wavefront shape, it is impossible to avoid the 

waffle mode error for the Fried geometry with the LMSN solution. The simulation results are 

shown in Figure 5.5.  
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Figure 5.5 WFD-based error propagators for the Fried geometry 

 

 For a wavefront with a “zero point” set, the matrix eigenvalues for the LSMN (1-D) 

solution are computed up to t=50, which yields the error propagation coefficients as 

(t)ln207.04146.0)8805.0(t-ln2.04461.0ηF,odd +=+= , ) odd is t (  (5. 46) 

and 

(t)ln3022.04338.0)6547.0(t-ln2866.04933.0ηF,even +=+= . even) ist (  (5. 47) 

For wavefront with no “zero point” set, the matrix eigenvalues for the LSMN (2-D) solution are 

computed up to t=50, which yields the error propagation coefficients as 

(t)ln1303.04076.0)821.1(t-ln114.0475.0ηF,LSMN +≈+= .   (5. 48) 
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Similar to the Hudgin and Southwell geometries, for a wavefront with a “zero point” set, an odd-

number grid size is preferable for wavefront estimation. The LSMN(1-D) solution (Curves 2 and 

3) offers error propagators better than Fried’s result(Curve 1); but the error propagator for the 

even-number grid sizes (Curve 3) is worse than Noll’s result (Curve 0), whereas the one for the 

large odd-number grid sizes(t>16) (Curve 2) is better than it. For a wavefront with no “zero 

point” set, the LSMN (2-D) solution offers the best error propagator for the Fried geometry.  

 It should be noticed that for wavefront estimation with the Fried geometry, it can either 

yield a LSMN solution on the full size of the estimation grid that suffers the waffle mode error, 

or yield a least-squares solution on a subsized estimation grid by discarding some of the 

wavefront boundary values (for example, the corner points). However, these solutions may not 

be acceptable in some optical testing cases. 

5.4.2 Comparisons of the error propagators 

 To compare the error propagations in different wavefront estimation schemes, the 

simulation results for the Hudgin, Southwell and Fried geometries are plotted in Figure. 5.6. The 

simulation results quantify how the error propagator depends on the parity of the wavefront 

estimation grid size, the wavefront estimation scheme, and the solution method used for solving 

the wavefront estimation. 

 Importantly, the odd-number grid sizes are shown to yield lower error propagation than 

the even-number grid sizes for all geometries. This can be explained by the following: If the grid 

size is odd, the “zero point” can be easily set at the geometrical center of the grid array so that 

the estimation scheme is symmetric and yields an estimation matrix with its minimum condition 
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number,11 which is steady and less sensitive to random noise disturbance. However, if the grid 

size is even, there is no direct way to set a “zero point” at the geometrical center of the sampling 

grid; therefore, the estimation scheme is typically non-symmetric, which is liable to be affected 

by random noise disturbance. 

 

Figure 5.6 Comparison of the WDF-based error propagators 

 

For wavefront estimation with a “zero point” set, the Fried geometry offers the best error 

propagator for the even-number grid sizes, and the Hudgin geometry offers the worst for both 

even- and odd-number grid sizes. For the odd-number grid size, the Southwell (t<22) and Fried 
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(t>22) geometries offer the best error propagators, and the error curve of the Fried geometry 

almost overlaps that of the Southwell geometry, which well confirms both Noll’s and 

Freischlad’s results. It is interesting to notice that the error propagator for the Hudgin geometry 

with the odd-number grid sizes is equivalent to that of the Fried geometry with the even-number 

grid sizes. When no “zero point” is set for the wavefront, the error curves for Fried and Hudgin 

geometries superpose together, and the Southwell geometry still offers the best error propagator. 

The detailed qualitative comparisons are listed in Table 5.1 

 

Table 5. 1 Qualitative comparisons of the WFD-based error propagators 

 

 



122 

5.5 Quantification of wavefront slope-based error propagation 

  An alternative to Eq.(5.5) is to define the error propagation coefficient as the ratio of the 

mean variance of the wavefront estimation error to the variance of the wavefront slope error. 

From Eq.(5.20), we obtain 
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2
w tr

m
aση MCMC ++μ

=
σ

=′ ,    (5. 49) 

or 

η=′ Kη ,      (5. 50) 

where η′ is named as the slope-based error propagation coefficient, η is the WFD-based error 

propagation coefficient defined in Eq.(5.5), and 
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trAK
T

0
2 MMμ

= ,     (5. 51) 

 where 2
0 aA =  is the pitch area of the sampling grid.  

With this new definition, we can see the direct effect of the pitch area of the sampling 

grid on the error propagation. The larger the pitch area, the worse the error propagation.  To 

compare the slope-based error propagators for different geometries, the slope-based error 

propagation coefficient is normalized with 1A0 = .  

For the Hudgin geometry, it becomes   

( )[ ] HH
T0

H Ktr
m
A

η==η
+

′ HH ,    (5. 52) 

where 1K H = , and Hη is the WFD-based error coefficient defined by Eq.(5.28).  

For the Southwell geometry, it becomes 
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where ( ) m/tmK S −= , and Sη is the WFD-based error coefficient defined by Eq.(5.36).  

For the Fried geometry, it becomes 

( )[ ] FF
T0

F Ktr
m
A4

η η==
+

′ FF .    (5. 54) 

where 4K F = , and Fη is the WFD-based error coefficient defined by Eq.(5.44).  

From the WFD-based definition to the slope-based definition, except for the effect of the 

pitch size, the error propagator remains the same for the Hudgin geometry, slightly improves for 

the Southwell geometry, and becomes four times worse for the Fried geometry. The slope-based 

coefficient may prove to be useful for the design of a slope-based optical testing system. Given 

the slope measurement noise and the wavefront error expected, for example, we can determine 

the pitch size required for the testing system.  

The slope-based error propagators for the basic wavefront estimation geometries are 

plotted in Figure 5.7. The Southwell geometry is shown to be better than the Hudgin geometry, 

and the Fried geometry performs the worst.  As previously found, the parity of the sampling grid 

size also affects the error propagator: A grid with an odd-number size is preferable to a grid with 

an even-number size. For wavefront estimation with no “zero point” set, the LSMN solution 

offers lower error propagators in comparison with the wavefront estimation with a “zero point” 

set for all geometries, among which the Southwell geometry offers the best. 

Generally speaking, for a slope-based wavefront estimation in optical testing the Fried 

geometry is not preferred, because of its interlaced sampling scheme, which yields inadequate 
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slope information for estimating the wavefront over the entire sampling grid, and its high error 

propagation.   

For both the slope-based and the WFD-based wavefront estimation, the Southwell 

geometry is preferred, because it offers the best error propagator for the wavefront estimation 

over the entire testing domain. The performance of the Southwell geometry can be explained by 

the noise-averaging effort in the WFD estimates. When slope data (or WFD) are estimated at the 

midpoint between the neighboring grid points, the estimated slope noise is reduced by the slope 

data averaging. 

 

Figure 5.7 Comparison of the slope-based error propagators 
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5.6 Summary 

 In this chapter, the error propagation coefficient for the WFD-based wavefront estimation 

was derived with the matrix formulation. We established the functions to depict the error 

propagation behaviors for the three basic wavefront estimation geometries based on the 

wavefront estimation-related matrix eigenvalues.  

 The simulation results show that, for wavefront estimation with a “zero point” , the odd-

number grid sizes are preferable to the even-number grid sizes. The Southwell geometry (t<22) 

and the Fried geometry (t>22) with the odd-number grid sizes offer the best error propagators if 

a “zero point” is set. The Southwell geometry offers the best error propagator for all grid sizes 

when no “zero point” is set. 

Given the popularity of the slope-based wavefront sensors in optical testing, a slope-

based error propagation coefficient is defined.  The benefit of this metric is that, given the RMS 

noise in slope data, the RMS error in wavefront value can be directly estimated. Furthermore, 

this metric shows the direct dependence of the error propagation on the pitch size of the lenslet 

array. Using this metric, the Southwell geometry offers the best error propagators for wavefront 

estimation with and without a “zero point” set.  Therefore, in optical testing the Southwell 

geometry is highly desirable. The Fried geometry is not recommended because of its high error 

propagation and the ambiguity in wavefront shape estimation. Not limited with the three basic 

geometries listed in this chapter, the generalized formulation presented here can be applied in 

any other estimation geometries for optical testing and wavefront control in adaptive optics; the 

corresponding formulas for the error propagation coefficients can be established with necessary 

numerical simulations.  
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CHAPTER SIX: DIFERRENTIAL SHACK-HARTMANN CURVATURE 
SENSOR 

Curvature, the rate of the surface normal change, is an intrinsic parameter of optical 

surface. Unlike the slopes (gradients, or the first order derivatives of shape), which vary with 

changes in surface orientation, the surface normal curvature is insensitive to tip/tilt and whole 

body movement of the surface. Considering a surface with a regular mesh, the slope 

measurement at each local patch is a linear approximation of the surface with a tangential plane, 

while the curvature (the second derivative of shape) is a quadratic approximation of the surface 

with an osculating quadric spherical surface.46  

In this chapter, a Shack-Hartmann-based curvature sensor referred to as the DSH 

curvature sensor is presented for measuring the differentials of the wavefront slopes at each S-H 

grid point, 194 ,195  and an experimental system is proposed to implement this concept. The DSH 

curvature sensor yields 2-D wavefront local curvature measurements at each Hartmann grid point 

in parallel.  We show how wavefront curvature metrics, such as the Laplacian, mean, Gaussian, 

and importantly the principal curvatures and directions, are computed from wavefront slope 

differential measurements. 

In the remainder of this Chapter, Section 6.1 introduces the concept of the differential 

Shack-Hartmann (DSH) curvature sensor, Section 6.2 describes an implementation of the 

differential Shack-Hartmann curvature sensor, and Section 6.3 presents the experimental system 

development.  A least-squares-based zonal wavefront estimation algorithm is presented in 

Section 6.4, and in Section 6.5 we show the mathematical framework on how to compute the 

principal curvatures and directions. 
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6.1  Slope differential measurements 

 Wavefront local curvature is the local change in wavefront slope.  While various 

definitions of curvature have been established in differential geometry, in the description of local 

shape the principal curvatures and their associated directions constitute the most concise 

elements among all.  Within the mathematical framework, the principal curvatures are the 

eigenvalues of the matrix of the second fundamental form in differential geometry, and the 

principal directions are their corresponding eigenvectors.46, 196   In the orthogonal principal 

directions, the curvatures of wavefront are simply the principal curvatures, and no twist 

curvature term exists. By diagonalizing the matrix of the second fundamental form, the principal 

curvatures can be computed from the normal curvatures in two arbitrary orthogonal directions 

together with the corresponding twist curvature terms. 

 Given a wavefront ( )y,xW  in a coordinate system with two arbitrary but orthogonal 

directions as the x- and y-axes, the S-H sensor provides the wavefront slopes by measuring the 

difference between the Hartmann grid coordinates of the measurement beam and the reference 

beam. The wavefront slopes in the x- and y-directions at each Hartmann grid point can be 

obtained by 
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where ( ref
ix , ref

iy ) ( i=1,2,…,m, and m=t × t is the total number of grid points) is the Hartmann 

grid coordinates of the reference beam, ( mea
ix , mea

iy ) is the Hartmann grid coordinates of the 

measurement beam, and f is the focal length of the lenslet array. 

Now we shall focus on how to measure the Laplacian curvatures and the twist curvature 

terms. Measuring the differentials of the wavefront slopes along the x- or y- direction will yield 

the wavefront curvature along that direction, which can be implemented by measuring two slopes 

simultaneously over a given differential distance on wavefront.  For the case of the S-H test, a 

wavefront slope differential in the x-direction can be obtained by extracting the S-H spot 

centroid coordinates of two differentially sheared Hartmann grid arrays along the x-direction, 

and the wavefront slope differential in the y-direction can also be similarly obtained.  As shown 

in Figure 6.1,194  the coordinates of the x- and y-sheared grid points are denoted by ( )yx ′′,  and 

( )yx ′′′′ , , respectively. Therefore, the slope differentials in the x- and y- directions may be 

computed by 
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where xs  and ys are the differential shears of the grids in the x- and y-directions, 

respectively, and the constants ( )ic x0 , and ( )ic y0 ,  are given by  
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Figure 6.1:  The x- and y-differential shears of the Hartmann grid 

 

Theoretically ( )ic x0 ,  = f1 / , because if the lenslet array moves a lateral distance xs , such 

as in the x-direction, the reference S-H grid will move exactly the same distance xs in the x-

direction accordingly, therefore, x
Ref

i
Ref

i sxx =−' . Similarly, ( ) ./, f1ic y0 =   In practice, ( )ic x0 ,  

and ( )ic y0 ,  must be calibrated as different CCD cameras are used in each measurement channel.  

The slope differentials in the cross directions, referred to as the corresponding twist 

curvature terms, are given by 
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where ( )ic xy,0 and ( )ic yx0 ,  are constants given by  
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In Eqs.(6.2)-(6.5), ( mea
ix , mea

iy ), ( mea 
ix′ , mea 

iy′ ) and ( mea 
ix ′′ , mea 

iy ′′ )( i=1,2,…m) are the 

coordinates of the measurement beam at the original Hartmann grid, the x-sheared, and the y-

sheared Hartmann grids, respectively; ( fRe
ix , fRe

iy ), ( fRe 
ix′ , fRe 

iy′ ) and ( fRe 
ix ′′ , fRe 

iy ′′ ) 

(i=1,2,…m)  are the corresponding coordinates of the reference beam. 

 Theoretically, ( )ic xy0 ,  and ( )ic yx0 , should be both zero for the first order approximation, 

but in practice ( )ic xy,0  and ( )ic yx,0  will need to be calibrated.  In an experimental setup, a 

reference light beam would be introduced to generate the reference Hartmann grid arrays for the 

three channels, and Eqs.(6.3) and (6.5) could be used to compute the constants ( )ic x0 , , ( )ic y0 , , 

( )ic xy,0 and ( )ic yx,0 .  To make the direction of the principal curvature unique, we suppose that the 

twist curvature terms are equal, i.e. )i(c)i(c yxxy = .  

6.2  Implementation of the DSH curvature sensor 

 The DSH curvature sensor can be implemented by modifying a conventional S-H sensor 

to yield three output channels.  Suppose a collimated wavefront traveling in the z-direction is 

split into three channels along three directions perpendicular to each other, one still traveling in 

the z-direction, the others traveling in the x- and y-directions, separately.  Lenslet arrays A, B 

and C are put in the three channels respectively to generate three separate S-H grid arrays.  The 
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lenslets A and B are sheared laterally with respect to the lenslet C, by employing two micro-

screws to move lenslet A a lateral differential distance in the x-direction and move lenslet B a 

lateral differential distance in the y-direction, independently.  Each of the three lenslet arrays is 

placed at an image position conjugated to the optical system entrance pupil, as shown in Figure 

6.2.  Three CCD cameras are used to record the beam let centroid positions relative to the S-H 

grid coordinates defined by the CCD pixel positions. 

Other implementations are feasible, where the shearing elements can be replaced with 

parallel glass plates (or other equivalences) instead of the micro-screws.194  For example, optical 

parallel plates can be used to serve as both beam splitters to split the beam and shearing elements 

to make differential shears among the three beams.  

  

Figure 6.2: An implementation of the DSH curvature sensor without calibration path 
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 In the implementation showed in Figure (6.2), the S-H grid coordinates of the three 

channels are recorded by three separate CCD cameras, therefore, calibrations are needed for the 

constant terms in Eqs.(6.2) and (6.4).  With calibration, the discrepancies between the three 

image de-magnifying systems as well as the discrepancies between the two arms in different 

channels after the cube beam splitter can be canceled, and the residual aberrations in the 

collimation lens and the cube prisms eliminated.  The error sources left are mainly from the 

beam splitters for reference and the measurement beam injections and the discrepancies between 

lenslets A, B, and C, which can be considered negligible given modern manufacturing 

technology for micro-lenslet arrays. 

The idea of differential measurement was also exemplified by the technique called 

Differential Image Motion Monitor (DIMM), a well-known method for measuring atmospheric 

turbulence in astronomy. 197, 198  Because DIMM measures the difference of the wavefront tilts 

over two sub-apertures some distance apart (i.e. a local wavefront curvature), it has advantage of 

being insensitive to vibration and tracking errors. 

6.3  Experimental setup for the DSH curvature sensor 

 An experimental system for the DSH curvature sensor was developed in our 

laboratory.194  The optical layout of this experimental system is shown in Figure 6.3.  A point 

light source O1 was used to generate the measurement beam, and the point light source O2 was 

used to generate the reference beam for calibration. Each of the two point light sources was made 

of a 15-micron diameter pinhole illuminated by a white light lamp (Krypton flashlight lamp 

2.5volt, 430mA, brightness 0.6 CP). Once calibrated, no reference light beam was needed in this 



133 

system.  In order to create a wavefront with a known aberration (i.e. spherical aberration) for 

demonstrating the ability of the system, a λ/4-quality (P-V) parabolic mirror with a diameter of 

152.4mm and a focal length of 609.6mm was used, yielding a testing beam with f/8 working 

focal ratio. A 25mm-diameter achromatic lens with a focal length of 120 mm was used to 

collimate the output beam.  A 10×10 lenslet array (1790-90-s, Adaptive Optics Associates Inc.) 

with a 90mm focal length in common and a 1.79×1.79 mm2  area for each sub-aperture was used 

in each channel to generate the S-H sample. 199  For this configuration, about 15mm diameter of 

the lenslet array area was illuminated, yielding 52 S-H grid points in an 8×8 square array used in 

testing.  Two 25×25×25 mm3 beam splitter cubes (CVI, NCB-450-700-100, λ/4-quality (P-V)) 

were used to split the collimated beam into three channels—channel #0, channel #1 and channel 

#2. Another 25×25×25 mm3 cube was used to make a 90-degree image rotation in channel #2,  

so that a y-slope differential operation can be implemented in the horizontal plane. An optical de-

magnifying system with a reducing power of about 2.3:1 was used in each channel to image the 

S-H grid onto a CCD camera.  As illustrated in Figure 6.3, two 45-degree tilted elliptical plate 

beam splitters (λ/4 accuracy for both sides, 3-mm thickness, Bk7) were used for the testing 

wavefront feed, and they were deliberately put in two orthogonal orientations to reduce the 

astigmatism and coma induced by the beam splitters in the convergent beam. Given that the 

entrance angle (~22.5 degree) was small, this splitter generated small aberrations, but they could 

not be removed by calibration. A picture of the experimental system for DSH curvature sensor is 

given in Figure 6.4. 

 It is essentially important to align the lenslet arrays of channel #0, 1, 2 with the center of 

the pupil image of the testing mirror. Then we can move the lenslet array in channel#1 and 
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channel#2 a differential distance independently to achieve the 2-D slope differential 

measurements.  In the experimental system we developed, the differential values are about 

222.25 μm in the x-direction and 150 μm in the y-direction, which are about 1/8 and 1/12 of the 

lenslet pitch size, separately. 

 

Figure 6.3 Optical layout of the experimental system for the DSH curvature sensor 

 

 The video cameras used in this setup were three Watec LCL-902 Monochrome CCD 

cameras, which have a resolution of 768× 494 pixels2 with the pixel size of 8.4× 9.8 μm2 (EIA, 
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RS-170). The size of the sensing area of the CCD camera was 6.4×4.8 mm2, and the light 

sensitivity 0.01 Lux.   

 

Figure 6.4 Picture of the experimental system for the DSH curvature sensor 

 

 A NI-IMAQ PCI_1409 image acquisition board (National Instruments) was used as a 

frame grabber to acquire images from the CCD cameras. The board is compatible with double-

speed 60 frames per second progressive scan cameras and delivers up to 60dB dynamic range, 

which corresponds to 10 bits or 1024 gray scales.  It has 16 MB of onboard memory used to 

temporarily store the image being transferred to the PCI bus. The PCI_1409 board has up to four 

input ports, so we connected the three CCD cameras located in the three output channels to this 
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board. The NI-IMAQ Vision development module was used to provide LabView related 

functions, which allowed us to perform various operations on the acquired images. 

 

 

Figure 6.5 GUI of the DSH sensor experimental setup 

 

 The Graphic User Interface (GUI) developed for the experimental setup with LabView 

graphic language is shown in Figure 6.5. Although in field applications it is required to sample 

all of the data simultaneously to reduce vibration sensitivity, for a first proof of concept 

demonstration, where we were limited by our hardware budget we sampled each of the grid 
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coordinates serially rather than in parallel.  An indicator located on the up-left corner of the GUI 

shows the sampling process, and the individual images of the 52 Hartmann grid points were 

shown in an array on the right side of the GUI according to their original positions. A button 

immediately above the process indicator was used to switch between the calibration process and 

the measurement process. Once the data was obtained from measurement and calibration, 

wavefront estimations were computed with a zonal wavefront estimation algorithm described in 

Section 6.4. 

6.4  Curvature-based zonal wavefront estimation 

 Given the wavefront curvature data obtained from the slope differential measurements 

and the boundary gradients obtained from slope measurements, the wavefront values may be 

estimated.  On the basis of wavefront Laplacian curvature measurements inside the pupil and the 

slope measurement at the pupil boundary, Roddier and Roddier proposed a zonal iterative FT-

based wavefront estimation algorithm.92  Chanan established a zonal least-squares wavefront 

estimation algorithm for curvature data obtained on a square domain.59  In this section, a zonal 

least-squares-based estimation algorithm for curvature data based on Taylor series is proposed. 

 The 8×8 S-H grid used for this experimental system is shown in Figure 6.6.  For 

convenience, we index the square S-H grid array with the SNS mode (i= 1, 2…m (m=t×t)) as 

shown in Figure 5.2.  The discretization of Poisson equation yields a normal equation set for the 

least-squares-based wavefront estimation (Zou & Rolland 2005).200   

For a curvature-based zonal wavefront estimation, the estimation algorithm becomes very 

simple because various mathematical frame works needed for estimating the Laplacian 
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curvatures from slope data at each given grid point are avoided.  Instead, the Laplacian 

curvatures are directly obtained from measurements at each point where the wavefront value is 

evaluated, which forces the Southwell geometry, a geometry that yields the best error 

propagation in wavefront estimation as detailed in Chapter 5.  

 

 

 

Figure 6.6 A 52-point S-H Grid 

 

For any interior point within the sampling domain, the least-squares-based normal 

equations for wavefront estimation are always of the same form, which is 

( )iyix
2

1itiiti1i ccawww4ww ,, +=++−+ ++−− .    (6. 6) 

For a regular discretization mesh illustrated in Figure 6.6, all the boundary points can be 

categorized into two types: the line boundary points and the corner boundary points.  As 
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illustrated in Figures 6.7 and 6.8, there are only eight boundary local geometries that are needed 

to be taken care of for a given sampling domain.  In the following, we will derive the normal 

equations for wavefront estimation for each of the eight local geometries. 

For the line boundary points illustrated in Figure 6.7(a), the curvature in the x-direction at 

this point can be approximated by 

ix
2

1ii1i caww2w ,=+− −+ .      (6. 7) 

 

 

Figure 6.7 The edge points 

 

In order to couple Poisson equation with the boundary condition, we need to estimate the 

boundary slope that is normal to the boundary line. Given the Taylor expansion in the y-

direction, we have 
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i,yiti c
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aasww ,    (6. 8) 

where 
iys , is the slope in the y-direction at point i.   If we ignore the higher order terms and add 

Eqs. (6.7) and (6.8) together, we obtain the normal equation for the boundary points that shares a 

boundary geometry shown in Figure 6.7(a) as  
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Performing similar operations for the other local boundary geometries illustrated in 

Figure 6. 7(b)-(d) yields  
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For the corner points illustrated in Figure 6.8(a), the Taylor expansions can be given in 

the x-and y-directions as: 
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(a) (b) (c) (d)

 

Figure 6.8 The corner points 

 

 Adding the above two equations together and ignoring the higher order terms, we obtain 

the normal equation for the corner boundary points that share the local boundary geometry 

shown in Figure 6.8(a) as 
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 Performing similar operations for the other local boundary geometries illustrated in 

Figure 6.8 (b)-(d) yields  
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Writing the normal equations derived from the interior points and the boundary points in 

a proper order, we obtain the normal equation set, which may be expressed in matrix form as  

BFAW aa2 −=      (6.19) 

where A is the normal matrix for zonal wavefront estimation, W is the wavefront vector, a is the 

pitch size of the S-H grid, F is the vector of the weighted Laplacian curvature measurements, and 

B is a vector of the boundary slopes that are normal to the edge. Compare with the algorithm 

obtained by Chanan, they both share the same matrix form. However, their boundary condition 

treatments are different, and therefore they are two different algorithms. The validation of this 

proposed algorithm is shown in Chapter 7. 

 Usually the optical surfaces have large errors near the edges.  Variations in the boundary 

slopes may dramatically change the wavefront estimation results.57 Such a condition makes the 

wavefront estimation in optical testing challenging, because the boundary conditions are usually 

affected by large edge-slope defects. However, we can not discard the boundary conditions in 

wavefront estimation, because it contributes to the wavefront shape besides the wavefront 
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orientation and defocus.47, 87  As detailed in Chapter 3, the orientation of the wavefront is 

determined by the boundary slopes only, but the wavefront shape is determined by both the 

wavefront Laplacian and the boundary slopes.124   

6.5  Principal curvature computations 

 The normal curvature is the change of the surface normal in an osculating plane, and the 

principal curvatures at a non-umbilical point are the maximum and minimum values of the 

normal curvatures, say 1κ  and 2κ , in two perpendicular directions. Regarding a local patch on a 

surface, the principal curvatures are invariants, which are insensitive to the surface orientations.  

 In order to evaluate the principal curvatures, we assume that the neighborhood of a 

Hartmann grid point can be represented by a “Monge patch” of the form:  

321 e)y,xW(eyex ++=X      (6.20) 

where ( 1e , 2e , 3e )  is an orthogonal frame in Euclidean 3-D space.  For a wavefront traveling in 

the z-direction ( 3e ), W(x,y) is the “height” as a function of x and y in the pupil plane. Then the 

second fundamental form has a matrix form to describe the local surface shape as 196 
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1

))

))

II ,      (6.21) 

where 1,2.)j1,2;(i ==3i
jω) defines the component in ie  of the turning rate of the normal as you 

move the frame across the given point along je . Then at each “Monge patch”, the matrix II 

becomes 
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where the diagonal terms (i)xc and (i)yc  are the wavefront normal curvatures in the x-direction 

and in the y-direction, i.e. (i)
x
W(i)c 2

2

x ∂
∂

=  and (i)
y
W(i)c 2

2

y ∂
∂

= ;  the off-diagonal terms (i)cxy and 

(i)cyx are the corresponding twist curvature terms, i.e. (i)
yx

W(i)c
2

xy ∂∂
∂

=  and (i)
xy

W(i)c
2

yx ∂∂
∂

= . 

 The determinant of matrix II , denoted as K, is known as the Gaussian curvature, which 

measures the total spread of normal directions per unit surface area. 46  The trace of the matrix 

II is denoted as 2H, where H is known as the mean curvature, which is the average normal 

curvature taken over all tangent directions.  Both Gaussian curvature and mean curvature are 

algebraic invariants,46  which means they do not change with rotation of the orthogonal frame 

( 1e , 2e , 3e ) about the normal.   

 By diagonalizing the matrix II  to rotate the orthogonal frame about 3e , the off-diagonal 

terms disappear. Then we obtain a new matrix II ′ by 

IIPPII T=′ ,      (6.23) 

where P is an orthogonal matrix defined by 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

cosθsinθ
sinθcosθ

P ,     (6.24) 

where the angle θ  is defined as the frame rotation angle. The new matrix II ′ is therefore a 

diagonal matrix as 

⎟⎟
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⎞
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0(i)

2

1II ,     (6.25) 
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where (i)1κ > (i)2κ (i=1,2, …,m, where m is the total number of the S-H grid points). 

(i)1κ and (i)2κ are the eigenvalues of the matrix II , which are also known as the first and second 

principal curvatures that define the greatest and smallest normal curvatures at a given patch. 

Applying Eqs.(6.22), (6.24) and (6. 25) in Eq.(6.23), we obtain a formula for the principal 

curvatures 1κ and 2κ as 

( )
2

(i)c4(i)c(i)c(i)c(i)c
(i)

2
xy

2
yxyx

1,2

+−±+
=κ ,    (6.26) 

and a formula for the rotation angle (i.e. θ  is the angle between the first principal curvature and 

the x-direction) as 

⎟
⎟
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⎜
⎜
⎝
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−
=θ −

(i)c(i)c
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tan
2
1(i)

yx

xy1 .      (6.27) 

 The principal curvatures can also be computed by evaluating the eigenvalues of matrix 

II with its characteristic equation as 

( ) 0det =−κ III ,      (6.28) 

 which yields the same result. Additionally, the rotation angle θ can also be computed with the 

Euler’s formula (1760) given by 46 

[ ]
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(i)2cos
21

x

κ−κ
−

=θ ,     (6.29) 

where H is the mean curvature  

( ) 2(i)c(i)c(i)H yx /+= .      (6.30) 

Then the angle θ  is given by 
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Applying Eq.(6.26) in Eq.(6.31), we have  

( ) ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+−

−
=θ −

2
xy

2
yx

yx1

(i)c4(i)c(i)c

(i)c(i)c
cos

2
1(i) ,     (6.32) 

which is equivalent to Eq.(6.27).  

 The principal curvatures and their directions are two important parameters of local 

surface shape. We showed how these parameters are estimated directly from the wavefront 

Laplacian curvatures and the twist curvature terms with matrix diagonalization method. 

6.6  Summary 

The DSH curvature sensor is derived from the S-H sensor, so it shares some important 

features of the S-H sensor. It is a real-time wavefront sensing, and the measurements are 

inherently two-dimensional and parallel.  It yields good photon efficiency for all wavelength 

bands. The DSH curvature sensor shares some important features of Roddier’s curvature sensor. 

Theoretically it is independent of all types of vibrations and drifts, tip/tilts and whole body 

movements. Similar to Roddier’s curvature sensor, it is scale tunable by changing the differential 

values. After calibration, no external references are needed for all tests.   

The DSH curvature sensor has its unique features. (1) Compare with the CGS sensor and 

the curvature profiling technique, the DSH curvature sensor provides a more convenient way to 

measure the twist curvature terms, while Roddier’s curvature sensor only yields the Laplacian 

curvature measurements. The twist curvature terms are important parameters for computing the 

principal curvatures and directions, because they provide more information about the exact shape 

of the wavefront.  (2) The DSH curvature measurements are performed at the pupil of the optical 
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system under test, so the difficulties associated with the operations close to the caustic zone in 

Roddier’s curvature sensor are avoided.  As pointed out by its inventor, Roddier’s curvature 

sensor is valid only for the defocused images taken outside of the caustic zone, inside which the 

rays coming from different sample pupil points intersect together.57  Unfortunately the size of the 

caustic zone is related with the aberrations of the system under test and the atmospheric 

turbulence-induced seeing blur, so there is no general rule to apply.57   (3) The DSH curvature 

sensor does not have a 2π-ambiguity problem, while most of the irradiance-based phase retrieval 

methods do. This feature makes the DSH curvature sensor work well with large aberrations, 

while Roddier’s curvature sensor is good in accuracy only for small aberrations. (4) The DSH 

curvature sensor provides a means to remove the need to scan as the profiling curvature sensing 

does, and avoids the scan errors and nonlinearity problems.27  As the DSH curvature sensor 

measures the curvatures by simultaneously acquiring 2-D slope differentials via three channels, it 

is totally insensitive to all types of vibrations and drifts, both in surface height and in surface 

slope, so the vibration-induced accuracy degradation is avoided during curvature measurements. 

Koenderink pointed out that “it would be better, of course, to sample even higher order 

properties of the surface (such as curvature) directly instead of having to infer them from point or 

facet samples”. 46  From the normal curvature measurements, we showed how to compute the 

principal curvatures and their directions.  The principal curvatures contain more shape 

information of wavefront than Laplacian curvature, and further more than slope data.  Future 

work will include review of the mathematical literature for estimating wavefront shape directly 

from the principal curvatures and their directions and potentially the development of new 

algorithms as well for optical testing instead of the existing Laplacian curvature-based 

algorithms. 



147 

CHAPTER SEVEN: SIMULATION AND ERROR ANALYSIS 

 In this chapter, we first numerically validate the curvature-based zonal wavefront 

estimation algorithm with a test wavefront given by a Zernike polynomial. Then an error analysis 

of the DSH sensor is provided. 

7.1  Numerical validation of the proposed algorithm 

 In order to validate the wavefront estimation algorithm proposed in Chapter 6, the 

following procedures were adopted. First, a wavefront function was generated as the original 

wavefront by using a known Zernike polynomial.  Then the first and the second derivatives of 

this given wavefront were computed at each grid point.  Based on the generated curvature data, 

the wavefront was estimated with the proposed algorithm.  For evaluating the proposed 

wavefront estimation algorithm, the wavefront was also estimated from the generated slope data 

with a common iterative wavefront estimation algorithm. This iterative algorithm was used as the 

ground truth for evaluating a Gerchberg-Saxton iterative wavefront estimation algorithm in our 

previous work presented in Chapter 4.180  Comparisons were made between the original and the 

estimated wavefronts.  The differences between them were used as metrics for evaluating the 

proposed curvature-based algorithm. 

 The original wavefront function in this simulation was defined by a Zernike polynomial 

as 

),(ZW),W( 0
40 θρ=θρ ,      (7. 1) 
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where ( ) ( )1665,Z 240
4 +ρ−ρ=θρ  is the term for primary spherical aberration in Zernike 

polynomials with π<θ≤≤ρ< 20   10 , , and λ=
3
7W0 . As defined by the Zernike polynomial, 

the RMS value of the introduced wavefront is 0W (~2.33λ).  If the radius of the wavefront test 

pupil is R, then we can write the original wavefront in the Cartesian coordinate form as 
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 Accordingly, the first derivatives (slopes) of the given wavefront can be derived as  
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and the second derivatives (curvatures) of the given wavefront can be derived as 
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 Given the wavefront slope and curvature data on a 8×8 grid (shown in Figure 6.6) by 

Eqs.(7.3)-(7.6), we can estimated the wavefront with the zonal curvature-based wavefront 

estimation algorithm proposed in Chapter 6.  The contour plot of the estimated wavefront from 

curvature data is shown in Figure 7.1(a), and the wavefront estimated from slope data is shown 

in Figure 7.1(b) for comparison.  Both wavefronts were estimated by zonal least-squares 

algorithms with the Southwell geometry.  Figure 7.1(c) shows the original wavefront with the 
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8×8 discretization grid.  In Figures 7.1 and 7.2, the “Ave” stands for the mean value of the 

wavefront, and the “Var” stands for the RMS value of the wavefront.   
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    (d)                      (e)   

Figure 7.1 Wavefront estimation with an 8×8 grid array 

 (a) Estimated wavefront from curvature data.  (b) Estimated wavefront from slope data. 

(c) Original wavefront on an 8×8 grid. (d) Deviation error map of the estimated wavefront from 

curvature data. (e) Deviation error map of the estimated wavefront from slope data. 

 

 The difference between the estimated wavefront and the original wavefront is referred to 
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as the wavefront deviation error of the proposed wavefront estimation. The wavefront RMS 

deviation error is defined as the root-mean-square value of the difference between the two 

wavefronts at each grid point. The RMS value of the curvature-based wavefront is 2.47λ 

(λ=632.8nm for this chapter), the RMS value of the slope-based wavefront is 2.21λ, and the 

RMS value of the original wavefront is 2.51λ.  The wavefront deviation error maps generated by 

the curvature-based and slope-based wavefront estimations are shown in Figures 7.1(d) and (e), 

which are shown to have RMS deviation errors of 1.144λ and 0.572λ, respectively.  

  It can be observed that the coarse grid sampling is the main cause of the large deviation 

RMS errors. To get insight into the impact of the grid sampling size on the deviation error when 

the exit pupil is fixed, we provide another simulation example of wavefront estimation with a 

30×30 grid array in Figure 7.2.  The estimated wavefronts from curvature and slope data are 

shown in Figure 7.2(a)-(b), and the original wavefront with the 30×30 grid array is shown in 

Figure 7.2(c). The RMS value of the curvature-based wavefront is 2.387λ, the RMS value of the 

slope-based wavefront is 2.392λ, and the RMS value of the original wavefront is 2.390λ. The 

corresponding wavefront deviation error maps of the curvature and slope-based wavefront 

estimations are shown in Figure 7.2(d)-(e), in which the RMS deviation errors are 0. 081λ and 

0.041λ, respectively. 

 For both examples if we decompose the estimated wavefronts into the Zernike 

polynomials (for t>5), a spherical aberration of 2.33λ(~7/3λ) can be retrieved, which is the 

original aberration value that was introduced by Eq. (7.2).  This provides a validation of the 

curvature-based zonal wavefront estimation algorithm proposed in this dissertation. 
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(d)    (e) 

Figure 7. 2 Wavefront estimation with 30×30 grid array 

   (a) Estimated wavefront from curvature data.  (b) Estimated wavefront from slope data.  

(c) Original wavefront on a 30×30 grid. (d) Deviation error map of the estimated wavefront from 

curvature data. (e) Deviation error map of the estimated wavefront from slope data. 

 

 Further study shows that the deviation error of the slope-based wavefront is only half that 

of the curvature-based wavefront, as shown in Figure 7.3, and both of them decrease 

exponentially with an increase in the sampling grid size.    After removal of the piston error and 

the tip/tilt error in the estimated wavefront, we found that the deviation error in the estimated 
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wavefront is mainly the defocus value (>98%).  In Figure 7.3, curves 1 and 2 are the plots of the 

deviation errors of the curvature-based and slope-based wavefront estimations versus the grid 

size, and the curves 3 and 4 are the plots of the corresponding defocus values.  It is interesting to 

notice that the defocus value in the curvature-based estimation is twice that of the slope-based 

estimation but of different sign.  As shown in Figure 7.3, the curvature-based defocus value is 

negative, while the slope-based defocus value is positive. 
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Figure 7. 3 Wavefront deviation errors and the defocus values 

 

 The RMS value of the discretized original wavefront is the RMS value of the true 

wavefront values computed on the whole grid.  Although the RMS wavefront deviation error is 

defined as the RMS difference between the estimated wavefront value and the original wavefront 

value at each grid point, the RMS value of the discretized original wavefront differs from the 

RMS value of the continuous true wavefront (which is 7λ/3 in this example) as a result of 

wavefront discretization.  The difference between the two RMS wavefront values is defined as 
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the wavefront discretization error.  As shown in Figure 7.4, the discrete sampling becomes 

denser as the grid size increases, and the wavefront discretization error tends to zero. 

 In the above numerical simulations, the pupil size is about 15mm in diameter, which 

corresponds to an 8×8 grid array with a pitch size of 1.79mm.  When the grid size is increased, 

the pitch size of the S-H grid decreases for a fixed pupil.  For the case of a 40×40 grid size (the 

maximum grid size in simulation), the pitch size of the S-H grid is 0.36mm. 
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Figure 7. 4 Wavefront discretization error versus discretization grid size 

7.2  Error analysis of wavefront measurement 

 Because the DSH curvature sensor is based on the S-H sensor, its measurement capability 

is limited by the dynamic range of the S-H sensor in each channel, while its measurement 

accuracy is limited by the sensitivity of the S-H sensor in each channel.  We shall provide an 

analysis of dynamic range and sensitivity, and exemplify this analysis using spherical aberration 
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as the departure aberration from an ideal shape.  The dynamic range and sensitivity will be 

computed in both slope values and number of waves of wavefront departure utilizing the 

experimental setup parameters given in Chapter 6.  

 For a wavefront with third-order spherical aberration of 040W , we have 

( )222
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R
W

W)y,x(W +=ρ= .     (7.7) 

where R is the pupil radius at the optics under test (e.g. a mirror), and 10 ≤ρ≤  is the 

normalized pupil radius, and x and y in Eq. (7.7) are physical dimensions within the pupil.  

Differentiating Eq. (7.7) yields wavefront slopes in the x-and y-direction as  
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7.2.1 Dynamic range  

 The dynamic range is defined as the largest wavefront slope that can be measured.  Given 

that the pitch size of the lenslet array is 1.79mm, and the focal length of the lenslet array is 

90mm, the maximum slope that the lenslet array can sense can be determined by 

,radian 00994.0)902/(79.1tan max ≈×=θ              (7.10) 

so the dynamic range of the S-H sensor is o57.0max ±=θ , which corresponds to a local wavefront 

slope error of 35.3D/dmax ′±=θ  arc minutes at the mirror surface, where d=15mm is the exit 

pupil size at the lenslet and the D=152.4mm is the mirror size.  
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 In expressing this slope error in terms of the wave number of wavefront error, we shall 

note that spherical aberration displays its largest amount of slope value at the edge of the pupil, 

and the aberration is rotationally symmetric.  Thus considering the edge of the mirror pupil in the 

x-direction (i.e. x=R=76.2mm, y=0), we establish that  

λ≈=
×

××
=

θ
==  29.5  mm0186.0

 152.4  4
 76.2 15  0.00994

D4
R d 

x 4
RS

W max
3

4
x

040 , (7.11) 

where the λ equals 0.6328nm.  Thus the dynamic range at the mirror is quantified to be in slope 

measurements ± 35.3′  arc minutes or in wavefront amplitudes about ± 30 waves. 

7.2.2 Sensitivity  

The sensitivity of a S-H sensor is defined as the smallest slope data that can be measured. 

Assuming that a S-H spot centroid position can be acquired with an accuracy of one tenth of a 

pixel size when a high quality camera is used, the smallest measurable slope value is  

f 
CCD

min β
σ

=θ       (7.12) 

where 3.2/1=β  is the magnifying power from the lenslet array image plane to the CCD 

camera, and mm90f = is the focal length of the lenslet array.  Assuming a CCD camera with 8.4 

μm pixel size, then 

secarc4.4radian10147.290mm /3.2mm10 84.0 5-3
min =×=××=θ − ,  (7.13) 

which corresponds to a wavefront slope error at mirror surface of secarc43.0D/dminM =θ=θ . 
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 To estimate the smallest value of 040W  that can be measured, we consider the edge of the 

mirror pupil in the x-direction (i.e. x=R=76.2mm, y=0), where the wavefront have its maximum 

slope  

R
W4

S 040
max = ,      (7.14) 

 To make the wavefront sensible for the S-H sensor, the maximum wavefront slope maxS should 

be at least as big as the smallest measurable slope value Mθ , and then we establish that  

λ≈μ=
×

×××
=

θ
=

−

0636.0m04.0
mm4.1524

mm15mm2.7610147.2
D4
RdW

5
min

040  (7.15) 

where the λ equals 0.6328nm. The above analysis shows that given a RMS CCD centroiding 

error of 
10
1 pixel, λ/15 is the smallest third-order spherical aberration (P-V) that our 

experimental system can sense, and 0.43 arc sec is the smallest wavefront slope value sensible at 

the mirror surface.  It is to be noted that the accuracy of the CCD camera, along with the quantity 

of the S-H spots, drives the magnitude of the slope measurement error.  Therefore, based on the 

special requirement for testing applications, a high performance CCD is desirable. 

7.2.3 Accuracy  

 In the following, we will show how much wavefront measurement accuracy that an S-H 

sensor of the DSH experimental system can achieve, when the error propagation in wavefront 

estimation is considered. For the Laplacian curvature-based wavefront estimation, either the 

Fried geometry or the Southwell geometry can be applied. Because of its convenience for 

wavefront estimation and its low error propagation behavior, the Southwell geometry was 
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adopted in our work. For the slope-based wavefront estimation in each channel, the error 

propagation coefficient was given in Chapter 5 by 

SS2
s

2
w

S ηK
σ
ση ==′      (7.16) 

where ( ) 00 A8750mtmAK ./ =−=S  for the Southwell geometry. 0A  is the pitch area of the 

sampling grid, and Sη is the WFD-based error propagation coefficient defined by Eq.(5.36) and 

estimated by Eq.(5.39).  For a 8 ×8 sampling grid,  

1.1387)t(ln0.410.2861ηS =+= ,    (7.17) 

 thus 00S A9963.01387.1A875.0η =×=′ . Therefore, the mean variance of the wavefront 

estimation error is given as 

2
s0

2
s

2
w A9963.0ησ σ=σ= ′S .     (7.18) 

Since the equally spaced sampling grid is square, and its pitch area is 2
0 aA = , then Eq. (7.18) 

yields 

f
a

9963.0ησ CCD
sw β

σ
=σ= ′S .    (7.19) 

Therefore, the RMS wavefront estimation error with an 8 ×8 sampling grid can be estimated by 

λ=μ=
×μ×

×= 0.061m0384.0
mm90

3.2m84.0mm79.19963.0σw ,   (7.20) 

where λ equal to 632.8nm.  

 The analysis shows that if the RMS wavefront slope measurement error of an S-H sensor 

is 1/10 pixel, the RMS wavefront estimation error will be λ/16.  Since the wavefront estimation 
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error is driven by both the pitch size of the sampling grid and the CCD centroiding accuracy, a 

smaller wavefront estimation error may be obtained if a smaller grid size is adapted. 

7.3  Summary 

In this chapter, we validate the accuracy of the zonal curvature-based wavefront 

estimation algorithm presented in Chapter 6. We provide an analysis of the dynamic range, the 

instrument sensitivity, and the wavefront estimation accuracy of the DSH curvature experimental 

system under development. As part of the lessons learned, the camera we considered for 

methodology development was found to have dead space in one direction which resulted in data 

missing during measurements, thereby a low CCD centroiding accuracy.  A high performance 

CCD camera will be necessary for the application of optical testing where wavefront estimation 

at level of λ/4~λ/100 may be required. 
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CHAPTER EIGHT: SUMMARY OF CONTRIBUTIONS AND 
CONCLUSION 

 With developments in active and adaptive optics, ophthalmology, and optical shop testing 

wavefront sensing has become increasing prevalent. Wavefront sensing can involve either direct 

or indirect OPD measurements. This dissertation focused on indirect OPD sensing, specifically 

the parameter-based wavefront sensing.  Three major contributions were made for optimizing 

wavefront sensing techniques.  First, an iterative zonal wavefront estimation algorithm for any 

irregular pupil shape was presented;180 secondly, a theoretical study of error propagation for 

zonal wavefront estimations was performed;190  thirdly, a differential Shack-Hartmann curvature 

sensor was proposed and implemented.194 

 For parameter-based wavefront sensing, either wavefront slope or wavefront curvature or 

a combination are measured within the pupil under test. One problem encountered in the slope-

based wavefront estimation is how to handle wavefront estimation with irregular pupil shapes.  

In optical shop, optical elements can be round, square, or circular but with central obscuration, 

etc. A zonal wavefront estimation algorithm was proposed based on a least-squares linear 

equation system and Gerchberg-Saxton iterations. A domain extension technique was used to 

transform the irregular pupil into a square shape, and a serial numbering scheme was adopted for 

indexing the sampling grid inside the square domain to make the wavefront estimation matrix 

regular, symmetric and pre-defined. Gerchberg-Saxton iterations were employed to extrapolate 

the slope data outside the original pupil. The deviation error induced in the wavefront domain 

extension was then reduced to less than λ/100, and the convergence was showed to occur within 

a few iterations. It is believed to be the first implementation of the Gerchberg-Saxton algorithm 
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with a least-squares linear system technique. The strength of the approach lies in the fact that the 

least-squares-based Gerchberg-Saxton algorithm does not suffer from the 2π-phase ambiguity 

problem commonly encountered in Fourier-based approaches. As a result the least-squares-based 

Gerchberg-Saxton algorithm is superior for estimating large aberrations. A theoretical analysis 

shows that this algorithm is not only computationally efficient but also yields low error 

propagation. 

 Error propagation is an important parameter in evaluating slope-based wavefront 

estimation. Based on the serial numbering scheme, wavefront estimation matrices for the 

Hudgin, Southwell and Fried geometries were established. It was shown that the error 

propagation coefficient can be expressed as a function of the eigenvalues of the wavefront-

estimation-based matrix, where the error propagation behavior differs with the different parity of 

the grid size. For wavefront estimation with a “zero point” chosen, odd-number grid sizes were 

shown to be preferable to even-number grid sizes. This formulation confirms Noll’s theoretical 

result if the Southwell geometry is adopted with the odd-number grid sizes.  

 From the wavefront difference-based wavefront estimation to the wavefront slope-based 

wavefront estimation, if the effect of the pitch size is not considered, the error propagator does 

not change much for the Hudgin and the Southwell geometries, but it becomes four times worse 

for the Fried geometry.  In sum, the Southwell geometry is recommended as the best error 

propagator for both the difference-based and slope–based wavefront estimations. 

 For curvature-based wavefront estimation, a differential Shack-Hartmann (DSH) 

curvature sensor was proposed, which measures wavefront curvatures by measuring the 

differentials of the wavefront slopes at each Shack-Hartmann grid point in parallel.  An 
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algorithm for zonal wavefront estimation from curvature measurements was proposed and 

demonstrated. For slope differential measurements at each S-H grid point, the Southwell 

geometry has been demonstrated to be the best choice. The curvature-based wavefront estimation 

algorithm was shown to be equivalent to the slope-based wavefront estimation algorithm for the 

Southwell geometry, but it is much simpler and more convenient to apply.  Furthermore, 

curvature data acquired by the DSH sensor is expected not to suffer from vibration induced 

noise, a current limitation of most slope-based sensors and some curvature sensors. 

 The principal curvatures and their directions are two important parameters in 

characterizing the wavefront local shape, which are the maximum and minimum curvatures of 

any local patch on the surface in two orthogonal directions. It is known that the principal 

curvatures can be computed from the Laplacian curvatures and the twist curvature terms.  We 

provide in this dissertation a means with the DSH sensor to measure such components for the 

first time.  Previous curvature sensors essentially focused on measuring solely the Laplacian 

curvatures, which is not sufficient to compute the principal curvatures and directions of a local 

patch for describing the local wavefront shape.  

 The main merits of the DSH sensor are its immunity to vibrations, its ability to better 

measure the twist curvature terms, and its capability with high sampling to estimate the mid-

spatial frequency error as well as the low-spatial frequency, which move the wavefront sensing 

technique to the next level of profilometry accuracy.  Finally, with efficient two-dimensional 

curvature measurements in parallel, the problems associated with one-dimensional point-by-

point-scan curvature profiling are avoided.   
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 Future work will involve the comprehensive engineering investigation of the DSH sensor 

for various applications. The design of the instrument will differ based on the requirements for 

sensitivity and dynamic range.  In developing any DSH instrument, care will need to be taken in 

easing the alignment of the three channels and minimizing spurious aberrations introduced by 

components that make up the system. It is also of interest to investigate algorithms for wavefront 

estimation directly from the principal curvatures and directions and yield insight into the ability 

of this parameterization to best represent overall local and global shape.  Finally, any departure 

in estimated shape from a defined gold standard should be correlated to the impact of such errors 

on the performance metrics of various tasks linked to specific applications.189 
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APPENDIX  DERIVATION OF EQS. (4.11), (4. 12), (4.26) AND (4. 27)  
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(on page 79, 79, 81 and 81, respectively) 

The nth derivative of the wavefront at point i is denoted as 
i

n

n

y
W

∂
∂ , and the nth derivative 

of the wavefront at the midpoint between the points i and i+1 as 
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Subtracting Eq.(A1) from Eq.(A2) yields 
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Adding Eq.(A1) and Eq.(A2) yields 
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Replacing w with
y

W
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Ignore the high order terms in (A5), we have  
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Applying Eq. (A6) in Eq.(A3) yields 
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Again, replacing w with
y
W
∂
∂  in Eq.(A7) yields 

)a(  
y
W

12
a

y
W

y
W

2
a

y
W

y
W 5

2
1i

4

43

i
2

2

1i
2

2

i1i

Ο+
∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

+++

.  (A8) 

It was shown in literature that 11 
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From (A9), we have 
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Applying Eq. (A10) in Eq.(A8) yields 
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If we neglect the higher order small-value terms on the right side of Eq. (A12) and denote 

the first derivative of the wavefront in the y-direction as sy, then Eq.(12) becomes  

( )i1i2i3i1y i2y i w-ww w
a2

1ss +−=− +++++ ,   (A13) 

where i=1,2,… t-3;  t+1,t+2,… 2t-3, …m-3.   

Similarly in the z-direction, we can write 

( )t3it2itiit2z, itz, i w-ww w
a2

1ss +++++ +−=− ,   (A14) 

where i=1,2,…t, t+1,t+2,…2t,…, m-3t. 
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