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ABSTRACT

Nano and nanostructured materials offer unique physical and chemical properties that
differ considerably from their bulk counterparts. For decades, due to their fascinating properties,
they have been extensively explored and found to be beneficial in numerous applications. These
materials are key components in many cutting-edge optic and photonic technologies, including
photovoltaics, waveguides and sensors. In this dissertation, the uses of nano and nanostructured
materials for optical applications are investigated in the context of optical limiting, three
dimensional displays, and optical sensing.

Nanomaterials with nonlinear optical responses are promising candidates for self-
activating optical limiters. In the first part of this study, optical limiting properties of unexplored
nanomaterials are investigated. A photoacoustic detection technique is developed as an
alternative characterization method for studying optical nonlinearities. This was done with an
indigenously developed setup for measuring the photoacoustic signals generated from samples
excited with a pulse laser. A theoretical model for understanding the experimental observations
is presented. In addition, the advantages of this newly developed technique over the existing
methods are demonstrated.

Blending optical sensitizers with photoconducting polymers and chromophores results in
a polymer composite that is able to record a light grating. This composite can be used as
recording media in 3D holographic display technology. Here, 2D nano materials, like graphenes,
are used as optical sensitizers to improve the response time of a photorefractive polymer. The
addition of graphenes to a PATPD/ECZ/7-DCST composite results in a three-fold enhancement

in response time and therefore faster recording speed of the medium. The faster build-up time is



attributed to better charge generation and mobility due to the presence of graphenes in the
composite.

Lastly, a facile nanofabrication technique is developed to produce metallic nanostructures
with a tunable plasmonic response. The enhancement of the light-matter interactions due to these

nanostructures in sensing an analyte is demonstrated.
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1. INTRODUCTION

The trend of today’s technology is moving toward miniaturization. Present society wants
higher resolution displays, faster computers, and more compact devices. Making things smaller
and exploiting material properties at atomic scale, with the use of Nano science and technology,
can serve this social demand. These disciplines involve the study of phenomena and the
manipulation of material at the atomic/molecular scale, where the properties differ notably from
the properties at a macroscopic scale.

The idea of exploring and manipulating material properties at an atomic scale was first
proposed to the science community in 1959 by Richard Feynman. In his presentation, ‘There is
plenty of room at the bottom’, at the American Physical Society, he proposed that many unique
properties and applications could come from manipulating matters at the nanometric scale. Even
though at that time, the technology that could allow such concept was not yet realized, he did not
afraid to share his vision of the future. Today, with the availability of tools such as scanning
electron microscopes (SEM), transmission electron microscopes (TEM), and scanning tunneling
microscopes (STM), scientists are able to visualize, work and manipulate materials at the atomic
level. Although the vision of Richard Feynman has been realized, the quest is still on going.

Nano-science and technology were not only aided by the availability of the tools but also
the discovery of new materials. For example, R. Smalley, H. Kroto and R. Curl won the Nobel
Prize in chemistry for discovering a unique carbon allotrope containing 60 carbon atoms or Cg,
in 1986. In 1991, a Japanese scientist, S. lijima, discovered carbon nanotubes, another form of
carbon whose structure was that of a rolled-up graphite. These newly found materials at the time

gained a lot of attention from the community since their physical, chemical, and mechanical



properties are so unique that they allow realization of many useful applications. Even today,
research on the use of their remarkable properties in new applications is being conducted.
Moreover, newer nanomaterial such as graphene (a sheet of graphite) and other 2D materials like
MoS; have been discovered. Many research works have been conducted around them.

Interaction of light with materials has always been fascinating to scientists. In the field of
optics and photonics, integration with nanoscience and nanotechnology gives rise to remarkable
optical applications, for example, solar harvesting, water sanitization, displays, and sensing. The
scope of this dissertation is to explore the use of nanomaterials as well as nanostructured
materials in optical applications, particularly in laser protection, three dimensional displays, and

optical sensing.

1.1 Nanomaterials in laser protection

Since the first realization of lasers by Maiman in 1960, the protection of human and
devices against lasers has become a safety concern for those who work with the technology. In
typical laboratory setting where specifications of laser output are known, safety can be simply
accomplished by using conventional optical filters based on linear optical effects such as laser
goggles. However, in different situation such as military defense, requirements are much more
stringent. Moreover, with present day high level of globalization and market convenience of e-
commerce, the availability of relatively high power commercial lasers is surprisingly high. With
the advances in manufacturing of solid-state devices, compact small lasers systems are
affordable for nearly everybody. With such availability, lasers threats are no longer limited to

scientists and soldiers. An example of civilian laser threat is the instance where people aimed



laser at an airplane and temporarily blinded the pilots. As a result, numerous research works are
focused on developing better laser protection devices.

Laser protection devices can be divided into three main categories, namely static, active
and self-activating protection. In the case of static protection, optical filters including line and
band filters are usually used for laser protections. With this system, laser attenuation at a
particular frequency can be substantially high. However, color distortion and visibility at the
protection frequency can be an issue in some applications. Active protection on the other hand,
uses optical elements like shutters and spatial light modulators for blocking laser light. This type
of laser protections can offer broadband response, however, with their slow response time, they
are only appropriate for protection against laser dazzling with continuous laser sources. The last
type of laser protections, which is self-activating, uses the concept of nonlinear optical
phenomena as protection mechanisms. These phenomena include nonlinear absorption, nonlinear
refraction and nonlinear scattering, which contribute to nonlinear decrease in laser light at the
object plane. In literature, this self-activating light reduction is called an optical limiting process
and materials that exhibit such phenomena are called optical limiters. This self-activating
protection can offer fast response time but with the downfall in their relatively high activation
threshold. As a result, they are only suitable for damage protection but not the laser dazzling.
Optical designs can however be done for optimizing the threshold of such self-activating devices.
Nonetheless, the most important part of such device lies on the material development itself.
Surprisingly, most of the best performing optical limiter are nanomaterials. For example, carbon
nanoparticle suspensions exhibit strong thermally induced nonlinear scattering (NLS) effects and
therefore optical limiting (OL) for ns laser pulses. Fullerene shows large nonlinear absorption

and has been considered as a benchmark optical limiter. Other forms of nanostructured carbon



such as carbon nanotube (CNT) also exhibit exceptional optical limiting properties. Non-carbon
nanomaterials like semiconductor and metal nanoparticles also have remarkable optical limiting
performance.

Therefore, the first main body of this dissertation work is to measure optical limiting
properties of new functional nanomaterials with an aim to discover better materials and provide

database for future development of optical limiting devices.

1.2 Nanomaterials in three dimensional display application

In the ancient time, the way for our ancestors to tell their stories was through painting on
cave walls. Since the development of the first camera, actual real-life images can be recorded. By
running series of the captured images, motion pictures can be produced. Displays have been used
as a media for viewing stories told or recorded by the capturer. With these media, viewer’s
experience with the story has been much enhanced compared to the old-day static photographs.
The development of display technology began with the invention of cathode ray tube (CRT) in
the nineteenth century. Though the first application of CRT technology was in the radar system,
it was later recognized and adopted for displaying two-dimensional images in 1928*. Today, the
old CRT technology was succeeded by new technology like plasma display, liquid crystal
displays (LCD), light emitting diode (LED), and laser-based displays®. These new technologies
were developed with an aim of improving human experience for the users, particularly through
better image and color qualities.

With rising demands for better quality and more innovative experiences with display
technology from users, realization of real-world-object like dynamic three-dimensional (3D)

displays has become an ultimate goal in the display development. The vision of the technology
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came out in a science fiction, Star Wars in 1977. Scientists’ quest for recorded 3D experiences,
however, traced long back to 1838 when Charles Wheatstone proposed the concept of the
stereoscope at King’s College, London 3. Stereopsis or the perception of 3D structure is obtained
on the basis of visual information derived from binocular vision. Binocular disparity that results
from two forward facing eyes seeing different viewpoints is perhaps part of animal evolution for
extracting three-dimensional information about the world. Wheatstone’s stereoscopes used two
subtly different hand-painted pictures in combination with two tilted mirrors to send different
information to each eye, creating depth sensation. Following Wheatstone’s development,
nowadays, the term stereoscopy refers to 3D technologies that use eyewear to present the offset
views to each eye whereas the term autostereoscopy means no special eyewear is required.
Autostereoscopy, however, uses special optical elements to send the offset views to each eye.
Stereoscopy can be achieved through the use of, for example, color filter as in the anaglyphic
images, polarizers, and interference filters, integrated to the eyewear. On the contrary,
autostereoscopic displays use optical elements such as parallax barriers and lenticular elements
added into the display systems. More detailed review on both stereoscopic and autostereoscopic
displays can be found elsewhere *. One of the major problems with both stereoscopic
technologies is that the perceived 3D experience is not natural. This is because the image
information sent to the eyes is merely two offset images. They do not represent the real world
experience. In other words, users’ perceptions are fooled by receiving two offset views and as a
result, fake depth sensation is created.

Another type of 3D display technology is holographic display. Hologram can provide

natural depth perception. It also prompts viewers to focus on an image itself rather than on a

screen *°. These advantages are due to the fact that holograms store information about both the



intensity and phase of scattered light. Upon reading the holograms, the wavefronts of that light
are reconstructed making viewers perceive the image as if it were scattered from the real object.
The theory of holography was first developed by Dennis Gabor in 1947. However, the first
hologram was realized more than a decade later after the invention of laser. Conventional
holograms are made of photosensitive materials that record permanent interference patterns
between different waves. Only static images can be produced with conventional holograms.
Moreover, the recorded image is permanent and the conventional holographic media is a write-
once-read-many system. However, due to research endeavor of scientists in realizing a naturally
3D display technology, holographic materials that enable development of dynamic 3D display,
such as photorefractive polymers, have been developed®”. While some 3D stereoscopic display
technologies are commercially available in the markets, the 3D holographic display technology
on the other hand is still far from reaching the consumers. There are three main aspects that need
to be improved before market realization of such technology. First, current optical set-up for 3D
holography is bulky compared to other types of display technology. Second, generating dynamic
holograms at video rate requires a lot of computational power. Lastly, the holographic materials
have slow response time and relatively poor color quality.

The second main body of this work is focused on tackling the last aspect, developing
newer holographic material, particularly photorefractive polymer system. The use of
nanomaterials in improving the performance of the holographic media is explored and

fundamental physics behind the developed systems is studied.



1.3 Nanomaterials in optical sensing

Due to unique properties of nanomaterials compared to their bulk counterparts, the
applications of nanomaterials to design and fabricate sensing devices are nowadays one of the
most active research subjects. Physical, chemical and biological sensors can be made with
nanomaterials. For example, CNTs can be used as gas sensor by monitoring their change in
electrical resistance upon exposure to chemical gases®®. A mixture of liquid gallium and CNTs
has a thermo-sensing property similar to mercury™. Palladium mesowires undergo structural

change and resistance when exposed to hydrogen gas .

Apart from sensors based on
electrical/thermo-physical properties of materials, optical sensing based on changes in optical
properties of materials is also a promising approach.

Due to current availability of low cost optical instrumentations such as light emitting
diodes and laser diodes, optical sensors can be easily implemented. Nanomaterials have been
serving important roles in developing of optical sensors'?. For instance, nano-porous silicon is
used for chemical sensing since physiosorbed chemicals can quench photoluminescence of the
material’®.  Similarly, photoluminescence properties such as intensity and lifetime of
semiconductor quantum dots are altered with the presence of adsorbates on their surfaces™.
Interferometric based chemical sensors using nano-patterned porous silicon was also
demonstrated *°. The average refractive index of the porous silicon layer was increased due to
analyte adsorption. This results in spectral shift of Fabry—Perot fringes of the device. Perhaps,
one of the hottest nanomaterials that gain tremendous research activities recently in the optical
sensing applications is nanostructured metal.

Metallic nanostructures exhibit interesting optical properties, some of which are not

shown by their bulk counterparts. For example, metal nanoparticles show large extinction and



absorption cross-sections that are highly dependent on their size and geometry. The underlying
physics behind their unique optical properties is the collective oscillation of free electrons gas
near its surface or surface plasmon. The resonance condition occurs when the nanoparticles
interacts with electromagnetic radiation whose energy is the same as their natural frequency of
the free electron oscillation. This resonance is termed surface plasmon resonance (SPR). The
first experimental observation of surface plasmon resonance was done by Robert Williams Wood
in 1902 *°. He observed a peculiar diffuse dark band when investigating diffracted spectra of a
metallic grating. Such phenomenon was called Wood’s anomaly and was later explained by Fano
anomaly in term of a forced resonance related to the leaky waves supportable by the grating *'.
Today, it is well known that those leaky waves were actually surface plasmon. When
surface plasmon resonance occurs at the nanostructure interfaces, particularly nanoparticles, it is
called localized surface plasmon resonance (LSPR) owing to its non-propagating nature. This
surface plasmon property of metallic nanostructures are heavily utilized in making optical
sensors due to two interesting consequences of the resonance. First, the resonance wavelength is
dependent on the index of refraction of the environment near the metal surface. By attaching
chemical probes to the surface of the metal, binding of analyte molecules to the probes results in
shifting the SP extinction peak. As a result, chemical sensors, based on resonance shifting due to
presence of analytes have been developed®®. Another consequence is that, at the resonance, the
local electromagnetic field near the metal structure is greatly enhanced. This large local
electromagnetic field can be used to enhance other optical/physical phenomena like Raman
scattering, fluorescence, molecular desorption and molecular ionization. Consequently, sensing
technique that capitalizes on the local electromagnetic field enhancement like surface enhanced

Raman spectroscopy was developed.



Surface enhanced Raman scattering (SERS) is a phenomenon in which Raman scattering
signals of materials absorbed on a small metal structure is greatly enhanced. One of the
pioneering works was done by Fleischman et al. in 1974%. They observed enhanced Raman
scattering signals of pyridine on a rough silver surface. Two main mechanisms are involved in
signal enhancement of SERS, namely chemical mechanism and electromagnetic mechanism due
to surface plasmon. However, the latter gives larger magnitude of enhancement and is considered
as a dominant mechanism. The term "hot spot” has been used to generally describe the location
near metallic nanostructures where there is high field intensity. Due to this field enhancement,
the Raman scattering signals of molecules in the proximity of these hotspots are enhanced.
Detection limit down to a few molecules has been achieved with this technique. For example, in
1977, pioneer research groups reported single molecule detection using SERS. Kneipp et al.
reported the detection of single molecules of crystal violet on aggregated colloidal silver”. In
the same year, Nie and Emony reported single molecule detection of organic dye on the surface
of a silver particle”. Unlike resonance-shift based sensors where information on the adsorbed
species cannot be extracted, SERS provides molecular identification. However, real time
detection with resonance-shift —based sensors is much easier to implement. Therefore, a
complementary analytical scheme, where molecules can be first detected with LSPR-shift assays
and later identified with SERS, can be used®

In order to use surface plasmon properties in a mainstream analytics, several challenges
has to be overcome. For example, more investigations need to be done on better understanding
the physics of chemisorption of molecules on the metal surfaces. Also, development of
reproducible plasmonic platforms has yet to achieve. Unsurprisingly, development of plasmonic

substrates is one of the most prominent research activities in this field. Several fabrication



techniques have been developed for producing plasmonic substrates for sensing applications.
These techniques range from simple system with metal particles dispersed on a flat surface, or in
a form of solution, to complicated structure fabricated by more sophisticated tools like electron
beam lithography. The former has a great disadvantage on its poor reproducibility while the
latter has an issue with its associated high cost of fabrication and low throughput. Therefore, the
technique for producing reliable and cost effective plasmonic substrate with exceptional quality
is yet to be developed. As a result, the last main body of this work is to use the knowledge of
nanofabrication in order to develop low cost plasmonic structures with an aim to provide an
alternative fabrication technique to the field. The fabricated structures are used to study

interesting phenomena resulting from light-matter interactions.

1.4 Dissertation outline

This dissertation work is dedicated to the use of nano and nanostructured materials for
optical applications. In the beginning chapters, the application is based solely on the properties of
the materials itself. In later chapters, more complex applications are introduced in which the
nano/nanostructured materials are integrated with other functional materials. In chapter 2, optical
limiting properties of various nanomaterials are investigated. Theoretical background as well as
experimental setup for studying the materials are presented and discussed. Motivated by the
work in chapter 2, a photoacoustic-based characterization technique for investigating nonlinear
extinction of material is studied and discussed in chapter3. Chapter 4 discusses the use of
nanomaterials as a sensitizer in polymeric holographic media, namely photorefractive polymer.
The use of 2D nanomaterials like graphenes as PR sensitizers is explored. The theoretical

background for the subject is also included in this chapter. In chapter5, the aspect of structuring
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materials on a nanoscale or, in other words, nanofabrication is introduced. Commonly adopted
nanofabrication techniques are briefly reviewed. The purpose of this chapter is to develop a
facile fabrication technique for producing plasmonic nanostructures for enhancing light matter
interaction. The use of the fabricated structures for photon-exciton coupling as well as enhancing

Raman detection is investigated.
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2 OPTICAL LIMITING PROPERTIES OF NANOMATERIALS’

2.1 Motivation

Lasers are indispensable for applications in a variety of fields. This includes military,
telecommunications, manufacturing and medicine. Even though, laser is a very powerful source
of energy, at times, it can be damaging too. These laser systems are so powerful that in industries
high power laser systems are often used for cutting and drilling. For humans, unintended laser
irradiations can damage eyes or other body parts. This poses serious health threat to workers who
are working with such laser systems. In military applications, lasers are incorporated in many
weaponries. These lasers can damage sensors or blind military personals. Therefore, there is a
considerable need for a device to protect people from laser threats.

To date, laser protection devices used in real applications are non-adaptive device in
which its transmission is constant regardless of incident laser power. They primarily use linear
absorption of materials to reduce the transmission. Complete elimination of certain wavelengths

(colors) can create serious problems in application where high visibility is required in the

" The work presented in this chapter are extensions of Chantharasupawong, P.; Philip, R;; Endo, T.; Thomas, J.,
Enhanced Optical Limiting in Nanosized Mixed Zinc Ferrites. Applied Physics Letters 2012, 100, 221108,
Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, ]., Evolution of Nonlinear Optical Properties: From
Gold Atomic Clusters to Plasmonic Nanocrystals. Nano letters 2012, 12, 4661-4667., and Chantharasupawong,
P.; Philip, R;; Narayanan, N. T.; Sudeep, P. M.; Mathkar, A.; Ajayan, P. M.; Thomas, ]., Optical Power Limiting in
Fluorinated Graphene Oxide: An Insight into the Nonlinear Optical Properties. The Journal of Physical

Chemistry € 2012, 116, 25955-25961.
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absence of the harmful laser radiation. One of the proposed solutions to this problem is optical
limiting devices. Ideally, in such devices, instead of having intensity independent transmission,
transmission decreases as the incident power increases. One of the feasible directions in
realizing such adaptive devices is to use nonlinear optical materials. Surprisingly, some of the
best performing nonlinear optical limiting materials are nanomaterials such as, fullerenes and
carbon nanotubes 2. In this chapter, optical limiting properties of interesting nanomaterials are

investigated.

2.2 Theoretical background

2.2.1 Optical processes contributing to optical limiting

There are three main optical processes that can result in optical limiting behaviors of
materials, namely, nonlinear absorption, nonlinear refraction and nonlinear scattering. This

section will provide an introduction into such processes.

2.2.1.1 Nonlinear absorption

The simplest way for achieving passive optical limiters is through the use of nonlinear
absorbing materials. In these materials, their absorption increases with increasing incident
fluence or irradiance. Such nonlinear absorbers can be found in both organic and inorganic
materials. Two main nonlinear absorption mechanisms are typically involved in optical limiting

actions, which are (i) multiphoton-absorption (MPA) and (ii) reverse saturable absorption (RSA).
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(i) Multiphoton-absorption (MPA)

When a medium interacts with an external electric field, its polarization can be written

as?:

AP=K yPE +K yPEE +K y0FE EE+K 30 EEEE +..

(2.1)

Where K’s are the coefficients which depend on systems of unit and degeneracy. x(”) are optical
susceptibilities in the form of n+1 rank tensor describing linear (n=1) and nonlinear processes
(n>1). For example, the first term, (n=1), describes linear phenomena, i.e. index of refraction and
absorption coefficient of material. The second term ® represents nonlinear phenomena such as
second harmonic generation, sum and difference frequency generation, optical rectification,
linear electro optic effect and parametric emission. The third term y®is responsible for 3"
harmonic generation, nonlinear refraction, two-photon absorption (2PA), stimulated Raman and
Brillouin scattering, , self/cross phase modulation, and four-wave mixing. These susceptibilities
describe both linear and nonlinear response of the medium with electric field components of an

electromagnetic radiation.

When a laser beam is propagating through a nonlinear absorbing sample, the intensity

variation of a beam, traveling in the Z direction is given by:

diz) _ —aV-a®r -a®r —a™r -

(2.2)

in which o™ are the absorption coefficients of simultaneous absorption of one photon (n=1), two

photon (n=2), three photon (n=3), etc. «™are proportional to "™
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In the case of optical limiting with MPA, two photon absorption (2PA) is the dominant process
since it is much more efficient and requires much lower limiting threshold than higher-order

photon absorption. Therefore, Equation 2.2 is reduced to:

@ =—aP a1 (2.3)
with ol and o/® being the linear absorption and 2PA coefficient respectively. The absorption

coefficients are related to the susceptibilities through the following relations:

4z
® =2Im(k)=—Tm(,/ z" +1
a (k)= —-Tm(y 2" +1) 2.4

® = L0 3Im( 1 @ 0,—0,0))
n (2.5)

where o is the incident photon frequency, n is the index of refraction, k is the propagation vector,

A is the incident wavelength, po is vacuum permeability.

In general, multiphoton-absorption processes have low loss in linear regime. However,
their drawback is that high irradiance is required to achieve limiting action. Therefore, optical
limiters based on this principal only works well with laser pulse smaller than picoseconds.
Another drawback for this type of limiters is that they usually have narrow spectral range. For
example, two-photon absorbing semiconductors only work when the incident photons have their
energies ranging from Eg/2 to Eg, where Eg is the band gap energy. One can argue that choosing
large band gap semiconductor might increase the spectral range of the device. Unfortunately, the

two-photon absorption coefficients of semiconductors scale inversely with the third power of the
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band gap. As a result, potent semiconductor-based optical limiters are the ones that have narrow

band gap and can only be used in the mid-infrared.

(if) Reverse saturable absorption (RSA).

Figure 2.1Schematic representations of the (a) five level system, (b) simplified three level system
with negligible triplet state absorption, and (c) simplified three level system with negligible
excited singlet state absorption.

2PA process can be significantly enhanced by a resonant one-photon absorption.
Essentially, with this particular case, the absorption of two photons occurs in two-step process.
First, a photon excites an electron from its ground state to the excited state. Second, another
photon excites the same electron further to the higher lying excited state. To have RSA process,
two requirements must be met: (1) the materials must have their excited state cross-section
higher than their ground state cross-section and (2) both the ground state and the excited state
can absorb photons of the same energy. In the case of organic molecules, these requirements are

often met since they often have many vibronic sub-states.
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Most promising reverse saturable absorbers are highly symmetric organic dyes in which low-
lying excited states are weakly allowed. Since these dyes are typically polyatomic in nature,
vibrational relaxation in these molecules is very rapid. Thus, even for picosecond pulse, only the
fully relaxed excited states are considered for mechanistic explanation of RSA. The widely used
kinetic model for RSA is five-level system, shown in Figure 2.1, described by a simple rate

equation:

% =—i(o;Nz+o N +o,.N,)
(2.6)

where i represents the change in photon flux with distance z with the sample of length L, o is the
absorption coefficient, and N is the population of the corresponding state. The subscripts G, S,
and T denote ground state, singlet state, and triplet state respectively. Under the assumption that
there is negligible population in the excited state, the change of population with time can be

described as follows:

dN, :
dts =0 N i—(k, +k )N

(2.7)
dN.
-k N.-k N
dt sC 8 e T (28)
NO:NG+NS+NT 29)

where Ny is the total population and k is the interstate crossing rate. For short laser pulse in the

order of shorter than picoseconds time scale, reverse saturable absorption will happen when the
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excited singlet state absorption cross-section is higher than the ground state absorption cross
section, os/og>1 , since the excited triplet population is negligible within this laser pulse
duration. For such case, the five-level system (Figure 2.1(a)) can be simplified to a three-level
system (Figure2.1 (b)). On the other hand, for the laser pulse of nanoseconds or longer, the
condition for having RSA is that ogr/oc>1 where ogr is the effective weight averaged of o5 and
o1. This effective excited state cross-section area functions of both the intersystem crossing rate
and the intersystem-crossing yield. In the limit where the intersystem-crossing rate is much
shorter than the laser pulse duration, the ratio between the effective excited state cross-section
and ground state cross-section can be simplified to ®,scot/oc Where ®s¢c Is the intersystem
crossing yield. In this case, the five level-system (Figure2.1 (a)) can be again simplified to a
three-level system (Figure 2.1(c)). In the case of the simplified three-level system, the intensity

variation of a propagating laser beam traveling in the z direction is given by:

a =—al-o,NI
dz (2.10)
By ignoring ground state depletion, the rate equation for the first excited state becomes:
dN (IgNR]
dt  ho (2.11)
Integrating over t results in the following expression:
I ap N pr_op_op
dz 2haw 7 (2.12)

This equation looks like the one for 2PA but in reality it is a %™ nonlinearity process.
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Nonetheless, in real systems, many RSA absorbers limit nanosecond pulse or longer from both
excited singlet and triplet absorptions. Ground state depletion also plays some role and will
change this equation to something more complicated depending on the state lifetime. One can
observe combination of both saturable absorption and excited state absorption in the real system.
Even though saturable absorption is desirable in applications like laser pulse compression or
passive mode locking, it is however undesirable in optical limiting. To yield a strong RSA, it is

desirable to have materials with a large ratio of cgr to oc.

Generally, two-step two photon absorption process or reverse saturable absorption is more
efficient than pure 2PA. Potent optical limiters based on nonlinear absorption usually belong to
the RSA category. Centrosymmetric organic molecules, such as metallophthalocyanine and Cg

with 2D and 3D =-electron conjugated system respectively, usually exhibit strong RSA.

2.2.1.2 Nonlinear refraction

Another optical process that can lead to reduced optical power to the device under
protection is nonlinear refraction. Due to Kramer-Kronig relation, every material exhibiting
nonlinear absorption also has nonlinear refraction properties. The nonlinear refraction, defined
to the third order or optical Kerr effect, is described by a parameter n:

n=n,+n,l (2.13)
where n is the effective index of refraction of the medium and ng is the linear (intensity-
independent) index of refraction. Due to this nonlinear effect, the central part of a laser beam
induces larger refractive index change than other part of the beam. This results in the medium
behaving like a lens as there is a non-uniform refractive index distribution seen by the laser

beam. Depending on the sign of ny, this can lead to either self-focusing or self-defocusing of the
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laser beam. In far field, both effects result in spreading of the beam and hence reduction in the
energy density compared to the linear regime. Therefore, proper designs of an optical system, for
example, placing an aperture at the pupil plane whose size corresponds to the size of the laser

beam in the linear regime, can limit the total transmitted energy.

2.2.1.3 Nonlinear scattering

Optical damage in a liquid host is often desirable for obtaining better optical limiting
performance. Plasma or micro bubbles that appear in a liquid host due to optical damage can
cause effective scattering of the laser light. This nonlinear/intensity-dependent scattering process
can provide device protection at higher input energies.

In this dissertation proposal, optical limiting actions in nanomaterials resulted from
nonlinear absorption and scatterings are of interest. The reason is because aperture designs and
the knowledge on the image size at the image plane are not needed when building optical limiters
based on these two mechanisms. Rather, simple Kaplerian telescope design can be used to build

optical limiters.
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2.2.2 Benchmark optical limiters

2.2.2.1 Buckminsterfullerene

Buckminsterfullerene or Cgy belongs to the family of fullerene materials, which are
composed entirely of carbons in the form of a sphere. In addition to Cgp, other members of
fullerene family are, for example, C7o, Cz, Crs, and Cgs. Cgo Was first discovered in 1996 by
Harald Kroto, Richard Smalley, and Robert Curl. They were awarded the Nobel Prize for the

discovery. Among all fullerene materials, to date, Cg is by far the best optical limiter at 532nm.

In 1991, S. Kuroshima et al. studied the excited state properties of Cgo using laser-flash
photolysis % . The ground state has absorption maxima around 300 and 350 nm. The excited
singlet state S; has absorption maxima at 513, 759 and 885 nm whereas the excited triplet state
T, has absorption maxima at 457, 509 and 747 nm. In the wavelength region greater than 400

nm, the ground state absorption is much weaker than those of the excited states S, and T1. These

results showed the possibility of using Ceo as a broadband optical limiter. J.W Arbogast et al.
studied the photophysical properties of Cgo and observed similar results. They found that the
photoexcited triplet state absorption cross-section was stronger than that of the ground state .
In 1992, L.W Tutt and A. Kost reported for the first time the optical limiting performance of Cg
and Cyo solution with ns pulse at 532nm®. The performances of these two materials were better
than other optical limiting materials previously reported. The performance of Cg is however

better than Cy.

The dynamic of RSA of Cg in toluene solution with ns and ps pulse from 532 nm Nd:YAG laser

was studied 2”%°. The experimental results agree well with the theoretical simulation based on the
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5-level system. Y.Wang et al used the following reduced 3-level rate equations to explain their

experimental data *:

“h 1 2 s
dt hv T T

dn,_n, n, (2.14)
dt TISC TG

where ny,n, and n3 are the populations of the ground state , the first excited singlet state , and the
first excited triplet state respectively. The light intensity is related to the rate equation through

the following relations:

a

——al 2.15
2 (2.15)

a:a0+as+aT :0Gn1+0'8n2+0'1,n3

The boundary conditions are:

n({t=-0o,z2)=N=n+n,+n,
n,(t=-w,2)=0
N,(t=-00,2)=0
I(t,z =0) =1, exp(-c(t/At)?)

(2.16)
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where |y is the peak intensity of the incident laser assuming temporal Gaussian shape, and N is
the total population . The rate parameters were taken from S. Kuroshima work, summarized in

Table 2.1.

Table 2.1 Summary of Cgg absorption cross-sections and life times

Absorption cross-section Relaxation time
66=2.87x10"8 cm? Ts6=30nS
05=1.57 x10™"" cm? T16=280us
51=9.22x10"° cm? Tisc=1.2ns

According to their study, the experimental results agree well with the RSA model below the light
fluence of 1 J/cm® The model fails to predict the experimental results beyond 1 J/cm?® This
suggests that other processes, such as diffraction, thermal effects, and two-photon absorption,
may happen. This deviation from 5-level theoretical model at higher fluence was also observed
by other reports %31, Nevertheless, their major conclusions were the following:

(1) The laser pulse width At has an effect on the RSA of the Cgp. When At >1i5c, the triplet
state absorption plays a dominant role. However, when At <tsc, the singlet state
absorption dominates.

(2) The optical limiting of Cg depends highly on the concentration of the solution. The
higher the concentration the stronger the limiting. However, the transmittance is lower for

a more concentrated solution.

In addition to concentration dependence of optical limiting of Cg, the optical limiting

performance of Cg is also solvent dependent 2 *2. For example, Cg in N,N-diethylaniline
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(DEA) or N,N-dimethylaniline (DMA) have poorer optical limiting performances with ns pulse
at 532nm than Cg in toluene solution. This is because the ground state absorption is higher in the
case of fullerene in aromatic amine solution due to the contribution of fullerene-amine charge
transfer complex. E. Koudoumas explained this solvent dependency in term of local field

correction imposed by the solvent %.

Kost et. al. investigated optical limiting properties of Cgo in PMMA matrix**. They found
that the limiting threshold of the solid film is higher than that of C60 in toluene solution. They
attributed the better performance of the Ceo/toluene to nonlinear scattering of the solvent at
higher fluence. M.P. Joshi et al also studied the optical limiting of Cg in toluene *!. Since the
intersystem-crossing rate is very fast compared to their ns pulse, they used 2 level systems to
explain their experimental results. Discrepancy between theoretical model of RSA and the
experimental data was observed at higher fluence and attributed to other nonlinear loss
mechanism. Similar findings were also observed by Mc Lean et.al.?® S.R. Mishra et al, later,
studied the contribution of nonlinear scattering on the optical limiting performance of Cgp in
toluene with ns pulse®. They found that the RSA model fit well with the experimental results at
lower fluence (~<3J/cm2). At higher fluence, however, deviation was observed. They also
measured scattering signal at an angle from the sample and found that light scattering increases
at the higher fluence. As a result, the scattering in Cgp solutions at high fluence could be due to
thermally induced inhomogeneity. Several studies have investigated the effect of different
functionalization to the optical limiting performance of Cg, molecules. Some have reported better
performance such as organometallic-Cgo  derivative®, Cgo-polycarbonate®®, and Cgo-

poly(viniylchloride)®”. Poorer performance have also been reported , for example, Ceo-dimer,
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poly-Ceo®®, and Ceo-PMMAY.

While most of the optical limiting studies were done at 532nm for Cgy, it is good to note
here that the performance is also wavelength dependent. As mentioned in the beginning of the
section, Cg Is a potential broadband optical limiter due to its wide wavelength range in which
the absorption cross-section of the excited state is higher than of the ground state. However,
there are still wavelengths where Cgo does not behave as an optical limiter. For example, J.L.
Saiz et al. investigated the wavelength dependent nonlinear absorption of Cg*°. They found that
at 308 and 534 nm, it behaves as reverse saturable absorber while at 337 nm the behavior
changes to saturable absorber, which is undesirable for optical limiting application. Perhaps, the
reason that most of optical limiting work were done with green laser (~532nm) is because the

large availability of the laser. In addition, human eyes are most sensitive to green light.

2.2.2.2Phthalocyanines and metallophthalocyanines

Phthalocyanines are aromatic macrocyclic compounds typically used as dyes. They have
been used extensively in optical applications due to their large nonlinearities and fast optical
response’®.  Phthalocyanines (Pcs) and their central metal containing forms or
metallophthalocyanines (MPcs) have shown excellent optical limiting due to their large ratio of
excited state to ground state absorption. RSA is responsible for their limiting action and their
behavior can be explained by the five-level system. Pcs and MPcs cannot be dissolved in
common organic solvents. As a result, either alkyl or alkoxy substituents attached to their
peripheral positions are usually used to improve their solubility. Perhaps, the most recognized
property of Pcs in nonlinear optical applications is their so-called heavy-atom effect. Optical

limiting mechanisms of Pcs and MPcs on picosecond and nanosecond time scales are different.
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In picosecond time scales, the excited state absorption is dominated by the excited-singlet state,
whereas in the nanosecond measurements the triplet state absorption is more prominent. This is
because the lifetime of the excited-singlet state is in the order of picosecond. Nevertheless, with
nanosecond pulses, the number of excited triplet populations is limited due to their slow
intersystem crossing rate. It was found that the use of the heavy-atom substituents could enhance
their optical limiting performance. This is because, larger the atomic number of the central metal
atom, the faster the inter-system crossing rate resulting in more triplet state population . Perry
et al. investigated a series of PcMs with group 3A (Al, Ga, In) and group 4A(Si, Ge, Sn, and Pb)
metal substituents. They found that the triplet quantum yield and thus optical limiting efficiency
is the highest with PbPcs *2. Shirk et al. studied the third order nonlinear susceptibility of the Pt,
Pb and metal free tetrakis (cumylphenoxy) phthalocyanines using four wave mixing at the

wavelength of 1064nm “*,

They found that the third order nonlinear susceptibility was
substantially higher in the case of metal substitutions. PtPe and PbPc have a number of low-lying
charge transfer states not present in the metal-free compound and this contributed to such
improvement. However, the Pt substitution is more effective in enhancing the third order

susceptibility than the Pb substitution and this might be due to the fact that the transition metals

with d-valance orbitals like Pt might introduce more low lying states than the main group metals.

MPcs generally exhibit strong absorption in the visible and in the near UV which
corresponds to their Q-band (absorption at ~700 nm) and B/ Soret band (absorption at 300-400
nm) respectively**. For the light wavelength between the B and Q bands, a photon will cause
electron to make a transition from ground state to either a higher vibrational level of the first

excited state or to a weakly allowed electronic state where it can later relax to lower vibrational
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states of the first excited state. Within picosecond time, another photon can excite this electron
further, resulting in another singlet-singlet transition. Intersystem crossing also plays its role
here. It competes with fluorescence and internal conversion, resulting in electrons in the lowest
triplet state. As a result, triplet-triplet absorption becomes possible. The triplet-triplet absorption
spectra of MPcs are broadband and independent of the central metal atom. This absorption ,
centered at around 510nm, is well overlapped with the window of minimum absorption of the
ground-state® . As a result, MPcs exhibit broadband optical limiting in the range of range 450-
600 nm for laser pulses whose temporal widths equal to or greater than nanosecond. The upper
limit is set by the triplet lifetime. Due to poor solubility of Pcs and Mpcs, they usually form
aggregates in solution. This results in fast decay of the upper triplet state due to intermolecular
interactions. Yu Chen et al. synthesized axially Bridged Pcs in which two Pc molecules are
joined at their central metal through an oxygen atom “°. They found that (1) axial substitution
suppress aggregations of Pcs, (2) the excited singlet states lifetime was longer in the dimer than
in the monomer and (3) the optical limiting efficiency was better in the dimer. Adding ligands to
the central atom M of MPcs can be a method to control the nonlinear optical properties. The
effect of this axial substitutions on the optical properties of indium phthalocyanines and
naphthalocyanines was studied*’. It was found that, with axial ligands, optical limiting efficiency
was improved. The possible reason for such enhancement might be because of the increase in
dipole moment perpendicular to the macrocycle of the axially substituted Pcs. They also studied
the effect of p-trifluoromethylphenyl functional group attached to the central gallium and indium
atom of MPcs. They observed change in the saturation of the optical limiters and proposed that
this method could be used to tailor optical limiting properties. Adding one more aromatic ring to

the four peripherals of Pcs results in the extended n- conjugated forms called Naphthalocyanines
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(Ncs). Expanding the ring structure from Pcs to Ncs red shift the ground state transmission
window and the range of effective optical limiting*®. This method is promising for tuning the
optical response of the material. The drawback of this strategy, however, is that Ncs have higher
tendency to aggregate. Hanack et al. used axial as well as unsymmetrically peripheral

substitutions to improve the solubility as well as the optical limiting response *°.

2.2.2.3 Carbon black suspension

Carbon black or carbon particle suspensions are polycrystalline carbon with high surface
to volume ratio suspended in liquid. They can be found in common household item such as black
ink. The use of carbon black suspension as optical limiter was pioneered by E.W.V. Stryland et
al.>®. The mechanism behind their optical limiting action is nonlinear scattering®*. The reduction
in transmission with these materials is due to rapid heating of the carbon particles. This results in
subsequent ionization and vaporization, which leads to the formation of rapidly expanding
microplasmas. These microplasmas act as scattering centers and contributes to the optical
limiting process®. In addition, bubble formation, also comes into play, which result in more
nonlinear scattering and therefore more efficient optical limiting action. The microplasma
process is solvent-independent and concentration-independent. The bubble formation, on the
other hand, is very solvent-dependent and results in solvent-dependent characteristics of CBS.
Thermophysical properties of the solvent plays important role in the optical limiting strength of
CBS **** For example, it is found that optical limiting performance of CBS in solvent with
lower boiling point is better than that of higher boiling point because of the bubble formation.
The physical size of the carbon suspensions also plays an important role in their optical limiting

performance. For instance, Tiwari et al found that CBS in saline has better optical limiting
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performance than the one in water. They attributed their findings to larger particle size in
saline®®. One of the main advantages of CBS as an optical limiter is that their limiting is
extremely broadband since the carbon black has black color and the microplasma formation is
initiated by linear absorption. It however has its own drawbacks. For instance, the optical
limiting with CBS is only sufficient with ns time scale or longer. This is because the time
required to form microplasma, which essentially is the scattering center, is in the order of ns. The
process is therefore, inefficient for ps pulse or shorter. S.C Neto et al. has overcome this
limitation by the use of optical design®®. They devised multipass scheme. In their set up, the short
laser pulse (ps) is made to return to the same spot it previously passed, in a time late enough for
the scattering centers to be formed. This results in better limiting performance of CBS with short
laser pulses. Another drawback of CBS is that the material can be bleached after several pulse
repetitions. This is because the limiting action arises from changes in physical state of the
material. E.W.V Stryland et al used flow cell to overcome this problem. Nevertheless, CBS is

still one of the most efficient optical limiters to date.

2.2.2.4 Carbon nanotubes

Carbon nanotubes are carbon allotropes with tubular shape. They are categorized as
either single wall or multi wall depending on the number of carbon layers constituted the tube.
Not only carbon nanotubes have unique mechanical and electrical properties, but also they

possess strong nonlinear optical limiting.

In 1998, Sun et al. investigated optical limiting properties of multiwall carbon nanotubes
(MWNT) suspended in water and dispersed poly(methyl methacrylate) (PMMA) matrix °’. Their

MWNTSs were prepared by an arch discharged method. They found that at 532nm with ns pulses,
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optical limiting of MWNT suspended in water started at a fluence 10 times higher than that of
Ceo in toluene solution. However, their limiting properties outperformed the Cg solution when
the fluence is in excess of 1 J/cm?, resulting in a smaller optical limiting threshold. The limiting
performance of MWNT in PMMA was much poorer than Cgy and MWNT in water. Sun et al.
concluded that the mechanism behind the optical limiting of MWNT was nonlinear scattering

since the mycoplasma formation was easier to from in liquid solution than in solid host.

At a higher wavelength of 700nm and 1064nm, optical limiting performances of MWNT
both in water and host solid were better than the Cgo solution, rendering the potential of carbon
nanotubes as broadband optical limiters. The reason that Cgy does not have optical limiting action
at 1064nm is because it has no ground state absorption at that wavelength and thus excited state
absorption cannot happen. Study done by Chen et al. found that optical limiting of MWNT in
ethanol was also stronger than that of Cg in toluene and carbon black suspension (CBS) in water
at both 532nm and 1064nm 2. Due to this broadband response, it was concluded that the superior
optical limiting action in carbon nanotubes is resulted from nonlinear scattering. Their better
performance than CBS might come from easier plasma formation and lower electron work

function.

In the same year, L Vivien et al. measured optical limiting of single wall carbon nanotube
(SWNT) suspended in water/surfactant solution®®. They compared its limiting performance with
benchmark limiters such as Cg and carbon black suspension (CBS). At the wavelength of 532nm
with ns pulses, SWNT, CBS and Cg, showed similar limiting behaviors. Similar to the case of
MWNT studied by Sun et. al., the onset of limiting action was lower in Cg than those of SWNT

and CBS suspension for the 532nm wavelength. However, at the wavelength of 1064nm, Cqg
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showed no optical limiting whereas both CBS and SWNT showed optical limiting with that of

SWNT being slightly better than that of CBS.

In 2000, Mishra et al. conducted a study to compare optical limiting of SWNT in three
different suspension which were ethylene glycol, water and ethanol ®°. They found that the
SWNT in ethanol showed the best limiting performance. Since the observed optical limiting
showed solvent dependency, they concluded that the main mechanism for optical limiting in
SWNT suspension was micro bubble formation. Optical limiting of CNTs shows solvent

dependent effect similar to that of CBS®".

Riggs and co-workers compared optical limiting performance of solubilized SWNT and
MWNT and compared with their aqueous suspended counterparts ®. The solubilized forms of
the nanotubes were achieved by polymer functionalization. They found that the solubilized
nanotubes have poorer optical limiting properties than nanotube in aqueous suspensions and Cg.
They proposed that different nonlinear mechanism, i.e. nonlinear absorption, from the aqueous
suspension was responsible for the observed decrease in optical limiting performance. They also
found that shorter carbon nanotubes suspension had poorer optical limiting performance than
longer ones and attributed this effect to bundling of the tubes. Jin et al. had observed nonlinear

refraction of polymer/nanotube composite®.

Vivien et al. studied the effects of pulse duration and wavelength on optical limiting

properties of carbon nanotube suspensions, in 2001%

. They found that, at the same fluence,
longer pulses resulted in better limiting performance and the results were explained in term of
duration required to develop micro bubbles. From their study, it can be concluded that nonlinear

scattering is the main mechanism for optical limiting in carbon nanotubes suspension where the
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origin of scattering centers are from micro bubble formation at low fluence and carbon

sublimation at high fluence.

Later, in 2002, similar to Riggs et al., Liu et al. studied optical limiting properties of
solubilized MWNT solution and also proposed that optical absorption was behind the observed
optical limiting with their sample instead of nonlinear scattering ®. O’Flaherty studied the
nonlinear optical response of polymer-stabilized MWNT dispersion ®®. They observed an
evidence of electronic response of the excited state in their degenerate four wave mixing

measurement.

At this point, it can be concluded that the optical limiting of carbon nanotubes depends on
several factor such as the aspect ratio of the tube, the properties of the surrounding, laser
wavelength and the pulse duration. Also, from various studies, it is possible that solubilized and
suspended carbon nanotubes have different nonlinear mechanisms dominating their optical
limiting performance. It is also possible that in the suspended forms both nonlinear scattering
and nonlinear absorption exist but the former is more dominant while in the solution form the
latter mechanism only exists resulting in poorer performance. Nevertheless, it is well accepted
that the better performance of un-modified carbon nanotubes compared to Cgo is contributed by
the presence of nonlinear scattering. More recent literatures are focused on modifying carbon
nanotubes in order to enhance optical limiting performance of the materials. For example, Chin
et al coated their carbon nanotubes with gold and silver film®”. They found that optical limiting
performance was improved and attributed their observed enhancement to the surface plasmon of
the metal film. Enhanced optical limiting of Boron doped MWNT when compared to the

undoped was observed by Xu et al. ®. Izard et al blended carbon nanotubes with a multiphoton
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absorber , Stillbebe-3, and observed slightly better optical limiting than pure carbon nanotubes®®.
Webster et al. combined RSA carbocyanine dye with nitrogen-doped MWNT™. Their mixture
was able to limit laser light at 1 order of magnitude lower than unmodified carbon nanotubes.
However, the limiting behavior disappeared at higher fluence due to saturable absorption.
Optical limiting of covalently porphyrin-functionalized single wall carbon nanotubes was studied

by Guo et al. ™.

They observed improved optical limiting efficiency with the materials and
attributed their finding to electron donor-acceptor property of their nanohybrid system. The
excited charges were separated by photo induced electron transfer from the porphyrin donor to
the nanotube acceptor. Similarly, Liu et al. covalently attached single-walled carbon nanotubes

with porphyrins and also observed enhanced optical limiting effects’.

2.3 Experimental methods

2.3.1 Sample Characterizations

2.3.1.1 X-ray diffractometer (XRD)

XRD measures the diffraction of X-rays from planes of atom within a material. Since the
diffraction effect occurs when the electromagnetic wave impinges on periodic structure with
geometrical variation within the same scale of the wave, X-rays (A=0.01-10nm) can gives
information on the interatomic distances in crystals (=0.1-0.4nm). To observe the diffraction
pattern, Braagg’s law must be satisfied.

A=2dsiné (2.17)
Most XRD machines in universities uses a monochromatic x-ray source of fixed wavelength 4.
The Bragg condition is met for different plane spacing d by varying the angle of X-ray incident
6. The X-ray radiation is generated by bombarding electron beam at a metal target. Narrow X-
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ray emission lines are produced as a result. Commonly used metals are Cu Ka and Mo Ka
emission lines with emission wavelength of 0.15 and 0.07 nm respectively. Alternatively,
synchrotron can also be used to generate an X-ray continuum. X-ray diffraction data can be
operated with two geometries, namely Debye-Scherrer (or transmission) geometry and Bragg-

Brentano (or reflection) geometry, as illustrated in Figure 2.2.
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Figure 2.2 Schematic illustration of XRD setup with (a) Debye-Scherrer and (b) Bragg-Brentano
configurations.

While the former configuration requires low absorbing samples and works with capillary sample,
the latter can measure highly absorbing samples with relatively flat surface. The intensity of the
x-ray diffraction is usually plotted against the diffraction angle 26. Whereas the angle that the
diffraction occurs can tell the information on the atomic spacing of the sample, the width of the
peak, on the other hand, can give information on the properties of the material itself. For
example, sample with small crystal domains will have a border peak than the one with larger

domains. Scherrer equation relates the ordered domain size with the peak width, Equation(2.18).

KA

Pou(20)= rcosd (2.18)
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where Bsize 1S the full width at half maximum of the peak at 20, K is the shape factor, and t is the
domain size.
In addition strain can also contribute to peak broadening. The peak broadening due to

strain ( Psirain)is usually assumed to be governed by the following equation.

Brin(26) =42, tan 0 (2.19)

where &g IS the strain in the material. The total broadening is, therefore, the sum of instrument

broadening and material broadenings (size and strain).

2.3.1.2 X-ray photoelectron spectroscopy (XPS)

XPS is surface-sensitive technique that measures intensities of photoelectrons versus its
binding energy. The XPS technique is based on the photoelectric effect. Similar to the case of the
XRD, X-rays are either produced with metal targets or synchrotron. When X-ray with energy hv
is incident upon the surface of the sample, its energy is absorbed by an electron. If the energy is
higher than the summation of the binding energy of the electron E,, and the system work function
@, the electron is emitted from the sample with a kinetic energy Ey , according to the well-known
Einstein’s formula:

E =hv—E, —¢ (2.20)
With the use of energy analyzer, emitted electrons with different kinetic energy can be counted.
The system then plots the intensity of photoelectron versus the binding energy. The obtained data
can be used to identify element as well as provide information on chemical state of materials,

composition of the constituents, and valence band structure. XPS peaks in elemental samples, for
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example metal surfaces occur at the same binding. However, in compounds where there are
chemical bonds, the peak position can shift. This allows XPS to differentiate different chemical

states of the sample.

2.3.1.3 Transmission electron microscope (TEM) and Scanning electron microscope (SEM)

Electron microscopy uses a beam of a high-energy electron beam created by an electron
gun to generate variety of signal from a sample. The electron beam, from the electron gun, is
created by applying high voltage to a filament. The higher the applied voltage, the faster the
emitted electrons from the filament and therefore the shorter electron wavelength. For example,
with an applied voltage of 10 KV, the wavelength of the electrons will be approximately
0.012nm, allowing virtualization of nanometer sized structure. However, the resolution of the
microscope does not only depend on the wavelength of the source but also the optics. A typical
TEM has a resolution as low as 0.1nm whereas the resolution of a typical SEM system is about
5nm. Imaging mechanisms in TEM and SEM are different. In TEM system, images are formed
from scattered primary electron from the samples in transmission geometry. The scattered
electron results in a shadow on a detecting screen, analogously to taking the X-ray images. As a
result, thin sample with thickness smaller than electron penetration depth is required. On the
other hand, SEM images are formed from secondary electrons. The electron beam is rapidly
scanned back and forth across the specimen surface. The secondary electron is collected at the
detector to produce an image. The resolution of the system is determined by the spot size of the
primary electron on the surface of the sample. These two systems are powerful tools for imaging

and investigating nano-meter sized samples.
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2.3.2 Optical limiting measurement

Experimental set up for optical limiting characterization is simple. The main goal of the
measurement is to observe optical extinction of the sample versus energy density or fluence
(J/cm?) of light excitation. One of the simple ways to do so is to irradiate a sample with a fixed
laser beam size and then vary the laser energy through the use of polarizers and wave plates.
However, with this technique, the energy range that can be achieved with common laboratory
laser is limited and is hard to achieve high measurement resolution. Thus, another technique,
where the laser energy is fixed with varied beam size, is commonly used. This can be done with
either the use of telescope system or focusing lens. Perhaps, the most commonly adopted for this
type of measurements is the open aperture Z-scan. This single beam measurement technique was
first developed for measuring optical nonlinearities by Sheik-Bahae et al. in 19907, With this
technique, the far field transmittance is measured at fixed laser energy with a varied beam
diameter. The variation of the beam size and thus the fluence are achieved by using a focusing
lens and moving a sample along the focusing light path. The light transmittance is recorded
versus the sample position. If all transmitted light is collected, information on nonlinear

extinction can be measured. Figure2.3 illustrates the typical open-aperture Z-scan setup.
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Figure 2.3 Schematic diagram of the Z-scan setup
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In general, with this set up, the thin sample approximation where the sample thickness is much
smaller than the Rayleigh range is used as well as a single mode Gaussian beam profile is
assumed. Since the accuracy of the Z-scan experiment relies on the accurate determinations of
the beam size as well as the beam profile, laser beam characterization of the employed laser
system is essential.

The scanning knife-edge technique, developed by Yasuzi Suzaki and Atsushi Tachibana
in 1975, is a simple way to measure the Gaussian beam diameter’®. In this technique, a razor
blade is moved/scanned across the laser beam (perpendicular to the beam propagation direction).
The transmittance of the laser is measured using a detector and plotted against the blade position
(x). By fitting the obtained data to the following error function, the beam waist can be

determined.

_ 1 X—Xo
Py(x) = 5[1 + erf( —~ )] (2.21)
Where Py(x) is the normalized transmitted laser power, w is the beam radius measured at a

position where the intensity decreases to 1/e times of its maximum value, and X, is the center

position of the beam. An example of plots obtained from knife-edge scan is shown in Figure2.4.

38



[To Experimental data '
Fit

1 T 1 1 I
-400 =200 0 200 400
X(um)

Figure 2.4 An example of plots obtained from the knife edge scan. Dots are the experimental
data and solid line is the theoretical fit.

Alternatively, one can take a derivative of the function and fit the measurement data with
a Gaussian profile. However, taking derivatives of data with uncertainties results in amplification
of the uncertainties and, therefore, an increase in the errors ™.

To measure the beam profile quality, a M-square factor (M?) is often used. M? is used to
describe the deviation of the laser beam from a theoretical Gaussian. In the case of theoretical
Gaussian beams, M?=1. However, M? can be greater than 1 for actual laser systems. He-Ne laser
can have M?~1.1 whereas M? of high energy laser system can be as high as 3 or 4. By
performing the knife-edge scan to determine the beam waist w(z) along a focusing beam path z,

the M? can be determined from fitting the data with the following equation:

2 2
w(z)=w, 1+Z A;_[

% (2.22)

where wy is the minimum waist and zg=rwo’/A is the Rayleigh range.
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Figure 2.5 M?measurement data (dots). Solid line is the theoretical fit to Equation (2.2).

For our particular laser system, it was found that beam profile from the laser had M? much
greater than one. As a result, spatial filter is inserted in the set up to clean up the beam, making
the profile as close to the perfect Gaussian beam as possible. The spatial filter uses the principal
of Fourier optics to alter the beam profile. In our set up, a collimated beam from the laser is
expanded and passed through a circular aperture. The beam is then focused with a focusing lens.
At the focal plane, an Airy beam profile is produced. A pinhole is used to allow only the central
bright portion of the profile to pass. Another lens is used to reform the collimated beam. After

putting the spatial filter in our set up, the beam quality was improved to M?~1, Figure (2.5).

2.4 Results and discussions

2.4.1 The effect of interstitial doping on optical limiting of Zn-ferrite

Iron oxides or ferrites are non-conductive ceramic compounds derived from iron. They
are magnetic in nature, and are extensively used for magnetic recording, and in the construction
of inductors, permanent magnets, electrical transformers, and millimeter integrated circuits. Due
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to their unique nonreciprocal and frequency-selective properties, ferrite devices have played a
key role in active aperture radar, microwave, and multifunction systems on defense platforms.
Recently they have been investigated for magnetic resonance imaging (MRI)’, thermal
activation therapy’’, drug delivery’®, and biosensing’® applications

Crystal structures of ferrites can be described as a close-packed assembly of oxygen
atoms with metal atoms occupying the interstitial sites®, as shown in Figure 2.6 . Spinels are a
class of ferrites of empirical formula A%*B,**0,%. One unit cell of a spinel ferrite contains eight
molecules with twenty-four metal positions. Of these, eight are tetrahedral sites, and the
remaining sixteen are octahedral sites. In the case of Zn-ferrite tetrahedral sites are occupied by
Zn** ions, and octahedral sites by Fe* ions®. This type of structure where divalent and trivalent

cations occupy tetrahedral and octahedral sites respectively is called normal spinel.
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Figure 2.6 Schematic representation of a ferrite crystal structure.
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The mixed forms of zinc ferrite also have spinel structure. However, the additional 3d-
metal atoms interstitially replace zinc atoms. This results in perturbation in crystal field and
electronic band structure of the material, which in turn can affect the material optical properties.

Optical properties of composite materials are related to local field effects. For instance,
the third order nonlinear susceptibility of nanocomposites is proportional to the fourth power of
the local field correction factor. Optical nonlinearities in ferrites are relatively unexplored, and

reports® 52

are rare compared to organics, semiconductors and metals. Modifications in optical
nonlinearity caused by the inclusion of different transition metals into a spinel ferrite system
would be of considerable interest owing to applications including optical limiting. Therefore, in
this section the nonlinear optical properties of nanosized spinel Zn-ferrite (ZnFe,Q,4), in
comparison to its Ni and Cu mixed forms, namely, NiZn-ferrite (NiZnFe,O4) and CuZn-ferrite
(CuznFe,Q,), is studied using the open-aperture z-scan technique. These results are compared to
those measured in Cgof/toluene under identical conditions. Cg in toluene was chosen for
comparison because it is a benchmark material for optical limiting, and is extensively studied in

the literatures®®®°.
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Figure 2.7 SEM images of ZnFe,04, NiZnFe,O4 and CuZnFe;0O,.
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Figure 2.8 (a) Absorption spectra of the samples. Inset shows CuzZnFe,O, sample of 52% linear
transmission. (b) Tauc plots for calculating the bandgap energies.

According to the SEM Images taken on a Zeiss ULTRA-55 FEG SEM, Figure 2.7, the
nanoparticles are less than 100 nm in size. Linear absorption spectra of the samples were
measured using a UV-VIS (Cary 300 Bio) spectrophotometer (Figure 2.8(a)). For these
measurements, concentrations of approximately 1.4 x 10* and 1 x 10™ mol.I"* were used for the
oxide samples and Cg respectively. According to the absorption spectra, ferrite samples do not
show definite absorption peaks. However, assuming direct band gap, the band gap energies can
be determined from the absorption coefficients (a) near the band edge by using the Tauc

relation®®®’

1

ahv=A(h v-E, )2 (2.23)
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where A is a constant that depends on the band structure and the refractive index of the material,
h is the Planck’s constant, v is the frequency, and Eg is the energy gap. By plotting (ahv)? versus
hv , the band gap energy was determined by extrapolation, as shown in Figure 2.8(b). The values
obtained are 2.3, 2.1, and 2.5 eV, for ZnFe,O,4, NiZnFe,0,4, and CuZnFe,04, respectively.

Samples for optical limiting measurements were prepared by dispersing the nanoparticles
in 0.005 g.ml™* solutions of Poly(methyl methacrylate) (PMMA) in toluene. The addition of
PMMA helps to stabilize the dispersion. Samples were so prepared that each has the same linear
transmission of approximately 52% at the excitation wavelength of 532 nm, when taken in 1 mm
path length cuvettes (inset of Figure 2.8(a)). An Nd:YAG laser (Minilite I, Continuum) emitting
5 ns laser pulses was used as the excitation source. The laser beam was passed through an iris
aperture and pinhole to obtain a clean Gaussian beam. In the open aperture Z-scan, the laser
beam is focused using a lens, and the transmission of the sample is measured as a function of the
relative position of the sample (z) with respect to the beam focus (z=0). A plano-convex lens
(f=100 mm) was used for focusing the beam. The beam waist at the focal point, as measured by
the knife-edge method®®, is 12+2 um. In the set-up, the sample taken in a 1 mm glass cuvette was
mounted on a linear translation stage of 15 cm span and 1 micron resolution (Newport,
ILS150PP). The incident and transmitted pulse energies were measured using pyroelectric
energy probes (LaserProbe, RjP-735). Z-scans were done at three different incident laser pulse
energies, viz. 5, 8 and 12 pJ. The open-aperture z-scan curves measured in the samples at the
incident energy of 12 uJ are shown in Figure 2.9.

In general, the depth of the valley in the z-scan curve is a direct indication of the optical
limiting efficiency of a material. From the z-scans it is clear that Cg, exhibits the maximum

dynamic range for optical limiting, as it shows a limiting effect throughout the range of
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measurement. In contrast, the ferrite samples show an increase in transmission in the low and
moderate fluence regions, and a deep, efficient limiting at the higher fluences. The limiting
efficiency of NiZnFe,O, and CuZnFe,0, are better than that of Cg at the highest fluences. Even
though Cg offers protection to the detector for the entire range of input fluences, this may in fact
become a disadvantage because the sensitivity of the protected detector is reduced even for those
input fluences which are lower than its damage threshold. Thus, from an application point of
view, the ferrite samples have a unique advantage: when properly designed they can retain or
even increase the sensitivity of a detector while it is in its safe operating area, and switch to

sudden limiting when the input fluence exceeds the detector damage threshold.

norm

ZnFe,O,
NiZnFe,0,
CuZnFe,0,

01 T T T T T T L 1

Z (mm)

Figure 2.9 Open aperture z-scans of the samples. Unlike Cgy which shows optical limiting
throughout, ferrite samples exhibit absorption saturation at the lower fluences, with a relatively
sharper onset of limiting in the higher fluence region. Solid lines are numerical fits to the
measured data obtained using Equation 2. Inset shows photographs of (a) direct, and (b)
transmitted, laser beams in the far field.

The normalized transmission of the samples T(z) can be fit by numerically solving the

following equation:
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a

== —al-p qﬂf (2.24)

where fet is the effective nonlinear extinction coefficient. However, considering the occurrence

of kinetic absorption saturation in the ferrite samples, the linear absorption o is rewritten as

a
a= OI

1+ —

sat

(2.25)

where o is the linear absorption coefficient and I is the saturation intensity. Numerical fits

obtained to the experimental data are shown in Figure 2.9. In the limited range of pulse energies

used, there was no dependency of the nonlinear parameters on the energy.
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Figure 2.10 Optical limiting performance of the samples. (a) Output fluence, and (b) normalized
transmission, plotted against input laser fluence. Lines connecting data points are guides to the
eye.

For drawing the optical limiting curves, we note that at any given position z, the energy

density (fluence) of a spatially Gaussian beam can be calculated from the laser pulse energy and
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the beam radius, given in Equation (2.22). From the measured values of the energy transmitted
by the samples for different values of z, the variation of the output fluence with input fluence can
be determined. Figure 2.10(a) shows the output fluence, and Figure 2.10(b) shows the sample
transmission, plotted against the input fluence. The optical limiting thresholds F; (input fluence
at which the transmission drops to 50% of the linear transmission) are 1.16, 1.49, 1.60 and 2.23
J.cm™ for Cgo, CuZnFe,04, NiZnFe,04, and ZnFe,0,4 respectively. In comparison, the limiting
thresholds of suspensions of Cgp, carbon nanotubes and carbon black, prepared with
approximately 50% linear transmission at 532 nm, for 7 ns laser pulses, are reported to be 1.0
J.em?, 1.7 J.cm?, and 1.7 J.cm™ respectively®®.

The observed enhancement in optical limiting efficiency when Cu or Ni is incorporated
into Zn-ferrite can be explained using a mechanism involving self-trapping of charge transfer
states. Optical response of 3d metal oxides is dominated by the charge transfer (CT) transition

between 2p orbital of oxygen and 3d orbital of metal®*

. The relaxation of the optically excited
CT state is governed by a cumulative effect of both electronic and ionic terms associated with the
displacement of electronic shells and ionic core respectively®. In a CT unstable system, self-
trapping of the CT excited state can occur. This self-trapping mechanism is strongly governed by
the lattice strain®. In the case of nickel and copper zinc ferrite, introduction of Ni** and Cu®* ion
into the Zn-ferrite structure can create a distortion in the crystal field and induce strain within the
structure. It may be noted that these added ions occupy either the tetrahedral site or octahedral
site of the structure depending upon whether the fabrication method favors normal spinel or
inverse spinel. The induced strain enhances self-trapping of the CT states, which results in an

increase in excited state lifetime, and therefore the excited state absorption coefficient.

Considering also the fact that thermal scattering is not significant in the samples, it can be
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concluded that optical limiting observed in these ferrites is related to a reverse saturable

absorption (RSA) mechanism involving excited electronic states.

2.4.2 Size-dependent optical limiting of gold nanoparticles

Metal nanoparticles have attracted considerable interest since historical time as color
substances in stain glasses and art works. However, the physics behind their fascinating bright
colors was only understood after the experimental observation of the surface plasmon. Today,
there are numerous research activities dealing with metal nanoparticles due to their unique
properties. It has been found that metal nanoparticles exhibit two interesting size regimes,
namely nanoclusters and nanocrystals. While the former has their size ranging from sub-
nanometer to about 2 nm, the size of the latter is from approximately 2 to 100 nm. The number
density is, however, ~59 atoms/nm® in both regimes for gold, owing to the similar atomic

packing densities. Au clusters of the order of the de Broglie wavelength of conduction electrons
(~ 0.5 nm) exhibit discrete energy levels and molecule-like HOMO-LUMO transitions, while

larger Au nanoparticles (>5 nm) exhibit quasi-continuous electronic bands. In general, gold
clusters of less than 3 nm size lose their bulk-like electronic properties, and are believed not to
90-91

support collective plasmon excitation.

The evolution of the optical spectrum of gold clusters in the quantum size regime (up to
~ 300 atoms and ~ 2 nm cluster diameter) is a strong function of size, and therefore, nonlinear

optical properties in this size regime are worthy of investigation. Ultra-small clusters exhibit a
spectacular optical behavior that is fundamentally different from that of larger plasmonic
nanocrystals. Transition from the cluster to the nano-crystalline state is significant, as it raises

fundamental questions regarding the evolution of discrete electronic states towards a rather
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complex band structure. Several studies have been done on the effect of varying size and shape
of metal nanoparticles®** .For example, it has been found that two-photon absorption at 800nm
cross-section increases as the size of ultra-small gold clusters increases from 1.1 nm to 4.0 nm®.
Further studies done by the same group also show abrupt change in the optical properties
(fluorescence, transient absorption, two-photon absorption) around 2.2 nm, which is close to the
calculated critical size for quantization®. As a result, it will be interesting to investigate the
optical limiting of metal nanoparticles as they evolve from nanoclusters to nanocrystals. In this
section, optical limiting properties of recently developed atomically precise molecular gold
clusters are measured and the results are compared with that of larger Au nanocrystals of 4 nm
size.

All nanoclusters used in this study were synthesized by Professor Rongchao Jin’s group
according to a size-focusing methodology®™. The samples under study are Auss(SR)s,
Ausg(SR)24, and Aui44(SR)eo, Wwhere R=CH,CH,Ph. The numbers 25, 38 and 144 represent the
precise number of Au atoms in the cluster.

Electrospray mass spectrometry data of the samples (Figure 2.11) reveals that the clusters
are monodispersed with high precision in the number of atoms in each cluster®® . The absorption
spectra of Auys and Ausg exhibit clear molecular features, while these are less distinct in Auiga.
The smallest sample Au,s(SR)1s has the metal core of approximately 0.9 nm in diameter.
Absorption spectrum and a TEM image of the Au nanocrystals (purchased from Fluka) are
shown in Figure 2.12. The sample exhibit SPR absorption peak at around 530nm. From its TEM

image, the mean size is about 4nm.
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Figure 2.11 UV-Vis absorption spectra and Electrospray mass spectrometry (ESI-MS) data
(insets) of Au,s(SR)1s (counterion: tetraoctyammonium, TOA"), charge-neutral Ausg(SR)24, and
charge-neutral Au;44(SR)g0, respectively. In all cases, R=CH,CH,Ph.
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Figure 2.12 a) Optical absorption spectrum of Au nanocrystals. Inset shows the TEM image and
polydispersity histogram, b) Representative schematic of the Z-scan set-up used for nonlinear
optical measurements.

Nonlinear transmission measurements were carried out using the open aperture Z-scan
technique. Samples for measurements were prepared by dispersing the nanoclusters and
nanocrystals in toluene. A Nd:YAG laser (Minilite I, Continuum) emitting 5 ns laser pulses at the
second harmonic wavelength (532 nm) was used for excitation. Each sample was so prepared
that it had a linear transmission of 25% in a 1 mm cuvette at this wavelength. The beam was
focused using a plano-convex lens (f=100 mm), and the beam radius at the focus (wp) was
measured to be 13 microns by using the knife-edge method. The laser pulse energy was 15
microjoules. The z-scan data are shown in Figures 2.13. The sample transmission against input
laser fluence calculated from the z-scan data are presented in Figure 2.14.
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According to the z-scan curves, Auys and Ausg exhibit valley-shaped curves, whereas Au

nanocrystals show a central valley with two symmetric peaks on the sides, with is a signature of

the absorption saturation. The nanocrystals, on the other hand, show significant absorption

saturation occurring in addition to nonlinear absorption.
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Figure 2.13 Open-aperture z-scans measured in the Au clusters and nanocrystals. (a) Augs, (b)
Ausg, (C) Auigs, and (d) Au nanocrystals (~4 nm). Samples are excited using 5 ns laser pulses at
532 nm. Linear transmission of all samples is 25% at this wavelength. As seen from the figures,
optical transmission is a function of sample position with respect to the laser beam focus (z=0).
Thorm 1S the measured transmission normalized by the linear transmission of the sample. Solid
curves are numerical fits to the experimental data, obtained using Equation 4. The valley shaped
curves of Auys and Ausg indicate pure optical limiting behavior, while the humps flanking the
valley in Aui4 signify the onset of saturable absorption. Absorption saturation is significant in
the Au nanocrystals, as indicated by the strong peaks.
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From Figures 2.13 and 2.14, it is obvious that in Auys and Ausg an optical limiting
behavior is seen throughout the incident fluence range, while in Aui44 the limiting is preceded by
weak absorption saturation in the lower fluence region. On the other hand in the Au nanocrystals
the limiting is preceded by prominent absorption saturation. A nonlinear absorption coefficient «
() can be modelled by Equation (2.25). The transmitted intensity for a given input intensity can
be calculated by numerically solving the corresponding nonlinear propagation equation of
Equation (2.24).

Table 2.2 tabulates the Is and S For the samples. The fe increases with size in the
cluster regime. While I is too high to be effective in Auys and Ausg, it has a value of 1.5 x 10*
W/m? in Auug. In the nanocrystal regime, the I value is about the same but the Be value drops
by a factor of 5, which results in the prominent absorption saturation exhibited by the Au
nanocrystals. The optical limiting thresholds F; (input fluence at which the transmission drops to
50% of the linear transmission) are found to be 4.0 J/cm? for Au,s, and 3.0 J/cm? for both Ausg
and Auyg. It is good to note here that optical nonlinearity in metal nanoparticles is ultrafast in
nature, occurring in the range of picoseconds/femtoseconds®.

Results given in Table 2.2 are in agreement with the previous study on two-photon

fluorescence . It was found that two-photon cross section increases with size in the cluster

regime.
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Figure 2.14 Nonlinear transmission in the Au clusters and nanocrystals, calculated from the z-
scan data using Equations 1 and 2. (a) Augs, (b) Ausg, (C) Auiag, and (d) Au nanocrystals (~4 nm).
Saturable absorption sets in as the cluster size increases, and becomes prominent in the
nanocrystals.

Table 2.2 Effective nonlinear absorption coefficient (Besf) and saturation intensity (ls) calculated
for the samples.

Sample Linear Is (W/m?) Pest (M/W)
Transmission

Alys 25% NA 20x 10"

Augs 25% NA 3.5x 10"

Al 25% 1.5 x 10™ 75x 10"

Au NCs (5 nm) 25% 2.2 x 10™ 1.5 x 107"

The Auys(SR)1s and Ausg(SR)24 (R=CH,CH,Ph) nanoclusters exhibit unique optical properties,
as manifested in their highly structured multiple-band optical absorption spectra. Unlike metallic

Au nanocrystals with quasi-continuous band structure, Auys(SR)1s and Ausg(SR)24 exhibit
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discrete electronic energy levels and possess HOMO-LUMO. A precise correlation of the Auas
structure with its calculated optical absorption properties has been obtained, with density
functional theory calculation. The theoretically calculated spectrum is in well agreement with
measurement'®. Even though spectral structure is usually attributed to quantum confinement
effects, it may be noted here that, from time-dependent DFT calculations, Aikens et al. has

suggested ligand-field splitting as a cause for the multiple peaks®

. According to their study the
absorption spectra are the result of complex interactions between the core and ligand and cannot
be separable into two independent contributions. The Kohn-Sham orbital energy level diagram
for Auys is shown in Figure 2.15. The first excited transition occurring at 1.52 eV is the LUMO
< HOMO transition, which is essentially an intraband (sp<-sp) transition. The peak at 2.63 eV
is caused by mixed intraband (sp<sp) and interband (sp<-d) transitions, and that at 2.91 eV

arises mainly from an interband transition (sp<-d).
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Figure 2.15 (A) The Kohn-Sham orbital energy level diagram calculated for the model
compound Au,s(SH) 15, (B) The theoretical absorption spectrum of Au,s(SH) 15 %

The present results can be explained on the basis of excitation of the SPR. In one
extreme or the case of nanocrystals, strong laser excitation can result in absorption saturation (or

104 As a result, there are two competing processes in this

bleaching) at the SPR wavelengths
system, namely the two-step photon absorption and plasmon excitation, which results in the
observed nonlinear transmission behaviors. In another extreme or the case of small nanoclusters,
the same SPR can no longer be supported by the system and therefore only nonlinear absorption

exists. The sample with their size between the two extremes can show the evolution of the

behavior from pure nanocluster to nanocrystal responses. In addition, Au nanocrystals show the
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lowest fe value (Table 1), which indicates that the two-step absorption is weaker in the
nanocrystals compared to the nanoclusters.

This study shows that ultra-small Au clusters are good optical limiters, with a limiting
threshold close to that of the benchmark limiter Cgo. This is due to the fact that unlike Au
nanocrystals, the molecular Au clusters (e.g. Auys and Ausg) do not possess a SPR band, and
therefore do not suffer absorption saturation when excited at the SPR wavelength region. Also,
the nonlinear absorption coefficients are higher in the case of nanocluster. The absence of
absorption saturation in the Au clusters makes them more applicable for optical power limiting

applications, in comparison to the larger Au nanocrystals.

2.4.3 Optical limiting of fluorinated graphene oxide

Graphene oxide was first discovered in 1859 by Benjamin Brodie though the exfoliation

1% GO is an electrically hybrid material between the conducting n-states of sz

of graphite oxide.
carbon sites, which contribute to the bandgap formation of the material, and the o-states of Sp3
carbon sites. The GO bandgap can be tuned by adjusting the ratio of sp? carbon atoms to sp®
carbon atoms via chemical reduction process. Chemical reduction can transform GO from an
insulator to semiconductor and also to a metal-like state, in the form of graphene. While
graphene possesses excellent electrical properties, mechanical flexibility, optical transparency,

thermal conductivity and low thermal expansion coefficient'*®™

, its precursor GO has
interesting properties of its own. For instance, unlike graphene, GO possesses several oxygen
containing hydroxyl, epoxide, diol, ketone and carboxyl functional moieties. These functional

groups allow GO to interact with a wide array of materials, both organic and inorganic, which

results in the high processability of GO. Due to their versatility, functionalized-GOs have
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become promising candidates for various applications such as instance drug delivery***™*?,

113

magnetic resonance imaging (MRI)'®,  memory devices'’, supercapacitor'>**,

and
optoelectronic devices "8 Similarly, the optical limiting property of GO is found to be greatly
enhanced with organic as well as inorganic decorations™**?*,

Fluorination of carbon nanomaterials has many advantages due to the unique nature of
the carbon-fluorine (C-F) bond. For instance, the C-F bond demonstrates excellent oxidative and
thermal stability'?®>. Due to high electronegativity of Fluorine atoms, C-F bonds have high
polarity and low surface free energy. Partially fluorinated GO (F-GO) can even be paramagnetic
due to the presence of localized F-bonds. F-GO will be an attractive material in many
applications such as super amphiphobic surfaces, multimodality imaging and photonic

devices'®. In this section we investigate effect of fluorination on the optical limiting

performance of graphene oxide with 5 nanosecond (ns) laser pulses at the wavelength of 532 nm.
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Figure 2.16 (a) XRD pattern of GO, F-GO and HF-GO and (b) schematic representation of F-
GO.
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All Graphene oxide (GO) based samples were synthesized using an improved synthesis
route according to the literature®®. In the case of pure GO, graphite powder (Bay carbon, Inc.
SP-1 grade 325 mesh) is used as a raw material, while for the synthesis of fluorinated graphene
oxide, fluorinated graphite polymer (Alpha Aesar) is used as a starting raw material. Figure
2.16(a) shows the XRD of GO, F-GO and highly fluorinated graphene oxide (HF-GO). XRD
pattern indicates an increased lattice spacing for GO (~6 A) compared to pristine graphite
powder (~ 3.3 A). This observation suggests the exfoliation of graphite. F-GO is hydrophilic
similar to GO, whereas highly fluorinated GO (HF-GO) is relatively hydrophobic*®. A
schematic representation of F-GO is given in Figure 2.16(b). The increase in hydrophobicity of
HF-GO can be attributed to the low surface energy of C-F bonds. Both F-GO and HF-GO have
well-defined absorption peaks (Figure 2.17). The absorption spectrum of FGO is almost identical
to GO, showing a peak at 225 nm which corresponds to the m— 7n* transition. The weak shoulder
at ~300 nm is due to the n— 7* transition of the carbonyl bonds'?*. HF-GO shows no such

shoulder at 300 nm, while showing a slightly less intense peak at 220 nm.
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Figure 2.17 (a) UV-Vis absorption spectrum of F-GO and (b) HF-GO. The high absorbance in
the short wavelength region indicates the possibility of RSA upon optical irradiation at 532 nm.

Optical limiting of GO/water, F-GO/water, and HF-GO/NMP dispersions were measured
using the open aperture Z-scan technique. All samples were prepared to have a linear
transmission of 50% at the excitation wavelength of 532nm. A Q-switched, frequency-doubled
Nd:YAG laser (Minilite I, Continuum) was used to generate 5ns (FWHM) pulses at this
wavelength. The laser output was spatially filtered to obtain a neat Gaussian beam profile, and
then focused using a 200mm focal length plano-convex lens. The beam radius at the focus (wp)
was measured to be 30+2 microns. The sample was taken in a Imm path length cuvette and
translated along the axis of the laser beam (z-axis) by a linear translation stage (Newport,
ILS150PP). By fixing the input laser pulse energy (Ei,) at a suitable value and translating the
sample along the laser beam near the focal region, the incident laser fluence on the sample
(Fin(2)) was varied. Maximum fluence is attained at the beam focus (z=0). The transmitted
energy for different sample positions (z) was measured using a pyroelectric energy probe

(LaserProbe, RjP-735). By mounting a photodiode near the sample at an angle to the beam axis,
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linear and/or nonlinear light scattering was also measured. The normalized transmission (Tnorm.)
was then calculated by dividing the measured transmission with the linear transmission of the
sample. The obtained z-scans curves for an input energy of 30 pJ are shown Figure 2.18(a). All
samples show an optical limiting (OL) property since the transmission decreases with increase in
input fluence. The plot of sample transmission versus input fluence is shown in Figure 2.18(b),
and that of output fluence versus input fluence is shown in Figure 2.18(c).

Results reveal that the optical limiting efficiencies of all fluorinated graphene samples are
significantly higher than that of GO in water. The optical limiting threshold (input fluence at
which transmission decreases to 50% of the linear transmission due to the nonlinearity) of F-
GO/water and H-FGO/NMP are at 0.8 and 1.5 J/cm?® respectively. The optical limiting
thresholds of fluorinated GO samples are better than that of benchmark materials like Cgp in
toluene and carbon black in water®®. When comparing with the threshold values of other well-
known optical limiters such as single-wall carbon nanotubes in ethanol [~1 J/cm?® with 42%
linear transmission]® and multiwall carbon nanotubes in water [~0.9 J/cm? with 50% linear
transmission]*’, our F-GO/water dispersion has lower limiting threshold. The limiting threshold
of GO could not be measured due to its relatively lower limiting efficiency. According to Xio-
Liang et.al*®, the limiting threshold of GO/water (49% linear transmission) is at 10.2 J/cm?, for
ns pulses at 532nm, which is an order of magnitude higher than the thresholds of fluorinated GO
samples. The optical limiting properties of F-GO in N-methyl-2-pyrrolidinone (NMP) were also
studied to find out the solvent contribution to the optical limiting performances when comparing
F-GO/water to HF-GO/NMP dispersions. It was found that, at 50% linear transmission, F-GO in

NMP also had better optical limiting efficiency than HF-GO in NMP.

62



The optical limiting efficiency of F-GO in NMP is lower than that in water. Such lower
optical limiting efficiency can be attributed to inferior dispersibility of F-GO in NMP. Since F-
GO is polar, it forms a better dispersion in water than in NMP. On the other hand, HF-GO,
which is hydrophobic, only forms good dispersion in NMP. Nevertheless, FGO in NMP still has
better optical limiting performance than HF-GO in the same solvent. The scattering signals are
also given in Figure 2.18(d). The boiling points of water and NMP are 373K and 476K, and
their enthalpies of vaporization at room temperature are 40.62 kJ/mol and 44.7 kJ/mol
respectively’?’.  The scattering signal amplitudes are equally high in both FGO/water and

FGO/NMP dispersions, indicating that solvent contribution to nonlinear scattering by thermally

induced microbubbles is nearly the same in both samples.
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Figure 2.18 (a) Measured Z-scan data. All samples have the same linear transmission of 50%. (b)
Variation of sample transmission with input fluence. (c) Variation of sample output fluence with
input fluence (d) Variation of scattering signals with input fluence .

The measured open-aperture z-scan curve was fit to the Equation(2.24) and plotted in the
Figure 2.18(a). The fit nonlinear absorption coefficients are, 1.40, 0.7 and 0.35 nm/W for F-
GO/water, HF-GO/NMP, and GO/water respectively.

In materials, optical limiting behavior arises from nonlinear absorption and/or nonlinear
scattering. Processes such as two-photon (or multi-photon) absorption and excited state
absorption (also known as reverse saturable absorption - RSA) belong to the class of nonlinear
absorption (NLA). Nonlinear scattering (NLS) in dispersions/solutions in the context of optical
limiting refers to the scattering of photons from refractive index variations, microbubbles and
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microplasma, which are caused by laser-induced heating of the medium. In absorbing media like
carbon based materials optical limiting of ns laser pulses is caused mostly by RSA and/or NLS.
For example, carbon particle suspensions (CS) show strong optical limiting due to NLS caused
by thermally induced microplasma™, whereas fullerenes (Cgo) exhibit robust limiting due to large
RSA% 128129 |n addition, multiwalled and single walled carbon nanotubes (CNTSs) exhibit
broadband optical limiting due to NLS®">° while GO exhibits limiting due to RSA™®.

By measuring the scattered light from our samples, it was found that all fluorinated
graphene oxide samples exhibit strong nonlinear scattering whereas there is no nonlinear
scattering present in GO. This finding suggests that there is a significant enhancement in
nonlinear scattering due to the presence of C-F bonds in the fluorinated samples. This
enhancement, as a result, contributes to better optical limiting properties.

Comparing the z-scan and scattering data, it can be seen that, for fluorinated graphene
oxide samples, the onsets of the optical limiting start earlier than the onsets of nonlinear
scattering. For example, optical limiting of F-GO in water has an onset of optical limiting at
about 0.05 J/cm? whereas its nonlinear scattering appears only later, at around 0.14 J/cm?®. This
observation suggests that the optical limiting action of fluorinated graphene oxide in the ns
excitation regime is not exclusively due to nonlinear scattering but also the nonlinear absorption.

X. F. Jiang et al. reported significantly enhanced nonlinear absorption of GO upon partial
reduction’®!. This enhancement in nonlinear absorption was attributed to localized sp* domains.
Upon further reduction of GO, larger sp?> domains are formed. The interconnectivity of the sp?
domains results in increased nonradiative recombination rates and thus reduces its optical
limiting efficiency. As-prepared GO exhibited inferior nonlinear absorption than partially

reduced GO due to its lower number of localized sp? domains.
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Figure 2.19 XPS spectra of (a) GO, (b) F-GO, and (c) HF-GO
In the case of fluorinated graphene oxide, the interaction of fluorine atoms with the
graphene oxide layers is accomplished by covalent attachment of fluorine atoms to the layers.

This interaction is accompanied by a change in the hybridization of the 2s and 2p valence
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electron states of the carbon atoms from the trigonal (sp?) to tetrahedral (sp*) hybridization due
to the formation of the additional ¢ bond between carbon and fluorine atom. The large difference
between the local band gaps of the sp® and sp?sites creates band edge fluctuations, with the sp®
sites acting as tunnel barriers between the 7 states of sp® clusters.* These tunnels create strongly
localized isolated sp? domains which act as defects in the electronic band. Therefore, similar to
partially reduced GO, it is possible that larger nonlinear absorption in the fluorinated samples is
due to increase in the number of localized sp” domains, which are created by the sp® attachments
of F atoms. However, XPS analyses, Figure 2.19, revealed that the ratios of number of sp
carbons to sp® carbons in our GO and F-GO are similar, suggesting that there are similar
numbers of sp? domains in both samples. This finding suggests that the presence of sp* defects
created by highly electronegative atom such as fluorine promotes larger nonlinear absorption and
better optical limiting than the sp® sites formed with other functional groups in GO. On the other
hand, the ratio of sp? to sp* carbons of HF-GO is much lower than both of FGO and GO. The
lower nonlinear absorption of HF-GO when compared to F-GO can be attributed to the decrease
in number of localized sp? domains. This is analogous to the case of inferior nonlinear absorption
of as prepared GO compared to partially reduced GO reported previously**:. Furthermore, the
fact that HF-GO is a stronger nonlinear absorber than GO, even though it has lower number of
sp? to sp® carbons, confirms the significance of fluorine sp® sites in the enhancement of nonlinear

absorption and thus optical limiting.
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3 PHOTOACOUSTIC DETECTION OF OPTICAL

NONLINEARITIES'

3.1 Motivation

It has been evident in Chapter2 that when a material contains both nonlinear scattering
and nonlinear absorption, performing only conventional Z-scan measurement could not separate
or differentiate the two contributions. This is because, transmission-based measurements, like Z-
scan, both nonlinear absorption and scattering contribute to reduced transmission. In the case of
F-GO, another photodetector mounted at an angle to the sample was needed to detect the
scattering signal and the difference in the onsets was used as an evidence of the presence of the
two mechanisms. However, what if the sample under consideration had the same onsets of both
contributions? It would be impossible to make any conclusion regarding the underlying
mechanism for the sample’s optical limiting action. Resorting to performing additional
measurements with shorter laser pulse or transient measurement might be able to draw some
conclusions. Unfortunately, not every lab is equipped with required components to set up the
measurements and their setups are not quite simple. In this section, another detection scheme,
namely photoacoustic technique, for detecting optical nonlinearities is studied. The focus of the
study is to observe the signal characteristics obtain with acoustic transducer integrated with a
conventional Z-scan measurement. The system will be tested with nonlinear absorbing as well

as nonlinear scattering samples.

" The work presented in this chapter are extensions of Chantharasupawong, P.; Philip, R.; Thomas, J., Simultaneous

Optical and Photoacoustic Measurement of Nonlinear Absorption. Applied Physics Letters 2013, 102, 041116.
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3.2 Theoretical backqround

Photoacoustic (PA) or optoacoustic effect was first discovered by Alexander Graham
Bell in 1880, when he observed an audible sound from a tube attached to a cell enclosing a solid
sample that was irradiated with modulated sunlight. The PA effect has found applications in
various fields of physics, chemistry and biology. Those applications include material
characterizations, spectroscopy, sensing, and imaging. In PA spectroscopy, similar spectral
profile to optical absorption spectrum is obtained. However, unlike the optical method, the PA-
based technique allows measurement of any type of samples whether it is crystalline, amorphous,
or powder. This is because the technique is based on the fact that the absorbed light is converted
to sound. While scattering samples are problematic with conventional spectroscopic techniques,
PA spectroscopy has no difficulties in measuring such samples. In addition, it has been shown

that optical absorption data can be optioned with PA spectroscopy even with opaque samples.

PA generation is generally due to photothermal heating effect. After optical absorption,
whole or in part of absorbed light is converted to heat in the sample through nonradiative
deexcitation. Other deexcitaion mechanisms are also possible namely luminescence,
photochemistry and photoelectricity. These deexcitation branches compliment the heating branch
such that the sum of their ratio equals to unity. The most common mechanisms PA generation is
by thermal expansion of the sample. However, other mechanism is also possible such as
electrostriction, photochemical changes, gas evolution or boiling, and plasma formation. PA
generation efficiency in the case of electrostriction is usually small and negligible in the order of
10™*?, whereas breakdown mechanism can be as large as 30%. However, for stable and

chemically inactive samples, thermal expansion is the dominant mechanism.
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To generate PA signal, which is essentially a longitudinal wave, intensity modulation of
the light source is required to propagate sound. This requirement can either achieved by the use
of frequency -chopped continuous or pulse laser source. In the case of chopped continuous laser
source, the modulation frequency is in the range of 1-1000 Hz, and the acoustic propagation
distance is much larger than the sample cell. As a result, boundary conditions such as boundary
reflection and thermal diffusion effect are important and cannot be neglected when analyzing PA
signal. On the other hand, in the case of pulse laser source or pulse PA generation, the acoustic
propagation distance is much smaller than the sample and therefore, in most cases, PA pulse is
independent of the boundary reflections. Here, we limit our discussion to only the pulse PA

generation since ns laser will be used as a light source.

PA generation can be classified as either direct or indirect. In the former, acoustic wave is
generated in the sample where the excitation is absorbed. In the latter, however, wave is
generated in the coupling media due to acoustic transmission from the sample. Theories for PA
generation are briefly presented in the following section. More detailed discussion can be found

in the literatures™>*%,
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3.2.1 Direct PA generation

Laser input

Suniple

PA signal

Figure 3.1 Schematic illustration of direct PA measurement

3.2.1.1 Semi-quantitative theory for small laser radius (Rs<vt, )

The geometry of direct PA generation is illustrated in Figure 3.1. The laser radius Rs is
considered small when it is smaller than the acoustic propagation distance vz where v is the
sound velocity and 7 is the temporal width of the laser. In this limit, the acoustic source has a
radius R= vz, which is larger than Rs . The source expansion immediately after the laser pulse is

given by the following thermal expansion equation:

7(R+AR)’| — /Rl = BaR2IAT (3.1)

where | is the length of the PA source, AT is the change in temperature due to non-radiative
decay, and g is the thermal expansion coefficient. The temperature rise due to laser pulse is

governed by the following heat capacity equation:

AT=% (3.2)
o4

P
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where C, is the specific heat, a is the absorption coefficient, E is the laser energy, and p is the
density. In the case of cylindrical acoustic wave, the peak displacement Ug(r) at a distance r

away from the source is given by:

U(R)=ARRR/r)" (3.3)
and the PA peak pressure at position r is related to the peak displacement by:

P =vpU )/ 7, (3.4)

Combining equation (3.1)-(3.4) gives the following equation for the peak pressure amplitude at

the detector with the distance r away from the source.

_ PEav’
27C, (v, )" r'?

P(r) (3.5)

3.2.1.2 Semiquantitative theory for large laser radius (Rs>vr )

In this case, it means that the source does not have time to expand isobarically after the
laser pulse. As a result, the pressure increase near the source surface is governed by the

following bulk modulus equation:

KPEa
"G,

AP =K AT = (3.6)

where K is the bulk modulus. Again, the peak acoustic response at the distance r away from the

source is given by.
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KPEa

P=AP(RS/r)m=W

3.7)

3.2.2 Indirect PA generation
In the case of the indirect generation, coupling liquid or gas is used and the detector is
positioned to monitor acoustic in the coupling media. A thermal piston model is used to describe

this indirect PA generation. The model geometry is illustrated in Figure 3.2.
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Figure 3.2 Schematic illustration of the thermal piston model
The distributed heat is governed by the thermal diffusion equations**:
T 10T 1

o = a_a—ﬂaqexp(ax)l(t)for —l<x<0 (3.8)

OT _ 10T | <x<| (3.9)
o’ o, Ot
PT_ 1T eyl (3.10)
ox? a; ot

where T is the temperature; I(t) is the modulated light intensity; # is the nonradiative decay
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efficiency and «; s the thermal diffusivity of the sample (i=s), front material (i=f) and back
material (i=b). By solving equations (3.8)-(3.10), temperature profile T(x,t) can be obtained. By
relating the heat change with appropriate thermodynamic equations, one can derive pressure
wave distribution. Empirical estimation of the peak pressure can also be done. If we assume
that there is communication layer between the sample and its coupling medium within a heat
diffusion length of us. The absorbed light energy can be converted to temperature rise at the

surface through a heat conduction equation of the form:

kAT
H,

~al u (3.11)

where lpis the peak intensity of I(t). The produced heat is then coupled to an adjacent volume of

liquid with an active volume of :
Vazyrwzsg (3.12)

where w is the laser beam waist and sy is the effective thermal length of the coupling medium.
Using an ideal gas law, the change in the active volume due to temperature is:

AV, AT
vV T

[/

(3.13)

This volume fluctuation can cause a pressure fluctuation at the detector. Assuming the process is
adiabatic, the pressure change is given by:

AP =yPAV, 1V, (3.14)

where y is the adiabatic index and Vj is the total coupling medium volume. Combining Equations
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(3.11)-(3.14), the PA amplitude 4P can be obtained as:

AP }/Psnglo a_/l:
v, k& (3.15)

From Equation (3.15), the normalized PA signal AP/, is proportional to the sample absorption

coefficient a. Thus, determining absorption coefficient from PA detection is possible.

3.3 Experimental methods

3.3.1 Simultaneous measurements

From section 3.2, it has been found that PA generation is proportional to the absorption
coefficient. Therefore, extracting absorption properties of material by detecting generated PA
signal is theoretically possible. The goal of this setup is to compare signal characteristics
obtained from conventional optical technique like Z-scan to what received from PA detections.
The PA detection will be combined to a conventional Z-scan setup. The data obtained from both
detection schemes will be from a single experimental run in order to avoid uncertainties and
achieve the highest correlation as possible. Indirect PA measurement with the use of coupling
medium will be employed since sample is usually taken in a cuvettes for the conventional Z-

scan.

To combine PA detection with the conventional Z-scan, a PA cell is introduced into the
setup. The PA cell is made from brass due to its excellent corrosion resistance and
electromagnetic interference shielding. The cell is integrated to a conventional Z-scan setup by

mounting it on a linear translation stage (Newport, ILS150PP). The cell has a diameter of 8 cm
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and height of 5 cm. An ultrasonic transducer (Olympus NDT, model A315-SU) and glass
windows are fixed on the circular cell wall as shown in Figure 3.3(a). The cell has a brass lid
with a slotted teflon cap in the center, through which a 1mm path length cuvette containing the
sample can be inserted. The cuvette is positioned at an angle such that its front surface is facing
the transducer for better acoustic detection. The cell is filled with water as a coupling medium
between the sample and the transducer. The acoustic signals are collected by the transducer that

is connected to an oscilloscope. Photograph of the set-up is shown in Figure 3.3(b).
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Figure 3.3 (a) Schematic diagram of the simultaneous optical and PA measurements (b)
Photograph of the set up.

3.4 Results and discussion

3.4.1 Simultaneous Optical and Photoacoustic Measurement of Nonlinear Absorption

In this section, a new technique, which combines the photoacoustic technique with the
conventional optical Z-scan into a single measurement, is developed. Photoacoustic and optical
transmission signal are measured and obtained simultaneously in one experimental run. This

combined optical and photo acoustic Z-scan technique will be called OPAZ-scan.

76



The first sample to study with this OPAZ-scan technique is the funtionalized-C60( [6,6]-
phenyl-Cg;-butyric acid methyl ester : PCBM) in chloroform. PCBM is a reverse saturable
absorber/ optical limiter. As a result, since PA is proportional to the sample absorption, increase
in PA generation should be observed with this sample when the material absorption starts to
increase with light intensity due to RSA process. The second sample under study is 3,3'-
diethyloxadicarbocyanine iodide (DODCI) in methanol which is a saturable absorber. Increase in
sample transmission and decrease in PA signal with increase in light intensity are expected with
this sample due to saturable absorption (SA) process.

Normalized transmission and peak PA signals from the first acoustic pulse are plotted
against sample positions for these two samples as shown in Figure 3.4. In the case of reverse
saturable absorbers, Figure3.4(a), light absorption increases as the incident intensity increases.
This gives rise to decrease in transmission and hence the optical Z-scan signal as the sample is
moved toward the focal point. The PA signal, Figure 3.4(c), on the other hand, show a peak since
the acoustic generation is proportional to the absorbed energy. On the contrary, DODCI,
Figure3.4 (b) and (d), have reverse characteristics, as expected, because light absorption is less
near the focal point.

In order to find nonlinear coefficients from transmission signals, the following

differential equation for optical intensity loss in thin sample is considered.
- = —ﬂaI (316)

where 1 is the optical intensity, z is the propagation distance, and p, is the absorption coefficient
described by Equation (3.17) and (3.18) for reverse saturable absorber **® and saturable absorber

37 respectively :
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p,=(a,+B,1) (3.17)
p=a(+1/1) (3.18)
where S, is the effective nonlinear absorption coefficient for reverse saturable absorbers and

is the saturation intensity of saturable absorbers. The intensity for a TEMg, Gaussian beam

I sat

propagating through a sample along the +z direction is of the form:

wiI ol %1 242
I (z,t) =[wzgz))]exp [— w:iz)] (3.19)

where W2(z)=wo*(1+z%/z,), z is the sample position relative to the focus, wy is the radius of the

beam waist , and zg=nwo?/A is the Rayleigh length. By integrating Equation (3.16) over sample
length L, the optical intensity transmitted through a sample can found. For a temporally

Gaussian pulse, the normalized transmission of the sample is given by:

T,.(2)= } [T (zt)ar (3:20)
T
with

mI rdr
= I o ™ (3.21)

T (z,t)

e_"“LImImrdr
0

where «, is the linear absorption coefficient of the sample. Thus, by numerically solving
Equation (3.16-3.21) and fitting to the experimental transmission data, the nonlinear absorption

parameters S and I of the reverse saturable and saturable absorbers can be respectively

sat

determined. The fitting values are B, =2.2nm/W and ls; =0.25 TW/m?* for PCBM and DODCI
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respectively. Analytical forms of the transmission can be found in the literatures for both

137 138

saturable

and reverse saturable " absorbers.

In determining the nonlinear absorption parameters from PA signals, the Tam’s indirect

139
|

PA generation mode , Equation(3.15), which describes the peak PA amplitude 6P was used

together with Equation (3.17-3.18). The fitting values are S =1nm/W and ls;; =0.6 TW/m? for

PCBM and DODCI respectively. These fitting parameters are comparable to what obtained from

optical transmission.
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Figure 3.4 (a) Optical signal of PCBM in chloroform with 20% linear transmission and Ein of
112uJ, (b) Optical signal of DODCI in methanol with 20% linear transmission and Ein of 112uJ,
(c) Acoustic signal of the same concentration of PCBM as in (a), and (d) Acoustic signal of the
same concentration of DODCI as in (b). Optical and acoustic signals were obtained
simultaneously with the OPAZ-scan configuration. The solid lines are the fitted curves.
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In addition, we carried out an OPAZ-scan measurement of a very opaque solution of
PCBM in chloroform. Due to the opacity of the sample, the transmitted energy was below the
sensitivity of our energy meter and could not be measured. However, unlike the optical

technique, it is possible to obtain information about the sample absorption with PA signal, as

shown in Figs. 3.5(a). The data was also fit with Equation (3.15). The fitting is B = 5 nm/W.

The fit parameter is higher than what obtained from the transparent sample. This is in agreement
with previous study on Cgo, Which found that the effective nonlinear absorption coefficient of Cg
in toluene increases with concentration® '*°. This measurement clearly demonstrates the
advantage of photoacoustic method over transmission method in determining the nonlinear

optical coefficients of non-transparent samples.
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Figure 3.5 (a) PA signal of a very opague PCBM with Ein of 80uJ. Optical signal cannot be
measured with this sample due to its opacity (b) OPAZ-scan curves of carbon-black dispersion in
water with 1% transmission at 532nm and Ein of 103uJ. The lines are the fitted curve.

To further demonstrate the relative advantage of the OPAZ-scan (i.e., measuring both
transmission and photoacoustic data simultaneously), OPAZ-scan measurement on carbon-black
suspension, which is a nonlinearly scattering sample, was carried out (Figure 3.5(b)).

Interestingly, comparing Figure 3.5(b) and Figure 3.4, OPAZ curves of carbon-black suspension
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(CBS) reveals a different characteristic than what is expected from reverse saturable and
saturable absorbers. The former shows decrease in transmission and increase in acoustic signal
as the sample moves toward the focal point, while the latter shows the opposite trend. Carbon
black suspension, however, shows a decrease in the transmission and non-characteristic acoustic
signals, as it is moved closer to the focal point. This observation suggests that the well-known
optical limiting found in carbon-black suspensions does not originate primarily from nonlinear
absorption. In fact, it has been shown that the nonlinear transmission of CBS for nanosecond
pulses arises mostly from nonlinear scattering ***. It is obvious from Figure 3.5(b) that the Z-scan
curve alone is insufficient to determine the mechanisms behind the nonlinear reduction in
transmission. For instance, an incorrect conclusion could be drawn because the Z-scan curves
obtained from nonlinear scattering samples are similar to that obtained from reverse saturable
absorbers. On the other hand, measuring the photoacoustic signal alone also is not possible to
draw any conclusions. The fluctuation in the acoustic signal can be attributed to background
noise in the acoustic detection created by nonlinear scattering process. Nevertheless, because the
PAZ-scan curve does not show any characteristic sign of nonlinear absorption, the nonlinear
transmission seen with the optical signal can be mostly attributed to a nonlinear scattering

process.
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3.4.2 More rigorous fitting of the PAZ-scan

From the previous section, we have found that PA can give information about nonlinear
absorption and the signal is complementary to the conventional optical z-scan technique.
However, so far, only semi-quantitative model have been used in fitting the nonlinear coefficient
from the PA z-scan data. In this particular model, the beam profile and distribution across the
sample are ignored. Only the peak intensity of the light is taken into account. It is obvious that
this fitting formula is not a true representation of the system. To check this aspect, PAZ-scan as
well as optical Z-scan of a nonlinear absorbing sample, PCBM in toluene were performed with a
small laser beam waist of 30 um. A small beam waist was used since light distribution within
the sample change significantly from one z position to another in the case of tight focus
geometry as opposed to the loose focus case. It was found that the semi-quantitative model
(Model 1), Equation (3.15), failed to fit the acoustic data when the same fitting parameter from
optical z-scan was used (Figure3.6). As a result, in this section, more rigorous formulation for
fitting PA data is developed.
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Figure 3.6 OPAZ-scan data. (a) optical —z-scan and its fit (b) PA z-scan with the fitting value
from the curve in (a). Clearly, model 1 diverts significantly from the experimental data.
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3.4.2.1 Photoacoustic calculation with a frequency- wavenumber method

d*? is used to simulate

Calculation based on the frequency-wavenumber (k-space) metho
our experimental observations. The formulation of such calculation technique is discussed here

in this section.

A sound wave is generated when absorbing fluid is heated with a laser pulse. The
following pair of coupled differential equations, obtained from linearized equations of fluid
dynamics, for the temperature T and pressure p can be used to determine the temperature and

pressure variations:

pC, PG, (3.22)

% BZJ ay &
vl |- T

where y is the specific heat ratio, a is the pressure expansion coefficient defined by

a=(0p/0T),, K is the thermal conductivity, p is the density, vs is the speed of sound, and the
heating function H is the rate of energy density deposited by the optical radiation. Under the
condition whereby the sound generation is thermoelastic, in which the heat generated by
absorption of light is confined in the irradiated volume during the laser pulse (thermal
confinement), the term containing thermal conductivity becomes negligible and the acoustic
pressure can be expressed with the following wave equation:

, 1 aZJ B oH
VioZ |p=—Lt
{ V. OF C, ot (3.24)
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where f is the thermal expansion coefficient, S=(1/VYV /0T),=ay/ pv;, and V is the

volume. If the light fluence distribution in the sample is given by F(x,t), the heating function

H=p (x)F(x,1), where pa(x) is the absorption distribution.

The heating function can be assumed instantaneous when the laser temporal width is fast.
This instantaneous condition is satisfied when the laser pulse is much faster than the time
required for sound wave to propagate across the heated region, i.e. stress confinement condition.

In this regime, the heating function is of the form:

H(x,t)=H(x)X1) (3.25)
Change in temperature is related to the absorbed energy by

AT=H/1(pC) (3.26)
Using the thermodynamic relation:

Ap = px;Ap— BoAT (3.27)

with the assumption that there is no change in the density, the change in pressure can be

governed by :

Ap=(BIx,)AT (3.28)
Using Equation(3.26) and (3.28) with &, =y/ pc®, the instantaneous increase in pressure and

thus initial pressure distribution due to absorption of laser pulse is written as:
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po(6)= %H(x) —THG)
» (3.29)

where I' is the Gruneisen parameter, a lump constant associating with the heat-to-pressure
conversion efficiency. With the instantaneous heating function of Equation (3.25), the solution to
Equation(3.24) in the absence of boundaries can be written as:
_ ﬁ S r r P
px,==—| | G(x,t,x, 0 YH(xY(t)dx' dt
Cov (3.30)

where &' is the first derivative of the delta function, and G is the free-space Green’s function:

VZG—l@=—5(x X —1)
& or (3.31)

Using the property of & where Ié"(t—to)f(t)dt:—f'(to) and 9G/of =—0G/ot
Equation(3.30) becomes:

peeny=L [0 i yH G
C, o a3

with Equation (3.29), Equation(3.32) can be rewritten as:

Ps)=— ! I S RN
(3.33)

By taking Fourier transform of Equation (3.31) with respect to x and t, the Green’s function can

be expressed in term of frequency.
2z
G0, k)+Z G, k) =—¢ =™
c (3.34)

It can then be written in term of wavenumber vector K as:
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ey dodk
(@/c) (3.35)

1 eik(x—x’) e—ia)(t—f)
x,tx" =

where k=| k | . In this equation , the spherical wave green function is written as a sum of plane

wave. Using Equation (3.33) and (3.35), pressure distribution at time t can be calculated from the

initial pressure distribution po(x). First, the integrand in Equation(3.35) can be evaluated using

Cauchy’s residue theorem with t’ set to zero. This gives the solution for t>0 as:

G, t:x)= c J‘sm(ckt) A

Qzy " &k (3.36)
The time derivative of this function is:
2
oG =€ 2 _[cos(ckt)e']‘("_f)dk
ot (27[) (3'37)

Substituting Equation (3.37) in (3.33) gives

plx, )= ( 1 ) _” cos(ck)e™™ p (x) dx' dk

27y’ (3.38)
By changing the order of the integrand, Equation(3.38) can be viewed as a two-step calculation.

First, the following Fourier transform has to be evaluated
Po0)= | py(x)e *d .39
Second , using the result from the first step, time evolution of pressure can be determined

px.0)=

1
@) I pocostckte (3.40)

Therefore, acoustic pressure at all position can then be calculated using Equation (3.39) and

(3.40) with a known initial condition of H(x).
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3.4.2.2 Acoustic field time snapshots of a point source

In this section, the acoustic field propagation of an instantaneous point source is
simulated. In this model, the heating function H(x) is assumed to have a Gaussian profile, Figure
3.7(a). The initial pressure po(x) is calculated from Equation(3.29) with the assumption of I'=1.
The temporal evolution of the acoustic field is then calculated from Equation (3.39) and (3.40).
Figure 3.8 shows time snap shots of the acoustic fields. Simulation of acoustic wave measured
by a line detectors at y=-5mm is shown in Figure 3.9(a). Figure 3.9(b) shows the simulated

acoustic wave measured from a point detector at x=0 and y=-5mm.
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Figure 3.7(a) 2D-plot of a Gaussian point source initial pressure (b) X-cross section of (a)
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Figure 3.8 2D time evolution of pressure distribution at time t equals (a) 1us (b) 2us (c) 4us and
(d) 6us for Figure 3.7
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Figure 3.9 (a) Acoustic wave measured by a line detectors at y=-5mm of the source in
Figure3.7(a). (b) Acoustic wave measured by a point detector at x=0,y=-5mm

3.4.2.3 Acoustic field time snapshots of a thin absorbing sample

In this section, we expand the above simulation to the case of thin absorbing sample excited with
a pulse Gaussian beam with a width of wy. First, the initial pressure distribution of the sample

can be obtained by solving the following equation:

di(x,y)
— = 2 1(x,y) (3.41)
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where , is the absorption coefficient and z is the propagation direction. In the case of linear
sample, p;=o. For samples with third order nonlinearity p,=oa+BI. The po(X,y) is then calculated
from Equation (3.29) with H(x,y)=ua(X,y)F(X,y). Figure 3.10 shows the calculated initial pressure
distribution of a thin linear absorbing sample with thickness t= 1mm, p,= 3 mm™, wy=80um, and
I'=1. From this initial pressure distribution, the temporal evolution of the acoustic field is
calculated and shown in Figure 3.11. Simulation of acoustic wave measured by a line detectors at
y= -0.8mm is shown in Figure 3.12(a). Figure 3.12(b) shows the simulated acoustic wave
measured from a point detector at x=0 and y= -0.8mm. Up to this point, the simulated acoustic
signals were done with the assumption that the sensor has a wide frequency response. Since,
transducer has a limited bandwidth response, the signal collected by the transducer can be
modeled as a product of the simulated pressure signal multiplied by the transducer bandwidth in
the frequency domain. Figure 3.13 shows the simulated signal collected by a transducer with a

central frequency at 10MHz and a Gaussian bandwidth of 40%.
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Figure 3.10 2D-plot of initial pressure distribution created by passing Gaussian beam through a
thin absorbing layer
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Figure 3.13(a) Simulated acoustic signal (b) Simulated acoustic signal received by a transducer
with a center frequency of 10 MHz and bandwidth of 40%

3.4.2.4 PAZ-scan fitting with k-space simulation

In this section, the k-space simulation is used to fit the collected PAZ-scan data for the tight
focus case. The orientation of the cuvette in the experimental setup was taken into account in
finding the initial pressure distribution, Figure 3.14(a). The simulation was looped for different
laser beam size at a fixed excitation energy following the nature of Z-scan setup. The acoustic
signal magnitude was collected for each beam size and plotted against the Z-position. The
simulated signal was collected away from the source with a line detector. The distance between
the sensor and the source was shorter in the simulation to reduce the simulation time. In the
actual experiment, a water delay line adds time delay to the signal. Since, when collecting the
experimental data, only the magnitude of the first PA pulse was collected, therefore, in the
simulation, only the first pulse, Figure 3.14(b), was simulated and the boundaries were ignored
for simplicity. MATLAB code for this fitting algorithm can be found in Appendix E. In brief, the

fitting program does the following:
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(1) Calculate initial pressure distribution from a given excitation, beam size at the

corresponding z position, linear absorption and nonlinear absorption parameter

(2) Calculate time evolution of the acoustic signal and measure its peak-to-peak magnitude.

Record the PA magnitude and its corresponding z-position

(3) Repeat (1) and (2) for the whole scanning range (z axis)
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Figure 3.14(a) Initial pressure distribution for the k-space fitting model. The beam diameter is
80um;(b) First PA pulse simulated from the initial pressure in (a); (c) comparison between
acoustic two fitting model. The fitting parameters were obtained from experimental z-scan with
PCBM in a 1mm cuvette. The beam waist is 30um. The linear transmission is 0.1 and = 7nm/W.
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Figure 3.14(c) compares the k-space fitting formulation to the semi-quantitative formula. The
parameter used was obtained from fitting the optical Z-scan. It is clear this k-space technique
gives a better fit to the experimental data. The difference between the two model, namely the
semi-quantitative model (Modell) and the k-space model (Model2) for different beam sizes and
nonlinear parameter was also investigated, Figure 3.15. It is clear that these two model diverge
significantly for small beam waist while they give similar behaviors for large beam waist which

IS in agreement with what have been observed experimentally.
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Figure 3.15 Comparison of normalized PA magnitudes obtained from Model 1 and 2 for
different sizes of Gaussian beam waists in the z-scan configuration.
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4 PHOTOREFRACTIVE POLYMER SENSITIZED WITH

NANOMATERIALS*

4.1 Motivation

The photorefractive (PR) effect is a spatial modulation of the refractive index generated
by photo-charge redistribution in a material. This effect occurs when charge carriers are
generated by spatially modulated light, usually from interference of two beams. The charge
generation is followed by charge separation due to drift and/or diffusion processes. When these
charges are trapped by defects, they create inhomogeneous space-charge distribution. In the case
of inorganic crystals, the resulting electric field modulates the refractive index by a second order
nonlinear effect i.e. electro-optic effect, creating an refractive index grating inside the material.
In the case of PR polymers, another effect called orientational enhancement also plays significant
role in creating the index modulation. The generated grating has a phase shift with respect to
the modulated light intensity. This phase shift, which sometimes referred to as a nonlocal nature
of the PR effect, is a distinctive characteristic of the PR effect. There are many applications

associated with PR effect, for instance, high-density optical data storage'**, image processing™**

146 147-148

1% 3D holographic display**°, tunable filter and bio-imaging™*.
The photorefractive effect was first discovered in 1966 in Lithium niobate (LiNbO3) by

Ashkin et al at Bell Lab. The effect was first called optically induced refractive index

* The work presented in this chapter are extensions of Chantharasupawong, P.; Christenson, C. W.; Philip, R.; Zhai,
L.; Winiarz, J.; Yamamoto, M.; Tetard, L.; Nair, R. R.; Thomas, J., Photorefractive Performances of a Graphene-

Doped Patpd/7-Dcst/Ecz Composite. Journal of Materials Chemistry C 2014, 2, 7639-7647.
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inhomogeneities. During the time of the first discovery, the effect was considered as undesirable
in electro-optic and nonlinear optical application as it limited the usefulness of crystals with large
electro-optic and nonlinear optical coefficient such as LiNbOs. This was because the index
change gave rise to de-collimation and scattering of the light beams™. It was later realized by
Chen and his colleagues at Bell Lab that this effect is useful in holographic recording
applications where materials that can modulate the refractive index upon irradiation are

desirable™!

. Chen later described that this “optically induced refractive index change”
phenomena, which at that time known as *“optical damage”, is due to the drifting of excited
electrons out of the illumination region followed by re-trapping®®?. His explanation laid the
foundation for the present understanding of the photorefractive effect. After the discovery of the
effect in LiNbOs, other inorganic crystals, such as BaTiOs™, KNbOs™*, Bi1,Si0x™°, and
GaAs™® also showed similar properties.

In 1990, Sutter, Hulliger and Ginter grew organic crystal of 2-cyclooctylamino-5-
nitropyridine (COANP) single crystals doped with 7,7,8,8-tetracyanoquinodimethane
(TCNQ)™’. They observed photorefractive effect in their crystal. The growth of doped organic
crystals, however, is not an easy task because most dopants are expelled during the crystal
preparation by self-purification process. In 1991, the PR effect was observed for the first time in
an amorphous polymer by Ducharme et al. who worked at IBM*®®. Their PR polymer composite
was a partially cross-linked epoxy polymer (bisA-NPDA) composed of bisphenol-A-
diglycidylether (bisA) attached to the nonlinear chromophore 4-nitro-1, 2-phenylenediamine
(NPDA). The glass transition temperature (Ty) of the material was 65°C. Even though the

performance of this polymer PR material was poor when compared to today’s PR polymer

materials, this discovery opened the new field of PR polymers.
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PR polymer composites gained considerable attention for its advantage of large PR
effect, structural flexibility, low cost, and good processability when compared to the inorganic
crystal. Since large diffraction efficiency can be obtained in PR polymer composite with several
microns thick sample (as opposed to a few cm thick in the case of inorganic crystals), they are
interesting choices in large area and compact applications. For example, Salvador et al. used a
near-infrared (NIR) sensitized PR polymer composite as recording media in holographic optical
coherence imaging (HOCI). **° They successfully imaged tumor spheroids with their system.
Perhaps, one of the most fascinating applications of PR polymer materials is the refreshable
holographic 3D-display concept developed by the University of Arizona'®®. However, in order
to transform this concept to real world applications, key performances such as sensitivity,
transparency and response time in PR polymer materials have to be substantially improved.

The writing speed of the PR materials depends on two major factors: (1) formation of the
space charge field i.e. charge generation, transfer, transport and trapping; and (2) the
reorientation dynamics of the chromophores. It is generally accepted that the former contributes
to the fast time constant of the PR composite and the latter governs the slow time constant. Even
though the limiting time factor for reaching the steady state in the PR polymers is the slow time
constant, diffraction efficiencies smaller than the steady state diffraction value are sufficient for
most practical dynamic holographic applications. As a result, sensitizers play an important role
in improving the temporal dynamics of hologram creation. It was found that by the use of proper
sensitizers, for example buckminister fullerene (Cgo) and tetranitroflurinone (TNF), the writing
dynamics of PR polymers were substantially improved'®®? In this chapter, the use of
unexplored nanomaterials as PR sensitizer will be investigated with an aim to improve the speed

of the PR polymer.
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4.2 Theoretical backqround

4.2.1 Photorefractive polymer composites

Guest host system

JAN

<:| Chromophore
A Plasticizer

. Sensitizer
S

Figure 4.1 Schematic illustration of a guest host system.

PR effect can be observed in materials, which exhibit second order optical nonlinearity
and charge redistribution upon light irradiation. However, unlike in crystalline inorganic PR
materials where the size is limited and their second order nonlinearity is relative small,
amorphous organic PR materials have attracted significant attention due to its low cost, high
second order effect, ease in processibility, design flexibility and wide range of properties which
can be achieved by concocting different polymers. However, one drawback of the organic PR
materials is that they have low dielectric constant. This causes the redistribution of the charge to
be highly electric field dependent. In practice, to have PR effect in the organic PR material, an
external electric field is required to create space charge field modulation inside the material. In
organic PR polymers, the properties required for PR effect to occur in organic PR polymer
systems are provided by different molecules inside a composite, so called the “guest-host
system” as illustrated in Figure 4.1. Those functions include photosensitivity, photoconductivity
and electro-optic effect. Since these mechanisms are given by different molecules, they can be

separately optimized. This is one of the advantages of the organic PR polymer system over the
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inorganic crystals. In the organic PR polymer system, there are four main components i.e. charge
transporting polymer (CTP), sensitizer (charge generator), plasticizer and chromophores.
Sensitizer is responsible for generating charges by photo-absorption. These charges then drift
with an applied field or diffuse inside the charge-transporting polymer. The non-uniform charge
distribution is created because of the difference in electron and hole mobility. Trapping sites may
be introduced to enhance the non-uniform charge distribution. By electro-optic effect and
molecular reorientation of the chromophores, an index modulation is created from this non-
uniform charge-distribution. Plasticizer is added to lower Tg, thereby assisting molecular
reorientation and enhancing refractive index modulation. Each of these components is discussed
in the following section.

(ip Charge iransporting polymers
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Figure 4.2 Chemical structures of common (i) charge transporting polymers, (ii) sensitizers, (iii)
plasticizers , and (iv) chromophore
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(i) Charge transporting polymer (CTP)

The charge-transporting polymer is an oxidizable host polymer that can transport charges.
This transport process eventually leads to the nonlocal nature of the PR effect. In PR samples,
holes are the majority charge carriers due to its higher mobility than electrons. The HOMO level
is usually between -5.5 eV and -6.0 eV for common CTPs. It is desirable that CTPs are highly
conjugated with delocalized m-electrons. They should also have appropriate energy level such
that holes can be transferred from the sensitizer molecule. This means that the HOMO level of
the CTP should be higher in energy (less negative) than that of the sensitizer for charge transfer
to happen. Typical loading of the CTPs in the composite is at least 50% by weight to ensure that
the charge transport occurs via hopping process. When CTPs are doped into an inert matrix at
very low percentage, there is very limited electrical conduction. This is because CTPs are too far
apart for the charge hopping to take place. The value at which this happens is usually in the
range of 5-10 wt.% loading for common CTPs such as carbazole, diethylamino-benzaldehyde
diphenylhydrazone (DEH), or terephthalic acid (TPA) derivatives. Above this loading value,
charge transport can occur. The charge-carrier mobility increases with CTP concentration and
saturates at the concentration somewhere below 100 wt.%"%

Commonly used transporting polymers are shown in 4.2 (d). Carbazole-containing
polymers are the most studied CTPs. Poly(vinyl carbazole) (PVK) is the first high performing
composite utilized for making PR devices with nearly 100% diffraction efficiency '°2. However,
PVK systems have a high tendency to be phase separated because of the difference in the
polarity of the component. Moreover, the response time of PVK system is rather slow.

Other CTPs have drawn considerable attention due to their high drift mobility and lower

Tg. PR composites containing polymers with triarylamine side chain, such as poly(acrylic
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tetraphenyldiaminobiphenyl) (PATPD), have shown high diffraction efficiency, comparable to
the PVK based composite without exhibiting dependency on the illumination history 041,
Composite  with  poly(phenylene vinylene) derivative  (poly[1,4-phenylene-1,2-di(4-
benzyloxyphenyl)vinylene] (DBOP-PPV) with diphenyl phthalate (DPP) as a plasticizers, has
better steady-state characteristics compared to PVK/ECZ systems'®. This observed better
performance was attributed to (i) the reduction in polarity of the DBOP-PPV/DPP matrix, (ii)
increased trap density, and (iii) improved degree of chromophore reorientation in DBOP-
PPV/DPP system. While the charge transport in PVK/ECZ system is mainly from hopping,
delocalized pi-conjugation play an important role in the DBOP-PPV system.
(if) Charge generator

Generation of charges at the wavelength of interest in the PR composite is accomplished
by using charges generators (also known as sensitizers). These charge generators are basically
photosensitizes. They can form a charge transfer complex with the CTP, resulting in efficient
charge transfer process. In the case of PR polymer composites with hole as primary conductors,
photo-excited holes in the charge generator is transferred from the HOMO of the charge
generator to the HOMO of the CTP. The charge generator accepts an electron from the HOMO
of the CTP and becomes reduced. One of the important requirements in choosing a charge
generator for a PR polymer composite is that the HOMO level of the charge generator has to be
below that of the CTP. According to Marcus’ theory, the larger difference between the ionization
potential of the donor and acceptor results in better photogeneration efficiency. Cgo and TNF are
the most commonly used sensitizer in the visible wavelength (4.2(a)). These molecules can often
form a CT complex with donor molecules.

(iii) Plasticizer
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In general, the T4 of the PR composites is much higher than room temperature. However,
for high index modulation, it is imperative that the T4 of the composite is in the same range of the
operating temperature. Such low Ty will result in efficient reorientation of the nonlinear
chromophores. In order to lower the T4 of the PR composite, plasticizer is added to the
composite. These plasticizers are typically inert with respect to charge generation and trapping.
In PVK-based PR composite, Benzyl butyl phthalate (BBP) at a loading level of 10-15 wt.% is
used as the plasticizer. **"**°® The monomer, 9-ethyl carbazole (ECZ), has also been used*®.

(iv) Chromophore

The refractive index modulation in the PR effect is provided by chromophores interacting
with the non-uniform space-charge field (SC-field). It is necessary that the chromophores
possess orientational birefringence and/or the linear Pockels electro-optic properties for high
refractive index modulation. Therefore, a large linear polarizability anisotropy (birefringence)
and/or first hyperpolarizability (electro-optic) are desirable. In both cases, a large ground state
dipole moment is required. R. Wortmann et al. has given an expression for quantifying the
chromophore quality'”. Their figure of merit (FOM) represents the combined effect of linear

birefringence and electro-optics:

rom =gy 424 A
M kT

4.1)
where M is the molecular weight, « is the dipole moment, £ is the first hyperpolarizibility, Aa is
the birefringence, and T is the temperature.

It was found that the contribution from the linear polarizability anisotropy through a
process called “orientational enhancement” is higher than that from the first

hyperpolarizability.!”* For one dimensional chromophores consisting of a donor—acceptor
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substituted m-electron system, greater than 75% of the contributions to the index modulation
originates from the polarizability anisotropy term (birefringence contribution).*"

Optimizing the dipole moment of the chromophores is one of the important parameters in
optimizing the chromophore properties. The diploe moment does not only affect the refractive
index modulation, but also, the molecular aggregation, charge transport, and trapping in PR
composite.

Strong donor-acceptor termination groups can be used to create electron separation across
the m-conjugate bridge, thus a permanent dipole moment. In the presence of an applied electric
field, delocalization along a m-conjugated bridge allows fast electronic redistribution. These
molecules are called push-pull molecules. Tailoring the length of the bridge has an effect on the
dipole moment of the chromophore. Too long bridge lengths may result in restricted orientational
freedom. Even though, larger dipole moments can increase the figure of merit, phase instability
becomes an issue when highly polar chromophores are incorporated into other non-polar
molecules. As a result, an optimum chromophore density has to be determined. In addition,
chromophores with high dipole moment can negatively affect the charge mobility of the PR
composite due to the energetic disorder ***.

In addition, chromophores can also act as sensitizers ™

if their energy levels are
appropriate at the operational wavelength. For this to be effective, the HOMO level of the
chromophores must be lower than that of the CTP. At the same time, the chromophores can also
act as hole traps if their HOMO level is higher than that of the CTP. Because of these reasons,
the energy of the chromophore HOMO level relative to the HOMO of CTP is an important

parameter. It not only affect chromophores performance but also the charge mobility and the

photoconductivity of a PR polymer system.'’
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As a result,, when choosing a chromophore, its effects on the index modulation, charge
generation, transport, and trapping must be taken into account. Examples of high performing
chromophores are dicyanostyrenes (DCST), azo-dye derivatives (DMNPAA), and oxypyridine
dyes (ATOP). Chemical structures of some of the commonly used chromophores are shown in

4.2(c).

4.2.2 Fundamental of photorefractive effect
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Figure 4.3 schematic illustration of the processes involved in the formation of refractive index
modulation.

The photorefractive (PR) effect is a spatial modulation of the index of refraction
generated by light induced charge redistribution in a material. This effect occurs when charge
carriers are generated by spatially modulated light intensity usually formed by the interference of
two coherent beams. For the case of plane wave, two beam interference results in intensity

modulation given by:

I(x)=1 (1+ meos(2z/ A) (4.2)
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where 1o=I;+l, is the total incident intensity, m=2(I11,)*%/(1,+1,) is the fringe visibility , and A
is the spatial wavelength (grating spacing). In a tilted transmission geometry, the spatial

wavelength is:

A
 2nsin((a, —a,)/2)

(4.3)

where n is refractive index of the material; A the optical wavelength in vacuum; and a; and ay
are the incident internal angles of the two writing beams with respect to the sample normal. For
the visible wavelength, the spatial wavelength can vary from sub-microns to a few tens of
microns depending on the writing angles and wavelength.

The generated charge is then separated by drift or diffusion processes and become trapped,
creating non-uniform space-charge distribution. The resulting internal electric field then
modulates the refractive index by an electro-optic effect, creating an index grating inside the
material. The generated grating has a phase shift with respect to the modulated light intensity.
This phase shift is a distinctive characteristic of the PR effect. The process is summarized in
Figure 4.3. There are four main processes that lead to the index modulation, namely 1)
photogeneration of charges, 2) charge transport, 3) charge trapping and formation of SC-field
and 4) index modulation in response to the SC- field.

(i) Photogeneration of charge

After having the intensity modulation in the sample, the PR process starts with absorption
of photon in the bright regions. Upon absorption, electrons are excited from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the sensitizer.
This absorption occurs in the molecules with proper band gap to the incident photon frequency.

The sensitizer is a strong electron acceptor, and forms a charge-transfer (CT) complex with an
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electron donor molecule, typically the CTP. When an electron is excited to the LUMO level of
the sensitizer, the opposite charge carrier or hole is left in the HOMO level. Through the charge
transfer complex, electron is transferred from the HOMO of the sensitizer to the HOMO of the
CTP, resulting in a sensitizer anion.

Two critical processes during the SC-field formation are generation and separation of
charges. The quantum efficiency, defined as the ratio of the number of generated electron hole
pairs to the number of absorbed photons, is used to characterize the effectiveness of charge
generation process. Using more sensitizers can result in larger number of generated charges.
However, higher density of sensitizers will cause larger absorption, which has detrimental effect
to the diffraction performance of the PR composite. Charge separation depends highly on the
relative position of the HOMO and LUMO level of the donor and the acceptor. For the case of
the sensitizer being an acceptor, the HOMO level of the sensitizer should be lower than the
HOMO level of the donor (CTP in this case) so that the electron can be efficiently transferred
from the donor to the acceptor. The LUMO of the sensitizer, on the other hand, has to be lower
than that of the donor in order to facilitate the exciton dissociation. In the organic PR materials,
due to the low dielectric constant of the composite, the Coulomb attraction between electron hole
pair is relatively high. In order to facilitate charge separation, electric field is usually applied.

The Onsager model 767

can be used to describe the thermal and electrical dependence
of the photogeneration efficiency in some organic photoconductors . In this model, it is assumed
that the formation of an electron-hole pair is followed by the formation of an intermediate
charge-transfer state in which the electron and the hole are separated by an average distance of

ro. The charge dissociation can happen with a given probability when the separation is equal to or

higher than the Coulomb radius given by:
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2
where ¢ is the relative permittivity, e is the elementary charge constant, kg is the Boltzman

constant and T is the absolute temperature. The photogeneration efficiency can be expressed as:

H(E) = 4o 1-c 3 A (DA, (<))
= (4.5)

with
HE) = 41— A (KA () (4.6)

where Ag(x)=1-exp(-x), ¢=eEro/ksT, and x=rc/ro. E is the applied electric field and ¢, is the
quantum efficiency. From this model, it can be seen that as the applied electric field increases
the photo generation efficiency also increases. In the limiting case where E approaches infinity,
the photo generation efficiency approaches the intrinsic quantum efficiency of the material.

In addition, the intermolecular interaction between the donor and the acceptor can lead to
a new absorption band that does not appear in the spectrum of either component. This absorption
band is called charge transfer (CT) complex band. For example the interaction between poly(N-
vinylcarbazole) (PVK) polymer and (2,4,7-trinitro-9-fluorenylidene) malononitrile (TNFM)
molecule creates CT band absorption with a tail up to 900nm. ®(2,4,7- trinitrofluoren-9-
ylidene)malononitrile ( TNFDM ) can form CT complex with PVK , resulting in a redshift in the
absorption compared to the individual molecules.*”
(ii) Charge transport

Charge transport in PR composites, which is an amorphous polymeric system, is different
from the mechanism governing the transport in crystalline materials. Periodic crystals have well-

defined energy levels and the charges are transported in the valence and conduction bands.
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When defects are present, hopping (the process in which a localized charge tunnels between

defects when the wavefunctions overlap) can take place **

. In amorphous polymer, charge
transport occurs successively from one polymer moiety to another. For the case of hole
transport, when the electronic wavefunction of the neighboring neutral site of the donor overlaps
with the wavefunction of the charged site, charge transport can take place. These transporting
molecules are usually conjugated polymers with alternating @ bonds that allow delocalization of
the electronic wavefunctions. In this manner, the hole is transferred from one site to another, or
from one molecule to another, in a similar manner to the hopping process between defects. &
Every transport event between two molecules must be considered as a discrete event. Similar to
the valence and conduction bands in crystals, in organic materials, electron transport occurs
within the LUMO levels, whereas hole transport takes place in the HOMO levels. One of the
important parameters that have a significant influence on the PR performance is the mobility of
the generated charges. Several parameters can affect the charge mobility within the PR
composites. For example, the energetic disorder resulting from dipole-dipole interaction between
the host and the dopants can decrease the charge mobility'™® *®. Larger concentration of the
charge transport moiety results in better charge mobility. Dopants have effects on the charge
transport and cause either increase or decrease in the charge mobility, depending on the energy
level. Therefore, engineering and selecting the ionization potential (HOMO/LUMO level) of the
components of PR samples are very important in improving the PR performance. Higher charge

mobility / transport usually results in faster PR performance.
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(iii) Charge trapping and development of SC-field
Charge trapping

Trapping sites are the regions where the transporting charges are trapped from
participating in the transport process. The trapping mechanism is mainly determined by the
energy levels of the traps relative to that of the charge transport polymer. Traps can be
intentionally added molecules, intrinsic defects, or ionized acceptors. Depending on the
trapping/de-trapping rates and the energy level of the trap, they can be categorized as either
shallow or deep traps. The process of trapping is a dynamic process in which the charges are
trapped and de-trapped. The rate, at which these processes occur, and the density of the trap will

determine the rate of the SC-field formation and the magnitude of the SC-field.

Vacuum Level
N
Deep Trap

hv
\ Shallow Trap '@'

Conducting

Polymer V- Recombination
SR Electric Field %

Figure 4.4 Schematic representation of charge transfer in PR polymer composites. The HOMO
and LUMO levels are not drawn to scale.

Low trap densities will yield a small steady-state SC field magnitude, but result in large mobility.
High trap densities, on the other hand, will reduce the speed of the SC-field formation since

longer time is required establish the SC field. However, for large trap densities, the steady state
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SC-field magnitude may be larger than for smaller trap densities. In PR composites, it is not
trivial to independently engineer the trap mechanism because trappings may come from different
components such as the sensitizers, the chromophores, or the transport molecules.
SC-field formation

The space charge in PR composite is formed as a result of non-uniform distribution of
positive and negative charges induced by interference fringes. The process of forming SC-field
involves charge generation, diffusion, drift, trapping, and recombination. In the beginning of the
development of the theoretical foundations of holographic storage problem in electro-optic
crystal, the charge transport equation was solved to determine diffraction efficiency of the
holographic media **'%. In this treatment, neither the influence of building space charge field
nor the self-diffraction effect was taken into account. However, it was shown that, in this
approximation, the diffraction efficiency was independent of the writing intensity in the case of
diffusion process and it increased as an inverse square of the fringe spacing. The holographic
grating was shifted by a quarter of a period from the fringe pattern. On the other hand, for the
drift process, such shift did not occur according to this prediction. Later, it was shown that for
the drift process the shift could be observed if the carrier transport range was comparable or
larger than the fringe spacing. Kukhtarev and coworkers developed a theory of saturated

holograms in electro-optic crystal .

Regarding their theoretical treatment of the SC-field
formation, a set of material equations based on the photoionization, thermal generation,
recombination and carrier concentration was used. From their calculation, it is found that the 7/2
phase shift of the holographic grating can occur when the fringe spacing is small enough and/or

when the electric field is large enough. In the case of constant applied voltage, the phase shift is

a function of both applied field and material parameters.
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Schildkraut et al. ***%" included the effect of traps and their dependency on the charge
mobility and electric field in their model to describe space-charge field in amorphous organic
solids. Unlike inorganic systems, hole transport is supported by organic systems. Holes are
generated by photoexcitation of sensitizers. In polymer PR composite, excited electrons are
assumed not to participate in charge transport due too small loading of the sensitizer to form
charge transport manifold. Only holes are conducted through the transport manifold of CTPs.
Charged sensitizer moieties can serve as recombination centers for mobile holes. In Schildkraut’s
model, an additional trap level is introduced. Through the use of zero and first order
approximations, they derived analytical expression for SC-filed for the case of deep trap and the
case no traps in steady state. The first order approximation of the SC-field in the case of deep

trap is of the form:

mE, (i, - E,)

=A
* B, +iB, 4.7
with
A= sly, (N; =T, —p,)
HoPo  (Ti +pp) (4.8)
BleD+(1+77)Eq+(1+ E,./E,)E, 4.9)
EoE,
B, =E,+ (En/Eo—1)
0 (4.10)
E,=cK (4.12)
g = #P i)
© KLt pp,) (4.12)
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E=p/K (4.13)

1

E =—CE*

mp (4.14)
"= APE" /4, (4.15)
£ =K,T /eE,L (4.16)
s=04 /N, 4.17)

where Ej is the projected applied filed along grating vector K, C is a constant relating mobility to
the electric field, uo is the charge mobility , po is the hole density, I is the illumination intensity,
T is the initial trap density, N; is the initial acceptor density, ¢ is the field dependent quantum
efficiency , and g is the generation of hole per unit time at the initial acceptor concentration (N;).
In the case of no trap, the initial trap density T; becomes 0 and the constant A is reduced to 1
(also assuming low light intensity).

While Schildkraut’s approximation only describes the steady state value of SC-field, a
later model developed by Ostroverkhova contains transient information *®. In addition to the
Schildkraut’s model, Ostroverkhova et al. introduced two trap levels. These two traps levels can
be emptied thermally. Fourier decomposition was used to find the solution. Numerical
calculation has to be used in order to solve for the solution.

It is good to note that all of these models require significant knowledge of the material to
yield results applicable to real experiments. They are semi-quantitatively useful in understanding
the SC-filed formation. However, there is much physics left unaddressed. For example, the role

of chromophore orientation in trapping and charge transport is ignored. The material is assumed
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to be infinite with ideal ohmic contacts. The dynamic change in the beam condition once the
grating is formed is neglected.
(iv) Creating of index modulation in response to the SC- field

The final step in the PR process is to form phase grating induced by the SC- field. In
inorganic PR crystals, the mechanism responsible for a refractive index modulation is the linear

electro-optics effect or Pockels effect. The index modulation is given by *°%:

—r_|E
‘”‘ = (4.18)
where r is the effective electro-optic coefficient and nis the refractive index of the crystal.
On the contrary, in amorphous organic PR materials, linear birefringence, Pockels effect ,

and Kerr effect are involved

. For the first reported organic PR polymer, the presence of the
PR effect was mainly due to the linear EO effect resulted from poling the polymer™’. This linear
effect arises from the second-order susceptibility. In order to introduce the EO effect into
materials, noncentrosymetric dipolar compounds (chromophores) are incorporated in the PR
composites. In order to achieve macroscopic anisotropy, an external electric field is required to
pole the chromophores. The oriented gas model can be used to theoretically calculate the
polarization properties of a bulk material based upon an ensemble of molecules with a
distribution of orientations and their own molecular polarization*®. For a uniaxial anisotropic

molecule with a permanent dipole moment x lying along the optic axis, the linear polarizabilities

in the principal axes are:
a]](a)) = agg(a)) = al(a)) and agg (w) = cﬁ (&)) (419)

The induced molecular polarization is given by:
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pl=aE’ (4.20)
The macroscopic polarization (dipole moment per unit volume) induced by an external optical
field along the z-direction can be calculated by the linear summation of polarizations:
Pe
=4zN I [ ) cos(3,2) +p” cos(L,2) + p; cos(2,2)] f ()dQ
=4x{N I [af+(al“’—ai')cos2(3,z) 1/, (E)dRE?
=2 E (4.21)

where the cosine terms are the projection cosine and f,(Q2) is an angular distribution function.
Through electromagnetic relations:
_ PRI ) 2 _ m
D=¢E+P P=gyE n=(+y,) (4.22)

the microscopic refractive indices along different axes can be calculated. When an electric field
is applied, the molecules are poled and this changes the angular distribution function fo(Q2) to a
particular anisotropic function £(Q). As a result, the refractive indices are changed. For example,

for the light polarized along the z-axis, the change in the refractive index is given by:

AIn? (@)] = 42N (@ — a2 {[ cos® (3,2) F(Q)dQ - [cos®(3,2) f,(Q)d0} 423)

If we assume isotropic distribution of molecules before applying the electric field, the above

expression is reduced to:

Aln? ()] = 42N ()’ — ar” 1 {< cos’ 6, > 4
3 (4.24)

Similarly, for the light polarized along the x-direction:

o 11 o 1
A[ni(m)]=4”N(a|| —al){<cos291>—§}=—54”N(a“ —ai'){<cos292>_§} (4.25)
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From these relations, it can be seen that the index change parallel to the poling field is 2 times
larger than the one perpendicular to the field. For the spatial case of high temperature, the

distribution function can be assumed to follow Maxwell-Boltzman distribution:

U
Q) o exp(——
JEhexn(=p) (4.26)

where the interaction dipole energy of the polarizable dipole with poling electric field E in the
z-direction is given by:

For the case where the interaction of the permanent dipole is stronger than the induced dipole,
the distribution function becomes:

UE , cosé

f(Q) oc exp(— )

kT (4.28)

By using this distribution function in Equation (4.23), expressions for refractive index
changes can be realized. These expressions represent the dependence of the change in the index
of refraction on the molecular linear polarizability and a uniform poling field along a particular
laboratory axis. It is applicable to the steady state case. As mentioned earlier, in most of the
organic PR polymers, linear birefringence, Pockels effect, and Kerr effect are involved. By
extending this model by taking into account the higher order susceptibilities, similar

formulations can be obtained with higher order contributions ***.

However, since in the PR
polymer materials, the birefringence is the most dominant contribution, this development with
only the first order linear susceptibility is still a good approximation. Binks et al. further
developed this oriented gas model by taking in to account the time dependent rotational

orientation'*?. Detailed formulations can be found in their report.
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The followings summarize the steady state first-order and second-order changes in

refractive index derived from the oriented gas model, assuming that the change in refractive

index is small when compared to the index of the material *** .

with

and

o _ NF%.F,
15

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

where Ao is the linear birefringence, B is the first hyperpolarizibility, u is the interaction energy

given by u :'”'% T and Fo and F. are the field correction factors taking into account the
B

polymer matrix contribution, given by:

FO = gsta’[ic (goptic + 2) /(ngtatic + 8optic)

F., = (eopic +2)/3
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where esaiic 1S the static dielectric constant and eqpiic is the dielectric constant at the operational

wavelength. Note that the total refractive index change is An=An"+An®E

Later, in 1993, Moerner et al. ‘™ published a paper showing that the performance of
recent PR polymers is too high to explain by the electro-optics effect alone, even if it is assumed
that the SC-field approaches that of the applied electric field. They proposed a mechanism called
orientational enhancement, which is responsible for the enhancement of properties in organic PR
sample. According to their model, the total internal electric field inside the polymer is given by:

E, (r) =[E,(r)sing; X +[E,, + E (r)cosd,;1Z

ext

(4.37)

where E_(r)=E_exp(iK ,-r) is the modulating SC-field with wave number Kg and in the r

direction. The total susceptibility change is the sum of the contribution from birefringence and

electro optic effect and is given by:

A 0 O
Ay=/0 A O ET2

0O 0 C (4.38)

with
2 2
C=Cpp+Cr = N e pof £ | (N =Fy p

45 kgT 15 kg T (4.39)
and

A= ABR + AEO = (_%)CBR + (%)CEO (4 40)

The susceptibility matrix can be transformed to the experimental geometry using the
transformation Ay,=U"4yU, where U is the rotation matrix for the tilt configuration the

diffraction efficiency of the sample with thickness d can then be calculated using:
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U:‘H(éZ'és)(éZ'A%ab'és)‘ (4.41)
where H=(rd)/(2nio(cosbrcos0:)"'?), with 6, and 6, being the angles of the writing beams with
respect to the sample normal. &, and é; is the polarization vector of the reading and writing
beams respectively.

Even though the PR process seems like a step-by-step process, in reality, all the
mechanisms mentioned occur simultaneously and are dynamically coupled in many ways.
Nevertheless, the explanation portrayed here is very useful for understanding the mechanisms

and applicable in the case of the steady state. Next the theory of the holographic grating is

discussed.

4.2.3 Theory of holographic grating

Up to this point, the mechanisms involved in the formation of phase grating have been
discussed. In this section, fascinating phenomena resulted from the interaction of light with the
grating are presented.

(i) Bragg vs. Raman-Nath diffraction grating

Holographic grating can be either thick or thin, and amplitude or phase; the recorded
combination depends on the material. Amplitude holograms have the grating in the form of an
amplitude or absorption coefficient modulation. Phase holograms have the grating formed by an
optical path length or refractive index modulation. A grating is characterized into either Bragg
(Thick) grating or Raman Nath (Thin) grating, depending on their interaction with light. Bragg
grating only diffracts light into a single first order whereas multiple orders exist in the Raman-

Nath grating. Kogelink studied diffraction of light from a thick grating, using coupled wave
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theory '3, In his formulation, he separated thin and think regimes using a quality factor defined
by:

where 4 is the vacuum wavelength, d is the thickness of the film, n is the refractive index and A
is the grating spacing. The grating can be categorized as thick grating when Q>>10 and thin
when Q<10. For the development of PR polymer composite, theory of thick hologram is usually
used for simplification. The performance is characterized in term of device perspectives. More
rigorous analysis of coupled wave theory that applies to both thick and thin holographic grating
and gives more accurate results can be found in the paper by Moharam and Gaylord*®*. In the
following sections the theories of light diffraction from thick holographic PR materials for
transmission and reflection geometries are discussed.

(it) Diffraction in transmission geometry

Writing# 1
(a) ' (b)
Sample normal Nriting#2 Sample normal Vriting#1

[~ | e ]
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l pd ‘ | LN
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‘// Read‘mgﬁn

3
Reading beam

n

Figure 4.5 Schematic diagrams of (a) transmission geometry (b) reflection geometry

Transmission geometry is defined as a situation in which both of the writing beams are
incident on one side of the sample, Figure 4.5(a). Typically, the PR composite is sandwiched
between two transparent electrodes. An external electric field is applied perpendicular to the

sample normal. The sample is tilted so that the applied field has a component along the grating
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vector, which will assist the carrier drift. In this geometry, the grating spacing resulted from
interfering two writing beams is given by:

A
- 2nsinf(a,-a,)] (4.43)

The slant angle of the grating inside of the material is given by:

_T_ (o, + ;)
2 2 (4.44)

The diffraction efficiency can then be calculated from the thick grating theory by Kogelnik. The
signal amplitude of phase grating in transmission geometry is given by:
1/2 .
: 1-=3)
v (4.45)

with

CrCs e G G (4.46)

. : 2
where x=7An/A ; v=AKsiIn(p-0)—AIK?/4m with Kz% ; CRr=C0sd ; and

C, = COS@—%COS(D . o is the absorption loss of the sample. 6 is the angle of the reading beam

with respect to the sample normal. A6 and Ao are the deviations in the reading angle and

wavelength respectively. The diffraction efficiency is then given by:

n= HSS*
Cr (4.47)
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For the PR material, in most of the cases, the wavelength of investigation is generated from a
monochromatic light source. If we assume that AA~0 and consider a special case where there is

no absorption loss, the diffraction efficiency becomes:

sin? \v? + &7 d . 2
n= ~ where &'=[— [(AGK sin(¢—G)— ALAK" [ Azn)
1+=) %, (4.48)
14

(iii) Diffraction in reflection geometry
The advantage of the reflection geometry is that the applied field can be in the same
direction as the grating. This results in larger SC-field when compared to the transmission

geometry. In the reflection geometry, Figure 4.5(b), the grating spacing and the slant angle are:

A p)

2nsin[(z - (a+a,))! 2] (4.49)
_(a—a))

AR (4.50)

For the special case of loss-less grating, the diffraction efficiency of the reflection geometry is
given by:

1 . 1zAnd
Ng = where v'=

L+ (=6 y/sinh? Jv2 1 27) AMCCr (451

Vr2

Since the angles of incident of the writing beam in the reflection geometry is larger than
those of the transmission geometry, the grating spacing for the reflection case is smaller. This

results in much larger Q factor of the grating.
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(iv) Two beam coupling phenomenon

1,(0)
1,(0)

Figure 4.6 Schematic diagram of the two beam coupling process.

Due to the phase shift of the grating with respect to the interference pattern of two
interfering beam, there exists a nonreciprocal steady state transfer of energy between the beams.

By using slowly-varying envelop approximation and solving wave equations, the steady state

intensities of the two interfering beam can be determined®:
1+m™ -
1,(z) =1,(0) =
1+m~exp(I'z) (4.52)
1+m™ '
1,(z) =1,(0) = e
1+m eXp(FZ) (453)

where m=1;(0)/15(0) is the ratio between the input energy , and I" is the gain coefficient , given

by:

27An .
=———3sInN®

where 0 is the angle between the two beams inside the medium , and @ is the phase shift of the
grating which has a maximum of /2 . When I'">0, the beam#2 gains energy. The geometry for

two-beam coupling is illustrated in Figure 4.6.
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4.3 Experimental characterizations of PR polymer

4.3.1 Four wave mixing measurement

Writing beam#1
Writing heam#2

20
M Diffracted beam#4
m PR device

Figure 4.7 Geometrical representation of the FWM measurement

The four wave mixing measurement is used to probe the quality and the dynamic of
grating formation. The geometry of four wave mixing (FWM) measurement is shown in Figure
4.7. In this experiment, the index grating by the PR effect is induced inside the material by
interference of two writing beams i.e. beam#1 and beam#2. The writing beam intensity is in the
range of 30-1000 mW/cm? Voltage is applied across the sample to create electric field that
assists charge drifting inside the sample. The quality of the index grating is then measured on the
basis of diffraction of the reading beam; beam#3. The intensity of the reading beam is
usually~1-5% of the writing beam. If the same wavelength is used for reading and writing, the
measurement is called degenerate four wave mixing (DFWM). If the wavelength of the reading
beam is different from that of the writing beams, the measurement is called non-degenerate four
wave mixing (NFWM). The NFWM is advantageous due to the absence of cross talk between
reading and writing beams. Ideally, one would want the grating wave vector K to be in the same
direction as the applied field. However, it is geometrically unrealizable because the sample is
usually sandwiched between ITO electrodes; on the top and bottom. Therefore, in practice, the

sample is tilted at an oblique angle so that there is no zero component of an applied external field
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along the grating vector. Thus, index modulation can be created which will be seen as index
grating by beam#3. The writing beams are often s-polarized to reduce unwanted effects, for
example beam fanning and self-diffraction. On the contrary, the reading beam is p-polarized to
increase the effective index modulation seen by the beam. The schematic of the setup is shown in

Figure 4.8.
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%7 -I:l Detector#3

Figure 4.8 Schematic diagram of the optical setup for characterizing PR polymers.

In this setup, first, the laser beam is divided into two beams using a polarizing beam
splitter (PBS). The p-polarized beam is used as a reading beam. The s-polarized beam is split
further to from two s-polarized writing beams through the use of PBS, polarizers, and half wave
plate. The intensities of the three beams are adjusted by using combinations of half-wave plates,
polarizers and neutral density filters. Plano convex lens are used to adjust the beam sizes. Large
aspheric lens in confocal geometry are used to focus the beams where the sample is mounted.
With combination of translating stages, this lens system allows changing the writing and reading
beam angles with simplicity and without affecting the location of the sample. The transmitted

and diffracted beams pass through non-polarizing beam splitters (NPBS). Their intensities can be

124



monitored by using high-speed photodetectors, which are connected to a data acquisition (DAQ)
unit.
(i) Steady state FWM experiment

Steady-state-four-wave mixing is the standard method for characterizing the PR
performance. In this experiment, the steady state diffraction efficiency is monitored as a function

of applied voltage. The internal diffraction efficiency can be calculated by:

I, (V)

_d\Y 4 .55
V)1, (V) (4:59)

77int =

where 14(V) and Ii(V) are the diffracted and transmitted intensity as a function of voltage V
respectively. If losses (absorption, scattering, and reflection) are taken into account, one can

calculate the external diffraction efficiency by:

1,(V)
Iinc (456)

Next =

where li,c is the intensity of the reading beam incident on the sample. Typical data obtained

from steady state FWM is shown in Figure 4.9.
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Figure 4.9 Steady sate diffraction efficiency vs. applied voltage of PATPD/7-DCST/ECZ/PCBM
fabricated in our laboratory. It has internal diffraction efficiency as high as 85% at applied

Applied voltage (kV)

voltage of 6.5kV. The sample thickness is 105 pm.

(i) Transient FWM experiment

Transient FWM measurements monitor the grating formation dynamic at a constant
applied voltage. In this experiment, the photorefractive process is initiated by turning on the
writing beams using either a mechanical shutter or an optical shutter (Pockels cell). The temporal

evolution of the diffraction is measured with a DAQ unit. Typical data obtained from transient

FWM measurement are shown in

Figure 4.10.
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Figure 4.10 (a) transient grating recording and (b) transient grating decaying of PATPD/7-

DCST/ECZ/PCBM (our sample).
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To analyze this data, Bragg-equation with temporal dependent index modulation can be used:
where B is a constant. It can be seen that the speed of the PR diffraction is strongly dependent on

the dynamic of the index grating formation. Bi-exponential function can be used to fit the
temporal dependent of the index modulation'*:

AN(t) oc [L-mexp(-t/t;) —(1—m)exp(-t/t,)] (4.58)
where t; and t, are the slow and fast time constant, and m is the weighting factor. In general, at
least two time constants are used for PR composites. This is because, unlike in the case of
crystals where the transient is limited by the carrier transport, the time dynamic in PR composite
involves many contributions such as trapping, conduction, orientation, etc. *  Stretched

exponential form can also be used'®"*%,

An(t) oc [1—exp(—(t/t,)")] (4.59)

where ts is the time constant and f is a parameter that determines how the rate evolves with time.
The stretched exponential behavior can arise when a phenomenon is governed by the
convolution of a distribution of time constants'®. This is often the case for inhomogeneous
media such as polymer composites. The g parameter is inversely related to the width of the time
constant distribution. Nevertheless, quite often for the PR composites, the data curves are fitted
to a biexponential form and the early time constant is reported.

It is possible to derive the sensitivity of the PR materials using the transient FWM

information. The sensitivity S is defined as *%°:

sa>=,"?“’

we “Lexp (4.60)
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where lwg the writing is beam intensity and te, is the exposure time. High sensitivity means a
hologram is written with sufficiently large diffraction efficiency at low light level and short
exposure time. In polymeric PR composite, a high sensitivity can be realized by: (1) generating
large space-charge field; (2) optimizing the chromophores; (3) reducing the losses; and (4)

decreasing the required exposure.

4.3.2 Two beam coupling measurement

The geometry of two beam coupling measurement is similar to the FWM measurement
except in this measurement there is no reading beam. Instead, this measurement monitors the
change in relative energy between the two writing beams. This measurement is the decisive
experimental proof of photo-refractivity since the phase shift of the index grating form the
interference pattern of the two beams is required in order to have energy coupling between
beam#1 and beam#2. The same experimental setup as in Figure 4.8 is used. However, for TBC
measurement, the intensities of the beam#1 and beam#2 are monitored whereas the beam#3 is
blocked. In the case of the steady state TBC measurements, the steady state intensities are
monitored as a function of applied voltage. The quantifying parameter for energy coupling
between the two beams in this measurement is the gain coefficient I'. By simply solving the
coupling equation, the relation between the two writing beams can be determined by the

expression 1%

11(0)+1,(0)
L(L) = —/—F——2— 4.61
2(1) 1+2Eg§exp(—FL) ( )

where I; and I, is the intensity of the beam 1 and 2 respectively, and L is the sample thickness.

The gain coefficient can be calculated from the measured intensities by *:
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F:%[In(yb)—ln(b +1-9)] (4.62)

where y=I,(11#£0)/I,(1;=0) and b=I1;(0)/1,(0). Since the sample is slanted in typical TBC
measurements of PR polymers, the set-up condition may be taken into account in the calculation

of the gain coefficient:

= i[cosoc1 Iny, —cosa, Iny,]
3 (4.63)

where a1 and a, are the beam angles relative to the sample normal; and y; and vy, are defined

as.:
_ 1, #0)
1 11(12:0) (4.64)
, _LU#0)
P LU=0) (4.65)

Figure 4.11 shows a typical steady state gain coefficient plot.
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Figure 4.11 Steady sate two beam coupling gain vs. applied voltage of PATPD/7-
DCST/ECZ/PCBM
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4.3.3 Photoconductivity measurement

Photoconductivity measurements evaluate the conductivity of the sample in presence of
light. It can be measured either as a function of voltage in a steady state (fixed illumination
intensity) or as a function of illumination intensity (fixed bias voltage). Transient measurements
can also be done. The conductivity without illumination is called dark conductivity. The amount
of current measured is a combined manifestation of several effects i.e trapping, detrapping,
photo-generation efficiency and charge mobility. A great amount of information can be obtained
by this simple measurement.

In a typical steady state photoconductivity measurement, the current going through the
sample is measured at different applied voltage over time. The first step is to apply DC voltage
without illumination and let the dark current reach the steady state. The transient behavior of the
dark current can be caused by charge injection from the electrode. Once steady state in the dark
is achieved, the sample is illuminated with a laser beam. The current is then measured over time
until it reaches equilibrium. The rise time of the current is dependent on the trapping and
mobility of the charges. The dark conductivity can be calculated by using the following
expression:

ld:rk

(42 =
“t KA, (4.66)

where igark 1S the measured dark current, E is the applied field, and Aqec IS the overlap area
between the electrodes and the sample. The photoconductivity can be calculated from the

following expression:

i A
o —_ W _ 5 [ elec 1}
photo E 1 dark



where iy IS the measured current under illumination, and Apean 1S the laser spot size. Significant
information can also be obtained from the transient photoconductivity. For instance, shallow
traps will affect the behavior of the current on short time scales. Deep traps, however, will affect

the behavior on longer time scales.

4.3.4 Transmission ellipsometry measurement

A key mechanism responsible for refractive index modulation in PR composite is the
reorientation effect in the SC-field.'™* The ability and speed of the chromosphores to reorient are
important parameters contributing to the overall PR performance.

Chromophores are often poled polymer with uniaxial birefringence. They have two
indices of refraction namely ordinary index (n,) and extraordinary index (ne). Depending on the
polarization direction of the incident light relative to the chromophore optic axis, the probe beam
will see different effective index of refraction.

In this ellipsometry measurement®*

, the phase retardation is measured after the beam
passes through the sample. This allows calculation of birefringence of the material under applied
DC field. The light used is in the wavelength range where no light absorption takes place. The

change in the intensity due to phase retardation is monitored using a crossed analyzer. The light

intensity behind the analyzer is of the form:

I =1, sinz(A—¢j
2 (4.68)
where Iy is the intensity of the case of parallel polarizer, and 4¢ is the phase retardation given by:
271 sin®
A== n, —n,|
Acosg (4.69)
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where L is the sample thickness and ¢ is the internal incident angle. Figure 4.12 illustrates the

schematic diagram of the setup.

Polarizer (45°) Analyzer (-45°)

14

Figure 4.12 Schematic diagram of the optical setup for transmission ellipsometry

PR sample Detector

Transient ellipsometry measurements will give information about the orientation speed of the
chromophores. The steady-state measurement will give an idea about the magnitude of the index
modulation with a given applied field. Transient ellipsometry data can be compared to that of the
transient photoconductivity to determine whether the conduction of charges or the orientation of

the chromophores is the limiting factor in the PR grating formation speed.

4.4 Results and discussions

4.4.1 Photorefractive performance of a graphene-doped PATPD/7-DCST/ECZ composite

In the carbon nanostructure family, buckyballs (Cs) and carbon nanotubes have been
used and studied as charge sensitizers in PR composites. Cgo and its derivatives have become
benchmark materials for charge generators. CNTs, on the other hand, not only serve as charge
generator but also are found to help charge transport in the composite?®?. The last member of this

family that has not been well studied as a sensitizer in the PR composite is graphene.
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Nanomaterials can be categorized by their dimensionality, which ranges from zero
dimension (0OD) to three dimension (3D). In the case of carbon the common structures are, for
example, OD fullerene, 1D carbon nanotube, 2D graphene, and 3D graphite. Interestingly, one
can think of 2D graphene as a building block to form the other dimensional structures of carbon
allotropes. Graphene is a monolayer of carbon atoms densely packed into a two-dimensional
honeycomb lattice. Graphene can be wrapped up to form 0D fullerene, rolled to form 1D
nanotube, and stacked to form 3D graphite’®. In a sense, one can regard graphene as the parent
of Ceo and CNTs. Graphene possesses excellent electrical properties, mechanical flexibility,
optical transparency, thermal conductivity and low thermal expansion coefficient 7 10 204-206
Unlike semiconductors, the valence and conduction bands of graphene touch each other at a
point, called a Dirac point. This results in metallic like properties in graphene with no energy
bandgap, making graphene an interesting optoelectronic material. Graphene can absorb and
convert light into photocurrent over a broad electromagnetic spectral range. Under an applied
electric field, photocurrent generation in graphene can occur under several processes such as

207-208

Seebeck effect, photovoltaic effect, and bolometric effect . It has been found by many

investigators that electrical conductivity and photo-charge transport of polymer composites are
improved with graphene doping %%

For example, N. Yang et al. found that by incorporating graphene into dye sensitized
solar cell, charge transport can be improved and the charge recombination can be reduced. The

transport property was substantially better than using 1D material like CNTs #2.

Improved
charge transport will result in faster dynamic formation as previously discussed (Section 4.2).

This is apparent when hole traps were introduced to a PR composite. The reduced hole mobility
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due to the traps results in slower rise time. Therefore, better charge mobility in the composite
may result in faster dynamic of the device and increased sensitivity.

In photovoltaic community, graphenes have attracted considerable attention due to their
unique properties. Among their unique properties, the size-dependent bandgap of graphenes and
their large optical absorptivity are particularly interesting for light harvesting applications. In
addition, their electronic levels and charge transfer processes can both be modified with well-
developed carbon chemistry?**. The term “ graphene quantum dots” are used for graphene sheets
with nanoscale dimensions since their band gap properties resemble those of semiconductor
guantum dots. Yan et al. reported that highly dispersible 13nm graphene quantum dots can be
used as efficient charge sensitizers in organic solar harvesting devices*™. Due to the similarity in
photochemistry of organic solar cells and PR devices, graphene is a very interesting material for
charge sensitization in organic PR devices.

The writing speed of the PR materials depends on two major factors: (1) formation of the
space charge field which depends on the charge generation, transfer, transport and trapping
processes; and (2) the reorientation dynamics of the chromophores. It is generally accepted that
the former contributes to the fast time constant of the PR composite and the latter governs the
slow time constant™® 2'®, Even though the limiting time factor for reaching the steady state in the
PR polymers is the slow time constant, diffraction efficiencies smaller than the steady state
diffraction value are sufficient for most practical dynamic holographic applications. For instance,
an updatable hologram that can be viewed under ambient light condition with only 0.5%
diffraction efficiency was recently demonstrated ®. As a result, charge generation plays an

important role in improving the temporal dynamics of hologram generation. It was found that,
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using proper charge generation moieties or sensitizers, like buckminister fullerene (Cgo) or
tetranitroflurinone (TNF), can substantially improve the writing dynamics of PR polymers™®*162,
As a result, Cgo has become one of the most commonly used, well-performing sensitizers

217 and a benchmark sensitizer in the literature®*®?2, A more soluble derivative

in PR composites
of Ceo, [6,6]-phenyl C 61 -butyric acid methyl ester (PCBM) %222 has also been used recently,
provides similar PR performance and easier material processing. However, while carbon nano-
materials, particularly Cgo and its derivatives, have proven to be efficient charge generators in PR
composites, other carbon nano-materials within the same family of carbon allotropes, like single
wall carbon nanotubes (CNTs) and multiwall carbon nanotubes, can also enhance the

performance of PR composites®*??°

. Phase separation constitutes one of the processing
challenges when dealing with CNT sensitizers. Recently, Lingam et al. %’ have bonded PVK
polymer to CNTs. It was found that the charge-transfer process was improved through the
intimate contact between the sensitizer and CTP. This grafted polymer system (PVK/7-
DCST/TCP/PVK grafted CNT) showed internal diffraction efficiency as high as ~60% and two
beam coupling gain of ~78 cm™* at 633nm. Furthermore, CNTs are involved not only in the
charge generation but also in charge transport, which can occur along the tube. The
photoconductivity of polymer composites with CNT was found to increase significantly
compared to composites without CNTs?%% 2%,

Recently, Grishina et al. reported on the beam coupling properties of poly(N-
vinylcarbazole)/ graphene composites at visible and infrared wavelengths??**®. Neither
plasticizers nor NLO chromophores were added in their system. The two beam coupling gain of

the system was measured to be 50 cm™ at an applied field of 150 V/um and wavelength of

532nm. However, their composite does not represent a real PR sample since it lacks NLO
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chromophore which is necessary for a PR system. Nevertheless, it is highly interesting to
examine the use of graphene as a sensitizer in a real PR polymer composite. As a result, in this
section, study on the performance of the PR polymer composite of PATPD/7-DCST/ECZ

sensitized at 633nm with graphene is studied.

4.4.1.1 Effect of graphene on optical absorption of the PR composite

Graphene used in this experiment was synthesized by chemical exfoliation according to
previous reports”*%*2. Briefly, graphene samples were prepared by ultrasonic cleavage of high
purity HOPG in an organic solvent, N-methylpyrrolidone. The resulting solutions were
centrifuged to obtain a stable dispersion. This dispersion contains 10-50 nm graphene
crystallites, predominantly mono and bilayers. These dispersions were filtered through alumina
filters to obtain um thick free standing graphene laminates. These graphene laminates were re-
dispersed in THF to produce PR samples.

All samples were prepared by melt processing. First, the chemicals were mixed with the
designated composition in a common solvent, THF. The solution was then dried at 55 °C under
vacuum for 24hr. The mixture solid was placed between two indium-tin-oxide (ITO) and melt
processed at 165 °C. Polystyrene glass beads of 105 um diameter were used as a spacer to
control the thickness of the samples. Three types of PR samples were prepared for the study. The
first sample (“undoped”) is an undoped sample consisting of PATPD/ECZ/7-DCST with
49.74/15.08/35.18wt%. The second sample (“graphene doped”) is graphene doped and the
loading of graphene is about 0.03 wt.% (graphene doped to “undoped”). The third sample
(“PCBM doped”) is a PR composite doped with the same wt.% (0.03) loading of a benchmark

PR sensitizer, PCBM for comparison. PCBM s selected as a standard sample for comparison
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here, since recent novel applications like updatable photorefractive 3D displays and 3D
telepresence were demonstrated using samples sensitized with PCBM?®, although at different
concentration. In the present work, we study the performance of a system similar to the one
developed by P.A. Blanche et al ° but using graphene additives. Since our graphene is not
functionalized, maximum loading of 0.03% was used in our study to avoid graphene
agglomeration. Decrease in rise time would be expected for higher weight percent, due to the
subsequent larger number of photogenerated charges. Optical absorption spectra of these samples
are shown in Figure 4.13(a). All samples show large absorption in the green region of the
spectra. These large green absorptions are due to chromophore absorption. In order for PR
effects to take place, light absorption is essential: this means that all PR samples will work well
in the green region. However, since the light absorption is small in the red region, the addition of
the sensitizers to the system is necessary. While the undoped and PCBM doped have similar
absorption spectra, the graphene doped sample shows a longer absorption tail at longer
wavelengths. The optical absorption of graphene dispersed in tetrahydrofuran (THF) shown in
the inset of Figure 4.13(a) is in agreement with previous reports?*®. Therefore, improvement in
the PR performances in the red region with the addition of graphene is expected. Comparing
absorption spectra of the PR samples with their individual components, we found that the
observed absorption profiles cannot be accounted for by simple superposition of the absorptions
of the individual components. We have also measured absorption spectra of both undoped and
graphene-doped composites without chromophores (Figure 4.13(b)). Both samples have high
absorption at ~400 nm due to absorption of the polymers. The graphene-doped sample, however,
exhibits higher residual absorption throughout the visible range. This higher residual absorption

can be attributed to frequency-independent absorption of graphene?**?®*. The existence of an
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absorption shoulder, only when chromophores are present in the graphene doped composite,

suggests an interaction between the chromophores and graphene.

(a) (b)
30 3.0+
0.20 2.0 0.8
. 7-DCST in THF PCBM in THF _ Graphene in THF
25 0.15 >~ 25415 0.6
S > ke
(U. 0.10 ('L'; ‘I.D\ 04
~— 20 0.05/ ~— 20405 0.2
g 3 .
c is 00050 500 700 800 c 154 'gnn 500 600 700 800 300 400 500 60O 700 800
o ®
o 0 — -u::otreende doped -g 07
8 PCBM doped | 3 Il LTRECE
< o5 P < osq —— PATPD+ECZ+Grapehne
....... R —
00 ; : : . . . 00 . Y ; .
550 G500 650 700 750 8OO 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

Figure 4.13 (a) Absorption spectra of undoped, graphene doped and PCBM doped in the film
form. The inset shows the absorption of concentrated 7-DCST in THF. (b) Absorption of PR
composites without chromophores (film) with (red) and without (blue) sensitizer. The addition of
graphene results in broadband flat absorption in the visible wavelength range. The inset shows

absorption of PCBM and graphene in THF. Axis labels of the insets are the same as of the main
curves.
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4.4.1.2 Studies on photorefractive performances of the graphene-doped PR composite
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Figure 4.14 (a) Transient FWM curves (b) Photoconductivity vs. applied field and (c) Photo-
charge generation efficiency of undoped, graphene doped, and PCBM doped.
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To measure the speed of refractive index grating formation in the PR process, we
performed a transient four-wave-mixing (FWM) experiment. In this measurement, two writing
beams of equal intensities of 400mW/cm? were used. The wavelength was 633nm generated
from a HeNe laser. The intensity of the reading beam was 21mW/cm?. The tilt angle between the
sample normal and bisect of the two writing beams was fixed at 55°. The angle between two
writing beams was fixed at 24° for all measurements. Photodiodes connected to a digital
oscilloscope were used to measure the transient behaviors. The transient measurements were
done by blocking and un-blocking one of the writing beams using a mechanical shutter. The
intensity of the diffracted beam was monitored once the shutter was open. The internal
diffraction efficiencies, nin, Were calculated using Equation (4.55).1t is to be noted that, in all of
our experiments, the samples are pre-illuminated to avoid a history-dependent effect 2°?*". In a
typical FWM experiment, two coherent writing beams interfere inside the sample, resulting in an
intensity modulation. This modulated intensity generates photo-generated charges which then
drift and diffuse to form a space-charge (SC) field. The resulting SC field modulates the
refractive index by electro-optic and reorientational effects, creating an index grating inside the
material. To probe the formation dynamics of such gratings, another counter propagating beam
or reading beam is used. Due to the index grating, the reading beam is diffracted and the
transient behavior of the grating formation can be probed. The diffraction efficiency of this

transmission grating depends on the strength of the grating according to the equation:

necsin’(S) (4.70)
where S is the grating strength given by :
S= wAnd cos(a, —a,) 4.71)
}1‘.\/(:0sa!1 cosa,
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with 4n being the magnitude of the index modulation, 4 is the wavelength of the reading
beam, and a; and «; are the angles of the writing beams with respect to the sample normal. Due
to small dielectric screening in PR polymer, an external field is applied to facilitate charge
separation and the sample is tilted to project an effective electric field along the grating vector.
As a result, in the case of PR polymers, 4n is a function of applied field and SC-field dependent
birefringence and the electro-optic effect of the chromophore. Since the generation of SC-field
and thus the index grating are dynamic in nature, An is a function of both time and voltage. In
transient FWM measurements, we monitored the temporal behavior of the diffracted beam at a
constant applied field of 64 VV/um as one of the writing beams is blocked and then opened. The
total writing intensity used was 800 mW/cm® From these measurements, shown in Figure
4.14(a), we found that the graphene doped sample showed faster dynamics than the other
samples. Such observation indicates a faster formation of the refractive index grating. We have
also measured the steady-state FWM properties of the samples [AppendixB, FigureB1]. All three
samples showed comparable diffraction efficiency. At the applied field of 64V/um, the undoped,
graphene doped and PCBM doped samples have internal diffraction efficiency of 69%, 62%, and
53% respectively.

In general, the speed of the formation of the index grating depends on two contributions,
(1) speed of SC-field formation and (2) chromophore reorientation time. The first contribution is
largely affected by the charge generation efficiency of the sensitizers while the second
contribution depends on the properties of the chromophore and the T4 of the composite. In fitting
the transient data, the assumption of bi-exponential character in the transient behavior of the
index modulation, 4n(?), results in two time constant, i.e. the fast time constant t; and the slow

time constant t,, as seen in Equation (4.58).
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Since the SC-field formation is much faster than the reorientation of the chromophores, t;
can be mainly attributed to the speed of the SC-field formation. On the other hand, t, mostly
reflects the chromophore reorientation kinetics*®. By fitting our data with Equation (4.58), t; and
to, for graphene doped are determined to be 0.8 s and 25 s respectively. In contrast, for undoped,
t; = 2.5 sand t; = 25s, and for PCBM doped t; = 1.8 s and t, = 38 s. The weighting factor m used
for fitting undoped, graphene doped and PCBM doped data are 0.51, 0.51, and 0.65s
respectively. When compared to its undoped counterpart, the graphene doped sample has
approximately 3 times faster t; while their t, values are the same. Such reduction in the fast time
constant, i.e. the faster SC-field formation can be attributed to the improved charge generation
and transport due to the presence of graphene. In order to verify this assumption, we performed
photoconductivity measurements (Figure 4.14(b)). The total light intensity used for all
measurements was 400mW/cm?®. The speed of the SC-field formation and the value of the
magnitude of the t; value are largely governed by the photogeneration efficiency. We found that
our graphene-doped sample exhibits significantly larger photoconductivity, opn, than the undoped
sample. Its photoconductivity also is larger than that of PCBM-doped sample when applied filed
is larger than 30V/um. This larger photoconductivity in the graphene-doped sample means,
given the same irradiation, more charges (larger photocurrent) are generated in the sample. By
the definition of electric current, a larger current is the manifestation of a greater number of
charges flowing through the sample per time interval. In the case of the PR polymer, this
enhanced charge flow will result in a faster formation of a steady state SC-field. Therefore, the
observed largest photoconductivity in the graphene-doped sample explains its fastest t;. We also

calculated the photo-charge generation efficiency, ¢pn, of the samples according to the equation
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== (4.72)

where E is the applied electric field, 1, is the absorbed light intensity, h is Planck’s
constant, v is the light frequency, and e is the elemental charge constant. It is found that the
photogeneration efficiencies of all samples increase with E, as depicted in Figure 4.14(c). Such
field dependent efficiency suggests the electric field assisted dissociation of excitons 2%2*°, In
other words, holes and electrons are generated at the interface between two species (donor and
acceptor). From the experimental data, the rate of increase of the efficiency with applied field is
higher in the case of the graphene-doped sample compared to that of the undoped sample. This
higher rate is an indication of a smaller initial electron-hole separation, or exciton thermalization
length, in the graphene-doped sample?*°. Such reduction in the initial thermalization length may
be explained by the small loading of the graphene. The number of participating charge
generators can significantly affect the interfacial area between donor and acceptor species and
the thermalization length is highly dependent upon the interfacial areas®*’. Larger loadings of
both species can result in continuous pathways available to both electrons and holes and thus a
longer thermalization length. On the other hand, the absence of such pathways in either one of
the charge species causes a reduction in the thermalization length. The undoped sample has a
large initial thermalization length (smaller slope) because the charge generation and separation
occurs between two species with large loadings which are, in this case, the chromophores and the
charge transporting polymers. From the experiments, we found that the graphene-doped sample
had much larger photo-charge generation than its undoped counterpart. It becomes obvious that

the additional charges are generated by the presence of graphene. The observed reduction in the
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initial thermalization length in the graphene-doped sample further confirms that such increase in
photogeneration involves the species with smaller loading, i.e. graphene.

Since any species added to the PR polymer composites can also act as charge traps™®> 2%,
it is interesting to investigate this aspect. We performed two beam coupling (TBC)
measurements with our sample (Figure 4.15). In this experiment, the energy exchange between
two overlapping laser beams was monitored. Two interacting beams with a 1:1 intensity ratio
were used. The magnitude of the energy exchange is expressed in the form of the gain
coefficient, I, determined from Equation (4.62). This gain coefficient depends not only on the
magnitude of the SC-field but also on the phase shift between the light interference pattern and
the index modulation'®®. Charge trapping can affect both the magnitude and the phase of the SC-
field, resulting in changes in the magnitude of I'***. Not only that, TBC measurement implicitly
gives information about the trapping mechanisms, the non-zero TBC gain coefficient is a proof
of the PR effect in the system due to the nonlocal nature of the PR effect. We found that the gain
coefficients of our graphene-doped sample are comparable to those of the undoped sample. This
observation indicates that the addition of graphene neither affect the magnitude nor the phase of
the SC-field, possibly due to the absence of new favorable charge traps (otherwise, very shallow
traps) generated with graphene. Both samples showed large gains with p-polarized beams. This
is because the index modulation seen by p-polarized light is stronger than by s-polarized light. It
IS to be noted here that both samples showed reversed direction of energy transfer as the incident
beams were changed from s-polarization to p-polarization. This effect has previously been

observed®*,
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Figure 4.15 T" vs. E for undoped, graphene doped and PCBM doped. Data for both s- and p-
polarizations are shown.

When the performance of the graphene-doped sample was compared with a PR polymer
doped with the benchmark sensitizes, like in the PCBM doped, we found that t; of the graphene-
doped sample is shorter than that of the PCBM-doped sample at an applied voltage of 64V/um.
The shorter time constant in this graphene-doped sample is in accordance with its higher
photoconductivity when compared to the PCBM-doped sample. However, the linear absorption
of the graphene-doped sample is higher than that of the PCBM-doped sample at similar loading
levels. The rate of increase in the photo-charge generation efficiency of the graphene-doped
sample, however, is larger than that of the PCBM-doped sample. We also found that the TBC
gain coefficient is much higher in the case of the PCBM-doped sample. The larger TBC gain in
the PCBM-doped sample can be attributed to traps generated from ionized sensitizers **°. In the
PCBM system, the majority of charges are generated from photoexcitation of PCBM molecules.

By transferring holes to the transport polymer, ionized PCBMs are created. These species act as
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electron traps that increase the separation between positive and negative charges, resulting in
large TBC gain. On the other hand, graphene-doped sample and undoped sample have similar
gain coefficients, suggesting the lack of such trapping mechanism. This implicates that charge
sensitization processes in PCBM-doped and graphene-doped samples are different. In the former,
PCBM acts as independent charge sensitizers and ionized species are the results of
photoexcitation. In the latter, however, graphene helps separation and transport of charges
created from photoexcitation of the nonlinear chromophores as evident by photocurrent,

absorption and PL measurements (discussed in the following section).

4.4.1.3 Effect of graphene on photoluminescence of the PR composite

From the TBC measurements, it is clear that the PR effect can take place in the
PATPD/ECZ/7-DCST system, without the use of additional sensitizer, i.e. the case of the
undoped sample. However, we found that the absorption profile of the composite is not a simple
superposition of the component’s profiles. This finding suggests electronic interactions between
the components. To have an insight into this aspect, we performed photoluminescence (PL)
measurements with 532 nm laser excitation (Figure4.16) using a Raman confocal microscope
(Witec Alpha 300 RA Raman system). First, we investigated the PL of the PATPD /7-DCST
composite to observe the interaction between PATPD and 7-DCST. The PL of the PATPD/7-
DCST composite has a peak at ~ 610 nm which is red-shifted compared with the PL of 7-DCST
(Figure 4.16(a)). These results suggest that excited 7-DCST electronically interacts with the
PATPD host polymer. The PL spectra of thin layers of undoped and graphene doped samples are
shown in Figure 4(b). The undoped sample has a PL peak at 610 nm which is same as the PL

peak of the PATPD/7-DCST composite. The observed peak at 610nm in the undoped PR

146



composite may be attributed to the radiative recombination between electron in the LUMO level
of 7DCST and hole in the HOMO level of PATPD as illustrated in Figure 4.17(a). However,
according to our previous optical measurements, the photo-charge generation efficiency of this

system is relatively small which results in a slow formation of the SC-field.
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Figure 4.16 PL spectra of (a) PATPD/7-DCST composite and 7-DCST, and (b) graphene doped
and undoped PR samples. The excitation wavelength was at 532nm. The composites studied here
were so prepared that the % weight loading of the components in polymer matrices are the same
as those of the PR samples.

By adding graphene to the system, the efficiency can be improved. This improvement in
the efficiency results in faster formation of a SC-field and shorter t;. Here, we found that
graphene can be used to improve the photo-charge generation efficiency of the PR system. Even
without optimization and functionalization, the photo-charge generation efficiency of the
graphene sensitizers is similar to benchmark materials like PCBM. We also found that the
absorption of the graphene doped sample has a longer tail in the red region than those of the
undoped and PCBM doped. The PL spectrum of the graphene doped PR is also slightly red-

shifted compared to that of the undoped. Considering the energy level of graphene (Figure

4.17(b)), it is possible that graphene interacts electronically with the LUMO level of 7-DCST,
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resulting in the slight red-shift in the PL spectrum and better charge generation efficiency. In
fact, electronic interactions between graphene and z-conjugated polymers has been observed in
the case of photonic and optoelectronic devices'” #4¢2® |t has also been found that electron
transfer occurs between poly(3-octylthiophene) and graphene where graphene acts as an acceptor
117 "In addition, blending conjugated polymers with graphene-based materials can result in

effective electron—hole separation and charge transport. It also provides a continuous pathway

for charge transfer %%,
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Figure 4.17 Molecular energetic diagram for (a) undoped and (b) graphene doped. In the
undoped PR composites, a photo-generated hole is transferred from 7-DCST to PATPD. ECZ
does not participate in hole transport due to its lower HOMO level of 5.92eV. These holes are
the primary charge conductors in PR polymers. In the case of graphene doped, graphene may act
as an electron acceptor with 7-DCST as a donor, resulting in better exciton dissociation/charge
generation efficiency.
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4.4.1.4 The role of charge trapping in the graphene-doped PR composite.
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Figure 4.18 Dark conductivity vs applied field for undoped, graphene doped and PCBM doped.

While both graphene-doped and PCBM-doped samples have similar charge generation
efficiency, the latter shows much stronger TBC gain. This finding can be explained in terms of
charge trapping in the composites. In the PCBM-doped system, the generated charges are
transferred to the conducting polymer, resulting in ionized PCBMs. The ionized PCBMs act as
hole traps. However, in the case of the graphene-doped sample, the presence of graphene in the
system does not significantly affect the magnitude of the TBC gain, suggesting the lack of a
trapping mechanism.

An increase in the speed of the SC-field formation can be the manifestation of two
phenomena, namely more efficient photo-charge generation and better charge transport. Since
we observed an increase in photo-charge generation efficiency, we conclude that better charge
generation process due to the interaction between graphenes and the complex is responsible for
the improvement. However, it is also possible that the addition of graphene helps transporting the

photo-generated charges, possibly by improving overall electrical conductivity of the composite.
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Enhancement in electrical conductivity of graphene-doped composites has been observed
previously”®. In order to investigate this aspect, we looked at the dark-conductivity of the
samples (Figure 4.18). The dark conductivity was measured at the steady state after pre-
illumination. We found that both undoped and graphene doped have similar dark-conductivity at
low voltages. However, graphene doping showed slightly higher conductivity at larger fields. It
is possible that the addition of graphene leads to such voltage dependent enhancement of the
dark conductivity. This aspect is the subject of future study. However, it can be concluded that,
in our graphene—doped PR composite, the graphene dopants do not negatively affect the charge
transport mechanism. In other words, charge trapping is absent in the graphene-doped sample.
On the contrary, The PCBM doped samples show a reduction in dark-conductivity when
compared with the undoped samples. This can be attributed to the trapping mechanism
previously discussed.

All in all, in this section, the performance of PR composites doped with graphene was
studied. It was found that, in the undoped system of PATPD/ECZ/7-DCST, charge sensitization
occurs via nonlinear chromophores. Nonetheless, the addition of graphenes to the system results
in shorter SC-field build-up time. The faster build-up time is attributed to larger charge
generation due to the electronic interaction between graphenes and chromophores. Photocurrent
studies on our samples confirm the enhancement in charge generation with the addition of
graphene. From the energy levels of the component and our luminescence study, it is likely that
the improved charge generation is due to the efficient exciton separation at the 7DCST-grapehne
interface. The PR performance of the graphene-doped sample is comparable with the PCBM-
doped sample with the same (wt. %) loading. We found that the graphene-doped sample exhibits

faster SC-field build up time and larger photoconductivity at high applied field (>50V/um). The
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steady state TBC gain of the sample doped with the benchmark sensitizer PCBM is larger than
that of the graphene-doped PR composite. However, the TBC gains of the graphene-doped
sample are comparable with the undoped composite. The absence of improvement in the TBC
gains of the graphene-doped sample compared with PCBM-doped sample may be attributed to
the lack of charge trapping in the graphene-doped sample. This study has revealed the potential
of using graphene-based materials to improve the speed of PR polymer composites. Future work
will focus on further enhancement of the PR speed by increasing the loading of graphene by

suitable functionalization.
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3) FABRICATION OF TUNABLE PLASMONIC SUBSTRATES®

5.1 Motivation

Collective oscillation of conducting electrons or plasmon has attracted significant
research interest for the past decade. The unique properties of this physical phenomenon are

proved to be useful in many applications, for example, bio-sensing®®%?, cancer-therapy®>*%>*,

255-256 257

solar-harvesting , and wave guiding®’. When the frequency of the incident electromagnetic

wave is in resonance with the localized surface plasmon resonance (LSPR) of a metal
nanostructure, the local field strength around the structure can be enhanced by several orders of

magnitudes. This filed enhancement is found to be beneficial in a variety of applications such as

258-259

surface enhanced Raman scattering (SERS)?!, photoluminescence . photo-detection®®,

261-262 263-264 265-266

photo-charge generations , photo-catalysis , honlinear optical properties and
surface plasmon enhanced Faraday rotation®®’.

Large-scale fabrication of patterned plasmonic nanostructures is a challenging quest.
Nevertheless, it is necessary for transitioning plasmonic devices from laboratories to industries.
Methods like electron-beam lithography (EBL)?®® and focused ion beam lithography (FIBL)*®
are commonly used for fabricating high quality nanostructures as it can circumvent the resolution
limit of conventional photolithography. Fabrication of nanostructures using these techniques is,

however, time consuming and expensive. One of the alternatives is to use nanotemplate

S The work presented in this chapter are extensions Chantharasupawong, P.; Tetard, L.; Thomas, J., Coupling
Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates. The Journal of Physical

Chemistry C 2014, 118, 23954-23962.
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approaches such as using anodized alumina oxide ?"or nanospheres®’*%2

as templates. These
techniques provide relatively poor quality nanostructures and the templates used are sacrificial in
nature. Moreover, the flexibility in designing the shape of nanostructures is limited.
Nanostructures fabricated by nanoimprinting lithography with high quality master mold
as a precursor have been demonstrated to provide large area of well-ordered nanostructures with

high resolution®”

. With this technique, the shape of the nanostructure can be designed and
fabricated on the master mold using EBL or FBIL. The negative replica of the master mold can
be transferred to a polymer substrate. Even though this approach also involves fabrication
techniques like EBL or FIBL, it uniquely offers the ability to fabricate large number of replicas
with a single master mold, keeping the cost per structure very low. Nonetheless, the shape and
size of the imprinted nanostructure is fixed by the pattern on the master mold. This nanopattern
can be directly used for fabricating plasmonic devices or as a second-generation mold for
creating the positive replica of the designed nanostructure.

A key aspect of plasmonic nanostructures is the strong dependence of their LSPR
wavelength on the shape, size, and environment. For instance, in the case of metal nanospheres,
the resonance peak is red-shifted as the size of the sphere increases ’*. Anisotropic shapes like
metal nano-ellipsoids have their plasmon resonance peaks dependent on the orientation of the
structure relative to the incident light polarization .

Unfortunately, plasmonic structures fabricated by the nanoimprinting methods have
limited flexibility in changing their size and shape as it is restricted by the pattern on the master
mold. Hence, the ability to tune the resonance peak using a given master mold is limited.
Typical methods for tuning the resonance of patterned plasmonic structures include changing the

276

polarization of the incident light®”®, rotating the sample relative to the light propagation axis®’’,
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and increase the thickness of the deposited metal *"®?"°. Nevertheless, these approaches have
their own constraints. For instance, changing the polarization of the incident sources is not
suitable in applications where the source is unpolarized. On the other hand, rotating the sample
relative to the incident light propagation axis is not appropriate for space limited application.
Changing the thickness of the deposited metal requires more than one deposition process.

In this chapter, a quick and high throughput nanofabrication technique for making
tunable plasmonic substrates is presented. The use of the fabricated structures for enhancing light

matter interactions is investigated.

5.2 Theoretical backqround

5.2.1 Nanofabrication techniques

In order to study and understand the optical properties of metal nanostructures, it is
imperative that we have the ability to produce them. In this section, common fabrication
techniques for producing nanostructures, not exclusively to metal, are briefly discussed. More
comprehensive review can be found elsewhere?®°%%.
(i) Photolithography and scanning lithography

Lithography technique has been around since the advent of integrated circuit technology.
The mainstream lithography used in the industry is called photolithography. In this technique,
masking materials known as resists are used. These resist materials are sensitive to the
electromagnetic source used in developing desired patterns. There are two kinds of resists, which
are positive and negative resist. Positive resists reacts with the EM wave in such a way that a
developer can remove it chemically after exposing the material with the radiation. Negative

resists, on the other hand, can always be removed with a developer unless it is exposed to the
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radiation. The pattern is projected on to the resist with the use of a photo-mask. Photomasks are
typically made of quartz with metal of a desired pattern on them. The resolution of lithography
techniques highly depends on two main factors that are the EM source and the optics of the
system. The most common wavelength for the source is UV radiation. Smaller wavelength
source such as extreme UV and X-ray are also used. However, higher radiation frequency poses
challenges in designing the optics of the system. Another direction to improve the resolution of
the system is to use higher numerical aperture optics. Improving the resolution of
photolithography techniques is a subject of ongoing research and it is guided by Moore’s law.

Another school of lithography is called scanning beam lithography. Unlike in the case of
photolithography where the pattern is cast on a sample with only one exposure, this technique
uses a scanning beam to write a pattern on a sample by a point-by-point fashion. The beam used
can be laser beam (laser scanning lithography (LSL)), electron beam (electron beam lithography
(EBL)) or ion beam (focused ion beam lithography (IBL). In the case of LSL, laser wavelengths
in the UV region are typically used as the source. LSL is the least expensive among the three
scanning lithography techniques. EBL and IBL, on the other hand, offer higher resolution since
the wavelength of electrons and physical size of the ions are much smaller than diffraction limit
of the UV radiation.

LBL and EBL require a resist layer for patterning. In LBL, photoresists similar to
conventional photolithography can be used. However, with the use of two-photon absorption,
resolution can be further improved. With a thick resist, 3D complex structures can be made with
LBL. In EBL, the most common polymer is PMMA. It is a positive resist. Electron beam breaks
the polymer chains and make it removable by a developer. IBL, on the other hand, is considered

as a primary writing method since the pattern can be written directly on the sample without using
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a resist. Nevertheless, since the point-by-point writing scheme is very time consuming, writing
large-scale patterns are challenging with these beam-scanning techniques.

To develop metal structures with lithography techniques, the desired pattern is
lithographically developed on the resist material, which is coated on a substrate. Metal
nanostructures are realized by depositing the metal onto the sample and then lift off the resist.
Alternatively, metal layer can be deposited on the substrate before the resist is applied. Various
etching processes can then be used to pattern the metal with the resist acting like a stencil.

(i) Colloidal synthesis

History of the colloidal metal nanoparticle synthesis can be traced back to the medieval
period when glass artisan used metal salts as coloring agents in producing stained glass. Back
then; they did not know that the observed colors after adding gold chloride and silver nitrate to
their glass are actually from gold and silver nanoparticles created during the making process.
Currently, researchers use this metal salt reduction technique to produce metal particle with
various shapes and sizes. For example, quasi-spherical gold particle can be produced by adding

chloroauric acid with sodium citrate®®

. Au(lll) ion from the acid is reduced by the negatively
charge citrate ion, producing neutral Au capped with citrate group. The presence of the
negatively charged citrate-capping group prevents particles from aggregation and controls the
rate of the particle growth. Therefore, the size of the final product can be controlled by
manipulating the nucleation and growth process through the adjustment of the reagent
concentration and the reaction conditions. However, since the citrate ions are weakly absorbed
onto the surface, change in temperature, pH, and concentration can destabilize the solution. To

address this issue, organic capping ligand such as a long chain alkanethiol can be used to

improve the stability.
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Gold and silver particles are never a perfect sphere. Instead, they have irregular shapes
with their surfaces determined by the facets of face center cubic (fcc) crystal structures. As a
result, due to these facets, the smaller the particle is, the more its appearance deviates from being
a sphere. However, by selectively controlling the growth of particular facets, anisotropic
nanoparticles such as pyramids, octahedrons, cubes and rods can be produced?®>?®*. An example
of such process is the following. First, quasi-spherical silver seeds are produced by mixing silver
nitrate and ethylene glycol. Then, by adding a capping agent such as poly vinylpyrrolidone
(PVP) to the mixture, anisotropic silver particles are produced. PVP is believed to selectively
interact with various crystallographic planes of the fcc silver. As a result, with the presence of
PVP during the growth process, the growth rate along <100> direction is greatly reduced and/or
growth rate along <111> direction is greatly enhanced. Wang showed that the shape of an fcc
nanocrystal could be determined by the ratio (R) between the growth rates along <100> and
<111> directions®®. For instance, octahedron and tetrahedron are formed when R = 1.73. Cube,
which are bounded by the less stable {100} planes, are formed when R=0.58. Hence, by careful
selection of the capping agent and adjustment of the reaction conditions, various particle shapes
can be realized.

Core shell structures can also be produced by this chemical reduction technique. For
instance, one metal can be grown on another metal seeds producing core shell structures. It is
also possible to remove the core material by selective oxidation, resulting in a hollow
structure®®®. In addition, dielectric core-metal shell structure can also be synthesized by chemical
reduction. For example, silica nanoparticles can be used as the dielectric core?®®. Organosilane
molecules are then used to modify the surface of the core. These molecules bond to the surface

of the silica nanoparticles with their amine groups extending outward. When colloidal gold
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solution is added, the organosilane molecules make covalent bonds with the gold particles
through the amine groups with about 30 percent coverage. Complete coverage of the core with
the gold shell is then achieved by reducing an aged mixture of chloroauric acid and potassium
carbonate by a sodium borohydride solution. During the reduction process, the gold-decorated
silica nanoparticles act as seeds or nucleation sites.

Due to the immense interest in unique properties of metal nanoparticles, other methods
have also been developed for synthesizing colloidal metal nanoparticles. For example, electrical

290 " |aser ablation®®!, and electrochemical reactions®®2. However, thus far, this

arc discharges
metal salt reduction technique is the most successful and flexible.
(iii) Self-assembly based approach

Self-assembly techniques can also be used to produce large two-dimensional arrays of
metal nanostructures or even three-dimensional superlattices. One approach is to use Langmuir-
Blodgett technique?*?**. This technique has been developed for assembling a monolayer of
organic molecules on a solid surface. The resulting film is called Langmuir-Blodgett film. The
films are formed when small amount of solvent containing amphiphilic organic molecules, which
consist of a hydrophilic head group and a hydrophobic tail, is dropped on water surface in a
container. The solvent is chosen such that it is immiscible in water. After the solvent is
evaporated off, it leaves behind the molecules with their head group immersed in the water and
tail groups sticking out. The container used has movable sidewalls such that the surface tension,
layer formation, packing density as well as thickness of the film can be controlled. The film can

be easily transferred to a solid substrate by a simple dipping process and drawing it out under a

constant surface pressure. Array of metal nanoparticle can be produced with this technique by
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capping them with hydrophobic tails such as alkanethiol. The solution of the capped
nanoparticles in a nonpolar organic solvent is then dispersed on the water surface.
Alternatively, array of metal nanoparticles can also be produced by controlled

evaporation of organic solvent containing them on a substrate®**%

. As the solvent evaporates,
the liquid air interface moves down and intercept with the nanoparticles. These particles are
trapped at the interface between air and liquid. They can only diffuse along the two-dimensional
surface. As more of the solvent dries, more particles are trapped. By controlling the evaporating
conditions, concentrations and the size of particles, monolayers or even superlattices of the
particles can be produced. For both Langmuir-Blodgett and controlled evaporation techniques,
the lattice spacing and inter particle distance are determined by the size of the capping agents.
Instead of assembling the metal nanoparticles themselves into 2D or even 3D
nanostructures, hybrid methods, in which non-metal self-assembled structures (or self-organized
templates) are used as a template for metal deposition, have also been developed. The most

271, 297

common self-assembled templates are self-assembled nanosphere and anodized aluminum

oxide templates®®®3%.

The former is an ordered two-dimensional hexagonal array of silica or
polymer nanospheres produced by controlled evaporation. Depositing metal on the structure and
subsequently removing the nanosphere template can produce metal nanostructures. Such process
of making nanostructures is referred to as nanosphere lithography. Since in this technique, metal
is deposited between the gaps of closed packed spheres, the size of the metal structures can be
much smaller than the spheres themselves. In general, nanosphere lithography produced metal
nanostructures with a triangular shape of the inter-sphere gaps. However, modification of this

301

techniques such as changing deposition angle® ", can allow fabrication of other geometries. Also,

the template can also be used as an etch mask. In this case, metal is deposited on the substrate
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before the sphere layer is assembled. Portions of metal film that is not covered by the spheres can
be etched out with etching process like ion beam etching, leaving behind nanodisk structures.

In the second case, anodized aluminum oxide template is produced by controlled
annotation of an aluminum film. Anodization can be considered as a reversed electroplating.
Instead of putting metal at the cathode, the aluminum film is placed at the anode where it is
oxidized. Hydrogen is produced at the cathode electrode. When aluminum is anodized in an
acidic solution, the acid dissolve the oxide as it forms. By balancing the dissolving and oxidation
rates, a hexagonal array of cylindrical pores is formed on the firm. The pore size can be
controlled by adjusting the anodization voltage. Similar to the case of the nanosphere, this
nanostructured film can then be used as a template for metal deposition, hence, producing metal
nanostructures.

There are also other variants of self-assembly based techniques. For example, atomic
force microscope is used for guiding self-assembly of metal nanoparticles***>%. DNAs are also
used to produce intriguing self-assembled metal structures*®***%. Nevertheless, the main problem
with the self-assembly based techniques is their uniformity. The produced structures tend to only
have short-range order but lacking the long-range order.

(iv) Nanoimprint lithography and soft lithography
Nanoimprint lithography (NIL) was developed by Choue et al. in 1995 as a solution for

achieving low cost and high throughput nanofabrication .

In the NIL process, a pre-fabricated
hard mold, typically from conventional lithography such as EBL, is pressed on a resist —coated
substrate. The pattern on the mold is an inverse of what produced on the sample. NIL technique
is based on physical deformation of the resist. Resists used in this technique are usually

polymers. The most common types of resists used are either thermoplastic polymer resists or
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photopolymer resists. In the former case, the method is called thermal NIL or hot embossing
since the sample has to be heated above the glass transition temperature (Tg) of the resist while
pressing the mold onto the sample. The resist is then cured by cooling the sample to below Tg.
In the latter case, pre-exposed resist is in a liquid phase. The mold is then pressed onto a layer of
liquid polymer and UV radiation is used to harden the polymer by cross-linking process. NIL
that involves UV-curing is termed UV NIL. One of the difficulties with using a hard mold is that
a flat substrate is required. The quality of the pattern depends heavily on the mechanical contact
between the mold and the substrate and can be greatly affected when the two surfaces are not
parallel or there is any contamination between the two pressing surfaces. Soft lithography (SL)
was invented to overcome the problem as it uses a soft elastomer as a mold. The most common
material for the soft mold is poly dimethysiloxane (PDMS). This soft mold is generally made by
forming a template out of a rigid substrate such as silicon, using conventional lithography. An
anti- sticking layer is spin coated on the rigid substrate before a liquid elastomer precursor is
spread over the substrate. The precursor is then cured, peeled off and ready to be used as a
stamp. Nonetheless, in general, NIL and SL are inherently similar in which a master mold or
stamp is used for nano-patterning. Since many replicas can be produced with a single mold, high
throughput fabrication can be easily achieved with these techniques.

Similar to conventional lithography, metal nanostructures can be fabricated with these
techniques simply by either depositing metal onto a stamped pattern or using the stamped layer
as an etching mask. One of the challenges with this technique is that a thinning process for the
resist, such as plasma etch, is required to remove a residual resist layer’”®. The quality of the
pattern is usually compromised after etching. Therefore, sometimes, metal nanostructure is

achieved by depositing metal directly onto a resist layer without removing them®”’. NIL and SL

161



technique have advantages over other techniques in term of low cost, high throughout and the

quality of produced structures.

5.2.2 Surface plasmon

Plasmons are collective oscillation of conduction band electrons. In general, there are
two types of plasmons, namely propagating surface plasmon (PSP) and localized surface
plasmon (LSP). PSP is surface electromagnetic wave, which is coupled to conduction band
electrons, at metal dielectric surface. PSP has its wave vector parallel to the metal/dielectric
interface and the field perpendicular to the interface decays evanescently. PSP was first
discovered experimentally by Wood®®. It was once called Wood’s anomaly. LSP, on the other
hand, does not propagate. They occur in metallic nanostructure whose sizes are comparable to or
less than the skin depth of the excitation wavelength. The most common structures exhibiting
LSP properties is metallic nanoparticle made of silver or gold. Their history can be traced back
to medieval period when artisans used them to produce colors in stain glasses. Plasmons have
attracted immense research interest because of the fact that, at their resonance, electromagnetic
field can be squeezed smaller than their diffraction limit resulting in enormous field
enhancement. Moreover, the resonance conditions of plasmonic structures are highly dependent
on the structure’s geometries, materials, and their surroundings. Owing to their unique
properties, plasmonic structures have been proven to be very beneficial in many applications, for
example, sensing, imaging, nonlinear optic and light harvesting.

Different theoretical calculations have been developed in lieu of understanding the nature
of plasmonic nanostructures. For simple geometries like spherical and ellipsoidal nanoparticles,

analytical based solutions can be used. For more complex structures, one needs to resort to
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numerical techniques, for example finite Integration technique (FIT) and finite difference time
domain (FDTD).
(i) Analytical-based calculation

A theory to understand the absorption and scattering of colloidal of metal nanoparticles
was developed by Gustav Mie developed in 1908 **. He solved Maxwell’s equation in spherical
coordinate for a plane wave interacting with a small sphere. By expanding the electromagnetic
fields in an infinite series of vector spherical harmonics with appropriate boundary conditions,
scattering field can be solved. Calculating the net rate at which the sphere scatters and absorbs
light at the far field, one can arrive at the following expressions for the extinction Gex and

scattering osc Cross-section®”:
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where w is the permeability, m=Ni/N is the refractive index ratio, x=ka=2rna/A, j is the spherical
Bessel function, and h is the spherical Hankel function respectively. The material parameters
without subscript denote those of the surrounding and with the subscript p are for the sphere. The

absorption cross-section oaps can be calculated from oex = 0sca+ 0aps: The summation index n
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corresponds to the mode of oscillation. For example, n=1 is the dipole oscillation and n=2 is the

quadrupole oscillation. In the case where the nanoparticle is much smaller than the wavelength

of light (2a<<J), the dipole term dominates the summation. In the dipole approximation, the

Mie coefficients a and b are then reduced to the following relationship®':
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As a result, the cross-sections, in this dipole limit with x and x,=1 , are of the form:
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where V is the volume of the particle.

(5.4)

(5.5)

(5.6)

(5.7)

In the case of metal nanoparticle, the particle is assumed to have the same frequency- dependent

permittivity as the bulk metal. The metal permittivity can be approximated by the following

Drude model:

£ (w)=1- £
»(®) @ +iye
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where w, is the bulk plasmon frequency and y is the damping constant related to electron
scattering processes. Substituting Equation 5.8 into Equation 5.7, frequency dependent extinction

of a metal particle can be plotted.

Nevertheless, most of the synthesized metal nanoparticle are not perfect sphere but rather
ellipsoidal. In this case, an extension of Mie theory, namely Gans theory, can be used. The
theory was developed by Richard Gans. With the small particle approximation, the extinction of
a collection of randomly oriented gold nanorods with aspect ratio R can be modeled as *'*:

1/ P)e,
{5 +[A-P)/ P Jey +£
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=" gy

Tt 3c Z
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where P; is the shape factors determined by the geometry of the three axes j= A, B and C with
length La, Lg and Lc respectively. For the case of prolate spheroid (La,>Lg =Lc¢), the shape

factors as a function of the aspect ratio R = La/Lg is given by:
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Analytical solutions for other particle geometries such as core -shell and multi shell particles can

also be derived by extending the Mie theory.**?
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(it) Numerical based calculation

Instead of analytically solving Maxwell’s equations, numerical techniques can be used.

Examples of numerical-based calculations are FIT and FDTD. FIT was developed by Weiland in

1976 **3, This numerical method utilizes special discretization schemes. It solves the Maxwell’s

equations by discretizing the following set of integral equations:
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(5.11)

In order to numerically solve these equations, a finite calculation domain has to be

defined. Then the calculation domain is split into small sub-elements or grid cells by meshing.

The Maxwell’s equations are then applied and solved for each grid cells. The resolution of the

result are dependent on how well refined the grid cells are.

FDTD was first established by Yee*!* as a three dimensional solution of Maxwell's curl

equations:

e—=VxH
dt
Mﬁ:—vxE
at
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The above Maxwell equations in the Cartesian coordinate are given by:
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In this technique, the problem space is meshed into Yee cell. Two-point centered difference
method is used to calculate the space and time derivatives. For example, the derivative in the z

direction of field E at time nAt and the mesh point (i, j, k) is given as*™:

n n

n
6_E _ E L2 E Ljk-12
02 i Az

(5.14)

The derivatives in time are also discretized but the updating of E and H are staggered in time by

one half time step:

PRy —ml —n
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Rearranging the terms, we arrive at the leapfrog-updating algorithm:

167



—_— 1 —_— —_—
E =E +§[V><H]"“’2
g (5.17)

—m3f2 —nmli2

a =g My e
H (5.18)
Using this updating scheme with appropriate boundary and initial conditions, one can arrive at
time domain solutions. Frequency domain solutions can be derived by performing Fourier
transform. Other numeral techniques such as finite volume time domain (FVTD), finite element
method (FDM) and discrete dipole approximation (DDA) can also be used for solving

electromagnetic solutions pertaining metal nanostructures.
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5.3 Experimental methods

5.3.1 Nanoimprint fabrication of tunable plasmonic substrate

—p — —
1 (2) 3
Spin coat PAN on Cure at 150°C for lmin, Etch with O, plasma
top of a Simold peel off, and transfer to with different durations
glass substrate and deposit metal (Ag)

Figure 5.1 Schematic representation of large area plasmonic nanostructures fabrication process
by SNAP method. PAN solution is spin coated on top of a Si mold (step 1). The polymer film is
then cured at 150°C for one minute and transferred to a glass substrate by simply peeling off the
polymer film (step 2). The films are etched at variable etching time, allowing a range of the
nanoholes sizes. A 35nm layer of silver (grey color) is then deposited on top of the structure
(step 3).

A simple nanofabrication technique, called SNAP technique (a simple spin coating
technique), is developed. Large area of nano-patterns can be made from a pre-patterned mold
(master mold) by a few simple fabrication steps . In the first step, polymer solution is spun on top
of the mold to form a thin film of the polymer. Then, the polymer film is cured and peeled off
from the mold. A glass slide with a sticking layer is prepared in advance by spinning a wet layer
of the same polymer on top. The peeled film is then transferred to the glass slide by laminating
the film on top of the sticking layer. With this technique, the master mold can be made of
different materials such as silicon , ceramic , or carbon and can also be fabricated from various
types of techniques, for example, electron beam lithography, nanoimprint, and self-assembly.
Moreover, nanostructures can be formed on various type of polymers, for instance, polyvinyl
alcohol , polysilizane, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and

polyacrylonitrile. However, the choices of both the master mold and the polymer depend on the

surface properties of the two. In this work, electron beam lithographed Si wafer is used as the
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master mold due to its high feature qualities. Polyacrylonitrile (PAN) is selected as a material
for our imprinted structure owing to its good temperature stability, appropriate surface properties

and high elasticity.

The square lattice nanohole arrays of PAN were fabricated using a Si mold with an array of
cylindrical pillars, following the SNAP technique, as illustrated in Figure 5.1. First, 8 wt.%
solution of PAN was prepared by stirring 4.8g of PAN in 60ml of dimethylformamide at 150
°C. The PAN solution was then spin-coated on the mold at 3000 rpm for 10 seconds. This
resulted in nano-hole pattern on top of a ~2pum PAN film. The film was cured at 150°C for a
minute and transferred to a glass substrate by simply peeling off the polymer film and cementing
it on the substrate with the help of thin adhesion layer of the same polymer. With this technique,
nano-patterns were created within a few minutes. To further demonstrate, the simplicity of this
technique in manipulating the geometries of the fabricated structures, additional fabrication step
with common laboratory equipment such as plasma-cleaner was introduced. The hole diameters
of fabricated nanohole samples were tuned by the use of, O, Plasma (PE50, PlasmaEtch) with
different etch time. The plasma power and RF-frequency were set at 20 Watt and 13.56 MHz,
respectively. The vacuum set point was 201.1mtorr and the oxygen flow rate was 5 sccm. With
the implementation of this tuning scheme, fabrications of nanohole arrays with different hole
diameters were possible with the same master mold. The results are shown in the next section. In
the next section, this technique is used to fabricate nanohole samples with different plasmon
resonances , by simply tuning the size of the nanoholes and depositing metal on top of the
structures. Changes in the interactions between light and organic molecules for different plasmon

responses were also studied.
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5.4 Results and discussion

5.4.1 Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable
Plexcitonic Substrates

When two oscillators are placed in the same vicinity with a mean to exchange their
energies, they can become coupled. One of the obvious cases is the case of coupled pendula. The
dynamics of the coupled system does not only depend on the original dynamics of the oscillators
but also the energy exchange process, in other words, the coupling strength. In the frequency
domain, the frequency spectrum of the system is modified and does not resemble the original
frequencies. Also, the shape of the spectrum is highly dependent on the coupling strength. When
the resonance frequencies of the two oscillators are matched and the coupling strength is stronger
than the mean of their decay rates, one can observed an anti-crossing behavior or splitting in the
energy spectrum analogously to the bonding and anti-bonding in molecular orbital theory. In this
so-called strong coupling regime, there exists two new eigenmodes separated by a certain
splitting energy. These new modes are only described by both properties of the original modes.
In a sense, they are hybrid states of the two original modes. The magnitude of the splitting is
determined by the coupling strength and the splitting is sometimes referred to as Rabi splitting in
the case of photon-exciton coupling. Photon-exciton coupling is of scientific interest since
controlling interaction between them can result in fascinating new physics. For example,
emission spectrum of an atom in a microcavity can be significantly altered®®*®, Bose—Einstein
condensation at standard cryogenic temperatures can be observed with photon-exciton coupling
in semiconductor microcavity®'®. Early reports pertaining photon-exciton coupling deal with
atoms, and inorganic semiconductors in microcavity system with Rabi splitting in the order of

tens meV3%3%_ Strong photon coupling with organic molecules had not been observed until

171



1998 by the work of Lid zey et al.**®* In general, organic molecules have very broad spectral
linewidths due to inhomogeneous broadening, which make strong coupling difficult to observe.
However, this is not always the case. Lid zey et al. integrated organic semiconductor, which has
a narrow line width, with a microcavity and observed Rabi splitting as high as 110 meV. Such
large splitting was attributed to the high oscillator strength of the organic molecules. The ability
to achieve strong coupling with organic semiconductors is very fascinating and has a lot of
practical implications since organic semiconductors have used extensively in applications such
as electronics, displays, as well as gain media in laser systems. As already mentioned, In order to
be in a strong coupling regime and able to observed the splitting, the coupling strength has to be
large compared to the spectral line width of the individual oscillators. Therefore, one can achieve
strong coupling by decreasing the line width and/or increasing the oscillator strength. In the
former case, this is typically done with inorganic semiconductor materials by cooling the
samples to decrease the line widths so that Rabi splitting becomes observable. Inorganic
semiconductor materials, on the other hand, room temperature strong coupling can be easily
achieved because of their large dipole moment. In the latter case, modifying the coupling
strength is possible. The coupling strength between light and matter primarily depends on two
factors: (1) the dipole moment or the oscillator strength of the matter and (2) the mode volume of
the light. The larger the dipole moment and the more confined the mode volume result in the
larger coupling strength. For a particular matter, increasing the dipole moment can be done by
increasing the number of molecules that are coupled to the light field, resulting in a lager
effective dipole moment. This is evident in the case of stronger coupling in semiconductors than
single atoms. Confining the mode volume, on the other hand, is achievable with the use of

photonic structures such as microcavity, photonic crystals, and plasmonic structures.
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Plasmonic structures are very promising candidate for light confinement with regards to
photon-exciton coupling. This is because nanoscale light confinement is possible with plasmonic
structures. Moreover, plasmonic structures are usually an open cavity. Accessing the mode
volume in which the coupling take place is relatively easy, thus enabling probing or measuring
physical/chemical properties of the hybrid states. Nevertheless, in order to couple light to matter
with the use of plasmonic structures, it is important to have an ability to design and fabricate a
structure that has matched optical response to the matter of interest. In this section, the
developed fabrication technique for tunable plasmonic substrates will be exploited in photon-

exciton coupling to enhance Raman scattering detection.

A series of square lattice nanohole arrays of polyacrylonitrile (PAN) with different
diameters were fabricated following the recipe in the Experimental methods. AFM images of the
fabricated nanohole arrays with increasing plasma etching time up to 5 min are shown in Figure

5.2(a-f).

173



Diamater (mm)

Eiching time (min}

Figure 5.2 AFM images of nanohole structures at etching time of (a) Omin (b) 2min(c) 3min (d)
4min and (e) 5min. Hole diameter vs etching time is plotted in (f)

To develop plasmonic structures, a silver metal thin film of 35 nm thickness was
evaporated on the samples with a deposition rate of 0.06 A/s. The thickness of the silver was
monitored using quartz crystal microbalance. A fiber-coupled spectrophotometer (Ocean optics)

was used for light extinction measurements, Figure5.3(a).
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Figure 5.3 (a) Normalized extinction of the plasmonic nanohole samples at different etching
time as a function of illumination wavelength. (b) Extinction vs wavelength of plasmonic
nanohole samples coated with 1mM of R6G

As can be seen in Figure 5.3(a), the resonance peak of the nanohole arrays is red-shifted with
increasing hole diameters. A large red-shift was observed with the 5 minutes etched plasmonic
sample. FDTD simulation of the structures was also performed, using commercially available
software, Lumerical FDTD Solutions. The nano hole depth profile was modeled by a fourth
order super Gaussian curve of the form:

z=Aexp(—|riw[") (5.19)
where A is the depth of the hole and 2w is full width at 1/e maximum (FW1/eM). Measured
AFM profiles were fit to the function and the fitting parameters were used for FDTD
simulations. An example of fitted curves is shown in Figure5.4(a). The simulated unit cell is

shown in Figure 5.4(b). The simulation results are shown in Figure5.4(c).
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Figure 5.4 (a) AFM profile fitted with fourth order Gaussian function (b) Unit cell for simulation
(c) FDTD simulated extinction spectra.
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Figure 5.5 Comparison between experimental and simulated plasmon peak for samples with
varied etching time

From the FDTD simulations and experimental measurements of our structures, the larger shift at

5 min treatment is attributed to partial merging of adjacent holes, resulting in larger features.
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Our FDTD simulations of the plasmon resonance with varied nanohole diameter are in close
agreement with the experimental data, Figure 5.4(c) and Figure 5.5. To this point, it is clear that,

with this tuning scheme, direct applications such as tunable color filters®=*®

could easily be
derived from this fabrication technique.

By geometrically tuning the optical properties of the substrates, we intend to enhance the
Raman signal of the analyte. Several studies have shown the importance of geometry
optimization for detection enhancement®**. These studies substantiate the importance of
optimizing the geometry of the nanostructure in Surface Enhanced Raman Scattering (SERS)
applications as well as other optical enhancement processes that involve plasmons and molecular
excitons.

To further demonstrate the advanced optical properties of our easy-to-fabricate plasmonic
substrates, we measured extinction and Raman scattering of the nanostructures with an overlayer
of Rhodamine 6G (R6G) molecules. Only plasma-etched samples were used in this study to
ensure that all samples under study have the same surface absorption properties. R6G was used
as the analyte because of its excitonic absorption within our tuning range of the substrates.

The extinction spectra of the ImM R6G coated nanohole samples are shown in Figure
5.3(b). When compared to their corresponding extinction spectra before R6G deposition, the
extinction curves of the nanohole samples with the over layer of R6G dyes are not only
spectrally shifted but also altered. These observations indicate a coupling between the plasmon
mode in the nanosized cavities and molecular excitons of R6G. The coupling of the photon and
exciton states can be classified into two distinct regimes, namely weak and strong couplings “°.
In the former regime, the spectral and spatial distributions are modified but the exciton dynamics

is only slightly altered. In the latter regime, however, mixing of the states results in strongly
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modified excitonic dynamics. From our measurements, we found that the samples with etching
time from 2-4 minutes showed a red-shift in their plasmon resonance. In fact, the interaction
between plasmon resonance and molecular resonance has been previously studied with
nanoparticle systems*®*’. Three local maxima were observed when plotting the plasmon shift of
R6G coated nanoparticles versus plasmon resonances without the dye (bare plasmon resonance)
due to formation of dimers on the metal surface. Local maxima in plasmon shift were observed
when bare plasmon resonances were close to the molecular resonance energy. To investigate the
properties of R6G films on our plasmonic samples, evolution of absorption spectra of R6G
coated on planar silver substrate was studied. Glass slides coated with 20nm thick silver layer
were used as substrates in this study. R6G with different concentrations (1-11mM) were spun
coated on the substrates at 3000 rpm for 10s. The absorption spectra acquired for each
concentration are shown in Figure5.6 (a). All samples showed increasing absorption from blue to
red region due to the presence of the silver layer. Absorption shoulders within the wavelength
range of 500-600nm were found. Two absorption peaks at around 518 and 555 nm could clearly
be distinguished for the 6 mM and 11 mM sample. The features can be attributed to dimer and
monomer absorption®. By subtracting the silver baseline, the spectral profiles of R6G species
could be better visualized for low concentration samples. From this concentration dependent
study, it was found that all of our R6G samples show two absorption features [AppendixC,
FigureC1]. Furthermore, it is known that R6G can form both J-type (head-to-tail dipole moment)
and H-type (parallel dipole moment) dimers. Head-to-tail geometry in J-type dimers leads to a
decrease in energy whereas parallel geometry in H-type dimer leads to an increase in energy. As
a result, the absorption of H-type and J-type dimers is expected to blue shift and red shift from

the monomer peak respectively. However, in the case of (silver) surface adsorption, the H-type
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conformer is more likely to form due to the adsorption of R6G through one of its N atoms*. This
supports our observation that H-type dimers are predominantly present in our samples. Similar
absorption profile of solid R6G film was previously reported 2 *°.

When investigating the effect of R6G on extinction profile of the plasmonic substrates,
with 2-4min samples, only small plasmon shifts were observed. Such small shifts are possibly
due to the fact that only a few nm thin layer of R6G was coated onto the substrates. However,
among these samples, the plasmon shift is the highest with the 3 min sample (497nm bare
plasmon resonance). The shift then decreases when the bare plasmon resonance is at a higher
wavelength before observing a curve splitting for the 5 min sample. This local maximum of

plasmon shift might be due to interaction of plasmon with R6G dimers similar to previous study
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Figure 5.6 (a) Evolution of absorption of 1-11mM R6G deposited on a planar silver film (b)
Hybridization diagram of plexcitonic modes (c) Extinction of 5 min etched sample with
increasing R6G coverage from 1mM to 11mM (d) The magnitudes of the observed Rabi splitting
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versus the square root of the integrated R6G extinction on glass (arbitrary unit). The dash line is
a guide to the eyes.

In addition, the 2-4 min samples also show a shoulder at around 550 nm, Figure 5.3(b). The
observed shoulders are close to the monomer absorption peak of the R6G dyes (555 nm) .
These absorption shoulders cannot be attributed to the dye absorption alone since they are too
intense for the amount of dye molecule used in this experiment. Moreover, their magnitudes vary
and do not satisfy Beer’s law. However, it was previously found that in a weak coupling regime
where the resonance of the photon mode is far from the exciton mode, the spectra of the coupled
modes appear similar to the sum of the individual spectrum® *°. Therefore, we attribute this
observed absorption shoulder to weak coupling between plasmon mode in our structures and
exciton mode of molecular transition of the dye. On the contrary, the spectrum of the sample
with 5 minute etching exhibits a strong anti-crossing behavior with the R6G dye overlayer; the
composite spectrum no longer resembles the sum of plasmon resonance and dye absorption.
When the optical mode frequency is tuned to the exciton resonance frequency, the two states
interact. The splitting at resonance, in analogy with the case of atoms in a microwave cavity, is
referred to as the Rabi splitting. When the splitting is large compared to the natural line widths of
the optical mode and of the exciton, the strong coupling regime holds and two separate modes
are produced™. Anti-crossing of the coupled modes and the occurrence of two equal intensity
transition separated by the vacuum Rabi splitting are indications of a strong coupling. The
resulting two new modes in the strong coupling regime can be explained in term of mode
hybridization, analogous to the molecular orbital theory, and hybridization diagrams as shown in

Figure 5.6(b).
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According to the spectrum of the 5 min etched sample without dye (Figure 5.3(a)), the
sample has a plasmon resonance at about 547 nm, which is the closest to the R6G monomer peak
at 555 nm. It is also possible that the presence of the dye overlayer red shifts the plasmon
resonance of the structure such that the energy of the pure plasmon state of the structure is closer
to the excitonic state of the dye, resulting in the observed anti-crossing behavior. However, this
curve splitting behavior was only observed when plasmon resonance overlaps with the monomer
resonance. In the case of dimer resonance, local maximum in plasmon shift was observed.

To prove that the observed splitting is truly caused by Rabi splitting, we measured optical
extinction of the 5 min etched film with increasing R6G coverage; in the case of the strong
coupling, the coupling strength may depend on the square root of the molecular absorption **>2,
We have also found that the magnitude of the splitting increases with the concentration of R6G
deposited, as shown in Figure 5.6(c). The magnitude of the observed splitting occurring in the 5
min etched sample displays a linear dependence with respect to the square root of the integrated
extinction of the R6G deposited on glass (Figure 5.6(d)). Thus the results confirm that the
observed splitting is in fact due to a strong coupling and is in agreement with previous studies™"
>3 In fact, coupling between R6G and nanostructured metal have been previously reported with
subsequent Rabi splitting of up to 380 meV>**’. D. Richard et al. reported a Rabi splitting of
380meV in extinction profile of R6G coupled silver nanostructured film at square root integrated
extinction of 2.5. P Torma et. al. performed reflectometry measurements in the Kretschmann
configuration to study coupling between surface plasmon polaritons and R6G. Maximum Rabi
splitting of 200meVwas reported. In our measurement, with 11mM deposited R6G or a square

root integrated extinction of 0.44, Rabi splitting of 600meV was achieved.
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We also performed FDTD simulations of our 5 min sample (180nm diameter) with an
overlayer of R6G molecules. In order to account for R6G exciton, its dielectric permittivity was
described by the following Lorentz oscillator model:

2
fa,

(@0, — 0" —iy,w)

L P)=¢ + (5.19)

where the high frequency component &,=2.5, f is the oscillator strength, o IS the resonance
frequency of 3.392x10%rad/s , and 1y, is the exciton line width of 2.14x10" rad/s , derived from
the resolved spectra of R6G on silver. Geometrical parameters of the samples and thicknesses of
the coatings used in the simulation were measured using AFM. Rabi splitting is also observed
with simulations and in very well agreement with the experimental results [ApendixB, Figure
B2].
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Figure 5.7 (a) Emission spectra of the samples excited with laser wavelength of 532 nm. Both
Raman and fluorescence signals are present. (b) Measured and calculated enhancement factor vs.
hole diameter.

To deepen our understanding of the effect of hybridization, we measured Raman

scatterings from the plexcitonic samples. Raman signals of the samples deposited with the same
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concentration of R6G (1 mM) are shown in Figure 5.6 (a). All samples exhibit signal
enhancement when compared to sample on bare glass. The samples with 2-3 minutes etching
time presented similar intensities of Raman signals and fluorescence background originating
from the fluorescence of R6G dye centered at 560 nm *®. With 4 min etching time, slight
increases in Raman intensities as well as the fluorescence intensity were measured. These
enhancements can be due to: (1) the bare plasmon resonance peak of this sample is closer to the
laser excitation and Stoke shift wavelengths of the dye “°, and (2) the coupling is stronger than
the other two samples since its plasmonic state is closer in energy to the molecular exciton. The
sample with 5 minute etching time, however, showed the largest Raman intensities as well as
fluorescence background, which is in agreement with the observed strong coupling between the
excitonic mode of the dye and the plasmon resonance of the structure. To calculate the
enhancement factor, R6G adsorbed on a planar silver substrate is used as a reference to take into
account the effect of surface adsorption on the properties of R6G. The analytical enhancement

factor (EF) was calculated for these samples from the following equation:

Islcs

Irg/cmf

EF = (5.20)

Where, at any given frequency, I is the signal intensity from the plasmon substrate, I, is the
signal intensity from the reference, cs is the concentration of the dye deposited on the substrate,
and crs Is the concentration of the dye deposited on the reference. These experimental
enhancement factors of Raman peak at 555.152 nm (775cm™ Raman shift) are plotted against
bare plasmon resonance of the structure in Figure 5.6(b). Finite difference time domain (FDTD)
simulation was used to evaluate the expected enhancement factor from our R6G coated 5min

sample. Since the Raman enhancement factor is the product of the enhancements in excitation
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intensity and scattering intensity due to the presence of metal nanostructures, the FDTD

computed EF was obtained using:

EF,,.=|e(@, ) e, (5.21)
where g(w)=Eioc(w)/Eo(w) with E;oc and Eq being the local and incident field at frequency w
respectively, weyc IS the excitation frequency of 532 nm, and ws, IS the scattering frequency of
555nm. The oscillator strength of R6G of f=1 was used since, in simulation, it produces similar
peak positions and Rabi splitting magnitude to the experimental values. An analytical
approximation of the oscillator strength also gives a similar value [Apeendix D]. Figure 5.7

illustrates FDTD calculated EF profiles of the structures at different cross-sections.
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Figure 5.8 (a) EF profiles at different Z cross-sections. Color scales are kept uniform for better
comparison (b) Schematic illustrations of the index profile of the simulated structure. (c) EF
profile at the middle of the groove where two adjacent holes connect; largest EF within the R6G
layer is located here. (d) EF of profile cut along x at z=32nm of the 2D profile in (c).
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It has been found that the absolute maximum EF of the overall structure lies at the
silver/polymer-substrate interface. Searching algorithm was used to find a local maximum EF
with in R6G layer. In the case of 5 min sample, the local maximum EF is determined to be of
only 38.87 and located in a groove where two adjacent holes merge. The cross-sectional plot of
this hot spot is shown in Figure5.7 (d). The local maximum EFs of other samples were also
calculated in the same fashion. These computationally derived maximum local EFs are plotted in
Figure5.6(b) against their bare plasmon resonance for comparison. Albeit smaller, these
experimentally obtained EFs follow the same trend as the theoretically calculated value. The
sample that exhibits strong coupling shows the largest EF. This is because strong intensity
enhancements both in the incident and the scattering frequencies are present in the sample.
TableD1 in the Appendix D tabulates the calculated intensity enhancements of the incident and
scattering frequencies for different etching time. The relative high intensity enhancements at
both the incident and scattering frequencies might be due to the splitting and the resulted two
resonance peaks that resonate with both frequencies. Increase in Raman intensity with double
resonance plasmonic structures have been previously reported >*°. However, in our case, the
origin of the two resonance peaks is the coupling between plasmon and exciton.

One of the possible reasons for smaller calculated EFs might be the fact that only
electromagnetic (EM) enhancement is considered in the simulation. In real samples, however,
additional enhancement factors from other mechanisms, such as chemical enhancement might be
responsible for the increase in the total enhancement factor. In general, three mechanisms are
involved in the chemical enchantment, namely (1) ground state chemical interaction (2)
resonance Raman enhancement and (3) Charge-transfer (CT) resonance Raman enhancement®.

While, the first mechanism are not associated with any excitations of the nanometal-molecule
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system, the latter two, however, require the excitation wavelength being resonant with either
molecular transition or nanoparticle-molecule CT transitions for the case of (2) and (3)
respectively. Molecules adsorbed at certain surface sites, for example atomic clusters, terraces,
and steps, can couple electronically with the surface, leading to the chemical enhancement effect
%2 Experimentally observed chemical enhancements are with in an order of magnitude °°.
However, we cannot neglect that the plasmon resonance and geometrical mismatches between
the actual and modeled samples might as well result in the discrepancy. It is also possible that the
plexitonic coupling alters Raman scattering cross section of the molecule since in the coupling
regime the system is no longer composed of independent plasmon and excitons but rather
described by the plexcitonic states, similar to polaritons in semiconductor microcavities®.
Optical cross-sections are altered since electromagnetic enhancement and energy transfer rate
between the molecule and metal can no longer separately treated °®. Previous studies have shown
altered Raman scattering with coupling systems °®°7.

Nevertheless, these findings prove the feasibility of our fabrication technique for a
tailored interaction between photonic and excitonic modes. Our technique can be used to tune the
plasmonic resonance to match the excitonic resonance of the molecules of interest, leading to
large enhancement in optical phenomena. This holds great potential for specific targeting of
single or a few molecules. For example, the substrate can be tuned to match only the molecular
absorption of a specific species, enabling low-level trace detections in sensors.

To summarize, in this section, the fabrication of resonance tunable plasmonic nanostructures
in four simple steps: spin coating, peeling off, plasma etching and silver metal deposition was

demonstrated. This approach allows high throughput, large area fabrication of plasmonic optical

enhancement devices with great versatility. By tuning the plasmon resonance of the nanoholes
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arrays, strong plexcitonic coupling could be observed. The ability to tune the resonance
wavelength with simple fabrication process can be beneficial for applications such as surface
enhanced Raman scattering and surface plasmon enhanced fluorescence. Finally, the largest
enhancement in the Raman signals are the result of a strong coupling of the plasmonic states and
molecular excitons, unveiling anti-crossing behavior when the resonance of the structure
overlaps with the excitonic transition of the dye. Such behavior is believed to be an important

step towards active control of all-optical devices and sensors at the nanoscale.
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6 CONCLUSION

In this dissertation, the uses of nano and nanostructured materials in optical applications,
including laser protection, 3D displays, and sensing, are discussed. In chapter 2, optical limiting
properties of various nanomaterials are detailed. In the case of zinc ferrite nanoparticles, it was
found that the optical limiting action was improved when Zn atoms in the tetrahedral sites was
substituted by other transitional metals such as Cu and Ni. In the case of gold nanoclusters, its
effective nonlinear absorption coefficient increases with the cluster size in the nanocluster
regime. The value however reduces when the size of the particle make a transition from the
nanocluster to nanocrystal. Onset of optical saturation due to surface plasmon resonance was
observed in the gold clusters with the number of gold atoms as small as 144. Graphene oxide, on
the other hand, showed larger nonlinear optical absorption when functionalized with highly
electronegative fluorine atoms. Nonlinear scattering was also increased with the fluorinated
samples. Inspired by the F-GO experiment, PA based characterization technique was developed
in Chapter 3. It was found that similar nonlinear parameters could be obtained from
photoacoustic and optical measurement in the case of nonlinear absorbers. However, nonlinear
scatterers show non-complementary behaviors and when these two sets of information are
collected simultaneously, erroneous conclusions can be avoided in the case of nonlinear
scattering samples. In addition, more rigorous formulation for fitting the PA z-scan data was also
introduced. In Chapter 4 of this dissertation, the use of graphenes as light sensitizers in PR
polymer composite was studied. It was found that the addition of graphenes led to increase in the
fast time constant of the PR composite. These findings make graphene very promising sensitizers

for developing fast-response 3D holographic media. Facile nanofabrication technique for
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producing metallic nanostructures with tunable plasmon resonance was introduced, in Chapter>5.
Enhancing light matter interaction, i.e. Raman scattering, with the developed platform was
demonstrated. All in all, this dissertation demonstrates the versatility of nano and nanostructured
materials in various optical applications. In terms of material engineering, unique properties of
newly developed or unexplored nanomaterials might open the way for new applications as well

as advancing the existing ones.
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APPENDIX B: STEADY STATE DIFFRACTION EFFICIENCIES OF
PATPD/7-DCST/ECZ COMPOSITES
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Steady state four wave mixing measurements
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Figure B1l. Steady state diffraction efficiencies of S1 (undoped) ,S2 (graphene-doped) and S3
(PCBM-doped). All samples show similar diffraction efficiencies.
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APPENDIX C: RESOLVED ABSORPTION SPECTRA OF R6G ON
PLANAR SILVER SURFACE
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R6G with concentration ranging from 1 to 11mM was deposited on a 20 nm silver coated
glass slide using a spin coater at 3000rpm for 10s. The absorption spectra of the samples are
plotted in Figure 5.6a. By subtracting the baseline of silver film, resolved R6G spectra were
obtained. The result spectra are plotted in Figure C1(a-d). All samples show dimer and monomer

absorption bands possibly due to surface induced aggregation at the silver surface.
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FigureCl. Resolved R6G spectra on silver surface for (a)lmM (b)3.5mM (c)6mM and (d)
11mM. The spectra are also deconvoluted with multiple Gaussian curves, showing both dimer
and monomer bands.
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APPENDIX D: FDTD CALCULATION OF RAMAN ENHANCEMENT
FACTORS OF NANOIMPRINTED NANOHOLES
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We modeled our nano hole depth profile using a fourth order super Gaussian curve of the

form:
z=Aexp(—|r/w|") (D1)
where A is the depth of the hole and 2w is full width at 1/e maximum (FW1/eM). Measured

AFM profiles were fit to the function and the fitting parameters were used for FDTD

simulations. An example of fitted curves is shown in FigureB3.
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FigureD1 Measured AFM profile and a best-fit curve to Equation(D1) for Omin sample

The simulated unit cell is shown in Figure D2(a). To check validity of our model,
extinction spectra of our structures were simulated using the FDTD with parameters obtained
from the AFM profile. The simulation results, Figure D2(b-c) is in close agreement with the
experimental data. Large red-shift in the simulation is observed with the 5min sample as a result
of partial merging of the holes, in very well agreement with the experimental measurement.
Then, this model was used to simulate the Rabi splitting. In the simulation, a 10nm layer of R6G
was coated on top of the structure. The R6G was modeled as a dispersive medium with dielectric

permittivity described by Lorentz model:

2
Jo,

Erea(0) =&+ .
R6G (wz e —l}’oa)) (D2)
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where the high frequency component €,=2.5, f is the oscillator strength, wo IS the resonance
frequency of 3.392x10™rad/s, and v, is the exciton linewidth of 2.14 x10"*rad/s. The line width
is derived from the resolved absorption of ImM R6G on silver using: z7=+/& and & =2k, Im(7)
where 1 is the complex refractive index and a is the absorption coefficient. Figure D2(d) plots an

extinction spectra of modeled 5min sample with increasing oscillator strength. The simulation

results are in agreement with the experimental.

Ty

" =

(a) | P S o)

& NAL N
= PN
2 os N\
= . WY
= 1y ~—r
W1 "’f‘ ‘\“‘- - )
8 0.6 i ~. omir| _|
N J‘, = =2min
N Pdorsue i N
14 04J° — = 4mir|
e v Srir|
o
= 450 475 500 525 550 575 600

Wavelength (nm)

’é“sao—

8 5404 [
& 530 J/
c 1 "
8 520—‘ i
af
o 5104 gt
f = 1 -
500 -l
S 4001 =
- = <= Experimental
- o= FOTD

2.4+ _ :
f=0.

2.04 (d) — =1 !

— =2

—

1.6 ~

”M\
1 = 0.4
0 4801

© i

Normalized Extinction (a.u.)

o 470

2 4 6 %0 0 s &0 ok 700
Etching time (min) Wavelength(nm)

Figure D2 (a) Unit cell of the hole structure used in the simulation where w and A are obtained
from fitting the AFM profile; t is the thickness of the silver layer (35nm); and P is the periodicity
of the unit cell (200nm). (b) FDTD simulated extinction spectra of various hole sizes (c) Plasmon
resonance vs etching time comparison between experimental and FDTD data. (d) Simulated
extinction spectra of 5min sample with 10nm R6G over layer for different oscillator strength
values (f=0.4-4).
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In order to estimate the enhancement of our 5 min etched sample, the intensity enhancement
factors (IEF) for both incident (532.24 nm) and scattering field (555.152nm) were calculated

using the following relation:

IEF =|g(@) = |E, (@) E,(@) (D3)

where E,(®) is the local field at a given frequency w. The Raman enhancement factor is then

calculated by :

EF =IEF(o, ) x IEF (@, ) (D4)

where winc and wsa are the incident and scattering frequency respectively. The oscillator
strength of f=1 is used for the simulation since it gives similar peaks position and splitting to the

experimental data. An analytical approximation of f was also done using:

F=113x10%em x—" [ adv

T
advs—a  Av,,...
I 2 (D6)

where n is the index of refraction, a is the absorption coefficient, v is the wavenumber and N is
the molecular density approximated from g = &N with ¢ being the absorption cross-section. The
literature value of 1.8x10™° cm? at 550nm was used for . This gives the oscillator strength of

f=1.106 which is close to the assumed value.
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Table D1: Summary of intensity and total enhancement factors from both the simulation and
experiment. The simulation enhancement factors are taken from the local maximum within the
R6G layer. Ratios between experimental and FDTD calculated EFs are also shown.

Sample FDTD
[Eioc/Eof" at  Ejoe/Eol* at EF
555.152nm 532.24nm
2min 1.69 1.99 3.36
3min 1.71 2.00 3.43
4min 2.09 2.46 5.12
5min 5.34 7.35 39.22

Experimental

EF

19.97

20.55

40.41
206.04

EFexp/EFroTD

5.67
5.99
7.89
5.25
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APPENDIX E: MATLAB CODES
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MATLAB code for simulating Z-scan curve.

% MATLAB code for simulating Z-scan curve
%Mesh In z-r space

X =[-20:0.05:20]*10"-2;

Y =[0:0.002:2]*10"-3;

[z,r]= (meshgrid(X,Y));

% Defining parameters
w0=33*10"-6;
l1am=532*10"-9;
k=2*pi/lam;
z0=pi*w0"™2/lam;
E=50*10"-6;
tp=5*10"-9;
wz=w0 .*sqrt(1+z."2./z0"2);
R=z.*(1+(z0./2) ."2);
100=((2*E) -/ ((pi -*w0."2)*sqrt(pi)*tp));
1z0=100.*(W0./wz) ."2_.*exp(-2*(r./wz) ."2);
nwater=1.33;
nsol=1.3288;
inc_ang=0;
angle=asin(nwater*sin(inc_ang)/nsol);
L=1*10"-3./cos(angle);
slice=1000;
dL=L/slice;
linearT=0.06;
alp=-log(linearT)/L;
beta=10*10"-9*0; % nonlinear absorption coefficient [m/W]
12=1z0;
Isat= 6*10M11; % saturation intensity
% Calculate irradiance through sample
for j=1:length(X)
for p=1:slice
di=-(Calp./7(1+12(:,j) -/lIsat)+beta.*12(:,j))-*12(:,j)-*dL;
12(z,3)=12(z, j)+dl;
end
end

Pout=zeros(1, length(X));

Pin=zeros(1, length(X));

dy=Y(2)-Y(1);

% Calculate transmitted energy and transmission
for j=1:length(X)

Pout(l, j)=2*pi*trapz(Y".-*12(:,j))*dY; %radial integral
Pin(1,j)=2*pi*trapz(Y".*1z0(:,j))*dY; %radial integral
end
Eout=Pout*sqrt(pi)*tp % time integral
Ein=Pin*sqrt(pi)*tp
T=Eout./Ein;
Al=T_/linearT;
% Plot and write output txt file
plot(X,Al);
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B=[X"*10"6,A1"];
dimwrite(Plot.txt", B, “delimiter”, °“\t","precision”, 6)
MATLAB code for simulating PA Z-scan curve with k-space model

%MATLAB code for k space model

clear all

% loop parameter initialization(vary beam waist)

z= [0:8:80];%mm

wO0=0.033%mm

1am=532*10"-6; %mm

z0= pi*w0™2/(lam);

wz= wo*sqrt(1+z.”2./z0"2);

qg=length(wz);

amp=zeros(1,qq);

% loop for the whole z scan range

for pp=1:qq

% initial pressure calculation

dot=1024;

gird=[-dot/2:dot/2-1]";

vel=1400; %mm/ms

dx=0.01;

dy=0.01;

[x,y] =meshgrid(gird*dx,gird*dy);

[kx,ky] = meshgrid(gird*2*pi /(dot*dx),gird*2*pi/(dot*dy));

ktot=sqrt(kx.”"2+ky."2);

w=wz(pp) ;

%input parameters

nwater=1.33;

nsol=1.5;

inc_ang=pi/4;

angle=asin(nwater*sin(inc_ang)/nsol);

L=1;%thin layer thickness in mm

alp=-10g(0.22)./7(L);

beta=.02*10"-5; % nonlinear absorption coefficient [mm/W]

Isat= 2*10711000000000; % saturation intensity W/mm2

E=34*10"-6; % input energy J

tp=5*10"-9; % pulse width

I=zeros(dot,dot);

100=((2*E) ./ ((pi-*w"2)*sqrt(pi)*tp));

%9%%%%%%%%%%%%%Solving beam irradiance through sample %%%%%%%%%%%%%%%%%%

1=100*exp(-2*(cos(angle)*x-(sin(angle)*y)) .~2/w"2);

Inew=I;

A=zeros(size(l));

B=zeros(size(l));

start=dot/2;

stop=dot/2+100;

B(start, :)=Inew(start,:);

for p=start:stop
di=-(Calp./7(1+Inew(p, ) -/Isat)+beta.*Inew(p, :)) -*Inew(p, :) -*dx./cos(angle);
A(p+1, )=(Inew(p,:)+dl);
[al locl]=max(1(p+1,:));
[a2 loc2]=max(A(p+1,:));
dl=locl-loc2;
for j=1:dot

B(p+1,j+d1)=A(p+1,j);
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end
Inew(p+1, :)=A(p+1,:);
end

y=B(1:dot,1l:dot);
%6%9%6%6%%%6%6%%%6%6%%%%6%%%%6% %% %% %% %6%% %6 %6%% % %6%% % %% % % %% % % %% %% %%
% initial pressure

p_O=(alp+beta.*y).*y;

%pO=Calp./(1+ty./l1sat)).*y; % for Isat

% calculate pO in k domain
p_Offt =Fftshift(fftn(p_0)).*1; t=[0:0.005:1.5]*1e-3; %ms
timesnap=zeros(dot, length(t));
%sensor_x=0;
sensor_y=-0.8;
%nsx=round((N/2+sensor_x/dx)+1);
nsy=round((dot/2+sensor_y/dy)+1);
[a b]=size(p_Offt)
sensor_mask=zeros(a,b);
sensor_mask(nsy, :)=1;
% Propagate the pressure in time with time propagator
for g=1:length(t)
p=real (ifftn(fftshift(p_Offt.*cos(vel*ktot*t (q)))));
timesnap(:,q)=p(nsy,:);
end
f=1/max(t)*[-length(t)/2:length(t)/2-1];
% apply transducer response
cf= 10e3 ;%kHZz
wf= 0.6*cf;
Ffilter= zeros(l, length(f));
for p=1:length(f)

if f(p)>=0;
Filter(1,p)=exp(-(f(p)-cF) . "2/wfr2);
else
Ffilter(1,p)=0*exp(-(F(p)+cf) . ."2/wf 2);
end
end

timesnapA=sum(timesnap)/a;
A=Fftshift(Fftn(timesnapA));
B=(A) - *Filter;
C=real (((iffen(ifftshift(B)))));
amp(1,pp)=sqrt(pi)*w*(max(C)-min(C)); % integral for 3D case
end
% Format output, compare to the simple model, and save
znew=zeros(1,2*length(z)-1);
znew(1:length(z))=sort(-z, "ascend);
znew(length(z):2*length(z)-1)=sort(z, "ascend™);
ampnew=zeros(1,2*length(z)-1);
ampnew(length(z):2*length(z)-1)=amp;
1in=((2*E) ./((pi -*wz_"2)*sqrt(pi)*tp));
PA= (alptbeta.*lin);
PAnew=zeros(1,2*length(z)-1);
PAnew(length(z):2*length(z)-1)=PA;
for r=1:length(z);

ampnew(r)=ampnew(2*length(z)-r);
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PAnew(r)=PAnew(2*length(z)-r);
end
plot(znew,ampnew./min(ampnew(:)), "b",znew,PAnew./min(PAnew(:)),"g");
P=[znew" ,ampnew” ./min(ampnew(:)),PAnew" ./min(PAnew(:))];
dimwrite("comaparePAfit.txt", P, "delimiter”, "\t","precision”, 6);
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