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ABSTRACT 

Nano and nanostructured materials offer unique physical and chemical properties that 

differ considerably from their bulk counterparts. For decades, due to their fascinating properties, 

they have been extensively explored and found to be beneficial in numerous applications. These 

materials are key components in many cutting-edge optic and photonic technologies, including 

photovoltaics, waveguides and sensors. In this dissertation, the uses of nano and nanostructured 

materials for optical applications are investigated in the context of optical limiting, three 

dimensional displays, and optical sensing.  

Nanomaterials with nonlinear optical responses are promising candidates for self-

activating optical limiters. In the first part of this study, optical limiting properties of unexplored 

nanomaterials are investigated. A photoacoustic detection technique is developed as an 

alternative characterization method for studying optical nonlinearities. This was done with an 

indigenously developed setup for measuring the photoacoustic signals generated from samples 

excited with a pulse laser. A theoretical model for understanding the experimental observations 

is presented. In addition, the advantages of this newly developed technique over the existing 

methods are demonstrated. 

Blending optical sensitizers with photoconducting polymers and chromophores results in 

a polymer composite that is able to record a light grating. This composite can be used as 

recording media in 3D holographic display technology. Here, 2D nano materials, like graphenes, 

are used as optical sensitizers to improve the response time of a photorefractive polymer. The 

addition of graphenes to a PATPD/ECZ/7-DCST composite results in a three-fold enhancement 

in response time and therefore faster recording speed of the medium. The faster build-up time is 
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attributed to better charge generation and mobility due to the presence of graphenes in the 

composite.  

Lastly, a facile nanofabrication technique is developed to produce metallic nanostructures 

with a tunable plasmonic response. The enhancement of the light-matter interactions due to these 

nanostructures in sensing an analyte is demonstrated.  
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1. INTRODUCTION 

The trend of today’s technology is moving toward miniaturization. Present society wants 

higher resolution displays, faster computers, and more compact devices. Making things smaller 

and exploiting material properties at atomic scale, with the use of Nano science and technology, 

can serve this social demand. These disciplines involve the study of phenomena and the 

manipulation of material at the atomic/molecular scale, where the properties differ notably from 

the properties at a macroscopic scale.  

The idea of exploring and manipulating material properties at an atomic scale was first 

proposed to the science community in 1959 by Richard Feynman. In his presentation, ‘There is 

plenty of room at the bottom’, at the American Physical Society, he proposed that many unique 

properties and applications could come from manipulating matters at the nanometric scale. Even 

though at that time, the technology that could allow such concept was not yet realized, he did not 

afraid to share his vision of the future. Today, with the availability of tools such as scanning 

electron microscopes (SEM), transmission electron microscopes (TEM), and scanning tunneling 

microscopes (STM), scientists are able to visualize, work and manipulate materials at the atomic 

level. Although the vision of Richard Feynman has been realized, the quest is still on going.  

Nano-science and technology were not only aided by the availability of the tools but also 

the discovery of new materials. For example, R. Smalley, H. Kroto and R. Curl won the Nobel 

Prize in chemistry for discovering a unique carbon allotrope containing 60 carbon atoms or C60, 

in 1986. In 1991, a Japanese scientist, S. Iijima, discovered carbon nanotubes, another form of 

carbon whose structure was that of a rolled-up graphite. These newly found materials at the time 

gained a lot of attention from the community since their physical, chemical, and mechanical 
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properties are so unique that they allow realization of many useful applications. Even today, 

research on the use of their remarkable properties in new applications is being conducted. 

Moreover, newer nanomaterial such as graphene (a sheet of graphite) and other 2D materials like 

MoS2 have been discovered. Many research works have been conducted around them. 

Interaction of light with materials has always been fascinating to scientists. In the field of 

optics and photonics, integration with nanoscience and nanotechnology gives rise to remarkable 

optical applications, for example, solar harvesting, water sanitization, displays, and sensing. The 

scope of this dissertation is to explore the use of nanomaterials as well as nanostructured 

materials in optical applications, particularly in laser protection, three dimensional displays, and 

optical sensing.   

1.1 Nanomaterials in laser protection 

Since the first realization of lasers by Maiman in 1960, the protection of human and 

devices against lasers has become a safety concern for those who work with the technology. In 

typical laboratory setting where specifications of laser output are known, safety can be simply 

accomplished by using conventional optical filters based on linear optical effects such as laser 

goggles. However, in different situation such as military defense, requirements are much more 

stringent.  Moreover, with present day high level of globalization and market convenience of e-

commerce, the availability of relatively high power commercial lasers is surprisingly high. With 

the advances in manufacturing of solid-state devices, compact small lasers systems are 

affordable for nearly everybody. With such availability, lasers threats are no longer limited to 

scientists and soldiers. An example of civilian laser threat is the instance where people aimed 
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laser at an airplane and temporarily blinded the pilots.  As a result, numerous research works are 

focused on developing better laser protection devices.  

Laser protection devices can be divided into three main categories, namely static, active 

and self-activating protection. In the case of static protection, optical filters including line and 

band filters are usually used for laser protections. With this system, laser attenuation at a 

particular frequency can be substantially high. However, color distortion and visibility at the 

protection frequency can be an issue in some applications. Active protection on the other hand, 

uses optical elements like shutters and spatial light modulators for blocking laser light. This type 

of laser protections can offer broadband response, however, with their slow response time, they 

are only appropriate for protection against laser dazzling with continuous laser sources. The last 

type of laser protections, which is self-activating, uses the concept of nonlinear optical 

phenomena as protection mechanisms. These phenomena include nonlinear absorption, nonlinear 

refraction and nonlinear scattering, which contribute to nonlinear decrease in laser light at the 

object plane. In literature, this self-activating light reduction is called an optical limiting process 

and materials that exhibit such phenomena are called optical limiters. This self-activating 

protection can offer fast response time but with the downfall in their relatively high activation 

threshold. As a result, they are only suitable for damage protection but not the laser dazzling. 

Optical designs can however be done for optimizing the threshold of such self-activating devices. 

Nonetheless, the most important part of such device lies on the material development itself. 

Surprisingly, most of the best performing optical limiter are nanomaterials. For example, carbon 

nanoparticle suspensions exhibit strong thermally induced nonlinear scattering (NLS) effects and 

therefore optical limiting (OL) for ns laser pulses. Fullerene shows large nonlinear absorption 

and has been considered as a benchmark optical limiter. Other forms of nanostructured carbon 
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such as carbon nanotube (CNT) also exhibit exceptional optical limiting properties. Non-carbon 

nanomaterials like semiconductor and metal nanoparticles also have remarkable optical limiting 

performance.  

Therefore, the first main body of this dissertation work is to measure optical limiting 

properties of new functional nanomaterials with an aim to discover better materials and provide 

database for future development of optical limiting devices. 

1.2 Nanomaterials in three dimensional display application 

In the ancient time, the way for our ancestors to tell their stories was through painting on 

cave walls. Since the development of the first camera, actual real-life images can be recorded. By 

running series of the captured images, motion pictures can be produced. Displays have been used 

as a media for viewing stories told or recorded by the capturer. With these media, viewer’s 

experience with the story has been much enhanced compared to the old-day static photographs. 

The development of display technology began with the invention of cathode ray tube (CRT) in 

the nineteenth century. Though the first application of CRT technology was in the radar system, 

it was later recognized and adopted for displaying two-dimensional images in 19281. Today, the 

old CRT technology was succeeded by new technology like plasma display, liquid crystal 

displays (LCD), light emitting diode (LED), and laser-based displays2. These new technologies 

were developed with an aim of improving human experience for the users, particularly through 

better image and color qualities.  

With rising demands for better quality and more innovative experiences with display 

technology from users, realization of real-world-object like dynamic three-dimensional (3D) 

displays has become an ultimate goal in the display development. The vision of the technology 
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came out in a science fiction, Star Wars in 1977.  Scientists’ quest for recorded 3D experiences, 

however, traced long back to 1838 when Charles Wheatstone proposed the concept of the 

stereoscope at King’s College, London 3.  Stereopsis or the perception of 3D structure is obtained 

on the basis of visual information derived from binocular vision. Binocular disparity that results 

from two forward facing eyes seeing different viewpoints is perhaps part of animal evolution for 

extracting three-dimensional information about the world. Wheatstone’s stereoscopes used two 

subtly different hand-painted pictures in combination with two tilted mirrors to send different 

information to each eye, creating depth sensation. Following Wheatstone’s development, 

nowadays, the term stereoscopy refers to 3D technologies that use eyewear to present the offset 

views to each eye whereas the term autostereoscopy means no special eyewear is required. 

Autostereoscopy, however, uses special optical elements to send the offset views to each eye. 

Stereoscopy can be achieved through the use of, for example, color filter as in the anaglyphic 

images, polarizers, and interference filters, integrated to the eyewear. On the contrary, 

autostereoscopic displays use optical elements such as parallax barriers and lenticular elements 

added into the display systems. More detailed review on both stereoscopic and autostereoscopic 

displays can be found elsewhere 4.  One of the major problems with both stereoscopic 

technologies is that the perceived 3D experience is not natural. This is because the image 

information sent to the eyes is merely two offset images. They do not represent the real world 

experience. In other words, users’ perceptions are fooled by receiving two offset views and as a 

result, fake depth sensation is created.  

Another type of 3D display technology is holographic display. Hologram can provide 

natural depth perception. It also prompts viewers to focus on an image itself rather than on a 

screen 3, 5.  These advantages are due to the fact that holograms store information about both the 
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intensity and phase of scattered light. Upon reading the holograms, the wavefronts of that light 

are reconstructed making viewers perceive the image as if it were scattered from the real object. 

The theory of holography was first developed by Dennis Gabor in 1947. However, the first 

hologram was realized more than a decade later after the invention of laser. Conventional 

holograms are made of photosensitive materials that record permanent interference patterns 

between different waves. Only static images can be produced with conventional holograms. 

Moreover, the recorded image is permanent and the conventional holographic media is a write-

once-read-many system.  However, due to research endeavor of scientists in realizing a naturally 

3D display technology, holographic materials that enable development of dynamic 3D display, 

such as photorefractive polymers, have been developed6-7. While some 3D stereoscopic display 

technologies are commercially available in the markets, the 3D holographic display technology 

on the other hand is still far from reaching the consumers. There are three main aspects that need 

to be improved before market realization of such technology. First, current optical set-up for 3D 

holography is bulky compared to other types of display technology. Second, generating dynamic 

holograms at video rate requires a lot of computational power. Lastly, the holographic materials 

have slow response time and relatively poor color quality.  

The second main body of this work is focused on tackling the last aspect, developing 

newer holographic material, particularly photorefractive polymer system. The use of 

nanomaterials in improving the performance of the holographic media is explored and 

fundamental physics behind the developed systems is studied. 
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1.3 Nanomaterials in optical sensing 

Due to unique properties of nanomaterials compared to their bulk counterparts, the 

applications of nanomaterials to design and fabricate sensing devices are nowadays one of the 

most active research subjects. Physical, chemical and biological sensors can be made with 

nanomaterials. For example, CNTs can be used as gas sensor by monitoring their change in 

electrical resistance upon exposure to chemical gases8-9. A mixture of liquid gallium and CNTs 

has a thermo-sensing property similar to mercury10. Palladium mesowires undergo structural 

change and resistance when exposed to hydrogen gas 11.  Apart from sensors based on 

electrical/thermo-physical properties of materials, optical sensing based on changes in optical 

properties of materials is also a promising approach.  

Due to current availability of low cost optical instrumentations such as light emitting 

diodes and laser diodes, optical sensors can be easily implemented. Nanomaterials have been 

serving important roles in developing of optical sensors12.  For instance, nano-porous silicon is 

used for chemical sensing since physiosorbed chemicals can quench photoluminescence of the 

material13.  Similarly, photoluminescence properties such as intensity and lifetime of 

semiconductor quantum dots are altered with the presence of adsorbates on their surfaces14. 

Interferometric based chemical sensors using nano-patterned porous silicon was also 

demonstrated 15. The average refractive index of the porous silicon layer was increased due to 

analyte adsorption. This results in spectral shift of Fabry–Perot fringes of the device. Perhaps, 

one of the hottest nanomaterials that gain tremendous research activities recently in the optical 

sensing applications is nanostructured metal.  

Metallic nanostructures exhibit interesting optical properties, some of which are not 

shown by their bulk counterparts. For example, metal nanoparticles show large extinction and 
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absorption cross-sections that are highly dependent on their size and geometry. The underlying 

physics behind their unique optical properties is the collective oscillation of free electrons gas 

near its surface or surface plasmon. The resonance condition occurs when the nanoparticles 

interacts with electromagnetic radiation whose energy is the same as their natural frequency of 

the free electron oscillation. This resonance is termed surface plasmon resonance (SPR). The 

first experimental observation of surface plasmon resonance was done by Robert Williams Wood 

in 1902 16. He observed a peculiar diffuse dark band when investigating diffracted spectra of a 

metallic grating. Such phenomenon was called Wood’s anomaly and was later explained by Fano 

anomaly in term of a forced resonance related to the leaky waves supportable by the grating 17.   

Today, it is well known that those leaky waves were actually surface plasmon. When 

surface plasmon resonance occurs at the nanostructure interfaces, particularly nanoparticles, it is 

called localized surface plasmon resonance (LSPR) owing to its non-propagating nature. This 

surface plasmon property of metallic nanostructures are heavily utilized in making optical 

sensors due to two interesting consequences of the resonance. First, the resonance wavelength is 

dependent on the index of refraction of the environment near the metal surface. By attaching 

chemical probes to the surface of the metal, binding of analyte molecules to the probes results in 

shifting the SP extinction peak. As a result, chemical sensors, based on resonance shifting due to 

presence of analytes have been developed18. Another consequence is that, at the resonance, the 

local electromagnetic field near the metal structure is greatly enhanced. This large local 

electromagnetic field can be used to enhance other optical/physical phenomena like Raman 

scattering, fluorescence, molecular desorption and molecular ionization. Consequently, sensing 

technique that capitalizes on the local electromagnetic field enhancement like surface enhanced 

Raman spectroscopy was developed. 
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Surface enhanced Raman scattering (SERS) is a phenomenon in which Raman scattering 

signals of materials absorbed on a small metal structure is greatly enhanced. One of the 

pioneering works was done by Fleischman et al. in 197419. They observed enhanced Raman 

scattering signals of pyridine on a rough silver surface. Two main mechanisms are involved in 

signal enhancement of SERS, namely chemical mechanism and electromagnetic mechanism due 

to surface plasmon. However, the latter gives larger magnitude of enhancement and is considered 

as a dominant mechanism. The term "hot spot" has been used to generally describe the location 

near metallic nanostructures where there is high field intensity. Due to this field enhancement, 

the Raman scattering signals of molecules in the proximity of these hotspots are enhanced. 

Detection limit down to a few molecules has been achieved with this technique. For example, in 

1977, pioneer research groups reported single molecule detection using SERS. Kneipp et al. 

reported the detection of single molecules of crystal violet on aggregated colloidal silver20.  In 

the same year, Nie and Emony reported single molecule detection of organic dye on the surface 

of a silver particle21. Unlike resonance-shift based sensors where information on the adsorbed 

species cannot be extracted, SERS provides molecular identification. However, real time 

detection with resonance-shift –based sensors is much easier to implement. Therefore, a 

complementary analytical scheme, where molecules can be first detected with LSPR-shift assays 

and later identified with SERS, can be used22 

In order to use surface plasmon properties in a mainstream analytics, several challenges 

has to be overcome. For example, more investigations need to be done on better understanding 

the physics of chemisorption of molecules on the metal surfaces. Also, development of 

reproducible plasmonic platforms has yet to achieve. Unsurprisingly, development of plasmonic 

substrates is one of the most prominent research activities in this field. Several fabrication 
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techniques have been developed for producing plasmonic substrates for sensing applications. 

These techniques range from simple system with metal particles dispersed on a flat surface, or in 

a form of solution, to complicated structure fabricated by more sophisticated tools like electron 

beam lithography. The former has a great disadvantage on its poor reproducibility while the 

latter has an issue with its associated high cost of fabrication and low throughput. Therefore, the 

technique for producing reliable and cost effective plasmonic substrate with exceptional quality 

is yet to be developed. As a result, the last main body of this work is to use the knowledge of 

nanofabrication in order to develop low cost plasmonic structures with an aim to provide an 

alternative fabrication technique to the field. The fabricated structures are used to study 

interesting phenomena resulting from light-matter interactions. 

1.4 Dissertation outline 

This dissertation work is dedicated to the use of nano and nanostructured materials for 

optical applications. In the beginning chapters, the application is based solely on the properties of 

the materials itself. In later chapters, more complex applications are introduced in which the 

nano/nanostructured materials are integrated with other functional materials. In chapter 2, optical 

limiting properties of various nanomaterials are investigated. Theoretical background as well as 

experimental setup for studying the materials are presented and discussed. Motivated by the 

work in chapter 2, a photoacoustic-based characterization technique for investigating nonlinear 

extinction of material is studied and discussed in chapter3.  Chapter 4 discusses the use of 

nanomaterials as a sensitizer in polymeric holographic media, namely photorefractive polymer. 

The use of 2D nanomaterials like graphenes as PR sensitizers is explored. The theoretical 

background for the subject is also included in this chapter.  In chapter5, the aspect of structuring 
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materials on a nanoscale or, in other words, nanofabrication is introduced. Commonly adopted 

nanofabrication techniques are briefly reviewed. The purpose of this chapter is to develop a 

facile fabrication technique for producing plasmonic nanostructures for enhancing light matter 

interaction. The use of the fabricated structures for photon-exciton coupling as well as enhancing 

Raman detection is investigated.  
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2  OPTICAL LIMITING PROPERTIES OF NANOMATERIALS* 

2.1 Motivation 

Lasers are indispensable for applications in a variety of fields. This includes military, 

telecommunications, manufacturing and medicine. Even though, laser is a very powerful source 

of energy, at times, it can be damaging too. These laser systems are so powerful that in industries 

high power laser systems are often used for cutting and drilling. For humans, unintended laser 

irradiations can damage eyes or other body parts. This poses serious health threat to workers who 

are working with such laser systems. In military applications, lasers are incorporated in many 

weaponries. These lasers can damage sensors or blind military personals.  Therefore, there is a 

considerable need for a device to protect people from laser threats. 

To date, laser protection devices used in real applications are non-adaptive device in 

which its transmission is constant regardless of incident laser power. They primarily use linear 

absorption of materials to reduce the transmission. Complete elimination of certain wavelengths 

(colors) can create serious problems in application where high visibility is required in the 

* The work presented in this chapter are extensions of  Chantharasupawong, P.; Philip, R.; Endo, T.; Thomas, J., 

Enhanced Optical Limiting in Nanosized Mixed Zinc Ferrites. Applied Physics Letters 2012, 100, 221108., 

Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, J., Evolution of Nonlinear Optical Properties: From 

Gold Atomic Clusters to Plasmonic Nanocrystals. Nano letters 2012, 12, 4661-4667., and Chantharasupawong, 

P.; Philip, R.; Narayanan, N. T.; Sudeep, P. M.; Mathkar, A.; Ajayan, P. M.; Thomas, J., Optical Power Limiting in 

Fluorinated Graphene Oxide: An Insight into the Nonlinear Optical Properties. The Journal of Physical 

Chemistry C 2012, 116, 25955-25961. 
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absence of the harmful laser radiation. One of the proposed solutions to this problem is optical 

limiting devices. Ideally, in such devices, instead of having intensity independent transmission, 

transmission decreases as the incident power increases.  One of the feasible directions in 

realizing such adaptive devices is to use nonlinear optical materials.  Surprisingly, some of the 

best performing nonlinear optical limiting materials are nanomaterials such as, fullerenes and 

carbon nanotubes 2-3. In this chapter, optical limiting properties of interesting nanomaterials are 

investigated. 

2.2 Theoretical background 

2.2.1 Optical processes contributing to optical limiting 

There are three main optical processes that can result in optical limiting behaviors of 

materials, namely, nonlinear absorption, nonlinear refraction and nonlinear scattering. This 

section will provide an introduction into such processes. 

2.2.1.1 Nonlinear absorption 

The simplest way for achieving passive optical limiters is through the use of nonlinear 

absorbing materials. In these materials, their absorption increases with increasing incident 

fluence or irradiance. Such nonlinear absorbers can be found in both organic and inorganic 

materials. Two main nonlinear absorption mechanisms are typically involved in optical limiting 

actions, which are (i) multiphoton-absorption (MPA) and (ii) reverse saturable absorption (RSA). 
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(i) Multiphoton-absorption (MPA) 

When a medium interacts with an external electric field, its polarization can be written 

as23: 

   (2.1) 

Where K’s are the coefficients which depend on systems of unit and degeneracy. χ(n) are optical 

susceptibilities in the form of n+1 rank tensor describing linear (n=1) and nonlinear processes 

(n>1). For example, the first term, (n=1), describes linear phenomena, i.e. index of refraction and 

absorption coefficient of material. The second term χ(2)  represents nonlinear phenomena such as 

second harmonic generation, sum and difference frequency generation, optical rectification, 

linear electro optic effect and parametric emission. The third term χ(3)is responsible for 3rd 

harmonic generation, nonlinear refraction, two-photon absorption (2PA), stimulated Raman and 

Brillouin scattering, , self/cross phase modulation, and four-wave mixing.  These susceptibilities 

describe both linear and nonlinear response of the medium with electric field components of an 

electromagnetic radiation. 

When a laser beam is propagating through a nonlinear absorbing sample, the intensity 

variation of a beam, traveling in the Z direction is given by:  

   (2.2)
 

in which α(n) are the absorption coefficients of simultaneous absorption of one photon (n=1), two 

photon (n=2), three photon (n=3), etc. α(n)are proportional to χ(2n-1) 
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In the case of optical limiting with MPA, two photon absorption (2PA) is the dominant process 

since it is much more efficient and requires much lower limiting threshold than higher-order 

photon absorption.  Therefore, Equation 2.2 is reduced to: 

     (2.3) 

with α(1) and α(2) being the linear absorption and 2PA coefficient respectively. The absorption 

coefficients are related to the susceptibilities through the following relations:  

    (2.4)
 

    (2.5)
 

where ω is the incident photon frequency, n is the index of refraction, k is the propagation vector, 

λ is the incident wavelength,  μ0 is vacuum permeability. 

In general, multiphoton-absorption processes have low loss in linear regime.  However, 

their drawback is that high irradiance is required to achieve limiting action. Therefore, optical 

limiters based on this principal only works well with laser pulse smaller than picoseconds. 

Another drawback for this type of limiters is that they usually have narrow spectral range. For 

example, two-photon absorbing semiconductors only work when the incident photons have their 

energies ranging from Eg/2 to Eg, where Eg is the band gap energy. One can argue that choosing 

large band gap semiconductor might increase the spectral range of the device. Unfortunately, the 

two-photon absorption coefficients of semiconductors scale inversely with the third power of the 
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band gap. As a result, potent semiconductor-based optical limiters are the ones that have narrow 

band gap and can only be used in the mid-infrared.  

(ii) Reverse saturable absorption (RSA).  

 

Figure 2.1Schematic representations of the (a) five level system, (b) simplified three level system 
with negligible triplet state absorption, and (c) simplified three level system with negligible 
excited singlet state absorption. 

2PA process can be significantly enhanced by a resonant one-photon absorption. 

Essentially, with this particular case, the absorption of two photons occurs in two-step process. 

First, a photon excites an electron from its ground state to the excited state. Second, another 

photon excites the same electron further to the higher lying excited state. To have RSA process, 

two requirements must be met: (1) the materials must have their excited state cross-section 

higher than their ground state cross-section and (2) both the ground state and the excited state 

can absorb photons of the same energy. In the case of organic molecules, these requirements are 

often met since they often have many vibronic sub-states. 
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Most promising reverse saturable absorbers are highly symmetric organic dyes in which low-

lying excited states are weakly allowed. Since these dyes are typically polyatomic in nature, 

vibrational relaxation in these molecules is very rapid. Thus, even for picosecond pulse, only the 

fully relaxed excited states are considered for mechanistic explanation of RSA. The widely used 

kinetic model for RSA is five-level system, shown in Figure 2.1, described by a simple rate 

equation:  

   
(2.6)

 

where i represents the change in photon flux with distance z with the sample of length L, 𝜎𝜎  is the 

absorption coefficient,  and N  is the population of the corresponding state. The subscripts G, S, 

and T denote ground state, singlet state, and triplet state respectively. Under the assumption that 

there is negligible population in the excited state, the change of population with time can be 

described as follows: 

   (2.7)
 

    (2.8)
 

     (2.9)
 

where N0 is the total population and k is  the interstate crossing rate. For short laser pulse in the 

order of shorter than picoseconds time scale, reverse saturable absorption will happen when the 
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excited singlet state absorption cross-section is higher than the ground state absorption cross 

section, σS/σG>1 , since the excited triplet population is negligible within this laser pulse 

duration. For such case, the five-level system (Figure 2.1(a)) can be simplified to a three-level 

system (Figure2.1 (b)). On the other hand, for the laser pulse of nanoseconds or longer, the 

condition for having RSA is that σEF/σG>1  where σEF is the effective weight averaged of σS and 

σT. This effective excited state cross-section area functions of both the intersystem crossing rate 

and the intersystem-crossing yield. In the limit where the intersystem-crossing rate is much 

shorter than the laser pulse duration, the ratio between the effective excited state cross-section 

and ground state cross-section can be simplified to  ΦISCσT/σG where ΦISC is the intersystem 

crossing yield. In this case, the five level-system (Figure2.1 (a)) can be again simplified to a 

three-level system (Figure 2.1(c)).  In the case of the simplified three-level system, the intensity 

variation of a propagating laser beam traveling in the z direction is given by: 

     (2.10)
 

By ignoring ground state depletion, the rate equation for the first excited state becomes: 

      (2.11)
 

Integrating over t results in the following expression:  

   (2.12)
 

This equation looks like the one for 2PA but in reality it is a χ(1):χ(1) nonlinearity process. 
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Nonetheless, in real systems, many RSA absorbers limit nanosecond pulse or longer from both 

excited singlet and triplet absorptions. Ground state depletion also plays some role and will 

change this equation to something more complicated depending on the state lifetime. One can 

observe combination of both saturable absorption and excited state absorption in the real system. 

Even though saturable absorption is desirable in applications like laser pulse compression or 

passive mode locking, it is however undesirable in optical limiting. To yield a strong RSA, it is 

desirable to have materials with a large ratio of σEF to σG. 

Generally, two-step two photon absorption process or reverse saturable absorption is more 

efficient than pure 2PA. Potent optical limiters based on nonlinear absorption usually belong to 

the RSA category. Centrosymmetric organic molecules, such as metallophthalocyanine and C60 

with 2D  and 3D π-electron conjugated system respectively, usually exhibit strong RSA. 

2.2.1.2 Nonlinear refraction 

Another optical process that can lead to reduced optical power to the device under 

protection is nonlinear refraction.  Due to Kramer-Kronig relation, every material exhibiting 

nonlinear absorption also has nonlinear refraction properties.  The nonlinear refraction, defined 

to the third order or optical Kerr effect, is described by a parameter n2: 

     (2.13) 

where n is the effective index of refraction of the medium  and n0 is the linear (intensity-

independent) index of refraction.  Due to this nonlinear effect, the central part of a laser beam 

induces larger refractive index change than other part of the beam. This results in the medium 

behaving like a lens as there is a non-uniform refractive index distribution seen by the laser 

beam. Depending on the sign of n2, this can lead to either self-focusing or self-defocusing of the 
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laser beam. In far field, both effects result in spreading of the beam and hence reduction in the 

energy density compared to the linear regime. Therefore, proper designs of an optical system, for 

example, placing an aperture at the pupil plane whose size corresponds to the size of the laser 

beam in the linear regime, can limit the total transmitted energy.  

2.2.1.3  Nonlinear scattering 

Optical damage in a liquid host is often desirable for obtaining better optical limiting 

performance.  Plasma or micro bubbles that appear in a liquid host due to optical damage can 

cause effective scattering of the laser light. This nonlinear/intensity-dependent scattering process 

can provide device protection at higher input energies. 

In this dissertation proposal, optical limiting actions in nanomaterials resulted from 

nonlinear absorption and scatterings are of interest. The reason is because aperture designs and 

the knowledge on the image size at the image plane are not needed when building optical limiters 

based on these two mechanisms. Rather, simple Kaplerian telescope design can be used to build 

optical limiters. 
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2.2.2 Benchmark optical limiters  

2.2.2.1 Buckminsterfullerene 

Buckminsterfullerene or C60 belongs to the family of fullerene materials, which are 

composed entirely of carbons in the form of a sphere. In addition to C60, other members of 

fullerene family are, for example, C70, C76, C78, and C84. C60 was first discovered in 1996 by 

Harald Kroto, Richard Smalley, and Robert Curl. They were awarded the Nobel Prize for the 

discovery. Among all fullerene materials, to date, C60 is by far the best optical limiter at 532nm. 

In 1991, S. Kuroshima et al. studied the excited state properties of C60 using laser-flash 

photolysis 24 . The ground state has absorption maxima around 300 and 350 nm. The excited 

singlet state S1 has absorption maxima at 513, 759 and 885 nm whereas the excited triplet state 

T1 has absorption maxima at 457, 509 and 747 nm. In the wavelength region greater than 400 

nm, the ground state absorption is much weaker than those of the excited states S, and T1. These 

results showed the possibility of using C60 as a broadband optical limiter. J.W Arbogast et al. 

studied the photophysical properties of C60 and observed similar results. They found that the 

photoexcited triplet state  absorption cross-section was stronger than that of the ground state 25. 

In 1992, L.W Tutt and A. Kost reported for the first time the optical limiting performance of C60 

and C70 solution with ns pulse at 532nm26. The performances of these two materials were better 

than other optical limiting materials previously reported.  The performance of C60 is however 

better than C70.  

The dynamic of RSA of C60 in toluene solution with ns and ps pulse from 532 nm Nd:YAG laser 

was studied 27-29. The experimental results agree well with the theoretical simulation based on the 
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5-level system. Y.Wang et al used the following reduced 3-level rate equations to explain their 

experimental data 30: 

 

,      

’      

’      (2.14) 

 

where n1,n2 and n3 are the populations of  the ground state , the first excited singlet state , and the 

first excited triplet state respectively. The light intensity is related to the rate equation through 

the following relations: 

 

      (2.15) 
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where I0 is the peak intensity of the incident laser assuming temporal Gaussian shape, and N is 

the total population . The rate parameters were taken from S. Kuroshima work, summarized in 

Table 2.1.  

 

Table 2.1 Summary of C60 absorption cross-sections and life times 

Absorption cross-section Relaxation time 

σG=2.87×10-18 cm2 τSG=30ns 
 

σS=1.57 ×10-17 cm2 τTG=280μs 
 

σT=9.22×10-18 cm2 τISC=1.2ns 
 

 

According to their study, the experimental results agree well with the RSA model below the light 

fluence of 1 J/cm2. The model fails to predict the experimental results beyond 1 J/cm2. This 

suggests that other processes, such as diffraction, thermal effects, and two-photon absorption, 

may happen. This deviation from 5-level theoretical model at higher fluence was also observed 

by other reports 28, 31.  Nevertheless, their major conclusions were the following:  

(1) The laser pulse width Δt has an effect on the RSA of the C60. When Δt >τISC , the triplet 

state absorption plays a dominant role. However, when Δt <τISC, the singlet state 

absorption dominates.  

(2) The optical limiting of C60 depends highly on the concentration of the solution. The 

higher the concentration the stronger the limiting. However, the transmittance is lower for 

a more concentrated solution.  

In addition to concentration dependence of optical limiting of C60, the optical limiting 

performance of C60 is also solvent dependent 29, 32. For example, C60 in N,N-diethylaniline 
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(DEA) or N,N-dimethylaniline (DMA) have poorer optical limiting performances with ns pulse 

at 532nm than C60 in toluene solution. This is because the ground state absorption is higher in the 

case of fullerene in aromatic amine solution due to the contribution of fullerene-amine charge 

transfer complex. E. Koudoumas explained this solvent dependency in term of local field 

correction imposed by the solvent 32.  

Kost et. al. investigated optical limiting properties of C60 in PMMA matrix33. They found 

that the limiting threshold of the solid film is higher than that of C60 in toluene solution. They 

attributed the better performance of the C60/toluene to nonlinear scattering of the solvent at 

higher fluence. M.P. Joshi et al also studied the optical limiting of C60 in toluene 31. Since the 

intersystem-crossing rate is very fast compared to their ns pulse, they used 2 level systems to 

explain their experimental results. Discrepancy between theoretical model of RSA and the 

experimental data was observed at higher fluence and attributed to other nonlinear loss 

mechanism. Similar findings were also observed by Mc Lean et.al.28 S.R. Mishra et al, later, 

studied the contribution of nonlinear scattering on the optical limiting performance of C60 in 

toluene with ns pulse34. They found that the RSA model fit well with the experimental results at 

lower fluence (~<3J/cm2). At higher fluence, however, deviation was observed. They also 

measured scattering signal at an angle from the sample and found that light scattering increases 

at the higher fluence. As a result, the scattering in C60 solutions at high fluence could be due to 

thermally induced inhomogeneity. Several studies have investigated the effect of different 

functionalization to the optical limiting performance of C60 molecules. Some have reported better 

performance such as organometallic-C60 derivative35, C60-polycarbonate36, and C60-

poly(viniylchloride)37. Poorer performance have also been reported , for example, C60-dimer, 
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poly-C60
38,  and C60-PMMA37.  

While most of the optical limiting studies were done at 532nm for C60, it is good to note 

here that the performance is also wavelength dependent. As mentioned in the beginning of the 

section, C60 is a potential broadband optical limiter due to its wide wavelength range in which 

the absorption cross-section of the excited state is higher than of the ground state. However, 

there are still wavelengths where C60 does not behave as an optical limiter. For example, J.L. 

Saiz et al. investigated the wavelength dependent nonlinear absorption of C60
39. They found that 

at 308 and 534 nm, it behaves as reverse saturable absorber while at 337 nm the behavior 

changes to saturable absorber, which is undesirable for optical limiting application. Perhaps, the 

reason that most of optical limiting work were done with green laser (~532nm) is because the 

large availability of the laser. In addition, human eyes are most sensitive to green light.  

2.2.2.2Phthalocyanines  and metallophthalocyanines 

Phthalocyanines are aromatic macrocyclic compounds typically used as dyes. They have 

been used extensively in optical applications due to their large nonlinearities and fast optical 

response40. Phthalocyanines (Pcs) and their central metal containing forms or 

metallophthalocyanines (MPcs) have shown excellent optical limiting due to their large ratio of 

excited state to ground state absorption. RSA is responsible for their limiting action and their 

behavior can be explained by the five-level system.  Pcs and MPcs cannot be dissolved in 

common organic solvents. As a result, either alkyl or alkoxy substituents attached to their 

peripheral positions are usually used to improve their solubility. Perhaps, the most recognized 

property of Pcs in nonlinear optical applications is their so-called heavy-atom effect. Optical 

limiting mechanisms of Pcs and MPcs on picosecond and nanosecond time scales are different.  
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In picosecond time scales, the excited state absorption is dominated by the excited-singlet state, 

whereas in the nanosecond measurements the triplet state absorption is more prominent. This is 

because the lifetime of the excited-singlet state is in the order of picosecond.  Nevertheless, with 

nanosecond pulses, the number of excited triplet populations is limited due to their slow 

intersystem crossing rate. It was found that the use of the heavy-atom substituents could enhance 

their optical limiting performance. This is because, larger the atomic number of the central metal 

atom, the faster the inter-system crossing rate resulting in more triplet state population 41. Perry 

et al. investigated a series of PcMs with group 3A (Al, Ga, In) and group 4A(Si, Ge, Sn, and Pb) 

metal substituents.  They found that the triplet quantum yield and thus optical limiting efficiency 

is the highest with PbPcs 42. Shirk et al. studied the third order nonlinear susceptibility of the Pt, 

Pb and metal free tetrakis (cumylphenoxy) phthalocyanines using four wave mixing at the 

wavelength of 1064nm 43.  They found that the third order nonlinear susceptibility was 

substantially higher in the case of metal substitutions. PtPe and PbPc have a number of low-lying 

charge transfer states not present in the metal-free compound and this contributed to such 

improvement. However, the Pt substitution is more effective in enhancing the third order 

susceptibility than the Pb substitution and this might be due to the fact that the transition metals 

with d-valance orbitals like Pt might introduce more low lying states than the main group metals.  

MPcs generally exhibit strong absorption in the visible and in the near UV which 

corresponds to their Q-band (absorption at ~700 nm) and B/ Soret band  (absorption at 300-400 

nm) respectively44. For the light wavelength between the B and Q bands, a photon will cause 

electron to make a transition from ground state to either a higher vibrational level of the first 

excited state or to a weakly allowed electronic state where it can later relax to lower vibrational 
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states of the first excited state. Within picosecond time, another photon can excite this electron 

further, resulting in another singlet-singlet transition. Intersystem crossing also plays its role 

here.  It competes with fluorescence and internal conversion, resulting in electrons in the lowest 

triplet state. As a result, triplet-triplet absorption becomes possible. The triplet-triplet absorption 

spectra of MPcs are broadband and independent of the central metal atom.  This absorption , 

centered at around 510nm,  is well overlapped with the window of minimum absorption of  the 

ground-state45 . As a result, MPcs exhibit broadband optical limiting in the range of range 450-

600 nm for laser pulses whose temporal widths equal to or greater than nanosecond. The upper 

limit is set by the triplet lifetime. Due to poor solubility of Pcs and Mpcs, they usually form 

aggregates in solution. This results in fast decay of the upper triplet state due to intermolecular 

interactions. Yu Chen et al. synthesized axially Bridged Pcs in which two Pc molecules are 

joined at their central metal through an oxygen atom 46. They found that (1) axial substitution 

suppress aggregations of Pcs, (2) the excited singlet states lifetime was longer in the dimer than 

in the monomer and (3) the optical limiting efficiency was better in the dimer. Adding ligands to 

the central atom M of MPcs can be a method to control the nonlinear optical properties. The 

effect of  this axial substitutions on the optical properties of indium phthalocyanines and 

naphthalocyanines was studied47. It was found that, with axial ligands, optical limiting efficiency 

was improved. The possible reason for such enhancement might be because of the increase in 

dipole moment perpendicular to the macrocycle of the axially substituted Pcs. They also studied 

the effect of p-trifluoromethylphenyl functional group attached to the central gallium and indium 

atom of MPcs. They observed change in the saturation of the optical limiters and proposed that 

this method could be used to tailor optical limiting properties. Adding one more aromatic ring to 

the four peripherals of Pcs results in the extended π- conjugated forms called Naphthalocyanines 
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(Ncs). Expanding the ring structure from Pcs to Ncs red shift the ground state transmission 

window and the range of effective optical limiting48. This method is promising for tuning the 

optical response of the material. The drawback of this strategy, however, is that Ncs have higher 

tendency to aggregate.  Hanack et al. used axial as well as unsymmetrically peripheral 

substitutions to improve the solubility as well as the optical limiting response 49.  

2.2.2.3 Carbon black suspension 

Carbon black or carbon particle suspensions are polycrystalline carbon with high surface 

to volume ratio suspended in liquid. They can be found in common household item such as black 

ink. The use of carbon black suspension as optical limiter was pioneered by E.W.V. Stryland et 

al.50. The mechanism behind their optical limiting action is nonlinear scattering51. The reduction 

in transmission with these materials is due to rapid heating of the carbon particles. This results in 

subsequent ionization and vaporization, which leads to the formation of rapidly expanding 

microplasmas. These microplasmas act as scattering centers and contributes to the optical 

limiting process52. In addition, bubble formation, also comes into play, which result in more 

nonlinear scattering and therefore more efficient optical limiting action. The microplasma 

process is solvent-independent and concentration-independent. The bubble formation, on the 

other hand, is very solvent-dependent and results in solvent-dependent characteristics of CBS. 

Thermophysical properties of the solvent plays important role in the optical limiting strength of 

CBS 53-54. For example, it is found that optical limiting performance of CBS in solvent with 

lower boiling point is better than that of higher boiling point because of the bubble formation. 

The physical size of the carbon suspensions also plays an important role in their optical limiting 

performance. For instance, Tiwari et al found that CBS in saline has better optical limiting 
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performance than the one in water. They attributed their findings to larger particle size in 

saline55. One of the main advantages of CBS as an optical limiter is that their limiting is 

extremely broadband since the carbon black has black color and the microplasma formation is 

initiated by linear absorption. It however has its own drawbacks. For instance, the optical 

limiting with CBS is only sufficient with ns time scale or longer. This is because the time 

required to form microplasma, which essentially is the scattering center, is in the order of ns. The 

process is therefore, inefficient for ps pulse or shorter. S.C Neto et al. has overcome this 

limitation by the use of optical design56. They devised multipass scheme. In their set up, the short 

laser pulse (ps) is made to return to the same spot it previously passed, in a time late enough for 

the scattering centers to be formed. This results in better limiting performance of CBS with short 

laser pulses. Another drawback of CBS is that the material can be bleached after several pulse 

repetitions. This is because the limiting action arises from changes in physical state of the 

material.  E.W.V Stryland et al used flow cell to overcome this problem. Nevertheless, CBS is 

still one of the most efficient optical limiters to date. 

2.2.2.4 Carbon nanotubes 

Carbon nanotubes are carbon allotropes with tubular shape. They are categorized as 

either single wall or multi wall depending on the number of carbon layers constituted the tube.  

Not only carbon nanotubes have unique mechanical and electrical properties, but also they 

possess strong nonlinear optical limiting. 

In 1998, Sun et al. investigated optical limiting properties of multiwall carbon nanotubes 

(MWNT) suspended in water and dispersed poly(methyl methacrylate) (PMMA) matrix 57. Their 

MWNTs were prepared by an arch discharged method. They found that at 532nm with ns pulses, 
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optical limiting of MWNT suspended in water started at a fluence 10 times higher than that of 

C60 in toluene solution. However, their limiting properties outperformed the C60 solution when 

the fluence is in excess of 1 J/cm2, resulting in a smaller optical limiting threshold.  The limiting 

performance of MWNT in PMMA was much poorer than C60 and MWNT in water. Sun et al. 

concluded that the mechanism behind the optical limiting of MWNT was nonlinear scattering 

since the mycoplasma formation was easier to from in liquid solution than in solid host.  

 At a higher wavelength of 700nm and 1064nm, optical limiting performances of MWNT 

both in water and host solid were better than the C60 solution, rendering the potential of carbon 

nanotubes as broadband optical limiters. The reason that C60 does not have optical limiting action 

at 1064nm is because it has no ground state absorption at that wavelength and thus excited state 

absorption cannot happen. Study done by Chen et al. found that optical limiting of MWNT in 

ethanol was also stronger than that of C60 in toluene and carbon black suspension (CBS) in water 

at both 532nm and 1064nm 58. Due to this broadband response, it was concluded that the superior 

optical limiting action in carbon nanotubes is resulted from nonlinear scattering. Their better 

performance than CBS might come from easier plasma formation and lower electron work 

function. 

In the same year, L Vivien et al. measured optical limiting of single wall carbon nanotube 

(SWNT) suspended in water/surfactant solution59. They compared its limiting performance with 

benchmark limiters such as C60 and carbon black suspension (CBS). At the wavelength of 532nm 

with ns pulses, SWNT, CBS and C60 showed similar limiting behaviors.  Similar to the case of 

MWNT studied by Sun et. al., the onset of limiting action was lower in C60 than those of SWNT 

and CBS suspension for the 532nm wavelength. However, at the wavelength of 1064nm, C60 
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showed no optical limiting whereas both CBS and SWNT showed optical limiting with that of 

SWNT being slightly better than that of CBS.  

  In 2000, Mishra et al. conducted a study to compare optical limiting of SWNT in three 

different suspension which were ethylene glycol, water and ethanol 60. They found that the 

SWNT in ethanol showed the best limiting performance. Since the observed optical limiting 

showed solvent dependency, they concluded that the main mechanism for optical limiting in 

SWNT suspension was micro bubble formation. Optical limiting of CNTs shows solvent 

dependent effect similar to that of CBS61. 

Riggs and co-workers compared optical limiting performance of solubilized SWNT and 

MWNT and compared with their aqueous suspended counterparts 62. The solubilized forms of 

the nanotubes were achieved by polymer functionalization. They found that the solubilized 

nanotubes have poorer optical limiting properties than nanotube in aqueous suspensions and C60. 

They proposed that different nonlinear mechanism, i.e. nonlinear absorption, from the aqueous 

suspension was responsible for the observed decrease in optical limiting performance.  They also 

found that shorter carbon nanotubes suspension had poorer optical limiting performance than 

longer ones and attributed this effect to bundling of the tubes. Jin et al. had observed nonlinear 

refraction of polymer/nanotube composite63.   

Vivien et al. studied the effects of pulse duration and wavelength on optical limiting 

properties of carbon nanotube suspensions, in 200164. They found that, at the same fluence, 

longer pulses resulted in better limiting performance and the results were explained in term of 

duration required to develop micro bubbles. From their study, it can be concluded that nonlinear 

scattering is the main mechanism for optical limiting in carbon nanotubes suspension where the 
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origin of scattering centers are from micro bubble formation at low fluence and carbon 

sublimation at high fluence.  

Later, in 2002, similar to Riggs et al., Liu et al. studied optical limiting properties of 

solubilized MWNT solution and also proposed that optical absorption was behind the observed 

optical limiting with their sample instead of nonlinear scattering 65. O’Flaherty studied the 

nonlinear optical response of polymer-stabilized MWNT dispersion 66. They observed an 

evidence of electronic response of the excited state in their degenerate four wave mixing 

measurement.  

At this point, it can be concluded that the optical limiting of carbon nanotubes depends on 

several factor such as the aspect ratio of the tube, the properties of the surrounding, laser 

wavelength and the pulse duration. Also, from various studies, it is possible that solubilized and 

suspended carbon nanotubes have different nonlinear mechanisms dominating their optical 

limiting performance. It is also possible that in the suspended forms both nonlinear scattering 

and nonlinear absorption exist but the former is more dominant while in the solution form the 

latter mechanism only exists resulting in poorer performance. Nevertheless, it is well accepted 

that the better performance of un-modified carbon nanotubes compared to C60 is contributed by 

the presence of nonlinear scattering.  More recent literatures are focused on modifying carbon 

nanotubes in order to enhance optical limiting performance of the materials. For example, Chin 

et al coated their carbon nanotubes with gold and silver film67. They found that optical limiting 

performance was improved and attributed their observed enhancement to the surface plasmon of 

the metal film. Enhanced optical limiting of Boron doped MWNT when compared to the 

undoped was observed by Xu et al. 68. Izard et al blended carbon nanotubes with a multiphoton 
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absorber , Stillbebe-3, and observed slightly better optical limiting than pure carbon nanotubes69. 

Webster et al. combined RSA carbocyanine dye with nitrogen-doped MWNT70. Their mixture 

was able to limit laser light at 1 order of magnitude lower than unmodified carbon nanotubes. 

However, the limiting behavior disappeared at higher fluence due to saturable absorption. 

Optical limiting of covalently porphyrin-functionalized single wall carbon nanotubes was studied 

by Guo et al. 71.  They observed improved optical limiting efficiency with the materials and 

attributed their finding to electron donor-acceptor property of their nanohybrid system. The 

excited charges were separated by photo induced electron transfer from the porphyrin donor to 

the nanotube acceptor. Similarly, Liu et al. covalently attached single-walled carbon nanotubes 

with porphyrins and also observed enhanced optical limiting effects72. 

2.3 Experimental methods 

2.3.1 Sample Characterizations 

2.3.1.1 X-ray diffractometer (XRD) 

XRD measures the diffraction of X-rays from planes of atom within a material. Since the 

diffraction effect occurs when the electromagnetic wave impinges on periodic structure with 

geometrical variation within the same scale of the wave, X-rays (λ≈0.01-10nm) can gives 

information on the interatomic distances in crystals (≈0.1-0.4nm). To observe the diffraction 

pattern, Braagg’s law must be satisfied. 

     (2.17) 

Most XRD machines in universities uses a monochromatic x-ray source of fixed wavelength λ.  

The Bragg condition is met for different plane spacing d by varying the angle of X-ray incident 

θ. The X-ray radiation is generated by bombarding electron beam at a metal target.  Narrow X-
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ray emission lines are produced as a result. Commonly used metals are Cu Kα and Mo Kα 

emission lines with emission wavelength of 0.15 and 0.07 nm respectively. Alternatively, 

synchrotron can also be used to generate an X-ray continuum.  X-ray diffraction data can be 

operated with two geometries, namely Debye-Scherrer (or transmission) geometry and Bragg-

Brentano (or reflection) geometry, as illustrated in Figure 2.2.  

 

 

Figure 2.2 Schematic illustration of XRD setup with (a) Debye-Scherrer and (b) Bragg-Brentano 
configurations. 

While the former configuration requires low absorbing samples and works with capillary sample, 

the latter can measure highly absorbing samples with relatively flat surface.  The intensity of the 

x-ray diffraction is usually plotted against the diffraction angle 2θ. Whereas the angle that the 

diffraction occurs can tell the information on the atomic spacing of the sample, the width of the 

peak, on the other hand, can give information on the properties of the material itself. For 

example, sample with small crystal domains will have a border peak than the one with larger 

domains. Scherrer equation relates the ordered domain size with the peak width,  Equation(2.18).  

     (2.18)
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where βsize  is the full width at half maximum of the peak at 2θ, K is the shape factor, and τ is the 

domain size. 

 In addition strain can also contribute to peak broadening. The peak broadening due to 

strain ( βstrain)is usually assumed to be governed by the following equation.  

 

     (2.19) 

 

where ε0 is the strain in the material. The total broadening is, therefore, the sum of instrument 

broadening and material broadenings (size and strain). 

2.3.1.2 X-ray photoelectron spectroscopy (XPS) 

XPS is surface-sensitive technique that measures intensities of photoelectrons versus its 

binding energy. The XPS technique is based on the photoelectric effect. Similar to the case of the 

XRD, X-rays are either produced with metal targets or synchrotron.  When X-ray with energy hv 

is incident upon the surface of the sample, its energy is absorbed by an electron. If the energy is 

higher than the summation of the binding energy of the electron Eb and the system work function 

Φ, the electron is emitted from the sample with a kinetic energy Ek , according to the well-known 

Einstein’s formula: 

     (2.20) 

With the use of energy analyzer, emitted electrons with different kinetic energy can be counted.  

The system then plots the intensity of photoelectron versus the binding energy. The obtained data 

can be used to identify element as well as provide information on chemical state of materials, 

composition of the constituents, and valence band structure. XPS peaks in elemental samples, for 
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example metal surfaces occur at the same binding. However, in compounds where there are 

chemical bonds, the peak position can shift. This allows XPS to differentiate different chemical 

states of the sample.  

2.3.1.3 Transmission electron microscope (TEM) and Scanning electron microscope (SEM)  

Electron microscopy uses a beam of a high-energy electron beam created by an electron 

gun to generate variety of signal from a sample. The electron beam, from the electron gun, is 

created by applying high voltage to a filament. The higher the applied voltage, the faster the 

emitted electrons from the filament and therefore the shorter electron wavelength. For example, 

with an applied voltage of 10 KV, the wavelength of the electrons will be approximately 

0.012nm, allowing virtualization of nanometer sized structure.  However, the resolution of the 

microscope does not only depend on the wavelength of the source but also the optics. A typical 

TEM has a resolution as low as 0.1nm whereas the resolution of a typical SEM system is about 

5nm.  Imaging mechanisms in TEM and SEM are different. In TEM system, images are formed 

from scattered primary electron from the samples in transmission geometry. The scattered 

electron results in a shadow on a detecting screen, analogously to taking the X-ray images. As a 

result, thin sample with thickness smaller than electron penetration depth is required.  On the 

other hand, SEM images are formed from secondary electrons. The electron beam is rapidly 

scanned back and forth across the specimen surface. The secondary electron is collected at the 

detector to produce an image. The resolution of the system is determined by the spot size of the 

primary electron on the surface of the sample.  These two systems are powerful tools for imaging 

and investigating nano-meter sized samples. 
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2.3.2  Optical limiting measurement 

Experimental set up for optical limiting characterization is simple. The main goal of the 

measurement is to observe optical extinction of the sample versus energy density or fluence 

(J/cm2) of light excitation. One of the simple ways to do so is to irradiate a sample with a fixed 

laser beam size and then vary the laser energy through the use of polarizers and wave plates. 

However, with this technique, the energy range that can be achieved with common laboratory 

laser is limited and is hard to achieve high measurement resolution.  Thus, another technique, 

where the laser energy is fixed with varied beam size, is commonly used. This can be done with 

either the use of telescope system or focusing lens. Perhaps, the most commonly adopted for this 

type of measurements is the open aperture Z-scan.  This single beam measurement technique was 

first developed for measuring optical nonlinearities by Sheik-Bahae et al. in 199073. With this 

technique, the far field transmittance is measured at fixed laser energy with a varied beam 

diameter. The variation of the beam size and thus the fluence are achieved by using a focusing 

lens and moving a sample along the focusing light path.  The light transmittance is recorded 

versus the sample position. If all transmitted light is collected, information on nonlinear 

extinction can be measured. Figure2.3 illustrates the typical open-aperture Z-scan setup. 

 

Figure 2.3 Schematic diagram of the Z-scan setup 
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In general, with this set up, the thin sample approximation where the sample thickness is much 

smaller than the Rayleigh range is used as well as a single mode Gaussian beam profile is 

assumed. Since the accuracy of the Z-scan experiment relies on the accurate determinations of 

the beam size as well as the beam profile, laser beam characterization of the employed laser 

system is essential.   

The scanning knife-edge technique, developed by Yasuzi Suzaki and Atsushi Tachibana 

in 1975, is a simple way to measure the Gaussian beam diameter74.  In this technique, a razor 

blade is moved/scanned across the laser beam (perpendicular to the beam propagation direction). 

The transmittance of the laser is measured using a detector and plotted against the blade position 

(x). By fitting the obtained data to the following error function, the beam waist can be 

determined. 

𝑃𝑃𝑁𝑁(𝑥𝑥) = 1
2
�1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥−𝑥𝑥0

𝑤𝑤
��    (2.21) 

Where PN(x) is the normalized transmitted laser power, w is the beam radius measured at a 

position where the intensity decreases to 1/e times of its maximum value, and x0 is the center 

position of the beam. An example of plots obtained from knife-edge scan is shown in Figure2.4. 
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Figure 2.4 An example of plots obtained from the knife edge scan. Dots are the experimental 
data and solid line is the theoretical fit. 

Alternatively, one can take a derivative of the function and fit the measurement data with 

a Gaussian profile. However, taking derivatives of data with uncertainties results in amplification 

of the uncertainties and, therefore, an increase in the errors 75. 

To measure the beam profile quality, a M-square factor (M2) is often used. M2 is used to 

describe the deviation of the laser beam from a theoretical Gaussian. In the case of theoretical 

Gaussian beams, M2=1. However, M2 can be greater than 1 for actual laser systems. He-Ne laser 

can have M2~1.1 whereas M2 of high energy laser system can be as high as 3 or 4.  By 

performing the knife-edge scan to determine the beam waist w(z) along a focusing beam path z, 

the M2 can be determined from fitting the data with the following equation:  

 

      (2.22) 

where w0 is the minimum waist and z0=πw0
2/λ is the Rayleigh range. 
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Figure 2.5  M2 measurement data (dots). Solid line is the theoretical fit to Equation (2.2).
 

  

For our particular laser system, it was found that beam profile from the laser had M2 much 

greater than one. As a result, spatial filter is inserted in the set up to clean up the beam, making 

the profile as close to the perfect Gaussian beam as possible.  The spatial filter uses the principal 

of Fourier optics to alter the beam profile. In our set up, a collimated beam from the laser is 

expanded and passed through a circular aperture. The beam is then focused with a focusing lens. 

At the focal plane, an Airy beam profile is produced. A pinhole is used to allow only the central 

bright portion of the profile to pass. Another lens is used to reform the collimated beam.  After 

putting the spatial filter in our set up, the beam quality was improved to M2 ~1, Figure (2.5). 

2.4 Results and discussions 

2.4.1 The effect of interstitial doping on optical limiting of Zn-ferrite 

Iron oxides or ferrites are non-conductive ceramic compounds derived from iron. They 

are magnetic in nature, and are extensively used for magnetic recording, and in the construction 

of inductors, permanent magnets, electrical transformers, and millimeter integrated circuits. Due 
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to their unique nonreciprocal and frequency-selective properties, ferrite devices have played a 

key role in active aperture radar, microwave, and multifunction systems on defense platforms. 

Recently they have been investigated for magnetic resonance imaging (MRI)76, thermal 

activation therapy77, drug delivery78, and biosensing79 applications 

Crystal structures of ferrites can be described as a close-packed assembly of oxygen 

atoms with metal atoms occupying the interstitial sites80, as shown in Figure 2.6 . Spinels are a 

class of ferrites of empirical formula A2+B2
3+O4

2-. One unit cell of a spinel ferrite contains eight 

molecules with twenty-four metal positions. Of these, eight are tetrahedral sites, and the 

remaining sixteen are octahedral sites. In the case of Zn-ferrite tetrahedral sites are occupied by 

Zn2+ ions, and octahedral sites by Fe3+ ions6. This type of structure where divalent and trivalent 

cations occupy tetrahedral and octahedral sites respectively is called normal spinel.  

 

 

Figure 2.6 Schematic representation of a ferrite crystal structure. 
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 The mixed forms of zinc ferrite also have spinel structure. However, the additional 3d-

metal atoms interstitially replace zinc atoms. This results in perturbation in crystal field and 

electronic band structure of the material, which in turn can affect the material optical properties.  

Optical properties of composite materials are related to local field effects. For instance, 

the third order nonlinear susceptibility of nanocomposites is proportional to the fourth power of 

the local field correction factor. Optical nonlinearities in ferrites are relatively unexplored, and 

reports81-82 are rare compared to organics, semiconductors and metals. Modifications in optical 

nonlinearity caused by the inclusion of different transition metals into a spinel ferrite system 

would be of considerable interest owing to applications including optical limiting. Therefore, in 

this section the nonlinear optical properties of nanosized spinel Zn-ferrite (ZnFe2O4), in 

comparison to its Ni and Cu mixed forms, namely, NiZn-ferrite (NiZnFe2O4) and CuZn-ferrite 

(CuZnFe2O4), is studied using the open-aperture z-scan technique. These results are compared to 

those measured in C60/toluene under identical conditions. C60 in toluene was chosen for 

comparison because it is a benchmark material for optical limiting, and is extensively studied in 

the literatures83-85.  
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Figure 2.7 SEM images of ZnFe2O4, NiZnFe2O4 and CuZnFe2O4. 
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Figure 2.8 (a) Absorption spectra of the samples. Inset shows CuZnFe2O4 sample of 52% linear 
transmission. (b) Tauc plots for calculating the bandgap energies. 

According to the SEM Images taken on a Zeiss ULTRA-55 FEG SEM, Figure 2.7, the 

nanoparticles are less than 100 nm in size. Linear absorption spectra of the samples were 

measured using a UV-VIS (Cary 300 Bio) spectrophotometer (Figure 2.8(a)). For these 

measurements, concentrations of approximately 1.4 × 10-4 and 1 × 10-5 mol.l-1 were used for the 

oxide samples and C60 respectively.  According to the absorption spectra, ferrite samples do not 

show definite absorption peaks.  However, assuming direct band gap, the band gap energies can 

be determined from the absorption coefficients (𝛼𝛼 ) near the band edge by using the Tauc 

relation86-87 

     (2.23) 
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where A is a constant that depends on the band structure and the refractive index of the material, 

h is the Planck’s constant, v is the frequency, and Eg is the energy gap. By plotting (αhv)2 versus 

hv , the band gap energy was determined by extrapolation, as shown in Figure 2.8(b). The values 

obtained are 2.3, 2.1, and 2.5 eV, for ZnFe2O4, NiZnFe2O4, and CuZnFe2O4, respectively. 

Samples for optical limiting measurements were prepared by dispersing the nanoparticles 

in 0.005 g.ml-1 solutions of Poly(methyl methacrylate) (PMMA) in toluene. The addition of 

PMMA helps to stabilize the dispersion. Samples were so prepared that each has the same linear 

transmission of approximately 52% at the excitation wavelength of 532 nm, when taken in 1 mm 

path length cuvettes (inset of Figure 2.8(a)). An Nd:YAG laser (Minilite I, Continuum) emitting 

5 ns laser pulses was used as the excitation source. The laser beam was passed through an iris 

aperture and pinhole to obtain a clean Gaussian beam. In the open aperture Z-scan, the laser 

beam is focused using a lens, and the transmission of the sample is measured as a function of the 

relative position of the sample (z) with respect to the beam focus (z=0). A plano-convex lens 

(f=100 mm) was used for focusing the beam. The beam waist at the focal point, as measured by 

the knife-edge method19, is 12±2 𝜇𝜇𝜇𝜇. In the set-up, the sample taken in a 1 mm glass cuvette was 

mounted on a linear translation stage of 15 cm span and 1 micron resolution (Newport, 

ILS150PP). The incident and transmitted pulse energies were measured using pyroelectric 

energy probes (LaserProbe, RjP-735). Z-scans were done at three different incident laser pulse 

energies, viz. 5, 8 and 12 µJ. The open-aperture z-scan curves measured in the samples at the 

incident energy of 12 𝜇𝜇J are shown in Figure 2.9.  

In general, the depth of the valley in the z-scan curve is a direct indication of the optical 

limiting efficiency of a material. From the z-scans it is clear that C60 exhibits the maximum 

dynamic range for optical limiting, as it shows a limiting effect throughout the range of 
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measurement. In contrast, the ferrite samples show an increase in transmission in the low and 

moderate fluence regions, and a deep, efficient limiting at the higher fluences. The limiting 

efficiency of NiZnFe2O4 and CuZnFe2O4 are better than that of C60 at the highest fluences. Even 

though C60 offers protection to the detector for the entire range of input fluences, this may in fact 

become a disadvantage because the sensitivity of the protected detector is reduced even for those 

input fluences which are lower than its damage threshold. Thus, from an application point of 

view, the ferrite samples have a unique advantage: when properly designed they can retain or 

even increase the sensitivity of a detector while it is in its safe operating area, and switch to 

sudden limiting when the input fluence exceeds the detector damage threshold.  

 

Figure 2.9 Open aperture z-scans of the samples. Unlike C60 which shows optical limiting 
throughout, ferrite samples exhibit absorption saturation at the lower fluences, with a relatively 
sharper onset of limiting in the higher fluence region. Solid lines are numerical fits to the 
measured data obtained using Equation 2. Inset shows photographs of (a) direct, and (b) 
transmitted, laser beams in the far field. 

The normalized transmission of the samples T(z) can be fit by numerically solving the 

following equation:  
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  (2.24) 

where βeff is the effective nonlinear extinction coefficient. However, considering the occurrence 

of kinetic absorption saturation in the ferrite samples, the linear absorption α is rewritten as 

satI
I

+
=

1

0a
a

      

(2.25) 

where α0 is the linear absorption coefficient and Isat is the saturation intensity. Numerical fits 

obtained to the experimental data are shown in Figure 2.9. In the limited range of pulse energies 

used, there was no dependency of the nonlinear parameters on the energy.   

 

 

Figure 2.10 Optical limiting performance of the samples. (a) Output fluence, and (b) normalized 
transmission, plotted against input laser fluence. Lines connecting data points are guides to the 
eye.  

 

For drawing the optical limiting curves, we note that at any given position z, the energy 

density (fluence) of a spatially Gaussian beam can be calculated from the laser pulse energy and 
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the beam radius, given in Equation (2.22). From the measured values of the energy transmitted 

by the samples for different values of z, the variation of the output fluence with input fluence can 

be determined. Figure 2.10(a) shows the output fluence, and Figure 2.10(b) shows the sample 

transmission, plotted against the input fluence. The optical limiting thresholds Ft (input fluence 

at which the transmission drops to 50% of the linear transmission) are 1.16, 1.49, 1.60 and 2.23 

J.cm-2 for C60, CuZnFe2O4, NiZnFe2O4, and ZnFe2O4 respectively. In comparison, the limiting 

thresholds of suspensions of C60, carbon nanotubes and carbon black, prepared with 

approximately 50% linear transmission at 532 nm, for 7 ns laser pulses, are reported to be 1.0 

J.cm-2, 1.7 J.cm-2, and 1.7 J.cm-2 respectively58.  

The observed enhancement in optical limiting efficiency when Cu or Ni is incorporated 

into Zn-ferrite can be explained using a mechanism involving self-trapping of charge transfer 

states. Optical response of 3d metal oxides is dominated by the charge transfer (CT) transition 

between 2p orbital of oxygen and 3d orbital of metal21. The relaxation of the optically excited 

CT state is governed by a cumulative effect of both electronic and ionic terms associated with the 

displacement of electronic shells and ionic core respectively88. In a CT unstable system, self-

trapping of the CT excited state can occur. This self-trapping mechanism is strongly governed by 

the lattice strain89. In the case of nickel and copper zinc ferrite, introduction of Ni2+ and Cu2+ ion 

into the Zn-ferrite structure can create a distortion in the crystal field and induce strain within the 

structure. It may be noted that these added ions occupy either the tetrahedral site or octahedral 

site of the structure depending upon whether the fabrication method favors normal spinel or 

inverse spinel. The induced strain enhances self-trapping of the CT states, which results in an 

increase in excited state lifetime, and therefore the excited state absorption coefficient. 

Considering also the fact that thermal scattering is not significant in the samples, it can be 
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concluded that optical limiting observed in these ferrites is related to a reverse saturable 

absorption (RSA) mechanism involving excited electronic states. 

2.4.2 Size-dependent optical limiting of gold nanoparticles 

Metal nanoparticles have attracted considerable interest since historical time as color 

substances in stain glasses and art works.  However, the physics behind their fascinating bright 

colors was only understood after the experimental observation of the surface plasmon. Today, 

there are numerous research activities dealing with metal nanoparticles due to their unique 

properties.  It has been found that metal nanoparticles exhibit two interesting size regimes, 

namely nanoclusters and nanocrystals.  While the former has their size ranging from sub-

nanometer to about 2 nm, the size of the latter is from approximately 2 to 100 nm. The number 

density is, however, ~59 atoms/nm3 in both regimes for gold, owing to the similar atomic 

packing densities. Au clusters of the order of the de Broglie wavelength of conduction electrons 

(∼ 0.5 nm) exhibit discrete energy levels and molecule-like HOMO-LUMO transitions, while 

larger Au nanoparticles (>5 nm) exhibit quasi-continuous electronic bands. In general, gold 

clusters of less than 3 nm size lose their bulk-like electronic properties, and are believed not to 

support collective plasmon excitation.90-91 

The evolution of the optical spectrum of gold clusters in the quantum size regime (up to 

∼ 300 atoms and ∼ 2 nm cluster diameter) is a strong function of size, and therefore, nonlinear 

optical properties in this size regime are worthy of investigation. Ultra-small clusters exhibit a 

spectacular optical behavior that is fundamentally different from that of larger plasmonic 

nanocrystals. Transition from the cluster to the nano-crystalline state is significant, as it raises 

fundamental questions regarding the evolution of discrete electronic states towards a rather 
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complex band structure. Several studies have been done on the effect of varying size and shape 

of metal nanoparticles92-95 .For example, it has been found that two-photon absorption at 800nm 

cross-section increases as the size of ultra-small gold clusters increases from 1.1 nm to 4.0 nm96. 

Further studies done by the same group also show abrupt change in the optical properties 

(fluorescence, transient absorption, two-photon absorption) around 2.2 nm, which is close to the 

calculated critical size for quantization97. As a result, it will be interesting to investigate the 

optical limiting of metal nanoparticles as they evolve from nanoclusters to nanocrystals. In this 

section, optical limiting properties of recently developed atomically precise molecular gold 

clusters are measured and the results are compared with that of larger Au nanocrystals of 4 nm 

size.  

All nanoclusters used in this study were synthesized by Professor Rongchao Jin’s group 

according to a size-focusing methodology98. The samples under study are Au25(SR)18, 

Au38(SR)24, and Au144(SR)60, where R=CH2CH2Ph.  The numbers 25, 38 and 144 represent the 

precise number of Au atoms in the cluster. 

Electrospray mass spectrometry data of the samples (Figure 2.11) reveals that the clusters 

are monodispersed with high precision in the number of atoms in each cluster99 . The absorption 

spectra of Au25 and Au38 exhibit clear molecular features, while these are less distinct in Au144. 

The smallest sample Au25(SR)18 has the metal core of approximately 0.9 nm in diameter. 

Absorption spectrum and a TEM image of the Au nanocrystals (purchased from Fluka) are 

shown in Figure 2.12. The sample exhibit SPR absorption peak at around 530nm. From its TEM 

image, the mean size is about 4nm. 
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Figure 2.11 UV-Vis absorption spectra and Electrospray mass spectrometry (ESI-MS) data 
(insets) of Au25(SR)18 (counterion: tetraoctyammonium, TOA+),  charge-neutral Au38(SR)24, and  
charge-neutral Au144(SR)60, respectively. In all cases, R=CH2CH2Ph.  
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Figure 2.12 a) Optical absorption spectrum of Au nanocrystals. Inset shows the TEM image and 
polydispersity histogram, b) Representative schematic of the Z-scan set-up used for nonlinear 
optical measurements. 

Nonlinear transmission measurements were carried out using the open aperture Z-scan 

technique. Samples for measurements were prepared by dispersing the nanoclusters and 

nanocrystals in toluene. A Nd:YAG laser (Minilite I, Continuum) emitting 5 ns laser pulses at the 

second harmonic wavelength (532 nm) was used for excitation. Each sample was so prepared 

that it had a linear transmission of 25% in a 1 mm cuvette at this wavelength. The beam was 

focused using a plano-convex lens (f=100 mm), and the beam radius at the focus (w0) was 

measured to be 13 microns by using the knife-edge method. The laser pulse energy was 15 

microjoules.  The z-scan data are shown in Figures 2.13. The sample transmission against input 

laser fluence calculated from the z-scan data are presented in Figure 2.14. 
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According to the z-scan curves, Au25 and Au38 exhibit valley-shaped curves, whereas Au 

nanocrystals show a central valley with two symmetric peaks on the sides, with is a signature of 

the absorption saturation. The nanocrystals, on the other hand, show significant absorption 

saturation occurring in addition to nonlinear absorption.  

 

 

Figure 2.13 Open-aperture z-scans measured in the Au clusters and nanocrystals. (a) Au25, (b) 
Au38, (c) Au144, and (d) Au nanocrystals (~4 nm). Samples are excited using 5 ns laser pulses at 
532 nm. Linear transmission of all samples is 25% at this wavelength. As seen from the figures, 
optical transmission is a function of sample position with respect to the laser beam focus (z=0). 
Tnorm is the measured transmission normalized by the linear transmission of the sample. Solid 
curves are numerical fits to the experimental data, obtained using Equation 4. The valley shaped 
curves of Au25 and Au38 indicate pure optical limiting behavior, while the humps flanking the 
valley in Au144 signify the onset of saturable absorption. Absorption saturation is significant in 
the Au nanocrystals, as indicated by the strong peaks.  
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From Figures 2.13 and 2.14, it is obvious that in Au25 and Au38 an optical limiting 

behavior is seen throughout the incident fluence range, while in Au144 the limiting is preceded by 

weak absorption saturation in the lower fluence region. On the other hand in the Au nanocrystals 

the limiting is preceded by prominent absorption saturation. A nonlinear absorption coefficient α 

(I) can be modelled by Equation (2.25). The transmitted intensity for a given input intensity can 

be calculated by numerically solving the corresponding nonlinear propagation equation of 

Equation (2.24). 

Table 2.2 tabulates the Is and βeff For the samples. The βeff increases with size in the 

cluster regime. While Is is too high to be effective in Au25 and Au38, it has a value of 1.5 × 1012 

W/m2 in Au144. In the nanocrystal regime, the Is value is about the same but the βeff value drops 

by a factor of 5, which results in the prominent absorption saturation exhibited by the Au 

nanocrystals. The optical limiting thresholds Ft (input fluence at which the transmission drops to 

50% of the linear transmission) are found to be 4.0  J/cm2 for Au25, and 3.0  J/cm2 for both Au38 

and Au144. It is good to note here that optical nonlinearity in metal nanoparticles is ultrafast in 

nature, occurring in the range of picoseconds/femtoseconds100.  

Results given in Table 2.2 are in agreement with the previous study on two-photon 

fluorescence 101. It was found that two-photon cross section increases with size in the cluster 

regime.  
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Figure 2.14 Nonlinear transmission in the Au clusters and nanocrystals, calculated from the z-
scan data using Equations 1 and 2. (a) Au25, (b) Au38, (c) Au144, and (d) Au nanocrystals (~4 nm).  
Saturable absorption sets in as the cluster size increases, and becomes prominent in the 
nanocrystals.  

Table 2.2 Effective nonlinear absorption coefficient (βeff) and saturation intensity (Is) calculated 
for the samples. 

Sample Linear 
Transmission 

Is (W/m2) βeff (m/W) 

Au25 25% NA 2.0 × 10-10 
Au38 25% NA 3.5 × 10-10 
Au144 25% 1.5 × 1012 7.5 × 10-10 
Au NCs (5 nm) 25% 2.2 × 1012 1.5 × 10-10 

 

The Au25(SR)18 and Au38(SR)24 (R=CH2CH2Ph) nanoclusters exhibit unique optical properties, 

as manifested in their highly structured multiple-band optical absorption spectra. Unlike metallic 

Au nanocrystals with quasi-continuous band structure, Au25(SR)18 and Au38(SR)24 exhibit 
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discrete electronic energy levels and possess HOMO-LUMO. A precise correlation of the Au25 

structure with its calculated optical absorption properties has been obtained, with density 

functional theory calculation. The theoretically calculated spectrum is in well agreement with 

measurement102. Even though spectral structure is usually attributed to quantum confinement 

effects, it may be noted here that, from time-dependent DFT calculations, Aikens et al. has 

suggested ligand-field splitting as a cause for the multiple peaks103. According to their study the 

absorption spectra are the result of complex interactions between the core and ligand and cannot 

be separable into two independent contributions. The Kohn-Sham orbital energy level diagram 

for Au25 is shown in Figure 2.15. The first excited transition occurring at 1.52 eV is the LUMO 

 HOMO transition, which is essentially an intraband (spsp) transition. The peak at 2.63 eV 

is caused by mixed intraband (spsp) and interband (spd) transitions, and that at 2.91 eV 

arises mainly from an interband transition (spd).  
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Figure 2.15 (A) The Kohn-Sham orbital energy level diagram calculated for the model 
compound Au25(SH)-

18, (B) The theoretical absorption spectrum of  Au25(SH)-
18 102 

 The present results can be explained on the basis of excitation of the SPR.  In one 

extreme or the case of nanocrystals, strong laser excitation can result in absorption saturation (or 

bleaching) at the SPR wavelengths104 .  As a result, there are two competing processes in this 

system, namely the two-step photon absorption and plasmon excitation, which results in the 

observed nonlinear transmission behaviors. In another extreme or the case of small nanoclusters, 

the same SPR can no longer be supported by the system and therefore only nonlinear absorption 

exists. The sample with their size between the two extremes can show the evolution of the 

behavior from pure nanocluster to nanocrystal responses. In addition, Au nanocrystals show the 
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lowest βeff value (Table 1), which indicates that the two-step absorption is weaker in the 

nanocrystals compared to the nanoclusters.  

This study shows that ultra-small Au clusters are good optical limiters, with a limiting 

threshold close to that of the benchmark limiter C60. This is due to the fact that unlike Au 

nanocrystals, the molecular Au clusters (e.g. Au25 and Au38) do not possess a SPR band, and 

therefore do not suffer absorption saturation when excited at the SPR wavelength region.  Also, 

the nonlinear absorption coefficients are higher in the case of nanocluster. The absence of 

absorption saturation in the Au clusters makes them more applicable for optical power limiting 

applications, in comparison to the larger Au nanocrystals.  

2.4.3 Optical limiting of fluorinated graphene oxide 

Graphene oxide was first discovered in 1859 by Benjamin Brodie though the exfoliation 

of graphite oxide.105 GO is an electrically hybrid material between the conducting π-states of sp2  

carbon sites, which contribute to the bandgap formation of the material, and the σ-states of sp3  

carbon sites. The GO bandgap can be tuned by adjusting the ratio of sp2 carbon atoms to sp3 

carbon atoms via chemical reduction process. Chemical reduction can transform GO from an 

insulator to semiconductor and also to a metal-like state, in the form of graphene. While 

graphene possesses excellent electrical properties, mechanical flexibility, optical transparency, 

thermal conductivity and low thermal expansion coefficient106-110, its precursor GO has 

interesting properties of its own. For instance, unlike graphene, GO possesses several oxygen 

containing hydroxyl, epoxide, diol, ketone and carboxyl functional moieties. These functional 

groups allow GO to interact with a wide array of materials, both organic and inorganic, which 

results in the high processability of GO. Due to their versatility, functionalized-GOs have 
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become promising candidates for various applications such as instance drug delivery111-112, 

magnetic resonance imaging (MRI)113,  memory devices114, supercapacitor115-116,  and 

optoelectronic devices 117-118.Similarly, the optical limiting property of GO is found to be greatly 

enhanced with organic as well as inorganic decorations119-121. 

Fluorination of carbon nanomaterials has many advantages due to the unique nature of 

the carbon-fluorine (C-F) bond. For instance, the C-F bond demonstrates excellent oxidative and 

thermal stability122. Due to high electronegativity of Fluorine atoms, C-F bonds have high 

polarity and low surface free energy. Partially fluorinated GO (F-GO) can even be paramagnetic 

due to the presence of localized F-bonds. F-GO will be an attractive material in many 

applications such as super amphiphobic surfaces, multimodality imaging and photonic 

devices123. In this section we investigate effect of fluorination on the optical limiting 

performance of graphene oxide with 5 nanosecond (ns) laser pulses at the wavelength of 532 nm. 

 

Figure 2.16  (a) XRD pattern of GO, F-GO and HF-GO and (b) schematic representation of F-
GO. 
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All Graphene oxide (GO) based samples were synthesized using an improved synthesis 

route according to the literature124. In the case of pure GO, graphite powder (Bay carbon, Inc. 

SP-1 grade 325 mesh) is used as a raw material, while for the synthesis of fluorinated graphene 

oxide, fluorinated graphite polymer (Alpha Aesar) is used as a starting raw material. Figure 

2.16(a) shows the XRD of GO, F-GO and highly fluorinated graphene oxide (HF-GO). XRD 

pattern indicates an increased lattice spacing for GO (~6 Å) compared to pristine graphite 

powder (~ 3.3 Å). This observation suggests the exfoliation of graphite. F-GO is hydrophilic 

similar to GO, whereas highly fluorinated GO (HF-GO) is relatively hydrophobic123.  A 

schematic representation of F-GO is given in Figure 2.16(b). The increase in hydrophobicity of 

HF-GO can be attributed to the low surface energy of C-F bonds. Both F-GO and HF-GO have 

well-defined absorption peaks (Figure 2.17). The absorption spectrum of FGO is almost identical 

to GO, showing a peak at 225 nm which corresponds to the π→ π* transition. The weak shoulder 

at ~300 nm is due to the n→ π* transition of the carbonyl bonds125. HF-GO shows no such 

shoulder at 300 nm, while showing a slightly less intense peak at 220 nm. 
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Figure 2.17  (a) UV-Vis absorption spectrum of F-GO and (b) HF-GO. The high absorbance in 
the short wavelength region indicates the possibility of RSA upon optical irradiation at 532 nm.  

 

Optical limiting of GO/water, F-GO/water, and HF-GO/NMP dispersions were measured 

using the open aperture Z-scan technique. All samples were prepared to have a linear 

transmission of 50% at the excitation wavelength of 532nm. A Q-switched, frequency-doubled 

Nd:YAG laser (Minilite I, Continuum) was used to generate 5ns (FWHM) pulses at this 

wavelength.  The laser output was spatially filtered to obtain a neat Gaussian beam profile, and 

then focused using a 200mm focal length plano-convex lens. The beam radius at the focus (w0) 

was measured to be 30±2 microns. The sample was taken in a 1mm path length cuvette and 

translated along the axis of the laser beam (z-axis) by a linear translation stage (Newport, 

ILS150PP). By fixing the input laser pulse energy (Ein) at a suitable value and translating the 

sample along the laser beam near the focal region, the incident laser fluence on the sample 

(Fin(z)) was varied. Maximum fluence is attained at the beam focus (z=0). The transmitted 

energy for different sample positions (z) was measured using a pyroelectric energy probe 

(LaserProbe, RjP-735). By mounting a photodiode near the sample at an angle to the beam axis, 
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linear and/or nonlinear light scattering was also measured. The normalized transmission (Tnorm.) 

was then calculated by dividing the measured transmission with the linear transmission of the 

sample. The obtained z-scans curves for an input energy of 30 µJ are shown Figure 2.18(a). All 

samples show an optical limiting (OL) property since the transmission decreases with increase in 

input fluence. The plot of sample transmission versus input fluence is shown in Figure 2.18(b), 

and that of output fluence versus input fluence is shown in Figure 2.18(c). 

Results reveal that the optical limiting efficiencies of all fluorinated graphene samples are 

significantly higher than that of GO in water. The optical limiting threshold (input fluence at 

which transmission decreases to 50% of the linear transmission due to the nonlinearity) of F-

GO/water and H-FGO/NMP are at 0.8 and 1.5 J/cm2 respectively.  The optical limiting 

thresholds of fluorinated GO samples are better than that of benchmark materials like C60 in 

toluene and carbon black in water58. When comparing with the threshold values of other well-

known optical limiters such as single-wall carbon nanotubes in ethanol [~1 J/cm2 with 42% 

linear transmission]60 and multiwall carbon nanotubes in water [~0.9 J/cm2 with 50% linear 

transmission]57, our F-GO/water dispersion has lower limiting threshold. The limiting threshold 

of GO could not be measured due to its relatively lower limiting efficiency. According to Xio-

Liang et.al126, the limiting threshold of GO/water (49% linear transmission) is at 10.2 J/cm2, for 

ns pulses at 532nm, which is an order of magnitude higher than the thresholds of fluorinated GO 

samples. The optical limiting properties of F-GO in N-methyl-2-pyrrolidinone (NMP) were also 

studied to find out the solvent contribution to the optical limiting performances when comparing 

F-GO/water to HF-GO/NMP dispersions. It was found that, at 50% linear transmission, F-GO in 

NMP also had better optical limiting efficiency than HF-GO in NMP.  
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The optical limiting efficiency of F-GO in NMP is lower than that in water. Such lower 

optical limiting efficiency can be attributed to inferior dispersibility of F-GO in NMP. Since F-

GO is polar, it forms a better dispersion in water than in NMP.  On the other hand, HF-GO, 

which is hydrophobic, only forms good dispersion in NMP. Nevertheless, FGO in NMP still has 

better optical limiting performance than HF-GO in the same solvent. The scattering signals are 

also given in Figure 2.18(d).  The boiling points of water and NMP are 373K and 476K, and 

their enthalpies of vaporization at room temperature are 40.62 kJ/mol and 44.7 kJ/mol 

respectively127.  The scattering signal amplitudes are equally high in both FGO/water and 

FGO/NMP dispersions, indicating that solvent contribution to nonlinear scattering by thermally 

induced microbubbles is nearly the same in both samples. 
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Figure 2.18 (a) Measured Z-scan data. All samples have the same linear transmission of 50%. (b) 
Variation of sample transmission with input fluence. (c) Variation of sample output fluence with 
input fluence (d) Variation of scattering signals with input fluence .  

 

The measured open-aperture z-scan curve was fit to the Equation(2.24) and plotted in the 

Figure 2.18(a). The fit nonlinear absorption coefficients are, 1.40, 0.7 and 0.35 nm/W for F-

GO/water, HF-GO/NMP, and GO/water respectively.   

In materials, optical limiting behavior arises from nonlinear absorption and/or nonlinear 

scattering. Processes such as two-photon (or multi-photon) absorption and excited state 

absorption (also known as reverse saturable absorption - RSA) belong to the class of nonlinear 

absorption (NLA). Nonlinear scattering (NLS) in dispersions/solutions in the context of optical 

limiting refers to the scattering of photons from refractive index variations, microbubbles and 
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microplasma, which are caused by laser-induced heating of the medium. In absorbing media like 

carbon based materials optical limiting of ns laser pulses is caused mostly by RSA and/or NLS. 

For example, carbon particle suspensions (CS) show strong optical limiting due to NLS caused 

by thermally induced microplasma50, whereas fullerenes (C60) exhibit robust limiting due to large 

RSA29, 128-129. In addition, multiwalled and single walled carbon nanotubes (CNTs) exhibit 

broadband optical limiting due to NLS57, 59  while GO exhibits limiting due to RSA130. 

By measuring the scattered light from our samples, it was found that all fluorinated 

graphene oxide samples exhibit strong nonlinear scattering whereas there is no nonlinear 

scattering present in GO. This finding suggests that there is a significant enhancement in 

nonlinear scattering due to the presence of C-F bonds in the fluorinated samples. This 

enhancement, as a result, contributes to better optical limiting properties.  

Comparing the z-scan and scattering data, it can be seen that, for fluorinated graphene 

oxide samples, the onsets of the optical limiting start earlier than the onsets of nonlinear 

scattering. For example, optical limiting of F-GO in water has an onset of optical limiting at 

about 0.05 J/cm2 whereas its nonlinear scattering appears only later, at around 0.14 J/cm2. This 

observation suggests that the optical limiting action of fluorinated graphene oxide in the ns 

excitation regime is not exclusively due to nonlinear scattering but also the nonlinear absorption. 

X. F. Jiang et al. reported significantly enhanced nonlinear absorption of GO upon partial 

reduction131.  This enhancement in nonlinear absorption was attributed to localized sp2 domains. 

Upon further reduction of GO, larger sp2 domains are formed. The interconnectivity of the sp2 

domains results in increased nonradiative recombination rates and thus reduces its optical 

limiting efficiency. As-prepared GO exhibited inferior nonlinear absorption than partially 

reduced GO due to its lower number of localized sp2 domains.  
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Figure 2.19  XPS spectra of (a) GO, (b) F-GO, and (c) HF-GO 

In the case of fluorinated graphene oxide, the interaction of fluorine atoms with the 

graphene oxide layers is accomplished by covalent attachment of fluorine atoms to the layers.  

This interaction is accompanied by a change in the hybridization of the 2s and 2p valence 
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electron states of the carbon atoms from the trigonal (sp2) to tetrahedral (sp3) hybridization due 

to the formation of the additional σ bond between carbon and fluorine atom. The large difference 

between the local band gaps of the sp3 and sp2 sites creates band edge fluctuations, with the sp3 

sites acting as tunnel barriers between the π states of sp2 clusters.43 These tunnels create strongly 

localized isolated sp2 domains which act as defects in the electronic band. Therefore, similar to 

partially reduced GO, it is possible that larger nonlinear absorption in the fluorinated samples is 

due to increase in the number of localized sp2 domains, which are created by the sp3 attachments 

of F atoms.  However, XPS analyses, Figure 2.19, revealed that the ratios of number of sp2 

carbons to sp3 carbons in our GO and F-GO are similar, suggesting that there are similar 

numbers of sp2 domains in both samples. This finding suggests that the presence of sp3 defects 

created by highly electronegative atom such as fluorine promotes larger nonlinear absorption and 

better optical limiting than the sp3 sites formed with other functional groups in GO.  On the other 

hand, the ratio of sp2 to sp3 carbons of HF-GO is much lower than both of FGO and GO. The 

lower nonlinear absorption of HF-GO when compared to F-GO can be attributed to the decrease 

in number of localized sp2 domains. This is analogous to the case of inferior nonlinear absorption 

of as prepared GO compared to partially reduced GO reported previously131. Furthermore, the 

fact that HF-GO is a stronger nonlinear absorber than GO, even though it has lower number of 

sp2 to sp3 carbons, confirms the significance of fluorine sp3 sites in the enhancement of nonlinear 

absorption and thus optical limiting.  
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3 PHOTOACOUSTIC DETECTION OF OPTICAL 

NONLINEARITIES† 

3.1 Motivation 

It has been evident in Chapter2 that when a material contains both nonlinear scattering 

and nonlinear absorption, performing only conventional Z-scan measurement could not separate 

or differentiate the two contributions.  This is because, transmission-based measurements, like Z-

scan, both nonlinear absorption and scattering contribute to reduced transmission. In the case of 

F-GO, another photodetector mounted at an angle to the sample was needed to detect the 

scattering signal and the difference in the onsets was used as an evidence of the presence of the 

two mechanisms.  However, what if the sample under consideration had the same onsets of both 

contributions? It would be impossible to make any conclusion regarding the underlying 

mechanism for the sample’s optical limiting action. Resorting to performing additional 

measurements with shorter laser pulse or transient measurement might be able to draw some 

conclusions. Unfortunately, not every lab is equipped with required components to set up the 

measurements and their setups are not quite simple. In this section, another detection scheme, 

namely photoacoustic technique, for detecting optical nonlinearities is studied.  The focus of the 

study is to observe the signal characteristics obtain with acoustic transducer integrated with a 

conventional Z-scan measurement.  The system will be tested with nonlinear absorbing as well 

as nonlinear scattering samples. 

† The work presented in this chapter are extensions of  Chantharasupawong, P.; Philip, R.; Thomas, J., Simultaneous 

Optical and Photoacoustic Measurement of Nonlinear Absorption. Applied Physics Letters 2013, 102, 041116. 
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3.2 Theoretical background 

Photoacoustic  (PA) or optoacoustic effect was first discovered by Alexander Graham 

Bell in 1880, when he observed an audible sound from a tube attached to a cell enclosing a solid 

sample that was irradiated with modulated sunlight. The PA effect has found applications in 

various fields of physics, chemistry and biology. Those applications include material 

characterizations, spectroscopy, sensing, and imaging.  In PA spectroscopy, similar spectral 

profile to optical absorption spectrum is obtained. However, unlike the optical method, the PA-

based technique allows measurement of any type of samples whether it is crystalline, amorphous, 

or powder. This is because the technique is based on the fact that the absorbed light is converted 

to sound.  While scattering samples are problematic with conventional spectroscopic techniques, 

PA spectroscopy has no difficulties in measuring such samples. In addition, it has been shown 

that optical absorption data can be optioned with PA spectroscopy even with opaque samples.  

PA generation is generally due to photothermal heating effect. After optical absorption, 

whole or in part of absorbed light is converted to heat in the sample through nonradiative 

deexcitation. Other deexcitaion mechanisms are also possible namely luminescence, 

photochemistry and photoelectricity. These deexcitation branches compliment the heating branch 

such that the sum of their ratio equals to unity. The most common mechanisms PA generation is 

by thermal expansion of the sample. However, other mechanism is also possible such as 

electrostriction, photochemical changes, gas evolution or boiling, and plasma formation. PA 

generation efficiency in the case of electrostriction is usually small and negligible in the order of 

10-12, whereas breakdown mechanism can be as large as 30%.  However, for stable and 

chemically inactive samples, thermal expansion is the dominant mechanism.  
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To generate PA signal, which is essentially a longitudinal wave, intensity modulation of 

the light source is required to propagate sound. This requirement can either achieved by the use 

of frequency -chopped continuous or pulse laser source. In the case of chopped continuous laser 

source, the modulation frequency is in the range of 1-1000 Hz, and the acoustic propagation 

distance is much larger than the sample cell. As a result, boundary conditions such as boundary 

reflection and thermal diffusion effect are important and cannot be neglected when analyzing PA 

signal. On the other hand, in the case of pulse laser source or pulse PA generation, the acoustic 

propagation distance is much smaller than the sample and therefore, in most cases, PA pulse is 

independent of the boundary reflections. Here, we limit our discussion to only the pulse PA 

generation since ns laser will be used as a light source.  

PA generation can be classified as either direct or indirect. In the former, acoustic wave is 

generated in the sample where the excitation is absorbed. In the latter, however, wave is 

generated in the coupling media due to acoustic transmission from the sample. Theories for PA 

generation are briefly presented in the following section. More detailed discussion can be found 

in the literatures132-135.   
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3.2.1 Direct PA generation 

 

Figure 3.1 Schematic illustration of direct PA measurement 

3.2.1.1 Semi-quantitative theory for small laser radius (Rs<vτL) 

The geometry of direct PA generation is illustrated in Figure 3.1. The laser radius Rs is 

considered small when it is smaller than the acoustic propagation distance vτL where v is the 

sound velocity and τL  is the temporal width of the laser. In this limit, the acoustic source has a 

radius R= vτL which is larger than Rs .  The source expansion immediately after the laser pulse is 

given by the following thermal expansion equation:  

TlRlRlRR ∆=−∆+ 222)( βπππ      (3.1) 

where l is the length of the PA source, ΔT is the change in temperature due to non-radiative 

decay, and β is the thermal expansion coefficient. The temperature rise due to laser pulse is 

governed by the following heat capacity equation: 

     
(3.2) 
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where Cp is the specific heat, α is the absorption coefficient, E is the laser energy, and ρ is the 

density. In the case of cylindrical acoustic wave, the peak displacement Us(r) at a distance r 

away from the source is given by: 

      (3.3) 

 and the PA peak pressure at position r is related to the peak displacement by: 

      (3.4) 

Combining equation (3.1)-(3.4) gives the following equation for the peak pressure amplitude at 

the detector with the distance r away from the source.  

    
 (3.5) 

3.2.1.2 Semiquantitative theory for large laser radius (Rs>vτL) 

In this case, it means that the source does not have time to expand isobarically after the 

laser pulse. As a result, the pressure increase near the source surface is governed by the 

following bulk modulus equation: 

     (3.6) 

where K is the bulk modulus. Again, the peak acoustic response at the distance r away from the 

source is given by. 
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     (3.7) 

3.2.2 Indirect PA generation 

In the case of the indirect generation, coupling liquid or gas is used and the detector is 

positioned to monitor acoustic in the coupling media. A thermal piston model is used to describe 

this indirect PA generation. The model geometry is illustrated in Figure 3.2.  

 

Figure 3.2 Schematic illustration of the thermal piston model 

The distributed heat is governed by the thermal diffusion equations135: 

for –l<x<0    (3.8) 

for –l-lb<x<-l      (3.9) 

for 0<x<lf       (3.10) 

where T is the temperature; I(t) is the modulated light intensity; η is the nonradiative decay 
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efficiency and αi s the thermal diffusivity of the sample (i=s), front material (i=f) and back 

material (i=b). By solving equations (3.8)-(3.10), temperature profile T(x,t) can be obtained. By 

relating the heat change with appropriate thermodynamic equations, one can derive pressure 

wave distribution.  Empirical estimation of the peak pressure can also be done.  If we assume 

that there is communication layer between the sample and its coupling medium within a heat 

diffusion length of μs. The absorbed light energy can be converted to temperature rise at the 

surface through a heat conduction equation of the form: 

      (3.11) 

where I0 is the peak intensity of I(t). The produced heat is then coupled to an adjacent volume of 

liquid with an active volume of : 

      (3.12) 

where w is the laser beam waist and sg is the effective thermal length of the coupling medium. 

Using an ideal gas law, the change in the active volume due to temperature is: 

      (3.13) 

This volume fluctuation can cause a pressure fluctuation at the detector.  Assuming the process is 

adiabatic, the pressure change is given by:  

     (3.14) 

where γ is the adiabatic index and V0 is the total coupling medium volume. Combining Equations 
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(3.11)-(3.14),  the PA amplitude ΔΡ can be obtained as: 

    (3.15)
 

From Equation (3.15), the normalized PA signal ΔΡ/I0 is proportional to the sample absorption 

coefficient α. Thus, determining absorption coefficient from PA detection is possible. 

3.3 Experimental methods 

3.3.1 Simultaneous measurements 

From section 3.2, it has been found that PA generation is proportional to the absorption 

coefficient. Therefore, extracting absorption properties of material by detecting generated PA 

signal is theoretically possible.  The goal of this setup is to compare signal characteristics 

obtained from conventional optical technique like Z-scan to what received from PA detections.  

The PA detection will be combined to a conventional Z-scan setup. The data obtained from both 

detection schemes will be from a single experimental run in order to avoid uncertainties and 

achieve the highest correlation as possible. Indirect PA measurement with the use of coupling 

medium will be employed since sample is usually taken in a cuvettes for the conventional Z-

scan. 

To combine PA detection with the conventional Z-scan, a PA cell is introduced into the 

setup. The PA cell is made from brass due to its excellent corrosion resistance and 

electromagnetic interference shielding. The cell is integrated to a conventional Z-scan setup by 

mounting it on a linear translation stage (Newport, ILS150PP).  The cell has a diameter of 8 cm 
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and height of 5 cm. An ultrasonic transducer (Olympus NDT, model A315-SU) and glass 

windows are fixed on the circular cell wall as shown in Figure 3.3(a). The cell has a brass lid 

with a slotted teflon cap in the center, through which a 1mm path length cuvette containing the 

sample can be inserted. The cuvette is positioned at an angle such that its front surface is facing 

the transducer for better acoustic detection. The cell is filled with water as a coupling medium 

between the sample and the transducer. The acoustic signals are collected by the transducer that 

is connected to an oscilloscope. Photograph of the set-up is shown in Figure 3.3(b). 

 

 

Figure 3.3 (a) Schematic diagram of the simultaneous optical and PA measurements (b) 
Photograph of the set up. 

3.4 Results and discussion 

3.4.1 Simultaneous Optical and Photoacoustic Measurement of Nonlinear Absorption 

In this section, a new technique, which combines the photoacoustic technique with the 

conventional optical Z-scan into a single measurement, is developed. Photoacoustic and optical 

transmission signal are measured and obtained simultaneously in one experimental run. This 

combined optical and photo acoustic Z-scan technique will be called OPAZ-scan. 
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 The first sample to study with this OPAZ-scan technique is the funtionalized-C60( [6,6]-

phenyl-C61-butyric acid methyl ester : PCBM) in chloroform. PCBM is a reverse saturable 

absorber/ optical limiter. As a result, since PA is proportional to the sample absorption, increase 

in PA generation should be observed with this sample when the material absorption starts to 

increase with light intensity due to RSA process. The second sample under study is 3,3'-

diethyloxadicarbocyanine iodide (DODCI) in methanol which is a saturable absorber. Increase in 

sample transmission and decrease in PA signal with increase in light intensity are expected with 

this sample due to saturable absorption (SA) process.  

 Normalized transmission and peak PA signals from the first acoustic pulse are plotted 

against sample positions for these two samples as shown in Figure 3.4. In the case of reverse 

saturable absorbers, Figure3.4(a), light absorption increases as the incident intensity increases. 

This gives rise to decrease in transmission and hence the optical Z-scan signal as the sample is 

moved toward the focal point. The PA signal, Figure 3.4(c), on the other hand, show a peak since 

the acoustic generation is proportional to the absorbed energy. On the contrary, DODCI, 

Figure3.4 (b) and (d), have reverse characteristics, as expected, because light absorption is less 

near the focal point. 

 In order to find nonlinear coefficients from transmission signals, the following 

differential equation for optical intensity loss in thin sample is considered. 

    (3.16) 

where  I  is the optical intensity, z is the propagation distance, and μa is the absorption coefficient 

described by Equation (3.17) and (3.18) for reverse saturable absorber 136 and  saturable absorber 

137 respectively : 
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       (3.17) 

     (3.18) 

where effβ is the effective nonlinear absorption coefficient for reverse saturable absorbers  and 

satI  is the saturation intensity of  saturable absorbers. The intensity for a TEM00 Gaussian beam 

propagating through a sample along the +z direction is of the form: 

     (3.19) 

where w2(z)=w0
2(1+z2/z0

2), z is the sample position relative to the focus, w0 is the radius of the 

beam waist , and z0=πw0
2/λ is the Rayleigh length. By integrating Equation (3.16) over sample 

length L, the optical intensity transmitted through a sample can found.  For a temporally 

Gaussian pulse, the normalized transmission of the sample is given by: 

    (3.20) 

with 

    (3.21) 

where 0a  is the linear absorption coefficient of the sample.  Thus, by numerically solving 

Equation (3.16-3.21) and fitting to the experimental transmission data, the nonlinear absorption 

parameters effβ  and satI  of the reverse saturable and saturable absorbers can be respectively 

determined. The fitting values are effβ =2.2nm/W and Isat  =0.25 TW/m2 for PCBM and DODCI 
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respectively. Analytical forms of the transmission can be found in the literatures for both 

saturable 137 and  reverse saturable138 absorbers. 

 In determining the nonlinear absorption parameters from PA signals, the Tam’s indirect 

PA generation model 139 , Equation(3.15), which describes the peak PA amplitude δP  was used 

together with Equation (3.17-3.18). The fitting values are effβ =1nm/W and Isat  =0.6 TW/m2 for 

PCBM and DODCI respectively. These fitting parameters are comparable to what obtained from 

optical transmission.   

 

Figure 3.4 (a) Optical signal of PCBM in chloroform with 20% linear transmission  and  Ein of 
112uJ, (b) Optical signal of DODCI in methanol  with 20% linear transmission and  Ein of 112uJ, 
(c) Acoustic signal of the same concentration of PCBM as in (a), and (d) Acoustic signal of the 
same concentration of DODCI as in (b).  Optical and acoustic signals were obtained 
simultaneously with the OPAZ-scan configuration. The solid lines are the fitted curves. 
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 In addition, we carried out an OPAZ-scan measurement of a very opaque solution of 

PCBM in chloroform. Due to the opacity of the sample, the transmitted energy was below the 

sensitivity of our energy meter and could not be measured. However, unlike the optical 

technique, it is possible to obtain information about the sample absorption with PA signal, as 

shown in Figs. 3.5(a). The data was also fit with Equation (3.15). The fitting is effβ = 5 nm/W.  

The fit parameter is higher than what obtained from the transparent sample. This is in agreement 

with previous study on C60, which found that the effective nonlinear absorption coefficient of C60 

in toluene increases with concentration84, 140. This measurement clearly demonstrates the 

advantage of photoacoustic method over transmission method in determining the nonlinear 

optical coefficients of non-transparent samples.  

 

Figure 3.5 (a) PA signal of a very opaque PCBM with Ein of 80uJ. Optical signal cannot be 
measured with this sample due to its opacity (b) OPAZ-scan curves of carbon-black dispersion in 
water with 1% transmission at 532nm and Ein of 103uJ. The lines are the fitted curve.  

 To further demonstrate the relative advantage of the OPAZ-scan (i.e., measuring both 

transmission and photoacoustic data simultaneously), OPAZ-scan measurement on carbon-black 

suspension, which is a nonlinearly scattering sample, was carried out (Figure 3.5(b)). 

Interestingly, comparing Figure 3.5(b) and Figure 3.4, OPAZ curves of carbon-black suspension 
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(CBS) reveals a different characteristic than what is expected from reverse saturable and 

saturable absorbers.  The former shows decrease in transmission and increase in acoustic signal 

as the sample moves toward the focal point, while the latter shows the opposite trend. Carbon 

black suspension, however, shows a decrease in the transmission and non-characteristic acoustic 

signals, as it is moved closer to the focal point. This observation suggests that the well-known 

optical limiting found in carbon-black suspensions does not originate primarily from nonlinear 

absorption.  In fact, it has been shown that the nonlinear transmission of CBS for nanosecond 

pulses arises mostly from nonlinear scattering 141. It is obvious from Figure 3.5(b) that the Z-scan 

curve alone is insufficient to determine the mechanisms behind the nonlinear reduction in 

transmission. For instance, an incorrect conclusion could be drawn because the Z-scan curves 

obtained from nonlinear scattering samples are similar to that obtained from reverse saturable 

absorbers.  On the other hand, measuring the photoacoustic signal alone also is not possible to 

draw any conclusions. The fluctuation in the acoustic signal can be attributed to background 

noise in the acoustic detection created by nonlinear scattering process. Nevertheless, because the 

PAZ-scan curve does not show any characteristic sign of nonlinear absorption, the nonlinear 

transmission seen with the optical signal can be mostly attributed to a nonlinear scattering 

process.  
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3.4.2 More rigorous fitting of the PAZ-scan 

From the previous section, we have found that PA can give information about nonlinear 

absorption and the signal is complementary to the conventional optical z-scan technique. 

However, so far, only semi-quantitative model have been used in fitting the nonlinear coefficient 

from the PA z-scan data. In this particular model, the beam profile and distribution across the 

sample are ignored. Only the peak intensity of the light is taken into account. It is obvious that 

this fitting formula is not a true representation of the system.  To check this aspect, PAZ-scan as 

well as optical Z-scan of a nonlinear absorbing sample, PCBM in toluene were performed with a 

small laser beam waist of 30 μm.  A small beam waist was used since light distribution within 

the sample change significantly from one z position to another in the case of tight focus 

geometry as opposed to the loose focus case.  It was found that the semi-quantitative model 

(Model 1), Equation (3.15), failed to fit the acoustic data when the same fitting parameter from 

optical z-scan was used (Figure3.6). As a result, in this section, more rigorous formulation for 

fitting PA data is developed.  

 

Figure 3.6 OPAZ-scan data. (a) optical –z-scan and its fit (b) PA z-scan with the fitting value 
from the curve in (a). Clearly, model 1 diverts significantly from the experimental data.  
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3.4.2.1 Photoacoustic calculation with a frequency- wavenumber method 

Calculation based on the frequency-wavenumber (k-space) method142 is used to simulate 

our experimental observations.  The formulation of such calculation technique is discussed here 

in this section.   

A sound wave is generated when absorbing fluid is heated with a laser pulse. The 

following pair of coupled differential equations, obtained from linearized equations of fluid 

dynamics, for the temperature T and pressure p can be used to determine the temperature and 

pressure variations: 

    (3.22)
 

     (3.23)
 

where γ is the specific heat ratio, α is the pressure expansion coefficient defined by 

, K is the thermal conductivity,  is the density, vs is the speed of sound, and the 

heating function H is the rate of energy density deposited by the optical radiation. Under the 

condition whereby the sound generation is thermoelastic, in which the heat generated by 

absorption of light is confined in the irradiated volume during the laser pulse (thermal 

confinement), the term containing thermal conductivity becomes negligible and the acoustic 

pressure can be expressed with the following wave equation:  

    (3.24)
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where β is the thermal expansion coefficient, , and V is the 

volume. If the light fluence distribution in the sample is given by F(x,t), the heating function 

, where μa(x) is the absorption distribution. 

The heating function can be assumed instantaneous when the laser temporal width is fast. 

This instantaneous condition is satisfied when the laser pulse is much faster than the time 

required for sound wave to propagate across the heated region, i.e. stress confinement condition. 

In this regime, the heating function is of the form:  

     (3.25) 

Change in temperature is related to the absorbed energy by  

     (3.26) 

Using the thermodynamic relation: 

     (3.27) 

with the assumption that there is no change in the density, the change in pressure can be 

governed by : 

     (3.28) 

Using Equation(3.26) and (3.28) with , the instantaneous increase in pressure and 

thus initial pressure distribution due to absorption of laser pulse is written as: 
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    (3.29)
 

where Γ is the Gruneisen parameter, a lump constant associating with the heat-to-pressure 

conversion efficiency. With the instantaneous heating function of Equation (3.25), the solution to 

Equation(3.24) in the absence of boundaries can be written as: 

   (3.30)
 

where  is the first derivative of the delta function, and G is the free-space Green’s function: 

   (3.31)
 

Using the property of  where  and , 

Equation(3.30) becomes:  

    (3.32)
 

with Equation (3.29), Equation(3.32) can be rewritten as: 

    (3.33) 

By taking Fourier transform of Equation (3.31) with respect to x and t, the Green’s function can 

be expressed in term of frequency.  

    (3.34) 

It can then be written in term of  wavenumber vector k as: 
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   (3.35) 

where k=| k | . In this equation , the spherical wave green function is written as a sum of plane 

wave. Using Equation (3.33) and (3.35), pressure distribution at time t can be calculated from the 

initial pressure distribution p0(x). First, the integrand in Equation(3.35) can be evaluated using 

Cauchy’s residue theorem  with t’ set to zero. This gives the solution for t>0 as: 

   (3.36) 

 The time derivative of this function is: 

    (3.37) 

Substituting Equation (3.37) in (3.33) gives  

  (3.38) 

By changing the order of the integrand, Equation(3.38) can be viewed as a two-step  calculation. 

First, the following Fourier transform has to be evaluated 

    (3.39) 

Second , using the result from the first step, time evolution of pressure can be determined 

   (3.40) 

Therefore, acoustic pressure at all position can then be calculated using Equation (3.39) and 

(3.40) with a known initial condition of H(x). 
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3.4.2.2 Acoustic field time snapshots of a point source 

In this section, the acoustic field propagation of an instantaneous point source is 

simulated. In this model, the heating function H(x) is assumed to have a Gaussian profile, Figure 

3.7(a). The initial pressure p0(x) is calculated from Equation(3.29) with the assumption of Γ=1.  

The temporal evolution of the acoustic field is then calculated from Equation (3.39) and (3.40).  

Figure 3.8 shows time snap shots of the acoustic fields. Simulation of acoustic wave measured 

by a line detectors at y=-5mm is shown in Figure 3.9(a). Figure 3.9(b) shows the simulated 

acoustic wave measured from a point detector  at x=0 and y=-5mm. 

 

Figure 3.7(a) 2D-plot of a Gaussian point source initial pressure (b) X-cross section of (a) 
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Figure 3.8 2D time evolution of pressure distribution at time t equals (a) 1μs (b) 2μs (c) 4μs and 
(d) 6μs for Figure 3.7
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Figure 3.9 (a) Acoustic wave measured by a line detectors at y=-5mm of the source in 
Figure3.7(a). (b) Acoustic wave measured by a point detector at x=0,y=-5mm 

 

3.4.2.3 Acoustic field time snapshots of a thin absorbing sample 

In this section, we expand the above simulation to the case of thin absorbing sample excited with 

a pulse Gaussian beam with a width of w0. First, the initial pressure distribution of the sample 

can be obtained by solving the following equation:  

     (3.41) 
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where μa is the absorption coefficient and z is the propagation direction. In the case of linear 

sample, μa=α. For samples with third order nonlinearity μa=α+βI. The p0(x,y) is then calculated 

from Equation (3.29) with H(x,y)=μa(x,y)F(x,y). Figure 3.10 shows the calculated initial pressure 

distribution of a thin linear absorbing sample with thickness t= 1mm, μa= 3 mm-1, w0=80um, and 

Γ=1. From this initial pressure distribution, the temporal evolution of the acoustic field is 

calculated and shown in Figure 3.11. Simulation of acoustic wave measured by a line detectors at 

y= -0.8mm is shown in Figure 3.12(a). Figure 3.12(b) shows the simulated acoustic wave 

measured from a point detector at x=0 and y= -0.8mm. Up to this point, the simulated acoustic 

signals were done with the assumption that the sensor has a wide frequency response. Since, 

transducer has a limited bandwidth response, the signal collected by the transducer can be 

modeled as a product of the simulated pressure signal multiplied by the transducer bandwidth in 

the frequency domain. Figure 3.13 shows the simulated signal collected by a transducer with a 

central frequency at 10MHz and a Gaussian bandwidth of 40%. 

 

Figure 3.10 2D-plot of initial pressure distribution created by passing Gaussian beam through a 
thin absorbing layer 
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Figure 3.11 2D time evolution of pressure distribution at time t equals (a) 0μs (b) 0.25μs (c) 
0.5μs and (d) 1μs for Figure 3 

 
Figure 3.12(a) Simulation of acoustic wave measured by a line detectors at y= -0.8mm of the 
source in Figure3.10. (b) Acoustic wave  measured by a point detector at x=0,y= -0.8m 
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Figure 3.13(a) Simulated acoustic signal (b) Simulated acoustic signal received by a transducer 
with a center frequency of 10 MHz and bandwidth of 40% 

3.4.2.4 PAZ-scan fitting with k-space simulation 

In this section, the k-space simulation is used to fit the collected PAZ-scan data for the tight 

focus case. The orientation of the cuvette in the experimental setup was taken into account in 

finding the initial pressure distribution, Figure 3.14(a). The simulation was looped for different 

laser beam size at a fixed excitation energy following the nature of Z-scan setup. The acoustic 

signal magnitude was collected for each beam size and plotted against the Z-position. The 

simulated signal was collected away from the source with a line detector. The distance between 

the sensor and the source was shorter in the simulation to reduce the simulation time. In the 

actual experiment, a water delay line adds time delay to the signal.  Since, when collecting the 

experimental data, only the magnitude of the first PA pulse was collected, therefore, in the 

simulation, only the first pulse, Figure 3.14(b), was simulated and the boundaries were ignored 

for simplicity. MATLAB code for this fitting algorithm can be found in Appendix E. In brief, the 

fitting program does the following: 
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(1) Calculate initial pressure distribution from a given excitation, beam size at the 

corresponding z position, linear absorption and nonlinear absorption parameter  

(2) Calculate time evolution of the acoustic signal and measure its peak-to-peak magnitude. 

Record the PA magnitude and its corresponding z-position 

(3) Repeat (1) and (2) for the whole scanning range (z axis) 

 

Figure 3.14(a) Initial pressure distribution for the k-space fitting model. The beam diameter is 
80μm;(b) First PA pulse simulated from the initial pressure in (a); (c) comparison between 
acoustic two fitting model. The fitting parameters were obtained from experimental z-scan with 
PCBM in a 1mm cuvette. The beam waist is 30μm. The linear transmission is 0.1 and β= 7nm/W.
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Figure 3.14(c) compares the k-space fitting formulation to the semi-quantitative formula. The 

parameter used was obtained from fitting the optical Z-scan. It is clear this k-space technique 

gives a better fit to the experimental data. The difference between the two model, namely the 

semi-quantitative model (Model1) and the k-space model (Model2) for different beam sizes and 

nonlinear parameter was also investigated, Figure 3.15. It is clear that these two model diverge 

significantly for small beam waist while they give similar behaviors for large beam waist which 

is in agreement with what have been observed experimentally. 

 

 

Figure 3.15 Comparison of normalized PA magnitudes obtained from Model 1 and 2 for 
different sizes of Gaussian beam waists in the z-scan configuration. 
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4 PHOTOREFRACTIVE POLYMER SENSITIZED WITH 

NANOMATERIALS‡ 

4.1 Motivation 

The photorefractive (PR) effect is a spatial modulation of the refractive index generated 

by photo-charge redistribution in a material. This effect occurs when charge carriers are 

generated by spatially modulated light, usually from interference of two beams. The charge 

generation is followed by charge separation due to drift and/or diffusion processes.  When these 

charges are trapped by defects, they create inhomogeneous space-charge distribution. In the case 

of inorganic crystals, the resulting electric field modulates the refractive index by a second order 

nonlinear effect i.e. electro-optic effect, creating an refractive index grating inside the material. 

In the case of PR polymers, another effect called orientational enhancement also plays significant 

role in creating the index modulation. The generated grating has a   phase shift with respect to 

the modulated light intensity. This phase shift, which sometimes referred to as a nonlocal nature 

of the PR effect, is a distinctive characteristic of the PR effect.  There are many applications 

associated with PR effect, for instance, high-density optical data storage143, image processing144-

145, 3D holographic display146, tunable filter147-148 and bio-imaging149. 

The photorefractive effect was first discovered in 1966 in Lithium niobate (LiNbO3) by 

Ashkin et al at Bell Lab. The effect was first called optically induced refractive index 

‡ The work presented in this chapter are extensions of  Chantharasupawong, P.; Christenson, C. W.; Philip, R.; Zhai, 

L.; Winiarz, J.; Yamamoto, M.; Tetard, L.; Nair, R. R.; Thomas, J., Photorefractive Performances of a Graphene-

Doped Patpd/7-Dcst/Ecz Composite. Journal of Materials Chemistry C 2014, 2, 7639-7647. 
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inhomogeneities. During the time of the first discovery, the effect was considered as undesirable 

in electro-optic and nonlinear optical application as it limited the usefulness of crystals with large 

electro-optic and nonlinear optical coefficient such as LiNbO3. This was because the index 

change gave rise to de-collimation and scattering of the light beams150. It was later realized by 

Chen and his colleagues at Bell Lab that this effect is useful in holographic recording 

applications where materials that can modulate the refractive index upon irradiation are 

desirable151. Chen later described that this “optically induced refractive index change” 

phenomena, which at that time known as “optical damage”, is due to the drifting of excited 

electrons out of the illumination region followed by re-trapping152. His explanation laid the 

foundation for the present understanding of the photorefractive effect.  After the discovery of the 

effect in LiNbO3, other inorganic crystals, such as BaTiO3
153, KNbO3

154, Bi12SiO20
155, and 

GaAs156 ,also showed similar properties.  

In 1990, Sutter, Hulliger and Günter grew organic crystal of 2-cyclooctylamino-5-

nitropyridine (COANP) single crystals doped with 7,7,8,8-tetracyanoquinodimethane 

(TCNQ)157.  They observed photorefractive effect in their crystal. The growth of doped organic 

crystals, however, is not an easy task because most dopants are expelled during the crystal 

preparation by self-purification process. In 1991, the PR effect was observed for the first time in 

an amorphous  polymer by Ducharme et al. who worked at IBM158. Their PR polymer composite 

was a partially cross-linked epoxy polymer (bisA-NPDA) composed of bisphenol-A-

diglycidylether (bisA) attached to the nonlinear chromophore 4-nitro-1, 2-phenylenediamine 

(NPDA). The glass transition temperature (Tg) of the material was 65°C. Even though the 

performance of this polymer PR material was poor when compared to today’s PR polymer 

materials, this discovery opened the new field of PR polymers.  
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PR polymer composites gained considerable attention for its advantage of large PR 

effect, structural flexibility, low cost, and good processability when compared to the inorganic 

crystal.  Since large diffraction efficiency can be obtained in PR polymer composite with several 

microns thick sample (as opposed to a few cm thick in the case of inorganic crystals), they are 

interesting choices in large area and compact applications. For example, Salvador et al. used a 

near-infrared (NIR) sensitized PR polymer composite as recording media in holographic optical 

coherence imaging (HOCI). 159 They successfully imaged tumor spheroids with their system. 

Perhaps, one of the most fascinating applications of PR polymer materials is the refreshable 

holographic 3D-display concept developed by the University of Arizona160.  However, in order 

to transform this concept to real world applications, key performances such as sensitivity, 

transparency and response time in PR polymer materials have to be substantially improved. 

The writing speed of the PR materials depends on two major factors: (1) formation of the 

space charge field i.e. charge generation, transfer, transport and trapping; and (2) the 

reorientation dynamics of the chromophores. It is generally accepted that the former contributes 

to the fast time constant of the PR composite and the latter governs the slow time constant. Even 

though the limiting time factor for reaching the steady state in the PR polymers is the slow time 

constant, diffraction efficiencies smaller than the steady state diffraction value are sufficient for 

most practical dynamic holographic applications. As a result, sensitizers play an important role 

in improving the temporal dynamics of hologram creation. It was found that by the use of proper 

sensitizers, for example buckminister fullerene (C60) and tetranitroflurinone (TNF), the writing 

dynamics of PR polymers were substantially improved161-162. In this chapter, the use of 

unexplored nanomaterials as PR sensitizer will be investigated with an aim to improve the speed 

of the PR polymer.  
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4.2 Theoretical background 

4.2.1 Photorefractive polymer composites 

 

 

Figure 4.1 Schematic illustration of a guest host system. 

PR effect can be observed in materials, which exhibit second order optical nonlinearity 

and charge redistribution upon light irradiation.  However, unlike in crystalline inorganic PR 

materials where the size is limited and their second order nonlinearity is relative small, 

amorphous organic PR materials have attracted significant attention due to its low cost, high 

second order effect, ease in processibility, design flexibility and wide range of properties which 

can be achieved by concocting different polymers. However, one drawback of the organic PR 

materials is that they have low dielectric constant. This causes the redistribution of the charge to 

be highly electric field dependent. In practice, to have PR effect in the organic PR material, an 

external electric field is required to create space charge field modulation inside the material.  In 

organic PR polymers, the properties required for PR effect to occur in organic PR polymer 

systems are provided by different molecules inside a composite, so called the “guest-host 

system” as illustrated in Figure 4.1. Those functions include photosensitivity, photoconductivity 

and electro-optic effect. Since these mechanisms are given by different molecules, they can be 

separately optimized. This is one of the advantages of the organic PR polymer system over the 
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inorganic crystals. In the organic PR polymer system, there are four main components i.e. charge 

transporting polymer (CTP), sensitizer (charge generator), plasticizer and chromophores. 

Sensitizer is responsible for generating charges by photo-absorption. These charges then drift 

with an applied field or diffuse inside the charge-transporting polymer. The non-uniform charge 

distribution is created because of the difference in electron and hole mobility. Trapping sites may 

be introduced to enhance the non-uniform charge distribution. By electro-optic effect and 

molecular reorientation of the chromophores, an index modulation is created from this non-

uniform charge-distribution. Plasticizer is added to lower Tg, thereby assisting molecular 

reorientation and enhancing refractive index modulation.  Each of these components is discussed 

in the following section.  

 

Figure 4.2  Chemical structures of common (i) charge transporting polymers, (ii) sensitizers, (iii) 
plasticizers , and (iv) chromophore  
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(i) Charge transporting polymer (CTP) 

The charge-transporting polymer is an oxidizable host polymer that can transport charges. 

This transport process eventually leads to the nonlocal nature of the PR effect.  In PR samples, 

holes are the majority charge carriers due to its higher mobility than electrons.  The HOMO level 

is usually between -5.5 eV and -6.0 eV for common CTPs. It is desirable that CTPs are highly 

conjugated with delocalized π-electrons. They should also have appropriate energy level such 

that holes can be transferred from the sensitizer molecule. This means that the HOMO level of 

the CTP should be higher in energy (less negative) than that of the sensitizer for charge transfer 

to happen. Typical loading of the CTPs in the composite is at least 50% by weight to ensure that 

the charge transport occurs via hopping process. When CTPs are doped into an inert matrix at 

very low percentage, there is very limited electrical conduction. This is because CTPs are too far 

apart for the charge hopping to take place. The value at which this happens is usually in the 

range of 5–10 wt.% loading for common CTPs such as  carbazole,  diethylamino-benzaldehyde 

diphenylhydrazone (DEH), or terephthalic acid (TPA) derivatives. Above this loading value, 

charge transport can occur. The charge-carrier mobility increases with CTP concentration and 

saturates at the concentration somewhere below 100 wt.%163 

Commonly used transporting polymers are shown in 4.2 (d). Carbazole-containing 

polymers are the most studied CTPs. Poly(vinyl carbazole) (PVK) is the first high  performing 

composite utilized for making PR devices with nearly 100% diffraction efficiency 162. However, 

PVK systems have a high tendency to be phase separated because of the difference in the 

polarity of the component. Moreover, the response time of PVK system is rather slow.  

Other CTPs have drawn considerable attention due to their high drift mobility and lower 

Tg. PR composites containing polymers with triarylamine side chain, such as poly(acrylic 
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tetraphenyldiaminobiphenyl) (PATPD),  have shown high diffraction efficiency, comparable to 

the PVK based composite  without exhibiting dependency on the illumination history 164-165. 

Composite with poly(phenylene vinylene) derivative (poly[1,4-phenylene-1,2-di(4-

benzyloxyphenyl)vinylene]  (DBOP-PPV) with diphenyl phthalate (DPP) as a plasticizers, has 

better steady-state characteristics compared to PVK/ECZ systems166. This observed better 

performance was attributed to (i) the reduction in polarity of the DBOP-PPV/DPP matrix, (ii) 

increased trap density, and (iii) improved degree of chromophore reorientation in DBOP-

PPV/DPP system. While the charge transport in PVK/ECZ system is mainly from hopping, 

delocalized pi-conjugation play an important role in the DBOP-PPV system.  

(ii) Charge generator 

Generation of charges at the wavelength of interest in the PR composite is accomplished 

by using charges generators (also known as sensitizers).  These charge generators are basically 

photosensitizes. They can form a charge transfer complex with the CTP, resulting in efficient 

charge transfer process.  In the case of PR polymer composites with hole as primary conductors, 

photo-excited holes in the charge generator is transferred from the HOMO of the charge 

generator to the HOMO of the CTP. The charge generator accepts an electron from the HOMO 

of the CTP and becomes reduced. One of the important requirements in choosing a charge 

generator for a PR polymer composite is that the HOMO level of the charge generator has to be 

below that of the CTP. According to Marcus’ theory, the larger difference between the ionization 

potential of the donor and acceptor results in better photogeneration efficiency.  C60 and TNF are 

the most commonly used sensitizer in the visible wavelength (4.2(a)).  These molecules can often 

form a CT complex with donor molecules.  

(iii) Plasticizer 
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In general, the Tg of the PR composites is much higher than room temperature. However, 

for high index modulation, it is imperative that the Tg of the composite is in the same range of the 

operating temperature. Such low Tg will result in efficient reorientation of the nonlinear 

chromophores. In order to lower the Tg of the PR composite, plasticizer is added to the 

composite. These plasticizers are typically inert with respect to charge generation and trapping.  

In PVK-based PR composite, Benzyl butyl phthalate (BBP) at a loading level of 10-15 wt.% is 

used as the plasticizer. 167-168 The monomer, 9-ethyl carbazole (ECZ), has also been used169. 

 (iv)  Chromophore 

The refractive index modulation in the PR effect is provided by chromophores interacting 

with the non-uniform space-charge field (SC-field). It is necessary that the chromophores 

possess orientational birefringence and/or the linear Pockels electro-optic properties for high 

refractive index modulation. Therefore, a large linear polarizability anisotropy (birefringence) 

and/or first hyperpolarizability (electro-optic) are desirable. In both cases, a large ground state 

dipole moment is required.  R. Wortmann et al. has given an expression for quantifying the 

chromophore quality170. Their figure of merit (FOM) represents the combined effect of linear 

birefringence and electro-optics: 

     (4.1)
 

where M is the molecular weight, μ  is the dipole moment, β is the first hyperpolarizibility, Δα is 

the birefringence, and T  is the temperature. 

It was found that the contribution from the linear polarizability anisotropy through a 

process called “orientational enhancement” is higher than that from the first 

hyperpolarizability.171 For one dimensional chromophores consisting of a donor–acceptor 
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substituted π-electron system, greater than 75% of the contributions to the index modulation 

originates from the polarizability anisotropy term (birefringence contribution).172 

Optimizing the dipole moment of the chromophores is one of the important parameters in 

optimizing the chromophore properties.  The diploe moment does not only affect the refractive 

index modulation, but also, the molecular aggregation, charge transport, and trapping in PR 

composite.  

Strong donor-acceptor termination groups can be used to create electron separation across 

the π-conjugate bridge, thus a permanent dipole moment.  In the presence of an applied electric 

field, delocalization along a π-conjugated bridge allows fast electronic redistribution. These 

molecules are called push-pull molecules.  Tailoring the length of the bridge has an effect on  the 

dipole moment of the chromophore. Too long bridge lengths may result in restricted orientational 

freedom. Even though, larger dipole moments can increase the figure of merit, phase instability 

becomes an issue when highly polar chromophores are incorporated into other non-polar 

molecules. As a result, an optimum chromophore density has to be determined. In addition, 

chromophores with high dipole moment can negatively affect the charge mobility of the PR 

composite due to the energetic disorder 173.  

In addition, chromophores can also act as sensitizers 174 if their energy levels are 

appropriate at the operational wavelength. For this to be effective, the HOMO level of the 

chromophores must be lower than that of the CTP.  At the same time, the chromophores can also 

act as hole traps if their HOMO level is higher than that of the CTP. Because of these reasons, 

the energy of the chromophore HOMO level relative to the HOMO of CTP is an important 

parameter. It not only affect chromophores performance but also the  charge mobility and the 

photoconductivity of a PR polymer system.175 
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As a result,, when choosing a chromophore, its effects on the index modulation, charge 

generation, transport, and trapping must be taken into account. Examples of high performing 

chromophores are dicyanostyrenes (DCST), azo-dye derivatives (DMNPAA),  and oxypyridine 

dyes (ATOP). Chemical structures of some of the commonly used chromophores are shown in 

4.2(c). 

4.2.2 Fundamental of photorefractive effect 

 

Figure 4.3 schematic illustration of the processes involved in the formation of refractive index 
modulation. 

The photorefractive (PR) effect is a spatial modulation of the index of refraction 

generated by light induced charge redistribution in a material. This effect occurs when charge 

carriers are generated by spatially modulated light intensity usually formed by the interference of 

two coherent beams.  For the case of plane wave, two beam interference results in intensity 

modulation given by: 

     (4.2) 
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where I0=I1+I2 is the total incident intensity, m=2(I1I2)1/2/(I1+I2)  is the fringe visibility , and Λ 

is the spatial wavelength (grating spacing). In a tilted transmission geometry, the spatial 

wavelength is: 

    (4.3) 

where n is refractive index of the material; λ the optical wavelength in vacuum; and α1 and α2  

are the incident internal angles of the two writing beams with respect to the sample normal.  For 

the visible wavelength, the spatial wavelength can vary from sub-microns to a few tens of 

microns depending on the writing angles and wavelength. 

The generated charge is then separated by drift or diffusion processes and become trapped, 

creating non-uniform space-charge distribution. The resulting internal electric field then 

modulates the refractive index by an electro-optic effect, creating an index grating inside the 

material. The generated grating has a phase shift with respect to the modulated light intensity. 

This phase shift is a distinctive characteristic of the PR effect.  The process is summarized in 

Figure 4.3.  There are four main processes that lead to the index modulation, namely 1) 

photogeneration of charges, 2) charge transport, 3) charge trapping and formation of SC-field 

and 4) index modulation in response to the SC- field. 

(i) Photogeneration of charge  

After having the intensity modulation in the sample, the PR process starts with absorption 

of photon in the bright regions. Upon absorption, electrons are excited from the highest occupied 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the sensitizer. 

This absorption occurs in the molecules with proper band gap to the incident photon frequency.   

The sensitizer is a strong electron acceptor, and forms a charge-transfer (CT) complex with an 
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electron donor molecule, typically the CTP. When an electron is excited to the LUMO level of 

the sensitizer, the opposite charge carrier or hole is left in the HOMO level.  Through the charge 

transfer complex, electron is transferred from the HOMO of the sensitizer to the HOMO of the 

CTP, resulting in a sensitizer anion.   

Two critical processes during the SC-field formation are generation and separation of 

charges.  The quantum efficiency, defined as the ratio of the number of generated electron hole 

pairs to the number of absorbed photons, is used to characterize the effectiveness of charge 

generation process.  Using more sensitizers can result in larger number of generated charges. 

However, higher density of sensitizers will cause larger absorption, which has detrimental effect 

to the diffraction performance of the PR composite.  Charge separation depends highly on the 

relative position of the HOMO and LUMO level of the donor and the acceptor.  For the case of 

the sensitizer being an acceptor, the HOMO level of the sensitizer should be lower than the 

HOMO level of the donor (CTP in this case) so that the electron can be efficiently transferred 

from the donor to the acceptor. The LUMO of the sensitizer, on the other hand, has to be lower 

than that of the donor in order to facilitate the exciton dissociation. In the organic PR materials, 

due to the low dielectric constant of the composite, the Coulomb attraction between electron hole 

pair is relatively high. In order to facilitate charge separation, electric field is usually applied. 

The Onsager model 176-177 can be used to describe the thermal and electrical dependence 

of the photogeneration efficiency in some organic photoconductors . In this model, it is assumed 

that the formation of an electron-hole pair is followed by the formation of an intermediate 

charge-transfer state in which the electron and the hole are separated by an average distance of 

r0. The charge dissociation can happen with a given probability when the separation is equal to or 

higher than the Coulomb radius given by: 
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     (4.4) 

where ε is the relative permittivity, e is the elementary charge constant, kB is the Boltzman 

constant and T is the absolute temperature.  The photogeneration efficiency can be expressed as: 
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where A0(x)=1-exp(-x), ς=eEr0/kBT, and κ=rc/r0. E is the applied electric field and ϕ0 is the 

quantum efficiency.  From this model, it can be seen that as the applied electric field increases 

the photo generation efficiency also increases. In the limiting case where E approaches infinity, 

the photo generation efficiency approaches the intrinsic quantum efficiency of the material.  

In addition, the intermolecular interaction between the donor and the acceptor can lead to 

a new absorption band that does not appear in the spectrum of either component. This absorption 

band is called charge transfer (CT) complex band.  For example the interaction between poly(N-

vinylcarbazole) (PVK)  polymer and  (2,4,7-trinitro-9-fluorenylidene) malononitrile (TNFM) 

molecule creates CT band absorption with a tail up to 900nm. 178(2,4,7- trinitrofluoren-9-

ylidene)malononitrile ( TNFDM ) can form CT complex with PVK , resulting in a redshift in the 

absorption compared  to the individual molecules.179 

(ii) Charge transport 

Charge transport in PR composites, which is an amorphous polymeric system, is different 

from the mechanism governing the transport in crystalline materials.  Periodic crystals have well-

defined energy levels and the charges are transported in the valence and conduction bands.  
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When defects are present, hopping (the process in which a localized charge tunnels between 

defects when the wavefunctions overlap) can take place 180. In amorphous polymer, charge 

transport occurs successively from one polymer moiety to another.  For the case of hole 

transport, when the electronic wavefunction of the neighboring neutral site of the donor overlaps 

with the wavefunction of the charged site, charge transport can take place. These transporting 

molecules are usually conjugated polymers with alternating π bonds that allow delocalization of 

the electronic wavefunctions. In this manner, the hole is transferred from one site to another, or 

from one molecule to another, in a similar manner to the hopping process between defects. 181 

Every transport event between two molecules must be considered as a discrete event.  Similar to 

the valence and conduction bands in crystals, in organic materials, electron transport occurs 

within the LUMO levels, whereas hole transport takes place in the HOMO levels.  One of the 

important parameters that have a significant influence on the PR performance is the mobility of 

the generated charges. Several parameters can affect the charge mobility within the PR 

composites. For example, the energetic disorder resulting from dipole-dipole interaction between 

the host and the dopants can decrease the charge mobility173, 182. Larger concentration of the 

charge transport moiety results in better charge mobility. Dopants have effects on the charge 

transport and cause either increase or decrease in the charge mobility, depending on the energy 

level. Therefore, engineering and selecting the ionization potential (HOMO/LUMO level) of the 

components of PR samples are very important in improving the PR performance. Higher charge 

mobility / transport usually results in faster PR performance.   
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(iii) Charge trapping and development of SC-field   

Charge trapping 

Trapping sites are the regions where the transporting charges are trapped from 

participating in the transport process.  The trapping mechanism is mainly determined by the 

energy levels of the traps relative to that of the charge transport polymer.  Traps can be  

intentionally added molecules, intrinsic defects, or ionized acceptors. Depending on the 

trapping/de-trapping rates and the energy level of the trap, they can be categorized as either 

shallow or deep traps.  The process of trapping is a dynamic process in which the charges are 

trapped and de-trapped. The rate, at which these processes occur, and the density of the trap will 

determine the rate of the SC-field formation and the magnitude of the SC-field. 

 

 

Figure 4.4 Schematic representation of charge transfer in PR polymer composites. The HOMO 
and LUMO levels are not drawn to scale. 

Low trap densities will yield a small steady-state SC field magnitude, but result in large mobility. 

High trap densities, on the other hand, will reduce the speed of the SC-field formation since 

longer time is required establish the SC field. However, for large trap densities, the steady state 
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SC-field magnitude may be larger than for smaller trap densities. In PR composites, it is not 

trivial to independently engineer the trap mechanism because trappings may come from different 

components such as the sensitizers, the chromophores, or the transport molecules. 

SC-field formation 

The space charge in PR composite is formed as a result of non-uniform distribution of 

positive and negative charges induced by interference fringes. The process of forming SC-field 

involves charge generation, diffusion, drift, trapping, and recombination.  In the beginning of the 

development of the theoretical foundations of holographic storage problem in electro-optic 

crystal, the charge transport equation was solved to determine diffraction efficiency of the 

holographic media 183-184. In this treatment, neither the influence of building space charge field 

nor the self-diffraction effect was taken into account. However, it was shown that, in this 

approximation, the diffraction efficiency was independent of the writing intensity in the case of 

diffusion process and it increased as an inverse square of the fringe spacing. The holographic 

grating was shifted by a quarter of a period from the fringe pattern. On the other hand, for the 

drift process, such shift did not occur according to this prediction. Later, it was shown that for 

the drift process the shift could be observed if the carrier transport range was comparable or 

larger than the fringe spacing.  Kukhtarev and coworkers developed a theory of saturated 

holograms in electro-optic crystal 185.  Regarding their theoretical treatment of the SC-field 

formation, a set of material equations based on the photoionization, thermal generation, 

recombination and carrier concentration was used. From their calculation, it is found that the π/2 

phase shift of the holographic grating can occur when the fringe spacing is small enough and/or 

when the electric field is large enough.  In the case of constant applied voltage, the phase shift is 

a function of both applied field and material parameters.   
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Schildkraut et al. 186-187 included the effect of traps and their dependency on the charge 

mobility and electric field in their model to describe space-charge field in amorphous organic 

solids. Unlike inorganic systems, hole transport is supported by organic systems. Holes are 

generated by photoexcitation of sensitizers. In polymer PR composite, excited electrons are 

assumed not to participate in charge transport due too small loading of the sensitizer to form 

charge transport manifold. Only holes are conducted through the transport manifold of CTPs.  

Charged sensitizer moieties can serve as recombination centers for mobile holes. In Schildkraut’s 

model, an additional trap level is introduced. Through the use of zero and first order 

approximations, they derived analytical expression for SC-filed for the case of deep trap and the 

case no traps in steady state. The first order approximation of the SC-field in the case of deep 

trap is of the form:  

     (4.7)
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where E0 is the projected applied filed along grating vector K , C is a constant relating mobility to 

the electric field, μ0 is the charge mobility , ρ0  is the hole density, I0 is the illumination intensity, 

T is the initial trap density, Ni is the initial acceptor density, ϕ0 is the field dependent quantum 

efficiency , and g is the generation of hole per unit time at the initial acceptor concentration (Ni). 

In the case of no trap, the initial trap density Ti becomes 0 and the constant A is reduced to 1 

(also assuming low light intensity).  

While  Schildkraut’s  approximation only describes the  steady state value of SC-field,  a 

later model  developed by Ostroverkhova contains transient information 188.  In addition to the 

Schildkraut’s model, Ostroverkhova et al. introduced two trap levels.  These two traps levels can 

be emptied thermally. Fourier decomposition was used to find the solution. Numerical 

calculation has to be used in order to solve for the solution. 

It is good to note that all of these models require significant knowledge of the material to 

yield results applicable to real experiments. They are semi-quantitatively useful in understanding 

the SC-filed formation. However, there is much physics left unaddressed.  For example, the role 

of chromophore orientation in trapping and charge transport is ignored. The material is assumed 
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to be infinite with ideal ohmic contacts. The dynamic change in the beam condition once the 

grating is formed is neglected.  

(iv) Creating of index modulation in response to the SC- field  

The final step in the PR process is to form phase grating induced by the SC- field. In 

inorganic PR crystals, the mechanism responsible for a refractive index modulation is the linear 

electro-optics effect or Pockels effect. The index modulation is given by 163:  

     (4.18)
 

where reff is the effective electro-optic coefficient and is the refractive index of the crystal.  

On the contrary, in amorphous organic PR materials, linear birefringence, Pockels effect , 

and Kerr effect are involved 189.  For the first reported organic PR polymer, the presence of the 

PR effect was mainly due to the linear EO effect resulted from poling the polymer157. This linear 

effect arises from the second-order susceptibility.  In order to introduce the EO effect into 

materials, noncentrosymetric dipolar compounds (chromophores) are incorporated in the PR 

composites. In order to achieve macroscopic anisotropy, an external electric field is required to 

pole the chromophores. The oriented gas model can be used to theoretically calculate the 

polarization properties of a bulk material based upon an ensemble of molecules with a 

distribution of orientations and their own molecular polarization190. For a uniaxial anisotropic 

molecule with a permanent dipole moment μ lying along the optic axis, the linear polarizabilities 

in the principal axes are:  

 and    (4.19) 

The induced molecular polarization is given by: 

n
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      (4.20) 

The macroscopic polarization (dipole moment per unit volume) induced by an external optical 

field along the z-direction can be calculated by the linear summation of polarizations: 

  (4.21)

 

where the cosine terms are the projection cosine and is an angular distribution function.  

Through electromagnetic relations:  

      (4.22) 

the microscopic refractive indices along different axes can be calculated. When an electric field 

is applied, the molecules are poled and this changes the angular distribution function f0(Ω) to a 

particular anisotropic function f(Ω). As a result, the refractive indices are changed.  For example, 

for the light polarized along the z-axis, the change in the refractive index is given by:  
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If we assume isotropic distribution of molecules before applying the electric field, the above 

expression is reduced to:  

}
3
1cos){(4)]([ 2

||
2 −><−=∆ ⊥ zz Nn θaaπω ωω

  (4.24)
 

Similarly, for the light polarized along the x-direction:  

 (4.25)
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From these relations, it can be seen that the index change parallel to the poling field is 2 times 

larger than the one perpendicular to the field. For the spatial case of high temperature, the 

distribution function can be assumed to follow Maxwell-Boltzman distribution:  

     (4.26)
 

where the interaction dipole energy of the polarizable dipole with poling electric field  in the 

z-direction is given by: 
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For the case where the interaction of the permanent dipole is stronger than the induced dipole, 

the distribution function becomes:  
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By using this distribution function in Equation (4.23), expressions for refractive index 

changes can be realized. These expressions represent the dependence of the change in the index 

of refraction on the molecular linear polarizability and a uniform poling field along a particular 

laboratory axis. It is applicable to the steady state case. As mentioned earlier, in most of the 

organic PR polymers, linear birefringence, Pockels effect, and Kerr effect are involved. By 

extending this model by taking into account the higher order susceptibilities, similar 

formulations can be obtained with higher order contributions 191.  However, since in the PR 

polymer materials, the birefringence is the most dominant contribution, this development with 

only the first order linear susceptibility is still a good approximation. Binks et al. further 

developed this oriented gas model by taking in to account the time dependent rotational 

orientation192. Detailed formulations can be found in their report.  

pE
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The followings summarize the steady state first-order and second-order changes in 

refractive index derived from the oriented gas model, assuming that the change in refractive 

index is small when compared to the index of the material 163 . 
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where Δα  is the linear birefringence, β is the first hyperpolarizibility, u is the interaction energy 

given by Tk
Eu

B

⋅= µ
 and F0 and F∞ are the field correction factors taking into account the 

polymer matrix contribution, given by:  
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where εstatic  is the static dielectric constant and εoptic is the dielectric constant at the operational 

wavelength.  Note that the total refractive index change is  Δn=Δn(1)+Δn(2)E. 

Later, in 1993, Moerner et al. 171 published a paper showing that the performance of 

recent PR polymers is too high to explain by the electro-optics effect alone, even if it is assumed 

that the SC-field approaches that of the applied electric field. They proposed a mechanism called 

orientational enhancement, which is responsible for the enhancement of properties in organic PR 

sample. According to their model, the total internal electric field inside the polymer is given by:  

zrEExrErE GscextGscT ˆ]cos)([ˆ]sin)([)( θθ ++=     (4.37) 

where  is the modulating  SC-field with wave number KG  and in the r  

direction.  The total susceptibility change is the sum of the contribution from birefringence and 

electro optic effect and is given by: 
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The susceptibility matrix can be transformed to the experimental geometry using the 

transformation Δχlab=UTΔχU, where U is the rotation matrix for the tilt configuration the 

diffraction efficiency of the sample with thickness d can then be calculated using: 
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where H=(πd)/(2nλ0(cosθ1cosθ2)1/2), with θ1 and θ2 being  the angles of the writing beams with 

respect to the sample normal. ê4 and ê3 is the polarization vector of the reading and writing 

beams respectively.  

Even though the PR process seems like a step-by-step process, in reality, all the 

mechanisms mentioned occur simultaneously and are dynamically coupled in many ways. 

Nevertheless, the explanation portrayed here is very useful for understanding the mechanisms 

and applicable in the case of the steady state.  Next the theory of the holographic grating is 

discussed.  

4.2.3 Theory of holographic grating 

Up to this point, the mechanisms involved in the formation of phase grating have been 

discussed. In this section, fascinating phenomena resulted from the interaction of light with the 

grating are presented. 

(i) Bragg vs. Raman-Nath diffraction grating 

Holographic grating can be either thick or thin, and amplitude or phase; the recorded 

combination depends on the material. Amplitude holograms have the grating in the form of an 

amplitude or absorption coefficient modulation. Phase holograms have the grating formed by an 

optical path length or refractive index modulation. A grating is characterized into either Bragg 

(Thick) grating or Raman Nath (Thin) grating, depending on their interaction with light. Bragg 

grating only diffracts light into a single first order whereas multiple orders exist in the Raman-

Nath grating. Kogelink studied diffraction of light from a thick grating, using coupled wave 
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theory 193. In his formulation, he separated thin and think regimes using a quality factor defined 

by:  

2/2 Λ= ndQ πλ      (4.42) 

where λ is the vacuum wavelength, d is  the thickness of the film, n is the refractive index and Λ 

is the grating spacing.  The grating can be categorized as thick grating when Q>>10 and thin 

when Q<10.  For the development of PR polymer composite, theory of thick hologram is usually 

used for simplification. The performance is characterized in term of device perspectives.  More 

rigorous analysis of coupled wave theory that applies to both thick and thin holographic grating 

and gives more accurate results can be found in the paper by Moharam and Gaylord194.  In the 

following sections the theories of light diffraction from thick holographic PR materials for 

transmission and reflection geometries are discussed.  

(ii) Diffraction in transmission geometry 

 

 

Figure 4.5 Schematic diagrams of (a) transmission geometry (b) reflection geometry 

Transmission geometry is defined as a situation in which both of the writing beams are 

incident on one side of the sample, Figure 4.5(a). Typically, the PR composite is sandwiched 

between two transparent electrodes. An external electric field is applied perpendicular to the 

sample normal. The sample is tilted so that the applied field has a component along the grating 
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vector, which will assist the carrier drift.  In this geometry, the grating spacing resulted from 

interfering two writing beams is given by:  
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 The slant angle of the grating inside of the material is given by: 

2
)(

2
21 aaπϕ

+
−=

     (4.44)
 

The diffraction efficiency can then be calculated from the thick grating theory by Kogelnik.  The 

signal amplitude of phase grating in transmission geometry is given by: 
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Kcs −= .  α is the absorption loss of the sample. θ is the angle of the reading beam 

with respect to the sample normal. Δθ and Δα are the deviations in the reading angle and 

wavelength respectively.  The diffraction efficiency is then given by:  
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For the PR material, in most of the cases, the wavelength of investigation is generated from a 

monochromatic light source. If we assume that Δλ≈0 and consider a special case where there is 

no absorption loss, the diffraction efficiency becomes:  
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(iii) Diffraction in reflection geometry 

The advantage of the reflection geometry is that the applied field can be in the same 

direction as the grating.  This results in larger SC-field when compared to the transmission 

geometry. In the reflection geometry, Figure 4.5(b), the grating spacing and the slant angle are: 
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For the special case of loss-less grating, the diffraction efficiency of the reflection geometry is 

given by: 
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Since the angles of incident of the writing beam in the reflection geometry is larger than 

those of the transmission geometry, the grating spacing for the reflection case is smaller.  This 

results in much larger Q factor of the grating.  
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(iv) Two beam coupling phenomenon 

 

Figure 4.6 Schematic diagram of the two beam coupling process. 

Due to the phase shift of the grating with respect to the interference pattern of two 

interfering beam, there exists a nonreciprocal steady state transfer of energy between the beams. 

By using slowly-varying envelop approximation and solving wave equations, the steady state 

intensities of the two interfering beam can be determined195: 
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where m=I1(0)/I2(0)  is the ratio between the input energy , and Γ is the gain coefficient , given 

by: 
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where θ is the angle  between the two beams inside the medium , and Θ is the phase shift of the 

grating  which has a maximum of π/2 . When Γ>0, the beam#2 gains energy.  The geometry for 

two-beam coupling is illustrated in Figure 4.6. 
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4.3 Experimental characterizations of PR polymer 

4.3.1 Four wave mixing measurement 

 

Figure 4.7 Geometrical representation of the FWM measurement 

The four wave mixing measurement is used to probe the quality and the dynamic of 

grating formation. The geometry of four wave mixing (FWM) measurement is shown in Figure 

4.7. In this experiment, the index grating by the PR effect is induced inside the material by 

interference of two writing beams i.e. beam#1 and beam#2.  The writing beam intensity is in the 

range of 30-1000 mW/cm2. Voltage is applied across the sample to create electric field that 

assists charge drifting inside the sample. The quality of the index grating is then measured on the 

basis of diffraction of the reading beam; beam#3.  The intensity of the reading beam is 

usually~1-5% of the writing beam.  If the same wavelength is used for reading and writing, the 

measurement is called degenerate four wave mixing (DFWM). If the wavelength of the reading 

beam is different from that of the writing beams, the measurement is called non-degenerate four 

wave mixing (NFWM).  The NFWM is advantageous due to the absence of cross talk between 

reading and writing beams. Ideally, one would want the grating wave vector 𝐾𝐾𝐺𝐺 to be in the same 

direction as the applied field. However, it is geometrically unrealizable because the sample is 

usually sandwiched between ITO electrodes; on the top and bottom. Therefore, in practice, the 

sample is tilted at an oblique angle so that there is no zero component of an applied external field 
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along the grating vector. Thus, index modulation can be created which will be seen as index 

grating by beam#3.  The writing beams are often s-polarized to reduce unwanted effects, for 

example beam fanning and self-diffraction. On the contrary, the reading beam is p-polarized to 

increase the effective index modulation seen by the beam. The schematic of the setup is shown in 

Figure 4.8. 

 

Figure 4.8 Schematic diagram of the optical setup for characterizing PR polymers. 

In this setup, first, the laser beam is divided into two beams using a polarizing beam 

splitter (PBS). The p-polarized beam is used as a reading beam. The s-polarized beam is split 

further to from two s-polarized writing beams through the use of PBS, polarizers, and half wave 

plate. The intensities of the three beams are adjusted by using combinations of half-wave plates, 

polarizers and neutral density filters. Plano convex lens are used to adjust the beam sizes. Large 

aspheric lens in confocal geometry are used to focus the beams where the sample is mounted.  

With combination of translating stages, this lens system allows changing the writing and reading 

beam angles with simplicity and without affecting the location of the sample. The transmitted 

and diffracted beams pass through non-polarizing beam splitters (NPBS). Their intensities can be 
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monitored by using high-speed photodetectors, which are connected to a data acquisition (DAQ) 

unit. 

(i) Steady state FWM experiment 

 Steady-state-four-wave mixing is the standard method for characterizing the PR 

performance. In this experiment, the steady state diffraction efficiency is monitored as a function 

of applied voltage. The internal diffraction efficiency can be calculated by: 
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+
=η        (4.55) 

where Id(V)  and It(V)  are the diffracted and transmitted intensity as a function of voltage V 

respectively. If losses (absorption, scattering, and reflection) are taken into account, one can 

calculate the external diffraction efficiency by:  
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d
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      (4.56)
 

where Iinc  is the intensity of the reading beam incident on the sample. Typical data obtained 

from steady state FWM is shown in Figure 4.9.  
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Figure 4.9 Steady sate diffraction efficiency vs. applied voltage of PATPD/7-DCST/ECZ/PCBM 
fabricated in our laboratory. It has internal diffraction efficiency as high as 85% at applied 
voltage of 6.5kV. The sample thickness is 105 μm. 

(ii) Transient FWM experiment 

Transient FWM measurements monitor the grating formation dynamic at a constant 

applied voltage. In this experiment, the photorefractive process is initiated by turning on the 

writing beams using either a mechanical shutter or an optical shutter (Pockels cell). The temporal 

evolution of the diffraction is measured with a DAQ unit. Typical data obtained from transient 

FWM measurement are shown in Figure 4.10. 

 

Figure 4.10 (a) transient grating recording and (b) transient grating decaying of PATPD/7-
DCST/ECZ/PCBM (our sample).  
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To analyze this data, Bragg-equation with temporal dependent index modulation can be used: 

)]([sin 2 tnB∆∝η      (4.57) 

where B is a constant. It can be seen that the speed of the PR diffraction is strongly dependent on 

the dynamic of the index grating formation. Bi-exponential function can be used to fit the 

temporal dependent of the index modulation196: 

)]/exp()1()/exp(1[)( 21 ttmttmtn −−−−−∝∆    (4.58) 

where t1 and t2  are the slow and fast time constant, and m is the weighting factor. In general, at 

least two time constants are used for PR composites. This is because, unlike in the case of 

crystals where the transient is limited by the carrier transport, the time dynamic in PR composite 

involves many contributions such as trapping, conduction, orientation, etc. 192   Stretched 

exponential form can also be used197-198. 

)])/(exp(1[)( β
stttn −−∝∆      (4.59) 

where ts is the time constant and β is a parameter that determines how the rate evolves with time. 

The stretched exponential behavior can arise when a phenomenon is governed by the 

convolution of a distribution of time constants198. This is often the case for inhomogeneous 

media such as polymer composites. The β parameter is inversely related to the width of the time 

constant distribution. Nevertheless, quite often for the PR composites, the data curves are fitted 

to a biexponential form and the early time constant is reported. 

It is possible to derive the sensitivity of the PR materials using the transient FWM 

information. The sensitivity S is defined as  199: 
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where IWB the writing is beam intensity and  texp is the exposure time.  High sensitivity means a 

hologram is written with sufficiently large diffraction efficiency at low light level and short 

exposure time.  In polymeric PR composite, a high sensitivity can be realized by: (1) generating 

large space-charge field; (2) optimizing the chromophores; (3) reducing the losses; and (4) 

decreasing the required exposure. 

4.3.2 Two beam coupling measurement 

The geometry of two beam coupling measurement is similar to the FWM measurement 

except in this measurement there is no reading beam. Instead, this measurement monitors the 

change in relative energy between the two writing beams. This measurement is the decisive 

experimental proof of photo-refractivity since the phase shift of the index grating form the 

interference pattern of the two beams is required in order to have energy coupling between 

beam#1 and beam#2. The same experimental setup as in Figure 4.8 is used.  However, for TBC 

measurement, the intensities of the beam#1 and beam#2 are monitored whereas the beam#3 is 

blocked. In the case of the steady state TBC measurements, the steady state intensities are 

monitored as a function of applied voltage.  The quantifying parameter for energy coupling 

between the two beams in this measurement is the gain coefficient 𝛤𝛤. By simply solving the 

coupling equation, the relation between the two writing beams can be determined by the 

expression 195: 

𝐼𝐼2(𝐿𝐿) = 𝐼𝐼1(0)+𝐼𝐼2(0)

1+𝐼𝐼1(0)
𝐼𝐼2(0)exp (−ΓL)

     (4.61) 

where 𝐼𝐼1 and 𝐼𝐼2 is the intensity of the beam 1 and 2 respectively, and L is the sample thickness.  

The gain coefficient can be calculated from the measured intensities by 200:  
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where γ=I2(I1≠0)/I2(I1=0) and b=I1(0)/I2(0). Since the sample is slanted in typical TBC 

measurements of PR polymers, the set-up condition may be taken into account in the calculation 

of the gain coefficient:  

]lncosln[cos1
2211 γaγa −=Γ

L     (4.63)
 

where α1  and α2  are the beam angles relative to the sample normal;   and γ1  and γ2 are defined 

as: 

      (4.64)
 

     (4.65)
 

Figure 4.11 shows a typical steady state gain coefficient plot. 

 

Figure 4.11 Steady sate two beam coupling gain vs. applied voltage of PATPD/7-
DCST/ECZ/PCBM 
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4.3.3 Photoconductivity measurement 

Photoconductivity measurements evaluate the conductivity of the sample in presence of 

light. It can be measured either as a function of voltage in a steady state (fixed illumination 

intensity) or as a function of illumination intensity (fixed bias voltage). Transient measurements 

can also be done. The conductivity without illumination is called dark conductivity. The amount 

of current measured is a combined manifestation of several effects i.e trapping, detrapping, 

photo-generation efficiency and charge mobility. A great amount of information can be obtained 

by this simple measurement.  

In a typical steady state photoconductivity measurement, the current going through the 

sample is measured at different applied voltage over time. The first step is to apply DC voltage 

without illumination and let the dark current reach the steady state. The transient behavior of the 

dark current can be caused by charge injection from the electrode. Once steady state in the dark 

is achieved, the sample is illuminated with a laser beam. The current is then measured over time 

until it reaches equilibrium. The rise time of the current is dependent on the trapping and 

mobility of the charges. The dark conductivity can be calculated by using the following 

expression: 

      (4.66)
 

where idark is the measured dark current, E is the applied field, and Aelec  is the overlap area 

between the electrodes and the sample. The photoconductivity can be calculated from the 

following expression: 

    (4.67)
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where itot  is the measured current under illumination, and Abeam  is the laser spot size. Significant 

information can also be obtained from the transient photoconductivity. For instance, shallow 

traps will affect the behavior of the current on short time scales. Deep traps, however, will affect 

the behavior on longer time scales.  

4.3.4 Transmission ellipsometry measurement 

A key mechanism responsible for refractive index modulation in PR composite is the 

reorientation effect in the SC-field.171 The ability and speed of the chromosphores to reorient are 

important parameters contributing to the overall PR performance. 

Chromophores are often poled polymer with uniaxial birefringence. They have two 

indices of refraction namely ordinary index (no) and extraordinary index (ne). Depending on the 

polarization direction of the incident light relative to the chromophore optic axis, the probe beam 

will see different effective index of refraction. 

In this ellipsometry measurement201, the phase retardation is measured after the beam 

passes through the sample. This allows calculation of birefringence of the material under applied 

DC field.  The light used is in the wavelength range where no light absorption takes place.  The 

change in the intensity due to phase retardation is monitored using a crossed analyzer. The light 

intensity behind the analyzer is of the form: 
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where I0 is the intensity of the case of parallel polarizer, and Δϕ is the phase retardation given by: 
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where L is the sample thickness and φ is the internal incident angle. Figure 4.12 illustrates the 

schematic diagram of the setup.  

 

Figure 4.12 Schematic diagram of the optical setup for transmission ellipsometry 

 

Transient ellipsometry measurements will give information about the orientation speed of the 

chromophores. The steady-state measurement will give an idea about the magnitude of the index 

modulation with a given applied field. Transient ellipsometry data can be compared to that of the 

transient photoconductivity to determine whether the conduction of charges or the orientation of 

the chromophores is the limiting factor in the PR grating formation speed. 

4.4 Results and discussions 

4.4.1  Photorefractive performance of a graphene-doped PATPD/7-DCST/ECZ composite 

In the carbon nanostructure family, buckyballs (C60) and carbon nanotubes have been 

used and studied as charge sensitizers in PR composites. C60 and its derivatives have become 

benchmark materials for charge generators. CNTs, on the other hand, not only serve as charge 

generator but also are found to help charge transport in the composite202. The last member of this 

family that has not been well studied as a sensitizer in the PR composite is graphene.  
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Nanomaterials can be categorized by their dimensionality, which ranges from zero 

dimension (0D) to three dimension (3D). In the case of carbon the common structures are, for 

example, 0D fullerene, 1D carbon nanotube, 2D graphene, and 3D graphite. Interestingly, one 

can think of 2D graphene as a building block to form the other dimensional structures of carbon 

allotropes. Graphene is a monolayer of carbon atoms densely packed into a two-dimensional 

honeycomb lattice.  Graphene can be wrapped up to form 0D fullerene, rolled to form 1D 

nanotube, and stacked to form 3D graphite203. In a sense, one can regard graphene as the parent 

of C60 and CNTs. Graphene possesses excellent electrical properties, mechanical flexibility, 

optical transparency, thermal conductivity and low thermal expansion coefficient 107, 110, 204-206. 

Unlike semiconductors, the valence and conduction bands of graphene touch each other at a 

point, called a Dirac point. This results in metallic like properties in graphene with no energy 

bandgap, making graphene an interesting optoelectronic material. Graphene can absorb and 

convert light into photocurrent over a broad electromagnetic spectral range. Under an applied 

electric field, photocurrent generation in graphene can occur under several processes such as 

Seebeck effect, photovoltaic effect, and bolometric effect 207-208. It has been found by many 

investigators that electrical conductivity and photo-charge transport of polymer composites are 

improved with graphene doping 209-213 

For example, N. Yang et al. found that by incorporating graphene into dye sensitized 

solar cell, charge transport can be improved and the charge recombination can be reduced. The 

transport property was substantially better than using 1D material like CNTs 212.  Improved 

charge transport will result in faster dynamic formation as previously discussed (Section 4.2). 

This is apparent when hole traps were introduced to a PR composite. The reduced hole mobility 
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due to the traps results in slower rise time. Therefore, better charge mobility in the composite 

may result in faster dynamic of the device and increased sensitivity.  

In photovoltaic community, graphenes have attracted considerable attention due to their 

unique properties. Among their unique properties, the size-dependent bandgap of graphenes and 

their large optical absorptivity are particularly interesting for light harvesting applications. In 

addition, their electronic levels and charge transfer processes can both be modified with well-

developed carbon chemistry214. The term “ graphene quantum dots” are used for graphene sheets 

with nanoscale dimensions since their band gap properties resemble those of semiconductor 

quantum dots. Yan et al. reported that highly dispersible 13nm graphene quantum dots can be 

used as efficient charge sensitizers in organic solar harvesting devices215. Due to the similarity in 

photochemistry of organic solar cells and PR devices, graphene is a very interesting material for 

charge sensitization in organic PR devices.  

The writing speed of the PR materials depends on two major factors: (1) formation of the 

space charge field which depends on the charge generation, transfer, transport and trapping 

processes; and (2) the reorientation dynamics of the chromophores. It is generally accepted that 

the former contributes to the fast time constant of the PR composite and the latter governs the 

slow time constant188, 216. Even though the limiting time factor for reaching the steady state in the 

PR polymers is the slow time constant, diffraction efficiencies smaller than the steady state 

diffraction value are sufficient for most practical dynamic holographic applications. For instance, 

an updatable hologram that can be viewed under ambient light condition with only 0.5% 

diffraction efficiency was recently demonstrated 6.  As a result, charge generation plays an 

important role in improving the temporal dynamics of hologram generation. It was found that, 
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using proper charge generation moieties or sensitizers, like buckminister fullerene (C60) or 

tetranitroflurinone (TNF), can substantially improve the writing dynamics of PR polymers161-162.  

As a result, C60 has become one of the most commonly used, well-performing sensitizers 

in PR composites217 and a benchmark sensitizer in the literature218-221. A more soluble derivative 

of C60, [6,6]-phenyl C 61 -butyric acid methyl ester (PCBM) 166, 222, has also been used recently, 

provides similar PR performance and easier material processing. However, while carbon nano-

materials, particularly C60 and its derivatives, have proven to be efficient charge generators in PR 

composites, other carbon nano-materials within the same family of carbon allotropes, like single 

wall carbon nanotubes (CNTs) and multiwall carbon nanotubes, can also enhance the 

performance of PR composites223-226. Phase separation constitutes one of the processing 

challenges when dealing with CNT sensitizers. Recently, Lingam et al. 227 have bonded PVK 

polymer to CNTs. It was found that the charge-transfer process was improved through the 

intimate contact between the sensitizer and CTP. This grafted polymer system (PVK/7-

DCST/TCP/PVK grafted CNT) showed internal diffraction efficiency as high as ~60% and two 

beam coupling gain of ~78 cm−1 at 633nm. Furthermore, CNTs are involved not only in the 

charge generation but also in charge transport, which can occur along the tube. The 

photoconductivity of polymer composites with CNT was found to increase significantly 

compared to composites without CNTs202, 228. 

Recently, Grishina et al. reported on the beam coupling properties of poly(N-

vinylcarbazole)/ graphene composites at visible and infrared wavelengths229-230. Neither 

plasticizers nor NLO chromophores were added in their system. The two beam coupling gain of 

the system was measured to be 50 cm-1 at an applied field of 150 V/μm and wavelength of 

532nm. However, their composite does not represent a real PR sample since it lacks NLO 
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chromophore which is necessary for a PR system. Nevertheless, it is highly interesting to 

examine the use of graphene as a sensitizer in a real PR polymer composite. As a result, in this 

section, study on the performance of the PR polymer composite of PATPD/7-DCST/ECZ 

sensitized at 633nm with graphene is studied. 

4.4.1.1 Effect of graphene on optical absorption of the PR composite 

Graphene used in this experiment was synthesized by chemical exfoliation according to 

previous reports231-232. Briefly, graphene samples were prepared by ultrasonic cleavage of high 

purity HOPG in an organic solvent, N-methylpyrrolidone. The resulting solutions were 

centrifuged to obtain a stable dispersion. This dispersion contains 10-50 nm graphene 

crystallites, predominantly mono and bilayers. These dispersions were filtered through alumina 

filters to obtain µm thick free standing graphene laminates. These graphene laminates were re-

dispersed in THF to produce PR samples. 

All samples were prepared by melt processing. First, the chemicals were mixed with the 

designated composition in a common solvent, THF. The solution was then dried at 55 °C under 

vacuum for 24hr. The mixture solid was placed between two indium-tin-oxide (ITO) and melt 

processed at 165 °C. Polystyrene glass beads of 105 μm diameter were used as a spacer to 

control the thickness of the samples. Three types of PR samples were prepared for the study. The 

first sample (“undoped”) is an undoped sample consisting of PATPD/ECZ/7-DCST with 

49.74/15.08/35.18wt%. The second sample (“graphene doped”) is graphene doped and the 

loading of graphene is about 0.03 wt.% (graphene doped to “undoped”). The third sample 

(“PCBM doped”) is a PR composite doped with the same wt.% (0.03) loading of a benchmark 

PR sensitizer, PCBM for comparison. PCBM is selected as a standard sample for comparison 
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here, since recent novel applications like updatable photorefractive 3D displays and 3D 

telepresence were demonstrated using samples sensitized with PCBM6, although at different 

concentration. In the present work, we study the performance of a system similar to the one 

developed by P.A. Blanche et al 6 but using graphene additives. Since our graphene is not 

functionalized, maximum loading of 0.03% was used in our study to avoid graphene 

agglomeration. Decrease in rise time would be expected for higher weight percent, due to the 

subsequent larger number of photogenerated charges. Optical absorption spectra of these samples 

are shown in Figure 4.13(a). All samples show large absorption in the green region of the 

spectra. These large green absorptions are due to chromophore absorption. In order for PR 

effects to take place, light absorption is essential: this means that all PR samples will work well 

in the green region. However, since the light absorption is small in the red region, the addition of 

the sensitizers to the system is necessary. While the undoped and PCBM doped have similar 

absorption spectra, the graphene doped sample shows a longer absorption tail at longer 

wavelengths. The optical absorption of graphene dispersed in tetrahydrofuran (THF) shown in 

the inset of Figure 4.13(a) is in agreement with previous reports233. Therefore, improvement in 

the PR performances in the red region with the addition of graphene is expected.  Comparing 

absorption spectra of the PR samples with their individual components, we found that the 

observed absorption profiles cannot be accounted for by simple superposition of the absorptions 

of the individual components. We have also measured absorption spectra of both undoped and 

graphene-doped composites without chromophores (Figure 4.13(b)). Both samples have high 

absorption at ~400 nm due to absorption of the polymers. The graphene-doped sample, however, 

exhibits higher residual absorption throughout the visible range. This higher residual absorption 

can be attributed to frequency-independent absorption of graphene234-235. The existence of an 
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absorption shoulder, only when chromophores are present in the graphene doped composite, 

suggests an interaction between the chromophores and graphene. 

 

Figure 4.13  (a) Absorption spectra of undoped, graphene doped and PCBM doped in the film 
form. The inset shows the absorption of concentrated 7-DCST in THF. (b) Absorption of PR 
composites without chromophores (film) with (red) and without (blue) sensitizer. The addition of 
graphene results in broadband flat absorption in the visible wavelength range. The inset shows 
absorption of PCBM and graphene in THF. Axis labels of the insets are the same as of the main 
curves. 
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4.4.1.2 Studies on photorefractive performances of the graphene-doped PR composite  

 

 

Figure 4.14 (a) Transient FWM curves (b) Photoconductivity vs. applied field and (c) Photo-
charge generation efficiency of undoped, graphene doped, and PCBM doped.  
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To measure the speed of refractive index grating formation in the PR process, we 

performed a transient four-wave-mixing (FWM) experiment. In this measurement, two writing 

beams of equal intensities of 400mW/cm2 were used. The wavelength was 633nm generated 

from a HeNe laser. The intensity of the reading beam was 21mW/cm2. The tilt angle between the 

sample normal and bisect of the two writing beams was fixed at 55°. The angle between two 

writing beams was fixed at 24° for all measurements.  Photodiodes connected to a digital 

oscilloscope were used to measure the transient behaviors. The transient measurements were 

done by blocking and un-blocking one of the writing beams using a mechanical shutter. The 

intensity of the diffracted beam was monitored once the shutter was open. The internal 

diffraction efficiencies, ηint, were calculated using Equation (4.55).It is to be noted that, in all of 

our experiments, the samples are pre-illuminated to avoid a history-dependent effect 236-237. In a 

typical FWM experiment, two coherent writing beams interfere inside the sample, resulting in an 

intensity modulation. This modulated intensity generates photo-generated charges which then 

drift and diffuse to form a space-charge (SC) field. The resulting SC field modulates the 

refractive index by electro-optic and reorientational effects, creating an index grating inside the 

material. To probe the formation dynamics of such gratings, another counter propagating beam 

or reading beam is used. Due to the index grating, the reading beam is diffracted and the 

transient behavior of the grating formation can be probed. The diffraction efficiency of this 

transmission grating depends on the strength of the grating according to the equation: 

       (4.70) 

where S is the grating strength given by : 

   (4.71) 
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with Δn being the magnitude of the index modulation, λ is the wavelength of the reading 

beam, and α1 and α2 are the angles of the writing beams with respect to the sample normal. Due 

to small dielectric screening in PR polymer, an external field is applied to facilitate charge 

separation and the sample is tilted to project an effective electric field along the grating vector. 

As a result, in the case of PR polymers, Δn is a function of applied field and SC-field dependent 

birefringence and the electro-optic effect of the chromophore. Since the generation of SC-field 

and thus the index grating are dynamic in nature, Δn is a function of both time and voltage. In 

transient FWM measurements, we monitored the temporal behavior of the diffracted beam at a 

constant applied field of 64 V/μm as one of the writing beams is blocked and then opened. The 

total writing intensity used was 800 mW/cm2. From these measurements, shown in Figure 

4.14(a), we found that the graphene doped sample showed faster dynamics than the other 

samples. Such observation indicates a faster formation of the refractive index grating. We have 

also measured the steady-state FWM properties of the samples [AppendixB, FigureB1]. All three 

samples showed comparable diffraction efficiency. At the applied field of 64V/µm, the undoped, 

graphene doped and PCBM doped samples have internal diffraction efficiency of 69%, 62%, and 

53% respectively. 

In general, the speed of the formation of the index grating depends on two contributions, 

(1) speed of SC-field formation and (2) chromophore reorientation time. The first contribution is 

largely affected by the charge generation efficiency of the sensitizers while the second 

contribution depends on the properties of the chromophore and the Tg of the composite. In fitting 

the transient data, the assumption of bi-exponential character in the transient behavior of the 

index modulation, Δn(t), results in two time constant, i.e. the fast time constant t1 and the slow 

time constant t2, as seen in Equation (4.58).  
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Since the SC-field formation is much faster than the reorientation of the chromophores, t1 

can be mainly attributed to the speed of the SC-field formation. On the other hand, t2 mostly 

reflects the chromophore reorientation kinetics188. By fitting our data with Equation (4.58), t1 and 

t2, for graphene doped are determined to be 0.8 s and 25 s respectively. In contrast, for undoped, 

t1 = 2.5 s and t2 = 25s, and for PCBM doped t1 = 1.8 s and t2 = 38 s. The weighting factor m used 

for fitting undoped, graphene doped and PCBM doped data are 0.51, 0.51, and 0.65s 

respectively. When compared to its undoped counterpart, the graphene doped sample has 

approximately 3 times faster t1 while their t2 values are the same. Such reduction in the fast time 

constant, i.e. the faster SC-field formation can be attributed to the improved charge generation 

and transport due to the presence of graphene. In order to verify this assumption, we performed 

photoconductivity measurements (Figure 4.14(b)). The total light intensity used for all 

measurements was 400mW/cm2. The speed of the SC-field formation and the value of the 

magnitude of the t1 value are largely governed by the photogeneration efficiency. We found that 

our graphene-doped sample exhibits significantly larger photoconductivity, σph, than the undoped 

sample. Its photoconductivity also is larger than that of PCBM-doped sample when applied filed 

is larger than 30V/µm. This larger photoconductivity in the graphene-doped sample means, 

given the same irradiation, more charges (larger photocurrent) are generated in the sample. By 

the definition of electric current, a larger current is the manifestation of a greater number of 

charges flowing through the sample per time interval. In the case of the PR polymer, this 

enhanced charge flow will result in a faster formation of a steady state SC-field. Therefore, the 

observed largest photoconductivity in the graphene-doped sample explains its fastest t1. We also 

calculated the photo-charge generation efficiency, ϕph, of the samples according to the equation 
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      (4.72) 

where E is the applied electric field,  Ia is the absorbed light intensity, h is Planck’s 

constant, v is the light frequency, and e is the elemental charge constant. It is found that the 

photogeneration efficiencies of all samples increase with E, as depicted in Figure 4.14(c). Such 

field dependent efficiency suggests the electric field assisted dissociation of excitons 238-239. In 

other words, holes and electrons are generated at the interface between two species (donor and 

acceptor). From the experimental data, the rate of increase of the efficiency with applied field is 

higher in the case of the graphene-doped sample compared to that of the undoped sample. This 

higher rate is an indication of a smaller initial electron-hole separation, or exciton thermalization 

length, in the graphene-doped sample240. Such reduction in the initial thermalization length may 

be explained by the small loading of the graphene. The number of participating charge 

generators can significantly affect the interfacial area between donor and acceptor species and 

the thermalization length is highly dependent upon the interfacial areas241. Larger loadings of 

both species can result in continuous pathways available to both electrons and holes and thus a 

longer thermalization length. On the other hand, the absence of such pathways in either one of 

the charge species causes a reduction in the thermalization length. The undoped sample has a 

large initial thermalization length (smaller slope) because the charge generation and separation 

occurs between two species with large loadings which are, in this case, the chromophores and the 

charge transporting polymers. From the experiments, we found that the graphene-doped sample 

had much larger photo-charge generation than its undoped counterpart. It becomes obvious that 

the additional charges are generated by the presence of graphene. The observed reduction in the 
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initial thermalization length in the graphene-doped sample further confirms that such increase in 

photogeneration involves the species with smaller loading, i.e. graphene.  

Since any species added to the PR polymer composites can also act as charge traps165, 242, 

it is interesting to investigate this aspect. We performed two beam coupling (TBC) 

measurements with our sample (Figure 4.15). In this experiment, the energy exchange between 

two overlapping laser beams was monitored. Two interacting beams with a 1:1 intensity ratio 

were used.  The magnitude of the energy exchange is expressed in the form of the gain 

coefficient, Γ, determined from Equation (4.62). This gain coefficient depends not only on the 

magnitude of the SC-field but also on the phase shift between the light interference pattern and 

the index modulation195. Charge trapping can affect both the magnitude and the phase of the SC-

field, resulting in changes in the magnitude of  Γ243. Not only that, TBC measurement implicitly 

gives information about the trapping mechanisms, the non-zero TBC gain coefficient is a proof 

of the PR effect in the system due to the nonlocal nature of the PR effect. We found that the gain 

coefficients of our graphene-doped sample are comparable to those of the undoped sample. This 

observation indicates that the addition of graphene neither affect the magnitude nor the phase of 

the SC-field, possibly due to  the absence of new favorable charge traps (otherwise, very shallow 

traps) generated with graphene. Both samples showed large gains with p-polarized beams. This 

is because the index modulation seen by p-polarized light is stronger than by s-polarized light. It 

is to be noted here that both samples showed reversed direction of energy transfer as the incident 

beams were changed from s-polarization to p-polarization. This effect has previously been 

observed244. 
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Figure 4.15 Γ vs. E for undoped, graphene doped and PCBM doped. Data for both s- and p-
polarizations are shown. 

When the performance of the graphene-doped sample was compared with a PR polymer 

doped with the benchmark sensitizes, like in the PCBM doped, we found that t1 of the graphene-

doped sample is shorter than that of the PCBM-doped sample at an applied voltage of 64V/μm. 

The shorter time constant in this graphene-doped sample is in accordance with its higher 

photoconductivity when compared to the PCBM-doped sample. However, the linear absorption 

of the graphene-doped sample is higher than that of the PCBM-doped sample at similar loading 

levels. The rate of increase in the photo-charge generation efficiency of the graphene-doped 

sample, however, is larger than that of the PCBM-doped sample. We also found that the TBC 

gain coefficient is much higher in the case of the PCBM-doped sample. The larger TBC gain in 

the PCBM-doped sample can be attributed to traps generated from ionized sensitizers 245. In the 

PCBM system, the majority of charges are generated from photoexcitation of PCBM molecules.  

By transferring holes to the transport polymer, ionized PCBMs are created. These species act as 

 145 



electron traps that increase the separation between positive and negative charges, resulting in 

large TBC gain. On the other hand, graphene-doped sample and undoped sample have similar 

gain coefficients, suggesting the lack of such trapping mechanism. This implicates that charge 

sensitization processes in PCBM-doped and graphene-doped samples are different. In the former, 

PCBM acts as independent charge sensitizers and ionized species are the results of 

photoexcitation. In the latter, however, graphene helps separation and transport of charges 

created from photoexcitation of the nonlinear chromophores as evident by photocurrent, 

absorption and PL measurements (discussed in the following section). 

4.4.1.3 Effect of graphene on photoluminescence of the PR composite 

From the TBC measurements, it is clear that the PR effect can take place in the 

PATPD/ECZ/7-DCST system, without the use of additional sensitizer, i.e. the case of the 

undoped sample. However, we found that the absorption profile of the composite is not a simple 

superposition of the component’s profiles. This finding suggests electronic interactions between 

the components. To have an insight into this aspect, we performed photoluminescence (PL) 

measurements with 532 nm laser excitation (Figure4.16) using a Raman confocal microscope 

(Witec Alpha 300 RA Raman system). First, we investigated the PL of the PATPD /7-DCST 

composite to observe the interaction between PATPD and 7-DCST. The PL of the PATPD/7-

DCST composite has a peak at ~ 610 nm which is red-shifted compared with the PL of 7-DCST 

(Figure 4.16(a)). These results suggest that excited 7-DCST electronically interacts with the 

PATPD host polymer. The PL spectra of thin layers of undoped and graphene doped samples are 

shown in Figure 4(b). The undoped sample has a PL peak at 610 nm which is same as the PL 

peak of the PATPD/7-DCST composite. The observed peak at 610nm in the undoped PR 
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composite may be attributed to the radiative recombination between electron in the LUMO level 

of 7DCST and hole in the HOMO level of PATPD as illustrated in Figure 4.17(a). However, 

according to our previous optical measurements, the photo-charge generation efficiency of this 

system is relatively small which results in a slow formation of the SC-field.  

 

Figure 4.16 PL spectra of (a) PATPD/7-DCST composite and 7-DCST, and (b) graphene doped 
and undoped PR samples. The excitation wavelength was at 532nm. The composites studied here 
were so prepared that the % weight loading of the components in polymer matrices are the same 
as those of the PR samples. 

By adding graphene to the system, the efficiency can be improved. This improvement in 

the efficiency results in faster formation of a SC-field and shorter t1. Here, we found that 

graphene can be used to improve the photo-charge generation efficiency of the PR system. Even 

without optimization and functionalization, the photo-charge generation efficiency of the 

graphene sensitizers is similar to benchmark materials like PCBM. We also found that the 

absorption of the graphene doped sample has a longer tail in the red region than those of the 

undoped and PCBM doped. The PL spectrum of the graphene doped PR is also slightly red-

shifted compared to that of the undoped. Considering the energy level of graphene (Figure 

4.17(b)), it is possible that graphene interacts electronically with the LUMO level of 7-DCST, 
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resulting in the slight red-shift in the PL spectrum and better charge generation efficiency. In 

fact, electronic interactions between graphene and π-conjugated polymers has been observed in 

the case of photonic and optoelectronic devices117, 246-249. It has also been found that electron 

transfer occurs between poly(3-octylthiophene) and graphene where graphene acts as an acceptor 

117. In addition, blending conjugated polymers with graphene-based materials can result in 

effective electron–hole separation and charge transport. It also provides a continuous pathway 

for charge transfer 249.  

 

 

Figure 4.17 Molecular energetic diagram for (a) undoped and (b) graphene doped. In the 
undoped PR composites, a photo-generated hole is transferred from 7-DCST to PATPD. ECZ 
does not participate in hole transport due to its lower HOMO level of 5.92eV.  These holes are 
the primary charge conductors in PR polymers. In the case of graphene doped, graphene may act 
as an electron acceptor with 7-DCST as a donor, resulting in better exciton dissociation/charge 
generation efficiency.  
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4.4.1.4 The role of charge trapping in the graphene-doped PR composite.  

 

Figure 4.18 Dark conductivity vs applied field for undoped, graphene doped and PCBM doped. 

While both graphene-doped and PCBM-doped samples have similar charge generation 

efficiency, the latter shows much stronger TBC gain. This finding can be explained in terms of 

charge trapping in the composites. In the PCBM-doped system, the generated charges are 

transferred to the conducting polymer, resulting in ionized PCBMs. The ionized PCBMs  act as 

hole traps. However, in the case of the graphene-doped sample, the presence of graphene in the 

system does not significantly affect the magnitude of the TBC gain, suggesting the lack of a 

trapping mechanism.  

An increase in the speed of the SC-field formation can be the manifestation of two 

phenomena, namely more efficient photo-charge generation and better charge transport. Since 

we observed an increase in photo-charge generation efficiency, we conclude that better charge 

generation process due to the interaction between graphenes and the complex is responsible for 

the improvement. However, it is also possible that the addition of graphene helps transporting the 

photo-generated charges, possibly by improving overall electrical conductivity of the composite. 
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Enhancement in electrical conductivity of graphene-doped composites has been observed 

previously250. In order to investigate this aspect, we looked at the dark-conductivity of the 

samples (Figure 4.18). The dark conductivity was measured at the steady state after pre-

illumination. We found that both undoped and graphene doped have similar dark-conductivity at 

low voltages. However, graphene doping showed slightly higher conductivity at larger fields. It 

is possible that the addition of graphene leads to such voltage dependent enhancement of the 

dark conductivity. This aspect is the subject of future study. However, it can be concluded that, 

in our graphene–doped PR composite, the graphene dopants do not negatively affect the charge 

transport mechanism. In other words, charge trapping is absent in the graphene-doped sample. 

On the contrary, The PCBM doped samples show a reduction in dark-conductivity when 

compared with the undoped samples. This can be attributed to the trapping mechanism 

previously discussed.  

All in all, in this section, the performance of PR composites doped with graphene was 

studied. It was found that, in the undoped system of PATPD/ECZ/7-DCST, charge sensitization 

occurs via nonlinear chromophores. Nonetheless, the addition of graphenes to the system results 

in shorter SC-field build-up time. The faster build-up time is attributed to larger charge 

generation due to the electronic interaction between graphenes and chromophores. Photocurrent 

studies on our samples confirm the enhancement in charge generation with the addition of 

graphene. From the energy levels of the component and our luminescence study, it is likely that 

the improved charge generation is due to the efficient exciton separation at the 7DCST-grapehne 

interface. The PR performance of the graphene-doped sample is comparable with the PCBM-

doped sample with the same (wt. %) loading. We found that the graphene-doped sample exhibits 

faster SC-field build up time and larger photoconductivity at high applied field (>50V/µm). The 
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steady state TBC gain of the sample doped with the benchmark sensitizer PCBM is larger than 

that of the graphene-doped PR composite. However, the TBC gains of the graphene-doped 

sample are comparable with the undoped composite. The absence of improvement in the TBC 

gains of the graphene-doped sample compared with PCBM-doped sample may be attributed to 

the lack of charge trapping in the graphene-doped sample. This study has revealed the potential 

of using graphene-based materials to improve the speed of PR polymer composites. Future work 

will focus on further enhancement of the PR speed by increasing the loading of graphene by 

suitable functionalization.  
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5 FABRICATION OF TUNABLE PLASMONIC SUBSTRATES§ 

5.1 Motivation 

Collective oscillation of conducting electrons or plasmon has attracted significant 

research interest for the past decade.  The unique properties of this physical phenomenon are 

proved to be useful in many applications, for example, bio-sensing251-252, cancer-therapy253-254, 

solar-harvesting255-256, and wave guiding257.  When the frequency of the incident electromagnetic 

wave is in resonance with the localized surface plasmon resonance (LSPR) of a metal 

nanostructure, the local field strength around the structure can be enhanced by several orders of 

magnitudes. This filed enhancement is found to be beneficial in a variety of applications such as 

surface enhanced Raman scattering (SERS)21, photoluminescence258-259, photo-detection260,  

photo-charge generations 261-262, photo-catalysis263-264, nonlinear optical properties 265-266 and 

surface plasmon enhanced  Faraday rotation267. 

Large-scale fabrication of patterned plasmonic nanostructures is a challenging quest.  

Nevertheless, it is necessary for transitioning plasmonic devices from laboratories to industries. 

Methods like electron-beam lithography (EBL)268 and focused ion beam lithography  (FIBL)269 

are commonly used for fabricating high quality nanostructures as it can circumvent the resolution 

limit of conventional photolithography. Fabrication of nanostructures using these techniques is, 

however, time consuming and expensive. One of the alternatives is to use nanotemplate 

§ The work presented in this chapter are extensions Chantharasupawong, P.; Tetard, L.; Thomas, J., Coupling 

Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates. The Journal of Physical 

Chemistry C 2014, 118, 23954-23962. 
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approaches such as using anodized alumina oxide 270or nanospheres271-272 as templates. These 

techniques provide relatively poor quality nanostructures and the templates used are sacrificial in 

nature. Moreover, the flexibility in designing the shape of nanostructures is limited.  

Nanostructures fabricated by nanoimprinting lithography with high quality master mold 

as a precursor have been demonstrated to provide large area of well-ordered nanostructures with 

high resolution273. With this technique, the shape of the nanostructure can be designed and 

fabricated on the master mold using EBL or FBIL.  The negative replica of the master mold can 

be transferred to a polymer substrate. Even though this approach also involves fabrication 

techniques like EBL or FIBL, it uniquely offers the ability to fabricate large number of replicas 

with a single master mold, keeping the cost per structure very low. Nonetheless, the shape and 

size of the imprinted nanostructure is fixed by the pattern on the master mold. This nanopattern 

can be directly used for fabricating plasmonic devices or as a second-generation mold for 

creating the positive replica of the designed nanostructure. 

A key aspect of plasmonic nanostructures is the strong dependence of their LSPR 

wavelength on the shape, size, and environment.  For instance, in the case of metal nanospheres, 

the resonance peak is red-shifted as the size of the sphere increases 274. Anisotropic shapes like 

metal nano-ellipsoids have their plasmon resonance peaks dependent on the orientation of the 

structure relative to the incident light polarization 275. 

Unfortunately, plasmonic structures fabricated by the nanoimprinting methods have 

limited flexibility in changing their size and shape as it is restricted by the pattern on the master 

mold. Hence, the ability to tune the resonance peak using a given master mold is limited.  

Typical methods for tuning the resonance of patterned plasmonic structures include changing the 

polarization of the incident light276, rotating the sample relative to the light propagation axis277, 
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and increase the thickness of the deposited metal 278-279. Nevertheless, these approaches have 

their own constraints.  For instance, changing the polarization of the incident sources is not 

suitable in applications where the source is unpolarized.  On the other hand, rotating the sample 

relative to the incident light propagation axis is not appropriate for space limited application. 

Changing the thickness of the deposited metal requires more than one deposition process.  

In this chapter, a quick and high throughput nanofabrication technique for making 

tunable plasmonic substrates is presented. The use of the fabricated structures for enhancing light 

matter interactions is investigated. 

5.2 Theoretical background 

5.2.1 Nanofabrication techniques  

In order to study and understand the optical properties of metal nanostructures, it is 

imperative that we have the ability to produce them.  In this section, common fabrication 

techniques for producing nanostructures, not exclusively to metal, are briefly discussed. More 

comprehensive review can be found elsewhere280-283.  

(i) Photolithography and scanning lithography 

Lithography technique has been around since the advent of integrated circuit technology. 

The mainstream lithography used in the industry is called photolithography. In this technique, 

masking materials known as resists are used. These resist materials are sensitive to the 

electromagnetic source used in developing desired patterns. There are two kinds of resists, which 

are positive and negative resist. Positive resists reacts with the EM wave in such a way that a 

developer can remove it chemically after exposing the material with the radiation. Negative 

resists, on the other hand, can always be removed with a developer unless it is exposed to the 
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radiation. The pattern is projected on to the resist with the use of a photo-mask. Photomasks are 

typically made of quartz with metal of a desired pattern on them. The resolution of lithography 

techniques highly depends on two main factors that are the EM source and the optics of the 

system. The most common wavelength for the source is UV radiation.  Smaller wavelength 

source such as extreme UV and X-ray are also used. However, higher radiation frequency poses 

challenges in designing the optics of the system. Another direction to improve the resolution of 

the system is to use higher numerical aperture optics.  Improving the resolution of 

photolithography techniques is a subject of ongoing research and it is guided by Moore’s law.  

Another school of lithography is called scanning beam lithography. Unlike in the case of 

photolithography where the pattern is cast on a sample with only one exposure, this technique 

uses a scanning beam to write a pattern on a sample by a point-by-point fashion. The beam used 

can be laser beam (laser scanning lithography (LSL)), electron beam (electron beam lithography 

(EBL)) or ion beam (focused ion beam lithography (IBL).  In the case of LSL, laser wavelengths 

in the UV region are typically used as the source. LSL is the least expensive among the three 

scanning lithography techniques. EBL and IBL, on the other hand, offer higher resolution since 

the wavelength of electrons and physical size of the ions are much smaller than diffraction limit 

of the UV radiation.  

LBL and EBL require a resist layer for patterning. In LBL, photoresists similar to 

conventional photolithography can be used. However, with the use of two-photon absorption, 

resolution can be further improved. With a thick resist, 3D complex structures can be made with 

LBL. In EBL, the most common polymer is PMMA. It is a positive resist. Electron beam breaks 

the polymer chains and make it removable by a developer. IBL, on the other hand, is considered 

as a primary writing method since the pattern can be written directly on the sample without using 
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a resist. Nevertheless, since the point-by-point writing scheme is very time consuming, writing 

large-scale patterns are challenging with these beam-scanning techniques.  

To develop metal structures with lithography techniques, the desired pattern is 

lithographically developed on the resist material, which is coated on a substrate. Metal 

nanostructures are realized by depositing the metal onto the sample and then lift off the resist.  

Alternatively, metal layer can be deposited on the substrate before the resist is applied.  Various 

etching processes can then be used to pattern the metal with the resist acting like a stencil.  

(ii) Colloidal synthesis 

History of the colloidal metal nanoparticle synthesis can be traced back to the medieval 

period when glass artisan used metal salts as coloring agents in producing stained glass. Back 

then; they did not know that the observed colors after adding gold chloride and silver nitrate to 

their glass are actually from gold and silver nanoparticles created during the making process. 

Currently, researchers use this metal salt reduction technique to produce metal particle with 

various shapes and sizes.  For example, quasi-spherical gold particle can be produced by adding 

chloroauric acid with sodium citrate284. Au(III) ion from the acid is reduced by the negatively 

charge citrate ion, producing neutral Au capped with citrate group. The presence of the 

negatively charged citrate-capping group prevents particles from aggregation and controls the 

rate of the particle growth.  Therefore, the size of the final product can be controlled by 

manipulating the nucleation and growth process through the adjustment of the reagent 

concentration and the reaction conditions. However, since the citrate ions are weakly absorbed 

onto the surface, change in temperature, pH, and concentration can destabilize the solution. To 

address this issue, organic capping ligand such as a long chain alkanethiol can be used to 

improve the stability.  
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Gold and silver particles are never a perfect sphere. Instead, they have irregular shapes 

with their surfaces determined by the facets of face center cubic (fcc) crystal structures. As a 

result, due to these facets, the smaller the particle is, the more its appearance deviates from being 

a sphere. However, by selectively controlling the growth of particular facets, anisotropic 

nanoparticles such as pyramids, octahedrons, cubes and rods can be produced285-286. An example 

of such process is the following. First, quasi-spherical silver seeds are produced by mixing silver 

nitrate and ethylene glycol. Then, by adding a capping agent such as poly vinylpyrrolidone 

(PVP) to the mixture, anisotropic silver particles are produced. PVP is believed to selectively 

interact with various crystallographic planes of the fcc silver. As a result, with the presence of 

PVP during the growth process, the growth rate along <100> direction is greatly reduced and/or 

growth rate along <111> direction is greatly enhanced. Wang showed that the shape of an fcc 

nanocrystal could be determined by the ratio (R) between the growth rates along <100>  and 

<111> directions287.  For instance, octahedron and tetrahedron are formed when R = 1.73. Cube, 

which are bounded by the less stable {100} planes, are formed when R=0.58. Hence, by careful 

selection of the capping agent and adjustment of the reaction conditions, various particle shapes 

can be realized. 

 Core shell structures can also be produced by this chemical reduction technique. For 

instance, one metal can be grown on another metal seeds producing core shell structures. It is 

also possible to remove the core material by selective oxidation, resulting in a hollow 

structure288. In addition, dielectric core-metal shell structure can also be synthesized by chemical 

reduction. For example, silica nanoparticles can be used as the dielectric core289. Organosilane 

molecules are then used to modify the surface of the core. These molecules bond to the surface 

of the silica nanoparticles with their amine groups extending outward. When colloidal gold 
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solution is added, the organosilane molecules make covalent bonds with the gold particles 

through the amine groups with about 30 percent coverage. Complete coverage of the core with 

the gold shell is then achieved by reducing an aged mixture of chloroauric acid and potassium 

carbonate by a sodium borohydride solution. During the reduction process, the gold-decorated 

silica nanoparticles act as seeds or nucleation sites. 

Due to the immense interest in unique properties of metal nanoparticles, other methods 

have also been developed for synthesizing colloidal metal nanoparticles. For example, electrical 

arc discharges290, laser ablation291, and electrochemical reactions292. However, thus far, this 

metal salt reduction technique is the most successful and flexible.  

(iii) Self-assembly based approach  

Self-assembly techniques can also be used to produce large two-dimensional arrays of 

metal nanostructures or even three-dimensional superlattices. One approach is to use Langmuir-

Blodgett technique293-294. This technique has been developed for assembling a monolayer of 

organic molecules on a solid surface. The resulting film is called Langmuir-Blodgett film. The 

films are formed when small amount of solvent containing amphiphilic organic molecules, which 

consist of a hydrophilic head group and a hydrophobic tail, is dropped on water surface in a 

container.  The solvent is chosen such that it is immiscible in water. After the solvent is 

evaporated off, it leaves behind the molecules with their head group immersed in the water and 

tail groups sticking out.  The container used has movable sidewalls such that the surface tension, 

layer formation, packing density as well as thickness of the film can be controlled. The film can 

be easily transferred to a solid substrate by a simple dipping process and drawing it out under a 

constant surface pressure. Array of metal nanoparticle can be produced with this technique by 
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capping them with hydrophobic tails such as alkanethiol. The solution of the capped 

nanoparticles in a nonpolar organic solvent is then dispersed on the water surface.  

Alternatively, array of metal nanoparticles can also be produced by controlled 

evaporation of organic solvent containing them on a substrate295-296.  As the solvent evaporates, 

the liquid air interface moves down and intercept with the nanoparticles. These particles are 

trapped at the interface between air and liquid. They can only diffuse along the two-dimensional 

surface. As more of the solvent dries, more particles are trapped. By controlling the evaporating 

conditions, concentrations and the size of particles, monolayers or even superlattices of the 

particles can be produced. For both Langmuir-Blodgett and controlled evaporation techniques, 

the lattice spacing and inter particle distance are determined by the size of the capping agents.  

Instead of assembling the metal nanoparticles themselves into 2D or even 3D 

nanostructures, hybrid methods, in which non-metal self-assembled structures (or self-organized 

templates) are used as a template for metal deposition, have also been developed. The most 

common self-assembled templates are self-assembled nanosphere271, 297 and anodized aluminum 

oxide templates298-300.  The former is an ordered two-dimensional hexagonal array of silica or 

polymer nanospheres produced by controlled evaporation. Depositing metal on the structure and 

subsequently removing the nanosphere template can produce metal nanostructures. Such process 

of making nanostructures is referred to as nanosphere lithography. Since in this technique, metal 

is deposited between the gaps of closed packed spheres, the size of the metal structures can be 

much smaller than the spheres themselves. In general, nanosphere lithography produced metal 

nanostructures with a triangular shape of the inter-sphere gaps. However, modification of this 

techniques such as changing deposition angle301, can allow fabrication of other geometries. Also, 

the template can also be used as an etch mask. In this case, metal is deposited on the substrate 
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before the sphere layer is assembled. Portions of metal film that is not covered by the spheres can 

be etched out with etching process like ion beam etching, leaving behind nanodisk structures.  

In the second case, anodized aluminum oxide template is produced by controlled 

annotation of an aluminum film. Anodization can be considered as a reversed electroplating. 

Instead of putting metal at the cathode, the aluminum film is placed at the anode where it is 

oxidized. Hydrogen is produced at the cathode electrode. When aluminum is anodized in an 

acidic solution, the acid dissolve the oxide as it forms. By balancing the dissolving and oxidation 

rates, a hexagonal array of cylindrical pores is formed on the firm. The pore size can be 

controlled by adjusting the anodization voltage. Similar to the case of the nanosphere, this 

nanostructured film can then be used as a template for metal deposition, hence, producing metal 

nanostructures.  

There are also other variants of self-assembly based techniques. For example, atomic 

force microscope is used for guiding self-assembly of metal nanoparticles302-303. DNAs are also 

used to produce intriguing self-assembled metal structures304-305. Nevertheless, the main problem 

with the self-assembly based techniques is their uniformity. The produced structures tend to only 

have short-range order but lacking the long-range order.  

(iv) Nanoimprint lithography and soft lithography 

Nanoimprint lithography (NIL) was developed by Choue et al. in 1995 as a solution for 

achieving low cost and high throughput nanofabrication 306.  In the NIL process, a pre-fabricated 

hard mold, typically from conventional lithography such as EBL, is pressed on a resist –coated 

substrate. The pattern on the mold is an inverse of what produced on the sample. NIL technique 

is based on physical deformation of the resist. Resists used in this technique are usually 

polymers. The most common types of resists used are either thermoplastic polymer resists or 
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photopolymer resists. In the former case, the method is called thermal NIL or hot embossing 

since the sample has to be heated above the glass transition temperature (Tg) of the resist while 

pressing the mold onto the sample.  The resist is then cured by cooling the sample to below Tg. 

In the latter case, pre-exposed resist is in a liquid phase. The mold is then pressed onto a layer of 

liquid polymer and UV radiation is used to harden the polymer by cross-linking process. NIL 

that involves UV-curing is termed UV NIL. One of the difficulties with using a hard mold is that 

a flat substrate is required. The quality of the pattern depends heavily on the mechanical contact 

between the mold and the substrate and can be greatly affected when the two surfaces are not 

parallel or there is any contamination between the two pressing surfaces.  Soft lithography (SL) 

was invented to overcome the problem as it uses a soft elastomer as a mold. The most common 

material for the soft mold is poly dimethysiloxane (PDMS). This soft mold is generally made by 

forming a template out of a rigid substrate such as silicon, using conventional lithography. An 

anti- sticking layer is spin coated on the rigid substrate before a liquid elastomer precursor is 

spread over the substrate. The precursor is then cured, peeled off and ready to be used as a 

stamp. Nonetheless, in general, NIL and SL are inherently similar in which a master mold or 

stamp is used for nano-patterning. Since many replicas can be produced with a single mold, high 

throughput   fabrication can be easily achieved with these techniques.  

Similar to conventional lithography, metal nanostructures can be fabricated with these 

techniques simply by either depositing metal onto a stamped pattern or using the stamped layer 

as an etching mask. One of the challenges with this technique is that a thinning process for the 

resist, such as plasma etch, is required to remove a residual resist layer278. The quality of the 

pattern is usually compromised after etching. Therefore, sometimes, metal nanostructure is 

achieved by depositing metal directly onto a resist layer without removing them307. NIL and SL 
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technique have advantages over other techniques in term of low cost, high throughout and the 

quality of produced structures.  

5.2.2 Surface plasmon 

Plasmons are collective oscillation of conduction band electrons.  In general, there are 

two types of plasmons, namely propagating surface plasmon (PSP) and localized surface 

plasmon (LSP). PSP is surface electromagnetic wave, which is coupled to conduction band 

electrons, at metal dielectric surface.  PSP has its wave vector parallel to the metal/dielectric 

interface and the field perpendicular to the interface decays evanescently. PSP was first 

discovered experimentally by Wood16. It was once called Wood’s anomaly. LSP, on the other 

hand, does not propagate.  They occur in metallic nanostructure whose sizes are comparable to or 

less than the skin depth of the excitation wavelength. The most common structures exhibiting 

LSP properties is metallic nanoparticle made of silver or gold. Their history can be traced back 

to medieval period when artisans used them to produce colors in stain glasses.  Plasmons have 

attracted immense research interest because of the fact that, at their resonance, electromagnetic 

field can be squeezed smaller than their diffraction limit resulting in enormous field 

enhancement. Moreover, the resonance conditions of plasmonic structures are highly dependent 

on the structure’s geometries, materials, and their surroundings. Owing to their unique 

properties, plasmonic structures have been proven to be very beneficial in many applications, for 

example, sensing, imaging, nonlinear optic and light harvesting.  

Different theoretical calculations have been developed in lieu of understanding the nature 

of plasmonic nanostructures. For simple geometries like spherical and ellipsoidal nanoparticles, 

analytical based solutions can be used. For more complex structures, one needs to resort to 
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numerical techniques, for example finite Integration technique (FIT) and finite difference time 

domain (FDTD).  

(i) Analytical-based calculation 

A theory to understand the absorption and scattering of colloidal of metal nanoparticles 

was developed by Gustav Mie developed in 1908 308. He solved Maxwell’s equation in spherical 

coordinate for a plane wave interacting with a small sphere. By expanding the electromagnetic 

fields in an infinite series of vector spherical harmonics with appropriate boundary conditions, 

scattering field can be solved. Calculating the net rate at which the sphere scatters and absorbs 

light at the far field, one can arrive at the following expressions for the extinction σext and 

scattering σsca cross-section309:  

    (5.1)
 

    (5.2)
 

with 

 (5.3) 

where μ is the permeability, m=N1/N is the refractive index ratio, x=ka=2πna/λ, j is the spherical 

Bessel function, and h is the spherical Hankel function respectively. The material parameters 

without subscript denote those of the surrounding and with the subscript p are for the sphere. The 

absorption cross-section σabs can be calculated from σext = σsca+ σabs. The summation index n 
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corresponds to the mode of oscillation.  For example, n=1 is the dipole oscillation and n=2 is the 

quadrupole oscillation.  In the case where the nanoparticle is much smaller than the wavelength 

of light (2a<<λ), the dipole term dominates the summation.  In the dipole approximation, the 

Mie coefficients a and b are then reduced to the following relationship310: 

    (5.4)
 

    (5.5)
 

As a result, the cross-sections, in this dipole limit with μ and μp=1 , are of the form: 

     (5.6)
 

  with   (5.7) 

where V is the volume of the particle. 

In the case of metal nanoparticle, the particle is assumed to have the same frequency- dependent 

permittivity as the bulk metal. The metal permittivity can be approximated by the following 

Drude model: 

     (5.8)
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where ωp is the bulk plasmon frequency and γ is the damping constant related to electron 

scattering processes. Substituting Equation 5.8 into Equation 5.7, frequency dependent extinction 

of a metal particle can be plotted.  

Nevertheless, most of the synthesized metal nanoparticle are not perfect sphere but rather 

ellipsoidal. In this case, an extension of Mie theory, namely Gans theory, can be used. The 

theory was developed by Richard Gans. With the small particle approximation, the extinction of 

a collection of randomly oriented gold nanorods with aspect ratio R can be modeled as 311: 

   (5.9)
 

where Pj is the shape factors determined by the geometry of the three axes j= A, B and C with 

length LA, LB and LC respectively.  For the case of prolate spheroid (LA,>LB =LC), the shape 

factors as a function of the aspect ratio R = LA/LB is given by: 

    (5.10)

 

 

Analytical solutions for other particle geometries such as core -shell and multi shell particles can 

also be derived by extending the Mie theory.312 
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(ii) Numerical based calculation 

Instead of analytically solving Maxwell’s equations, numerical techniques can be used. 

Examples of numerical-based calculations are FIT and FDTD. FIT was developed by Weiland in 

1976 313. This numerical method utilizes special discretization schemes. It solves the Maxwell’s 

equations by discretizing the following set of integral equations: 

 

∮ 𝐸𝐸�⃑𝜕𝜕𝜕𝜕 ∙ 𝑑𝑑𝑠𝑠 =  −∮ 𝜕𝜕𝐵𝐵�⃑

𝜕𝜕𝜕𝜕
 ∙ 𝑑𝑑𝐴𝐴𝜕𝜕        

∮ 𝐻𝐻��⃑𝜕𝜕𝜕𝜕 ∙ 𝑑𝑑𝑠𝑠 =  ∮ �𝜕𝜕𝐷𝐷
��⃑

𝜕𝜕𝜕𝜕
+ 𝐽𝐽�  ∙ 𝑑𝑑𝐴𝐴𝜕𝜕      

∮ 𝐷𝐷��⃑𝜕𝜕𝜕𝜕 ∙ 𝑑𝑑𝐴𝐴 =  ∮ 𝜌𝜌 ∙ 𝑑𝑑𝑑𝑑𝜕𝜕       

∮ 𝐵𝐵�⃑𝜕𝜕𝜕𝜕 ∙ 𝑑𝑑𝐴𝐴 =  0     (5.11)  

 

In order to numerically solve these equations, a finite calculation domain has to be 

defined. Then the calculation domain is split into small sub-elements or grid cells by meshing. 

The Maxwell’s equations are then applied and solved for each grid cells. The resolution of the 

result are dependent on how well refined the grid cells are.   

FDTD was first established by Yee314 as a three dimensional solution of Maxwell's curl 

equations:  

          (5.12)
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The above Maxwell equations in the Cartesian coordinate are given by: 

   

    

 

    (5.13)

 

In this technique, the problem space is meshed into Yee cell. Two-point centered difference 

method is used to calculate the space and time derivatives. For example, the derivative in the z 

direction of field E at time nΔt and the mesh point (i, j, k) is given as315: 

    (5.14)
 

 

The derivatives in time are also discretized but the updating of E and H are staggered in time by 

one half time step: 

   (5.15)
 

  (5.16)
 

Rearranging the terms, we arrive at the leapfrog-updating algorithm:  
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    (5.17)
 

    (5.18)
 

Using this updating scheme with appropriate boundary and initial conditions, one can arrive at 

time domain solutions. Frequency domain solutions can be derived by performing Fourier 

transform. Other numeral techniques such as finite volume time domain (FVTD), finite element 

method (FDM) and discrete dipole approximation (DDA) can also be used for solving 

electromagnetic solutions pertaining metal nanostructures. 
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5.3 Experimental methods 

5.3.1 Nanoimprint fabrication of tunable plasmonic substrate  

 

Figure 5.1 Schematic representation of large area plasmonic nanostructures fabrication process 
by SNAP method.  PAN solution is spin coated on top of a Si mold (step 1). The polymer film is 
then cured at 150˚C for one minute and transferred to a glass substrate by simply peeling off the 
polymer film (step 2). The films are etched at variable etching time, allowing a range of the 
nanoholes sizes. A 35nm layer of silver (grey color) is then deposited on top of the structure 
(step 3). 

A simple nanofabrication technique, called SNAP technique (a simple spin coating 

technique), is developed. Large area of nano-patterns can be made from a pre-patterned mold 

(master mold) by a few simple fabrication steps . In the first step, polymer solution is spun on top 

of the mold to form a thin film of the polymer. Then, the polymer film is cured and peeled off 

from the mold. A glass slide with a sticking layer is prepared in advance by spinning a wet layer 

of the same polymer on top. The peeled film is then transferred to the glass slide by laminating 

the film on top of the sticking layer. With this technique, the master mold can be made of 

different materials such as silicon , ceramic , or carbon and can also be fabricated from various 

types of techniques, for example, electron beam lithography, nanoimprint, and self-assembly.  

Moreover, nanostructures can be formed on various type of polymers, for instance, polyvinyl 

alcohol , polysilizane, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and 

polyacrylonitrile. However, the choices of both the master mold and the polymer depend on the 

surface properties of the two. In this work, electron beam lithographed Si wafer is used as the 
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master mold due to its high feature qualities.  Polyacrylonitrile (PAN) is selected as a material 

for our imprinted structure owing to its good temperature stability, appropriate surface properties 

and high elasticity.  

The square lattice nanohole arrays of PAN were fabricated using a Si mold with an array of 

cylindrical pillars, following the SNAP technique, as illustrated in Figure 5.1. First, 8 wt.% 

solution of PAN was prepared by stirring 4.8g of  PAN in 60ml of  dimethylformamide at 150 

°C. The PAN solution was then spin-coated on the mold at 3000 rpm for 10 seconds. This 

resulted in nano-hole pattern on top of a ~2μm PAN film. The film was cured at 150˚C for a 

minute and transferred to a glass substrate by simply peeling off the polymer film and cementing 

it on the substrate with the help of thin adhesion layer of the same polymer. With this technique, 

nano-patterns were created within a few minutes.  To further demonstrate, the simplicity of this 

technique in manipulating the geometries of the fabricated structures, additional fabrication step 

with common laboratory equipment such as plasma-cleaner was introduced. The hole diameters 

of fabricated nanohole samples were tuned by the use of, O2 Plasma (PE50, PlasmaEtch) with 

different etch time. The plasma power and RF-frequency were set at 20 Watt and 13.56 MHz, 

respectively. The vacuum set point was 201.1mtorr and the oxygen flow rate was 5 sccm. With 

the implementation of this tuning scheme, fabrications of nanohole arrays with different hole 

diameters were possible with the same master mold. The results are shown in the next section. In 

the next section, this technique is used to fabricate nanohole samples with different plasmon 

resonances , by simply tuning the size of the nanoholes and depositing metal on top of the 

structures. Changes in the interactions between light and organic molecules for different plasmon 

responses were also studied.  
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5.4 Results and discussion 

5.4.1 Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable 
Plexcitonic Substrates 

When two oscillators are placed in the same vicinity with a mean to exchange their 

energies, they can become coupled. One of the obvious cases is the case of coupled pendula. The 

dynamics of the coupled system does not only depend on the original dynamics of the oscillators 

but also the energy exchange process, in other words, the coupling strength. In the frequency 

domain, the frequency spectrum of the system is modified and does not resemble the original 

frequencies. Also, the shape of the spectrum is highly dependent on the coupling strength. When 

the resonance frequencies of the two oscillators are matched and the coupling strength is stronger 

than the mean of their decay rates, one can observed an anti-crossing behavior or splitting in the 

energy spectrum analogously to the bonding and anti-bonding in molecular orbital theory. In this 

so-called strong coupling regime, there exists two new eigenmodes separated by a certain 

splitting energy. These new modes are only described by both properties of the original modes. 

In a sense, they are hybrid states of the two original modes. The magnitude of the splitting is 

determined by the coupling strength and the splitting is sometimes referred to as Rabi splitting in 

the case of photon-exciton coupling. Photon-exciton coupling is of scientific interest since 

controlling interaction between them can result in fascinating new physics. For example, 

emission spectrum of an atom in a microcavity can be significantly altered316-318. Bose–Einstein 

condensation at standard cryogenic temperatures can be observed with photon-exciton coupling 

in semiconductor microcavity319. Early reports pertaining photon-exciton coupling deal with 

atoms, and inorganic semiconductors in microcavity system with Rabi splitting in the order of 

tens meV320-322.   Strong photon coupling with organic molecules had not been observed until 
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1998 by the work of Lid zey et al.323 In general, organic molecules have very broad spectral 

linewidths due to inhomogeneous broadening, which make strong coupling difficult to observe. 

However, this is not always the case.  Lid zey et al. integrated organic semiconductor, which has 

a narrow line width, with a microcavity and observed Rabi splitting as high as 110 meV. Such 

large splitting was attributed to the high oscillator strength of the organic molecules. The ability 

to achieve strong coupling with organic semiconductors is very fascinating and has a lot of 

practical implications since organic semiconductors have used extensively in applications such 

as electronics, displays, as well as gain media in laser systems. As already mentioned, In order to 

be in a strong coupling regime and able to observed the splitting, the coupling strength has to be 

large compared to the spectral line width of the individual oscillators. Therefore, one can achieve 

strong coupling by decreasing the line width and/or increasing the oscillator strength. In the 

former case, this is typically done with inorganic semiconductor materials by cooling the 

samples to decrease the line widths so that Rabi splitting becomes observable. Inorganic 

semiconductor materials, on the other hand, room temperature strong coupling can be easily 

achieved because of their large dipole moment.  In the latter case, modifying the coupling 

strength is possible. The coupling strength between light and matter primarily depends on two 

factors: (1) the dipole moment or the oscillator strength of the matter and (2) the mode volume of 

the light.  The larger the dipole moment and the more confined the mode volume result in the 

larger coupling strength. For a particular matter, increasing the dipole moment can be done by 

increasing the number of molecules that are coupled to the light field, resulting in a lager 

effective dipole moment. This is evident in the case of stronger coupling in semiconductors than 

single atoms. Confining the mode volume, on the other hand, is achievable with the use of 

photonic structures such as microcavity, photonic crystals, and plasmonic structures.  
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Plasmonic structures are very promising candidate for light confinement with regards to 

photon-exciton coupling. This is because nanoscale light confinement is possible with plasmonic 

structures.  Moreover, plasmonic structures are usually an open cavity. Accessing the mode 

volume in which the coupling take place is relatively easy, thus enabling probing or measuring 

physical/chemical properties of the hybrid states.  Nevertheless, in order to couple light to matter 

with the use of plasmonic structures, it is important to have an ability to design and fabricate a 

structure that has matched optical response to the matter of interest.  In this section, the 

developed fabrication technique for tunable plasmonic substrates will be exploited in photon-

exciton coupling to enhance Raman scattering detection. 

A series of square lattice nanohole arrays of polyacrylonitrile (PAN) with different 

diameters were fabricated following the recipe in the Experimental methods. AFM images of the 

fabricated nanohole arrays with increasing plasma etching time up to 5 min are shown in Figure 

5.2(a-f).  
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Figure 5.2 AFM images of nanohole structures at etching time of (a) 0min (b) 2min(c) 3min (d) 
4min and (e) 5min. Hole diameter vs etching time is plotted in (f) 

To develop plasmonic structures, a silver metal thin film of 35 nm thickness was 

evaporated on the samples with a deposition rate of 0.06 Å/s. The thickness of the silver was 

monitored using quartz crystal microbalance. A fiber-coupled spectrophotometer (Ocean optics) 

was used for light extinction measurements, Figure5.3(a).   
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Figure 5.3  (a) Normalized extinction of the plasmonic nanohole samples at different etching 
time as a function of illumination wavelength. (b) Extinction vs wavelength of plasmonic 
nanohole samples coated with 1mM of R6G 

As can be seen in Figure 5.3(a), the resonance peak of the nanohole arrays is red-shifted with 

increasing hole diameters. A large red-shift was observed with the 5 minutes etched plasmonic 

sample.  FDTD simulation of the structures was also performed, using commercially available 

software, Lumerical FDTD Solutions. The nano hole depth profile was modeled by a fourth 

order super Gaussian curve of the form: 

     (5.19) 

where A is the depth of the hole and 2w is full width at 1/e maximum (FW1/eM). Measured 

AFM profiles were fit to the function and the fitting parameters were used for FDTD 

simulations.  An example of fitted curves is shown in Figure5.4(a). The simulated unit cell is 

shown in Figure 5.4(b). The simulation results are shown in Figure5.4(c).  
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Figure 5.4 (a) AFM profile fitted with fourth order Gaussian function (b) Unit cell for simulation 
(c) FDTD simulated extinction spectra. 

 

Figure 5.5 Comparison between experimental and simulated plasmon peak for samples with 
varied etching time 

 

From the FDTD simulations and experimental measurements of our structures, the larger shift at 

5 min treatment is attributed to partial merging of adjacent holes, resulting in larger features.  
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Our FDTD simulations of the plasmon resonance with varied nanohole diameter are in close 

agreement with the experimental data, Figure 5.4(c) and Figure 5.5. To this point, it is clear that, 

with this tuning scheme, direct applications such as tunable color filters37-38 could easily be 

derived from this fabrication technique. 

By geometrically tuning the optical properties of the substrates, we intend to enhance the 

Raman signal of the analyte. Several studies have shown the importance of geometry 

optimization for detection enhancement39-44. These studies substantiate the importance of 

optimizing the geometry of the nanostructure in Surface Enhanced Raman Scattering (SERS) 

applications as well as other optical enhancement processes that involve plasmons and molecular 

excitons.  

To further demonstrate the advanced optical properties of our easy-to-fabricate plasmonic 

substrates, we measured extinction and Raman scattering of the nanostructures with an overlayer 

of Rhodamine 6G (R6G) molecules. Only plasma-etched samples were used in this study to 

ensure that all samples under study have the same surface absorption properties. R6G was used 

as the analyte because of its excitonic absorption within our tuning range of the substrates. 

The extinction spectra of the 1mM R6G coated nanohole samples are shown in Figure 

5.3(b). When compared to their corresponding extinction spectra before R6G deposition, the 

extinction curves of the nanohole samples with the over layer of R6G dyes are not only 

spectrally shifted but also altered. These observations indicate a coupling between the plasmon 

mode in the nanosized cavities and molecular excitons of R6G. The coupling of the photon and 

exciton states can be classified into two distinct regimes, namely weak and strong couplings 45. 

In the former regime, the spectral and spatial distributions are modified but the exciton dynamics 

is only slightly altered. In the latter regime, however, mixing of the states results in strongly 
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modified excitonic dynamics. From our measurements, we found that the samples with etching 

time from 2-4 minutes showed a red-shift in their plasmon resonance. In fact, the interaction 

between plasmon resonance and molecular resonance has been previously studied with 

nanoparticle systems46-47. Three local maxima were observed when plotting the plasmon shift of 

R6G coated nanoparticles versus plasmon resonances without the dye (bare plasmon resonance) 

due to formation of dimers on the metal surface. Local maxima in plasmon shift were observed 

when bare plasmon resonances were close to the molecular resonance energy.  To investigate the 

properties of R6G films on our plasmonic samples, evolution of absorption spectra of R6G 

coated on planar silver substrate was studied. Glass slides coated with 20nm thick silver layer 

were used as substrates in this study. R6G with different concentrations (1-11mM) were spun 

coated on the substrates at 3000 rpm for 10s. The absorption spectra acquired for each 

concentration are shown in Figure5.6 (a). All samples showed increasing absorption from blue to 

red region due to the presence of the silver layer. Absorption shoulders within the wavelength 

range of 500-600nm were found. Two absorption peaks at around 518 and 555 nm could clearly 

be distinguished for the 6 mM and 11 mM sample.  The features can be attributed to dimer and 

monomer absorption20. By subtracting the silver baseline, the spectral profiles of R6G species 

could be better visualized for low concentration samples. From this concentration dependent 

study, it was found that all of our R6G samples show two absorption features [AppendixC, 

FigureC1]. Furthermore, it is known that R6G can form both J-type (head-to-tail dipole moment) 

and H-type (parallel dipole moment) dimers. Head-to-tail geometry in J-type dimers leads to a 

decrease in energy whereas parallel geometry in H-type dimer leads to an increase in energy. As 

a result, the absorption of H-type and J-type dimers is expected to blue shift and red shift from 

the monomer peak respectively.  However, in the case of (silver) surface adsorption, the H-type 

 178 



conformer is more likely to form due to the adsorption of R6G through one of its N atoms48. This 

supports our observation that H-type dimers are predominantly present in our samples. Similar 

absorption profile of solid R6G film was previously reported 20, 49.   

When investigating the effect of R6G on extinction profile of the plasmonic substrates, 

with 2-4min samples, only small plasmon shifts were observed. Such small shifts are possibly 

due to the fact that only a few nm thin layer of R6G was coated onto the substrates. However, 

among these samples, the plasmon shift is the highest with the 3 min sample (497nm bare 

plasmon resonance). The shift then decreases when the bare plasmon resonance is at a higher 

wavelength before observing a curve splitting for the 5 min sample. This local maximum of 

plasmon shift might be due to interaction of plasmon with R6G dimers similar to previous study 

46. 

 

Figure 5.6  (a) Evolution of absorption of 1-11mM R6G deposited on a planar silver film (b) 
Hybridization diagram of plexcitonic modes (c) Extinction of 5 min etched sample with 
increasing R6G coverage from 1mM to 11mM (d) The magnitudes of the observed Rabi splitting 
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versus the square root of the integrated R6G extinction on glass (arbitrary unit). The dash line is 
a guide to the eyes.  

In addition, the 2-4 min samples also show a shoulder at around 550 nm, Figure 5.3(b). The 

observed shoulders are close to the monomer absorption peak of the R6G dyes (555 nm) 20. 

These absorption shoulders cannot be attributed to the dye absorption alone since they are too 

intense for the amount of dye molecule used in this experiment. Moreover, their magnitudes vary 

and do not satisfy Beer’s law. However, it was previously found that in a weak coupling regime 

where the resonance of the photon mode is far from the exciton mode, the spectra of the coupled 

modes appear similar to the sum of the individual spectrum45, 50. Therefore, we attribute this 

observed absorption shoulder to weak coupling between plasmon mode in our structures and 

exciton mode of molecular transition of the dye. On the contrary, the spectrum of the sample 

with 5 minute etching exhibits a strong anti-crossing behavior with the R6G dye overlayer; the 

composite spectrum no longer resembles the sum of plasmon resonance and dye absorption.  

When the optical mode frequency is tuned to the exciton resonance frequency, the two states 

interact. The splitting at resonance, in analogy with the case of atoms in a microwave cavity, is 

referred to as the Rabi splitting. When the splitting is large compared to the natural line widths of 

the optical mode and of the exciton, the strong coupling regime holds and two separate modes 

are produced51.  Anti-crossing of the coupled modes and the occurrence of two equal intensity 

transition separated by the vacuum Rabi splitting are indications of a strong coupling. The 

resulting two new modes in the strong coupling regime can be explained in term of mode 

hybridization, analogous to the molecular orbital theory, and hybridization diagrams as shown in 

Figure 5.6(b).  
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According to the spectrum of the 5 min etched sample without dye (Figure 5.3(a)), the 

sample has a plasmon resonance at about 547 nm, which is the closest to the R6G monomer peak 

at 555 nm. It is also possible that the presence of the dye overlayer red shifts the plasmon 

resonance of the structure such that the energy of the pure plasmon state of the structure is closer 

to the excitonic state of the dye, resulting in the observed anti-crossing behavior. However, this 

curve splitting behavior was only observed when plasmon resonance overlaps with the monomer 

resonance. In the case of dimer resonance, local maximum in plasmon shift was observed.  

To prove that the observed splitting is truly caused by Rabi splitting, we measured optical 

extinction of the 5 min etched film with increasing R6G coverage; in the case of the strong 

coupling, the coupling strength may depend on the square root of the molecular absorption 45, 52. 

We have also found that the magnitude of the splitting increases with the concentration of R6G 

deposited, as shown in Figure 5.6(c).  The magnitude of the observed splitting occurring in the 5 

min etched sample displays a linear dependence with respect to the square root of the integrated 

extinction of the R6G deposited on glass (Figure 5.6(d)). Thus the results confirm that the 

observed splitting is in fact due to a strong coupling and is in agreement with previous studies11, 

53. In fact, coupling between R6G and nanostructured metal have been previously reported with 

subsequent Rabi splitting of up to 380 meV54-57. D. Richard et al. reported a Rabi splitting of 

380meV in extinction profile of R6G coupled silver nanostructured film at square root integrated 

extinction of 2.5. P Torma et. al. performed reflectometry measurements in the Kretschmann 

configuration  to study coupling between surface plasmon polaritons and R6G. Maximum Rabi 

splitting of 200meVwas reported. In our measurement, with 11mM deposited R6G or a square 

root integrated extinction of 0.44, Rabi splitting of 600meV was achieved.  
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We also performed FDTD simulations of our 5 min sample (180nm diameter) with an 

overlayer of R6G molecules. In order to account for R6G exciton, its dielectric permittivity was 

described by the following Lorentz oscillator model:   

    (5.19) 

where the high frequency component ε∞=2.5, f is the oscillator strength, ω0  is the resonance 

frequency of 3.392x1015rad/s , and γ0 is the exciton line width of 2.14x1014 rad/s , derived from 

the resolved spectra of R6G on silver.  Geometrical parameters of the samples and thicknesses of 

the coatings used in the simulation were measured using AFM. Rabi splitting is also observed 

with simulations and in very well agreement with the experimental results [ApendixB, Figure 

B2].  

 

Figure 5.7 (a) Emission spectra of the samples excited with laser wavelength of 532 nm. Both 
Raman and fluorescence signals are present. (b) Measured and calculated enhancement factor vs. 
hole diameter. 

To deepen our understanding of the effect of hybridization, we measured Raman 

scatterings from the plexcitonic samples. Raman signals of the samples deposited with the same 
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concentration of R6G (1 mM) are shown in Figure 5.6 (a). All samples exhibit signal 

enhancement when compared to sample on bare glass. The samples with 2-3 minutes etching 

time presented similar intensities of Raman signals and fluorescence background originating 

from the fluorescence of R6G dye centered at 560 nm 58.  With 4 min etching time, slight 

increases in Raman intensities as well as the fluorescence intensity were measured. These 

enhancements can be due to: (1) the bare plasmon resonance peak of this sample is closer to the 

laser excitation and Stoke shift wavelengths of the dye 40, and (2) the coupling is stronger than 

the other two samples since its plasmonic state is closer in energy to the molecular exciton. The 

sample with 5 minute etching time, however, showed the largest Raman intensities as well as 

fluorescence background, which is in agreement with the observed strong coupling between the 

excitonic mode of the dye and the plasmon resonance of the structure.  To calculate the 

enhancement factor, R6G adsorbed on a planar silver substrate is used as a reference to take into 

account the effect of surface adsorption on the properties of R6G. The analytical enhancement 

factor (EF) was calculated for these samples from the following equation: 

      (5.20)  

Where, at any given frequency, Is is the signal intensity from the plasmon substrate, Iref is the 

signal intensity from the reference, cs is the concentration of the dye deposited on the substrate, 

and cref is the concentration of the dye deposited on the reference. These experimental 

enhancement factors of Raman peak at 555.152 nm (775cm-1 Raman shift) are plotted against 

bare plasmon resonance of the structure in Figure 5.6(b). Finite difference time domain (FDTD) 

simulation was used to evaluate the expected enhancement factor from our R6G coated 5min 

sample.  Since the Raman enhancement factor is the product of the enhancements in excitation 
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intensity and scattering intensity due to the presence of metal nanostructures, the FDTD 

computed EF was obtained using:  

     (5.21) 

where g(ω)=Eloc(ω)/E0(ω)  with Eloc and E0 being the local and incident field at frequency ω 

respectively, ωexc is the excitation frequency of 532 nm,  and ωsca  is the scattering frequency of 

555nm. The oscillator strength of R6G of f=1 was used since, in simulation, it produces similar 

peak positions and Rabi splitting magnitude to the experimental values. An analytical 

approximation of the oscillator strength also gives a similar value [Apeendix D].  Figure 5.7 

illustrates FDTD calculated EF profiles of the structures at different cross-sections.  

 

Figure 5.8  (a) EF profiles at different Z cross-sections. Color scales are kept uniform for better 
comparison  (b) Schematic illustrations of the index profile of the simulated structure. (c) EF 
profile at the middle of the groove where two adjacent holes connect; largest EF within the R6G 
layer is located here. (d) EF of profile cut along x at z=32nm of the 2D profile in (c).  
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It has been found that the absolute maximum EF of the overall structure lies at the 

silver/polymer-substrate interface. Searching algorithm was used to find a local maximum EF 

with in R6G layer. In the case of 5 min sample, the local maximum EF is determined to be of 

only 38.87 and located in a groove where two adjacent holes merge. The cross-sectional plot of 

this hot spot is shown in Figure5.7 (d). The local maximum EFs of other samples were also 

calculated in the same fashion. These computationally derived maximum local EFs are plotted in 

Figure5.6(b) against their bare plasmon resonance for comparison.  Albeit smaller, these 

experimentally obtained EFs follow the same trend as the theoretically calculated value. The 

sample that exhibits strong coupling shows the largest EF.  This is because strong intensity 

enhancements both in the incident and the scattering frequencies are present in the sample. 

TableD1 in the Appendix D tabulates the calculated intensity enhancements of the incident and 

scattering frequencies for different etching time. The relative high intensity enhancements at 

both the incident and scattering frequencies might be due to the splitting and the resulted two 

resonance peaks that resonate with both frequencies. Increase in Raman intensity with double 

resonance plasmonic structures have been previously reported 59-60. However, in our case, the 

origin of the two resonance peaks is the coupling between plasmon and exciton.  

One of the possible reasons for smaller calculated EFs might be the fact that only 

electromagnetic (EM) enhancement is considered in the simulation. In real samples, however, 

additional enhancement factors from other mechanisms, such as chemical enhancement might be 

responsible for the increase in the total enhancement factor.  In general, three mechanisms are 

involved in the chemical enchantment, namely (1) ground state chemical interaction (2) 

resonance Raman enhancement and (3) Charge-transfer (CT) resonance Raman enhancement61. 

While, the first mechanism are not associated with any excitations of the nanometal–molecule 
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system, the latter two, however, require the excitation wavelength being resonant with either 

molecular transition or nanoparticle–molecule CT transitions for the case of (2) and (3) 

respectively. Molecules adsorbed at certain surface sites, for example atomic clusters, terraces, 

and steps, can couple electronically with the surface, leading to the chemical enhancement effect 

62. Experimentally observed chemical enhancements are with in an order of magnitude 63-64. 

However, we cannot neglect that the plasmon resonance and geometrical mismatches between 

the actual and modeled samples might as well result in the discrepancy. It is also possible that the 

plexitonic coupling alters Raman scattering cross section of the molecule since in the coupling 

regime the system is no longer composed of independent plasmon and excitons but rather 

described by the plexcitonic states, similar to polaritons in semiconductor microcavities65.  

Optical cross-sections are altered since electromagnetic enhancement and energy transfer rate 

between the molecule and metal can no longer separately treated 66. Previous studies have shown 

altered Raman scattering with coupling systems 66-67. 

Nevertheless, these findings prove the feasibility of our fabrication technique for a 

tailored interaction between photonic and excitonic modes. Our technique can be used to tune the 

plasmonic resonance to match the excitonic resonance of the molecules of interest, leading to 

large enhancement in optical phenomena. This holds great potential for specific targeting of 

single or a few molecules. For example, the substrate can be tuned to match only the molecular 

absorption of a specific species, enabling low-level trace detections in sensors.  

To summarize, in this section, the fabrication of resonance tunable plasmonic nanostructures 

in four simple steps: spin coating, peeling off, plasma etching and silver metal deposition was 

demonstrated.  This approach allows high throughput, large area fabrication of plasmonic optical 

enhancement devices with great versatility. By tuning the plasmon resonance of the nanoholes 
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arrays, strong plexcitonic coupling could be observed. The ability to tune the resonance 

wavelength with simple fabrication process can be beneficial for applications such as surface 

enhanced Raman scattering and surface plasmon enhanced fluorescence. Finally, the largest 

enhancement in the Raman signals are the result of a strong coupling of the plasmonic states and 

molecular excitons, unveiling anti-crossing behavior when the resonance of the structure 

overlaps with the excitonic transition of the dye. Such behavior is believed to be an important 

step towards active control of all-optical devices and sensors at the nanoscale.  
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6 CONCLUSION 

In this dissertation, the uses of nano and nanostructured materials in optical applications, 

including laser protection, 3D displays, and sensing, are discussed. In chapter 2, optical limiting 

properties of various nanomaterials are detailed. In the case of zinc ferrite nanoparticles, it was 

found that the optical limiting action was improved when Zn atoms in the tetrahedral sites was 

substituted by other transitional metals such as Cu and Ni.  In the case of gold nanoclusters, its 

effective nonlinear absorption coefficient increases with the cluster size in the nanocluster 

regime. The value however reduces when the size of the particle make a transition from the 

nanocluster to nanocrystal. Onset of optical saturation due to surface plasmon resonance was 

observed in the gold clusters with the number of gold atoms as small as 144. Graphene oxide, on 

the other hand, showed larger nonlinear optical absorption when functionalized with highly 

electronegative fluorine atoms. Nonlinear scattering was also increased with the fluorinated 

samples. Inspired by the F-GO experiment, PA based characterization technique was developed 

in Chapter 3. It was found that similar nonlinear parameters could be obtained from 

photoacoustic and optical measurement in the case of nonlinear absorbers. However, nonlinear 

scatterers show non-complementary behaviors and when these two sets of information are 

collected simultaneously, erroneous conclusions can be avoided in the case of nonlinear 

scattering samples. In addition, more rigorous formulation for fitting the PA z-scan data was also 

introduced. In Chapter 4 of this dissertation, the use of graphenes as light sensitizers in PR 

polymer composite was studied. It was found that the addition of graphenes led to increase in the 

fast time constant of the PR composite. These findings make graphene very promising sensitizers 

for developing fast-response 3D holographic media. Facile nanofabrication technique for 
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producing metallic nanostructures with tunable plasmon resonance was introduced, in Chapter5. 

Enhancing light matter interaction, i.e. Raman scattering, with the developed platform was 

demonstrated. All in all, this dissertation demonstrates the versatility of nano and nanostructured 

materials in various optical applications. In terms of material engineering, unique properties of 

newly developed or unexplored nanomaterials might open the way for new applications as well 

as advancing the existing ones. 
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APPENDIX A: COPYRIGHT PERMISSIONS FOR RELEVANT 
PUBLICATIONS UPON WHICH THIS DISSERTATION IS BASED ON IN 

PART 
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APPENDIX B: STEADY STATE DIFFRACTION EFFICIENCIES OF 
PATPD/7-DCST/ECZ COMPOSITES 
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Steady state four wave mixing measurements  

 

 

 

Figure B1. Steady state diffraction efficiencies of S1 (undoped) ,S2 (graphene-doped)  and S3 
(PCBM-doped). All samples show similar diffraction efficiencies.  
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APPENDIX C: RESOLVED ABSORPTION SPECTRA OF R6G ON 
PLANAR SILVER SURFACE   
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R6G with concentration ranging from 1 to 11mM was deposited on a 20 nm silver coated 

glass slide using a spin coater at 3000rpm for 10s. The absorption spectra of the samples are 

plotted in Figure 5.6a. By subtracting the baseline of silver film, resolved R6G spectra were 

obtained. The result spectra are plotted in Figure C1(a-d). All samples show dimer and monomer 

absorption bands possibly due to surface induced aggregation at the silver surface. 

 

FigureC1. Resolved R6G spectra on silver surface for (a)1mM (b)3.5mM (c)6mM and (d) 
11mM. The spectra are also deconvoluted with multiple Gaussian curves, showing both dimer 
and monomer bands. 
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APPENDIX D: FDTD CALCULATION OF RAMAN ENHANCEMENT 
FACTORS OF NANOIMPRINTED NANOHOLES 
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We modeled our nano hole depth profile using a fourth order super Gaussian curve of the 

form: 

     (D1) 

where A is the depth of the hole and 2w is full width at 1/e maximum (FW1/eM). Measured 

AFM profiles were fit to the function and the fitting parameters were used for FDTD 

simulations.  An example of fitted curves is shown in FigureB3. 

 

FigureD1 Measured AFM profile and a best-fit curve to Equation(D1) for 0min sample 

The simulated unit cell is shown in Figure D2(a). To check validity of our model, 

extinction spectra of our structures were simulated using the FDTD with parameters obtained 

from the AFM profile. The simulation results, Figure D2(b-c) is in close agreement with the 

experimental data. Large red-shift in the simulation is observed with the 5min sample as a result 

of partial merging of the holes, in very well agreement with the experimental measurement. 

Then, this model was used to simulate the Rabi splitting. In the simulation, a 10nm layer of R6G 

was coated on top of the structure. The R6G was modeled as a dispersive medium with dielectric 

permittivity described by Lorentz model:  

    (D2) 
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where the high frequency component ε∞=2.5, f is the oscillator strength, ω0 is the resonance 

frequency of 3.392×1015rad/s, and γ0 is the exciton linewidth of 2.14 ×1014rad/s. The line width 

is derived from the resolved absorption of 1mM R6G on silver using:  and  

where η is the complex refractive index and α is the absorption coefficient. Figure D2(d) plots an 

extinction spectra of modeled 5min sample with increasing oscillator strength. The simulation 

results are in agreement with the experimental.  

 

Figure D2 (a) Unit cell of the hole structure used in the simulation where w and A are obtained 
from fitting the AFM profile; t is the thickness of the silver layer (35nm); and P is the periodicity 
of the unit cell (200nm). (b) FDTD simulated extinction spectra of various hole sizes (c) Plasmon 
resonance vs etching time comparison between experimental and FDTD data. (d) Simulated 
extinction spectra of 5min sample with 10nm R6G over layer for different oscillator strength 
values (f=0.4-4). 
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In order to estimate the enhancement of our 5 min etched sample, the intensity enhancement 

factors  (IEF) for both incident (532.24 nm) and scattering field (555.152nm) were calculated 

using the following relation: 

    (D3) 

where    is the local field at a given frequency ω.  The Raman enhancement factor is then 

calculated by : 

     (D4) 

where ωinc and ωsca  are the incident and scattering frequency respectively. The oscillator 

strength of f=1 is used for the simulation since it gives similar peaks position and splitting to the 

experimental data. An analytical approximation of f was also done using:  

    (D5)
 

     (D6)
 

where n is the index of refraction, α is the absorption coefficient, ν is the wavenumber and N is 

the molecular density approximated from with σ being the absorption cross-section.  The 

literature value of 1.8x10-16 cm2 at 550nm was used for σ. This gives the oscillator strength of 

f=1.106 which is close to the assumed value. 
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Table D1: Summary of  intensity and total enhancement factors from both the simulation and 
experiment. The simulation enhancement factors are taken from the local maximum within the 
R6G layer. Ratios between experimental and FDTD calculated EFs are also shown. 
 

Sample FDTD Experimental 
EF 

EFexp/EFFDTD 
|Eloc/E0|2 at 
555.152nm 

Eloc/E0|2 at 
532.24nm 

EF 

2min 1.69 1.99 3.36 19.97 5.67 
3min 1.71 2.00 3.43 20.55 5.99 
4min 2.09 2.46 5.12 40.41 7.89 
5min 5.34 7.35 39.22 206.04 5.25 
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APPENDIX E: MATLAB CODES 
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MATLAB code for simulating Z-scan curve. 

% MATLAB code for simulating Z-scan curve  
%Mesh in z-r space 
X =[-20:0.05:20]*10^-2; 
Y =[0:0.002:2]*10^-3; 
[z,r]= (meshgrid(X,Y)); 
  
% Defining parameters 
w0=33*10^-6; 
lam=532*10^-9; 
k=2*pi/lam; 
z0=pi*w0^2/lam; 
E=50*10^-6; 
tp=5*10^-9; 
wz=w0.*sqrt(1+z.^2./z0^2); 
R=z.*(1+(z0./z).^2); 
I00=((2*E)./((pi.*w0.^2)*sqrt(pi)*tp)); 
Iz0=I00.*(w0./wz).^2.*exp(-2*(r./wz).^2); 
nwater=1.33; 
nsol=1.3288;  
inc_ang=0; 
angle=asin(nwater*sin(inc_ang)/nsol); 
L=1*10^-3./cos(angle); 
slice=1000; 
dL=L/slice; 
linearT=0.06; 
alp=-log(linearT)/L; 
beta=10*10^-9*0; % nonlinear absorption coefficient [m/W] 
I2=Iz0; 
Isat= 6*10^11; % saturation intensity 
% Calculate irradiance through sample 
for j=1:length(X) 
for p=1:slice 
    dI=-(alp./(1+I2(:,j)./Isat)+beta.*I2(:,j)).*I2(:,j).*dL; 
    I2(:,j)=I2(:,j)+dI; 
end 
end 
  
Pout=zeros(1,length(X)); 
Pin=zeros(1,length(X)); 
dY=Y(2)-Y(1); 
% Calculate transmitted energy and transmission 
for j=1:length(X) 
     
  Pout(1,j)=2*pi*trapz(Y'.*I2(:,j))*dY; %radial integral 
  Pin(1,j)=2*pi*trapz(Y'.*Iz0(:,j))*dY; %radial integral 
end 
Eout=Pout*sqrt(pi)*tp % time integral 
Ein=Pin*sqrt(pi)*tp 
T=Eout./Ein; 
A1=T./linearT; 
% Plot and write output txt file 
plot(X,A1); 
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B=[X'*10^6,A1']; 
dlmwrite(Plot.txt', B, 'delimiter', '\t','precision', 6) 

MATLAB code for simulating PA Z-scan curve with k-space model 
 
%MATLAB code for k space model 
clear all 
% loop parameter initialization(vary beam waist) 
z= [0:8:80];%mm 
w0=0.033%mm 
lam=532*10^-6; %mm 
z0= pi*w0^2/(lam); 
wz= w0*sqrt(1+z.^2./z0^2); 
qq=length(wz); 
amp=zeros(1,qq); 
% loop for the whole z scan range 
for pp=1:qq 
% initial pressure calculation 
dot=1024;  
gird=[-dot/2:dot/2-1]';  
vel=1400; %mm/ms  
dx=0.01; 
dy=0.01; 
[x,y] =meshgrid(gird*dx,gird*dy); 
[kx,ky] = meshgrid(gird*2*pi /(dot*dx),gird*2*pi/(dot*dy)); 
ktot=sqrt(kx.^2+ky.^2);  
w=wz(pp); 
%input parameters 
nwater=1.33; 
nsol=1.5; 
inc_ang=pi/4; 
angle=asin(nwater*sin(inc_ang)/nsol); 
L=1;%thin layer thickness in mm 
alp=-log(0.22)./(L); 
beta=.02*10^-5; % nonlinear absorption coefficient [mm/W] 
Isat= 2*10^11000000000; % saturation intensity W/mm2 
E=34*10^-6; % input energy J 
tp=5*10^-9; % pulse width 
I=zeros(dot,dot); 
I00=((2*E)./((pi.*w^2)*sqrt(pi)*tp)); 
%%%%%%%%%%%%%%Solving beam irradiance through sample %%%%%%%%%%%%%%%%%% 
I=I00*exp(-2*(cos(angle)*x-(sin(angle)*y)).^2/w^2); 
Inew=I; 
A=zeros(size(I)); 
B=zeros(size(I)); 
start=dot/2; 
stop=dot/2+100; 
B(start,:)=Inew(start,:); 
for p=start:stop 
   dI=-(alp./(1+Inew(p,:)./Isat)+beta.*Inew(p,:)).*Inew(p,:).*dx./cos(angle); 
   A(p+1,:)=(Inew(p,:)+dI); 
   [a1 loc1]=max(I(p+1,:)); 
   [a2 loc2]=max(A(p+1,:)); 
   dl=loc1-loc2;    
   for j=1:dot 
       B(p+1,j+dl)=A(p+1,j); 
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   end 
   Inew(p+1,:)=A(p+1,:); 
end 
  
y=B(1:dot,1:dot); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% initial pressure 
p_0=(alp+beta.*y).*y; 
%p0=(alp./(1+y./Isat)).*y; % for Isat 
  
% calculate p0 in k domain 
p_0fft =fftshift(fftn(p_0)).*1; t=[0:0.005:1.5]*1e-3; %ms 
timesnap=zeros(dot,length(t)); 
%sensor_x=0; 
sensor_y=-0.8; 
%nsx=round((N/2+sensor_x/dx)+1); 
nsy=round((dot/2+sensor_y/dy)+1); 
[a b]=size(p_0fft) 
sensor_mask=zeros(a,b); 
sensor_mask(nsy,:)=1; 
% Propagate the pressure in time with time propagator 
for q=1:length(t) 
p=real(ifftn(fftshift(p_0fft.*cos(vel*ktot*t (q))))); 
timesnap(:,q)=p(nsy,:); 
end 
f=1/max(t)*[-length(t)/2:length(t)/2-1]; 
% apply transducer response 
cf=  10e3   ;%kHz 
wf= 0.6*cf; 
filter= zeros(1,length(f)); 
 for p=1:length(f) 
if f(p)>=0; 
filter(1,p)=exp(-(f(p)-cf).^2/wf^2); 
else 
    filter(1,p)=0*exp(-(f(p)+cf).^2/wf^2); 
end 
 end 
timesnapA=sum(timesnap)/a; 
A=fftshift(fftn(timesnapA)); 
B=(A).*filter; 
C=real(((ifftn(ifftshift(B))))); 
amp(1,pp)=sqrt(pi)*w*(max(C)-min(C)); % integral for 3D case 
end 
% format output, compare to the simple model, and save 
znew=zeros(1,2*length(z)-1); 
znew(1:length(z))=sort(-z,'ascend'); 
znew(length(z):2*length(z)-1)=sort(z,'ascend'); 
ampnew=zeros(1,2*length(z)-1); 
ampnew(length(z):2*length(z)-1)=amp; 
Iin=((2*E)./((pi.*wz.^2)*sqrt(pi)*tp)); 
PA= (alp+beta.*Iin); 
PAnew=zeros(1,2*length(z)-1); 
PAnew(length(z):2*length(z)-1)=PA; 
for r=1:length(z); 
   ampnew(r)=ampnew(2*length(z)-r); 
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   PAnew(r)=PAnew(2*length(z)-r); 
end 
plot(znew,ampnew./min(ampnew(:)),'b',znew,PAnew./min(PAnew(:)),'g'); 
P=[znew',ampnew'./min(ampnew(:)),PAnew'./min(PAnew(:))]; 
dlmwrite('comaparePAfit.txt', P, 'delimiter', '\t','precision', 6); 
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