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ABSTRACT

This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the

Institute for the Frontier of Attosecond Science and Technology Laboratory.

First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with

300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum ex-

tending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse

power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest

energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date.

Second, using this laser as a driving laser source, the generalized double optical gating method

is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity

dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic

level was carried out to demonstrate the mechanism of isolated pulse generation.

Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond

pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum support-

ing 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical

gating technique. The extreme ultraviolet pulse energy was ∼100 nJ at the exit of the argon gas

target.
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CHAPTER 1: INTRODUCTION

When the laser was first invented in 1960 [4, 5], the pulse duration was 10 µs. Significant progress

has been made in developing shorter and more intense light sources. The pulse duration was re-

duced to picosecond time scales after the invention of Q-switching and mode locking technology.

Femtosecond laser sources were developed after the discovery of broadband gain media such as

dye and Ti:Sapphire. Today, pulses with duration less than 5 fs can be obtained from Ti:Sapphire

laser systems. With the shortening of pulse duration, extra high peak power and intensity can be

obtained. The boundary was further pushed by applying the chirped pulse amplification (CPA)

technique to overcome the intensity limit due to optical damage [6, 7]. A decade later, gain nar-

rowing in the amplifying media was compensated by using thin angle tuned etalons or birefringent

filters, allowing for the generation of sub 20 fs TW pulses [8, 9, 10].

These powerful laser sources opened up a new field for ultrafast science: attosecond research.

Attosecond pulse generation was first realized by the process of high order harmonic generation.

When a laser is focused in a rare gas with an intensity of ∼ 1013 − 1014 W/cm2, a series of odd

order harmonics of the fundamental driving laser is produced. This laser like radiation – providing

excellent temporal coherence with broad spectrum bandwidth – can be provided on a laboratory

tabletop setup [11]. The story line of ultrafast physics and chemistry research has been rewritten

thereafter.

1.1 High Harmonic Generation

From the microscopic single atom perspective, the process of HHG can be explained by a simple

three-step model. When an intense laser is focused tightly onto a target material, the bound state
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electron undergoes three phases, which individually are tunneling, acceleration and eventually

recombination with its parent nucleus to emit XUV radiation [12, 13, 14]. The process is illustrated

in Figure 1.1.

Figure 1.1: The 3-step model of HHG.

First, for HHG generation, gas phase targets (usually inert gas) are preferred due to the simplicity

in the delivery and removal of the contamination. When the focused laser pulse intensity is 1013

W/cm2 or over, the binding potential between the electron and its parent nucleus will be reduced.

This modification from the oscillating laser electric field will grant the ground state bound electron

the possibility of tunneling through the atomic potential well.

In order to tell if the target atom is ionized through the tunneling or the perturbative multi-photon

process, the Keldysh parameter γ was introduced [15, 16, 17]:

γ =

√
Ip

2Up
, (1.1)

where Ip is the ionization potential. Up is the ponderomotive potential which is the cycle average

kinetic energy of an electron in the laser field:

Up =
e2I

2meε0cω2
, (1.2)
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where me is the electron mass, e is the electron charge, ω is the laser frequency, and I is the laser

intensity.

The Keldysh parameter γ was set up in such a way that it represents the ratio between the time

required for the electron to tunnel out the potential barrier and the time during which the barrier

is lowered by the laser field. When the Keldysh parameter is below 1, the ionization process is

non-perturbative and the tunneling electron can be treated in a classical way.

Next, the freed electron will be pushed back by the laser’s electric field after it changes its direction

in one optical cycle. By Newton’s law, we can calculate the kinetic energy of the returning electron

is:

KE = Up(1 + 2cos2(ωt0)), (1.3)

where t0 is the initial ionization time [18].

During the last step, the homecoming electron can recombine with the parent nucleus to release

the accumulated kinetic energy as radiation in the XUV region. It was shown that the maximum

kinetic energy the electron can gain is 3.17Up, thus the maximum photon energy possibly released

isE = Ip+3.17Up, which is dependent on the target gas ionization potential, driving laser intensity

and wavelength. The maximum kinetic energy sets the far end of the HHG spectrum which is the

cutoff region in Figure 1.2.
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Figure 1.2: A typical HHG spectrum. After the fast decreasing of signal in the low energy region,

a plateau with comparable strength was followed by an abrupt cutoff.

The HHG process can also be treated quantum mechanically based on the single active electron

approximation [19, 20, 21]. However, the semi-classical 3-step model makes close enough predic-

tions with easy to understand concepts.

On the other end, since HHG is a process involving a large amount of atoms with coherent stim-

ulation from the driving laser, macroscopic nonlinear effects such as dispersion, absorption and

ionization of the whole medium should also be taken into account in the theoretical model [22].

Another important aspect of the HHG process is phase matching, which strongly influences the

HHG generation efficiency. Same as with frequency doubling second harmonic generation (SHG),

phase matching in HHG requires the wave vector of the generated qth harmonic field (kq) to match
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the wave vector of the fundamental laser field (kf ):

kn = qkf . (1.4)

In order to reach perfect phase matching, the wave vector mismatch ∆k = kq − qk1 should be

equal to zero. The major terms contributing to phase mismatch for the qth harmonic generation are

the material dispersion, focusing geometry, atomic dipole phase, plasma density, and any nonlinear

effects [23]. The total result can be written as:

∆k = ∆kdisp + ∆kgeom + ∆kdipole + ∆kplasma + ∆kother. (1.5)

The terms in Equation 1.5 can be used to cancel each other in order to reduce the total phase

mismatch.

1.2 Isolated Attosecond Pulse Generation

During every laser cycle, the three step process occurs twice for a linearly polarized multi-cycle

femtosecond laser pulse. Therefore, an attosecond pulse trains is generated with half cycle spacing

between pulses [24, 25, 26]. The spacing between neighboring attosecond pulses in the train is

typically 1.3 fs for the Ti:Sapphire driving laser case.

Isolated attosecond pulses are more desirable since they offer time resolution on the attosecond

timescale. In order to generate isolated attosecond pulses, harmonics should be limited to genera-

tion only from half an optical cycle in a driving laser pulse.

Spectral filtering of high order harmonics by a few-cycle driving pulse was the first scheme realized
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for producing an isolated attosecond pulse. Using this method, an isolated attosecond pulse as short

as 80 as has been generated [27].

The HHG process has strong ellipticity dependence on the driving laser field. By controlling the

ellipticity of the driving laser, the harmonic emission can be limited to the period when the laser is

linearly polarized [24, 28]. For example, using the polarization gating technique, XUV emission

can be confined to an isolated attosecond pulse with a broad and tunable bandwidth, producing

pulses with 130 as duration [29].

1.3 Overview of Thesis

The goal of this work is to demonstrate a high intensity tabletop attosecond XUV laser source

capable of generating isolated attosecond pulses at the µJ energy level.

First of all, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with

over 300 mJ energy at a 10 Hz repetition rate is designed and constructed. The broadband spectrum

extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse

power amplifier with mJ level white light pulses from a gas filled hollow core fiber. It is the highest

energy level a broadband pulse has ever been amplified by a chirped pulse amplifier up to current

date.

Using this laser as the driving laser source, proper birefringent optics are employed to ensure

isolated attosecond pulse generation using the generalized double optical gating method. Detailed

gate width analysis of the ellipticity dependent pulse was performed. Calculation of electron light

interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated

attosecond pulse generation.
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Finally, a complete diagnostic apparatus was built to extract and analyze the generated XUV pulse

in both the spectral and time domain. The result confirms that an extreme ultraviolet super con-

tinuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized

double optical gating technique. The XUV pulse energy was ∼100 nJ at the exit of the argon gas

target.

1.4 Summary of My PhD Research

High harmonic generation driven by a high-intensity laser is currently the most efficient method for

attosecond pulse generation. For this reason, it is hard to separate attosecond laser research from

femtosecond laser development. When I joined the attosecond group in 2007, I began working

towards improving the existing Kansas Light Source (KLS) laser system to facilitate attosecond

research [30]. First, I improved the FROG setup in our lab to accurately measure pulse durations

shorter than 5 fs. This work was published together with my work on adaptive phase modulation,

which will be described in Chapter 3 of this thesis [1, 31]. Later, I instituted spectral filtering within

the amplification stage using birefringent plates, which allowed for shorter output pulse durations

from the KLS CPA system. After successfully reducing the 1 kHz, 2 mJ pulse from its original

35 fs to 23 fs, our group was able to demonstrate isolated attosecond pulse generation using driving

laser pulses directly from the CPA system [32, 33, 34, 3, 35, 2].

After our group moved to the University of Central Florida in 2010, my research pursuits changed

direction. Instead of making minor alterations to a pre-standing laser system, I played the leading

role in establishing a whole new carrier envelope (CE) phase-stabilized, kHz-repetition rate laser

system [36], which quickly became the workhorse of our attosecond research [37, 38, 39]. My

focus has recently shifted further to developing a high-flux attosecond source with a uniquely-built

20 TW, 15 fs, 10 Hz laser system [40]. Beyond the expected logistical difficulties inherent to large-

7



scale system design, I have successfully addressed various technical challenges while building

this 20 TW laser, including feedback-optimized adaptive phase modulation, multilayer mirror and

filter coating design, XUV end-station and diagnostic implementation, and laser-ablated debris

elimination.

8



CHAPTER 2: LASER FACILITY AT INSTITUTE FOR THE FRONTIER

OF ATTOSECOND SCIENCE AND TECHNOLOGY LAB

The laser system for the high-flux attosecond pulse generation is located in the Institute for the

Frontier of Attosecond Science and Technology (iFAST) laboratory at the Physical Science facili-

ty in the University of Central Florida [36].

Figure 2.1: Photo of iFAST lab laser system.

This uniquely designed laser system – capable of delivering sub-15 fs, 20 TW pulse at a 10 Hz rep-

etition rate – was put to use for attosecond science research beginning in early 2013. A high-gain
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amplifier operating at a kHz repetition rate provides over 106 times amplification in order to raise

the seeding pulse energy from nanojoule to millijoule level. Two consecutive power amplifiers

working at 10 Hz are applied to boost the energy to joule level (Figure 2.1).

2.1 Chirped Pulse Amplifiers

The design of a tabletop terawatt laser systems usually starts with the seeding pulse from a mode-

locked Ti:Sapphire oscillator. However, since the laser pulse energy from femtosecond oscillators

is on the order of nanojoules, a gain of 106 or higher is required for the pulse energy to reach

the level appropriate for attosecond pulse generation. Two major different types of systems are

employed to carry out the amplification process: chirped-pulse amplification (CPA) [41, 42, 43]

and optical parametric chirped-pulse amplification (OPCPA) [44, 45, 46]. While the option of

using OPCPA offers the advantage of few-cycle laser pulses with scalable energy, the specialized

pump laser technology for OPCPA is still underdeveloped. On the other hand, widely available

Ti:Sapphire-based chirped-pulse amplification (CPA) laser systems are capable of achieving peak

power of 100 TW or above , but their output pulses contain too many optical cycles to be used with

even the least-restrictive gating schemes. In this work, a uniquely designed CPA amplifier system

that delivers 14 fs, 20 TW pulses with a 10 Hz repetition rate is developed for generating high-flux

isolated attosecond pulses.

2.2 Pulse Stretching and Compressing

Since the discovery of Kerr lens mode locking (KLM),∼5 fs pulses can be generated in Ti:Sapphire

lasers [47, 48]. For femtosecond pulse amplification, the intensity of an amplified pulse will reach

the damage threshold of the laser gain media before the amplification reaches saturation if the
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pulse duration is too short. In order to efficiently transfer energy to pulses, the chirped pulse am-

plification technique is commonly used with high-power ultrafast laser systems. In a CPA system,

femtosecond pulses are stretched by many orders of magnitude before undergoing the amplifica-

tion process, as illustrated in Figure 2.2. Usually, the intensity is reduced by its long pulse duration

so the saturation fluence of Ti:Sapphire can be reached before any damage happens to the gain me-

dia or other optics. This technique was first used on the radar microwave region until later applied

to the laser [49, 7].

Figure 2.2: The temporal shape of a pulse undergoing a chirped-pulse amplification process.

2.2.1 Stretcher and compressor

To reduce the amplified beam intensity below the damage threshold, the stretched pulse dura-

tion should be at ∼100 ps level. Therefore, over 104 times stretching of a femtosecond pulse is

necessary, and large dispersion should be introduced. For example, to stretch an 800 nm, 15 fs

transform-limited laser pulse to 300 ps, a group-delay dispersion of 1.8 × 106 fs2 is required. In
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order to introduce dispersion this large, a grating-pair based stretcher and compressor are preferred

instead of a prism pair and glass compressor (Figure 2.3).

Figure 2.3: The block diagram of kHz laser

The pulse stretcher uses a telescope to create negative grating displacement. For example, in a

Martinez stretcher, the dispersion is controlled by the effective distance between the second grating

and the image of the first grating [50]. For different wavelengths passing through the stretcher, they

are spectrally dispersed, which requires the beam to pass the stretcher for a second pass to reverse

the dispersion process. The beam path for long wavelength components inside the stretcher is

shorter than that of the short wavelength components. Therefore, the dispersion introduced by a

pulse stretcher is positive [51]. The dispersion introduced by the pulse compressor is the exact

same amount as the pulse stretcher if it is designed with same incident angle and displacement for
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the gratings. The dispersion can be expressed as a function of wavelength λ:

φ(λ) = 2× 4πL

λ

√
1− (

λ

d
− sin(θin))2 (2.1)

whereL is the grating separation, d is the spatial period of the grating groove, and θin is the incident

angle [52]. The pulses are eventually compressed back to near transform-limited pulse duration to

produce high intensity by introducing equivalent amount of dispersion with opposite sign.

2.2.2 Multipass amplifier vs. regenerative amplifier

A possible alternative to a multipass amplifier is a regenerative amplifier [53, 42, 54]. Amplifica-

tion inside a regenerative amplifier is achieved by trapping the seed pulse in a laser resonator. The

seed pulse stays in the cavity until it extracts all of the energy stored in the amplification medium.

Pulse trapping and dumping is done using a polarizer and a Pockels cell, which works like the

optical switch.

Figure 2.4 shows the layout of a regenerative amplifier (Legend Elite HE, Coherent Inc.) [55].

This regenerative amplifier was seeded with the 3 nJ, sub-7 fs output from a commercial oscillator

(Rainbow from Femtolasers GmbH). The first amplification stage consists of a regenerative am-

plifier with 14 round trips to amplify the pulse energy to 4 mJ. The second stage is a single pass

amplifier for doubling the pulse energy to 8 mJ. The Ti:Sapphire crystals in both stages are ther-

moelectrically cooled (TEC) to −12◦C. Both stages are pumped by a 527 nm, 45 mJ pump laser

running at 1 kHz (Evolution HE, Coherent Inc.). After the grating compressor, the laser system

delivers laser pulses up to 6 mJ with a measured pulse duration of 30 fs. An angle tuned etalon is

inserted between the oscillator and amplifier to suppress the gain narrowing effect in the amplifi-

cation process [56].
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Figure 2.4: Schematic of a typical regenerative amplifier.

A regenerative amplifier simplifies the alignment requirement of a multipass amplifier and is also

usually more compact. However, since every round trip the seed pulse passes through the Pockels

cell in the the regenerative amplifier, the material dispersions in multipass amplifiers is higher than

multipass amplifiers. It is therefore easier to generate shorter femtosecond pulses with a multipass

configuration.

In our case, the multipass layout is more preferable not only because we can achieve the shortest

possible pulse duration by compressing the amplified pulse closer to its transform limited pulse

duration, but also because the beam passes are well separated inside the multipass cavity so any

diagnosis on the laser condition such as ASE level and signal gain can be performed easily to make

sure the laser system is operating at peak performance.
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2.3 iFast 20 fs, 3.5 mJ 1 kHz Multipass CPA System

Our iFAST laser system starts with a 2-stage kHz system that delivers 20 fs, 3.5 mJ pulses at a

1 kHz repetition rate. Twelve fs pulses from a commercial oscillator (Femtosource Pro) are used

to seed the amplifier [57]. Mode-locking allows for ∼5 nJ energy output pulses at a repetition rate

of ∼80 MHz. The temporal separation of pulses in the pulse train is ∼12 ns.

After passing through a beam splitter which reduces their magnitude by half, the 12 fs pulses are

temporally stretched to 100 ps by an Öffner-type stretcher. The stretched pulses are amplified to

3 mJ through a 14-pass amplifier plus 1-pass power amplifier, as shown in Figure 2.6. A total

gain of over one million times was obtained by geometrically arranging multiple passes of the

seed beam through the Ti:Sapphire gain medium [58, 59, 60]. This was realized by using a pair

of cavity mirrors with ROC = 2000 mm and four 45◦ folding mirrors. After the first 7 passes, the

seed beam is directed out of the cavity for amplified spontaneous emission reduction by applying

a 10 ns gate through a Pockels cell [61]. In order to separate the second 7 passes from the first

ones, the beam direction is raised to a higher plane when the seed pulse is re-injected back to the

amplifier. The pulses goes through the 1-pass power amplifier to double the pulse energy before

final compression.

Because the quantum efficiency of the pump to signal conversion is less than 70%, the residual heat

from the amplifying process will cause serious thermal lensing and other thermal effects such as

thermal stress or birefringence. In order to eliminate thermal lensing and heat management issues,

both stages are cryogenically cooled to below 100 K. Upon cooling from 300 K to 77 K, the thermal

conductivity of the Ti:Sapphire crystal dramatically increases and its ∂n/∂T decreases [62, 63].

The cryogenic solution suppresses not only thermal lensing but also higher-order aberrations and

distortions, thus simplifying the amplifier design and making the alignment requirement easier and

independent of the pump power [64, 65, 66]. The cryogenic cooling was realized by attaching
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the Ti:Sapphire crystal to the copper cold finger of a pulse tube based cryogenic cooler [67]. A

1 mm thick indium sheet was placed between the crystal and the copper in order to provide a good

thermal contact.

(a) Design drawing of kHz Ti:Sapphire crystal vacuum chamber.

(b) Photo of vacuum chamber containing Ti:Sapphire crystal cooled at cryogenic tem-

perature.

Figure 2.5: Vacuum chamber of kHz Ti:Sapphire crystal.
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The final output pulses measured 20 fs with 3.5 mJ pulse energy after passing through a grating

compressor. The grating compressor is built with two mechanically ruled gratings with line density

of 1200 l/mm, optimized for a center wavelength of 760 nm [68]. During the kHz amplification

stages, the gain narrowing effect is partially reduced by inserting gain narrowing compensation

filters in the early passes of the 14-pass amplifier.

Figure 2.6: Schematic of kHz amplifier system.

In table 2.1, a summary of the pulse properties at different stages of amplification is given.
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Table 2.1: Performance of the kHz Amplifier

Property Value

Seeding pulse duration 12 fs

Seeding pulse energy 2 nJ

Stretched pulse duration 100 ps

1st stage passes 14

1st stage gain ≥ 3000000

1st stage temperature ∼ 90 K

Number of anti-gain-narrowing filter used 3

2nd stage passes 1

2nd stage gain ≥ 2

2nd stage temperature ∼ 90 K

ASE level ≤ 5% with seed blocked

Compressed pulse energy 3.5 mJ

Compressed pulse duration 20 fs

Power rms ≤ 1%

2.4 20 TW, 14 fs, Multi-Pass CPA System

In order to scale the isolated attosecond pulse energy to the µJ level, driving lasers with higher

power are required. In generalized double optical gating (GDOG), the laser field is manipulated to

be linearly polarized only within a single-optical-cycle “gate” at the center of the pulse, whereas

the leading and trailing edges are elliptically polarized. A linearly-polarized second-harmonic
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field is added to break the field symmetry, restricting attosecond pulse generation to a single event

within the gate. While the GDOG method can be applied to both few and multi-cycle lasers, the

driving laser pulse duration remains a key parameter, as only the energy contained in the linearly-

polarized portion of the laser contributes to the generation of the isolated attosecond pulse. If the

pulse duration is too long, the leading cycles of the pulse pre-ionize many of the available atoms

before the arrival of the linear gated cycle, thus reducing the conversion efficiency. This effect

can be mitigated by keeping the duration of the driving laser pulse as short as possible. To this

end, we developed a Ti:Sapphire laser system optimized to provide both high-energy (300 mJ) and

short-duration (14 fs) pulses for implementing GDOG.

This 20 TW laser system can be divided into three parts for the ease of explanation: the kHz CPA

amplifier, hollow-core fiber white light generation, and the 10 Hz power CPA amplifier.

2.4.1 White light generation in hollow-core fiber

The kHz multi-pass amplifier system delivers pulses close to the transform limit of 20 fs (Sec. 2.3).

Borosilicate glass hollow fibers of 150 cm length and 450 µm capillary radius are used [69, 70,

71, 72]. The fiber was kept straight in an aluminum V-groove bar, which was then placed in a

pressurized 1 inch diameter steel tube. This is visible in Figure 2.7 (b). The laser beam is focused

into the chamber by a 2000 mm focusing mirror through broadband anti-reflection (BBAR) coated

1 mm thick fused silica windows. The vacuum tube can be filled with several gases such as argon,

krypton, and helium at different pressures. The overall throughput of the hollow-core fiber system

– including coupling, fiber losses, and some residual reflection losses at the anti-reflection-coated

windows – is 50% – 60%. The exiting beam is then collimated by a silver coated concave mirror

with a radius of curvature of 3000 mm.

The overall bandwidth of hollow-core fiber output supports pulses shorter than 5 fs in duration.
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Figure 2.7 (c) shows the actual effect of spectrum broadening in the hollow-core fiber.
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(a) Schematic diagram of the experimental setup. M1 is an 800 nm dielectric coated mirror of 2000 mm

focal length, M2 is a silver-coated mirror with 1500 mm radius of curvature.

(b) Photo of hollowcore fiber.

(c) Laser spectrum before (red) and after hollow-core fiber (black).

Figure 2.7: Hollowcore fiber for spectrum broadening.
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Spectral broadening of high energy femtosecond pulses in bulk materials usually leads to nonuni-

form transverse self-phase modulation due to the nonuniform transverse intensity profile. On the

other hand, spectral broadening is achieved by self-phase modulation in a hollow fiber made of

glass and filled with noble gases at high pressure. This allows for single mode guiding elements of

large mode diameter, making the technique suitable for large pulse energies.

Wave propagation along hollow fiber guides can be thought of as occurring through grazing inci-

dence reflections at the dielectric inner surface. Since the losses caused by these multiple reflec-

tions greatly discriminate against higher order modes, only the fundamental mode can propagate

in a sufficiently long fiber. The maximum broadening δωmax for a Gaussian pulse after a length l,

at either the low or high frequency side of the spectrum, is given by:

δωmax = 0.86γP0zeff/T0, (2.2)

where zeff = [1− exp(−αl)]/α, with α given by

α

2
= (

2.405

2π
)2 λ

2

2a3

ν2 + 1√
ν2 − 1

. (2.3)

Here λ is the laser wavelength in the gas medium and ν is the ratio between the refractive indices of

the external glass and internal gas media. The nonlinear coefficient γ is given by γ = n2ω0/cAeff ,

where ω0 is the laser central frequency, n2 is the nonlinear index coefficient andAeff is the effective

mode area.
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2.4.2 300 ps Öffner type stretcher

Pulse stretching for 14 fs, 20 TW level CPA amplification is challenging: the spectral width of the

hollow-fiber output pulse is relatively wide (∼200 nm), and the chirped pulse duration for 20 TW

amplification requires pulse stretching beyond 100 ps to reduce the possibility of damaging laser

optics. A good pulse stretcher needs to keep the output beam wavelength dependent distribution

and divergence small by reducing the aberration of the telescope. The Öffner-type telescope was

reported to have relatively small aberration which can be directly translated into spectral phase

distortions [73, 74, 75]. The generation of 20 fs, 1 TW pulses with a 1 kHz repetition rate using an

Öffner-type stretcher was reported in 2000 [10]. The Öffner-type pulse stretcher we used for our

10 Hz amplifier system has a single grating design consisting of a concave mirror and a convex

mirror. Figure 2.8 (a) shows the schematic of the pulse stretcher.

Our test result shows the aberration of this telescope is relatively small. The dispersion introduced

by the stretcher can be mostly compensated by compressor, which means this stretcher design is

suitable for our CPA system having small material dispersions.
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(a) Schematic of Öffner stretcher.

(b) Laboratory picture of 1000 mm long, 600 mm wide, 200 mm tall Öffner stretcher.

Figure 2.8: Öffner-type stretcher for >200 nm, 300 ps pulse stretching.

For an Öffner-type telescope, the foci of the concave mirror and the foci of the convex mirror

coincide at the same spot, however, it is not the same case for an aberration-minimized Öffner-
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type stretcher. This is because the object needing to be imaged – which is the grating in the case of

an Öffner-type stretcher – is no longer at the focus of concave mirror but closer in order to introduce

positive phase chirp. In order to reduce the aberration, the curvature of the convex mirror needs

to be slightly increased. In our case, the concave mirror has a radius of curvature of 1000 mm,

so a 500 mm curvature is needed for the convex mirror of the Öffner-type telescope, but the ray

tracing result showed that an optimized radius of curvature of 505 mm will reduce the output beam

wavelength dependent distribution and divergence to a minimum. In the actual alignment, the

distance between the concave mirror and the grating is 900 mm, and the 505 mm curvature convex

mirror location was tuned by examining the far field beam profile.

Because of the bandwidth requirement of the output seed pulse, a 110 mm × 110 mm holographic

master grating with a groove density 1400 l/mm was used as the diffractive element for the stretch-

er. A 600 mm long by 100 mm wide gold-coated concave mirror and 300 mm long, 10 mm wide

convex mirror are used to provide high reflection efficiency. The overall throughput of the stretcher

is above 30%. Special care was taken to provide long term and short term stability for future CE

phase stabilization experiments.

2.4.3 Two-stage multipass amplifier

The white-light continuum generated from the hollow-core fiber has a spectrum from 550 nm to

950 nm. The center mode of the spectrally-broadened pulses is used to seed the second CPA [76].

Spectra from various stages of the laser are shown in Figure 2.9.
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Figure 2.9: Schematic of 1st stage amplifier system.

After the Öffner stretcher, the 300 ps, 0.2 mJ positively-chirped pulses are then amplified to 30 mJ

in a five-pass amplifier operating at 10 Hz. This Brewster-cut Ti:Sapphire crystal is pumped from

both sides by relay-imaged portions of a Q-switched frequency-doubled Nd:YAG laser (Quanta

Ray Pro 350). Specially-designed filters with a transmission minimum near 780 nm are inserted

into the first three passes to alleviate gain-narrowing effects in this stage [77].

The second stage power amplifier employs a large-area, flat-cut Ti:sapphire crystal, which is

pumped on one side by the remainder of the first-stage pump laser and on the other side by the

full energy of another Nd:YAG laser (Quanta Ray Pro 350) with high M2 factor. Instead of relay

imaging the pump laser beams to the laser crystal, two diffractive optical elements (DOE) are used
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for beam homogenization [78]. Homogenizing the profiles of the pump beams guarantees no “hot”

structures are generated in the NIR pulse during amplification [79]. The clear aperture of the DOEs

is 25 mm and they are anti-reflection coated for 532 nm with an overall efficiency >80%. The first

pass pump absorption is 90%, with a pumped area of 10 mm diameter.

Both stages are water-cooled to room temperature, while divergent lenses are used to compensate

the thermal lens. The energy of the amplified pulses can reach up to 700 mJ. The spectrum of these

pulses extends from 700 nm to 900 nm, which supports 12.2 fs transform-limited pulses.

2.4.4 Numerical analysis of the 2-stage amplifier

Theoretical works that investigated spectral gain narrowing and gain saturation have been pub-

lished in the past [53, 80]. The energy transport equations can be simplified as [81]:

I
(n)
out(t) = G(n)(t)I

(n)
in (t)(1− l), (2.4)

where I(n)
in (t) is the input intensity and I(n)

out is the output intensity for the nth pass of the CPA

amplifier and l is the loss factor. The nth pass instantaneous gain G(n)(t) is:

G(n)(t) =
G

(n)
0

G
(n)
0 − (G

(n)
0 − 1)e−J

(n)
in /Jsat

, (2.5)

where G(n)
0 = G(n−1)(tend) is the final value of G(n−1)(t) in the last pass calculation, Jsat = h̄ω/σ

is the saturation fluence, J (n)
in (t) is the time-dependent energy fluence which is the integral of

I
(n)
in (t) to the present time:

J
(n)
in (t) =

∫ t

−∞
I

(n)
in (t)dt. (2.6)
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The input intensity for the nth pass should be the output intensity for the n− 1th pass:

I
(n)
in (t) = I

(n−1)
out (t). (2.7)

The same is done for the fluence:

J
(n)
in (t) = J

(n−1)
out (t). (2.8)

Solving Equations 2.4-2.8 gives the gain saturation in every single pass.

Figure 2.10: Instantaneous gain G(t) for the five-pass amplifier stage.

Figure 2.10 shows the instantaneous gain for the five individual passes in the 1st 10 Hz amplifier
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stage. The wavelength dependent gain is also displayed. Since the pulse was positively stretched

in chirped pulse amplification, spectral red-shifting caused by the gain saturation can easily be

understood from the same figure.

Figure 2.11: Output energy as a function of pass number.

Figure 2.11 shows the calculated output energy for the total 9 passes of the 2nd CPA system. The

seed energy and the energy after each amplifier is shown for comparison.

In the frequency domain, the atomic gain coefficient αm(ω) due to the atomic transition is given

by [80]

αmω =
1

2
σN

1

1 + [2(ω − ωa)/∆ωa]2
, (2.9)
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where ωa is the atomic transition frequency, ∆ωa is the atomic linewidth, σ is the emission cross

section, and N is the population inversion density. The small signal power gain is:

G(ω) = exp(2αm(ω)l) = exp

(
σNl

1

1 + [2(ω − ωa)/∆ωa]2

)
. (2.10)

For the multipass amplification, the output spectrum I
(n)
out(ω) with the input spectrum I

(n)
in (ω) and

the gain G(n)(ω) for the nth pass is:

I
(n)
out(ω) = G(n)(ω)I

(n)
in (ω). (2.11)

The form of final amplified pulse spectrum Iout(ω) with regard to the seed pulse spectrum Iin(ω)

is given by:

Iout(ω) = Iin(ω)
∏
G(n)(ω). (2.12)

Taking account of the gain saturation as shown in Figure 2.10, the amplified pulse spectra for the

2-stage multipass amplifier was calculated with four spectral shaping filters inserted. Figure 2.12

shows the calculated and measured amplified pulse spectrum. As the result of starting with high

energy broadband HC fiber output as the input pulse together with multiple anti-gain-narrowing

filters during the amplification process, the spectrum between 700 nm to 900 nm was well pre-

served after amplification to joule-level pulse energy. The good agreement between the calculated

and experimental spectra validates this calculation method.
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Figure 2.12: Calculated and experimental spectra for 2nd CPA stages seeded with white light pulse

from HC fiber.

2.4.5 Gain narrowing compensation filter

Gain narrowing has long been a problem in CPA systems where the seed beam passes through the

Ti:Sapphire gain medium many times to achieve sufficient amplification [82]. Since the Ti:Sapphire

single pass gain is a Gaussian shaped curve centered at 800 nm at room temperature (780 nm for

cryogenically cooled crystal) 2.13, the repeated passes result in a narrowed output spectrum which

limits the compressed pulse duration, eventually reducing the peak intensity and the possible utility

of the pulses.
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Figure 2.13: Gaussian shaped gain curve of Ti:Sapphire crystal at cryogenic temperature.

In the past, angle tuned etalons [56], birefringent filters [8] and dielectric multilayer filters [81, 83]

have been used to flatten the gain shape. However, the gain shape results achieved by etalons or

birefringent filters are not ideal, since they cannot completely compensate for the Ti:Sapphire gain

shape. More importantly, for power amplifiers, whose later passes usually operate near saturation,

etalons or birefringent filters usually dig too big of a spectral hole, which degrades the final output

spectrum. In many cases of CPA development, this was the reason filters were included only in

earlier passes but not in later passes [8, 84].

In this work, we chose to use dielectric multilayer filters to provide sufficient gain narrowing com-

pensation since well designed dielectric multilayer filters have proved capable of alleviating gain
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narrowing for an amplification bandwidth of more than 200 nm in a terawatt-class CPA system[85].

For us, in order to achieve direct amplification of sub-15-fs pulses at the 10 to 100 TW level, the

key is to design a proper loss profile for a gain narrowing compensation filter (GNC).

A quarter wave stack of HfO2/SiO2 layer structure was used to provide the required high damage

threshold for our TW laser system. The incident angle of the dielectric multilayer filters were

chosen at close to Brewster angle of 56◦ to eliminate the need of an AR coating on the other side

of the substrate. The filter transmission curve and other layer properties are shown in Figure [?].
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(a) Designed transmission curve for Ti:Sapphire CPA GNC filter.

(b) The angle dependent transmittance. (c) The relative field intensity inside the filter.

Figure 2.14: Properties of gain narrowing compensation filter.
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The curve of our GNC filter matches the gain profile of Ti:Sapphire over a wavelength range

from 700 nm to 950 nm and becomes zero outside this region. This is shown in Figure 2.14.

The film composition was calculated using the iterative algorithm with the dumped least squares

method [86]. According to the simulation on an amplifier gain model, this design will provide the

most spectrum broadening without sacrificing much single pass gain.

A similar filter design was used in the kHz laser system to reduce gain narrowing. Filters inserted

at three different locations were passed eight times total. The final compressed pulse duration was

reduced to 20 fs instead of 33 fs when no filter was used.
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Figure 2.15: The kHz laser spectra with and without spectral filtering.

2.4.6 Dielectric mirror for high energy broadband pulse amplification

For CPA systems, mirror selection is a critical part of the design. Due to the high loss and low

damage thresholds of metal coating, metallic mirrors are not commonly used in the amplifier stages

even though they are very broadband. On the other side, multilayer dielectric mirrors can provide

almost 100% reflectivity at a designed wavelength with a high damage threshold; however, single

stack structured multilayer dielectric mirrors carries a limited bandwidth usually due to limited

selection of the high refractive index material in the layer design [87, 88]. For example, the CVI
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Melles Griot TLMB high damage mirror, which is commonly used to reflect the amplified pulses

in CPA lasers, has a damage threshold of 1.3 J/cm2 for 46 fs pulses. At normal incidence, the loss

is less than 1%, but its bandwidth can only support 740 nm to 860 nm – less than the bandwidth

required for amplifying a sub 15 fs pulse. On the other hand, the measured bandwidth of the CVI

Melles Griot TLM2 broadband mirror is ∼200 nm for s-polarized light, meaning it can support

15 fs lasers [89]. However, the damage threshold is low (∼100 mJ/cm2 for 8 ns pulses), which

is not sufficient for joule-level amplified pulses when the beam size is ∼1 cm. Table 2.2 is a

summary of multilayer dielectric mirrors used in building the CPA system. Some of the table

values are empirical since the coating result is highly dependent on the coating material supply, the

coating process, and the layer structure error in a single coating run.

Table 2.2: Summary of Optical Mirrors for Laser Amplifier

Maker Model
Bandwidth

(@800 nm, 45◦, ≥99%)

Damage Threshold

(for 10 ns pulse)

CVI Melles Griot Protected Silver 400 nm to 20 µm (≥95%) ≤0.05 J/cm2

CVI Melles Griot TLM1 ≥ 100 nm ≥ 20 J/cm2

CVI Melles Griot TLM2 ∼ 200 nm ≥ 0.1 J/cm2

CVI Melles Griot TLMB ≥ 150 nm ≥ 6 J/cm2

Newport Low GVD Broadband ≥ 200 nm ∼1 J/cm2

Laser Components HR800 ∼ 200 nm ≥0.5 J/cm2

Sigma Koki FLM1 ∼ 200 nm ∼TLM1

Sigma Koki FLM2 ≥ 250 nm ∼TLM2

TW level sub-15 fs CPA amplification not only requires mirrors with high damage threshold and

high reflectivity, but also a broad bandwidth to support the wide spectrum required for the pulse
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duration. By arranging broadband TiO2-SiO2 coatings underneath another stack of high-damage

threshold coatings (ZrO2-SiO2) to reduce the intensity on the broadband coatings, this mirror can

survive high input laser intensity while providing broadband reflectivity at the same time [90].

The bandwidth of this hybrid structured broadband high-energy mirror is almost equivalent to that

of a commercial broadband mirror, while its damage threshold of >1 J/cm2 for 100 fs pulses is

also comparable to that of the commercial high energy mirror.

Even though there is usually a trade-off between the two features, the mirror structure is further

optimized to provide both high damage threshold and low dispersion. The mirror reflectivity and

phase group delay is show in Figure 2.4.6. ZrO2 was replaced with HfO2 to increase the bandwidth

and damage threshold for the high damage threshold layers. This increase in the laser-induced

damage threshold can essentially be explained by the wider band gap of HfO2 as compared to

ZrO2 [91]. The mirror provides high reflectivity with a sufficiently broad spectral width to support

sub 15 fs pulses for s-polarized light at 45◦ incidence.
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Figure 2.16: Calculated reflectivity and group delay of the broadband high-energy mirror.

2.4.7 20 TW laser amplifier compressor

To prevent laser beam degradation from non-linear effects during propagation, the amplified 700 mJ

laser beam is expanded to a diameter of 35 mm before it is sent under vacuum to a pulse compres-

sor. The vacuum compressor uses a pair of 1400 l/mm gratings (110 mm × 110 mm) and has an

overall throughput of 50%. The energy of the pulse was 350 mJ for a 700 mJ input, which indicates

that the peak power of the laser reached 20 TW. Even higher power (30 TW) is expected once the

current gratings are replaced with a larger-dimension, higher-throughput pair capable of accom-
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modating the 700 mJ input. The compressor is kept in vacuum to avoid nonlinear effect resulting

from the interaction between the compressed 20 TW laser pulse and air, as shown in Figure 2.17.
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(a) Compressor chamber design with optics.

(b) Photo of the vacuum compressor.

Figure 2.17: Vacuum compressor for sub 15 fs, 20 TW beamline.
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However, because of the high intensity carried by the laser beam, organic substances trapped in

the chamber are cracked, and carbon is deposited on the area irradiated by the laser beam. This is

particularly troublesome in the case of gold coated gratings, which cannot be wiped clean as can

to done to dielectric coatings.The carbon layer absorbs energy and the throughput of the system

reduces when the laser operation as time adds up.

In order to clean the carbon deposition, we designed a cleaning system based on a radio frequency

discharge. This is an established technique in many ultra-clean manufacturing environments, like

the microprocessor industry for example, where it has several advantages over other cleaning tech-

niques [92, 93]. One of the advantages of such a cleaning system is the direct installation along the

beam line which not only allows a fast and reproducible cleaning of the optics, but also obsolesces

the need to remove them from the beam line.
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(a) RF glow discharge in O2-Ar gas mix in the com-

pressor chamber.

(b) Photo of the grating after the cleaning procedure.

The cleaning time was about 30 min.

Figure 2.18: RF discharge grating cleaning.

The procedure is based on the generation of a radio frequency (RF) discharge inside a vacuum

chamber filled with a mixture of argon (neutral gas) and oxygen (active gas). The produced plasma

leads, through charged particle bombardment, to the oxidation of the layers thereby forming CO

and CO2.

We verified the cleaning process by cleaning the first grating, which the compressed femtosecond

beam hits on, in our compressor chamber by the RF plasma discharge. Before cleaning, imprints of

the laser beam were clearly visible; after cleaning, the imprints close to the antenna could no long

been seen. The overall transmission efficiency of the compressor was measured to be recovered
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back to over 50%.

2.4.8 Pulse duration and power stability measurement

As a nonlinear process, HHG strongly depends on the quality of the driving laser. In order to

ensure optimal generation conditions, efforts have been made to improve the condition of pulse

duration, pulse energy stability and beam focus profile.

After the two stage power amplifier, the pulse spectrum extends from 700 nm to 900 nm, which

supports 12.2 fs transform limited pulses. In order to compress the pulse to the shortest pulse

duration possible, the separation and incident angle of the compressor gratings were first fine-

tuned manually to obtain a spectral phase that changed only gradually over any narrow range. The

high-order phase distortions were further compensated by the low-loss, 4f-zero-dispersion adaptive

phase modulator which will be introduced in Section 3.2.2.

A pulse duration of 14 fs was obtained by optimizing the deformable mirror shape in the adaptive

phase modulator. The measured and retrieved FROG traces of the pulse are represented in Fig-

ure 2.19 (a) and (b) respectively. Figure 2.19(c) is the retrieved pulse shape (solid line) and phase

(dashed line). Figure 2.19(d)shows retrieved power spectrum (solid back line) and phase (dashed

line) with the independently-measured spectrum (solid red line).
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Figure 2.19: Characterization of the 14 fs laser pulse by SHG FROG.

The long term stability of the amplified pulse energy measured around 220 mJ after compression

has a rms/mean of 1.6%, whereas the shot-to-shot fluctuation is for 99% of all laser pulses over

6 hours (Figure 2.20). For a laser system based on flash lamp powered pump lasers, such a stability

can be reached since the both the power amplifier stages, including the front end kHz system, are

all working in the designed saturation range of the gain media.
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Figure 2.20: Single shot pulse energy recorded by sampling a portion of the power amplifier output

with a fast photodiode.

The laser beam focus profile was another important beam parameter checked after completion of

the laser construction. Since a long focal length concave mirror was used to create a loose focus

to improve HHG efficiency [94], the diameter of the focal spot was 0.31 mm (FWHM). The focal

spot profile shown in Figure 2.21 was fairly good considering no wavefront correction system was

used. This is thanks to the small crystal thicknesses in the power amplifier stages and the good

surface quality of the holographic master gratings used in the stretcher and compressor [95].
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Figure 2.21: Intensity profile measurement at focus of f=6.5 m mirror with a 12-bit CCD camera.

The horizontal and vertical line-out show the diameter is 310 µm at half-maximum.
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CHAPTER 3: PHASE CONTROL OF SHORT PULSES

It is beneficial to use the shortest available laser pulses for isolated attosecond pulses generation:

the shorter the driving laser pulse, the higher the concentration of overall pulse energy in every

half optical cycle. In order to reach the ideal gating result, dispersion control of few-cycle pulses

is critical. In the past, considerable progress has been made, including schemes with chirped

mirror compressors [96, 97], acousto-optic programmable dispersive filters (AOPDF) [98, 99],

and adaptive phase control through spatial phase modulators [100, 101].

The adaptive phase control of the spectral phase of femtosecond laser pulses makes it possible to

compress pulses with minimal phase distortion. In the research I have conducted, spatial phase

modulators based on liquid crystal technology and deformable mirrors have been applied for adap-

tive phase correction for 5 fs and 15 fs pulse widths, respectively, to allow sub-optical cycle preci-

sion in controlling the gating for attosecond XUV generation [40].

3.1 Femtosecond Spectral Phase Control

Few-cycle pulses have broad frequency spectra, and their pulse duration and shape are very sensi-

tive to dispersion. For example, a 10 fs Gaussian pulse will be stretched to 31.2 fs after propagating

in air for 5 m, which is over three times the original pulse duration.

For the white-light generated in the hollow-core fiber, chirped mirrors are the most frequently

used dispersion control method. The multilayer coating of chirped mirrors allows the different

wavelength components of the incident white-light to penetrate and reflect back from different

depths [96, 102]. By arranging the wavelength dependent depths, group delay dispersion (GDD)

can be manipulated over the spectral range.
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Figure 3.1: Principle of a chirped mirror. Light with a long wavelength penetrates deeper into the

multilayer structure and experiences a bigger group delay.

Chirped mirror compressors carry very high throughput. However, the maximum GDD allowed

by a chirped mirror is limited. For example, chirped mirror pairs for compressing sub 10 fs pulses

usually carry a GDD of negative 50 fs2 [103]. Nevertheless, the dispersion introduced by a given

set of chirped mirrors can only be changed by a discrete amount, thus making it difficult to accom-

modate the day-to-day change of the alignment-sensitive white light pulses.

On the other side, an acousto-optic interaction in an anisotropic birefringent medium (such as in an

AOPDF) can be used to compensate residual high-order phase errors and flatten the gain narrowing

profile in a CPA system. A three-stage, 1-kHz amplifier system delivering 0.3 TW sub 10 fs were

reported using this technology [76]. However, the efficiency of an AOPDF is lower than other

spectral phase control methods (<50% for over 200 nm bandwidth) [104].

3.2 Adaptive Phase Modulator

On the other hand, adaptive phase modulators provide higher flexibility and a broader bandwidth of

phase control. Pulses with duration of 2.8 fs were obtained by using a similar phase modulator [1].

However, the energy of such extremely short pulses is only 0.5 µJ, which is orders of magnitude
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away from the energy needed for attosecond pulse generation. The energy deficiency is the result

of the high loss of the phase modulator and the limited input laser energy.

3.2.1 0.5 mJ, 5 fs Pulse from Adaptive Phase Modulator

In order to obtain millijoule-level few-cycle pulses, an adaptive phase modulator with improved

throughput is used to compress the white light pulses from the hollow-core fiber.

The mJ energy level pulse from the HC fiber had a octave span bandwidth covering 500 nm to

1000 nm. In order to judiciously modify the individual spectral phase of different wavelength, a

zero dispersion 4-f system consisting of silver coated gratings and cylindrical cavity mirrors was

used to create a Fourier plane for the laser pulse. A 640-pixel liquid crystal SLM (Jenoptik SLM-

S640) was placed at the Fourier plan [105]. The setup is shown in Figure 3.2.1. The broadband

laser pulses from the hollow-core fiber was angularly dispersed by the first grating. Cylindrical

mirrors were used instead of spherical mirrors to reduce the laser intensity on the liquid crystal

pixels of the SLM. Using this phase modulator, the chirp at each frequency point could be modified

by programming the refractive index of each pixel of the SLM. The overall throughput of the phase

modulator was ∼ 50%, which mostly comes from the loss of the silver-coated gratings (80%) and

SLM (90%).
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Figure 3.2: The adaptive phase modulator. The white-light from HC fiber were sent to the spatial

light modulator. SH generation from a BBO was used for simultaneous MIIPS and FROG mea-

surements. G1, G2: gratings, CLM1, CLM2: cylindrical mirrors. Figure adapted from Ref. [1]

.

The type I phase matched second harmonic signal from a 5 µm thick BBO crystal was used in the

process of optimizing the phase of the white light pulse. Multiphoton intrapulse interference phase

scan method (MIIPS) was chosen over an evolutionary algorithm approach since it has proven to

be more efficient for correcting the spectral phase of an octave-spanning laser pulse [106, 107].
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In order to perform the MIIPS method, second harmonic spectra were recorded at the same time

that the SLM modulated the spectral phase of the fundamental pulses. A periodic sinusoidal phase

function f(ω) = α cos(γω − δ) was used to scan across the bandwidth of the pulse as the mea-

surement proceeded. Here, ω is spectrum frequency, and α and γ are two parameters that need to

be chosen properly. (In our case α =5, γ=7 fs).

The sum of the unknown pulse phase Φ(ω) and the modulated phase f(ω) is given by φ(ω) =

Φ(ω) + f(ω). The SHG signal as a result of the combined phase can be expressed as

I(ω) =
∣∣∣∣∫ |E(ω + Ω)||E(ω − Ω)| × exp{i[φ(ω + Ω) + φ(ω − Ω)]}dΩ

∣∣∣∣2 . (3.1)

The SHG signal reaches a maximum when φ(ω+ Ω) + φ(ω−Ω) is zero. The Taylor expansion of

the phase sum around ω is

φ(ω + Ω) + φ(ω − Ω) = 2φ0 + φ′′(ω)Ω2 + ...+
2

(2n)!
φ2n′(ω)Ω2n. (3.2)

The maximum SHG signal occurs for Φ′′(ω) = −f ′′(ω). By changing the δ value in the modulated

phase function, one can scan the applied GDD f ′′(ω) = αγ cos(γω − δ) for each frequency ω.

By searching the SHG peak position in the MIIPS trace for each SH frequency 2ω, Φ′′1(ω) =

−f ′′1 (ω) = −αγ cos(γω − δ) is retrieved from the MIIPS pattern for the first iteration. The phase

Φ1(ω) can be integrated from Φ′′1(ω). Φ1(ω) is only a close guess of Φ(ω) since there are high

order terms we have ignored in the process. In order to retrieve the phase more accurately, more

iterations are required to map the phase. We start the second iteration with -Φ1(ω) applied to

the SLM, and the measured phase value Φ2(ω) is the phase difference Φ(ω) − Φ1(ω). Using the

measured phase difference, a better guess of Φ2(ω) + Φ1(ω) can be used to start next iteration.
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After several iterations, the retrieved phase difference Φm(ω) becomes constant and the retrieved

phase
∑

Φm(ω) should converge to Φ(ω).

The first iteration of the MIIPS pattern is shown in Figure 3.3(a). Figure 3.3(b) shows the MIIPS

pattern in the final iteration. The evenly spaced SH trace is a good indication of a well compressed

pulse close to the transform-limited duration [106].
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Figure 3.3: The MIIPS traces (a) from the first iteration; (b) from the last iteration. Figure adapted

from Ref. [1].

The pulse duration of the MIIPS compressed pulse was measured by the SHG-FROG [108, 109].

Since few-cycle pulses can be easily distorted by dispersion introduced by propagation in air, the

FROG measurement shares the same crystal as the MIIPS. In order to retrieve a pulse duration

as short as sub 5 fs pulses, the FROG setup is upgraded by using a silver coated spherical mirror
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instead of a lens to image the SHG into the spectrometer to avoid the chromatic aberration. The

measured and reconstructed FROG patterns are shown in Figure 3.2.1(a) and (b). The retrieved

pulse duration is 5.1 fs as shown in Figure 3.2.1(c), and the spectral phase in 3.2.1(d) shows the

chirp was well compensated by MIIPS.

Figure 3.4: A 5 fs compressed pulse measured by the FROG. Figure adapted from Ref. [1].

3.2.2 Deformable mirror-based high-throughput phase modulator for TW laser

The pulse compression process can also be aided by a deformable mirror based phase modulator.

In this case, the beam is directed into a single shot SHG-FROG for pulse duration measurement.
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Inside the final pulse compressor, the separation and incident angle of the gratings are fine tuned

manually to obtain a spectral phase that changes only gradually over any narrow range. This

is done so that the high order phase distortions can be compensated by the 4f-zero-dispersion

adaptive phase modulator [110, 111]. This is located between the pulse stretcher and the first

amplification stage. In the phase modulator, the laser beam is angularly dispersed by a Brewster

angle cut SF10 prism and recollimated onto a 50 mm long, 20 channel bare gold coated linear

piezoelectric deformable mirror (OKO Technologies) using a dielectric coated mirror with a focal

length of 1.5 m [112]. We chose piezoelectric deformable mirror over membrane based deformable

mirror to avoid damage due to high laser intensity [113]. The optical layout is shown in Figure 3.5.

The overall transmission of such a phase modulator reaches 85% for a bandwidth over 200 nm.
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(a) Picture of OKO piezoelectric deformable mirror with 2 rows of 10 actuators.

(b) Prism based low loss zero dispersion 4− f system.

Figure 3.5: Experimental setup of the low loss deformable mirror phase modulator.
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For optimizing the pulse compression, the FROG traces were processed as the fitness function for a

simple genetic algorithm [114], which controlled the voltages applied to the 20 deformable mirror

actuators.

Figure 3.6: Effect of deformable mirror phase modulator pulse compression. Left (same displace-

ment voltage applied to all actuators): splitted FROG structure implies strong satellite pulses due to

high order phase distortion. Right (optimized deformable mirror actuator voltages): narrow shape

FROG trace shows close to transform limited pulse duration.

After running the algorithm to convergence (usually ∼20 iterations), a pulse duration of 14 fs can
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be obtained, as displayed in Figure 2.19.

3.3 Carrier Envelope Phase

The process of HHG is highly dependent on the CE phase of the driving laser used [20, 115]. For

sub-cycle gating for the generation of isolated attosecond pulses, it is more important to have the

driving laser source CE phase locked [116, 117, 118].

For an ultrafast optical pulse, its electric field at a fixed point in space can be expressed as:

ε(t) = E(t)cos[ω0t+ ϕCE], (3.3)

where E(t) is the envelope of the pulse, ω0 is the frequency of carrier wave. The CE phase ϕCE

is defined as the offset between the phase of the carrier wave and the envelope position or, in other

words, the peak of the pulse envelope and the peak of the electric field.

With few-cycle pulses, the relative position between the pulse envelope and its underlying electric-

field carrier has a dramatic influence on high field processes such as above threshold ionization

(ATI) and HHG [119, 120, 121]. When using few-cycle pulses to produce single attosecond pulses

through HHG, the CE phase has to be stabilized to guarantee the generation of isolated attosecond

pulses [122].

Up to the time of this thesis, the CE phase of the iFAST lab 1 kHz CPA system has been success-

fully stabilized by the grating shaking method. Work has been carrying on to actively lock the CE

phase of the 10 Hz, 20 TW laser system.
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3.3.1 Stabilization of the carrier envelope phase in oscillator

Carrier-envelope phase stabilization in the oscillator is achieved by a commercially available phase

detecting and locking system (Menlo Systems XPS 800). The CE phase detection is done by the

f-to-2f self-referencing method.

For a Kerr lens mode locked (KLM) femtosecond Ti:Sapphire oscillator, the CE phase change

between consecutive pulses due to different phase velocity and group velocity:

∆ϕCE = ∆ϕg −∆ϕp = ω0

[
L0

νg(ω0)
− L0

νp(ω0)

]
= −2πL0

dn

dλ

∣∣∣∣
ω0

, (3.4)

where νg(ω0) is the group velocity, νp(ω0) is the phase velocity at the central carrier wave frequency

ω0, L0 is the length of the dispersive medium inside the oscillator cavity, and n is the refraction

index of the dispersive medium, which in our case is mostly from the Ti:Sapphire crystal and air.

The self-referencing method is carried out first by spectrally broadening the 12 fs oscillator out-

put through a photonic crystal fiber (PCF) to reach an octave-spanning spectrum. Then its low

frequency spectrum component is frequency doubled to beat with the high frequency spectrum to

produce f0 [123, 124]. The frequency difference between the f and 2f components is the offset

frequency, which is the frequency domain counterpart of CE phase.

f0 = 2fn − f2n = 2(nfrep + f0)− (2nfrep + f0). (3.5)

The CE phase is stabilized by locking the offset frequency to a quarter of repetition rate (frep/4) by

modulating the pump power sent to the Ti:Sapphire crystal, since changing the pump laser power

will modify the refractive index of the Ti:Sapphire crystal and thus the group and phase velocities
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of laser pulse [125, 126]. This pump laser modulation is achieved by acousto-optic modulator

(AOM) on a very fast time scale.

3.3.2 Carrier envelope phase stabilization of chirped pulse amplifier

From the CE phase-stabilized oscillator, the pulses with the same CE phase are selected by the

Pockels cell for amplification. The CE phase of amplified pulses are measured by single-shot non-

linear spectral interferometry [127]. The pulses are focused into a sapphire crystal to generate

a white light continuum, whose long wavelength components are frequency doubled to overlap

and interfere with its short wavelength parts. The setup for measuring amplified pulse CE phase

is shown in Figure 3.7 [128]. Relative CE phase for each individual amplified pulse can be ex-

tracted from the interference fringes using the standard algorithm of Fourier transform spectral

interferometry (FTSI) [129].
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Figure 3.7: A f-to-2f interferometer for measuring and stabilizing the CE phase of the amplified

pulse.

A well built CPA system should only introduces a slow drift to the pulse CE phase; however, sud-

den vibrations will cause more rapid changes to CE phase. In order to stabilize the CE phase with

grating-based CPAs, special care was taken. For example, the stabilities of the optical mounts in

the stretcher and compressor were improved. Also, vibration absorption pads were installed for the

pump lasers, and cryogenically-cooled chambers were isolated from the optical table. After those

improvements, near-stable fringes were observed from the amplifier f-to-2f interferometer. The

grating separation scheme was developed for CE phase control in CPA systems, and its principle

is shown in Figure 3.8.
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Figure 3.8: CE phase control by shifting the grating separation.

The input electric field of a laser pulse in the frequency domain is given by:

Ẽ(ω) = U(ω) exp[i(ϕCE + ϕ(ω)], (3.6)

where ϕ(ω) is the spectral phase, U(ω) is the spectral amplitude. For this analysis, the pulse is

assumed to be transform limited which gives ϕ(ω) zero [130]. The spectral phase of the pulse after

it propagates through the grating compressor is given by:

ϕ(ω) = −ω
c
P ′(ω) + ϕc(ω), (3.7)
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where P ′ is the optical path length and

ϕc(ω) = 2π
G

d
tan[β(ω)] (3.8)

where G is the perpendicular distance for gratings, d is the grating line density, and β(ω) is the

diffraction angle in Figure 3.8. Since stretcher and compressor usually have the grating incident

angle close to the Littrow angle, that makes tan[β(ω)] ≈ 1. Thus the CE phase change with regard

to grating movement ∆G is:

∆ϕCE = 2π
∆G

d
tan[β(ω)] ≈ 2π

∆G

d
(3.9)

For a grating with line density of 1200 l/mm, it was estimated that less than 1 µm of grating

movement would cause the CE phase to change by ∼ 2π[131].

3.3.3 Carrier envelope phase stabilization for iFAST kHz CPA system

The setup for stabilizing the CE phase of the amplified laser pulses is shown in Figure 3.9. In the

setup shown, the pulses from the oscillator were split by a 50:50 beam splitter. Half of the oscillator

output was spectrally broadened by a photonic crystal fiber (PCF) before entering a f-to-2f setup

to measure its CE phase value, while the other half went through the Pockels cell in order to select

a 1-kHz pulse from the 80 MHz pulse train for the amplifier stages. The pulses then entered the

Öffner stretcher to stretch to ∼100 ps in order to avoid damaging the optics due to high intensity.

The stretcher grating is mounted on a PZT mount for the grating shaking CE phase control scheme.

The pulses then entered a 15-pass amplifier pumped by two Q-switched ND:YLF lasers. A double-

pass Treacy compressor consisting of two gratings compressed the pulses to ∼20 fs with a pulse
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energy of 3.5 mJ [132].

Figure 3.9: CE Phase stabilization for FAST kHz stage.

The output of the amplified laser pulses was sampled by a 5% beam splitter and sent to the f-to-2f.

The fringe pattern was collected by the spectrometer and sent to a computer running a CE phase

measurement algorithm. The error signal was sent to a PZT driver, which provided the driving

voltage for the PZT in the stretcher; thus the grating separation could be varied to correct the CE

phase drift. The result of the active PZT feedback control is shown in Figure 3.10, showing a CE

phase rms error signal of 200 mrad for 50 ms integration time.
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(a) Amplifier f-to-2f interference fringes (b) Measured CE phase error when the feedback con-

trol was active.

Figure 3.10: Amplifier CE phase locking by grating shaking method.

Carrier-envelope phase control is not limited only to passively locking the CE phase at a fixed

value, but more importantly to the variation of the CE phase to a desired time-dependent pattern.

Sometimes scanning the CE phase over a certain range is more desirable for experiments that study

the relationship between CE phase and the CE phase dependent physical processes. Figure 3.11

shows such a manipulation is performed over 7π CE phase by applying a modulation voltage to

the PZT.
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Figure 3.11: Temporal evolution of the interference fringes as controlling the CE phase of the

amplified laser pulses by changing the PZT set point.
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CHAPTER 4: HIGH FLUX ISOLATED ATTOSECOND PULSE

GENERATION

The first isolated attosecond pulse was generated in 2001 by spectrally filtering HHG near the

cutoff range using a Zr filter [133]. In this study, 7 fs, 0.5 mJ visible light pulses were used as

the driving laser source [134]. Ideally, in order to increase the output energy of attosecond pulse,

the first step is to increase the driving laser pulse energy. However few-cycle laser pulses are

difficult to generate, especially in the high energy region. In 2008, our group developed the double

optical gating (DOG) technique, which can be used to generate single attosecond pulses from 8 fs

to 12 fs driving laser sources [135]. One year later, the generalized double optical gating (GDOG)

technique further extended the boundary. Single attosecond pulses were produced directly by 28 fs

pulses generated from a CPA laser system [2].

So far, all the attosecond experiments have been performed by combining one very weak (nJ en-

ergy level) attosecond pulse with a stronger femtosecond visible or near infrared pulse. The latter

pulse is used to measure the birth of photoelectrons by streak field momentum kicks [136, 137]

or to act as the pump pulse in transient absorption [138, 139]. Both experiments have limitations

because of the high field effects of the femtosecond pulse and its considerably longer time duration

relative to the attosecond pulse. Generating isolated attosecond pulses with sufficiently high pulse

energies (100 nJ to 1 µ J) to perform attosecond-attosecond pump-probe measurements will make

it possible to use one pulse to initiate a process and a second attosecond pulse to probe the time dy-

namics of the electron-correlation, either in transient absorption or by photoelectron spectroscopy.

Two key reasons to pursue attosecond to attosecond measurements are to perform attosecond mea-

surements on highly correlated materials for the first time and to extend attosecond x-ray dynamics

measurements to solid-state semiconductor, magnetic, and plasmonic systems [140].
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4.1 Attosecond Gating for Isolated Attosecond Pulse Generation

The field of attosecond science has progressed in recent years from the various gating techniques

developed for generating isolated attosecond pulses. Three of the most common gating techniques

– polarization gating (PG) [116, 141, 117, 142], two-color gating [143, 29], and DOG [144, 135,

145, 146] – allow the use of multicycle driving lasers to generate isolated attosecond pulses. Each

gating method limits the attosecond pulse generation process by altering incident electric field to

affect one of the three steps in the 3-step model.

4.1.1 Polarization gating and Two color gating

It was shown that HHG yield exhibits strong dependence on the ellipticity of the generating

laser [147, 148, 28]. As in the 3-step model, electrons accelerated linearly away from and to-

wards the parent ion are most likely to recombine and emit high-order harmonics. If instead a

circularly polarized electric field accelerates the electrons, then the recombination probability is

very low, and attosecond pulse generation is prevented. By manipulating the ellipticity of the driv-

ing laser source, attosecond pulse generation can be limited to a single half cycle of the laser field,

even when using a multi-cycle driving laser.

In order to implement polarization gating, birefringent optics are used to create a laser pulse that

is only linearly polarized at one half cycle. Here, electron recombination is more probable, and an

attosecond pulse is generated [116, 149]. Such a scheme is demonstrated in Figure 4.1.

69



(a) Optical components for polarization gating.

(b) Driving field (red line) and gating field (green line) components for polarization gating.

Figure 4.1: Polarization gating setup and its field components.
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When a linearly-polarized pulse incidences on a full wave quartz plate with its optical axis axis

rotated to 45◦ to the input driving laser polarization, two orthogonally polarized pulses – one along

the ordinary axis and one along the extraordinary axis of the quartz plate – are created with a slight

delay from one another. The quartz plate thickness is chosen such that the two pulse are slightly

overlapped. Then a zero order quarter wave plate is set so that its optical axis is between the two

pulses polarization, which changes the orthogonal linearly-polarized pulses to oppositely-rotating

circularly-polarized pulses. The superposition of these two pulses in the overlap region gives

a short period of linear polarization useful for single attosecond pulse generation. Polarization

gating has been demonstrated to be successful at generating isolated ∼130 as pulses using phase-

stabilized 5-femtosecond driving pulses [29].

One the other hand, adding a second harmonic field to the fundamental driving laser will also

change the electron trajectory when it is pulled away by the laser field from the parent ion during

the HHG process. The two-color gating technique [142, 143, 150] is developed on this idea to

reduce the periodicity of attosecond pulse generation from half-cycle to full-cycle separation. This

can be understood by superimposing the second harmonic field on top of driving laser, since the

period of the SHG is two times of that of the fundamental, the electric field going one direction

gets enhanced while the other one is reduced. Since tunneling ionization is a nonlinear process,

a small difference in the generation condition can lead to a significant change in the yield of free

electrons. By adjusting the field strength of the SHG, the burst of tunneling ionization in the 3-step

model can be limited to every other half cycle of the fundamental driving field. Attosecond pulse

generation at the neighboring half cycles is suppressed because fewer free electrons are available

for recombination.
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4.1.2 Double optical gating

Both PG and two color gating method require few-cycle femtosecond laser pulses with precisely

controlled CE phase for single attosecond pulse generation. For generating 80 as attosecond pulses,

a CE phase locked, 3.3 fs driving laser was used [27]. The requirement of CE phase stabilized few-

cycle laser pulses restricts the attosecond science research.

The double optical gating (DOG) method was introduced a few years ago by our group to reduce

this requirement [135, 146]. As a combination of PG and two color gating, DOG adds a weak

second harmonic field to the driving field of PG. This allows attosecond pulse generation at full

cycle separation instead of half cycle, which releases the half cycle constraint on the width of the

polarization gate. This method is illustrated in Figure 4.2. With the DOG method, driving lasers

with much longer pulse duration can be used to produce single attosecond pulses than previously

allowed by the PG method. In the scenario of same driving pulse duration, DOG allows a wider

gate width, which means the delay between the two counter-rotating pulses can be reduced. Re-

duced delay will not only suppress the depletion of the gas target as a result of less pulse energy

in the leading edge, but also preserve more pulse energy in the linear gate allowing higher XUV

photon yield [146].

72



(a) Attosecond pulse train in linear driving field with one color (a) and

two color (b).

(b) DOG driving field (red) and gating field (black).

Figure 4.2: The SH field breaks the driving field symmetry, and electron ionization occurs with

one cycle separation instead of half cycle separation.
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While these pulses are substantially easier to generate and work with experimentally, they still

require a hollow-core fiber and chirped mirror compressor after the CPA amplifier for pulse du-

ration compression to below 10 fs. As a result of limited driving laser energy, the flux of the

isolated attosecond pulses is ∼100 pJ to 1 nJ. For nonlinear attosecond physics and attosecond

pump–attosecond probe experiments, the flux should approach the µJ level.

4.2 GDOG for Single Attosecond Pulse Generation from Multi-Cycle Driving Lasers

Generalized double optical gating (GDOG) is the variant of DOG to adapt attosecond pulse gen-

eration for multi-cycle driving lasers. One or more Brewster windows are inserted after the DOG

first quartz plate to create a superposition of right and left elliptically-polarized pulses as in Fig-

ure 4.3. The GDOG scheme was found to reduce the leading edge ionization further than circularly

polarized pulses by virtue of the introduced ellipticity [33].

74



(a) Implementation of generalized double optical gating.

(b) GDOG driving (red) and gating field (black).

Figure 4.3: GDOG allows even less delay between two elliptically polarized pulses comparing to

DOG due to the reduced driving field amplitude.
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4.2.1 GDOG gate width analysis

The ellipticity dependent pulse for the generalized double optical gating can be decomposed into

two orthogonally polarized components known as the driving field (equation 4.1) and the gating

field (equation 4.2). The gating field is zero at the center of the pulse, while the driving field is not

zero. This resulting in a one cycle or shorter linear polarized laser field, its length is the gate width

for the attosecond pulse generation.

Edrive(t) = E0ε[e
−2ln(2)(

t−Td/2
τp

)2
+ e

−2ln(2)(
t+Td/2

τp
)2

]cos(ω0t+ ϕCE), (4.1)

Egate(t) = E0ε[e
−2ln(2)(

t−Td/2
τp

)2 − e−2ln(2)(
t+Td/2

τp
)2

]sin(ω0t+ ϕCE), (4.2)

where ε is the ellipticity of elliptically polarized pulses generated by the GDOG optics, τp is the

laser pulse duration, ϕCE is the CE phase, ω0 is the carrier frequency, and Td is the delay between

the left and right elliptically polarized pulses created by the first quartz plate. The time dependent

ellipticity of the pulse ξ(t) is the ratio between the gating field and the driving field:

ξ(t) = min


∣∣∣∣∣1− e−4ln(2)

Td
τ2p
t
∣∣∣∣∣

ε[1 + e
−4ln(2)

Td
τ2p
t
]

,
ε[1 + e

−4ln(2)
Td
τ2p
t
]∣∣∣∣∣1− e−4ln(2)

Td
τ2p
t
∣∣∣∣∣

 . (4.3)

The Taylor expansion ξ(t), equation 4.3, at the center of the pulse where the laser field is linear:

ξ(t) =

∣∣∣∣∣2ln(2)
Td
ετ 2
p t

∣∣∣∣∣ . (4.4)
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Solving equation 4.4 for t is the gate width equation:

δtG = ε
ξth

ln(2)

τ 2
p

Td
, (4.5)

where ξth ≈ 0.2 is the threshold ellipticity for HHG in Ar. As an example, for a 25 fs laser pulse

with center wavelength of 780 nm, the calculated Td is ∼47 fs for ε = 0.65, which is equivalent

to the delay between the fast and slow axis for a 1260 µm thick quartz plate. The GDOG method

was shown to work with the 28 fs direct output of a CPA amplifier, and pulses of 148 as in duration

were recorded [32].

Figure 4.4: Attosecond pulse streaked spectrogram from 25 fs laser pulse.

Figure 4.4 shows streaking trace for attosecond pulse measurement from a 25 fs laser pulse us-

ing attosecond streak camera [151]. The full temporal characterization of this pulse is shown in

Figure 4.5. The pulse duration of 163 as is close to the transform limited pulse duration [2].
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Figure 4.5: The experimentally obtained (a) and retrieved (b) streaking traces from a 25 fs driving

laser with argon as the generation gas. (c) The retrieved temporal pulse (black line) and phase (red

dotted line). (d) The measured (blue dotted line) and retrieved spectrum (black line) and phase (red

line). Figure adapted from Ref. [2].

The GDOG method generated attosecond pulses with 170 pJ pulse energy from a driving laser

pulse energy of ∼1 mJ. Since the pulse energy of CPA amplifiers can reach tens of joules, GDOG

is scalable to use higher driving laser energies. If the GDOG method were applied to PW driving

lasers, the attosecond pulse energy could achieve previously unattainable levels.

78



4.2.2 Single atom ionization probability analysis

In order to generate the appropriate gate width with polarization gating, double optical gating or

generalized double optical gating, a large portion of the input laser pulse is sacrificed. The leading

and trailing edges of the pulse do not contribute to the HHG process but deplete the ground state

of the gas target.

Since the returning electrons must recombine with the ground state for the XUV emission accord-

ing to the three step model, the HHG flux is voided when the ground state is no longer populated.

The generation of a harmonic with the frequency Ω is governed by the Fourier transform of the

dipole transition matrix element [152]:

D(Ω) =
∫ ∞
−∞

exp(iΩt)d(t)dt, (4.6)

where the dipole transition matrix element is given by:

d(t) =
∫

Ψf (r, t) ∗ d̂εΨi(r, t)d
3t, d̂ε = ε · r. (4.7)

For HHG, Ψi is the ground state. If the laser intensity causes too much ground state depletion

d(t) = 0, then there will be no XUV flux generated in the gate.

To quantify when the ground state is depleted, an ADK calculation was conducted for polarization

gating, double optical gating and generalized double optical gating over different input pulse du-

rations [153]. For a single atom excited by an intense laser field, the average ionization rate over
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one optical cycle is:

W (t) = Ip |Cn∗l∗|2Glm

(
4(2Ip)

3/2

E(t)

)2n∗−|m|−1

exp

(
−2(2Ip)

3/2

3E(t)

)
, (4.8)

where

|Cn∗l∗|2 =
22n∗

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)

Glm =
(2l + 1)(l + |m|)!
2|m||m|!(1− |m|)!

Figure 4.6 shows a plot of the ionization probability as a function of input laser pulse duration.

The calculation assumes the gas target is argon, and the intensity of the laser in the gate width

is 2.8 × 1014 W/cm2. In the half cycle gate width (1.3 fs) PG case, the red curve in Figure 4.6

shows that once the pulse duration of the input laser is greater than 6 fs, the target is fully ionized

by the leading edge of the PG gated pulse. Thus, no HHG flux will be generated in the PG case

with pulse duration greater than 6 fs. The DOG method requires the gate width to one full optical

cycle (2.6 fs) for isolated attosecond pulse generation, as a result, the driving pulse duration can be

increased as compared to half-cycle gate widths. The blue curve in Figure 4.6 indicates that DOG

can work with pulses as long as 12 fs. Since even less delay is required for GDOG as compared to

DOG, the reduction of delay between the two counter-rotating pulses further reduces the leading

edge depletion as seen by the black curve in Figure 4.6. It is clearly seen that GDOG method

should work for pulses longer than 15 fs. Since the ionization probability for GDOG is less than

PG or DOG for all pulse duration, the target will be less depleted which eventually leads to a higher

attosecond XUV flux.
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Figure 4.6: ADK calculation for PG, DOG and GDOG as a function of input pulse duration. The

calculation assumes laser intensity of 2.8× 1014W/cm2 with Argon as the generation gas.

The values in Table 4.1 are the required delays for several values of the input pulse duration as

calculated by the gate width equation. The gate width is half optical cycle in all cases and ε =0.6.
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Table 4.1: Gate Width for Generalized Double Optical Gating

4.2.3 Attosecond Pulses from Carrier Envelope Phase Unstabilized Lasers

In the process of scaling up the attosecond pulse energy by increasing the driving laser power, the

CE phase requirement becomes harder to satisfy since high power laser systems usually operate at

lower repetition rate. Such systems lack enough CE phase sampling to provide real time feedback

for the phase locking mechanism [154, 155]. However, due to the nonlinear nature of the HHG

process, the spectrum of an attosecond pulse can be significantly different with different CE phase

value of the driving laser pulse [146, 149]. To overcome this problem, choosing a much narrower

gate width – even less than one optical cycle – can make sure only one single attosecond pulse is

generated.

For a gate width of ∼1 fs, optical cycles far from the gate have nearly no chance of generating at-

tosecond pulse. This leaves only one optical cycle closest to the gate the possibility to complete the

3-step process of attosecond pulse generation. However, HHG flux yield would be different since

the ionization, propagation, and recombination probabilities vary for different CE phase value.

In order to validate this theory, streaking traces of single attosecond pulses generated by double

optical gating were taken at four different CE phases. Figure 4.7 shows these traces generated
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using a 9 fs driving laser and the DOG technique. The fringe pattern shifts their peak position for

each CE phase value as expected. More importantly, at each value of CE phase, the XUV spectrum

remains continuum but the signal level is different.

Figure 4.7: Streaked spectrograms for four different values of the input CE phase. Figure(a) is π,

(b) is π/2, (c) is 0, and (d) is 3π/2. Figure adapted from Ref. [3].

As a proof of the CE phase effect, Figure 4.8(a) shows a streaked trace for the case of the CE phase

being unlocked. In Figure 4.8(b), the frequency-resolved optical gating for complete reconstruction

of attosecond bursts (FROG-CRAB) retrieved pulse duration and phase, measuring it to be the

same as the locked case [156, 157]. The uncertainty of the carrier wave peak position to the pulse

envelope is the explanation for the extra cycle in the CE phase unlocked streaking trace [3].
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Figure 4.8: Streaked spectrogram from a CE phase unlocked pulse with the reconstructed temporal

profile (solid line) and phase (dashed line). Figure adapted from Ref. [3].

The DOG technique was capable of generating isolated attosecond pulses with ∼5 nJ of pulse

energy [146]. In order to conduct attosecond nonlinear experiments or attosecond pump – probe

experiments, this is a starting point. By combining this GDOG method together with TW or even

PW class laser systems, the isolated attosecond pulse energy can be greatly increased.

4.3 High-Flux Attosecond XUV Continuum Generation

The target of building a 20 TW level, sub 15 fs laser is to increase the yield of attosecond XUV

generation through scaling up driving laser energy. However, isolated attosecond pulse generation

with a TW driving laser is not trivial.

First, the focusing geometry commonly used with kHz mJ level driving laser systems is no longer

valid: if a short focal length is used, the laser intensity in the focal spot area far exceeds <

1015 W/cm2. The target gas will be fully ionized at the laser pulse leading edge.
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Second, the metal foil filter commonly used to block kHz residual driving laser would no longer

be able to withstand the laser damage from TW level pulses.

Third, in order to avoid laser damage to XUV optics, the experiment can only be performed far

away from the XUV where the residual driving laser diverges. For kHz experiments, toroid mirror

are usually used for XUV beam focusing since a grazing incidence angle increases the reflection

efficiency of the XUV [158]. However, if the source is too far away from the target location, strong

coma aberration will appear when focusing. The reduced XUV focal spot quality will eventually

result in low on-target XUV intensity or poor resolution of the XUV spectrometer.

In order to adapt the XUV generation scheme to our powerful driving laser source, a long focal

length mirror (f=6.5 m) was used, and the end-to-end distance of our XUV beam line is close to

15 m as in Figure 4.9.
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Figure 4.9: The attosecond beamline. The closer chamber on the right side of the photo is the

HHG generation chamber.

4.3.1 Phase matching for enhancing attosecond pulse photon flux

High harmonic generation is a macroscopic process involving a large number of atoms. The HHG

photon yield can only be scaled up when the attosecond XUV fields emitted by atoms located at

different positions in the propagation direction of the driving laser are in phase so that they add up

constructively. Improving the length over which the attosecond fields are phase matched – known

as the coherent length – is one of the active areas of high harmonic and attosecond pulse generation

research.

To estimate phase mismatch, we must start with what factors are contributing to ∆k, as shown
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in Eq. 1.5. The major terms contributing to phase mismatch for qth harmonic generation are the

material dispersion, focusing geometry, atomic dipole phase, plasma density, and any nonlinear

effects:

∆k(ω) = ∆kdisp(ω) + ∆kgeom(ω) + ∆kdipole(ω) + ∆kplasma(ω) + ∆kother(ω). (4.9)

The phase mismatch due to dispersion in neutral medium is,

∆kdisp(ω) = (n(ωf )− n(qωf ))
qωf
c

(1− η), (4.10)

where n is the refractive index and η is the ionization level due to laser intensity [159]. Since the gas

refractive index for the IR driving laser wavelength is always larger than that of XUV wavelength,

the resulting phase mismatching is always a positive number. There are ways to manipulate the

refractive index by mixing of different gases or the application of controlling light fields [160].

Due to the high intensity of the input driving laser, a certain amount of neutral atoms will be

ionized, and the free electrons will exist for a long time compared to the duration of the laser pulse

(fs� several ns). This leads to a change in the refractive index due to plasma generation [161]:

nplasma(ω) =

√
1− (

ωp
ω

)2, ωp =

√√√√ e2ne
ε0m∗e

, (4.11)

where ωp is the plasma frequency, ne is the number density of electrons, e is the electric charge,

m∗e is the effective mass of the electron, and ε0 is the permittivity of free space.

87



The phase mismatching from the plasma contribution is

∆kplasma(ω) = qkplasma(ωf )− kplasma(qωf ) =
ω2
p(1− q2)

2qcωf
. (4.12)

It is easy to see that the phase mismatching from plasma is a negative value.

The focusing geometry of the driving laser is another source of phase mismatching. The Gouy

phase shift of the focused Gaussian beam is

ζ(z) = tan−1(
z

zR
) ≈ 1

zR
, forz � zR, zR =

πw2
0

λ
, (4.13)

where zR is the Rayleigh length. The resulting phase mismatching due to this Gouy phase shift is:

∆kgeom = qkgeom(ωf )− kgeom(qωf ) =
q

zR(1 + ( z
zR

)2)
> 0. (4.14)

For generating attosecond pulses using TW or PW laser systems, loose focusing geometries are

usually employed so that the resulting geometrical phase mismatching is small.

As discussed previously, the Fourier transform of the dipole matrix element governs the generation

of a harmonic [162]. It was shown previously that the dipole moment can be written in terms of

the quasi-classical action S as [163, 20, 164]:

~x(t) ∝
∫ ∞

0
exp−iS(~p,t,τ) dτ, (4.15)

where τ is the time the electron makes the transition to the continuum with the canonical momen-

tum ~p = ~v + ~A(t), t is the electron recombine time. The quasi-classical action S(~p, t, τ) describes
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the motion of an electron moving freely in the laser field with a constant momentum ~p:

S(~p, t, τ) =
∫ t

τ
(
mv(t′)2

2
+ Ip)dt′. (4.16)

The Fourier transform of Equation 4.15 gives the signal of the qth harmonic:

xq = Aq expiΦq , (4.17)

where = Aq is an amplitude and Φq = (−Sq+ωqt)) is the atomic dipole phase. Since there are both

long and short trajectories, the dipole phase term can have two values. Since the action is primarily

determined by the ponderomotive energy, for example S(~ps, ts, τs) ' Upτs + · · ·, the classical

action integral Equation 4.16 can be written with a linear relationship to the laser intensity [20].

This simplifies the atomic phase to:

Φi(r, z, t) = −αiI(r, z, t), (4.18)

where the i refers to trajectories and α is the slope of the phase as a function of the intensity.

From the atomic dipole phase term, the atomic wave vector mismatch ∆katom can be calculated by

differentiating Equation 4.18 with respect to the longitudinal position z:

∆katom = qαI(
2zz2

r

(z2
r + z2)2

). (4.19)

Now every terms in Equation 4.9 has been derived. The result can be used to estimate the photon

number generated for a particular harmonic order. The output energy for certain high harmonic

orders is proportional to the square of the field strength of the corresponding harmonic. The field
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strength of the qth harmonic in the one-dimensional model is given by:

dAq(z)/dz = N0d(qω0)Fq, (4.20)

where d(qω0) is the induced atomic dipole moment, Fq is the phase-matching factor, and ω0 is the

frequency of fundamental driving laser. The phase-matching factor corresponds to expi∆kz, where

∆k is the total phase mismatch 4.9. If the absorption during propagation is ignored, the photon

number Nq of the qth harmonic can be expressed as [165]:

Nq ∝ N2
0L

2
med |d(qω0)|2

[
sin(∆kLmed

2
)

∆kLmed
2

]
, (4.21)

where Lmed is the medium length and N0 is the neutral gas density. From Equation 4.21, the HHG

photon yield is proportional to the squares of the gas density and the medium length under the

phase matched condition. With increased coherent length, it is important to consider the effect of

the gas target absorption [166]. The number of photons generated for the qth harmonic order can

be estimated as [167]:

Nq ∝ N2
0 |d(qω0)|2 4(LabsLcoh)

2

L2
coh + (2πLabs)2

× [1+exp(−Lmed
Labs

)−2 cos(
πLmed
Lcoh

) exp(−Lmed
2Labs

)], (4.22)

where Lcoh = π
∆k

is coherence length, Labs = 1/2α is absorption length, and α is the absorption

coefficient for the qth harmonic. From Equation 4.22, it is evident that the coherence length should

be longer than the absorption length to increase HHG photon yield. When the coherence length

is much longer than both the absorption length and the medium length, the HHG photon yield

follows:

Nq ∝ |d(qω0)|2 z0(N0Lmed)
2 ∝ Sspot(PLmed)

2, (4.23)
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where Sspot is the spot size of the driving laser pulse at the generation location point and P is

the target gas pressure. From Equation 4.23, the photon number generated in the HHG process is

proportional to the driving laser beam size and the squares of the medium length and pressure. The

photon yield is also proportional to the square of the dipole strength which follows [168]:

d(qω0) ∝ (1− η)I5
0 , (4.24)

where η is the ionization probability. The driving laser intensity should be maintained to avoid

fully ionizing the generation gas.

In order to increase the interaction length between the laser pulse and the target gas without intro-

ducing too much phase mismatch from the Gouy phase shift, extending the Rayleigh length is one

good option. Since the Gouy phase is given by

∆kgouy =
q

zR(1 + ( z
zR

)2)
(4.25)

increasing the Rayleigh length will reduce the Gouy phase shift. However, increased interaction

length will also bring in additional effect from the geometry term in the phase matching equation.

Thus, the gas pressure needs to be adjusted to cancel the geometrical phase shift of the driving

laser to maintain a good phase-matched condition. Experimentally, this condition was realized by

keeping a constant PLmed product. Furthermore, the energy of high harmonics will also benefit

from the increase of the spot size of the driving pulses [169]. However, the driving laser intensity

should be maintained in this process by increasing the pulse energy.

Other than loose focusing for HHG phase matching, alternative approaches have been proposed,

such as a HHG in a hollow fiber. Additional terms like waveguide dispersion is included to address
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the phase matching condition in the hollow fiber case [170]. In the long focusing limit, the loosely

focused geometry becomes equivalent with the guided geometry [171]. In our experiment, to

increase the spot size and the interaction length, the pump pulse was loosely focused with a 6.5 m

dielectric coated concave mirror. The optimized gas pressure and medium length product was

∼ 500 torr × mm.

4.3.2 GDOG gated attosecond pulse generation with TW driving laser

For isolated attosecond pulse generation, the laser intensity in the gas target must be kept below

the ionization saturation intensity, which is < 1015 W/cm2 for argon. Therefore, the high-power

laser beam is loosely focused with a 6.5 m-focal length mirror. Figure 2.21 shows the focal spot

profile with a line-out in both the vertical and horizontal direction. The diameter of the focal spot

is 0.31 mm (FWHM). The corresponding long confocal length allows the usage of a long gas cell

with low gas density, which showed high conversion efficiency in producing coherent femtosecond

XUV pulses with HHG [94].

The laser field for GDOG is obtained by transforming the 14 fs linearly-polarized field with a set

of birefringent optics. To achieve a gate width less than one optical cycle, the laser pulses are sent

through a 1.070 mm quartz plate, three 0.3 mm BK7 Brewster windows, a 0.440 mm quartz plate,

and a 0.141 mm barium borate crystal (BBO) located directly after the focusing mirror.

92



(a) Schematic drawing

(b) Laboratory photo

Figure 4.10: Chamber for TW beam focusing mirror and GDOG optics.

After the GDOG optics, the focused laser beam enters a 100 mm-long gas cell, where attosecond
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pulses were generated in argon gas held at a pressure of 4 torr. Both ends of the cell were sealed

with glass windows, each having 1 mm-diameter holes through which the NIR beam and XUV

beam can pass.

Figure 4.11: Filamentation induced by focusing 14 fs driving laser through the 10 cm long gas cell

filled with Ar gas.

To eliminate the residual driving laser that propagates collinearly with the XUV light, the output

beam from the gas cell was filtered by two silicon mirrors set at the Brewster angle of the NIR

driving laser [172].
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(a) Schematic of the attosecond pulse generation and measurement experiment.

(b) Design schematic of XUV spectrometer. (c) Photo of XUV spectrometer chamber.

Figure 4.12: Setup for attosecond XUV generation and characterization.

A high resolution XUV grating spectrometer was used to measure the XUV spectra under various

gating conditions. A grazing incidence, aberration corrected concave grating (Hitachi 001-0640

XUV) was used to form the flat field spectrograph [173, 174]. The dispersed XUV spectra was

converted to florescence by a microchannel plate (MCP) and phosphor detector and finally captured

shot-to-shot by a fast CCD camera working at a 10 Hz rate [175, 176, 177].

95



Figure 4.13: Raw single-shot XUV spectrum captured by CCD camera.

Figure 4.14 shows single-shot HHG spectra of argon while using no gating (800 nm linearly-

polarized pulse), two-color gating (a second-harmonic field added to the linear fundamental field),

and GDOG. As expected, well-resolved odd harmonics were generated when no gating was ap-

plied, and both odd and even harmonics appeared with the two-color laser field. These peaks

merged to a continuum for every laser shot under the GDOG field – even without locking the

carrier-envelope phase of the driving laser [178]. If the dispersion of the XUV spectrum were to

be compensated to the Fourier-transform limit by an appropriate method, the corresponding pulse

duration would be 230 as [37].
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Figure 4.14: Single-shot XUV spectra generated in argon under different gating conditions.

In order to measure absolute XUV photon flux, an XUV photodiode has been used (AXUV576C,

Opto Diode Corp [179]). This 24 mm by 24 mm size XUV photodiode is sensitive to XUV wave-

lengths from 200 to 0.07 nm with internal quantum efficiency of 100%. When the diode is exposed

to photons with energy greater than 1.12 eV (the band gap width of silicon), one electron-hole pair

is created per 3.63 eV. Mathematically, Ne = Eph/3.63, where Ne is the number of electrons

collected across the photodiode and Eph is the energy of the XUV photon.

The photodiode was placed in vacuum after two 300 nm-thick aluminum filters. The signal from
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the detector was recorded by a fast oscilloscope (Figure 4.15). The energy of the XUV pulse was

measured to be 0.5 nJ. No photodiode signal from the residual driving laser was detected when

the generation gas in the target is turned off. The measured XUV pulse energy corresponds to an

estimated pulse energy at the exit of the gas cell of 100 nJ, assuming a 50% reflectance off each of

the two silicon mirrors and a 2% total transmission through the two filters with 20 nm oxidation

layers [180]. This result was verified that the energy signal went to zero when the Ar gas was

removed from the interaction cell.

Figure 4.15: Oscilloscope signal of the XUV photodiode measurement for the GDOG-gated XUV

spectrum.
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CHAPTER 5: OUTLOOK AND CONCLUSIONS

Isolated attosecond pulses, especially at high flux, are difficult to produce, but their application to

performing attosecond pump – probe experiments is much more straightforward. The attosecond

pump – attosecond probe scheme requires isolated attosecond pulses with high photon flux. Works

from the past few years have produced isolated attosecond pulses with 70 pJ [149], 500 pJ [27],

and even 2 nJ on target [181].

In the process of boosting attosecond pulse energy to the required µ J level for attosecond pump

– probe experiment, our 14 fs, 20 TW high power laser system at the Institute for the Frontier of

Attosecond Science and Technology laboratory has been built and put to use. Combined with our

GDOG technique for attosecond pulse generation, this laser source has demonstrated the ability

to generate a continuous XUV spectrum supporting 230 as isolated attosecond pulses with pulse

energy of 100 nJ.

As the journey goes on, the laser system at iFAST lab is currently being upgrading to a carrier-

envelope phase-locked Ti:Sapphire double chirped pulse amplifier that operates at 10 Hz which

will deliver 3 J, <15 fs 200 TW pulses for microjoule-level isolated attosecond pulse genera-

tion. The previously unattainable high XUV flux with attosecond pulse duration will allow us to

explore many important areas in attosecond science. For instance, attosecond pump – attosec-

ond probe experiments have been proposed to observe the valence- and inner-shell dynamics of

electrons in krypton [182]. It will also enable other investigations such as nonlinear attosecond

experiments [183] and attosecond transient absorption spectroscopy [184].
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APPENDIX A: SOURCE CODE FOR DEFORMABLE MIRROR PHASE

MODULATOR PHASE CORRECTION
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Matlab Code

The following Matlab code was used to optimize the OKO deformable mirror by processing the

FROG trace as the fitness function. The code also includes reading CCD image data from a TEC

cooled UV camera (QSI 520) [185].

”main.m”

1 %Main program f o r oko d e f o r m a b l e m i r r o r o p t i m i z a t i o n

2 %I n i t i a l camera

3 g l o b a l cam ;

4 g l o b a l p o s i t i o n ;

5 cam = a c t x s e r v e r ( ’ QSICamera . CCDCamera ’ ) ;

6 cam . c o n n e c t e d = 1 ;

7 cam . b inx =2;

8 cam . b iny =3;

9 cam . S t a r t X =0;

10 cam . Numx=800;

11 cam . Numy=400;

12 cam . CoolerOn = 1 ;

13 cam . FanMode = 1 ;

14 cam . SetCCDTemperature = 0 ;

15 %F i r s t f ram

16 X0=x ;

17 dmSet ( [ X0 , X0 ] ) ;

18 cam . S t a r t E x p o s u r e ( 0 . 1 , 1 ) ;
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19 pause ( 0 . 1 ) ;

20 d i s p l a y ( num2s t r ( cam . ImageReady ) ) ;

21 d a t a = g e t ( cam , ’ ImageArrayLong ’ ) ;

22 %R e c t a n g u l a r a r e a

23 f i g u r e , imagesc ( d a t a ) ;

24 h = i m r e c t ;

25 p o s i t i o n = w a i t ( h ) ;

26 p o s i t i o n = i n t 1 6 ( p o s i t i o n ) ;

27 %G e n e t i c a l g o r i t h m o p t i m i z a t i o n

28 o p t i o n s = g a o p t i m s e t ( ’ I n i t i a l P o p u l a t i o n ’ ,X0 , ’ G e n e r a t i o n s ’ , 1 5 , ’

P o p u l a t i o n S i z e ’ , 100 , ’ P l o t F c n s ’ , @ g a p l o t b e s t f u n ) ;

29 n v a r s = 1 0 ; % Number o f v a r i a b l e s

30 LB = [0 0 0 0 0 0 0 0 0 0 ] ; % Lower bound

31 UB = [4095 4095 4095 4095 4095 4095 4095 4095 4095 4 0 9 5 ] ; %

Upper bound

32 In tCon = [ 1 : 1 0 ] ;

33 x=ga ( @ f i t f r o g g a 2 , nva r s , [ ] , [ ] , [ ] , [ ] , LB , UB, [ ] , IntCon , o p t i o n s ) ;

34 %C l e a r camera

35 cam . c o n n e c t e d = 0 ;

36 cam . d e l e t e ;
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”fitfrogga2.m”

1 f u n c t i o n r e s u l t = f i t f r o g g a 2 ( p )

2 %M i r r o r a j u s t i n g wi th FROG measurement

3 g l o b a l cam ;

4 g l o b a l p o s i t i o n ;

5 dmSet ( [ p , p ] ) ;

6 %Readout from camera

7 cam . S t a r t E x p o s u r e ( 0 . 1 , 1 ) ;

8 pause ( 0 . 1 ) ;

9 d i s p l a y ( num2s t r ( cam . ImageReady ) ) ;

10 d a t a = g e t ( cam , ’ ImageArrayLong ’ ) ;

11 %M e r i t f u n c t i o n

12 d a t a ( l e ( da t a , 5 0 0 ) ) = 0 ;

13 d a t a 1 = d a t a ( p o s i t i o n ( 2 ) : ( p o s i t i o n ( 2 ) + p o s i t i o n ( 4 ) −1) , p o s i t i o n ( 1 ) : (

p o s i t i o n ( 1 ) + p o s i t i o n ( 3 ) −1) ) ;

14 d a t a 2 = d a t a ( p o s i t i o n ( 2 ) : ( p o s i t i o n ( 2 ) + p o s i t i o n ( 4 ) −1) , p o s i t i o n ( 1 )

−100:100+( p o s i t i o n ( 1 ) + p o s i t i o n ( 3 ) −1) ) ;

15 ce=sum ( d a t a 1 ( : ) ) ;

16 s d a t a =sum ( d a t a 2 ( : ) ) ;

17 f r a t i o =−ce / s d a t a ;

18 r e s u l t = f r a t i o
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ADK M. V. Ammosov, N. B. Delone, and V. P. Krainov AOM Acousto-optical modulator

AOPDF Acousto-optical programmable dispersive filter

APD Avalanche photo diode

AR Anti-reflection

as Attosecond

ASE Amplified spontaneous emission

ATI Above threshold ionization

BBAR Broadband anti-reflection

BBO Beta barium borate

CE Carrier-envelope

CPA Chirped-pulse amplification

cw Continuous wave

DFG Difference frequency generation

DOE Diffractive optical element

DOG Double optical gating

FROG Frequency resolved optical gating

FS Fused silica

fs Femtosecond

FWHM Full width half maximum

FWOT Full wavelength optical thickness

GD Group delay

GDOG Generalized double optical gating

GNC Gain narrowing compensation

GVD Group velocity dispersion

HCF Hollow core fiber

HHG High harmonic generation
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HWP Half-wave plate

IAP Isolated attosecond pulses

iFAST Institute for the Frontier of Attosecond Science and Technology

IR Infrared

KLM Kerr lens mode locked

KLS Kansas Light Source

LCD Liquid crystal display

M2 Beam quality parameter

MCP Multichannel plate

MIIPS Multiphoton intrapulse interference phase scan method

NIR Near infrared

OC Output coupler

OPA Optical parametric amplification or optical parametric amplifier

OPCPA Optical parametric chirped-pulse amplification

PC Pockels cell

PCF Photonic crystal fiber

PZT Lead zirconate titanate

PW Petawatt

QWP Quarter-wave plate

RF radio frequency

rms root mean square

SHG Second harmonic generation

SLM Spatial light modulator

SPM Self-phase modulation

TEC Thermoelectrical cooling THG Third harmonic generation

Ti Titanium
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TOD Third order dispersion

TW Terawatt

UV Ultraviolet

XUV Extreme ultra-violet

YAG Yttrium aluminum garnet crystal
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F. Krausz. Compression of high-energy laser pulses below 5 fs. Optics letters, 22(8):522–

524, 1997.

124

http://www.cryomech.com/PT60.php
http://www.cryomech.com/PT60.php
http://www.gratinglab.com/Products/Product_Tables/T2.aspx
http://www.gratinglab.com/Products/Product_Tables/T2.aspx
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