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ABSTRACT 

Discrete event simulation development requires significant investments in time and 

resources.  Descriptions of discrete event simulation models are associated with world views, 

including the process interaction orientation.  Historically, these models have been encoded 

using high-level programming languages or special purpose, typically vendor-specific, 

simulation languages.  These approaches complicate simulation model reuse and interchange. 

The current document-centric World Wide Web is evolving into a Semantic Web that 

communicates information using ontologies.  The Web Ontology Language – OWL, was used to 

encode a Process Interaction Modeling Ontology for Discrete Event Simulations (PIMODES).  

The PIMODES ontology was developed using ontology engineering processes.  Software was 

developed to demonstrate the feasibility of interchanging models from commercial simulation 

packages using PIMODES as an intermediate representation. 

The purpose of PIMODES is to provide a vendor-neutral open representation to support 

model interchange.  Model interchange enables reuse and provides an opportunity to improve 

simulation quality, reduce development costs, and reduce development times.  
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1 CHAPTER ONE: INTRODUCTION 

The Process Interaction Modeling Ontology for Discrete Event Simulation (PIMODES) 

research provides a new ontology-based interchange approach for sharing Discrete Event 

Simulations. 

1.1 Subject Problem 

Simulation development requires substantial investments in resources.  Model developers 

create discrete event simulations (DES) with a wide variety of software packages and 

programming languages.  These simulations execute models of particular systems/domains.  The 

process interaction world view is a popular method for representing discrete event simulations.  

Reichenthal and Gustavson (2003) define model sharing as the ability for a simulation system to 

use models developed for another system.  The variety of representations of DES models 

complicates their reuse.  Simulation developers need new solutions that enable simulation model 

interchange and make simulation development more cost-effective.   

Miller and Fishwick (2004) identified the need for an efficient method for linking 

simulation concepts to support databases, query engines, and human-computer interaction.  

Knowledge representation and composability technologies provide new opportunities for 

simulation interchange.  The simulation community is adopting new interchange technologies 

such as XML.  Semantically rich languages, such as the Web Ontology Language – OWL, best 

support interchanging business processes with a global schema (Mendling, De Laborda, & Zdun, 

2005). 
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Knowledge representation, using techniques such as frames and inheritance, is 

particularly relevant to simulation (Nielsen, 1991).  Knowledge representation of simulation 

models supports composability.  Composition using reusable components has been offered as a 

potential solution.  A RAND report (Davis & Anderson, 2003) concluded that “the time is 

ripe…[for] higher-level representations that would simplify characterization of components”.  

1.2 Research Purpose 

The purpose of this research is to develop a new language, formalized using a Semantic 

Web ontology, for representing process interaction DES models.  An ontology provides a formal 

specification that supports computer interpretation of conforming descriptions. 

1.3 Study Significance 

Miller and Fishwick (2004) claim that formally organizing simulation knowledge 

increases the interoperability, integration, and reuse of simulation artifacts.  By representing DES 

models with a vendor-neutral Web standard, simulation software applications can interchange 

their internal data models with the standard representation.  Seila (2005) states that a standard 

modeling representation would lead to improved stakeholder communication, aid model 

verification, improve model documentation, help separate models from software, improve model 

interchange, promote model component reuse, and support system construction and maintenance.  

Representing DES models with OWL also exposes modeling information to non-simulation 

applications that are compliant with Semantic Web standards. 
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1.4 Chapter Contents 

This introductory chapter is followed by Chapter 2 – Literature Review which surveys 

the related literature.  Chapter 3 – Methodology describes the approach taken to performing the 

research.  Chapter 4 – Results documents the resulting products of the research.  Chapter 5 – 

Conclusions provides an analysis of the research results. 
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2 CHAPTER TWO: LITERATURE REVIEW 

A literature review identified existing related work and supported the development of a 

harmonized view of process interaction DES models. 

2.1 Models and Simulations 

The Modeling and simulation (M&S) community encompasses many types of 

technologies and techniques.  Clearly specified semantics related to terminology support further 

discussions and formally define ontology concepts. 

2.1.1 Definition / Scope 

Figure 1 depicts a high level perspective of the relationships between subject systems, 

models, and simulations.  This concept map differentiates between systems, models, modeling 

formalisms, modeling languages, simulation software, and simulators.  The system is the subject 

of a simulation.  It is described by a model that is encoded using a modeling language.  The 

modeling language expresses model formalisms or representations.  Simulation software or a 

simulator simulates the model.  Historically, the modeling language has been very tightly 

coupled with the simulation software. 
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System Model

serialized by

Modeling
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Figure 1.  Modeling and Simulation Concept Map 

2.1.1.1 Systems 

The term “system” is used to refer to a variety of things of interest.  Systems typically 

include interrelated components that perform a function (Cassandras & Lafortune, 1999).  

Systems can be categorized according to various dimensions: 

• Natural vs. man-made, 
• Continuous vs. discrete, 
• Deterministic vs. stochastic, and 
• Open vs. closed. 
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Systems whose changes occur in finite quanta, or jumps, are discrete systems (Pooch & 

Wall, 1993).  Discrete event systems involve discontinuous changes (events) (Karayankis, 1995).  

Fishman (1978) defines a discrete system as one in which a phenomenon of interest changes 

value or state at discrete moments of time rather than continuously with time.  The state of a 

discrete event system changes at only a discrete, but possibly random, set of time points, known 

as event times (Schriber, 1991).  Systems are modeled in order to perform studies or support 

experiences using simulations.   

2.1.1.2 Models 

Simulation development methodology includes the modeling phase which includes the 

model translation step in which a model is prepared and debugged for computer processing.  

Models serve as surrogates for the subject systems.  They enable experimentation and analysis 

that would be difficult or impossible using the actual system (Cassandras & Lafortune, 1999).  

Dr. George Box is often quoted for stating “All models are wrong, but some are useful”.  Models 

are “wrong” because they are simplified abstractions that fail to clone all aspects of a subject 

system.  However, models are useful when they are sufficiently detailed to support their required 

use. 

Models are encoded using modeling languages.  Modeling languages contain statements 

that support modeling formalisms.  Woolfson and Pert (1999) describe models as simplified 

representations of real objects or physical situations (systems) that serve a particular purpose.  

Miller and Fishwick (2004) define a model as an approximation of a system that evolves over 

time.  Overstreet and Nance (1985) define a model as an abstraction of a system intended to 
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replicate some properties of that system.  A combination of views is often necessary to 

adequately represent a system in a model.  Liles and Presley (1996) describe a model as a 

collection of views consisting of a business rule (information) view, activity view, business 

process view, resource view, and organization view. 

There are many varieties of models.  Kelton, Sadowski, and Sturrock (2003) and Miller 

and Fishwick (2004) categorize models based on how they deal with: 

• time (static vs. dynamic),  
• state (discrete vs. continuous), and 
• randomness (deterministic vs. stochastic). 
 

Static models typically represent the allowable paths that objects in a system may follow.  

Dynamic models describe the behavior of a system over time and enable simulations for analysis 

(Whitman, Huff, & Presley, 1997).  Discrete event models contain a set of state variables / states 

and a set of events.  Page (1994) describes discrete event simulation models as abstract, dynamic, 

descriptive, and numerical models.  

2.1.1.3 Simulations 

Simulation is the process of numerically evaluating a system model and estimating 

variables of interest (Cassandras & Lafortune, 1999).  Ball (1996) defines simulation as a 

technique for imitating the behavior of a situation or system using an analogous model, situation, 

or apparatus, to gain information more conveniently or to train personnel. 

Simulation software executes models.  A key distinction must be made between 

simulation software and the simulation modeling language used to encode the model.  Simulation 

software is often closely tied to particular simulation languages.  For example, the Arena® 
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software package implements the SIMulation Analysis (SIMAN®) simulation language.  By 

abstracting the simulation model from the supporting simulation, simulation descriptions can 

become simulation-software-independent, enabling the development of abstract simulations 

(Zeigler, Praehofer, & Kim, 2000). 

2.1.2 Types of Simulations 

There are many different types of simulations.  Specific types of simulations must be 

explicitly defined in order to scope the associated simulation models being represented.  

Simulations are categorized in a number of ways including purpose and application.  However, 

the purpose of a simulation does not necessarily affect the way its model is represented.   

DES category descriptions evolved as the discipline matured.  Ziegler (1976) formalized 

three approaches to modeling as system specifications: 

• Differential Equation System Specification (DESS),  
• Discrete Event System Specification (DEVS), and 
• Discrete Time System Specification (DTSS). 
 

Nance (1993) describes simulation as an application domain of programming languages that are 

described as Monte-Carlo, continuous, or discrete event.  Pidd (2002) categorizes simulations in 

terms of: 

• time handling, 
• stochastic vs. deterministic, and 
• discrete vs. continuous. 

 

Similarly, Sulistio, Yeo, & Buyya (2004) and Harrel & Price (2003) describe three primary 

properties of simulations: 

• presence of time (static or dynamic), 
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• behavior (deterministic or stochastic/probabilistic), and 
• basis of value (discrete or continuous). 

 

The focus of this research is representing models for dynamic stochastic discrete simulations. 

2.1.3 Discrete Event Simulations 

Discrete event simulations represent one subset of simulations.  Dependent variables (i.e., 

state indicators) change discreetly at particular points in time (events) in discrete event 

simulations (Pooch & Wall, 1993).  Page (1994) categorizes discrete event models based on the 

following characteristics: 

• linear vs. nonlinear, 
• stable vs. unstable, 
• steady-state vs. transient,  
• probabilistic (stochastic) vs. deterministic, and 
• autonomous vs. nonautonomous. 

 

A variety of theoretical foundations describe discrete event simulations including 

Zeigler’s Systems  Theory, the Semi-Markov Processes, and Logic-based Foundation.  Zeigler, 

Praehofer, & Kim (2000) provide a formal definition of DEVS based on systems theory.  They 

define a “classic” DEVS as having: 

• a set of input values, 
• a set of states, 
• a set of output values, 
• an internal transition function, 
• an external transition function, 
• an output function, and 
• a mapping of states to positive reals. 
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Glynn (1989) describes a particular type of stochastic process – Generalized Semi-

Markov Processes (GSMP).  GSMP descriptions involve precise mathematical descriptions to 

formally define a discrete event system.  Radiya and Sargent (1994) define a logic-based 

foundation for discrete event models and simulation by defining terms from a logician’s 

perspective, defining a Discrete Event Logic, and by describing a simulation algorithm for 

processing models described using the logic.  Theoretical foundations are useful for formally 

defining classes of simulations, but have limited utility for representing models. 

2.1.4 Discrete Event Simulation World Views 

Discrete event simulations are typically associated with a particular world view.  Nance 

and Sargent (2002) describe the history of DES world views in the 1960s.  Zeigler, Praehofer, 

and Kim (2000) describe world views as simulation strategies that are realized in simulation 

languages and systems.  World views, also known as conceptual frameworks, categorize 

approaches for representing and executing the logic in simulation models.  DES languages are 

typically aligned with specific world views (Cota & Sargent, 1992). 

DES literature associates the world views with events, activities, and processes.  Pidd 

(2002) differentiates the classic views by contrasting them to the three phase approach that he 

recommends.  The event-based world view focuses on events that occur and event-associated 

code.  The activity-based world view focuses on conditional statements that specify the initiation 

of activities.  The process interaction world view considers the complete lifecycle of an entity as 

it progresses through a process. 
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2.1.4.1 Event-based Approach  

Events are the points in time when something triggers a change to the state of a system.  

The atomic components of event-based models are event routines (Pidd, 2002).  Event routines 

are collections of programming language statements that describe the potential results (logical 

consequences) of an event. 

The event-based approach focuses on the events that instantaneously transform a 

system’s state and/or schedule future events (Miller & Fishwick, 2004).  The event-based 

approach is also referred to as: 

• Event approach (Pidd, 1984), 
• Event scheduling (Banks & Carson, 1986) (Cota & Sargent,1992) (Schruben, 1983) 

(Trick, 2005) (Cassandras & Lafortune, 1999) (Zeigler, Praehofer, & Kim, 2000), and 
• Event orientation (Pooch & Wall,1993). 
 

Events trigger discontinuous changes in a system’s state.  Event types are typically 

associated with a procedure in a programming language.   Events can schedule other events to be 

simulated at later times or cancel events that have already been scheduled to occur.  An event 

procedure may change the state of the data objects that are used to represent the state of the 

system, and may use instructions for scheduling and canceling events.  

Modelers using the event-based approach define the types of events that can occur and 

the causal relationships between events (Cota & Sargent, 1992).  The event scheduling approach 

enables users to prepare a system description by concentrating on the moments in time when 

state changes occur.  In event-oriented models, all events are prescheduled and are not activated 

by global state conditions (Zeigler, Praehofer, & Kim, 2000). 
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2.1.4.2 Activity-based Approach 

Activities and their preconditions (triggers) are the focus of the activity-based world view 

(Miller & Fishwick, 2004).  Activities are described with preconditions and actions similar to 

rule-based programming languages (Balci, Bertelrud, Esterbrook, and Nance, 1998).  An 

activity’s conditions must be satisfied for an activity’s operations to be scheduled and performed.  

Activities have associated start events and end events.  The activity-based approach is a state-

based approach to modeling (Balci, Bertelrud, Esterbrook, and Nance, 1998).  In this approach, 

events can be based on conditions (contingency tests) (Zeigler, Praehofer, & Kim 2000).  The 

activity-based approach is also referred to as: 

• Activity scanning (Zeigler, Praehofer, & Kim, 2000) (Banks & Carson, 1986) (Cota & 
Sargent,1992) (Schruben, 1983) (Trick, 2005) (Pooch & Wall, 1993) (Balci, Bertelrud, 
Esterbrook, & Nance, 1998),  

• Activity approach (Pidd, 1984), and 
• Two-phased approach (Balci, Bertelrud, Esterbrook, & Nance, 1998). 
 

An activity-based model is described by defining the types of events that can occur and 

their causal relationships (Cota & Sargent, 1992).  Modelers can also define contingent events 

that occur when a stated condition is met.  Modeling formalisms used to describe the activity-

based approach models include: 

• Activity Cycle Diagrams (ACD), 
• Petri Nets (PN), 
• activity wheel charts, and  
• activity lifecycle diagrams (Miller & Fishwick, 2004) (Schruben, 1983). 
 

ACDs are supported by tools such as Computer Aided Programming for Simulation (CAPS) 

(Clemenston, 1986) 
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2.1.4.3 Process Interaction Approaches 

The process interaction world view can be considered a combination (hybrid) of the 

activity-based and event-based approaches (Zeigler, Praehofer, & Kim, 2000).  The process 

interaction approach focuses on processes and the entities that flow through the process and 

interact with resources (Banks & Carson, 1985) (Miller & Fishwick, 2004).  The process 

interaction approach is also referred to as the process orientation world view (Pooch & Wall, 

1993) (Trick, 2005).  A process is the sequence of operation that an entity passes through during 

its life in the system (Pidd, 2002).  Processes are sequences of events or sequences of activities 

(Cota & Sargent, 1992).  Processes describe the behavior of entities that flow through a system 

(Miller & Fishwick, 2004).  Processes are typically represented by control flow diagrams that 

describe the sequence of processes that each entity proceeds through during its lifecycle.  Entities 

move through a system and consequently through time.  Entities sometimes encounter 

impediments to progress and are delayed.   

Process oriented simulations represent a large class of DES that involve resource 

contention (Cassandras & Lafortune, 1999).  Entities undergo a sequence of events separated by 

time intervals  as they flow through the DES.  Entities either receive resource services or wait for 

resources.  Processes are described for each type of entity.   

The process interaction world view is considered to be a natural way to describe models 

(Franta and May, 1977).  The process interaction approach requires a modeler to describe the 

flow of each entity through the system by defining a set of processes, entities, and resources 

(Cota & Sargent, 1992).  Since entities move through their lifecycle, people often visualize 
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entities moving through a system by anthropomorphizing and drawing analogies to construct 

their own mental models of the modeled system. 

Activity cycle diagrams can be used to describe entity processes (Pidd, 2002).  Additional 

modeling formalisms used to describe the process interaction world view include Petri Nets 

(Miller & Fishwick, 2004), Control Flow Graphs (CFGs) (Cota & Sargent, 1992), Activity 

Diagrams (AD), and Network Diagrams (ND).  Software that support the simulation of process 

interaction models include:  GPSS, SIMPL/1, SIMSCRIPT II.5, SIMULA. 

Cota and Sargent (1992) proposed a modification to the traditional process interaction 

world view to support modularity and encapsulation.  Zeigler, Praehofer, and Kim, (2000) 

describe two sub-views of the process interaction world view that are associated with an 

emphasis on resources or entities. 

The business world’s focus on modeling business processes and the Web services 

community’s focus on modeling processes provide potential opportunities for leveraging 

standard descriptions of processes. 

2.1.4.4 Non-Classical Approaches 

In addition to the three commonly described “classical” approaches, there are additional 

world views employed for performing discrete event simulation.  Pidd (2002) describes the 

Three-Phase approach as a more efficient variant of Activity-Scanning or a hybrid of Activity-

Scanning and Event-Scheduling. 
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2.1.4.5 World View Description Summary 

Although the event-based approach is the most computationally efficient of the three 

classical world views, the process interaction approach is closer to most people’s mental model.  

The activity-based approach is less efficient than the event scheduling approach because it 

requires frequent evaluation of conditions that would not be evaluated with event scheduling.  

The process interaction approach is more efficient than the activity-scanning world view.  

However, it is less efficient than the event-based approach.  The process interaction approach has 

been popularized by the abundance of available easy-to-use tools. 

2.2 Model Representation 

Pidd (2002) describes the representations of models as model logic.  The term model is 

more commonly used.  Discrete event simulations models typically result from a development 

process that involves the use of simulation software with underlying languages that represent a 

particular modeling formalism or representation approach. 

2.2.1 Process Interaction Concepts 

The process interaction approach focuses on entities and process descriptions.  Process 

interaction models describe the lifecycle of objects that move through and interact with system 

processes (Balci, Bertelrud, Esterbrook, & Nance, 1998).  The main components of a process 

oriented simulation are entities, attributes, process functions, resources, and queues (Cassandras 

& Lafortune, 1999).  Simulated processes typically have associated software procedures.   

Procedures associated with delays suspend execution for an interval of time. 
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2.2.2 Model Development Process 

The model development approach typically involves using authoring software to create a 

model that is executed by a simulation engine which produces statistical and/or animation 

results.  A key step in the development of a simulation is the encoding of the model using a 

simulation programming language.  Simulation models can be expressed using a high-level 

programming language or described as data for execution by a data-driven simulation system 

(Ball, 1996).   

There is an important distinction between simulations and the models they execute.  

Zeigler, Praehofer, & Kim (2000) point out that separating the model from the simulation 

provides a number of benefits including:  

• portability and interoperability by executing a formalized model using multiple 
simulators and  

• the ability to develop and verify simulation algorithms for executing the model 
formalisms. 

 

Pidd  (2002) describes many of the modern software packages as visual interactive 

modeling systems (VIMS) (e.g., Witness, ProModel, Micro Saint).  Most VIMS use a network as 

their underlying generic model with entities flowing through the network from node to node.  

From a user’s perspective, a model is normally encoded with software that has an underlying 

model language that supports a particular formalism. 

2.2.3 Simulation Software Implementation Approaches 

A variety of approaches are used for encoding simulations with programming languages.  

Both general purpose and special-purpose simulation languages are used.  General purpose 
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languages were used for implementing simulations before special purpose languages were 

developed.  General purpose languages continue to be used due to cost and complexity issues 

(Pidd, 2002).  Although reuse can be achieved with general purpose programming languages, 

most contemporary models are developed using simulation packages.  Schriber (1991) points out 

that no single modeling language works well for all situations.  A variety of modeling languages 

exist to support various applications of simulation. 

2.2.3.1 Simulation Language Categories 

Just as Integrated Development Environments (IDEs) are now used to develop software 

applications, VIMS are increasingly popular for developing simulations.  VIMS have either an 

explicit or implicit simulation language underlying them. 

Kreutzer (1986) differentiates between low-level languages that are optimized for 

computers and high-level languages that are closer to a human’s thinking processes.  He 

describes several categories of simulation-specific languages as: 

• packaged and precompiled program libraries (e.g., SIMPAS, SIMPL/1, SLAM, GASP, 
SIMAN), 

• application-oriented general purpose languages (e.g., SIMULA, SIMSCRIPT), 
• scenario languages / application-oriented language extensions (e.g., GPSS, DEMOS), and 
• declarative languages. 

 

Modeling methodologies include network representations, process concept, and the 

entity-attribute-set approach.  Network representations are often used to describe DES models.  

Implementations of network representations include GPSS and activity-cycle-based languages 

(Overstreet & Nance, 1985).  Pidd (2002) classifies simulation software approaches into the 

following categories: 
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• programming approaches in general purpose languages, 
• programming approaches in simulation languages, 
• block-structured systems, and 
• visual interactive modeling systems (VIMS). 
 

2.2.3.2 Visual Interactive Modeling Systems (VIMS) 

DES models can be described with simulation languages and visual simulation software 

packages.  DES models can be represented by simulation languages (e.g., SLAM, Extended 

Control and Simulation Language, SIMAN) (Ball, 1996).  Simulation languages provide 

versatility in describing models.  However, encoding models using a simulation language can be 

a complex process.  Alternatively, simulation software packages (e.g., Witness, Simul8, Micro 

Saint, Automod, ProModel, Taylor II) can be used to describe DES models (Pidd, 2002).  The 

advantage of VIMS is that they speed up the development process (Ball, 1996).  Some packages  

(e.g., Arena) employ an alternative hybrid approach, providing the flexibility of a programming 

or simulation language and the productivity of a VIMS. 

VIMS can be considered simulation systems with graphical representations.  Similarly, 

some graphical representation tools (e.g., ProcessCharter) have simulation capabilities.  It is 

difficult to construct an exhaustive list of DES simulation packages and languages as software 

continues to be developed and evolved.  However, identifying the key features of representative 

and popular languages and packages is helpful for categorizing purposes.  VIMS typically persist 

their models as datafiles, allowing them to be more easily exchanged. 
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2.2.3.3 Object-Oriented Simulation languages 

Object-oriented techniques are sometimes used to represent simulation models.  Many 

object-oriented simulation techniques can be traced back to the SIMULA programming language 

from the 1960s.  Simulation packages that employ object-oriented techniques include Simple++.  

Object-oriented techniques can be used to describe entities in a DES (Pidd, 2002).  Benefits of 

this approach include the ability to extend existing definitions through inheritance. 

2.2.3.4 Agent Based Simulation 

Agent based simulations model intelligent, autonomous entities (agents) as they interact 

to attain some goal in their environment (Dubiel & Tsimhoni, 2005).  Although the focus is on 

entities within the simulation, the models tend to be more activity-based rather than process 

based.  The behavior of the entities is typically described with state transition diagrams rather 

than the control flow diagrams typically used to describe entities with the process world view.  

AnyLogic is an example of an agent based simulation package (Dubiel & Tsimhoni, 2005).  

AnyLogic’s discrete modeling framework includes statecharts, timers, and events to simulate 

object behavior.  AnyLogic includes its Enterprise library that implements activities as active 

objects that treat entities as messages. 

2.2.4 Process Interaction Modeling Software Packages 

Simulation software packages support either an explicit or implicit simulation language 

underlying their application for representing simulation models.  Several vendors provide 

simulation software packages that support the development of process interaction simulations.  
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Swain (2003) identified over forty software tools that support DES.  The simulation software 

market is very fluid and new products continue to become available.  Therefore, surveys are 

quickly out of date.  An important aspect of surveys is the identification of tools that belong to 

classes of software to be supported by interchange mechanisms.  The following sections describe 

some well known DES software packages. 

2.2.4.1 Arena Software Package 

Arena® is a software package used for graphically describing SIMAN models.  Arena 

uses hierarchical flow chart models that include graphical objects (icons) called modules (Banks 

& Carson, 1996).  Arena icons are connected in a flowchart to represent entity flow. 

Arena uses an object-oriented design for graphically developing models (Markovitch & 

Profozich, 1996).  Arena modeling constructs, called modules, are grouped into templates for 

arrangement into hierarchical model diagrams (Law & Kelton, 2000).  Module specifications are 

authored using dialog boxes and spreadsheet-style forms.  Arena’s modules represent types of 

data and commands within the software.  These modules effectively represent a vendor-specific 

simulation language. 

Arena provides integration with Visio, Active X interfaces, Data Access Objects (DAO) 

interfaces, and Visual Basic for Applications (VBA) to extend the tool’s capabilities (Bapat & 

Swets, 2000). 
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2.2.4.2 AutoMod 

The AutoMod simulation package is focused on manufacturing and material handling 

systems.  Templates are used for representing common entities and resources.  A simulation 

programming language is also available (Banks, 2001).  AutoMod models can describe process 

systems that contain complex logic to control the flow of materials, messages, resource 

contention, or wait times (Rohrer, 2000).  Automod has general programming features including 

the specification of processes, resources, loads, queues, and variables (Banks & Carson, 1996).  

AutoMod processes are described in terms of traffic limits, input connections, output 

connections, and itineraries.  AutoMod resources are described in terms of their capacity, 

processing time, Mean Time Between Failure (MTBF), and Mean Time To Replace (MTTR).  

Schriber (2001) maps generic discrete event simulation terms to the concepts used in AutoMod.   

2.2.4.3 ProModel 

ProModel provides manufacturing-oriented modeling elements and rule-based decision 

logic (Banks, 2001).  It is a simulation tool used for modeling manufacturing and service systems 

(Harrell, Ghosh, and Bowden, 2000).  ProModel elements include parts/entities, locations, 

resources, path nets, routing/processing logic, and arrivals.  Systems are modeled in ProModel 

by selecting modeling elements and modifying appropriate parameters (Harrell and Price, 2000) 

(Harrell and Price, 2003).  ProModel variants (with different graphics libraries) are available for 

the medical domain (MedModel) and service domain (ServiceModel).  ProModel constructs have 

been mapped to the NIST shop model interchange format (Harward, 2005).   
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2.2.4.4 Witness 

WITNESS is a simulation software package oriented towards manufacturing.  WITNESS 

models are based on template elements that are combined into a designer element for reuse 

(Banks, 2001). 

2.2.4.5 ProcessModel 

The ProcessModel® software package provides a graphical user interface to define and 

execute simulation models called process models.  Process models are flow diagrams that can 

include objects representing process elements and connections depicting element relationships 

(ProcessModel, 1999).  ProcessModel object types include entities, activities, storages, and 

resources.  ProcessModel connection types include entity arrivals, entity routings, resource 

assignments, and order signals.   

2.2.4.6 SIMPROCESS 

SIMPROCESS  is a process modeling tool whose models are described with processes, 

resources, and entities (flow objects) (Swegles, 1997).  SIMPROCESS models can be simulated 

using an event-driven approach. 

2.2.4.7 Software Package Summary 

Reichenthal and Gustavson (2003) identified a common architecture employed by many 

process simulation tools.  The software in these systems can be viewed as having three layers to 
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their architectures.  The first layer provides a Graphical User Interface (GUI) for building the 

simulations.  The next layer contains the process simulation domain objects.  The third layer 

provides the discrete event simulation engine, storage, and communication.  Most contemporary 

DES simulation software packages supporting the process interaction world view share the 

following characteristics: 

• Personal Computer (PC)-based, 
• Graphical user interface with “drag and drop” modeling features, 
• Support for hierarchical models, 
• Support for evolutionary model optimization, 
• Process flow depictions of models, and 
• Proprietary file formats used for encoding models. 

2.2.5 Process Interaction Modeling Languages 

Process interaction modeling languages explicitly or implicitly underlie the tools used by 

modelers.  Certain simulation language support particular simulation world views (Fishman, 

1978).  This section describes some of the DES modeling languages that support the process 

interaction world view.  The following sections describe sample languages. 

2.2.5.1 GPSS/H 

One of the earliest simulation languages is General Purpose Simulation System (GPSS).  

GPSS/H is the contemporary version of the language which was originally released by IBM in 

1961 (Schriber, 1991).  In GPSS/H, a system is considered to be a collection of inter-related 

elements that work together to achieve a stated objective (Schriber, 1991).   

GPSS/H models are described as a sequence of events, separated by lapses in time, which 

describe how “objects” flow through a system resembling the structure of a flowchart of the 
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system being modeled. (Crain, 1997).  Complex GPSS/H models require procedural and text-

based programming code to supplement the visual model built using the iconic approach 

(Henriksen and Crain, 2000). 

GPSS/H supports the description of process oriented simulation models.  GPSS/H models 

are described with files of “block” statements that can be expressed graphically with block 

diagrams that portray each statement as an icon connected to related statement icons using 

arrows (Crain, 1997).  The GPSS/H language is based on over 60 types of “blocks” that have 

associated graphical representations (Cassandras & Lafortune, 1999).   

GPSS/H models entities (called units of traffic in GPSS/H) that compete for resources 

(Schriber, 1991).  Entities moving through a GPSS/H model are referred to as units of traffic and 

transactions.  Transactions move from block to block along the one-way paths in the block 

diagram.  Each block represents an action to be performed whenever a transaction enters a block.  

Blocks can have associated labels, an operation keyword (e.g., “Generate”), and most have one 

or more operands. 

GPSS requires modelers to envision transactions (entities) flowing around a network 

(Pidd, 2002).  The nodes of the network represent transaction delay points.  GPSS facilities are 

the permanent entities that represent resources required by transactions. 

2.2.5.2 Micro Saint 

Micro Saint models are represented with flowchart diagrams that describe networks of 

tasks.  Task networks represent a sequence of tasks that simulation entities flow through (Pidd, 

2004).  The diagrams support branching logic, sorted queues, and conditional task execution 
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(Banks, 2001).  Micro Saint’s task-based approach allows users to specify preconditions, and 

actions to take based on the beginning, ending, or launching of a task (Pidd, 2002). 

2.2.5.3 SIMAN 

The SIMulation Analysis (SIMAN) simulation language supports the description of DES 

models (Pegden, Shannon, & Sadowski, 1995).  SIMAN is used to define the logical and 

physical components of a system.  Standard features in SIMAN include the description of 

resources, queues, process logic, and system data (Banks, 1996).  Processes are represented with 

SIMAN blocks that have associated graphical representations that are combined to create block 

diagrams (Cassandras & Lafortune, 1999). 

SIMAN models are described in the model frame file and the experimental frame file 

(Davis & Pegden, 1988).  The model frame contains the simulation program that describes the 

logical interaction of the simulation’s entities.  SIMAN models were originally described using 

block diagram flowgraphs that sequenced blocks (Pegden, 1983).  Block types were associated 

with different functions and were described by their operands. 

SIMAN is a block-structured language and SIMAN programs are listings of blocks with 

associated parameters (Pidd, 2002).  SIMAN models can be entered using block and element 

statements (Banks, 1996). 

Arena is a software package that supports the execution of SIMAN models.  Arena makes 

it possible to use SIMAN as part of a VIMS (Pidd, 2002).  Some research has looked at the 

viability of reposing SIMAN models on the Web (Guru, Savory, & Williams, 2000).  
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2.2.5.4 SLAM / Visual SLAM  

The Simulation Language for Alternative Modeling (SLAM) supports process oriented 

and event-scheduling world views (Pritsker, O’Reilly, & LaVal, 1999).  SLAM models can be 

described graphically with network diagrams that have “nodes” and “branches” (Cassandras & 

Lafortune, 1999).  SLAM II process orientation models are represented using network models of 

a process (Pritsker, 1986).  The diagrams consist of nodes and branches that represent elements 

such as queues, servers, and decision points.  Entities flow through the network model when it is 

simulated. 

Visual SLAM models are described with network or flow diagrams that graphically 

present the flow of entities through a system.  Visual SLAM networks have nodes where 

processing is performed.  The nodes are connected by activities that define entity routines and 

associated time requirements for performing the operations.  Statements are the input associated 

with graphic Visual SLAM models.   

The network diagrams/models are converted into statements by the AweSim software.  

Visual SLAM models can be executed using the AweSIM simulation problem-solving 

environment (O’Reilly, 2002). 

2.2.5.5 DES Process Interaction Language Summary 

Model interchange can be enabled by  effectively defining a superset language of all the 

systems whose interchange is desired.  Process interaction model representations share certain 

functionality: 

• creation of entities, 
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• branching, 
• manipulation of entity attributes, and 
• elimination of entities. 
 

They also typically have a high-level graphical programming metaphor and a general purpose 

scripting language for more flexibility/control. 

2.2.6 Process Representations 

Simulation languages are based on modeling formalisms or representation approaches.  

Graphical representations support the visualization of models for a certain segment of users to 

whom a  “picture  is worth a thousand words”.  Graphical representation involves associating 

icons with statement types and representing control flow with arcs and nodes.  Graphical 

representations of systems are closer to users’ mental models – resulting in more efficient 

manipulation and better detection of errors (Nielsen, 1991). 

The graphical representations of simulation languages are often serialized into textual 

statements that are used to interchange model datafiles.  They are used to represent: 

• business process representations, 
• military process representations, 
• general purpose software 
• Web-services representations, and 
• process interaction discrete event simulation models, 
 

Oscarsson and Moris (2002) identify several criterions that should be supported by a 

model representation approach: 

• neutral notation, 
• generic notation, 
• recognized notation, 
• user friendly, 
• descriptive in several levels, and 
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• supported by in-house competence. 
 

The following sections describe methods for visualizing simulation models using 

graphical representations. 

2.2.6.1 Business Process Representation / Process Modeling 

Business process and workflows are directly related to the process interaction world view 

in DES.  Business processes are described with a variety of languages and associated graphical 

representations.  Menzel and Gruninger (2001) describe process modeling as the linguistic, 

diagrammatic, or numerical representation of patterns of activities (processes).  Business process 

representation/modeling approaches include: 

• task networks, 
• Business Process Modeling Notation (BPMN), 
• Workflow Process Definition Language (WPDL), 
• Process Specification Language (PSL), 
• process specification graphs, and 
• block diagrams. 
 

A task network is a collection of nodes and paths that represent the flow of work 

(Belanger, 1994).  Examples of task networks include Program Evaluation and Review 

Technique (PERT) charts and the Precedence Diagramming Method (PDM).  Task network 

modeling can be used to extend function and task analyses to support predictive models of 

human performance (Laughery, 1998).   

The Business Process Modeling Notation (BPMN) was developed by the Business 

Process Modeling Initiative (BMPI).  BPMN notation supports pools/lanes, events/activities, 
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sequence/message flows, and model message/control (Nainani, 2005).  One of the stated 

purposes of BPMN is to support the simulation of process models. 

The Workflow Management Coalition (WfMC) has specified a textual grammar for 

interchanging process definitions called the Workflow Process Definition Language (WPDL) 

(WfMC, 1999).  The WfMC standardized many of the process oriented terms that apply to 

process interaction DES.   

The Process Specification Language (PSL) is a language for describing processes 

(Menzel and Gruninger, 2001).  PSL is an interchange format designed to help exchange process 

information automatically among a wide variety of applications including process modeling 

tools.  PSL is defined with first-order logic using the Knowledge Interchange Format (KIF).  The 

specification formalizes the “Activity” concept that represents behavior specifications and the 

“Occurrence” concept that represents a runtime execution of an “Activity” (Bock and Gruninger, 

2005).  PSL process concepts have been mapped to XML and objects used in processes can be 

represented using the Resource Description Framework (RDF) (Lubell, 2001). 

Process specifications can be graphically represented with process specification graphs 

(Menzel & Gruninger, 2001).  A process specification graph is a directed graph that makes the 

graphical structure of a process description in a description’s component declarations explicit. 

Block diagrams and process networks use flowchart diagrams that show the movement of 

entities through various system operations (Praehofer & Pree, 1993).  The purpose of block-

structured systems is to enable non-programmers to develop discrete event simulation models 

using flowcharting symbols (Pidd, 2002). 
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2.2.6.2 Military Operations Representations 

The military community is a large consumer of simulation technology.  Military activities 

can be considered a special type of business process.  Military users employ a variety of 

techniques for representing military activities including operational templates, the Battle 

Management Language, and the IDEF family of standards.   

Military operations can be described with operations templates.  These templates have 

three views:  temporal, spatial, and informational (Joint Warfighting Center, 1997).  The 

temporal view provides a graphical representation of the sequencing of activities.  The spatial 

view shows the geographic locations of entities.  The informational view shows how information 

is input by activities that create outputs used by other activities.  Multiple views or perspectives 

are often necessary for describing processes. 

Another method for describing military operations is with the Battle Management 

Language (BML) (Hieb, Pullent, Sudnikovich, & Tolk, 2004) (Carey, Kleiner, Hieb, & Brown, 

2002a) (Carey, Kleiner, Hieb, & Brown, 2002b).  BML defines a consistent language for 

representing military tasks, actions, and missions.  Computer-generated forces (CGFs) are used 

in military simulations to represent opposing and flanking forces (Pew & Maver, 1998).  Various 

efforts have focused on standardizing the descriptions of CGF behaviors.  Fineberg (1995) 

developed a taxonomy of verbs for use in standardizing and organizing CGF behavior 

descriptions. 

The US Air Force developed a set of Integration DEFinition (IDEF) methods for 

describing perspectives of enterprises (Whitman, Huff, & Presley, 1997).  The Integrated 

DEFinition (IDEF) methodology is a family of standard methods originally intended for use in 
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systems engineering (Hanrahan, 1995).  IDEF0 is a functional modeling technique used for 

modeling business functions and activities that support functional/activity modeling.  IDEF1X is 

used to describe data models.  The IDEF2 method was intended for dynamic modeling, but has 

been supplanted by commercial simulation tool approaches.  IDEF3 supports process description 

capture (Mayer, Menzel, & Mayer, 1991).  IDEF3 has been used as a vendor-neutral process 

language to demonstrate interchanging process information between discrete event simulation 

models, scheduling models, and cost models (Benjamin, Akella, Malek, & Fernandes, 2005).  

Both the IDEF0 and the IDEF3 approaches utilize decomposition which supports the description 

of hierarchical models.  IDEF3 captures relationships between situations and events (KBSI, 

2005).  The IDEF5 ontology capture method was developed for collecting knowledge about 

physical and conceptual objects and their associations (Liles & Presley, 1996). 

2.2.6.3 Graphical Representations of Software Applications 

A variety of graphical representations are used to describe software design.  The United 

States military has defined a collection of artifacts in their DoD Architectural Framework 

(DoDAF).  Several techniques (e.g., DoDAF, military operations views, IDEF) recognize the 

need for multiple perspectives to provide a complete view of a system.  Kreutzer (1986) points 

out that an advantage of a graphical representation of a simulation model is the emphasis on 

structural connectivity and symmetry.  He also states that graphical representations provide a rich 

syntax for visually defining concepts such as links, flows, and direction.  Graphical 

representations used to describe software include state transition diagrams and the Unified 

Modeling Language. 
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Some software behaviors can be described using state transition diagrams (STDs).  STDs 

identify states and the conditions that result in transitions to new states.  There is a subtle 

difference between an entity’s state (the value of one or more of the entity’s attributes) and the 

sequence of process steps that an entity proceeds through during its lifetime. 

The Unified Modeling Language (UML) is a collection of Object Management Group 

(OMG) standards that are used to represent software designs.  UML 2.0 activity diagrams (ADs) 

can be used to represent processes.  The UML version 2 (UML 2) activity models follow 

traditional control and data flow approaches (Bock, 2003).  Activities are behaviors that are 

factored into actions (Pilone, 2005). 

UML has been proposed for representing simulation conceptual models and Knowledge 

Acquisition/Knowledge Engineering (KA/KE) artifacts (Risner, Porter, Lacy, O’Brien, & 

Kollmorgen,1998).  Research has been conducted on automatically transforming UML-specified 

software designs into simulations (Arief & Speirs, 2000).  Research has also been conducted on 

translating UML models into Abstract State Machines (ASMs) that can be simulated (Cavarra, 

Riccobene, & Scandurra, 2004). 

The semantics of UML 2.0 activities appear to support the control flow behavior 

provided by Petri-nets (Storrle, 2005).  Although UML 2.0 ADs can be used to describe 

processes, there are some expressiveness issues (Russell, van der Aalst, ter Hofstede, & Wohed, 

2006) (Vitolins & Kalnins, 2005).  UML class diagrams can also be augmented by color-coded 

archetypes.  UML models can be interchanged using the XML Metadata Interchange (XMI) 

standard. 
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2.2.6.4 Web Services Representations 

Representation schemes have been developed to describe the processes supported by 

Web services, a specific type of software.  Web services representation languages include: 

• Business Process Execution Language for Web Services (BPEL4WS), 
• OWL Services (OWL-S), and 
• Web Service Definition Language (WSDL). 

 

The Business Process Execution Language for Web Services (BPEL4WS) is a language 

for describing business processes (Andrews et al, 2003).  BPEL4WS business processes describe 

the flow and sequence of tasks and the data they share.  BPEL4WS is a workflow language that 

can be used for process modeling.  BPEL4WS’s model and grammar are used to formally specify 

business process and business interaction protocols.  The language is being evolved into the Web 

Services Business Process Execution Language (WS-BPEL). 

OWL-S is the collection of Web standards that describe OWL ontologies designed to 

support Web Services.  OWL-S provides constructs for describing Web services’ properties and 

capabilities to facilitate the automation of Web service tasks including automated Web service 

discovery, execution, interoperation, composition and execution monitoring. OWL-S is 

described using OWL ontologies.  The OWL-S ontology is used to describe what the service 

provides clients, how it is used,  and how interactions occur.  The Web service use description is 

supported by a process model that is captured by the OWL-S ServiceModel ontology.  The 

OWL-S process model was designed to support simulations of Web services and its developers 

claim that it is a superset of the constructs typically found in process modeling and workflow 

languages (Sycara, Martin, McGuinness, McIlraith, & Paolucci, 2004).  OWL-S process models 

could support the automatic verification of Web services through simulation (Ankolekar, 
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Paolucci, & Sycara, 2004).  Business process modeling formalisms have been successfully 

mapped to OWL-S (Guo, Chen-Burger, & Robertson, 2004).  OWL-S has also been used as an 

upper ontology for services in order to describe military missions and tasks (Mili & Ghanekar, 

2005). 

The Web Service Definition Language (WSDL) is an XML format for describing the 

public interfaces of Web services.  XLANG is an extension of WSDL that provides a notation 

for the specification of message exchange behavior among participating Web services (Thatte, 

2001).  It describes both the model of an orchestration of services as well as collaboration 

contracts between orchestrations.  

2.2.6.5 Process Interaction Modeling Representations 

A variety of graphical representation techniques have been developed for describing 

process interaction models for simulation.  These techniques include: 

• SIMULA Activity Diagrams, 
• Control flow graphs, 
• Petri nets, 
• Activity cycle diagrams, and 
• Process Network diagrams. 
 

Miller and Fishwick (2004) describe activity diagrams as graphs with well-defined 

functional nodes (e.g., start, terminate, delay, engage resource, and release resource).  SIMULA 

activity diagrams depict the flow of entities and resources through a modeled system.  

Cota and Sargent (1992) and Cota, Fritz, and Sargent (1994) describe control flow graphs 

as a graphical representation of process behavior.  Control flow graphs represent models as 

directed graphs with nodes depicting model states and edges depicting event transitions.  Control 
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flow graph vertices represent possible control states.  Arrows leaving a state represent a guard 

and identify the next event.  Control flow messages are sent to channels instead of directly to 

processes.  Channels act as First In First Out (FIFO) queues for messages. 

Petri nets are defined by specifying the Petri net graph/structure and adjoining the graph 

with an initial state, marked state, and a transition labeling function (Cassandras & Lafortune, 

1999).  A simple Petri net is a graph with place vertex labels and instantaneous vertex labels 

(Schruben, 1992).  Miller and Fishwick (2004) describe Petri Nets (PN) as graphs with transition 

and place nodes.  Arcs connect the nodes.  Transitions “fire” if sufficient tokens populate each 

input place.  Timed Petri Nets (TPNs) have delays associated with their transitions.  Petri nets 

can support the process interaction world view (Miller & Fishwick, 2004).  Petri nets explicitly 

represent DES transition functions (Cassandras & Lafortune, 1999).  Petri nets can be formally 

defined and used with similarly formally defined DEVS (Bobeanu, Kerckoffs, and Van 

Landeghem, 2004).  Bobeanu, Kerckoffs, and Van Landeghem, (2004) describe a systematic 

approach for implementing discrete event systems using Petri nets. 

Activity cycle diagrams (ACDs) are primarily associated with activity scanning, but can 

also support the process interaction world view (Miller & Fishwick, 2004).  ACDs can model 

entity interactions (Pidd, 2002).  An ACD describes the progression of activity and queue states 

that entities pass through (Clementson, 1986).  Miller and Fishwick (2004) describe ACDs as 

graphs with activity (active state) nodes and wait (dead state) nodes connected by arcs.  ACDs 

depict the lifecycles of interacting entities flowing through a system.  ACDs can be considered 

an extension of Petri Nets (Clementson, 1986).  Hierarchical Activity Cycle Diagrams (HACDs) 

are variants of ACDs (Odhabi, Paul, & Macredie, 1998).  A simplified version of HACDs have 
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been defined - called Simplified Hierarchical ACD (SH-ACD with associated icons for graphical 

representations (Odhabi, Paul, & Macredie, 1998). 

Process network modeling is a popular approach for modeling discrete event systems 

(Schruben, 1992).  Miller and Fishwick (2004) describe network (or block) diagrams (in the 

simulation context) as a class of diagrams similar to activity diagrams, but with more types of 

nodes corresponding to their associated languages’ primitives.  The associated languages include 

GPSS, SLAM, and SIMAN. 

Common themes emerge from reviewing the various representations.  Most of these 

representations use graphical representations of nodes that are related with arcs to indicate 

control flow. 

2.2.7 Formal DES Semantics 

Formal definitions are required to support the explicit semantics of a graphical 

representation.  Static model representations provide potential for migrating representation 

features into simulation model descriptions (Whitman, Huff, & Presley, 1997).  A variety of 

formalisms have been developed to represent discrete event models.  Ziegler, Praehofer, and 

Kim, 2000) provide a formal description of various types of discrete event simulations.  His 

approach is mathematically complete, but difficult for modelers to relate to.  Zeigler’s formalism 

has been extended by others (Barros 1995).  Narain (1991) defined an axiomatic basis for general 

discrete event modeling.   
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2.3 Interchanging Simulation Information  

Simulations have associated data that can be considered part of a model or it’s associated 

experimental frame.  This data is often interchanged between simulation systems and a variety of 

techniques have been developed to support simulation data interchange.  Most simulation 

interoperability research has focused on the runtime interchange of information to support 

distributed interactive simulations for the military. 

2.3.1 Simulation Information Interchange Motivation and Requirements 

The motivation for data interchange and interoperability includes the desire for improved 

system quality, reduced development cycles, and reduced development costs.  System quality 

can be improved by reusing validated models and data.  Cycle times and development costs can 

be reduced by reusing existing information rather than generating new information.  An early 

system that automatically generated SIMAN models from facility planning software was 

motivated by the desire to reduce model development time and improve model quality (Ingalls, 

1986). 

2.3.2 Simulation Information Representation 

Information must be represented to support interchange.  Sheehan (2001) points out the 

need for common semantics and syntax for interchanging simulation data.  He states that 

canonical representations are the most useful and have the most structural syntax maturity as 

well as semantic content control (see Figure 2). 
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Figure 2.  Semantic Control of Representations 

 

Describing quality data interfaces requires proper data representation support.  

Knowledge Representation (KR) applies theories and techniques from the fields of logic, 

ontology, and computation (Sowa, 2000). 

The military has invested significant resources to research the development of 

Conceptual Models of the Mission Space (CMMS).  CMMS are simulation-implementation-

independent descriptions of processes, entities, and the environment (Sheehan, Prosser, Conley, 

Stone, Yentz, & Morrow, 1998).  While much of the focus has been on models in simulations, 

formal methods of describing the data used by simulations has also been investigated (Roberts, 

1991). 
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2.3.3 Simulation Data Interchange Formats 

The use of an intermediate neutral data interchange format (DIF) reduces the number of 

interfaces (and associated converters) between N systems from O(N2-N) to O(2N-1) (Benjamin, 

Akella, Malek, & Fernandes, 2005).  Leveraging DIFs requires legacy systems to generate a DIF 

“view” of the system’s data model.  One approach is to directly create a DIF view.  Another 

approach is to create an XML view of the legacy data store and then convert from the legacy 

systems associated XML format to the DIF format. 

Simulation DIFs define how data will be exchanged between applications (Gravitz, 

Sheehan, and McLean, 1999).  A DIF is a formal specification of the structure and format of data 

interchanged between producers and consumers of data.  DIFs should define the syntax and 

semantics of the interchanged data (Sheehan, 2001).   

National Institute of Standards and Technology (NIST) researchers developed libraries of 

formal, neutral models of simulation components (Son, Jones, and Wysk, 2000, 2003).  Express 

is a model specification language (Schenck and Wilson, 1994).  The XML Metadata Interchange 

(XMI) specification can be used for interchanging models described using the Unified Modeling 

Language (UML). 

Competing definitions have been proffered for the concept of conceptual models (Lacy, 

Randolph, Harris, Youngblood, Sheehan, Might, & Metz, 2001).  Simulation conceptual models 

can be defined as a developer’s method of translating modeling requirements into a detailed 

design framework for a simulation (Pace, 2001).  The development of conceptual models is a key 

phase in the development of a simulation (Lacy & O’Brien, 1997) (Risner, Porter, Lacy, 

O’Brien, & Kollmorgen, 1998).  
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The idea of representing simulation models in a formal manner is not a new concept.  

Overstreet & Nance (1985) described the concept of a formal Simulation Model Specification 

and Documentation Language (SMSDL).  They recognized the reduction in modeling costs and 

the improvement in quality that could result from interposing an intermediate form between a 

conceptual model and an executable representation of the model. 

2.3.4 XML Simulation DIFs 

Some vendors (e.g., XJ Technologies) have recognized the benefits of XML for data 

interchange and are using it for natively representing their simulation models (Filippov, 2003).  

Technologies such as the High Level Architecture (HLA) include interoperability standards.  

However, interoperability is also important in an off-line mode.  Neutral, open standards are 

needed to define the syntax for interchanging data during the development of simulations.  These 

simulation interchange requirements led to the use of the Extensible Markup Language (XML) 

(Lacy & Tuttle, 1998).   

Domain-specific XML Data Interchange Formats (DIFs) support information 

representations that are platform and machine-independent (Miller & Fishwick, 2004).  A DIF’s 

XML element name can be based on concepts formalized in a domain ontology (Miller & 

Fishwick, 2004). 

Research has been performed to demonstrate the use of XML for interchanging data to 

support discrete event simulations (Harrison, Maynard, & Pollak, 2004).  NIST has developed 

the Shop Data Model neutral file format for interchanging information that supports discrete 
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event simulations of manufacturing type facilities.  The format has been mapped to ProModel’s 

internal structures to determine compatibility (Harward, 2005). 

XML has become a widely-popular metalanguage for defining file formats.  An early use 

of XML was as a mechanism for interchanging simulation data (Lacy & Tuttle, 1998) (Gravitz, 

Sheehan, & McLean, 1999).  Early work was performed involving developing XML DIFs for 

simulation scenario data (Lacy, Stone, and Dugone, 1999a) and CMMS information (Lacy, 

Stone, and Dugone, 1999b).  Examples of XML simulation DIFs include scenario DIFs and 

equipment characteristics and performance data (Lacy & Dugone, 2001a) (Lacy, Dugone, and 

Youngren, 2001).  Examples of XML military simulation DIFs include the Unit Order of Battle 

(UOB) DIF and the CMMS DIF (Gravitz, Sheehan, & McLean, 1999).  XML has been proposed 

for describing the behaviors of computer-generated forces in military simulations (Lacy, Stone, 

& Dugone, 2001) (Lacy & Dugone, 2000b).  The U.S. Army’s OneSAF Objective System 

(OOS) uses XML extensively for interchanging simulation data including composable behaviors 

(DaCosta, 2002) (DaCosta, Lucas, Outar, & Helton, 2003).  The XML instance files that 

conform to a DIF are sometimes referred to as XML Populated DIFs (XPoDs). 

In addition to domain-specific XML DIFs, simulation DIFs associated with simulation 

techniques have been developed.  XML-based model interchange formats have been developed 

for sharing Petri Nets including the Petri Net Markup Language (PNML) (Syrjakow, Syrjakow, 

& Szczerbicka, 2002).  The OpenModel Modeling Language (OMML) is an XML-based model 

interchange format for representing behavioral models (Hall and Zisman, 2004a, 2004b).  

OMML is a procedural language for expressing functionality in terms of function/object theories.  

The Defense Modeling and Simulation Office (DMSO) considered an ontological alternative to 

XML DIFs for equipment descriptions (Lacy, 2001). 
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2.3.5 XML-based Simulation Interoperability Standards 

One challenge in developing XML DIFs for simulation data interoperability has been the 

standardization process.  The Simulation Interoperability Standards Organization (SISO) has led 

the development of various XML-based standards to support simulation interoperability. 

Data Interchange Formats are used to interchange a variety of data associated with the 

High Level Architecture (HLA) approach to distributed simulation.  The HLA Object Model 

Template (OMT) Specification (IEEE P1516.2) specifies the objects, attributes, interactions, and 

parameters that are required for an HLA Simulation Object Model (SOM).  The OMT Data 

Interchange Format (DIF) is an XML simulation DIF that structures HLA OMT descriptions for 

use by automated tools (Hobbs, 2003). 

A scenario narrative ontology was used to create an XML grammar called the Scenario 

Markup Language (SCML).  XML documents described with SCML are called hyperscenarios 

(Hobbs, 2003).  The High Level Architecture (HLA) Dynamic Scenario Builder (DSB) research 

effort promoted the use of XML for interchanging scenario data (Lacy, Stone, & Dugone, 

1999a). 

The Extensible Modeling and Simulation Framework (XMSF) is a composable set of 

standards, profiles and recommended practices for Web-based modeling & simulation (M&S) 

(Brutzmann, Zyda, Pullen, & Morse, 2002). XMSF leverages Web technologies to extend 

systems interoperability by enabling simulations to interact over highly distributed networks.  

XMSF includes Web, internet and XML technologies for open interoperability in M&S.  

Ontologies represent one of the XMSF functional requirements categories.  An ontology for 

sharing discrete event simulations could be one of the XMSF standards.  The XMSF group 
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identified RDF and the DARPA Agent Markup Language (DAML) (which later evolved into 

OWL) as semantic representations of particular interest. 

The Simulation Interoperability Standards Organization (SISO) is developing a standard 

based on the Simulation Reference Markup Language (SRML).  SRML was developed to 

describe the structure and behavior of simulations models using XML and was documented in a 

W3C note (Reichenthal, 2002).  A process modeling case study demonstrated SRML features 

(Reichenthal, 2004).  SRML provides a format for representing the behavior of encapsulated 

Base Object Models (BOMs).  BOMs represent reusable simulation interaction patterns and 

components that support the description of HLA SOMs and Federation Object Models (FOMs).  

The SRML XML schema defines object-oriented elements for implementing identity, 

modularity, classes, associations, behavior, communication, inheritance, polymorphism, and 

extensibility.  SRML could serve as the basis for a more formal description of simulation models 

(Fishwick & Miller, 2004).  Alternatively, SRML could be upgraded with new information 

representation technologies and extended to formally support its description mechanisms for 

DES models (Lacy, 2006). 

2.4 OWL Ontological Representations of Simulation Information 

While XML DIFs addressed the syntax aspect of simulation data interchange, the 

challenge of semantic representation remained.  This challenge was very similar to the challenge 

of the HTML-based current World Wide Web (WWW).  A new set of technologies is enabling 

the evolution of the current Web into a Semantic Web.  The Semantic Web is empowered by 

formal ontologies that are encoded using the Web Ontology Language – OWL. 
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2.4.1 Current Web 

The Semantic Web represents a new evolution of the current Web.  The current Web is 

dominated by files encoded with the Hypertext Markup Language (HTML).  It supports human 

readers with Web browsers (e.g., Internet Explorer).  Standardizing protocols (e.g., TCP/IP) and 

languages such as HTML and the Extensible Markup Language (XML) enabled the Web by 

supporting interoperability at various levels of the Web’s layered network architecture.  This 

approach is convenient for human consumption, but difficult for computers to process.  

However, the current Web provides insufficient structure to support efficient computer 

processing of content.  Computers require structured information to support efficient 

unambiguous interpretation.  Semantic Web techniques provide explicit descriptions of 

information’s semantics.  

2.4.2 Ontologies 

Ontologies provide a shared and common understanding of a domain to facilitate 

knowledge sharing and reuse (Fensel, 1998).  Ontologies explicitly describe the semantics of 

compliant information.  Gruber (1993) succinctly defines an ontology as a “formal specification 

of a conceptualization.”  Computer scientists typically use the term to describe references to 

formal descriptions of a domain in order to support knowledge sharing and reuse.  Ontologies in 

computer science describe information sources with collections of terms and their relationships.  

McGuiness (2002) described a spectrum of methods for supporting knowledge representation in 

terms of their sophistication.  She identifies ontological representations as those that have: 

• A finite controlled (extensible) vocabulary, 
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• An unambiguous interpretation of classes and term relationships, 
• Strict hierarchical subclass relationships between classes, and 
• An ability to support inferencing. 
 

Daconta, Obrst, and Smith (2003) presents a similar continuum of “smart data” whose 

positive extreme is described by XML ontologies and automated reasoning.  Ontologies support 

a common understanding by humans and software agents of the information associated with the 

domain.  Common understandings help reduce misinterpretation of information.   

Semantic Web ontologies encoded using OWL provide a means to define classes, 

properties, individuals, and relationships between them.  An OWL ontology can be defined as a 

“web-distributed vocabulary of declarative formalisms describing a model of a domain” (Lacy, 

2005).  Just as a simulation model represents a system, an ontology is an abstraction of a domain. 

Ontologies support information sharing by formally communicating a common 

understanding of a domain with expressive statements that provide explicit declarations of 

semantics.  OWL-compliant software can interpret ontologies and accurately manipulate the 

information.  Information sharing requires the use of a common language and access to the 

information (syntax).  Applications must also have a common semantic understanding of the 

information for effective reuse. 

Semantics formally describe terms and their relationships which support computer 

understanding and reduce ambiguity.  Each DES language has its own semantics even though 

they often share concepts.  There are different types of ontologies.  Fensel (1998) categorizes 

ontologies as: 

• domain ontologies, 
• metadata ontologies, 
• generic / common sense ontologies, 
• representational ontologies, and 
• method/task ontologies. 
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An ontology to represent discrete event simulation models would be considered a 

representational ontology. 

Considerable emphasis in simulation development has been placed on encoding a 

simulation model for a particular simulation software package.  However, the focus should be on 

encoding shareable conceptual models.  Successful use of ontologies requires encoding 

ontologies using a language, marking up compliant instances, and using software that commits to 

the ontologies. 

Ontologies are encoded using formal ontology languages so that software can parse them 

and use their explicit semantics to interpret compliant information instances.  The ontologies are 

described using formal vocabularies of terms and their relationships.  A variety of formal 

languages are used to encode ontologies.  IDEF5, the Ontology Description Capture standard, 

was developed to represent ontological information as part of the IDEF family of standards.   

However, it never achieved the widespread use and maturity of other IDEF standards.  The Web 

Ontology Language – OWL was developed to support the World Wide Web Consortium (W3C) 

concept of the Semantic Web. 

2.4.3 Semantic Web 

The Semantic Web is the next evolution of the World Wide Web that supports automated 

processing of structured information (Berners-Lee, 1999).  Berners-Lee, Hendler, and Lasilla 

(2001) described their concept of the Semantic Web as a new form of Web content that is 

meaningful to computers and that will unleash a revolution of new possibilities.  With the 

Semantic Web, the emphasis shifts from proprietary data formats to “smart data” that is 
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machine-processable using a neutral open representation formats based on XML (Daconta, 

Obrst, and Smith, 2003). 

Just as with the current Web, information on the Semantic Web is marked up according 

to a particular language, is distributed across servers, and can be accessed by software that 

understands the mark up language.  Unlike the current Web, Semantic Web applications are able 

to leverage ontologies to perform more advanced features with structured information. 

Berners-Lee based his Semantic Web concept on the current Web which was enabled by 

the protocols he developed to support interoperability (Berners-Lee, 1999).  Berners-Lee 

published his Semantic Web road map to document his vision for a Web of machine-

understandable data, represented as Web resources (Berners-Lee, 1998). 

Semantic Web technology is suitable for applications involving well understood domains, 

heterogeneous information sources, and information interchange requirements (Lacy, 2005).  

Structured information representations enable the Semantic Web with explicit semantics defined 

by ontologies.  The W3C’s concept of the Semantic Web relies on information marked up in a 

computer-understandable manner using the Web Ontology Language – OWL. 

2.4.4 OWL 

The Defense Advanced Research Products Agency (DARPA) created the DARPA Agent 

Markup Language (DAML) as part of its Semantic Web research effort.  European Union (EU) 

researchers developed the Ontology Interface Layer (OIL).  A joint EU/US Committee on Agent 

Markup Languages merged many concepts from OIL with DAML to create the DAML+OIL 

language (McGuiness, Fikes, Hendler, and Stein, 2002).  The World Wide Web Consortium 
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(W3C) Web Ontology Group evolved DAML+OIL into the Web Ontology Language – OWL, 

which was released in February 2004.  The language is documented in: 

• an overview document (McGuiness & van Harmelen, 2004),  
• a language guide (Smith, Welty, & McGuiness, 2004),  
• a language reference (Dean, Schreiber, van Harmelen, Hendler, Horrocks, McGuiness, , 

Patel-Schneider, & Stein, 2004),  
• test cases (Carroll & DeRoo, 2004), and  
• a Semantics and Abstract Syntax document (Hayes, Horrocks, & Patel-Schneider, 2004). 
 

The Web Ontology Language – OWL was developed for defining ontologies and 

associated individual data.  Knowledge representation technologies (e.g., frame-based reasoning 

systems, Description Logics) influenced OWL’s development.  OWL statements, also called 

assertions, describe classes, properties, and individuals.  Assertions can be stated within 

individual ontologies or in combinations of multiple joined ontologies.  Additional facts can be 

derived or logically entailed using inferencing.  OWL, like XML, provides an open standard for 

information representation.  This allows compliant software to manipulate information without 

having to have domain-specific knowledge (Meeks, Aviles, & Lacy, 2004).   

OWL’s developers designed language features in layers that build on open W3C Web 

standards.  Tim Berners-Lee defined an initial layered architecture view of the Semantic Web 

(Berners-Lee, 2000).  Various alternative views of Semantic Web technology layers  have since 

been developed. 

Figure 3 presents an alternative layered conceptual view of Semantic Web technologies 

from an OWL perspective (Lacy, 2005).  The layers are not strict layers in the networking model 

sense, but do illustrate extensions of features since each layer depends on the layers beneath and 

uses their features to provide its capability.  The implementation layer at the top of the figure 

supports specific applications.  The logical layer supports formal semantics and reasoning using 
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OWL.  The Resource Description Framework (RDF) Schema (RDFS) language is used to define 

vocabularies using the ontological primitives layer.  RDFS and individuals are specified using 

RDF, which provides the basic relational layer with its consistent approach for using XML and 

XML Schema (XMLS) datatypes in the transport/syntax layer.  The symbolic/reference layer 

uses Uniform Resource Identifiers (URIs) and XML namespaces. 

 

Implementation Layer

Logical Layer

Ontological Primitive
Layer

Basic Relational
Language Layer

Transport/Syntax Layer

Symbol/Reference Layer

}
}
}
}
}
}

Applications

Ontology Languages (OWL Full,
OWL DL, and OWL Lite)

RDF and RDF/XML

XML and XMLS Datatypes

URIs and Namespaces

RDF Schema Individuals

 

Figure 3.   Semantic Web Technology Layers 

Additional layers may be required to provide sufficient expressiveness.  Fishwick (2004) states 

that complex ontologies suitable for modeling and simulation will require a combination of 

OWL and the Semantic Web Rule Language (SWRL). 
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2.4.5 Ontology Engineering Processes 

The successful use of an ontology depends on the quality of the ontology engineered to 

support a Semantic Web application.  Ontology engineering processes are often based on 

software engineering processes and share concepts with DIF development. 

2.4.5.1 DIF Development Process 

Ontology development is also similar to DIF development activities.  Steps used by the 

military for defining DIFs are: 

• Identify the need for a DIF and a strategy for managing the DIF, 
• Develop a logical data model (schema) and specify use cases, 
• Determine and build the physical representation of the DIF, 
• Determine DIF definition style and build physical DIF, 
• Package the DIF, 
• Post and review DIF, and 
• Publish and maintain the DIF (Gravitz, Sheehan, and McLean, 1999). 
 

Lacy & Dugone (2000a) described a simulation DIF development process that included: 

• Defining data requirements, 
• Developing logical data models, 
• Evolving data models into XML Document Type Descriptions (DTDs), 
• Demonstrating and testing the XML DTDs, and 
• Documenting and evolving the resulting standard. 

2.4.5.2 Ontology Engineering 

OWL ontologies are best developed using mature documented ontology engineering 

techniques.  Gomez-Perez, Fernandez-Lopez, and Corcho (2004) surveyed several approaches to 

ontology development.  Many of the development processes appear to share an approach 

involving specification, conceptualization, formalization, and implementation phases.  
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Ontologies should be developed by leveraging existing domain knowledge (Lacy, 2005).  Noy 

and McGuiness (2001) recommend the following ontology development steps: 

• Determine the domain and scope of the ontology, 
• Consider reusing existing ontologies, 
• Enumerate important terms in the ontology, 
• Define the classes and the class hierarchy, 
• Define the properties of classes – slots, 
• Define the facets of the slots, and 
• Create instances. 

2.4.6 Simulation Ontologies 

Lacy and Dugone (2000a) and Lacy and Gerber (2004) identified OWL’s predecessor 

language – DAML as part of a potential emerging ontology solution for interchanging simulation 

information.  Blais and Lacy (2004) describe the potential for Semantic Web technologies to 

support the M&S domain by dramatically improving composability of functional capabilities and 

the interoperability of systems.  Ontologies can be used for a variety of modeling and simulation 

information representations including static authoritative domain descriptions, simulation 

development and composition, dynamic data representation, and CGF behaviors (Lacy, Stone, 

and Dugone, 2001).  Ontologies have been used to define several ontologies to support 

simulation-related applications including simulation objects, CGF behaviors, and discrete event 

models. 

OWL has been used to describe military equipment in support of distributed interactive 

simulations.  The taxonomy of equipment described in the Distributed Interactive Simulation 

(DIS) enumeration document was evolved into an OWL ontology that can be used to map 

information from other military equipment databases to simulation applications (Lacy, 2004).  
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The rube™ project is using OWL to encode an ontology that describes the geometry and 

dynamics knowledge of objects in a simulated air battle scene (Fishwick, 2004).   

Separating the description of CGF behaviors out of code and into data has been a goal for 

some time (Lacy and Henninger, 2003b).  Early efforts used XML, but more recently, OWL has 

been used to demonstrate how simulated behaviors could be represented  (Gerber and Lacy, 

2004a) (Gerber and Lacy, 2004b). 

OWL has been used to encode the Discrete Event Modeling Ontology (DeMO) (Miller & 

Fishwick, 2004) (Fishwick, 2004) (Miller & Baramidze, 2005).  The DeMO prototype was 

developed to support an investigation of ontology development issues.  DeMO’s goal was to 

formally define foundational concepts for extension by future ontologies.  Process interaction 

models in DeMO are represented by the “Process-Oriented Model” class.  Specific classes (e.g., 

“GPSS Block Diagram”) are then defined as subclasses to the “Process-Oriented Model” class.  

DeMO has been extended to support the Process Interaction world view using OWL and with an 

XML Schema language called the Extensible Process Interaction Markup (XPIM) language 

(Miller, Silver, & Lacy, 2006). 

2.5 Representing DES Models with Ontologies 

Process interaction DES models can be represented and interchanged with the help of 

ontologies.  Developing a formal ontology for representing DES process interaction models 

effectively involves defining a new simulation language.  The use of OWL for defining an 

ontology for DES has been recommended (Seila, 2005) and theorized (Lacy, 2001) (Fishwick & 

Miller, 2004).  Advantages of representing DES models with ontologies include making models 
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processable by Semantic Web-compliant software.  A standard for sharing DES models should 

include an ontology, an XML-based interchange language, and a graphical representation (Seila, 

2005).  The design should also leverage existing formalisms and take into consideration existing 

tools. 

2.6 Background Literature Summary 

Discrete event simulations represent a commonly used type of simulation.  The process 

interaction world view is a popular paradigm for representing discrete event simulations.  Ideas 

for representing process interaction world view models can be derived from a variety of 

techniques associated with modeling processes, describing software, describing Web services, 

simulation languages, and simulation software.  Simulation-related information can be 

interchanged using a variety of techniques including XML-based Data Interchange Formats.  The 

Web Ontology Language – OWL can also be used to interchange simulation data and models.  

An OWL ontology can be developed to describe process interaction world view models for 

discrete event simulations. 
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3 CHAPTER THREE: METHODOLOGY 

PIMODES research focused on developing a new open language for describing process 

interaction Discrete Event Simulation models.  An OWL ontology formalized the new language.  

Software tools supported the execution of documented procedures for conducting the PIMODES 

research process.  The research has known limitations associated with the concept and the 

implementation approach. 

3.1 Instrumentation 

A variety of software tools supported PIMODES research activities.  Software-supported 

activities included reviewing legacy simulation applications, exchanging data, developing the 

PIMODES ontology, and developing software.  The software tools used are listed in Table 1 

along with the vendors of the tools and the role of the tools in PIMODES research. 
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Table 1.  Software Tools Employed in PIMODES Research 

Category Tool Vendor Purpose / Role 
Arena® Rockwell 

Automation 
Authoring sample Arena models, 
model representation analysis 

ProcessModel® ProcessModel Authoring sample ProcessModel 
models, model representation analysis 

AnyLogic™ XY Logic Authoring sample AnyLogic models, 
model representation analysis 

Commercial 
Discrete Event 
Simulation 
software 
packages 

ProModel® ProModel 
Corporation 

Authoring sample ProModel models, 
model representation analysis 

Access™ Microsoft Reviewing Arena export file  Commercial file 
format 
manipulation 

Microsoft® 
Office Excel 2003

Microsoft Reviewing and accessing 
ProcessModel export files 

Ontology design Microsoft® 
Visio® 

Microsoft Drawing UML-style class diagrams of 
the ontology design 

SemanticWorks™ Altova Editing and validating ontologies. 
Protégé Stanford 

University 
Creating and editing ontologies 

Ontology 
encoding 

DOAT DRC Creating ontologies from a database 
structure 

Instance file 
encoding 

XMLSpy® Altova Validating instance files 

Ontology output 
formatting 

DumpOnt BBN Formatted presentation of ontologies 

Software 
Development 

Visual Basic® Microsoft Exporting data from Arena and 
converting ProcessModel data from 
MS Excel to RDF/XML 

Microsoft® Word 
2003 

Microsoft Performing word processing 

Acrobat® Adobe Translating document formats 

Documentation 

Visio® Microsoft Editing figures 
Web Site 
Development 

Microsoft Front 
Page® 

Microsoft Developing the support website 

 

70 



3.2 Procedures 

The PIMODES research followed a structured systems engineering approach that was 

flexible enough to allow for innovation and creativity throughout the process.  A goal of the 

process was to support repeatability, verification, validation, and extensibility by documenting 

the process and the results. 

The research process included research planning, a literature search, the development of 

the PIMODES ontology, a demonstration of the ontology’s use, and the documentation of 

research results.  An IDEF0 activity model of the research process is shown in Figure 4.  

Although the model suggests a waterfall approach, the process actually involved spiral 

development with iterative refinement.  The following sections describe each activity. 
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Figure 4.  PIMODES Research Activity Model 
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3.2.1 Research Planning 

The planning phase of the research included describing the research process with the 

activity model presented above.  A product of the planning phase is a Research Plan that details 

the steps to be performed and the products to be produced.  Identified tasks should be detailed by 

identifying their inputs and outputs, their relationships to other tasks, and a schedule for 

completing them with milestone delivery dates for the artifacts they produce. 

3.2.2 Literature Search 

The literature search for this effort was highly influenced by DES papers presented at the 

Winter Simulation Conference, books on DES, and documentation for popular DES software 

applications.  Prior work was reviewed in the subjects of discrete event simulations, process 

metamodels, process languages, discrete event simulations, and simulation software.  Key 

information gleaned from this phase was used to design the PIMODES ontology. 

3.2.3 PIMODES Ontology Development 

The focus of the research was the development of the Process Interaction Modeling 

Ontology for Discrete Event Simulation (PIMODES) language - formalized by an OWL 

ontology.  Reviewed literature and legacy applications heavily shaped the ontology design.  The 

PIMODES ontology development effort was similar to a software development effort.  

Ontologies, like software, are best developed with documented, repeatable, and mature 

processes.  The PIMODES ontology development process steps are depicted in the activity 
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model in Figure 5.  The diagram represents an expanded view of the “A3” activity described in 

the overall activity model shown in Figure 4 above. 
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Figure 5.  PIMODES Ontology Development Activities 

 

PIMODES ontology development activities included specifying requirements, designing 

the ontology, and encoding the ontology.  Ontology development involves an evolution and 

coagulation of granular ambiguous domain concepts into formal specific encoded formalisms 

(see Figure 6).   
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Figure 6.  Ontology Concept Evolution 
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3.2.3.1 Specifying Requirements 

The requirements analysis phase scoped the ontology and focused the effort.  A 

comprehensive set of requirements for the research effort must specify requirements for legacy 

data support, the objective ontology, and the demonstration translation software.  Unique 

requirement identifiers for each requirement help support traceability. 

3.2.3.2 Designing the Ontology 

Key ontology design steps included identifying harmonized DES concepts, specifying a 

visualization language, and identifying language elements.  Ontology requirements scope the 

domain and help identify process interaction DES concepts.  The design should document the 

harmonization of legacy application model representation approaches and trace back to specified 

requirements.  The PIMODES concepts were identified using a harmonization process that 

considered approaches implemented by legacy applications and incorporated widely-adopted 

concepts from process interaction DES literature.  Concept maps helped relate key concepts from 

the domain.  The subject domain of the PIMODES ontology is a language that describes 

temporally related activities.  Therefore, a graphical representation was a key related element.  

PIMODES concepts and graphical representations evolved into ontology classes with associated 

properties.  Supported information was modeled in a static class diagram that considered object-

oriented techniques (e.g., generalization). 
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3.2.3.3 Encoding the Ontology 

The static data model from the ontology design was encoded using OWL.  OWL 

ontology encodings must be represented in compliant datafiles that are computer readable.  The 

preferred format for OWL files is RDF/XML.  OWL ontologies can be encoded directly with a 

text editor, or through the use of ontology editing tools.  The encoded ontological elements 

should include comments.  A database tool (DOAT) was used to manage the class and property 

descriptions and automatically generate the complex OWL RDF/XML syntax. 

3.2.4 Ontology Testing and Use Demonstrations 

Prototype software was developed to demonstrate the feasibility of translating models 

from legacy simulation products into the PIMODES format (and vice versa).  The software was 

designed, coded, and tested.   

3.2.4.1 Demonstration Translation Software Design 

A key software design goal was modularity to support software extensions for additional 

legacy applications in the future.  The design process evolved requirements into a high level 

design.  The high level design formed the basis for designing detailed data mappings describing 

translations of the semantics of simulation model descriptions.  The modular software design 

helped associate support for legacy applications with specific portions of code.  The high level 

design of the software focused on the dataflow between legacy representations and the 

PIMODES representation. 
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A detailed design process generated data models and mapping descriptions using object-

oriented design principles.  Data representations and translation functions were allocated to 

object-oriented software classes and methods.  Legacy application model representation 

approaches were compared and contrasted with the harmonized PIMODES representation to 

identify required conversions.  The detailed design defined mappings between the legacy 

application representation and the PIMODES representation.  Object-oriented surrogate classes 

were designed to simplify the code by temporarily storing model data from legacy applications 

and PIMODES ontology classes during the translation process.  The software design traces back 

to requirements to help verify the completeness of supported model data as well as the 

functionality of the translation software. 

3.2.4.2 Software Coding 

The detailed software design has evolved into software code by writing Visual Basic 

.NET code using Microsoft Visual Studio.  Object-oriented classes were encoded as classes with 

supporting methods.  Legacy application data access mechanisms constrained the interface code.  

Access routines imported legacy application data files or data objects in memory.  Software 

routines for legacy support and PIMODES were modularized using class libraries.  Mappings 

were implemented with assignment statements and conversion functions.  The software code was 

traced back to requirements using comments that reference requirement numbers.  A simple user 

interface was required to allow users to identify source and destination filenames and formats.  

Error messages were defined to identify unsupported items to the user during the translation 

process. 
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3.2.4.3 Demonstration and Testing Model Development and Experimentation 

A set of sample models was needed to test and demonstrate the features of the translation 

software.  Demonstration models representing sample common process interaction DES 

problems were developed to demonstrate interchange.  Testing models exhaustively employed 

legacy and PIMODES language constructs to verify translations. 

Conceptual models were needed for each type of demonstration model to support model 

designs.  A version of each model was needed for each supported legacy simulation application 

in order to compare representations. 

Investigative models were also needed to determine how various applications stored their 

data and to test the translation software for completeness.  A demonstration script was needed to 

make it easy for others to repeat demonstration results. 

Model translation verification involved several steps.  First, the conversion process 

needed to execute smoothly without warnings or errors being generated.  Next, the syntax of the 

resulting file needed to be checked.  Models translated in the PIMODES format were checked in 

SemanticWorks with automated ties to the PIMODES ontology to verify consistency with the 

ontology.  Models translated from PIMODES into legacy application formats were opened using 

the target tool to ensure that the generated files were valid.  Tools such as SemanticWorks can 

use the PIMODES ontology to automatically identify any syntactic or semantic errors in the 

instance file.  Lastly, a manual process verified that all of the model content was translated 

according to the design of the software. 
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3.2.5 Research Artifact Documentation 

Results of the research need to be shared with other researchers and potential adopters.  

Research artifacts including the ontology, documentation, and source code must be hosted on a 

public website to provide access to the widest possible audience. 

3.3 Limitations 

Certain assumptions and decisions were made during the research process that resulted in 

limitations.  PIMODES research limitations were primarily associated with the concept of 

developing a standard process interaction DES language and with decisions made regarding the 

research approach. 

3.3.1 Concept Limitations 

The concept of developing a standard process interaction DES language has limitations 

involving the approach of developing a universal language, lack of accepted formalisms for 

process interaction DES, dependencies on simulation application vendors, and the long term 

requirements of simulation developers to adopt the ontology as a standard. 

3.3.1.1 Universal Language Development Approach Concept Limitation 

Kreutzer (1986) states that the development of a universal simulation language that could 

support model interchange is impractical and unrealistic.  At one extreme, lossless conversion to 

and from a standard language is impossible without a true superset of all support languages’ 

79 



constructs.  Developing a common process interaction DES language is similar to the DoD-

initiated and partially-funded Sharable Content Object Reference Model (SCORM) and 

Synthetic Environment Data Representation and Interchange Specification (SEDRIS) standards 

that support interoperability of interactive multimedia instruction and terrain databases 

respectively.  These standardization efforts attempt to support interoperability with open neutral 

languages and have been lengthy and expensive.  As noted above, Shriber (1991) points out that 

although modeling languages are often based on common principles, mastering a single language 

does not enable a person to apply simulation to all situations.  This statement could be used to 

argue that a DES process interaction ontology (language) will not support all models. 

3.3.1.2 Process Interaction DES Formalism Concept Limitation 

PIMODES is not tied to a widely accepted formalism for process interaction DES 

because a widely accepted authoritative exhaustive list of ` process interaction DES concepts 

does not yet exist.  Other popular DES world views (e.g., event-based, activity-based) have 

formalisms associated with them that are more mature compared to the process interaction DES 

world view.  However, the PIMODES ontology does support common key features of process 

interaction world view models. 

3.3.1.3 Vendor Dependencies Concept Limitation 

A limitation of developing a standard language is its dependency on simulation software 

application vendors.  The PIMODES concept requires applications to expose and populate their 

internal model data.  Translation software must provide programmatic access or import/export 
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formats to read and write model data.  PIMODES translation requires common / mappable 

semantics.  If an application does not support a concept, a disconnect will occur.  For example, 

ProcessModel does not provide a direct method for specifying the maximum number of entities 

to create in its arrival routing connection, a feature provided in Arena’s “Create” flowchart 

module. 

3.3.1.4 Adoption Concept Limitation 

Long term success of the PIMODES concept requires adoption by simulation application 

developers.  One purpose of PIMODES was to encourage adoption of a neutral interchange 

format.  Successful standards typically originate from recognized benefits rather than being 

mandated.  Vendors must see advantages to competing on the user interface and execution 

portions of their products and cede control of their data representations.  Without legacy 

applications adopting PIMODES as a natively supported format, translation issues will arise as 

vendors continue to update their applications and their model data representations.  At a 

minimum, adopters of the concept must provide access to their internal data.  Optimally, 

adopters would read and write the PIMODES format natively.   

3.3.2 Approach Limitation 

Some limitations are associated with the specific approach taken in this research effort to 

implement the PIMODES concept.  Approach limitations are related to the scope of the effort, 

ontology design, the choice of the ontology language, and the design and coding of the 

translation software. 
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3.3.2.1 Scope Approach Limitation 

The developed ontology only supports one type of DES model – those described using 

the process interaction world view.  Within process interaction DES models, only a subset of 

language elements are supported.  More complex concepts (e.g., Arena’s transporters and 

conveyors) could be added in future versions. 

3.3.2.2 Ontology Design Approach Limitation 

Harmonization choices and design decisions were made regarding model information 

representation.  Ontology design decisions were made regarding the use of OWL language 

features.  For example, many of the properties were defined as functional properties.  An OWL 

functional property can only have one value associated with a particular instance.  A 

determination was made for each ontology property regarding which OWL property features 

should be employed.  A normalization process similar to database normalization process might 

result in a more efficient but less human understandable version of the ontology. 

3.3.2.3 Ontology Language Choice Approach Limitation 

The developed ontology is encoded using OWL.  The PIMODES ontology is therefore 

limited to the expressiveness of OWL.  OWL was selected because it is the W3C standard for 

representing ontologies.  Other ontology languages exist and there are some critics of OWL.  

Critics cite issues such as the lack of support for rules in the current version of OWL.  Models 

often contain conditions that are naturally expressed as rules.  The Semantic Web Rules 

Language (SWRL) is under development and may eventually support this aspect.  Some critics 
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of Semantic Web technology claim that interoperability is still being performed at the syntactic 

and not semantic level (Butler, 2006). 

3.3.2.4 Translation Software Design and Coding Approach Limitations 

Some limitations exist because of how the demonstration translation software was 

designed and coded.  The demonstration application is PC-based and cannot be easily 

implemented as a Web application.  Also, the coding for the translation demonstration software 

uses Microsoft Visual Basic which limits portability compared to languages such as Java.  The 

PIMODES demonstration software was developed as a PC application because it needed to 

easily interface with ActiveX components that were installed along with their associated 

application on a particular PC.  An installed PC application is less portable than a Java-based 

application or a Web-services approach.  The demonstration software loads all model data into 

memory before processing.  This approach limits the size of supported models. 
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4 CHAPTER FOUR: RESULTS 

 PIMODES research resulted in artifacts identified as outputs from the activity diagrams 

shown above in the Methodology section.  The following subsections describe each of the 

resulting artifacts. 

4.1 Research Plan 

A research plan was developed that identified the research activities that were performed.  

The plan helped to organize the effort and keep the research focused on the objectives.  All 

phases of the research were heavily influenced by the choice of legacy simulation applications.  

Arena and ProModel were selected because of their large installed base as evidenced by 

references in Winter Simulation Conference papers.  AnyLogic represents simulation 

applications employing object-oriented techniques.  ProcessModel was selected as an example of 

low-cost DES software. 

4.2 Requirements Specification  

The requirements specification identifies the information that the ontology must 

represent, the functionality of the demonstration translation software, and the content to be 

hosted on the support website.  The requirements were iteratively refined throughout effort to 

describe the “as built” effort.  The requirements document is titled the PIMODES Research 

Artifacts Requirements Specification and is provided online at: 
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http://www.opendes.org/PIMODES/Artifacts/PIMODES Requirements.pdf.  Table 2 summarizes 

the requirements for supporting legacy applications and PIMODES model data. 

 

Table 2.  Model Information Support Requirements Summary 

 Arena ProcessModel AnyLogic ProModel PIMODES 
Process 
Concepts 

Entity (Type) 
Queue 
Resource 
Variable 
(Entity) Attribute 

Entity 
Resource 

Variable Entity 
Resource 
Location 
Attribute 
Variable 

Entity Type 
Entity 
Attribute 
Queue 
Resource 
Variable 
Location 

Activities Assign 
Create 
Decide 
Dispose 
Process (includes 
Delay) 

Activity 
Arrival 

Source 
Sink 
Queue 
SelectOutput 
Delay 
Resource 
SeizeQ 
Release 
ProcessQ 

Processing 
Arrivals 

Creation 
Assignment 
Resource 
Interaction 
Delay 
Branching 
Disposition 
Queue 

Control 
Flow 

Connections Connections Port References 
Connections 

Routing Flowchart 
Nodes and 
Arcs 

4.3 Ontology Design Document 

The ontology design document describes the object-oriented design of the PIMODES 

ontology.  The document describes legacy application methods for representing model data.  The 

document shows how concepts from various legacy applications were harmonized into the 

PIMODES design.  The ontology design document also describes a graphical representation 

language that leverages the visualization representation associated with UML 2.0 Activity 

Diagrams.  The ontology design document is titled the PIMODES Ontology Design Document 
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and is provided online at: http://www.opendes.org/PIMODES/Artifacts/PIMODES Ontology 

Design.pdf. 

4.3.1 Legacy Model Representation Analysis 

Several popular legacy applications were analyzed to determine their process interaction 

DES approach for representing models and interchanging model data.  Each legacy application 

analyzed (i.e., Arena, ProcessModel, AnyLogic, and ProModel) uses different concepts to 

represent process interaction DES, uses a different GUI for authoring internal data structures, 

and employs different techniques for importing and exporting model data.  The disparate 

approaches shared key concepts for representing process interaction DES models that were 

harmonized into a single representation. 

4.3.2 Harmonized Concepts 

A concept map helps to graphically represent subject concepts and their relationships.  

The PIMODES concept map is shown in Figure 7.  The activity concept is decomposed to show 

the relationship of activity concepts to process concepts (see Figure 8).  In an effort to simplify 

translations, composite commands (e.g., Arena’s “Process” flowchart module that performs 

resource interaction, queuing, and delays) were split into sequential chains of equivalent atomic 

commands.  Many of these single action statements were reminiscent of SIMAN commands.  A 

tradeoff exists between composite operations that are convenient for the author to use and atomic 

operations that simplify interchange. 
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Figure 7.  PIMODES Concept Map 
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Figure 8.  Activity Influence on Process Concepts 
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4.3.3 Objective PIMODES Ontology Description 

The harmonized concepts were evolved into an object-oriented description.  Clear 

semantics are required to unambiguously define concepts in an ontology.  A static data model 

was developed for representing the PIMODES design.  The data model was expressed using 

modified IDEF1X/UML static class diagrams to describe ontology classes and properties.  The 

static object model for classes with associated properties was detailed sufficiently for encoding 

into an OWL ontology.  An overview class diagram is presented in Figure 9. 
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Figure 9.  PIMODES Ontology Class Diagram 
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4.3.4 Legacy Application Support 

The harmonized ontology design’s support for legacy applications varied.  One metric for 

determining coverage would be the percentage of a legacy application’s constructs that are 

supported by the ontology.  However, since some constructs are rarely used in practice, a better 

metric would relate the level of support to the frequency of use (e.g., creation of entities occurs 

in almost every model).  A detailed analysis of PIMODES ontology support for legacy constructs 

is provided in the design document. 

4.3.5 Graphical Representations 

A graphical representation was specified for representing PIMODES models.  PIMODES 

flowcharts can be represented using an enhanced UML 2.0 activity diagram approach.  Standard 

UML diagrams were enhanced by relating activities to resources to indicate resource interaction.  

This approach is similar to resource assignment representations in ProcessModel. 

4.4 PIMODES Ontology Description Report 

The PIMODES ontology was encoded using the DOAT tool.  The PIMODES Ontology 

Description Report provides DOAT table views, DumpOnt listings, and the RDF/XML code for 

the PIMODES ontology.  The document is provided at 

http://www.opendes.org/PIMODES/Artifacts/PIMODES Ontology Description.pdf. 
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4.5 Translation Software Design 

The translation software design document describes the design of the demonstration 

translation software.  It includes high level design diagrams and detailed mapping tables and is 

provided at http://www.opendes.org/PIMODES/Artifacts/PIMODES Translation SW 

Design.pdf.  The overview dataflow diagram is presented in Figure 10. 
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Figure 10.  Translation Software Design 

The design document includes detailed mapping information and identifies limitations of the 

translation process.  Besides conceptual (semantic) differences (e.g., no explicit location support 
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in AnyLogic), some losses occur in the translation process due to the complexity of 

implementing the mappings. 

4.6 Translation Software Code 

The software coding effort resulted in a set of object-oriented Visual Basic projects.  The 

PIMODES Translation Software Description Report is provided at: 

http://www.opendes.org/PIMODES/Artifacts/PIMODES Code.pdf.  It describes the structure of 

the translation software class libraries.  The document also shows traceability back to 

requirements. 

4.7 Demonstration and Test Models Report  

Demonstration and testing models were developed.  Versions of these models included 

conceptual models, legacy application file formats, and native PIMODES versions.  The models 

are described in the PIMODES Demonstration and Test Models Report which is provided at:  

http://www.opendes.org/PIMODES/Artifacts/PIMODES Models.pdf.  An airport model was 

developed to demonstrate common queuing elements.  An inventory model was developed to 

demonstrate mathematically-oriented features.  Exhaustive testing models were developed for 

ensuring the completeness of the translation process.  Based on the three models and the seven 

translation directions, a set of twenty one experiments were executed (see Table 3). 
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Table 3.  Model List 

Model Type Source Destination Experiment # 
Arena PIMODES 1 
ProcessModel PIMODES 2 
AnyLogic PIMODES 3 
ProModel PIMODES 4 

Arena 5 
AnyLogic 6 

Airport 

PIMODES 

ProModel 7 
Arena PIMODES 8 
ProcessModel PIMODES 9 
AnyLogic PIMODES 10 
ProModel PIMODES 11 

Arena 12 
AnyLogic 13 

Inventory 

PIMODES 

ProModel 14 
Arena PIMODES 15 
ProcessModel PIMODES 16 
AnyLogic PIMODES 17 
ProModel PIMODES 18 

Arena 19 
AnyLogic 20 

Exhaustive 

PIMODES 

ProModel 21 
 

The following sections describe the results observed from performing the 21 translations with the 

demonstration translation software. 

4.7.1 Arena to PIMODES Results 

Arena does not appear to expose a differentiation of true and false connections from the 

Decide flowchart module.  The information appears to be contained in “private” operands.  

Copying and then pasting modules in Arena results in the loss of unique identifiers due to 

Arena’s duplication of information in the copying process. 
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4.7.2 ProcessModel to PIMODES Results 

ProcessModel does not expose connection arcs in its .xls export file.  Therefore, 

PIMODES flowchart arcs cannot be automatically generated from ProcessModel.  ProcessModel 

does not expose its resource assignments in its .xls export file.  Therefore, PIMODES Resource 

Interaction activities cannot be automatically generated from ProcessModel.  ProcessModel does 

not expose the “firstTime” attribute associated with periodic arrivals in its .xls export file.  

Therefore, the associated property in the PIMODES Creation Activity cannot be automatically 

generated from ProcessModel. 

ProcessModel allows for different “firstTime” and “interarrivalTime” units of measure 

(time) associated with periodic arrivals in its .xls export file.  However, only one unit of measure 

can be specified in a PIMODES Creation Activity. 

4.7.3 AnyLogic to PIMODES Results 

No loss of information was observed in the translation from AnyLogic to PIMODES. 

4.7.4 ProModel to PIMODES Results 

ProModel allows for different types of processing to be applied to different entity types.  

This is specified by associating an entity type with the Processing table instructions.  However, 

the translation software currently assumes that the same processing logic applies to all entity 

types at the specified location. 
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ProModel allows for assignments to be made to both variables and entity attributes within 

the process operation of a Processing table record.  However, the translation software currently 

assumes that all assignments are made to variables. 

ProModel allows for branching to specified with multiple records in the Processing 

table’s Routing subtable.  However, the translation software assumes that only two-way branches 

occur and that their destinations are specified in consecutive records.  The translation software 

also assumes that the sum of percentage conditions is 100%. 

4.7.5 PIMODES to Arena Results 

Arena data modules for entity types, resources, and queues are automatically generated 

when related flowchart modules are specified.  Therefore, the translation software does not map 

PIMODES information to these items.  However, this can cause a problem if the PIMODES 

version of the model contains Queue activities with different queue types because Arena queues 

can only have a single queue type.  Since PIMODES Queue activities are not directly translated 

to Arena, the associated connections to and from Queue activities are lost.  Since Arena does not 

support a concept of locations, the PIMODES Location information is lost. 

4.7.6 PIMODES to AnyLogic Results 

Since AnyLogic does not support a concept of locations, the PIMODES Location 

information is lost.  The current version of the translation software does not construct the 

connections to Resource objects. 
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4.7.7 PIMODES to ProModel Results 

The current version of the translation software does not construct the Processing table’s 

Routing subtable.  This results in a loss of control flow specification. 

4.7.8 Experimentation Results Summary 

The demonstration and testing models only contain supported items.  Therefore, no issues 

of scope arose during the translations.  However, observed problems were associated with issues 

of: 

• syntax (data exposure from legacy applications), 

• semantics (PIMODES ontology support), and 

• automated conversions (translation software design and code). 

4.8 Demonstration Script  

The translation software user interface (see Figure 11) is fairly simple and intuitive to 

use.  However a demonstration script was developed to ensure repeatability.  The script provides 

step-by-step instructions for executing the translation software with one of the demonstration 

models.  The script is provide at http://www.opendes.org/PIMODES/Artifacts/PIMODES Demo 

Script.pdf. 
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Figure 11.  PIMODES Translation Software User Interface 

4.9 Web Site 

The project support website is available at:  http://www.opendes.org/PIMODES/.  The 

site provides information about the effort, the PIMODES ontology, the demonstration translation 

software, and softcopies of the research artifacts. 

4.10 Results Artifact Summary 

In addition to the dissertation text, the work products identified in Table 4 were generated 

as a result of the research.  Each of the artifacts is provided on the project website. 
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Table 4.  Artifact Summary 

Document Title / Hyperlink Format 
PIMODES Research Artifacts Requirements Specification / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Requirements.pdf

Microsoft Word 

PIMODES Ontology Design Document / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Ontology Design.pdf

Microsoft Word,  
Visio 

PIMODES Ontology Description Report / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Ontology Description.pdf

Microsoft Access DB 
Tool,  
OWL output 

PIMODES Translation Software Design Document / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Translation SW Design.pdf

Microsoft Word,  
Visio UML dataflow 
diagrams 

PIMODES Translation Software Description Report / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Code.pdf

ASP.NET,  
XSLT 

PIMODES Demonstration and Test Models / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Models.pdf

Microsoft Word,  
Visio 

PIMODES Demonstration Script / 
http://www.opendes.org/PIMODES/Artifacts/PIMODES 
Demo Script.pdf

Microsoft Word 
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5 CHAPTER FIVE: CONCLUSIONS 

This chapter presents research conclusions, offers recommendations to the problem 

investigated, discusses implications for future studies, and addresses the implications of the 

results. 

5.1 Research Conclusions 

The PIMODES research demonstrated that a process interaction DES ontology can be 

developed and that compliant models can be interchanged between legacy applications using 

automated translation software. 

5.1.1 Process Interaction DES Ontology Development 

The PIMODES research demonstrated that a process interaction DES ontology could be 

developed.  DES concepts from literature and legacy applications were harmonized into a 

concept map that provided the basis for an ontology design.  The ontology design was encoded 

into an OWL ontology file.  The PIMODES ontology provides formal computer-parseable 

descriptions of process interaction DES concepts with OWL class and property specifications.  

The use of software technology including Semantic Web technology provides benefits over a 

simple text file approach.  For example, entity types in a model can be distributed on the Web, 

identified with a URI reference, and associated with a domain ontology.  Ontology-enabled 

software can enforce constraints on conforming instance files, leading to early detection of 

errors. 
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The PIMODES ontology refines and formalizes key process interaction DES concepts.  

PIMODES requires explicit individual start and end nodes in the control flow flowcharts.  This 

serves to remove ambiguity and helps determine model completion status.  PIMODES also 

defines a formal relationship between the activity, flowchart node, and location concepts.  

PIMODES formally defines the concept of an “Entity Type” which is often confused with the 

concept of the associated entities that are instances of the “Entity Type”. 

5.1.2 Legacy Application Model Interchange Feasibility 

The PIMODES research also demonstrated that popular legacy application process 

interaction DES models can be interchanged using the PIMODES ontology.  Significant portions 

of models authored using legacy applications were translated to the PIMODES format with 

translation software.  PIMODES  model data was also translated into legacy formats.  The 

interchange experiments showed that: 

• Legacy application process interaction DES model representations share a high degree of 
commonality, 

• Vendors must expose their model data to allow for interchange, and 
• Software can be developed to automate the translation of model data to and from the 

PIMODES format. 

5.1.2.1 Legacy Model Representation Approach Commonality 

Extensive semantic commonality exists in legacy process interaction DES languages.  

This is due to common objectives and a common heritage (family tree) of process interaction 

DES concepts.  Similarities also resulted from the selection of the four primary legacy 

applications to review. 
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Although there are considerable similarities, there are also differences.  For example, the 

ProModel location concept is more important for shop floor models but practically useless in 

describing processes performed by distributed Web services in a Service Oriented Architecture.  

Software applications also differ in their use of composite operations (e.g., Arena’s “Process” 

flowchart module) for authoring convenience. 

Older simulation applications tend to follow a functional approach while many newer 

applications (e.g., AnyLogic) use an object-oriented approach.  This difference may mirror the 

trends in the broader software industry which has migrated from functional programming to 

object-oriented programming.  In an object-oriented approach, activities are treated as objects 

(manipulators) and entities are represented as messages between them. 

This research effort demonstrated that models from various legacy simulation 

applications can be interchanged.  The loss of data associated with these conversions varies.  The 

loss depends largely on how applications expose their model data and the semantics of how the 

information represents the application’s particular perspective of the process interaction world 

view of discrete event simulation. 

5.1.2.2 Vendors Must Expose Their Model Data to Allow Interchange 

Legacy applications store model data in their internal data structures.  A major feature of 

most commercial packages is their authoring GUI that populates their model data structures.  

However, vendor model representations are often overly coupled with their user interfaces, 

resulting in interchange challenges.  Model interchange requires legacy applications to expose 
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their data and import new data.  The easiest method of interchange would be to use PIMODES 

natively.  The next simplest approach is to use XML - the approach used by AnyLogic. 

5.1.2.3 Translation Software Feasibility 

This effort demonstrated that the development of automated translation software is 

feasible.  The software is constrained by vendors’ support for importing and exporting model 

data.  The demonstration translation software shows that models developed with existing popular 

applications can be interchanged with each other.  Model developers can now begin to share 

models.  The translation software can be extended to support additional simulation packages. 

5.2 Recommendations 

PIMODES research results should be leveraged to improve the state of the process 

interaction DES practice.  PIMODES should be promoted as a “strawman” for a process 

interaction DES model representation interchange standard.  Tool vendors should be educated on 

the benefits of providing a native PIMODES view of their internal model representations.  Users 

should be told about the benefits of model reuse and the technology options for interchanging 

models.  The theoretical descriptions of process semantics should be investigated and discussed 

to develop a consensus formalism that could serve as the basis for an ontology. 
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5.3 Implications for Future Studies 

 PIMODES research results can support a variety of future research studies.  Additional 

work could investigate the scope and design of the PIMODES ontology as well as software 

applications to leverage the ontology.  Research could also be performed regarding the 

aggregation and dispersion of model components using PIMODES. 

5.3.1 Ontology Scope 

The PIMODES requirements document specifies model data that must be supported by 

the ontology.  New requirements could be added to the PIMODES requirement specification to 

support additional applications.  Support for additional languages (e.g., FlexSim, GoldSim, 

Gensys G2) would help validate the PIMODES ontology and lead to improvements. 

The PIMODES ontology provides a foundation for ontology-based simulations.  The 

PIMODES ontology could be connected to upper ontologies to support semantic joins with other 

ontologies.  Additional process interaction DES concepts could be adopted to PIMODES such as 

supporting hierarchical models, and including additional process concepts (e.g., schedules, sets).  

PIMODES currently supports only a single “flat” level of process steps.  However, complex 

models require hierarchical models and PIMODES could be extended to support them. 

PIMODES could be incorporated into the SCORM family of standards for interchange training 

simulations.  As a common language, PIMODES enables testing benchmarking by allowing for 

direct comparisons of models authored with various simulation software packages. 
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5.3.2 Ontology Design 

A variety of designs could result from the PIMODES ontology requirements.  Alternative 

designs could be developed.  A significant model reuse challenge is the variety of approaches for 

representing mathematical expressions, especially distribution functions.  The commonality of 

expression representations should be addressed, perhaps by investigating the use of MathML.  

Similarly, rules could be used to formalize the expression of conditions. 

A variety of graphical representations are used to describe processes.  A formal ontology 

of diagrams could help differentiate between methods for representing control flow.  An 

associated graphical language could be investigated.  UML 2.0 ADs are insufficient because of 

the need to describe  resource requirement associations and branching logic. 

5.3.3 Software Application Development 

New software can now be developed to support process interaction DES users.  Open 

source software initiatives would be consistent with the open nature of the PIMODES ontology.  

Authoring software could edit PIMODES models as a native file format.  Other software could 

execute PIMODES models.  Eventually, new technologies such as Web services could support 

the format.  A model editor could be developed that uses PIMODES as its native data format.  

The editor would help users visualize and manipulate translated data. 

The PIMODES focus is on describing a model.  However, a small amount of additional 

data could describe an experiment.  Such data would include replication restrictions and other 

data to support simulation execution.  Software could execute the PIMODES models and provide 

output statistics to users.  This would avoid the need for translating to/from legacy simulation 
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software application model formats.  A popular trend in software development is the use of Web 

services.  Web services could be developed to provide PIMODES model authoring and execution 

using software distributed on the Web.  This approach would be consistent with the distributed 

model capabilities enabled by the PIMODES ontology and the web-ready features of OWL. 

5.3.4 Aggregation and Dispersion 

PIMODES could be used to support the aggregation and dispersion of model contents.  A 

model author might want to assemble a new model from portions of existing models that are 

represented with various languages.  The existing models could be converted to the PIMODES 

format and then portions of interest could be extracted from the converted models and assembled 

into a new PIMODES model. 

Another use case could involve splitting a PIMODES model into components that are 

then converted to other formats for execution by various simulation applications.  In this way, 

the best features of different packages could be used to simulate specific portions of the original 

model. 

5.4 Implications of the Results 

The development of the PIMODES ontology represents a new opportunity to share DES 

models.  Many common operations and concepts are supported.  Therefore, a great deal of legacy 

model content can be interchanged using the ontology. 
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The PIMODES ontology represents a new open process interaction DES language, 

formalized with an OWL ontology, for interchanging process interaction DES models.  

Researchers can extend the PIMODES language with additional concepts and activities. 

The PIMODES ontology enables a new ontology-based approach to process interaction 

DES model interchange that supports reuse.  Ultimately, model development can be better, 

faster, and cheaper through the reuse enabled by using PIMODES. 

106 



LIST OF REFERENCES 

Andrews, T. et al (2003). Business Process Execution Language for Web Services, Version 1.1. 
Retrieved March 18, 2006 from http://xml.coverpages.org/BPELv11-
May052003Final.pdf. 

 
Ankolekar, A., Paolucci, M., & Sycara, K. (2004). Spinning the OWL-S Process Model Toward 

the Verification of the OWL-S Process Models.  Proceedings of the Semantic Web 
Services Workshop at the Third International Semantic Web Conference. 

 
Arief, L. B., Speirs, N. A. (2000). A UML Tool for an Automatic Generation of Simulation 

Programs. Proceedings of the Second International Workshop on Software and 
Performance. 

 
Balci, O., Bertelrud, A. I., Esterbrook, C. M., & Nance, R. E. (1998). Visual Simulation 

Environment. Proceedings of the 1998 Winter Simulation Conference. 
 
Ball, P. (1996). Introduction to Discrete Event Simulation.  Proceedings of the Second 

DYCOMANS workshop on Management and Control: Tools in Action.  Retrieved March 
7, 2005 from http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html. 

 
Banks, J. (1996). Software for Simulation. Proceedings of the 1996 Winter Simulation 

Conference. 
 
Banks, J. (2001). Panel Session: The Future of Simulation. Proceedings of the 2001 Winter 

Simulation Conference. 
 
Banks, J., & Carson, J. S. II (1985). Process-interaction Simulation Languages. Simulation 44:5, 

225-235. 
 
Banks, J. & Carson J. S., (1986). Introduction to Discrete-event Simulation. Proceedings of the 

18th Winter Simulation Conference. 
 
Bapat, V. & Swets, N. (2000). The Arena Product Family: Enterprise Modeling Solutions. 

Proceedings of the 2000 Winter Simulation Conference. 
 
Barros, F. J. (1995). Dynamic Structure Discrete Event System Specification: a New Formalism 

for Dynamic Structure Modeling And Simulation. Proceedings of the 27th conference on 
Winter simulation. 

 
Belanger, T. C. (1994). The Indispensable Task Network. AIPE Facilities. 
 

107 

http://xml.coverpages.org/BPELv11-May052003Final.pdf
http://xml.coverpages.org/BPELv11-May052003Final.pdf
http://www.dmem.strath.ac.uk/%7Epball/simulation/simulate.html


Benjamin, P., Akella, K.V., Malek, K., & Fernandes, R. (2005). An Ontology-Driven 
Framework For Process-Oriented Applications. Proceedings of the 2005 Winter 
Simulation Conference 2005. 

 
Berners-Lee, T. (1998). What the Semantic Web can represent.  Retrieved September 14, 2006 

from http://www.w3.org/DesignIssues/RDFnot.html. 
 
Berners-Lee, T. (1999). Weaving the Web. 
 
Berners-Lee, T. (2000). Semantic Web. Presentation at XML 2000. Retrieved September 14, 

2006 from http://www.w3.org/2000/Talks/1206-xml2k-tbl/. 
 
Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American 284 

(5): 34–43. 
 
Blais, C., & Lacy, L. W. (2004). Semantic Web: Implications for Modeling and Simulation 

System Interoperability, Proceedings of the Fall 2004 Simulation Interoperability 
Workshop. 

 
Bobeanu, C., Kerckhoffs, J. H., & Van Landeghem, H. (2004). Modeling of Discrete Event 

Systems: A Holistic and Incremental Approach using Petri Nets. ACM Transactions on 
Modeling and Computer Simulation (TOMACS), Volume 14 Issue 4. 

 
Bock, C. (1999). Three Kinds of Behavior Model. Journal of Object-Oriented Programming. 

Volume 12, Number 4. 
 
Bock, C. (2003). UML 2 Activity and Action Models. Journal of Object Technology, Volume 2, 

Number 4. 
 
Bock, C., & Gruninger, M., (2005). PSL: A Semantic Domain for Flow Models. Journal of 

Software and Systems Modeling, 4:2. 
 
Brutzman, D., Zyda, M., Pullen, J.M., & Morse, K.L. (2002). Extensible Modeling and 

Simulation Framework (XMSF) Challenges for Web-based Modeling and Simulation. 
Retrieved September 5, 2005 from http://www.movesinstitute.org/xmsf. 

 
Butler, M.H. (2006). Is the Semantic Web Hype?. Retrieved June 12, 2006 from 

http://www.hpl.hp.com/personal/marbut/isTheSemanticWebHype.pdf 
 
Carey, S. A., Kleiner, M.S., Hieb, M.R., & Brown, R., (2002a). Standardizing Battle 

Management Language – Facilitating Coalition Interoperability. MSIAC M&S Journal, 
Vol. 4 #2. 

 
Carey, S. A., Kleiner, M.S., Hieb, M.R., & Brown, R. (2002b). Development of a C2 Standard of 

Task Representation for C4ISR Systems, Simulations, and Robotics: Battle Management 

108 

http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.movesinstitute.org/xmsf


Language.  Paper presented at the 2002 Command and Control Research and Technology 
Symposium. Track 3: Modeling and Simulation. 

 
Carroll, J. J., & DeRoo, J. (2004). OWL Web Ontology Language Test Cases.  Retrieved 

September 14, 2006 from: http://www.w3.org/TR/owl-test/. 
 
Cassandras, C.G., & Lafortune, S. (1999).  Introduction to Discrete Event Systems. Kluwer. 
 
Cavarra, A., Riccobene, E., & Scandurra, P. (2004) A Framework to Simulate UML Models: 

Moving from a Semiformal to a Formal Environment. Paper presented at the ACM 
Symposium on Applied Computing. 

 
Clementson, A. T. (1986). Simulation with Activities using C.A.P.S/E.C.S.L (the British 

Approach to Discrete-event Simulation). Proceedings of the 1986 Winter Simulation 
Conference. 

 
Cota, B. A., Fritz, D. G., & Sargent, R. G. (1994). Control Flow Graphs as a Representation 

Language. Proceedings of the 1994 conference on Winter Simulation Conference. 
 
Cota, B. A., & Sargent, R.E. (1992).  A modification of the process interaction world view.  

ACM Transactions on Modeling and Computer Simulation (TOMACS), 2 (2): 109-129. 
 
Crain, R. C. (1997). Simulation using GPSS/H. Proceedings of the 1997 Winter Simulation 

Conference. 
 
Daconta, M. C., Obrst, L. J., & Smith, K. T. (2003). The Semantic Web: A Guide to the Future of 

XML, Web Services, and Knowledge Management. Wiley Publishing. 
 
DaCosta, B. (2002). XML Support for OneSAF Objective System Behaviors. Proceedings of the 

11th CGF Conference. 
 
DaCosta B., Lucas, T., Outar, R., & Helton, D. (2003). OneSAF Repository Framework: 

Defining, Storing, and Interchanging XML Data. Proceedings of the Spring 2003 
Simulation Interoperability Workshop. 

 
Davis, P. K., & Anderson, R. H. (2003). Improving the Composability of Department of Defense 

Models and Simulations. RAND National Defense Research Institute, 2003. 
 
Davis, D. A., & Pegden, C. D. (1988). Introduction to SIMAN. Proceedings of the 1988 Winter 

Simulation Conference. 
 
Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., & Stein, L.A. (2004). OWL Web Ontology Language Reference. World 
Wide Web Consortium (W3C) Recommendation. Retrieved September 14, 2006 from 
http://www.w3.org/TR/owl-ref/. 

109 

http://www.w3.org/TR/owl-test/
http://www.w3.org/TR/owl-ref/


 
Dubiel, B., & Tsimhoni, O. (2005). Integrating Agent Based Modeling into a Discrete Event 

Simulation. Proceedings of the 2005 Winter Simulation Conference. 
 
Fensel, D. (1998). Ontologies: A Silver Bullet for Knowledge Management and Electronic 

Commerce. Springer. 
 
Filippov, A. (2003). AnyLogic Technical Overview, Retrieved November 12, 2005 from: 

http://www.anylogic.jp/download/any5presentation.pdf. 
 
Fineberg, M. L. (1995). A comprehensive taxonomy of human behaviors for synthetic forces 

(IDA Paper P-3155). Alexandria, VA: Institute for Defense Analysis. 
 
Fishman, G. S. (1978). Principles of Discrete Event Simulation. New York: John Wiley & Sons. 
 
Fishwick, P. A. (2004). Toward an Integrative MultiModeling Interface: A Human-Computer 

Interface Approach to Interrelating Model Structures. SCS Transactions on Modeling and 
Simulation. 

 
Fishwick, P. A., & Miller, J. A. (2004). Ontologies for Modeling and Simulation:  Issues and 

Approaches. Proceedings of the 2004 Winter Simulation Conference. 
 
Franta, W. R. & Maly, K. (1977). An Efficient Data Structure for the Simulation Event Set. 

Communications of the ACM 20(8): 596-602 (1977) 
 
Gerber, W. J., & Lacy, L. W. (2004a). Standard Ontological Behavior Representation to Support 

Composability (extended abstract). Proceedings of the 13th Behavior Representation in 
Modeling and Simulation Conference. 

 
Gerber, W. J., & Lacy, L. W. (2004b). Behavior Composability Support Through Standardized 

Ontology Representations. Proceedings of the Interservice/Industry Training, Simulation 
and Education Conference (I/ITSEC). 

 
Glynn, P.W. (1989). A GSMP formalism for discrete event systems. Proceedings IEEE 77, 1 

Jan. 14-33, Vol. 77, Issue 1. 
 
Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2004). Ontological Engineering. 

London: Springer. 
 
Gravitz, P., Sheehan, J., & McLean, T. (1999) Common Activities in Data Interchange Format 

(DIF) Development. Proceedings of the Spring 1999 Simulation Interoperability 
Workshop.  

 

110 

http://www.anylogic.jp/download/any5presentation.pdf


Gruber, T. R. (1993). A Translation approach to portable ontology specifications.  Knowledge 
Acquisition, An International Journal of Knowledge Acquisition for Knowledge Based 
Systems 5 (2), 199-220. 

 
Guo, L., Chen-Burger, Y., & Robertson, D. (2004). Mapping a Business Process Model to a 

Semantic Web Service Model. Proceedings of the IEEE International Conference on 
Web Services (ICWS'04). 

 
Guru, A., Savory, P., & Williams, R., (2000). A Web-based Interface for Storing and Executing 

Simulation Models. Proceedings of the 2000 Winter Simulation Conference. 
 
Hall, R.J., & Zisman, A. (2004a). OMML: A Behavioral Model Interchange Format. 

Proceedings of the 12th IEEE International Requirements Engineering Conference 
(RE’04). 

 
Hall, R. J., & Zisman, A. (2004b). Model Interchange and Integration for Web Services. TAV-

WEB Proceedings/ACM SIGSOFT SEN 
 
Hanrahan, R. P. (1995). The IDEF Process Modeling Methodology. Retrieved July 23, 2005 

from http://www.stsc.hill.af.mil/crosstalk/1995/06/IDEF.asp. 
 
Harrell, C. R., Ghosh, B., & Bowden, R. (2000). Simulation Using ProModel. 
 
Harrell, C. R., & Price, R. N.  (2000). Software/modelware tutorials I: Simulation modeling and 

optimization using ProModel. Proceedings of the 32nd conference on Winter simulation. 
 
Harrell, C. R., & Price, R. N. (2003). Simulation Modeling Using Promodel Technology, 

Proceedings of the 2003 Winter Simulation Conference. 
 
Harrison, G.A., Maynard, D.S., & Pollak, E. (2004). Automated Database And Schema-Based 

Data Interchange For Modeling And Simulation. Proceedings of the 2004 Winter 
Simulation Conference. 

 
Harward, G.B. (2005). Suitability of the NIST Shop Data Model as a Neutral File Format for 

Simulation. master’s thesis, BYU. 
 
Hayes, P., Horrocks, I., & Patel-Schneider, P. F. (2004). OWL Web Ontology Language 

Semantics and Abstract Syntax 
 
Henriksen, J. O., & Crain, R. C. (2000). GPSS/H: a 23-Year Retrospective View. Proceedings of 

the 2000 Winter Simulation Conference. 
 
Hieb, M., Pullen, J., Sudnikovich, W., & Tolk. A. (2004) Extensible Battle Management 

Language (XBML): A Methodology for Web Enabling Command and Control for 

111 

http://www.stsc.hill.af.mil/crosstalk/1995/06/IDEF.asp


Network Centric Warfare. Proceedings of the 2004 Command and Control Research and 
Technology Symposium The Power of Information Age Concepts and Technologies. 

 
Hobbs, R. L. (2003). Using XML to Support Military Decision-Making. Paper presented at the 

2003 XML Conference and Exposition. 
 
Ingalls, R. G. (1986). Automatic Model Generation. Proceedings of the 1986 Winter Simulation 

Conference. 
 
Joint Warfighting Center (1997). Handbook for the Design and Use of Operational Templates. 
 
Karayanakis, N. M. (1995). Advanced System Modelling and Simulation with Block Diagram 

Languages. Boca Raton : CRC Press. 
 
KBSI (2005). IDEF3 Process Description Capture Method. Retrieved September 14, 2006 from 

http://www.idef.com/idef3.html
 
Kelton, W. D., Sadowski, R. P., Sturrock, D. T. (2003). Simulation with Arena, 3rd ed., 

McGraw-Hill. 
 
Kreutzer, W. (1986). Systems Simulation: Programming Styles and Languages. Wokingham, 

England: Addison-Wesley. 
 
Lacy, L. W. (2001). Semantic Web Applications for Modeling and Simulation.  Retrieved 

September 13, 2006 from http://www.daml.org/2001/07/dmso-applications/semantic-
web-071101.ppt  

 
Lacy, L. W. (2004) DARPA DAML Final Report. DRC Report #DRC E-8970U. 
 
Lacy, L. W. (2005) OWL:  Representing Information Using the Web Ontology Language. 

Victoria, Canada: Trafford Publishing. 
 
Lacy, L. W. (2006). Interchanging Discrete Event Simulation Models using PIMODES and 

SRML. Proceedings of the Fall 2006 Simulation Interoperability Workshop. 
 
Lacy, L. W., & Dugone, T. (2000a). Using XML To Share Offline Simulation Data. Proceedings 

of the 2000 Summer Computer Simulation Conference 2000. 
 
Lacy, L., & Dugone, T.  (2000b). Computer Generated Forces Behavior Representation and 

Reuse Using the eXtensible Markup Language (XML). Proceedings of the Fall 2000 
Simulation Interoperability Workshop. 

 
Lacy, L., Dugone, T., & Youngren, R. W. (2001). Standard Data Exchange Methods for 

Equipment Characteristics And Performance Data. Proceedings of the 2001 
Interservice/Industry Training, Simulation and Education Conference (I/ITSEC). 

112 

http://www.idef.com/idef3.html


 
Lacy, L. W., & Gerber, W. J. (2004). Potential Modeling and Simulation Applications of the 

Web Ontology Language – OWL. Proceedings of the 2004 Winter Simulation 
Conference. 

 
Lacy, L., & Henninger, A. (2003). Developing Primitive Behavior Ontologies using the 

Ontology Web Language. Proceedings of the 2003 Interservice/Industry Training, 
Simulation and Education Conference (I/ITSEC). 

 
Lacy, L., & O’Brien, L. (1997). Conceptual Modeling for WARSIM 2000. Proceedings of the 

1997 Interservice/Industry Training Systems and Education Conference. 
 
Lacy, L., Randolph, W., Harris, B., Youngblood, S., Sheehan, J., Might, R., & Metz, M. (2001). 

Developing a Consensus Perspective on Conceptual Models for Simulation Systems. 
Proceedings of the Spring 2001 Simulation Interoperability Workshop. 

 
Lacy, L., Stone, G.; & Dugone, T. D. (1999a). Sharing HLA Scenario Data. Proceedings of the 

Fall 1999 Simulation Interoperability Workshop. 
 
Lacy, L., Stone, G.; & Dugone, T. D. (1999b). XML Data Interchange Format Standards for 

HLA-Related Data Interoperability. Proceedings of the 1999 Southeastern Simulation 
Conference. 

 
Lacy, L., Stone, G.; & Dugone, T. D. (2001). Representing Computer Generated Forces 

Behaviors Using eXtensible Markup Language (XML) Techniques. Proceedings of the 
Tenth Conference on Computer Generated Forces. 

 
Lacy, L., & Tuttle, C. (1998). Interchanging Simulation Data using XML. Proceedings of the 

1998 Fall Simulation Interoperability Workshop. 
 
Laughery, R. (1998). Computer Simulation As A Tool For Studying Human-Centered Systems. 

Proceedings of the 1998 Winter Simulation Conference. 
 
Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis. McGraw-Hill. 
 
Liles, D.  H., & Presley, A. R. (1996). Enterprise Modeling Within An Enterprise Engineering 

Framework. Proceedings of the 1996 Winter Simulation Conference. 
 
Lubell, J. (2001). XML Representation of Process Descriptions In Professional XML Meta Data.  

Wrox Press. 
 
Markovitch, N. A., Profozich, D. M. (1996). Simulation Modelling Support via Network Based 

Concepts. Proceedings of the 1996 Winter Simulation Conference. 
 
Mayer, R. J., Menzel, C. P., & Mayer, P. (1991). IDEF3 Technical Report. 

113 



 
McGuinness, D. L. (2002). Ontologies Come of Age. In D. Fensel, J. Hendler, H. Lieberman, & 

W. Wahlster (Eds.), Spinning the Semantic Web: Bringing the World Wide Web to Its 
Full Potential. MIT Press.  Retrieved from:  
http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-
citation).htm

 
McGuinness, D. L., Fikes, R., Hendler, J., & Stein. L. A. (2002). DAML+OIL: An Ontology 

Language for the Semantic Web. IEEE Intelligent Systems, Vol. 17, No. 5, pages 72-80. 
 
McGuinness, D. L., van Harmelen, F. (2004). OWL Web Ontology Language Overview. World 

Wide Web Consortium (W3C) Recommendation. Retrieved September 13, 2006 from 
http://www.w3.org/TR/owl-features/. 

 
Meeks, A. O., Aviles, G., & Lacy, L. W. (2004). Auto-Authoring Instruction from Ontological 

Representations of Procedures. Proceedings of the 2004 Interservice/Industry Training, 
Simulation and Education Conference (I/ITSEC). 

 
Mendling, J., Pérez de Laborda, C. , & Zdun, U. (2005). Towards Semantic Integration of XML-

based Business Process Models. In K. D. Althoff, A. Dengel, R. Bergmann, M. Nick, & 
T. Roth-Berghofer (Eds.) Proceedings of the WM2005: Professional Knowledge 
Management - Experiences and Visions. Semantic Model Integration Workshop (SMI 
2005) as part of the 3rd Conference Professional Knowledge Management (WM 2005), 
Kaiserslautern, Germany, April 2005, pages 513-517. 

 
Menzel, C., & Grüninger, M. (2001). A Formal Foundation for Process Modeling. Proceedings 

of the 2001 International Conference on Formal Ontology in Information Systems. 
 
Mili, F., & Ghanekar, S. (2005). Building and Using an OWL-S Ontology of Tasks, Paper 

presented at the 2005 OWL Workshop at the International Semantic Web Conference. 
 
Miller, J. A., & Baramidze, G. (2005). Simulation and the Semantic Web. Proceedings of the 

2005 Winter Simulation Conference. 
 
Miller, J. A., & Fishwick, P. A. (2004). Investigating Ontologies for Simulation Modeling. Paper 

presented at the 2004 Simulation Symposium. 
 
Miller, J. A., Silver, G. A., & Lacy, L. W. (2006). Ontology Based Representations Of 

Simulation Models Following The Process Interaction World View.  Proceedings of the 
2006 Winter Simulation Conference (in press). 

 
Nainani, B. (2005). Supporting the Business Process Lifecycle using Standard-based Tools. 

WebServices Journal, Vol.5 Issue 4. 
 

114 

http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-citation).htm
http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-citation).htm
http://www.w3.org/TR/owl-features/


Nance , R. E. (1993)., A History of Discrete Event Simulation Programming Languages , ACM 
SIGPLAN Notices, Volume 28 Issue 3. 

 
Nance, R. E. & Sargent, R.G. (2002). Perspectives on the evolution of Simulation.  Operations 

Research 50 (1): 161-172. 
 
Narain, S. (1991). An Axiomatic Basis for General Discrete-event Modeling. Proceedings of the 

23rd Winter Simulation Conference. 
 
Nielsen, N. R. (1991). Application of AI Techniques to Simulation. In Fishwick, Modjeski (Eds.) 

Knowledge-Based Simulation Methodology and Application. 
 
Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101:  A Guide to Creating Your 

First Ontology. Technical Report KSL-01-05, Retrieved September 13, 2006 from:  
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html. 

 
Odhabi, H. I., Paul, R. J., & Macredie, R. D. (1998). Developing a Graphical User Interface for 

Discrete Event Simulation. Proceedings of the 30th Winter Simulation Conference. 
 
O’Reilly, J. (2002). Introduction to AWESIM. Proceedings of the 2002 Winter Simulation 

Conference. 
 
Oscarsson, J., Moris, M. U. (2002). Documentation of Discrete Event Simulation Models for 

Manufacturing System Life Cycle Simulation. Proceedings of the 2002 Winter 
Simulation Conference. 

 
Overstreet, C. M., & Nance, R. E. (1985). A Specification Language to Assist in Analysis of 

Discrete Event Simulation Models. Communications of the ACM, Volume 28 Issue 2   
 
Pace, D. K. (2001). Conceptual Model Development for C4ISR Simulations.  Paper presented at 

the Fifth International Command and Control Research and Technology Symposium.  
Retrieved September 13, 2006 from: 
http://www.dodccrp.org/events/2000/5th_ICCRTS/cd/papers/Track2/059.pdf

 
Page, E. H. (1994). Simulation Modeling Methodology: Principles and Etiology of Decision 

Support, PhD Dissertation. 
 
Pegden, C. D. (1983). Introduction to SIMAN. Proceedings of the 1983 Winter Simulation 

Conference. 
 
Pegden, C. D., Shannon, R. E., & Sadowski, R.P. (1995). Introduction to Simulation Using 

SIMAN. McGraw-Hill. 
 

115 

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.dodccrp.org/events/2000/5th_ICCRTS/cd/papers/Track2/059.pdf


Pew, R. W., & Maver, A. S. (editors) (1998). Modeling Human and Organizational Behavior: 
Application to Military Simulations. Report of the US National Research Council's panel 
on Modeling Human Behavior and Command Decision Making (Representation for 
Military Simulations). also published by National Academies Press. 

 
Pidd, M. (1984). Computer Simulation in Management Science. Chichester: John Wiley & Sons. 
 
Pidd, M. (2002). Computer Simulation in Management Science, Fourth Edition. Chichester: John 

Wiley & Sons. 
 
Pidd, M. (2004). Simulation Worldviews – So What?. Proceedings of the 2004 Winter 

Simulation Conference. 
 
Pilone, D. (2005). UML 2.0 in a Nutshell. O’Reilly 
 
Pooch, U. W., & Wall, J. A. (1993). Discrete Event Simulation. Boca Raton, Florida: CRC Press. 
 
Praehofer, H., & Pree, D. (1993). Visual modeling of DEVS-based multiformalism systems 

based on higraphs. Proceedings of the 25th Winter Simulation Conference. 
 
Pritsker, A. A. B. (1986). Introduction to Simulation and Slam II  
 
Pritsker, A. A. B., O’Reilly, J. J., & LaVal, D. K. (1999). Simulation with Visual SLAM and 

AweSim. New York: John Wiley & Sons. 
 
ProcessModel (1999) User’s Manual, ProcessModel Corp., Provo, UT. 
 
Radiya, A., & Sargent, R. G. (1994). A Logic-Based of Discrete Event Modeling and Simulation. 

ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 4 Issue 
1. 

 
Reichenthal, S. W. (2002). SRML-Simulation Reference Markup Language W3C Note.  

Retrieved September 13, 2006 from: http://www.w3.org/TR/SRML. 
 
Reichenthal, S. W. (2004). SRML Case Study: Simple Self-Describing Process Modeling and 

Simulation. Proceedings of the 2004 Winter Simulation Conference. 
 
Reichenthal, S. W., & Gustavson, P. L. (2003). Manufacturing BOMs with SRML for Process-

Oriented Federations.  Proceedings of the Fall 2003 Simulation Interoperability 
Workshop. 

 
Risner, S., Porter, K., Lacy, L., O’Brien, L., & Kollmorgen, G. (1998). Conceptual Modeling in 

the Joint Simulation System (JSIMS). Proceedings of the 1998 Fall Simulation 
Interoperability Workshop. 

 

116 

http://www.w3.org/TR/SRML


Roberts, R. S. (1991). Simulation Languages and Database Theory: Some Considerations from 
the Entity-Relationship Model. Proceedings of the 1991 Winter Simulation Conference. 

 
Rohrer, M. W. (2000). Software/modelware tutorials I: AutoMod product suite: AutoMod 

tutorial. Proceedings of the 32nd Winter Simulation Conference Hierarchical modeling 
for discrete event simulation (panel)  

 
Russell, N., van der Aalst, W., ter Hofstede, A., & Wohed, P. (2006). On the Suitability of UML 

2.0 Activity Diagrams for Business Process Modelling, Third Asia-Pacific Conference on 
Conceptual Modelling (APCCM2006), Hobart, Australia. Conferences in Research and 
Practice in Information Technology, Vol. 53., Markus Stumptner, Sven Hartmann and 
Yasushi Kiyoki, Ed. 

 
Schenck, D. A., & Wilson, P. R. (1994). Information Modeling: The EXPRESS Way. Oxford 

University Press. 
 
Schriber, T. J. (1991). An Introduction to Simulation Using GPSS/H. New York. 
 
Schriber, T. J., & Brunner, D. T. (2001). Inside Discrete-Event Simulation Software: How it 

Works and Why it Matters. Proceedings of the 2001 Winter Simulation Conference. 
 
Schruben, L. (1983). Simulation Modeling with Event Graphs. Communications of the ACM, 

Volume 23, Number 11. 
 
Schruben, L. (1992) Graphical model structures for discrete event simulation. Proceedings of the 

24th conference on Winter simulation. 
 
Seila, A. F. (2005). The Case for a Standard Model Description for Simulation. International 

Journal of Simulation and Process Modeling, Volume 1, Nos. 1/2. 
 
Sheehan, J. (2001). Data Provisioning Using Authoritative Data Sources, Paper presented at the 

NDIA SBA Conference.  Retrieved September 5, 2005 from: 
http://www.dtic.mil/ndia/2001sbac/sheehan.pdf. 

 
Sheehan, J., Prosser, T., Conley, H., Stone, G., Yentz, K, & Morrow, J. (1998). Conceptual 

Models of the Mission Space (CMMS):  Basic Concepts, Advanced Techniques, and 
Pragmatic Examples. Proceedings of the Spring 1998 Simulation Interoperability 
Workshop. 

 
Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology Language Guide. 

World Wide Web Consortium (W3C) Recommendation. Retrieved September 13, 2006 
from http://www.w3.org/TR/owl-guide/. 

 

117 

http://www.dtic.mil/ndia/2001sbac/sheehan.pdf
http://www.w3.org/TR/owl-guide/


Son, Y. J., Jones, A. T., & Wysk, R. A. (2000). Automatic Generation of Simulation Models 
from Neutral Libraries: an Example. Proceedings of the 2000 Winter Simulation 
Conference. 

 
Son, Y. J., Jones, A. T., & Wysk, R. A. (2003). A Component Based Simulation Modeling from 

Neutral Component Libraries. Computers & Industrial Engineering 45 (2003) 141–165. 
 
Sowa, J. F., (2000) Knowledge Representation: Logical, Philosophical, and Computational 

Foundations. Pacific Grove, CA: Brooks/Cole. 
 
Storrle, H., & Hausmann , J. H. (2005). Towards a Formal Semantics of UML 2.0 Activities. 

Software Engineering 2005: 117-128 
 
Sulistio, A., Yeo, C. S., & Buyya, R. (2004). A Taxonomy of Computer-based Simulations and 

its Mapping to Parallel and Distributed Systems Simulation Tools. Retrieved September 
13, 2006 from: http://www.gridbus.org/papers/simulationtaxonomy.pdf

 
Swain, J. J. (2003). Simulation Reloaded, OR/MS Today, Retrieved September 13, 2006 from: 

http://www.lionhrtpub.com/orms/orms-8-03/frsurvey.html. 
 
Swegles, S. (1997). Business Process Modeling with SIMPROCESS. Proceedings of the 1997 

Winter Simulation Conference. 
 
Sycara, K., Martin, D., McGuinness, D. L., McIlraith, S. & Paolucci, M. (2004). OWL-S 

Technology for Representing Constraints and Capabilities of Web Servcies.  Paper 
presented at the W3C Workshop on Constraints and Capabilities for Web Services. 

 
Syrjakow, M., Syrjakow, E., & Szczerbicka, H. (2002). Towards a Component-Oriented Design 

of Modeling and Simulation Tools. Proceedings of Conference on AI, Simulation & 
Planning In High  Autonomy Systems. 

 
Thatte S. (2001) XLANG: Web Services For Business Process Design, Microsoft Corporation. 
 
Trick, M. A. (2005). Types of Simulation.  Retrieved September 13, 2006 from:  

http://mat.gsia.cmu.edu/simul/node7.html
 
Vitolins, V., & Kalnins, A. (2005). Semantics of UML 2.0 Activity Diagram for Business 

Modeling by Means of Virtual Machine. Proceedings Ninth IEEE International EDOC 
Enterprise Computing Conference, pp. 181.-192. 

 
WfMC (1999) Workflow Management Coalition, Interface 1: Process Definition Interchange 

Process Model, Document Number WfMC TC-1016-P, Retrieved September 13, 2006 
from:  http://www.wfmc.org/standards/docs/TC-1016-
P_v11_IF1_Process_definition_Interchange.pdf

 

118 

http://www.gridbus.org/papers/simulationtaxonomy.pdf
http://www.lionhrtpub.com/orms/orms-8-03/frsurvey.html
http://mat.gsia.cmu.edu/simul/node7.html
http://www.wfmc.org/standards/docs/TC-1016-P_v11_IF1_Process_definition_Interchange.pdf
http://www.wfmc.org/standards/docs/TC-1016-P_v11_IF1_Process_definition_Interchange.pdf


Whitman, L., Huff, B., & Presley, A. (1997). Structured models and dynamic systems analysis: 
the integration of the IDEF0/IDEF3 modeling methods and discrete event simulation. 
Proceedings of the 29th conference on Winter simulation. 

 
Woolfson, M. M, & Pert, G. J. (1999). An Introduction to Computer Simulation. Oxford 

University Press. 
 
Zeigler, B. P. (1976). Theory of Modelling and Simulation. New York: Wiley & Sons. 
 
Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation (2nd). 

San Diego: Academic Press. 
 

119 


	Iterchanging Discrete Event Simulationprocess Interaction Modelsusing The Web Ontology Language - Owl
	STARS Citation

	 ABSTRACT
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	1  CHAPTER ONE: INTRODUCTION
	1.1 Subject Problem
	1.2 Research Purpose
	1.3 Study Significance
	1.4 Chapter Contents

	2  CHAPTER TWO: LITERATURE REVIEW
	2.1 Models and Simulations
	2.1.1 Definition / Scope
	2.1.1.1 Systems
	2.1.1.2 Models
	2.1.1.3 Simulations

	2.1.2 Types of Simulations
	2.1.3 Discrete Event Simulations
	2.1.4 Discrete Event Simulation World Views
	2.1.4.1 Event-based Approach 
	2.1.4.2 Activity-based Approach
	2.1.4.3 Process Interaction Approaches
	2.1.4.4 Non-Classical Approaches
	2.1.4.5 World View Description Summary


	2.2 Model Representation
	2.2.1 Process Interaction Concepts
	2.2.2 Model Development Process
	2.2.3 Simulation Software Implementation Approaches
	2.2.3.1 Simulation Language Categories
	2.2.3.2 Visual Interactive Modeling Systems (VIMS)
	2.2.3.3 Object-Oriented Simulation languages
	2.2.3.4 Agent Based Simulation

	2.2.4 Process Interaction Modeling Software Packages
	2.2.4.1 Arena Software Package
	2.2.4.2 AutoMod
	2.2.4.3 ProModel
	2.2.4.4 Witness
	2.2.4.5 ProcessModel
	2.2.4.6 SIMPROCESS
	2.2.4.7 Software Package Summary

	2.2.5 Process Interaction Modeling Languages
	2.2.5.1 GPSS/H
	2.2.5.2 Micro Saint
	2.2.5.3 SIMAN
	2.2.5.4 SLAM / Visual SLAM 
	2.2.5.5 DES Process Interaction Language Summary

	2.2.6 Process Representations
	2.2.6.1 Business Process Representation / Process Modeling
	2.2.6.2 Military Operations Representations
	2.2.6.3 Graphical Representations of Software Applications
	2.2.6.4 Web Services Representations
	2.2.6.5 Process Interaction Modeling Representations

	2.2.7 Formal DES Semantics

	2.3 Interchanging Simulation Information 
	2.3.1 Simulation Information Interchange Motivation and Requirements
	2.3.2 Simulation Information Representation
	2.3.3 Simulation Data Interchange Formats
	2.3.4 XML Simulation DIFs
	2.3.5 XML-based Simulation Interoperability Standards

	2.4 OWL Ontological Representations of Simulation Information
	2.4.1 Current Web
	2.4.2 Ontologies
	2.4.3 Semantic Web
	2.4.4 OWL
	2.4.5 Ontology Engineering Processes
	2.4.5.1 DIF Development Process
	2.4.5.2 Ontology Engineering

	2.4.6 Simulation Ontologies

	2.5 Representing DES Models with Ontologies
	2.6 Background Literature Summary

	3  CHAPTER THREE: METHODOLOGY
	3.1 Instrumentation
	3.2 Procedures
	3.2.1 Research Planning
	3.2.2 Literature Search
	3.2.3 PIMODES Ontology Development
	3.2.3.1 Specifying Requirements
	3.2.3.2 Designing the Ontology
	3.2.3.3 Encoding the Ontology

	3.2.4 Ontology Testing and Use Demonstrations
	3.2.4.1 Demonstration Translation Software Design
	3.2.4.2 Software Coding
	3.2.4.3 Demonstration and Testing Model Development and Experimentation

	3.2.5 Research Artifact Documentation

	3.3 Limitations
	3.3.1 Concept Limitations
	3.3.1.1 Universal Language Development Approach Concept Limitation
	3.3.1.2 Process Interaction DES Formalism Concept Limitation
	3.3.1.3 Vendor Dependencies Concept Limitation
	3.3.1.4 Adoption Concept Limitation

	3.3.2 Approach Limitation
	3.3.2.1 Scope Approach Limitation
	3.3.2.2 Ontology Design Approach Limitation
	3.3.2.3 Ontology Language Choice Approach Limitation
	3.3.2.4 Translation Software Design and Coding Approach Limitations



	4  CHAPTER FOUR: RESULTS
	4.1 Research Plan
	4.2 Requirements Specification 
	4.3 Ontology Design Document
	4.3.1 Legacy Model Representation Analysis
	4.3.2 Harmonized Concepts
	4.3.3 Objective PIMODES Ontology Description
	4.3.4 Legacy Application Support
	4.3.5 Graphical Representations

	4.4 PIMODES Ontology Description Report
	4.5 Translation Software Design
	4.6 Translation Software Code
	4.7 Demonstration and Test Models Report 
	4.7.1 Arena to PIMODES Results
	4.7.2 ProcessModel to PIMODES Results
	4.7.3 AnyLogic to PIMODES Results
	4.7.4 ProModel to PIMODES Results
	4.7.5 PIMODES to Arena Results
	4.7.6 PIMODES to AnyLogic Results
	4.7.7 PIMODES to ProModel Results
	4.7.8 Experimentation Results Summary

	4.8 Demonstration Script 
	4.9 Web Site
	4.10 Results Artifact Summary

	5  CHAPTER FIVE: CONCLUSIONS
	5.1 Research Conclusions
	5.1.1 Process Interaction DES Ontology Development
	5.1.2 Legacy Application Model Interchange Feasibility
	5.1.2.1 Legacy Model Representation Approach Commonality
	5.1.2.2 Vendors Must Expose Their Model Data to Allow Interchange
	5.1.2.3 Translation Software Feasibility


	5.2 Recommendations
	5.3 Implications for Future Studies
	5.3.1 Ontology Scope
	5.3.2 Ontology Design
	5.3.3 Software Application Development
	5.3.4 Aggregation and Dispersion

	5.4 Implications of the Results

	 LIST OF REFERENCES

