
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Iterchanging Discrete Event Simulationprocess Interaction Iterchanging Discrete Event Simulationprocess Interaction

Modelsusing The Web Ontology Language - Owl Modelsusing The Web Ontology Language - Owl

Lee Lacy
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Lacy, Lee, "Iterchanging Discrete Event Simulationprocess Interaction Modelsusing The Web Ontology
Language - Owl" (2006). Electronic Theses and Dissertations, 2004-2019. 1017.
https://stars.library.ucf.edu/etd/1017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1017?utm_source=stars.library.ucf.edu%2Fetd%2F1017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INTERCHANGING DISCRETE EVENT SIMULATION
PROCESS INTERACTION MODELS

USING THE WEB ONTOLOGY LANGUAGE - OWL

by

LEE W. LACY
B.S. University of Central Florida, 1985
M.S. University of Central Florida, 1987

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Modeling and Simulation

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2006

Major Professor: Dr. Jose Sepúlveda

© 2006 Lee W. Lacy

ii

ABSTRACT

Discrete event simulation development requires significant investments in time and

resources. Descriptions of discrete event simulation models are associated with world views,

including the process interaction orientation. Historically, these models have been encoded

using high-level programming languages or special purpose, typically vendor-specific,

simulation languages. These approaches complicate simulation model reuse and interchange.

The current document-centric World Wide Web is evolving into a Semantic Web that

communicates information using ontologies. The Web Ontology Language – OWL, was used to

encode a Process Interaction Modeling Ontology for Discrete Event Simulations (PIMODES).

The PIMODES ontology was developed using ontology engineering processes. Software was

developed to demonstrate the feasibility of interchanging models from commercial simulation

packages using PIMODES as an intermediate representation.

The purpose of PIMODES is to provide a vendor-neutral open representation to support

model interchange. Model interchange enables reuse and provides an opportunity to improve

simulation quality, reduce development costs, and reduce development times.

iii

ACKNOWLEDGMENTS

This research was supported by a very helpful committee that included:

• Dr. Jose A. Sepulveda, Chair

• Dr. Peter Kincaid,

• Dr. Michael D. Proctor,

• Dr. Luis Rabelo, and

• Dr. Charles H. Reilly, III.

I appreciate the consistent support from the corporate leaders and my coworkers at

Dynamics Research Corporation (DRC), especially Bruce Harris. Most of all, I appreciate the

patience and encouragement of my friends, family, and my biggest encourager – Alex Blanco.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES.. x

LIST OF ACRONYMS/ABBREVIATIONS.. xi

1 CHAPTER ONE: INTRODUCTION... 16

1.1 Subject Problem.. 16

1.2 Research Purpose .. 17

1.3 Study Significance .. 17

1.4 Chapter Contents... 18

2 CHAPTER TWO: LITERATURE REVIEW... 19

2.1 Models and Simulations.. 19

2.1.1 Definition / Scope ... 19

2.1.2 Types of Simulations .. 23

2.1.3 Discrete Event Simulations... 24

2.1.4 Discrete Event Simulation World Views.. 25

2.2 Model Representation ... 30

2.2.1 Process Interaction Concepts .. 30

2.2.2 Model Development Process .. 31

2.2.3 Simulation Software Implementation Approaches ... 31

2.2.4 Process Interaction Modeling Software Packages .. 34

2.2.5 Process Interaction Modeling Languages ... 38

2.2.6 Process Representations.. 42

v

2.2.7 Formal DES Semantics ... 51

2.3 Interchanging Simulation Information.. 52

2.3.1 Simulation Information Interchange Motivation and Requirements 52

2.3.2 Simulation Information Representation.. 52

2.3.3 Simulation Data Interchange Formats .. 54

2.3.4 XML Simulation DIFs .. 55

2.3.5 XML-based Simulation Interoperability Standards .. 57

2.4 OWL Ontological Representations of Simulation Information 58

2.4.1 Current Web.. 59

2.4.2 Ontologies ... 59

2.4.3 Semantic Web ... 61

2.4.4 OWL ... 62

2.4.5 Ontology Engineering Processes .. 65

2.4.6 Simulation Ontologies .. 66

2.5 Representing DES Models with Ontologies ... 67

2.6 Background Literature Summary.. 68

3 CHAPTER THREE: METHODOLOGY ... 69

3.1 Instrumentation ... 69

3.2 Procedures... 71

3.2.1 Research Planning... 72

3.2.2 Literature Search... 72

3.2.3 PIMODES Ontology Development .. 72

3.2.4 Ontology Testing and Use Demonstrations .. 76

vi

3.2.5 Research Artifact Documentation... 79

3.3 Limitations .. 79

3.3.1 Concept Limitations.. 79

3.3.2 Approach Limitation... 81

4 CHAPTER FOUR: RESULTS ... 84

4.1 Research Plan.. 84

4.2 Requirements Specification .. 84

4.3 Ontology Design Document ... 85

4.3.1 Legacy Model Representation Analysis ... 86

4.3.2 Harmonized Concepts... 86

4.3.3 Objective PIMODES Ontology Description... 89

4.3.4 Legacy Application Support ... 90

4.3.5 Graphical Representations .. 90

4.4 PIMODES Ontology Description Report ... 90

4.5 Translation Software Design... 91

4.6 Translation Software Code ... 92

4.7 Demonstration and Test Models Report ... 92

4.7.1 Arena to PIMODES Results ... 93

4.7.2 ProcessModel to PIMODES Results .. 94

4.7.3 AnyLogic to PIMODES Results... 94

4.7.4 ProModel to PIMODES Results ... 94

4.7.5 PIMODES to Arena Results ... 95

4.7.6 PIMODES to AnyLogic Results... 95

vii

4.7.7 PIMODES to ProModel Results ... 96

4.7.8 Experimentation Results Summary... 96

4.8 Demonstration Script .. 96

4.9 Web Site.. 97

4.10 Results Artifact Summary... 97

5 CHAPTER FIVE: CONCLUSIONS .. 99

5.1 Research Conclusions ... 99

5.1.1 Process Interaction DES Ontology Development... 99

5.1.2 Legacy Application Model Interchange Feasibility.. 100

5.2 Recommendations... 102

5.3 Implications for Future Studies... 103

5.3.1 Ontology Scope... 103

5.3.2 Ontology Design ... 104

5.3.3 Software Application Development.. 104

5.3.4 Aggregation and Dispersion ... 105

5.4 Implications of the Results.. 105

LIST OF REFERENCES.. 107

viii

LIST OF FIGURES

Figure 1. Modeling and Simulation Concept Map... 20

Figure 2. Semantic Control of Representations ... 53

Figure 3. Semantic Web Technology Layers.. 64

Figure 4. PIMODES Research Activity Model ... 71

Figure 5. PIMODES Ontology Development Activities ... 73

Figure 6. Ontology Concept Evolution.. 74

Figure 7. PIMODES Concept Map.. 87

Figure 8. Activity Influence on Process Concepts... 88

Figure 9. PIMODES Ontology Class Diagram.. 89

Figure 10. Translation Software Design .. 91

Figure 11. PIMODES Translation Software User Interface .. 97

ix

LIST OF TABLES

Table 1. Software Tools Employed in PIMODES Research ... 70

Table 2. Model Information Support Requirements Summary ... 85

Table 3. Model List.. 93

Table 4. Artifact Summary .. 98

x

LIST OF ACRONYMS/ABBREVIATIONS

ACD Activity Cycle Diagram

AD Activity Diagram

ASM Abstract State Machines

BML Battle Management Language

BMPI Business Process Modeling Initiative

BOM Base Object Model

BPEL4WS Business Process Execution Language for Web Services

BPMN Business Process Modeling Notation

C&P Characteristics and Performance

CAPS Computer Aided Programming for Simulation

CFG Control Flow Graph

CGF Computer Generated Forces

CMMS Conceptual Models of the Mission Space

DAML DARPA Agent Markup Language

DAO Data Access Objects

DARPA Defense Advanced Research Projects Agency

DeMO Discrete-Event Modeling Ontology

DES Discrete Event Simulation

DESS Differential Equation System Specification

DEVS Discrete Event System Specification

xi

DIF Data Interchange Format

DIS Distributed Interactive Simulation

DMSO Defense Modeling Simulation Office

DOAT DRC Ontology Authoring Tool

DoDAF Department of Defense Architectural Framework

DRC Dynamics Research Corporation

DSB Dynamic Scenario Builder

DTD Document Type Description

DTSS Discrete Time System Specification

ECSL Extended Control and Simulation Language

EU European Union

FIFO First In First Out

FOM Federation Object Model

GPSS General Purpose Simulation System

GSMP Generalized Semi-Markov Processes

GUI Graphical User Interface

HACD Hierarchical Activity Cycle Diagrams

HLA High Level Architecture

HTML HyperText Markup Language

IBM International Business Machines

IDE Integrated Development Environment

IDEF Integration DEFinition

IEEE Institute of Electrical and Electronics Engineers

xii

KA/KE Knowledge Acquisition/Knowledge Engineering

KBSI Knowledge Based Systems, Inc.

KIF Knowledge Interchange Format

KR Knowledge Representation

M&S Modeling and Simulation

MTBF Mean Time Between Failure

MTTR Mean Time To Replace

ND Network Diagrams

NIST National Institute of Standards and Technology

OIL Ontology Interface Layer

OMG Object Management Group

OMML OpenModel Modeling Language

OMT Object Model Template

OOD Object-oriented Design

OOS OneSAF Objective System

OWL Web Ontology Language (not a true acronym)

OWL-S OWL Services

PC Personal Computer

PDM Precedence Diagramming Method

PERT Program Evaluation and Review Technique

PIMODES Process Interaction Modeling Ontology for Discrete Event Simulation

PN Petri Net

PNML Petri Net Markup Language

xiii

PSL Process Specification Language

RDF Resource Description Framework

RDFS RDF Schema

SCML Scenario Markup Language

SCORM Sharable Content Object Reference Model

SEDRIS Synthetic Environment Data Representation and Interchange Specification

SH-ACD Simplified Hierarchical Activity Cycle Diagrams

SIMAN SIMulation Analysis

SISO Simulation Interoperability Standards Organization

SLAM Simulation Language for Alternative Modeling

SMSDL Simulation Model Specification and Documentation Language

SOM Simulation Object Model

SRML Simulation Reference Markup Language

STD State Transition Diagram

SWRL Semantic Web Rule Language

TCP/IP Terminal Control Program/Internet Protocol

TPN Timed Petri Nets

UI User Interface

UML Unified Modeling Language

UOB Unit Order of Battle

URI Uniform Resource Identifier

US United States

VB Visual Basic

xiv

VBA Visual Basic for Applications

VIMS Visual Interactive Modeling Systems

W3C World Wide Web Consortium

WfMC Workflow Management Coalition

WPDL Workflow Process Definition Language

WSBPEL Web Services Business Process Execution Language

WSDL Web Service Definition Language

WWW World Wide Web

XMI XML Metadata Interchange

XML Extensible Markup Language

XMLS XML Schema

XMSF Extensible Modeling and Simulation Framework

XPIM Extensible Process Interaction Markup

XPoD XML Populated DIF

xv

1 CHAPTER ONE: INTRODUCTION

The Process Interaction Modeling Ontology for Discrete Event Simulation (PIMODES)

research provides a new ontology-based interchange approach for sharing Discrete Event

Simulations.

1.1 Subject Problem

Simulation development requires substantial investments in resources. Model developers

create discrete event simulations (DES) with a wide variety of software packages and

programming languages. These simulations execute models of particular systems/domains. The

process interaction world view is a popular method for representing discrete event simulations.

Reichenthal and Gustavson (2003) define model sharing as the ability for a simulation system to

use models developed for another system. The variety of representations of DES models

complicates their reuse. Simulation developers need new solutions that enable simulation model

interchange and make simulation development more cost-effective.

Miller and Fishwick (2004) identified the need for an efficient method for linking

simulation concepts to support databases, query engines, and human-computer interaction.

Knowledge representation and composability technologies provide new opportunities for

simulation interchange. The simulation community is adopting new interchange technologies

such as XML. Semantically rich languages, such as the Web Ontology Language – OWL, best

support interchanging business processes with a global schema (Mendling, De Laborda, & Zdun,

2005).

16

Knowledge representation, using techniques such as frames and inheritance, is

particularly relevant to simulation (Nielsen, 1991). Knowledge representation of simulation

models supports composability. Composition using reusable components has been offered as a

potential solution. A RAND report (Davis & Anderson, 2003) concluded that “the time is

ripe…[for] higher-level representations that would simplify characterization of components”.

1.2 Research Purpose

The purpose of this research is to develop a new language, formalized using a Semantic

Web ontology, for representing process interaction DES models. An ontology provides a formal

specification that supports computer interpretation of conforming descriptions.

1.3 Study Significance

Miller and Fishwick (2004) claim that formally organizing simulation knowledge

increases the interoperability, integration, and reuse of simulation artifacts. By representing DES

models with a vendor-neutral Web standard, simulation software applications can interchange

their internal data models with the standard representation. Seila (2005) states that a standard

modeling representation would lead to improved stakeholder communication, aid model

verification, improve model documentation, help separate models from software, improve model

interchange, promote model component reuse, and support system construction and maintenance.

Representing DES models with OWL also exposes modeling information to non-simulation

applications that are compliant with Semantic Web standards.

17

1.4 Chapter Contents

This introductory chapter is followed by Chapter 2 – Literature Review which surveys

the related literature. Chapter 3 – Methodology describes the approach taken to performing the

research. Chapter 4 – Results documents the resulting products of the research. Chapter 5 –

Conclusions provides an analysis of the research results.

18

2 CHAPTER TWO: LITERATURE REVIEW

A literature review identified existing related work and supported the development of a

harmonized view of process interaction DES models.

2.1 Models and Simulations

The Modeling and simulation (M&S) community encompasses many types of

technologies and techniques. Clearly specified semantics related to terminology support further

discussions and formally define ontology concepts.

2.1.1 Definition / Scope

Figure 1 depicts a high level perspective of the relationships between subject systems,

models, and simulations. This concept map differentiates between systems, models, modeling

formalisms, modeling languages, simulation software, and simulators. The system is the subject

of a simulation. It is described by a model that is encoded using a modeling language. The

modeling language expresses model formalisms or representations. Simulation software or a

simulator simulates the model. Historically, the modeling language has been very tightly

coupled with the simulation software.

19

described by

Modeling
Language

Simulation Software /
Simulator

System Model

serialized by

Modeling
Formalism /

Representation

authored by, simulated by

System-Specific

System-Independent

encoded using

typically tightly coupled

Figure 1. Modeling and Simulation Concept Map

2.1.1.1 Systems

The term “system” is used to refer to a variety of things of interest. Systems typically

include interrelated components that perform a function (Cassandras & Lafortune, 1999).

Systems can be categorized according to various dimensions:

• Natural vs. man-made,
• Continuous vs. discrete,
• Deterministic vs. stochastic, and
• Open vs. closed.

20

Systems whose changes occur in finite quanta, or jumps, are discrete systems (Pooch &

Wall, 1993). Discrete event systems involve discontinuous changes (events) (Karayankis, 1995).

Fishman (1978) defines a discrete system as one in which a phenomenon of interest changes

value or state at discrete moments of time rather than continuously with time. The state of a

discrete event system changes at only a discrete, but possibly random, set of time points, known

as event times (Schriber, 1991). Systems are modeled in order to perform studies or support

experiences using simulations.

2.1.1.2 Models

Simulation development methodology includes the modeling phase which includes the

model translation step in which a model is prepared and debugged for computer processing.

Models serve as surrogates for the subject systems. They enable experimentation and analysis

that would be difficult or impossible using the actual system (Cassandras & Lafortune, 1999).

Dr. George Box is often quoted for stating “All models are wrong, but some are useful”. Models

are “wrong” because they are simplified abstractions that fail to clone all aspects of a subject

system. However, models are useful when they are sufficiently detailed to support their required

use.

Models are encoded using modeling languages. Modeling languages contain statements

that support modeling formalisms. Woolfson and Pert (1999) describe models as simplified

representations of real objects or physical situations (systems) that serve a particular purpose.

Miller and Fishwick (2004) define a model as an approximation of a system that evolves over

time. Overstreet and Nance (1985) define a model as an abstraction of a system intended to

21

replicate some properties of that system. A combination of views is often necessary to

adequately represent a system in a model. Liles and Presley (1996) describe a model as a

collection of views consisting of a business rule (information) view, activity view, business

process view, resource view, and organization view.

There are many varieties of models. Kelton, Sadowski, and Sturrock (2003) and Miller

and Fishwick (2004) categorize models based on how they deal with:

• time (static vs. dynamic),
• state (discrete vs. continuous), and
• randomness (deterministic vs. stochastic).

Static models typically represent the allowable paths that objects in a system may follow.

Dynamic models describe the behavior of a system over time and enable simulations for analysis

(Whitman, Huff, & Presley, 1997). Discrete event models contain a set of state variables / states

and a set of events. Page (1994) describes discrete event simulation models as abstract, dynamic,

descriptive, and numerical models.

2.1.1.3 Simulations

Simulation is the process of numerically evaluating a system model and estimating

variables of interest (Cassandras & Lafortune, 1999). Ball (1996) defines simulation as a

technique for imitating the behavior of a situation or system using an analogous model, situation,

or apparatus, to gain information more conveniently or to train personnel.

Simulation software executes models. A key distinction must be made between

simulation software and the simulation modeling language used to encode the model. Simulation

software is often closely tied to particular simulation languages. For example, the Arena®

22

software package implements the SIMulation Analysis (SIMAN®) simulation language. By

abstracting the simulation model from the supporting simulation, simulation descriptions can

become simulation-software-independent, enabling the development of abstract simulations

(Zeigler, Praehofer, & Kim, 2000).

2.1.2 Types of Simulations

There are many different types of simulations. Specific types of simulations must be

explicitly defined in order to scope the associated simulation models being represented.

Simulations are categorized in a number of ways including purpose and application. However,

the purpose of a simulation does not necessarily affect the way its model is represented.

DES category descriptions evolved as the discipline matured. Ziegler (1976) formalized

three approaches to modeling as system specifications:

• Differential Equation System Specification (DESS),
• Discrete Event System Specification (DEVS), and
• Discrete Time System Specification (DTSS).

Nance (1993) describes simulation as an application domain of programming languages that are

described as Monte-Carlo, continuous, or discrete event. Pidd (2002) categorizes simulations in

terms of:

• time handling,
• stochastic vs. deterministic, and
• discrete vs. continuous.

Similarly, Sulistio, Yeo, & Buyya (2004) and Harrel & Price (2003) describe three primary

properties of simulations:

• presence of time (static or dynamic),

23

• behavior (deterministic or stochastic/probabilistic), and
• basis of value (discrete or continuous).

The focus of this research is representing models for dynamic stochastic discrete simulations.

2.1.3 Discrete Event Simulations

Discrete event simulations represent one subset of simulations. Dependent variables (i.e.,

state indicators) change discreetly at particular points in time (events) in discrete event

simulations (Pooch & Wall, 1993). Page (1994) categorizes discrete event models based on the

following characteristics:

• linear vs. nonlinear,
• stable vs. unstable,
• steady-state vs. transient,
• probabilistic (stochastic) vs. deterministic, and
• autonomous vs. nonautonomous.

A variety of theoretical foundations describe discrete event simulations including

Zeigler’s Systems Theory, the Semi-Markov Processes, and Logic-based Foundation. Zeigler,

Praehofer, & Kim (2000) provide a formal definition of DEVS based on systems theory. They

define a “classic” DEVS as having:

• a set of input values,
• a set of states,
• a set of output values,
• an internal transition function,
• an external transition function,
• an output function, and
• a mapping of states to positive reals.

24

Glynn (1989) describes a particular type of stochastic process – Generalized Semi-

Markov Processes (GSMP). GSMP descriptions involve precise mathematical descriptions to

formally define a discrete event system. Radiya and Sargent (1994) define a logic-based

foundation for discrete event models and simulation by defining terms from a logician’s

perspective, defining a Discrete Event Logic, and by describing a simulation algorithm for

processing models described using the logic. Theoretical foundations are useful for formally

defining classes of simulations, but have limited utility for representing models.

2.1.4 Discrete Event Simulation World Views

Discrete event simulations are typically associated with a particular world view. Nance

and Sargent (2002) describe the history of DES world views in the 1960s. Zeigler, Praehofer,

and Kim (2000) describe world views as simulation strategies that are realized in simulation

languages and systems. World views, also known as conceptual frameworks, categorize

approaches for representing and executing the logic in simulation models. DES languages are

typically aligned with specific world views (Cota & Sargent, 1992).

DES literature associates the world views with events, activities, and processes. Pidd

(2002) differentiates the classic views by contrasting them to the three phase approach that he

recommends. The event-based world view focuses on events that occur and event-associated

code. The activity-based world view focuses on conditional statements that specify the initiation

of activities. The process interaction world view considers the complete lifecycle of an entity as

it progresses through a process.

25

2.1.4.1 Event-based Approach

Events are the points in time when something triggers a change to the state of a system.

The atomic components of event-based models are event routines (Pidd, 2002). Event routines

are collections of programming language statements that describe the potential results (logical

consequences) of an event.

The event-based approach focuses on the events that instantaneously transform a

system’s state and/or schedule future events (Miller & Fishwick, 2004). The event-based

approach is also referred to as:

• Event approach (Pidd, 1984),
• Event scheduling (Banks & Carson, 1986) (Cota & Sargent,1992) (Schruben, 1983)

(Trick, 2005) (Cassandras & Lafortune, 1999) (Zeigler, Praehofer, & Kim, 2000), and
• Event orientation (Pooch & Wall,1993).

Events trigger discontinuous changes in a system’s state. Event types are typically

associated with a procedure in a programming language. Events can schedule other events to be

simulated at later times or cancel events that have already been scheduled to occur. An event

procedure may change the state of the data objects that are used to represent the state of the

system, and may use instructions for scheduling and canceling events.

Modelers using the event-based approach define the types of events that can occur and

the causal relationships between events (Cota & Sargent, 1992). The event scheduling approach

enables users to prepare a system description by concentrating on the moments in time when

state changes occur. In event-oriented models, all events are prescheduled and are not activated

by global state conditions (Zeigler, Praehofer, & Kim, 2000).

26

2.1.4.2 Activity-based Approach

Activities and their preconditions (triggers) are the focus of the activity-based world view

(Miller & Fishwick, 2004). Activities are described with preconditions and actions similar to

rule-based programming languages (Balci, Bertelrud, Esterbrook, and Nance, 1998). An

activity’s conditions must be satisfied for an activity’s operations to be scheduled and performed.

Activities have associated start events and end events. The activity-based approach is a state-

based approach to modeling (Balci, Bertelrud, Esterbrook, and Nance, 1998). In this approach,

events can be based on conditions (contingency tests) (Zeigler, Praehofer, & Kim 2000). The

activity-based approach is also referred to as:

• Activity scanning (Zeigler, Praehofer, & Kim, 2000) (Banks & Carson, 1986) (Cota &
Sargent,1992) (Schruben, 1983) (Trick, 2005) (Pooch & Wall, 1993) (Balci, Bertelrud,
Esterbrook, & Nance, 1998),

• Activity approach (Pidd, 1984), and
• Two-phased approach (Balci, Bertelrud, Esterbrook, & Nance, 1998).

An activity-based model is described by defining the types of events that can occur and

their causal relationships (Cota & Sargent, 1992). Modelers can also define contingent events

that occur when a stated condition is met. Modeling formalisms used to describe the activity-

based approach models include:

• Activity Cycle Diagrams (ACD),
• Petri Nets (PN),
• activity wheel charts, and
• activity lifecycle diagrams (Miller & Fishwick, 2004) (Schruben, 1983).

ACDs are supported by tools such as Computer Aided Programming for Simulation (CAPS)

(Clemenston, 1986)

27

2.1.4.3 Process Interaction Approaches

The process interaction world view can be considered a combination (hybrid) of the

activity-based and event-based approaches (Zeigler, Praehofer, & Kim, 2000). The process

interaction approach focuses on processes and the entities that flow through the process and

interact with resources (Banks & Carson, 1985) (Miller & Fishwick, 2004). The process

interaction approach is also referred to as the process orientation world view (Pooch & Wall,

1993) (Trick, 2005). A process is the sequence of operation that an entity passes through during

its life in the system (Pidd, 2002). Processes are sequences of events or sequences of activities

(Cota & Sargent, 1992). Processes describe the behavior of entities that flow through a system

(Miller & Fishwick, 2004). Processes are typically represented by control flow diagrams that

describe the sequence of processes that each entity proceeds through during its lifecycle. Entities

move through a system and consequently through time. Entities sometimes encounter

impediments to progress and are delayed.

Process oriented simulations represent a large class of DES that involve resource

contention (Cassandras & Lafortune, 1999). Entities undergo a sequence of events separated by

time intervals as they flow through the DES. Entities either receive resource services or wait for

resources. Processes are described for each type of entity.

The process interaction world view is considered to be a natural way to describe models

(Franta and May, 1977). The process interaction approach requires a modeler to describe the

flow of each entity through the system by defining a set of processes, entities, and resources

(Cota & Sargent, 1992). Since entities move through their lifecycle, people often visualize

28

entities moving through a system by anthropomorphizing and drawing analogies to construct

their own mental models of the modeled system.

Activity cycle diagrams can be used to describe entity processes (Pidd, 2002). Additional

modeling formalisms used to describe the process interaction world view include Petri Nets

(Miller & Fishwick, 2004), Control Flow Graphs (CFGs) (Cota & Sargent, 1992), Activity

Diagrams (AD), and Network Diagrams (ND). Software that support the simulation of process

interaction models include: GPSS, SIMPL/1, SIMSCRIPT II.5, SIMULA.

Cota and Sargent (1992) proposed a modification to the traditional process interaction

world view to support modularity and encapsulation. Zeigler, Praehofer, and Kim, (2000)

describe two sub-views of the process interaction world view that are associated with an

emphasis on resources or entities.

The business world’s focus on modeling business processes and the Web services

community’s focus on modeling processes provide potential opportunities for leveraging

standard descriptions of processes.

2.1.4.4 Non-Classical Approaches

In addition to the three commonly described “classical” approaches, there are additional

world views employed for performing discrete event simulation. Pidd (2002) describes the

Three-Phase approach as a more efficient variant of Activity-Scanning or a hybrid of Activity-

Scanning and Event-Scheduling.

29

2.1.4.5 World View Description Summary

Although the event-based approach is the most computationally efficient of the three

classical world views, the process interaction approach is closer to most people’s mental model.

The activity-based approach is less efficient than the event scheduling approach because it

requires frequent evaluation of conditions that would not be evaluated with event scheduling.

The process interaction approach is more efficient than the activity-scanning world view.

However, it is less efficient than the event-based approach. The process interaction approach has

been popularized by the abundance of available easy-to-use tools.

2.2 Model Representation

Pidd (2002) describes the representations of models as model logic. The term model is

more commonly used. Discrete event simulations models typically result from a development

process that involves the use of simulation software with underlying languages that represent a

particular modeling formalism or representation approach.

2.2.1 Process Interaction Concepts

The process interaction approach focuses on entities and process descriptions. Process

interaction models describe the lifecycle of objects that move through and interact with system

processes (Balci, Bertelrud, Esterbrook, & Nance, 1998). The main components of a process

oriented simulation are entities, attributes, process functions, resources, and queues (Cassandras

& Lafortune, 1999). Simulated processes typically have associated software procedures.

Procedures associated with delays suspend execution for an interval of time.

30

2.2.2 Model Development Process

The model development approach typically involves using authoring software to create a

model that is executed by a simulation engine which produces statistical and/or animation

results. A key step in the development of a simulation is the encoding of the model using a

simulation programming language. Simulation models can be expressed using a high-level

programming language or described as data for execution by a data-driven simulation system

(Ball, 1996).

There is an important distinction between simulations and the models they execute.

Zeigler, Praehofer, & Kim (2000) point out that separating the model from the simulation

provides a number of benefits including:

• portability and interoperability by executing a formalized model using multiple
simulators and

• the ability to develop and verify simulation algorithms for executing the model
formalisms.

Pidd (2002) describes many of the modern software packages as visual interactive

modeling systems (VIMS) (e.g., Witness, ProModel, Micro Saint). Most VIMS use a network as

their underlying generic model with entities flowing through the network from node to node.

From a user’s perspective, a model is normally encoded with software that has an underlying

model language that supports a particular formalism.

2.2.3 Simulation Software Implementation Approaches

A variety of approaches are used for encoding simulations with programming languages.

Both general purpose and special-purpose simulation languages are used. General purpose

31

languages were used for implementing simulations before special purpose languages were

developed. General purpose languages continue to be used due to cost and complexity issues

(Pidd, 2002). Although reuse can be achieved with general purpose programming languages,

most contemporary models are developed using simulation packages. Schriber (1991) points out

that no single modeling language works well for all situations. A variety of modeling languages

exist to support various applications of simulation.

2.2.3.1 Simulation Language Categories

Just as Integrated Development Environments (IDEs) are now used to develop software

applications, VIMS are increasingly popular for developing simulations. VIMS have either an

explicit or implicit simulation language underlying them.

Kreutzer (1986) differentiates between low-level languages that are optimized for

computers and high-level languages that are closer to a human’s thinking processes. He

describes several categories of simulation-specific languages as:

• packaged and precompiled program libraries (e.g., SIMPAS, SIMPL/1, SLAM, GASP,
SIMAN),

• application-oriented general purpose languages (e.g., SIMULA, SIMSCRIPT),
• scenario languages / application-oriented language extensions (e.g., GPSS, DEMOS), and
• declarative languages.

Modeling methodologies include network representations, process concept, and the

entity-attribute-set approach. Network representations are often used to describe DES models.

Implementations of network representations include GPSS and activity-cycle-based languages

(Overstreet & Nance, 1985). Pidd (2002) classifies simulation software approaches into the

following categories:

32

• programming approaches in general purpose languages,
• programming approaches in simulation languages,
• block-structured systems, and
• visual interactive modeling systems (VIMS).

2.2.3.2 Visual Interactive Modeling Systems (VIMS)

DES models can be described with simulation languages and visual simulation software

packages. DES models can be represented by simulation languages (e.g., SLAM, Extended

Control and Simulation Language, SIMAN) (Ball, 1996). Simulation languages provide

versatility in describing models. However, encoding models using a simulation language can be

a complex process. Alternatively, simulation software packages (e.g., Witness, Simul8, Micro

Saint, Automod, ProModel, Taylor II) can be used to describe DES models (Pidd, 2002). The

advantage of VIMS is that they speed up the development process (Ball, 1996). Some packages

(e.g., Arena) employ an alternative hybrid approach, providing the flexibility of a programming

or simulation language and the productivity of a VIMS.

VIMS can be considered simulation systems with graphical representations. Similarly,

some graphical representation tools (e.g., ProcessCharter) have simulation capabilities. It is

difficult to construct an exhaustive list of DES simulation packages and languages as software

continues to be developed and evolved. However, identifying the key features of representative

and popular languages and packages is helpful for categorizing purposes. VIMS typically persist

their models as datafiles, allowing them to be more easily exchanged.

33

2.2.3.3 Object-Oriented Simulation languages

Object-oriented techniques are sometimes used to represent simulation models. Many

object-oriented simulation techniques can be traced back to the SIMULA programming language

from the 1960s. Simulation packages that employ object-oriented techniques include Simple++.

Object-oriented techniques can be used to describe entities in a DES (Pidd, 2002). Benefits of

this approach include the ability to extend existing definitions through inheritance.

2.2.3.4 Agent Based Simulation

Agent based simulations model intelligent, autonomous entities (agents) as they interact

to attain some goal in their environment (Dubiel & Tsimhoni, 2005). Although the focus is on

entities within the simulation, the models tend to be more activity-based rather than process

based. The behavior of the entities is typically described with state transition diagrams rather

than the control flow diagrams typically used to describe entities with the process world view.

AnyLogic is an example of an agent based simulation package (Dubiel & Tsimhoni, 2005).

AnyLogic’s discrete modeling framework includes statecharts, timers, and events to simulate

object behavior. AnyLogic includes its Enterprise library that implements activities as active

objects that treat entities as messages.

2.2.4 Process Interaction Modeling Software Packages

Simulation software packages support either an explicit or implicit simulation language

underlying their application for representing simulation models. Several vendors provide

simulation software packages that support the development of process interaction simulations.

34

Swain (2003) identified over forty software tools that support DES. The simulation software

market is very fluid and new products continue to become available. Therefore, surveys are

quickly out of date. An important aspect of surveys is the identification of tools that belong to

classes of software to be supported by interchange mechanisms. The following sections describe

some well known DES software packages.

2.2.4.1 Arena Software Package

Arena® is a software package used for graphically describing SIMAN models. Arena

uses hierarchical flow chart models that include graphical objects (icons) called modules (Banks

& Carson, 1996). Arena icons are connected in a flowchart to represent entity flow.

Arena uses an object-oriented design for graphically developing models (Markovitch &

Profozich, 1996). Arena modeling constructs, called modules, are grouped into templates for

arrangement into hierarchical model diagrams (Law & Kelton, 2000). Module specifications are

authored using dialog boxes and spreadsheet-style forms. Arena’s modules represent types of

data and commands within the software. These modules effectively represent a vendor-specific

simulation language.

Arena provides integration with Visio, Active X interfaces, Data Access Objects (DAO)

interfaces, and Visual Basic for Applications (VBA) to extend the tool’s capabilities (Bapat &

Swets, 2000).

35

2.2.4.2 AutoMod

The AutoMod simulation package is focused on manufacturing and material handling

systems. Templates are used for representing common entities and resources. A simulation

programming language is also available (Banks, 2001). AutoMod models can describe process

systems that contain complex logic to control the flow of materials, messages, resource

contention, or wait times (Rohrer, 2000). Automod has general programming features including

the specification of processes, resources, loads, queues, and variables (Banks & Carson, 1996).

AutoMod processes are described in terms of traffic limits, input connections, output

connections, and itineraries. AutoMod resources are described in terms of their capacity,

processing time, Mean Time Between Failure (MTBF), and Mean Time To Replace (MTTR).

Schriber (2001) maps generic discrete event simulation terms to the concepts used in AutoMod.

2.2.4.3 ProModel

ProModel provides manufacturing-oriented modeling elements and rule-based decision

logic (Banks, 2001). It is a simulation tool used for modeling manufacturing and service systems

(Harrell, Ghosh, and Bowden, 2000). ProModel elements include parts/entities, locations,

resources, path nets, routing/processing logic, and arrivals. Systems are modeled in ProModel

by selecting modeling elements and modifying appropriate parameters (Harrell and Price, 2000)

(Harrell and Price, 2003). ProModel variants (with different graphics libraries) are available for

the medical domain (MedModel) and service domain (ServiceModel). ProModel constructs have

been mapped to the NIST shop model interchange format (Harward, 2005).

36

2.2.4.4 Witness

WITNESS is a simulation software package oriented towards manufacturing. WITNESS

models are based on template elements that are combined into a designer element for reuse

(Banks, 2001).

2.2.4.5 ProcessModel

The ProcessModel® software package provides a graphical user interface to define and

execute simulation models called process models. Process models are flow diagrams that can

include objects representing process elements and connections depicting element relationships

(ProcessModel, 1999). ProcessModel object types include entities, activities, storages, and

resources. ProcessModel connection types include entity arrivals, entity routings, resource

assignments, and order signals.

2.2.4.6 SIMPROCESS

SIMPROCESS is a process modeling tool whose models are described with processes,

resources, and entities (flow objects) (Swegles, 1997). SIMPROCESS models can be simulated

using an event-driven approach.

2.2.4.7 Software Package Summary

Reichenthal and Gustavson (2003) identified a common architecture employed by many

process simulation tools. The software in these systems can be viewed as having three layers to

37

their architectures. The first layer provides a Graphical User Interface (GUI) for building the

simulations. The next layer contains the process simulation domain objects. The third layer

provides the discrete event simulation engine, storage, and communication. Most contemporary

DES simulation software packages supporting the process interaction world view share the

following characteristics:

• Personal Computer (PC)-based,
• Graphical user interface with “drag and drop” modeling features,
• Support for hierarchical models,
• Support for evolutionary model optimization,
• Process flow depictions of models, and
• Proprietary file formats used for encoding models.

2.2.5 Process Interaction Modeling Languages

Process interaction modeling languages explicitly or implicitly underlie the tools used by

modelers. Certain simulation language support particular simulation world views (Fishman,

1978). This section describes some of the DES modeling languages that support the process

interaction world view. The following sections describe sample languages.

2.2.5.1 GPSS/H

One of the earliest simulation languages is General Purpose Simulation System (GPSS).

GPSS/H is the contemporary version of the language which was originally released by IBM in

1961 (Schriber, 1991). In GPSS/H, a system is considered to be a collection of inter-related

elements that work together to achieve a stated objective (Schriber, 1991).

GPSS/H models are described as a sequence of events, separated by lapses in time, which

describe how “objects” flow through a system resembling the structure of a flowchart of the

38

system being modeled. (Crain, 1997). Complex GPSS/H models require procedural and text-

based programming code to supplement the visual model built using the iconic approach

(Henriksen and Crain, 2000).

GPSS/H supports the description of process oriented simulation models. GPSS/H models

are described with files of “block” statements that can be expressed graphically with block

diagrams that portray each statement as an icon connected to related statement icons using

arrows (Crain, 1997). The GPSS/H language is based on over 60 types of “blocks” that have

associated graphical representations (Cassandras & Lafortune, 1999).

GPSS/H models entities (called units of traffic in GPSS/H) that compete for resources

(Schriber, 1991). Entities moving through a GPSS/H model are referred to as units of traffic and

transactions. Transactions move from block to block along the one-way paths in the block

diagram. Each block represents an action to be performed whenever a transaction enters a block.

Blocks can have associated labels, an operation keyword (e.g., “Generate”), and most have one

or more operands.

GPSS requires modelers to envision transactions (entities) flowing around a network

(Pidd, 2002). The nodes of the network represent transaction delay points. GPSS facilities are

the permanent entities that represent resources required by transactions.

2.2.5.2 Micro Saint

Micro Saint models are represented with flowchart diagrams that describe networks of

tasks. Task networks represent a sequence of tasks that simulation entities flow through (Pidd,

2004). The diagrams support branching logic, sorted queues, and conditional task execution

39

(Banks, 2001). Micro Saint’s task-based approach allows users to specify preconditions, and

actions to take based on the beginning, ending, or launching of a task (Pidd, 2002).

2.2.5.3 SIMAN

The SIMulation Analysis (SIMAN) simulation language supports the description of DES

models (Pegden, Shannon, & Sadowski, 1995). SIMAN is used to define the logical and

physical components of a system. Standard features in SIMAN include the description of

resources, queues, process logic, and system data (Banks, 1996). Processes are represented with

SIMAN blocks that have associated graphical representations that are combined to create block

diagrams (Cassandras & Lafortune, 1999).

SIMAN models are described in the model frame file and the experimental frame file

(Davis & Pegden, 1988). The model frame contains the simulation program that describes the

logical interaction of the simulation’s entities. SIMAN models were originally described using

block diagram flowgraphs that sequenced blocks (Pegden, 1983). Block types were associated

with different functions and were described by their operands.

SIMAN is a block-structured language and SIMAN programs are listings of blocks with

associated parameters (Pidd, 2002). SIMAN models can be entered using block and element

statements (Banks, 1996).

Arena is a software package that supports the execution of SIMAN models. Arena makes

it possible to use SIMAN as part of a VIMS (Pidd, 2002). Some research has looked at the

viability of reposing SIMAN models on the Web (Guru, Savory, & Williams, 2000).

40

2.2.5.4 SLAM / Visual SLAM

The Simulation Language for Alternative Modeling (SLAM) supports process oriented

and event-scheduling world views (Pritsker, O’Reilly, & LaVal, 1999). SLAM models can be

described graphically with network diagrams that have “nodes” and “branches” (Cassandras &

Lafortune, 1999). SLAM II process orientation models are represented using network models of

a process (Pritsker, 1986). The diagrams consist of nodes and branches that represent elements

such as queues, servers, and decision points. Entities flow through the network model when it is

simulated.

Visual SLAM models are described with network or flow diagrams that graphically

present the flow of entities through a system. Visual SLAM networks have nodes where

processing is performed. The nodes are connected by activities that define entity routines and

associated time requirements for performing the operations. Statements are the input associated

with graphic Visual SLAM models.

The network diagrams/models are converted into statements by the AweSim software.

Visual SLAM models can be executed using the AweSIM simulation problem-solving

environment (O’Reilly, 2002).

2.2.5.5 DES Process Interaction Language Summary

Model interchange can be enabled by effectively defining a superset language of all the

systems whose interchange is desired. Process interaction model representations share certain

functionality:

• creation of entities,

41

• branching,
• manipulation of entity attributes, and
• elimination of entities.

They also typically have a high-level graphical programming metaphor and a general purpose

scripting language for more flexibility/control.

2.2.6 Process Representations

Simulation languages are based on modeling formalisms or representation approaches.

Graphical representations support the visualization of models for a certain segment of users to

whom a “picture is worth a thousand words”. Graphical representation involves associating

icons with statement types and representing control flow with arcs and nodes. Graphical

representations of systems are closer to users’ mental models – resulting in more efficient

manipulation and better detection of errors (Nielsen, 1991).

The graphical representations of simulation languages are often serialized into textual

statements that are used to interchange model datafiles. They are used to represent:

• business process representations,
• military process representations,
• general purpose software
• Web-services representations, and
• process interaction discrete event simulation models,

Oscarsson and Moris (2002) identify several criterions that should be supported by a

model representation approach:

• neutral notation,
• generic notation,
• recognized notation,
• user friendly,
• descriptive in several levels, and

42

• supported by in-house competence.

The following sections describe methods for visualizing simulation models using

graphical representations.

2.2.6.1 Business Process Representation / Process Modeling

Business process and workflows are directly related to the process interaction world view

in DES. Business processes are described with a variety of languages and associated graphical

representations. Menzel and Gruninger (2001) describe process modeling as the linguistic,

diagrammatic, or numerical representation of patterns of activities (processes). Business process

representation/modeling approaches include:

• task networks,
• Business Process Modeling Notation (BPMN),
• Workflow Process Definition Language (WPDL),
• Process Specification Language (PSL),
• process specification graphs, and
• block diagrams.

A task network is a collection of nodes and paths that represent the flow of work

(Belanger, 1994). Examples of task networks include Program Evaluation and Review

Technique (PERT) charts and the Precedence Diagramming Method (PDM). Task network

modeling can be used to extend function and task analyses to support predictive models of

human performance (Laughery, 1998).

The Business Process Modeling Notation (BPMN) was developed by the Business

Process Modeling Initiative (BMPI). BPMN notation supports pools/lanes, events/activities,

43

sequence/message flows, and model message/control (Nainani, 2005). One of the stated

purposes of BPMN is to support the simulation of process models.

The Workflow Management Coalition (WfMC) has specified a textual grammar for

interchanging process definitions called the Workflow Process Definition Language (WPDL)

(WfMC, 1999). The WfMC standardized many of the process oriented terms that apply to

process interaction DES.

The Process Specification Language (PSL) is a language for describing processes

(Menzel and Gruninger, 2001). PSL is an interchange format designed to help exchange process

information automatically among a wide variety of applications including process modeling

tools. PSL is defined with first-order logic using the Knowledge Interchange Format (KIF). The

specification formalizes the “Activity” concept that represents behavior specifications and the

“Occurrence” concept that represents a runtime execution of an “Activity” (Bock and Gruninger,

2005). PSL process concepts have been mapped to XML and objects used in processes can be

represented using the Resource Description Framework (RDF) (Lubell, 2001).

Process specifications can be graphically represented with process specification graphs

(Menzel & Gruninger, 2001). A process specification graph is a directed graph that makes the

graphical structure of a process description in a description’s component declarations explicit.

Block diagrams and process networks use flowchart diagrams that show the movement of

entities through various system operations (Praehofer & Pree, 1993). The purpose of block-

structured systems is to enable non-programmers to develop discrete event simulation models

using flowcharting symbols (Pidd, 2002).

44

2.2.6.2 Military Operations Representations

The military community is a large consumer of simulation technology. Military activities

can be considered a special type of business process. Military users employ a variety of

techniques for representing military activities including operational templates, the Battle

Management Language, and the IDEF family of standards.

Military operations can be described with operations templates. These templates have

three views: temporal, spatial, and informational (Joint Warfighting Center, 1997). The

temporal view provides a graphical representation of the sequencing of activities. The spatial

view shows the geographic locations of entities. The informational view shows how information

is input by activities that create outputs used by other activities. Multiple views or perspectives

are often necessary for describing processes.

Another method for describing military operations is with the Battle Management

Language (BML) (Hieb, Pullent, Sudnikovich, & Tolk, 2004) (Carey, Kleiner, Hieb, & Brown,

2002a) (Carey, Kleiner, Hieb, & Brown, 2002b). BML defines a consistent language for

representing military tasks, actions, and missions. Computer-generated forces (CGFs) are used

in military simulations to represent opposing and flanking forces (Pew & Maver, 1998). Various

efforts have focused on standardizing the descriptions of CGF behaviors. Fineberg (1995)

developed a taxonomy of verbs for use in standardizing and organizing CGF behavior

descriptions.

The US Air Force developed a set of Integration DEFinition (IDEF) methods for

describing perspectives of enterprises (Whitman, Huff, & Presley, 1997). The Integrated

DEFinition (IDEF) methodology is a family of standard methods originally intended for use in

45

systems engineering (Hanrahan, 1995). IDEF0 is a functional modeling technique used for

modeling business functions and activities that support functional/activity modeling. IDEF1X is

used to describe data models. The IDEF2 method was intended for dynamic modeling, but has

been supplanted by commercial simulation tool approaches. IDEF3 supports process description

capture (Mayer, Menzel, & Mayer, 1991). IDEF3 has been used as a vendor-neutral process

language to demonstrate interchanging process information between discrete event simulation

models, scheduling models, and cost models (Benjamin, Akella, Malek, & Fernandes, 2005).

Both the IDEF0 and the IDEF3 approaches utilize decomposition which supports the description

of hierarchical models. IDEF3 captures relationships between situations and events (KBSI,

2005). The IDEF5 ontology capture method was developed for collecting knowledge about

physical and conceptual objects and their associations (Liles & Presley, 1996).

2.2.6.3 Graphical Representations of Software Applications

A variety of graphical representations are used to describe software design. The United

States military has defined a collection of artifacts in their DoD Architectural Framework

(DoDAF). Several techniques (e.g., DoDAF, military operations views, IDEF) recognize the

need for multiple perspectives to provide a complete view of a system. Kreutzer (1986) points

out that an advantage of a graphical representation of a simulation model is the emphasis on

structural connectivity and symmetry. He also states that graphical representations provide a rich

syntax for visually defining concepts such as links, flows, and direction. Graphical

representations used to describe software include state transition diagrams and the Unified

Modeling Language.

46

Some software behaviors can be described using state transition diagrams (STDs). STDs

identify states and the conditions that result in transitions to new states. There is a subtle

difference between an entity’s state (the value of one or more of the entity’s attributes) and the

sequence of process steps that an entity proceeds through during its lifetime.

The Unified Modeling Language (UML) is a collection of Object Management Group

(OMG) standards that are used to represent software designs. UML 2.0 activity diagrams (ADs)

can be used to represent processes. The UML version 2 (UML 2) activity models follow

traditional control and data flow approaches (Bock, 2003). Activities are behaviors that are

factored into actions (Pilone, 2005).

UML has been proposed for representing simulation conceptual models and Knowledge

Acquisition/Knowledge Engineering (KA/KE) artifacts (Risner, Porter, Lacy, O’Brien, &

Kollmorgen,1998). Research has been conducted on automatically transforming UML-specified

software designs into simulations (Arief & Speirs, 2000). Research has also been conducted on

translating UML models into Abstract State Machines (ASMs) that can be simulated (Cavarra,

Riccobene, & Scandurra, 2004).

The semantics of UML 2.0 activities appear to support the control flow behavior

provided by Petri-nets (Storrle, 2005). Although UML 2.0 ADs can be used to describe

processes, there are some expressiveness issues (Russell, van der Aalst, ter Hofstede, & Wohed,

2006) (Vitolins & Kalnins, 2005). UML class diagrams can also be augmented by color-coded

archetypes. UML models can be interchanged using the XML Metadata Interchange (XMI)

standard.

47

2.2.6.4 Web Services Representations

Representation schemes have been developed to describe the processes supported by

Web services, a specific type of software. Web services representation languages include:

• Business Process Execution Language for Web Services (BPEL4WS),
• OWL Services (OWL-S), and
• Web Service Definition Language (WSDL).

The Business Process Execution Language for Web Services (BPEL4WS) is a language

for describing business processes (Andrews et al, 2003). BPEL4WS business processes describe

the flow and sequence of tasks and the data they share. BPEL4WS is a workflow language that

can be used for process modeling. BPEL4WS’s model and grammar are used to formally specify

business process and business interaction protocols. The language is being evolved into the Web

Services Business Process Execution Language (WS-BPEL).

OWL-S is the collection of Web standards that describe OWL ontologies designed to

support Web Services. OWL-S provides constructs for describing Web services’ properties and

capabilities to facilitate the automation of Web service tasks including automated Web service

discovery, execution, interoperation, composition and execution monitoring. OWL-S is

described using OWL ontologies. The OWL-S ontology is used to describe what the service

provides clients, how it is used, and how interactions occur. The Web service use description is

supported by a process model that is captured by the OWL-S ServiceModel ontology. The

OWL-S process model was designed to support simulations of Web services and its developers

claim that it is a superset of the constructs typically found in process modeling and workflow

languages (Sycara, Martin, McGuinness, McIlraith, & Paolucci, 2004). OWL-S process models

could support the automatic verification of Web services through simulation (Ankolekar,

48

Paolucci, & Sycara, 2004). Business process modeling formalisms have been successfully

mapped to OWL-S (Guo, Chen-Burger, & Robertson, 2004). OWL-S has also been used as an

upper ontology for services in order to describe military missions and tasks (Mili & Ghanekar,

2005).

The Web Service Definition Language (WSDL) is an XML format for describing the

public interfaces of Web services. XLANG is an extension of WSDL that provides a notation

for the specification of message exchange behavior among participating Web services (Thatte,

2001). It describes both the model of an orchestration of services as well as collaboration

contracts between orchestrations.

2.2.6.5 Process Interaction Modeling Representations

A variety of graphical representation techniques have been developed for describing

process interaction models for simulation. These techniques include:

• SIMULA Activity Diagrams,
• Control flow graphs,
• Petri nets,
• Activity cycle diagrams, and
• Process Network diagrams.

Miller and Fishwick (2004) describe activity diagrams as graphs with well-defined

functional nodes (e.g., start, terminate, delay, engage resource, and release resource). SIMULA

activity diagrams depict the flow of entities and resources through a modeled system.

Cota and Sargent (1992) and Cota, Fritz, and Sargent (1994) describe control flow graphs

as a graphical representation of process behavior. Control flow graphs represent models as

directed graphs with nodes depicting model states and edges depicting event transitions. Control

49

flow graph vertices represent possible control states. Arrows leaving a state represent a guard

and identify the next event. Control flow messages are sent to channels instead of directly to

processes. Channels act as First In First Out (FIFO) queues for messages.

Petri nets are defined by specifying the Petri net graph/structure and adjoining the graph

with an initial state, marked state, and a transition labeling function (Cassandras & Lafortune,

1999). A simple Petri net is a graph with place vertex labels and instantaneous vertex labels

(Schruben, 1992). Miller and Fishwick (2004) describe Petri Nets (PN) as graphs with transition

and place nodes. Arcs connect the nodes. Transitions “fire” if sufficient tokens populate each

input place. Timed Petri Nets (TPNs) have delays associated with their transitions. Petri nets

can support the process interaction world view (Miller & Fishwick, 2004). Petri nets explicitly

represent DES transition functions (Cassandras & Lafortune, 1999). Petri nets can be formally

defined and used with similarly formally defined DEVS (Bobeanu, Kerckoffs, and Van

Landeghem, 2004). Bobeanu, Kerckoffs, and Van Landeghem, (2004) describe a systematic

approach for implementing discrete event systems using Petri nets.

Activity cycle diagrams (ACDs) are primarily associated with activity scanning, but can

also support the process interaction world view (Miller & Fishwick, 2004). ACDs can model

entity interactions (Pidd, 2002). An ACD describes the progression of activity and queue states

that entities pass through (Clementson, 1986). Miller and Fishwick (2004) describe ACDs as

graphs with activity (active state) nodes and wait (dead state) nodes connected by arcs. ACDs

depict the lifecycles of interacting entities flowing through a system. ACDs can be considered

an extension of Petri Nets (Clementson, 1986). Hierarchical Activity Cycle Diagrams (HACDs)

are variants of ACDs (Odhabi, Paul, & Macredie, 1998). A simplified version of HACDs have

50

been defined - called Simplified Hierarchical ACD (SH-ACD with associated icons for graphical

representations (Odhabi, Paul, & Macredie, 1998).

Process network modeling is a popular approach for modeling discrete event systems

(Schruben, 1992). Miller and Fishwick (2004) describe network (or block) diagrams (in the

simulation context) as a class of diagrams similar to activity diagrams, but with more types of

nodes corresponding to their associated languages’ primitives. The associated languages include

GPSS, SLAM, and SIMAN.

Common themes emerge from reviewing the various representations. Most of these

representations use graphical representations of nodes that are related with arcs to indicate

control flow.

2.2.7 Formal DES Semantics

Formal definitions are required to support the explicit semantics of a graphical

representation. Static model representations provide potential for migrating representation

features into simulation model descriptions (Whitman, Huff, & Presley, 1997). A variety of

formalisms have been developed to represent discrete event models. Ziegler, Praehofer, and

Kim, 2000) provide a formal description of various types of discrete event simulations. His

approach is mathematically complete, but difficult for modelers to relate to. Zeigler’s formalism

has been extended by others (Barros 1995). Narain (1991) defined an axiomatic basis for general

discrete event modeling.

51

2.3 Interchanging Simulation Information

Simulations have associated data that can be considered part of a model or it’s associated

experimental frame. This data is often interchanged between simulation systems and a variety of

techniques have been developed to support simulation data interchange. Most simulation

interoperability research has focused on the runtime interchange of information to support

distributed interactive simulations for the military.

2.3.1 Simulation Information Interchange Motivation and Requirements

The motivation for data interchange and interoperability includes the desire for improved

system quality, reduced development cycles, and reduced development costs. System quality

can be improved by reusing validated models and data. Cycle times and development costs can

be reduced by reusing existing information rather than generating new information. An early

system that automatically generated SIMAN models from facility planning software was

motivated by the desire to reduce model development time and improve model quality (Ingalls,

1986).

2.3.2 Simulation Information Representation

Information must be represented to support interchange. Sheehan (2001) points out the

need for common semantics and syntax for interchanging simulation data. He states that

canonical representations are the most useful and have the most structural syntax maturity as

well as semantic content control (see Figure 2).

52

Enforcement of Semantic Content

S
tru

ct
ur

al
 M

at
ur

ity
 o

f S
yn

ta
x

Canonical Representation
System

Increasing
Representation Utility

Fully Structured Views

Persistent Natural
Language

Internal Knowledge

Figure 2. Semantic Control of Representations

Describing quality data interfaces requires proper data representation support.

Knowledge Representation (KR) applies theories and techniques from the fields of logic,

ontology, and computation (Sowa, 2000).

The military has invested significant resources to research the development of

Conceptual Models of the Mission Space (CMMS). CMMS are simulation-implementation-

independent descriptions of processes, entities, and the environment (Sheehan, Prosser, Conley,

Stone, Yentz, & Morrow, 1998). While much of the focus has been on models in simulations,

formal methods of describing the data used by simulations has also been investigated (Roberts,

1991).

53

2.3.3 Simulation Data Interchange Formats

The use of an intermediate neutral data interchange format (DIF) reduces the number of

interfaces (and associated converters) between N systems from O(N2-N) to O(2N-1) (Benjamin,

Akella, Malek, & Fernandes, 2005). Leveraging DIFs requires legacy systems to generate a DIF

“view” of the system’s data model. One approach is to directly create a DIF view. Another

approach is to create an XML view of the legacy data store and then convert from the legacy

systems associated XML format to the DIF format.

Simulation DIFs define how data will be exchanged between applications (Gravitz,

Sheehan, and McLean, 1999). A DIF is a formal specification of the structure and format of data

interchanged between producers and consumers of data. DIFs should define the syntax and

semantics of the interchanged data (Sheehan, 2001).

National Institute of Standards and Technology (NIST) researchers developed libraries of

formal, neutral models of simulation components (Son, Jones, and Wysk, 2000, 2003). Express

is a model specification language (Schenck and Wilson, 1994). The XML Metadata Interchange

(XMI) specification can be used for interchanging models described using the Unified Modeling

Language (UML).

Competing definitions have been proffered for the concept of conceptual models (Lacy,

Randolph, Harris, Youngblood, Sheehan, Might, & Metz, 2001). Simulation conceptual models

can be defined as a developer’s method of translating modeling requirements into a detailed

design framework for a simulation (Pace, 2001). The development of conceptual models is a key

phase in the development of a simulation (Lacy & O’Brien, 1997) (Risner, Porter, Lacy,

O’Brien, & Kollmorgen, 1998).

54

The idea of representing simulation models in a formal manner is not a new concept.

Overstreet & Nance (1985) described the concept of a formal Simulation Model Specification

and Documentation Language (SMSDL). They recognized the reduction in modeling costs and

the improvement in quality that could result from interposing an intermediate form between a

conceptual model and an executable representation of the model.

2.3.4 XML Simulation DIFs

Some vendors (e.g., XJ Technologies) have recognized the benefits of XML for data

interchange and are using it for natively representing their simulation models (Filippov, 2003).

Technologies such as the High Level Architecture (HLA) include interoperability standards.

However, interoperability is also important in an off-line mode. Neutral, open standards are

needed to define the syntax for interchanging data during the development of simulations. These

simulation interchange requirements led to the use of the Extensible Markup Language (XML)

(Lacy & Tuttle, 1998).

Domain-specific XML Data Interchange Formats (DIFs) support information

representations that are platform and machine-independent (Miller & Fishwick, 2004). A DIF’s

XML element name can be based on concepts formalized in a domain ontology (Miller &

Fishwick, 2004).

Research has been performed to demonstrate the use of XML for interchanging data to

support discrete event simulations (Harrison, Maynard, & Pollak, 2004). NIST has developed

the Shop Data Model neutral file format for interchanging information that supports discrete

55

event simulations of manufacturing type facilities. The format has been mapped to ProModel’s

internal structures to determine compatibility (Harward, 2005).

XML has become a widely-popular metalanguage for defining file formats. An early use

of XML was as a mechanism for interchanging simulation data (Lacy & Tuttle, 1998) (Gravitz,

Sheehan, & McLean, 1999). Early work was performed involving developing XML DIFs for

simulation scenario data (Lacy, Stone, and Dugone, 1999a) and CMMS information (Lacy,

Stone, and Dugone, 1999b). Examples of XML simulation DIFs include scenario DIFs and

equipment characteristics and performance data (Lacy & Dugone, 2001a) (Lacy, Dugone, and

Youngren, 2001). Examples of XML military simulation DIFs include the Unit Order of Battle

(UOB) DIF and the CMMS DIF (Gravitz, Sheehan, & McLean, 1999). XML has been proposed

for describing the behaviors of computer-generated forces in military simulations (Lacy, Stone,

& Dugone, 2001) (Lacy & Dugone, 2000b). The U.S. Army’s OneSAF Objective System

(OOS) uses XML extensively for interchanging simulation data including composable behaviors

(DaCosta, 2002) (DaCosta, Lucas, Outar, & Helton, 2003). The XML instance files that

conform to a DIF are sometimes referred to as XML Populated DIFs (XPoDs).

In addition to domain-specific XML DIFs, simulation DIFs associated with simulation

techniques have been developed. XML-based model interchange formats have been developed

for sharing Petri Nets including the Petri Net Markup Language (PNML) (Syrjakow, Syrjakow,

& Szczerbicka, 2002). The OpenModel Modeling Language (OMML) is an XML-based model

interchange format for representing behavioral models (Hall and Zisman, 2004a, 2004b).

OMML is a procedural language for expressing functionality in terms of function/object theories.

The Defense Modeling and Simulation Office (DMSO) considered an ontological alternative to

XML DIFs for equipment descriptions (Lacy, 2001).

56

2.3.5 XML-based Simulation Interoperability Standards

One challenge in developing XML DIFs for simulation data interoperability has been the

standardization process. The Simulation Interoperability Standards Organization (SISO) has led

the development of various XML-based standards to support simulation interoperability.

Data Interchange Formats are used to interchange a variety of data associated with the

High Level Architecture (HLA) approach to distributed simulation. The HLA Object Model

Template (OMT) Specification (IEEE P1516.2) specifies the objects, attributes, interactions, and

parameters that are required for an HLA Simulation Object Model (SOM). The OMT Data

Interchange Format (DIF) is an XML simulation DIF that structures HLA OMT descriptions for

use by automated tools (Hobbs, 2003).

A scenario narrative ontology was used to create an XML grammar called the Scenario

Markup Language (SCML). XML documents described with SCML are called hyperscenarios

(Hobbs, 2003). The High Level Architecture (HLA) Dynamic Scenario Builder (DSB) research

effort promoted the use of XML for interchanging scenario data (Lacy, Stone, & Dugone,

1999a).

The Extensible Modeling and Simulation Framework (XMSF) is a composable set of

standards, profiles and recommended practices for Web-based modeling & simulation (M&S)

(Brutzmann, Zyda, Pullen, & Morse, 2002). XMSF leverages Web technologies to extend

systems interoperability by enabling simulations to interact over highly distributed networks.

XMSF includes Web, internet and XML technologies for open interoperability in M&S.

Ontologies represent one of the XMSF functional requirements categories. An ontology for

sharing discrete event simulations could be one of the XMSF standards. The XMSF group

57

identified RDF and the DARPA Agent Markup Language (DAML) (which later evolved into

OWL) as semantic representations of particular interest.

The Simulation Interoperability Standards Organization (SISO) is developing a standard

based on the Simulation Reference Markup Language (SRML). SRML was developed to

describe the structure and behavior of simulations models using XML and was documented in a

W3C note (Reichenthal, 2002). A process modeling case study demonstrated SRML features

(Reichenthal, 2004). SRML provides a format for representing the behavior of encapsulated

Base Object Models (BOMs). BOMs represent reusable simulation interaction patterns and

components that support the description of HLA SOMs and Federation Object Models (FOMs).

The SRML XML schema defines object-oriented elements for implementing identity,

modularity, classes, associations, behavior, communication, inheritance, polymorphism, and

extensibility. SRML could serve as the basis for a more formal description of simulation models

(Fishwick & Miller, 2004). Alternatively, SRML could be upgraded with new information

representation technologies and extended to formally support its description mechanisms for

DES models (Lacy, 2006).

2.4 OWL Ontological Representations of Simulation Information

While XML DIFs addressed the syntax aspect of simulation data interchange, the

challenge of semantic representation remained. This challenge was very similar to the challenge

of the HTML-based current World Wide Web (WWW). A new set of technologies is enabling

the evolution of the current Web into a Semantic Web. The Semantic Web is empowered by

formal ontologies that are encoded using the Web Ontology Language – OWL.

58

2.4.1 Current Web

The Semantic Web represents a new evolution of the current Web. The current Web is

dominated by files encoded with the Hypertext Markup Language (HTML). It supports human

readers with Web browsers (e.g., Internet Explorer). Standardizing protocols (e.g., TCP/IP) and

languages such as HTML and the Extensible Markup Language (XML) enabled the Web by

supporting interoperability at various levels of the Web’s layered network architecture. This

approach is convenient for human consumption, but difficult for computers to process.

However, the current Web provides insufficient structure to support efficient computer

processing of content. Computers require structured information to support efficient

unambiguous interpretation. Semantic Web techniques provide explicit descriptions of

information’s semantics.

2.4.2 Ontologies

Ontologies provide a shared and common understanding of a domain to facilitate

knowledge sharing and reuse (Fensel, 1998). Ontologies explicitly describe the semantics of

compliant information. Gruber (1993) succinctly defines an ontology as a “formal specification

of a conceptualization.” Computer scientists typically use the term to describe references to

formal descriptions of a domain in order to support knowledge sharing and reuse. Ontologies in

computer science describe information sources with collections of terms and their relationships.

McGuiness (2002) described a spectrum of methods for supporting knowledge representation in

terms of their sophistication. She identifies ontological representations as those that have:

• A finite controlled (extensible) vocabulary,

59

• An unambiguous interpretation of classes and term relationships,
• Strict hierarchical subclass relationships between classes, and
• An ability to support inferencing.

Daconta, Obrst, and Smith (2003) presents a similar continuum of “smart data” whose

positive extreme is described by XML ontologies and automated reasoning. Ontologies support

a common understanding by humans and software agents of the information associated with the

domain. Common understandings help reduce misinterpretation of information.

Semantic Web ontologies encoded using OWL provide a means to define classes,

properties, individuals, and relationships between them. An OWL ontology can be defined as a

“web-distributed vocabulary of declarative formalisms describing a model of a domain” (Lacy,

2005). Just as a simulation model represents a system, an ontology is an abstraction of a domain.

Ontologies support information sharing by formally communicating a common

understanding of a domain with expressive statements that provide explicit declarations of

semantics. OWL-compliant software can interpret ontologies and accurately manipulate the

information. Information sharing requires the use of a common language and access to the

information (syntax). Applications must also have a common semantic understanding of the

information for effective reuse.

Semantics formally describe terms and their relationships which support computer

understanding and reduce ambiguity. Each DES language has its own semantics even though

they often share concepts. There are different types of ontologies. Fensel (1998) categorizes

ontologies as:

• domain ontologies,
• metadata ontologies,
• generic / common sense ontologies,
• representational ontologies, and
• method/task ontologies.

60

An ontology to represent discrete event simulation models would be considered a

representational ontology.

Considerable emphasis in simulation development has been placed on encoding a

simulation model for a particular simulation software package. However, the focus should be on

encoding shareable conceptual models. Successful use of ontologies requires encoding

ontologies using a language, marking up compliant instances, and using software that commits to

the ontologies.

Ontologies are encoded using formal ontology languages so that software can parse them

and use their explicit semantics to interpret compliant information instances. The ontologies are

described using formal vocabularies of terms and their relationships. A variety of formal

languages are used to encode ontologies. IDEF5, the Ontology Description Capture standard,

was developed to represent ontological information as part of the IDEF family of standards.

However, it never achieved the widespread use and maturity of other IDEF standards. The Web

Ontology Language – OWL was developed to support the World Wide Web Consortium (W3C)

concept of the Semantic Web.

2.4.3 Semantic Web

The Semantic Web is the next evolution of the World Wide Web that supports automated

processing of structured information (Berners-Lee, 1999). Berners-Lee, Hendler, and Lasilla

(2001) described their concept of the Semantic Web as a new form of Web content that is

meaningful to computers and that will unleash a revolution of new possibilities. With the

Semantic Web, the emphasis shifts from proprietary data formats to “smart data” that is

61

machine-processable using a neutral open representation formats based on XML (Daconta,

Obrst, and Smith, 2003).

Just as with the current Web, information on the Semantic Web is marked up according

to a particular language, is distributed across servers, and can be accessed by software that

understands the mark up language. Unlike the current Web, Semantic Web applications are able

to leverage ontologies to perform more advanced features with structured information.

Berners-Lee based his Semantic Web concept on the current Web which was enabled by

the protocols he developed to support interoperability (Berners-Lee, 1999). Berners-Lee

published his Semantic Web road map to document his vision for a Web of machine-

understandable data, represented as Web resources (Berners-Lee, 1998).

Semantic Web technology is suitable for applications involving well understood domains,

heterogeneous information sources, and information interchange requirements (Lacy, 2005).

Structured information representations enable the Semantic Web with explicit semantics defined

by ontologies. The W3C’s concept of the Semantic Web relies on information marked up in a

computer-understandable manner using the Web Ontology Language – OWL.

2.4.4 OWL

The Defense Advanced Research Products Agency (DARPA) created the DARPA Agent

Markup Language (DAML) as part of its Semantic Web research effort. European Union (EU)

researchers developed the Ontology Interface Layer (OIL). A joint EU/US Committee on Agent

Markup Languages merged many concepts from OIL with DAML to create the DAML+OIL

language (McGuiness, Fikes, Hendler, and Stein, 2002). The World Wide Web Consortium

62

(W3C) Web Ontology Group evolved DAML+OIL into the Web Ontology Language – OWL,

which was released in February 2004. The language is documented in:

• an overview document (McGuiness & van Harmelen, 2004),
• a language guide (Smith, Welty, & McGuiness, 2004),
• a language reference (Dean, Schreiber, van Harmelen, Hendler, Horrocks, McGuiness, ,

Patel-Schneider, & Stein, 2004),
• test cases (Carroll & DeRoo, 2004), and
• a Semantics and Abstract Syntax document (Hayes, Horrocks, & Patel-Schneider, 2004).

The Web Ontology Language – OWL was developed for defining ontologies and

associated individual data. Knowledge representation technologies (e.g., frame-based reasoning

systems, Description Logics) influenced OWL’s development. OWL statements, also called

assertions, describe classes, properties, and individuals. Assertions can be stated within

individual ontologies or in combinations of multiple joined ontologies. Additional facts can be

derived or logically entailed using inferencing. OWL, like XML, provides an open standard for

information representation. This allows compliant software to manipulate information without

having to have domain-specific knowledge (Meeks, Aviles, & Lacy, 2004).

OWL’s developers designed language features in layers that build on open W3C Web

standards. Tim Berners-Lee defined an initial layered architecture view of the Semantic Web

(Berners-Lee, 2000). Various alternative views of Semantic Web technology layers have since

been developed.

Figure 3 presents an alternative layered conceptual view of Semantic Web technologies

from an OWL perspective (Lacy, 2005). The layers are not strict layers in the networking model

sense, but do illustrate extensions of features since each layer depends on the layers beneath and

uses their features to provide its capability. The implementation layer at the top of the figure

supports specific applications. The logical layer supports formal semantics and reasoning using

63

OWL. The Resource Description Framework (RDF) Schema (RDFS) language is used to define

vocabularies using the ontological primitives layer. RDFS and individuals are specified using

RDF, which provides the basic relational layer with its consistent approach for using XML and

XML Schema (XMLS) datatypes in the transport/syntax layer. The symbolic/reference layer

uses Uniform Resource Identifiers (URIs) and XML namespaces.

Implementation Layer

Logical Layer

Ontological Primitive
Layer

Basic Relational
Language Layer

Transport/Syntax Layer

Symbol/Reference Layer

}
}
}
}
}
}

Applications

Ontology Languages (OWL Full,
OWL DL, and OWL Lite)

RDF and RDF/XML

XML and XMLS Datatypes

URIs and Namespaces

RDF Schema Individuals

Figure 3. Semantic Web Technology Layers

Additional layers may be required to provide sufficient expressiveness. Fishwick (2004) states

that complex ontologies suitable for modeling and simulation will require a combination of

OWL and the Semantic Web Rule Language (SWRL).

64

2.4.5 Ontology Engineering Processes

The successful use of an ontology depends on the quality of the ontology engineered to

support a Semantic Web application. Ontology engineering processes are often based on

software engineering processes and share concepts with DIF development.

2.4.5.1 DIF Development Process

Ontology development is also similar to DIF development activities. Steps used by the

military for defining DIFs are:

• Identify the need for a DIF and a strategy for managing the DIF,
• Develop a logical data model (schema) and specify use cases,
• Determine and build the physical representation of the DIF,
• Determine DIF definition style and build physical DIF,
• Package the DIF,
• Post and review DIF, and
• Publish and maintain the DIF (Gravitz, Sheehan, and McLean, 1999).

Lacy & Dugone (2000a) described a simulation DIF development process that included:

• Defining data requirements,
• Developing logical data models,
• Evolving data models into XML Document Type Descriptions (DTDs),
• Demonstrating and testing the XML DTDs, and
• Documenting and evolving the resulting standard.

2.4.5.2 Ontology Engineering

OWL ontologies are best developed using mature documented ontology engineering

techniques. Gomez-Perez, Fernandez-Lopez, and Corcho (2004) surveyed several approaches to

ontology development. Many of the development processes appear to share an approach

involving specification, conceptualization, formalization, and implementation phases.

65

Ontologies should be developed by leveraging existing domain knowledge (Lacy, 2005). Noy

and McGuiness (2001) recommend the following ontology development steps:

• Determine the domain and scope of the ontology,
• Consider reusing existing ontologies,
• Enumerate important terms in the ontology,
• Define the classes and the class hierarchy,
• Define the properties of classes – slots,
• Define the facets of the slots, and
• Create instances.

2.4.6 Simulation Ontologies

Lacy and Dugone (2000a) and Lacy and Gerber (2004) identified OWL’s predecessor

language – DAML as part of a potential emerging ontology solution for interchanging simulation

information. Blais and Lacy (2004) describe the potential for Semantic Web technologies to

support the M&S domain by dramatically improving composability of functional capabilities and

the interoperability of systems. Ontologies can be used for a variety of modeling and simulation

information representations including static authoritative domain descriptions, simulation

development and composition, dynamic data representation, and CGF behaviors (Lacy, Stone,

and Dugone, 2001). Ontologies have been used to define several ontologies to support

simulation-related applications including simulation objects, CGF behaviors, and discrete event

models.

OWL has been used to describe military equipment in support of distributed interactive

simulations. The taxonomy of equipment described in the Distributed Interactive Simulation

(DIS) enumeration document was evolved into an OWL ontology that can be used to map

information from other military equipment databases to simulation applications (Lacy, 2004).

66

The rube™ project is using OWL to encode an ontology that describes the geometry and

dynamics knowledge of objects in a simulated air battle scene (Fishwick, 2004).

Separating the description of CGF behaviors out of code and into data has been a goal for

some time (Lacy and Henninger, 2003b). Early efforts used XML, but more recently, OWL has

been used to demonstrate how simulated behaviors could be represented (Gerber and Lacy,

2004a) (Gerber and Lacy, 2004b).

OWL has been used to encode the Discrete Event Modeling Ontology (DeMO) (Miller &

Fishwick, 2004) (Fishwick, 2004) (Miller & Baramidze, 2005). The DeMO prototype was

developed to support an investigation of ontology development issues. DeMO’s goal was to

formally define foundational concepts for extension by future ontologies. Process interaction

models in DeMO are represented by the “Process-Oriented Model” class. Specific classes (e.g.,

“GPSS Block Diagram”) are then defined as subclasses to the “Process-Oriented Model” class.

DeMO has been extended to support the Process Interaction world view using OWL and with an

XML Schema language called the Extensible Process Interaction Markup (XPIM) language

(Miller, Silver, & Lacy, 2006).

2.5 Representing DES Models with Ontologies

Process interaction DES models can be represented and interchanged with the help of

ontologies. Developing a formal ontology for representing DES process interaction models

effectively involves defining a new simulation language. The use of OWL for defining an

ontology for DES has been recommended (Seila, 2005) and theorized (Lacy, 2001) (Fishwick &

Miller, 2004). Advantages of representing DES models with ontologies include making models

67

processable by Semantic Web-compliant software. A standard for sharing DES models should

include an ontology, an XML-based interchange language, and a graphical representation (Seila,

2005). The design should also leverage existing formalisms and take into consideration existing

tools.

2.6 Background Literature Summary

Discrete event simulations represent a commonly used type of simulation. The process

interaction world view is a popular paradigm for representing discrete event simulations. Ideas

for representing process interaction world view models can be derived from a variety of

techniques associated with modeling processes, describing software, describing Web services,

simulation languages, and simulation software. Simulation-related information can be

interchanged using a variety of techniques including XML-based Data Interchange Formats. The

Web Ontology Language – OWL can also be used to interchange simulation data and models.

An OWL ontology can be developed to describe process interaction world view models for

discrete event simulations.

68

3 CHAPTER THREE: METHODOLOGY

PIMODES research focused on developing a new open language for describing process

interaction Discrete Event Simulation models. An OWL ontology formalized the new language.

Software tools supported the execution of documented procedures for conducting the PIMODES

research process. The research has known limitations associated with the concept and the

implementation approach.

3.1 Instrumentation

A variety of software tools supported PIMODES research activities. Software-supported

activities included reviewing legacy simulation applications, exchanging data, developing the

PIMODES ontology, and developing software. The software tools used are listed in Table 1

along with the vendors of the tools and the role of the tools in PIMODES research.

69

Table 1. Software Tools Employed in PIMODES Research

Category Tool Vendor Purpose / Role
Arena® Rockwell

Automation
Authoring sample Arena models,
model representation analysis

ProcessModel® ProcessModel Authoring sample ProcessModel
models, model representation analysis

AnyLogic™ XY Logic Authoring sample AnyLogic models,
model representation analysis

Commercial
Discrete Event
Simulation
software
packages

ProModel® ProModel
Corporation

Authoring sample ProModel models,
model representation analysis

Access™ Microsoft Reviewing Arena export file Commercial file
format
manipulation

Microsoft®
Office Excel 2003

Microsoft Reviewing and accessing
ProcessModel export files

Ontology design Microsoft®
Visio®

Microsoft Drawing UML-style class diagrams of
the ontology design

SemanticWorks™ Altova Editing and validating ontologies.
Protégé Stanford

University
Creating and editing ontologies

Ontology
encoding

DOAT DRC Creating ontologies from a database
structure

Instance file
encoding

XMLSpy® Altova Validating instance files

Ontology output
formatting

DumpOnt BBN Formatted presentation of ontologies

Software
Development

Visual Basic® Microsoft Exporting data from Arena and
converting ProcessModel data from
MS Excel to RDF/XML

Microsoft® Word
2003

Microsoft Performing word processing

Acrobat® Adobe Translating document formats

Documentation

Visio® Microsoft Editing figures
Web Site
Development

Microsoft Front
Page®

Microsoft Developing the support website

70

3.2 Procedures

The PIMODES research followed a structured systems engineering approach that was

flexible enough to allow for innovation and creativity throughout the process. A goal of the

process was to support repeatability, verification, validation, and extensibility by documenting

the process and the results.

The research process included research planning, a literature search, the development of

the PIMODES ontology, a demonstration of the ontology’s use, and the documentation of

research results. An IDEF0 activity model of the research process is shown in Figure 4.

Although the model suggests a waterfall approach, the process actually involved spiral

development with iterative refinement. The following sections describe each activity.

Research Plan

A1

Plan Research

A2

Perform Literature
Search

A3

Develop
PIMODES
Ontology

A4

Demonstrate
Ontology Use

Distilled
ADSs /
Notes

A5

Document and
Defend

PIMODES
Ontology

Tools

Dissertation

Authoritative Data Sources OWL Language
Standards

Web Site Code

Background Section,
Reference SectionActivity

Input

Control / Constraint

Output

Mechanism

Legend
Ontology

Development
Tools

Software
Development

Tools

Word Processing
and Website
Development

Tools

Figure 4. PIMODES Research Activity Model

71

3.2.1 Research Planning

The planning phase of the research included describing the research process with the

activity model presented above. A product of the planning phase is a Research Plan that details

the steps to be performed and the products to be produced. Identified tasks should be detailed by

identifying their inputs and outputs, their relationships to other tasks, and a schedule for

completing them with milestone delivery dates for the artifacts they produce.

3.2.2 Literature Search

The literature search for this effort was highly influenced by DES papers presented at the

Winter Simulation Conference, books on DES, and documentation for popular DES software

applications. Prior work was reviewed in the subjects of discrete event simulations, process

metamodels, process languages, discrete event simulations, and simulation software. Key

information gleaned from this phase was used to design the PIMODES ontology.

3.2.3 PIMODES Ontology Development

The focus of the research was the development of the Process Interaction Modeling

Ontology for Discrete Event Simulation (PIMODES) language - formalized by an OWL

ontology. Reviewed literature and legacy applications heavily shaped the ontology design. The

PIMODES ontology development effort was similar to a software development effort.

Ontologies, like software, are best developed with documented, repeatable, and mature

processes. The PIMODES ontology development process steps are depicted in the activity

72

model in Figure 5. The diagram represents an expanded view of the “A3” activity described in

the overall activity model shown in Figure 4 above.

A31

Specify
Requirements

A32

Design Ontology

A33

Encode Ontology

Legacy
Simulation
Application

Documentation

Ontology Requirements Document

Word
Processing
Software

Legacy Applications

PI DES Literature

Graphical
Data Modeling

Tool

Ontology Design
Document

PMODES Ontology

Ontology Editing
Tools

Figure 5. PIMODES Ontology Development Activities

PIMODES ontology development activities included specifying requirements, designing

the ontology, and encoding the ontology. Ontology development involves an evolution and

coagulation of granular ambiguous domain concepts into formal specific encoded formalisms

(see Figure 6).

73

Concept MapProcess Interaction
DES Concepts

Graphical Representation
(leveraging UML 2.0 ADs)PIMODES Visual

Language

Static Data Model
PIMODES

Language Elements

Ontology (using OWL)
PIMODES

Serialization

RDF/XML File
Simulation

Model Instances

Requirements
Specification

Requirements

OWL

RDF

Activity SubActivity Concepts and Artifacts

Specify
Requirements
(Activity A31)

Design
Ontology

(Activity A32)

Encode
Ontology

(Activity A33)

encoded in

modeled in

represented by

shown in

related in

specified in

Develop
PIMODES
Ontology

(Activity A3)

Demonstrate
Ontology Use
(Activity A4)

Figure 6. Ontology Concept Evolution

74

3.2.3.1 Specifying Requirements

The requirements analysis phase scoped the ontology and focused the effort. A

comprehensive set of requirements for the research effort must specify requirements for legacy

data support, the objective ontology, and the demonstration translation software. Unique

requirement identifiers for each requirement help support traceability.

3.2.3.2 Designing the Ontology

Key ontology design steps included identifying harmonized DES concepts, specifying a

visualization language, and identifying language elements. Ontology requirements scope the

domain and help identify process interaction DES concepts. The design should document the

harmonization of legacy application model representation approaches and trace back to specified

requirements. The PIMODES concepts were identified using a harmonization process that

considered approaches implemented by legacy applications and incorporated widely-adopted

concepts from process interaction DES literature. Concept maps helped relate key concepts from

the domain. The subject domain of the PIMODES ontology is a language that describes

temporally related activities. Therefore, a graphical representation was a key related element.

PIMODES concepts and graphical representations evolved into ontology classes with associated

properties. Supported information was modeled in a static class diagram that considered object-

oriented techniques (e.g., generalization).

75

3.2.3.3 Encoding the Ontology

The static data model from the ontology design was encoded using OWL. OWL

ontology encodings must be represented in compliant datafiles that are computer readable. The

preferred format for OWL files is RDF/XML. OWL ontologies can be encoded directly with a

text editor, or through the use of ontology editing tools. The encoded ontological elements

should include comments. A database tool (DOAT) was used to manage the class and property

descriptions and automatically generate the complex OWL RDF/XML syntax.

3.2.4 Ontology Testing and Use Demonstrations

Prototype software was developed to demonstrate the feasibility of translating models

from legacy simulation products into the PIMODES format (and vice versa). The software was

designed, coded, and tested.

3.2.4.1 Demonstration Translation Software Design

A key software design goal was modularity to support software extensions for additional

legacy applications in the future. The design process evolved requirements into a high level

design. The high level design formed the basis for designing detailed data mappings describing

translations of the semantics of simulation model descriptions. The modular software design

helped associate support for legacy applications with specific portions of code. The high level

design of the software focused on the dataflow between legacy representations and the

PIMODES representation.

76

A detailed design process generated data models and mapping descriptions using object-

oriented design principles. Data representations and translation functions were allocated to

object-oriented software classes and methods. Legacy application model representation

approaches were compared and contrasted with the harmonized PIMODES representation to

identify required conversions. The detailed design defined mappings between the legacy

application representation and the PIMODES representation. Object-oriented surrogate classes

were designed to simplify the code by temporarily storing model data from legacy applications

and PIMODES ontology classes during the translation process. The software design traces back

to requirements to help verify the completeness of supported model data as well as the

functionality of the translation software.

3.2.4.2 Software Coding

The detailed software design has evolved into software code by writing Visual Basic

.NET code using Microsoft Visual Studio. Object-oriented classes were encoded as classes with

supporting methods. Legacy application data access mechanisms constrained the interface code.

Access routines imported legacy application data files or data objects in memory. Software

routines for legacy support and PIMODES were modularized using class libraries. Mappings

were implemented with assignment statements and conversion functions. The software code was

traced back to requirements using comments that reference requirement numbers. A simple user

interface was required to allow users to identify source and destination filenames and formats.

Error messages were defined to identify unsupported items to the user during the translation

process.

77

3.2.4.3 Demonstration and Testing Model Development and Experimentation

A set of sample models was needed to test and demonstrate the features of the translation

software. Demonstration models representing sample common process interaction DES

problems were developed to demonstrate interchange. Testing models exhaustively employed

legacy and PIMODES language constructs to verify translations.

Conceptual models were needed for each type of demonstration model to support model

designs. A version of each model was needed for each supported legacy simulation application

in order to compare representations.

Investigative models were also needed to determine how various applications stored their

data and to test the translation software for completeness. A demonstration script was needed to

make it easy for others to repeat demonstration results.

Model translation verification involved several steps. First, the conversion process

needed to execute smoothly without warnings or errors being generated. Next, the syntax of the

resulting file needed to be checked. Models translated in the PIMODES format were checked in

SemanticWorks with automated ties to the PIMODES ontology to verify consistency with the

ontology. Models translated from PIMODES into legacy application formats were opened using

the target tool to ensure that the generated files were valid. Tools such as SemanticWorks can

use the PIMODES ontology to automatically identify any syntactic or semantic errors in the

instance file. Lastly, a manual process verified that all of the model content was translated

according to the design of the software.

78

3.2.5 Research Artifact Documentation

Results of the research need to be shared with other researchers and potential adopters.

Research artifacts including the ontology, documentation, and source code must be hosted on a

public website to provide access to the widest possible audience.

3.3 Limitations

Certain assumptions and decisions were made during the research process that resulted in

limitations. PIMODES research limitations were primarily associated with the concept of

developing a standard process interaction DES language and with decisions made regarding the

research approach.

3.3.1 Concept Limitations

The concept of developing a standard process interaction DES language has limitations

involving the approach of developing a universal language, lack of accepted formalisms for

process interaction DES, dependencies on simulation application vendors, and the long term

requirements of simulation developers to adopt the ontology as a standard.

3.3.1.1 Universal Language Development Approach Concept Limitation

Kreutzer (1986) states that the development of a universal simulation language that could

support model interchange is impractical and unrealistic. At one extreme, lossless conversion to

and from a standard language is impossible without a true superset of all support languages’

79

constructs. Developing a common process interaction DES language is similar to the DoD-

initiated and partially-funded Sharable Content Object Reference Model (SCORM) and

Synthetic Environment Data Representation and Interchange Specification (SEDRIS) standards

that support interoperability of interactive multimedia instruction and terrain databases

respectively. These standardization efforts attempt to support interoperability with open neutral

languages and have been lengthy and expensive. As noted above, Shriber (1991) points out that

although modeling languages are often based on common principles, mastering a single language

does not enable a person to apply simulation to all situations. This statement could be used to

argue that a DES process interaction ontology (language) will not support all models.

3.3.1.2 Process Interaction DES Formalism Concept Limitation

PIMODES is not tied to a widely accepted formalism for process interaction DES

because a widely accepted authoritative exhaustive list of ` process interaction DES concepts

does not yet exist. Other popular DES world views (e.g., event-based, activity-based) have

formalisms associated with them that are more mature compared to the process interaction DES

world view. However, the PIMODES ontology does support common key features of process

interaction world view models.

3.3.1.3 Vendor Dependencies Concept Limitation

A limitation of developing a standard language is its dependency on simulation software

application vendors. The PIMODES concept requires applications to expose and populate their

internal model data. Translation software must provide programmatic access or import/export

80

formats to read and write model data. PIMODES translation requires common / mappable

semantics. If an application does not support a concept, a disconnect will occur. For example,

ProcessModel does not provide a direct method for specifying the maximum number of entities

to create in its arrival routing connection, a feature provided in Arena’s “Create” flowchart

module.

3.3.1.4 Adoption Concept Limitation

Long term success of the PIMODES concept requires adoption by simulation application

developers. One purpose of PIMODES was to encourage adoption of a neutral interchange

format. Successful standards typically originate from recognized benefits rather than being

mandated. Vendors must see advantages to competing on the user interface and execution

portions of their products and cede control of their data representations. Without legacy

applications adopting PIMODES as a natively supported format, translation issues will arise as

vendors continue to update their applications and their model data representations. At a

minimum, adopters of the concept must provide access to their internal data. Optimally,

adopters would read and write the PIMODES format natively.

3.3.2 Approach Limitation

Some limitations are associated with the specific approach taken in this research effort to

implement the PIMODES concept. Approach limitations are related to the scope of the effort,

ontology design, the choice of the ontology language, and the design and coding of the

translation software.

81

3.3.2.1 Scope Approach Limitation

The developed ontology only supports one type of DES model – those described using

the process interaction world view. Within process interaction DES models, only a subset of

language elements are supported. More complex concepts (e.g., Arena’s transporters and

conveyors) could be added in future versions.

3.3.2.2 Ontology Design Approach Limitation

Harmonization choices and design decisions were made regarding model information

representation. Ontology design decisions were made regarding the use of OWL language

features. For example, many of the properties were defined as functional properties. An OWL

functional property can only have one value associated with a particular instance. A

determination was made for each ontology property regarding which OWL property features

should be employed. A normalization process similar to database normalization process might

result in a more efficient but less human understandable version of the ontology.

3.3.2.3 Ontology Language Choice Approach Limitation

The developed ontology is encoded using OWL. The PIMODES ontology is therefore

limited to the expressiveness of OWL. OWL was selected because it is the W3C standard for

representing ontologies. Other ontology languages exist and there are some critics of OWL.

Critics cite issues such as the lack of support for rules in the current version of OWL. Models

often contain conditions that are naturally expressed as rules. The Semantic Web Rules

Language (SWRL) is under development and may eventually support this aspect. Some critics

82

of Semantic Web technology claim that interoperability is still being performed at the syntactic

and not semantic level (Butler, 2006).

3.3.2.4 Translation Software Design and Coding Approach Limitations

Some limitations exist because of how the demonstration translation software was

designed and coded. The demonstration application is PC-based and cannot be easily

implemented as a Web application. Also, the coding for the translation demonstration software

uses Microsoft Visual Basic which limits portability compared to languages such as Java. The

PIMODES demonstration software was developed as a PC application because it needed to

easily interface with ActiveX components that were installed along with their associated

application on a particular PC. An installed PC application is less portable than a Java-based

application or a Web-services approach. The demonstration software loads all model data into

memory before processing. This approach limits the size of supported models.

83

4 CHAPTER FOUR: RESULTS

 PIMODES research resulted in artifacts identified as outputs from the activity diagrams

shown above in the Methodology section. The following subsections describe each of the

resulting artifacts.

4.1 Research Plan

A research plan was developed that identified the research activities that were performed.

The plan helped to organize the effort and keep the research focused on the objectives. All

phases of the research were heavily influenced by the choice of legacy simulation applications.

Arena and ProModel were selected because of their large installed base as evidenced by

references in Winter Simulation Conference papers. AnyLogic represents simulation

applications employing object-oriented techniques. ProcessModel was selected as an example of

low-cost DES software.

4.2 Requirements Specification

The requirements specification identifies the information that the ontology must

represent, the functionality of the demonstration translation software, and the content to be

hosted on the support website. The requirements were iteratively refined throughout effort to

describe the “as built” effort. The requirements document is titled the PIMODES Research

Artifacts Requirements Specification and is provided online at:

84

http://www.opendes.org/PIMODES/Artifacts/PIMODES Requirements.pdf. Table 2 summarizes

the requirements for supporting legacy applications and PIMODES model data.

Table 2. Model Information Support Requirements Summary

 Arena ProcessModel AnyLogic ProModel PIMODES
Process
Concepts

Entity (Type)
Queue
Resource
Variable
(Entity) Attribute

Entity
Resource

Variable Entity
Resource
Location
Attribute
Variable

Entity Type
Entity
Attribute
Queue
Resource
Variable
Location

Activities Assign
Create
Decide
Dispose
Process (includes
Delay)

Activity
Arrival

Source
Sink
Queue
SelectOutput
Delay
Resource
SeizeQ
Release
ProcessQ

Processing
Arrivals

Creation
Assignment
Resource
Interaction
Delay
Branching
Disposition
Queue

Control
Flow

Connections Connections Port References
Connections

Routing Flowchart
Nodes and
Arcs

4.3 Ontology Design Document

The ontology design document describes the object-oriented design of the PIMODES

ontology. The document describes legacy application methods for representing model data. The

document shows how concepts from various legacy applications were harmonized into the

PIMODES design. The ontology design document also describes a graphical representation

language that leverages the visualization representation associated with UML 2.0 Activity

Diagrams. The ontology design document is titled the PIMODES Ontology Design Document

85

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Requirements.pdf

and is provided online at: http://www.opendes.org/PIMODES/Artifacts/PIMODES Ontology

Design.pdf.

4.3.1 Legacy Model Representation Analysis

Several popular legacy applications were analyzed to determine their process interaction

DES approach for representing models and interchanging model data. Each legacy application

analyzed (i.e., Arena, ProcessModel, AnyLogic, and ProModel) uses different concepts to

represent process interaction DES, uses a different GUI for authoring internal data structures,

and employs different techniques for importing and exporting model data. The disparate

approaches shared key concepts for representing process interaction DES models that were

harmonized into a single representation.

4.3.2 Harmonized Concepts

A concept map helps to graphically represent subject concepts and their relationships.

The PIMODES concept map is shown in Figure 7. The activity concept is decomposed to show

the relationship of activity concepts to process concepts (see Figure 8). In an effort to simplify

translations, composite commands (e.g., Arena’s “Process” flowchart module that performs

resource interaction, queuing, and delays) were split into sequential chains of equivalent atomic

commands. Many of these single action statements were reminiscent of SIMAN commands. A

tradeoff exists between composite operations that are convenient for the author to use and atomic

operations that simplify interchange.

86

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Design.pdf

supports

describe
control
flow of

Activity

lifecycle
described by

seizes / releases

global values
described with

occurs at

Organizational

Activities

Process Concepts

Flowchart

Metadatadescribed by

consists of

Process
Definition
(Model)

control flow
indicated by

performed on

Nodes and Arcs

Variable

 located
at Entity

(Work
Item)

Location located
at

Resource
(Workflow

Participant)

Entity
Attribute

described with

Figure 7. PIMODES Concept Map

87

Nodes and Arcs

Entity
(Work
Item)

Creation
Activity

Resource
Interaction

Delay
Activity

Y
Branching

Activity

Assignment Activity

Variable

Location

delays

creates

elminates

seizes / releases

assigns

assigns

controls successor

controls waiting order

Activities Affected Process
Concepts

YIELD

Queue
Activity

R.I.P.

Disposition
Activity

Resource
(Workflow

Participant)

Entity
Attribute

identifies target

Figure 8. Activity Influence on Process Concepts

88

4.3.3 Objective PIMODES Ontology Description

The harmonized concepts were evolved into an object-oriented description. Clear

semantics are required to unambiguously define concepts in an ontology. A static data model

was developed for representing the PIMODES design. The data model was expressed using

modified IDEF1X/UML static class diagrams to describe ontology classes and properties. The

static object model for classes with associated properties was detailed sufficiently for encoding

into an OWL ontology. An overview class diagram is presented in Figure 9.

Model

ModelMetadata

11

Flowchart

1
1

ProcessConcept

1

*

Activity

1

*

EntityTypeEntityAttribute

1*

Resource

Location

Variable

CreationActivity DelayActivity DispositionActivityResourceInteractionActivity BranchActivityAssignActivity QueueActivity

FlowchartDirectedEdge

FlowchartNode

1

*

1

*

occursAt

associatedActivity

Figure 9. PIMODES Ontology Class Diagram

89

4.3.4 Legacy Application Support

The harmonized ontology design’s support for legacy applications varied. One metric for

determining coverage would be the percentage of a legacy application’s constructs that are

supported by the ontology. However, since some constructs are rarely used in practice, a better

metric would relate the level of support to the frequency of use (e.g., creation of entities occurs

in almost every model). A detailed analysis of PIMODES ontology support for legacy constructs

is provided in the design document.

4.3.5 Graphical Representations

A graphical representation was specified for representing PIMODES models. PIMODES

flowcharts can be represented using an enhanced UML 2.0 activity diagram approach. Standard

UML diagrams were enhanced by relating activities to resources to indicate resource interaction.

This approach is similar to resource assignment representations in ProcessModel.

4.4 PIMODES Ontology Description Report

The PIMODES ontology was encoded using the DOAT tool. The PIMODES Ontology

Description Report provides DOAT table views, DumpOnt listings, and the RDF/XML code for

the PIMODES ontology. The document is provided at

http://www.opendes.org/PIMODES/Artifacts/PIMODES Ontology Description.pdf.

90

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Description.pdf

4.5 Translation Software Design

The translation software design document describes the design of the demonstration

translation software. It includes high level design diagrams and detailed mapping tables and is

provided at http://www.opendes.org/PIMODES/Artifacts/PIMODES Translation SW

Design.pdf. The overview dataflow diagram is presented in Figure 10.

RDF

PIMODES
Ontology
(OWL)

Arena Software

ProcessModel

Commercial Software
Applications

Application-Specific
Formats

Conversion Routines

RDF/XML Instance
Data

PIMODES Model

compliant
with

Arena
Model

.doe

ProcessModel
Model Export

.xls

AnyLogic
Model

XML

AnyLogic

ProModel
Model

.mod

ProModel

Figure 10. Translation Software Design

The design document includes detailed mapping information and identifies limitations of the

translation process. Besides conceptual (semantic) differences (e.g., no explicit location support

91

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Translation%20SW%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Translation%20SW%20Design.pdf

in AnyLogic), some losses occur in the translation process due to the complexity of

implementing the mappings.

4.6 Translation Software Code

The software coding effort resulted in a set of object-oriented Visual Basic projects. The

PIMODES Translation Software Description Report is provided at:

http://www.opendes.org/PIMODES/Artifacts/PIMODES Code.pdf. It describes the structure of

the translation software class libraries. The document also shows traceability back to

requirements.

4.7 Demonstration and Test Models Report

Demonstration and testing models were developed. Versions of these models included

conceptual models, legacy application file formats, and native PIMODES versions. The models

are described in the PIMODES Demonstration and Test Models Report which is provided at:

http://www.opendes.org/PIMODES/Artifacts/PIMODES Models.pdf. An airport model was

developed to demonstrate common queuing elements. An inventory model was developed to

demonstrate mathematically-oriented features. Exhaustive testing models were developed for

ensuring the completeness of the translation process. Based on the three models and the seven

translation directions, a set of twenty one experiments were executed (see Table 3).

92

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Code.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Models.pdf

Table 3. Model List

Model Type Source Destination Experiment #
Arena PIMODES 1
ProcessModel PIMODES 2
AnyLogic PIMODES 3
ProModel PIMODES 4

Arena 5
AnyLogic 6

Airport

PIMODES

ProModel 7
Arena PIMODES 8
ProcessModel PIMODES 9
AnyLogic PIMODES 10
ProModel PIMODES 11

Arena 12
AnyLogic 13

Inventory

PIMODES

ProModel 14
Arena PIMODES 15
ProcessModel PIMODES 16
AnyLogic PIMODES 17
ProModel PIMODES 18

Arena 19
AnyLogic 20

Exhaustive

PIMODES

ProModel 21

The following sections describe the results observed from performing the 21 translations with the

demonstration translation software.

4.7.1 Arena to PIMODES Results

Arena does not appear to expose a differentiation of true and false connections from the

Decide flowchart module. The information appears to be contained in “private” operands.

Copying and then pasting modules in Arena results in the loss of unique identifiers due to

Arena’s duplication of information in the copying process.

93

4.7.2 ProcessModel to PIMODES Results

ProcessModel does not expose connection arcs in its .xls export file. Therefore,

PIMODES flowchart arcs cannot be automatically generated from ProcessModel. ProcessModel

does not expose its resource assignments in its .xls export file. Therefore, PIMODES Resource

Interaction activities cannot be automatically generated from ProcessModel. ProcessModel does

not expose the “firstTime” attribute associated with periodic arrivals in its .xls export file.

Therefore, the associated property in the PIMODES Creation Activity cannot be automatically

generated from ProcessModel.

ProcessModel allows for different “firstTime” and “interarrivalTime” units of measure

(time) associated with periodic arrivals in its .xls export file. However, only one unit of measure

can be specified in a PIMODES Creation Activity.

4.7.3 AnyLogic to PIMODES Results

No loss of information was observed in the translation from AnyLogic to PIMODES.

4.7.4 ProModel to PIMODES Results

ProModel allows for different types of processing to be applied to different entity types.

This is specified by associating an entity type with the Processing table instructions. However,

the translation software currently assumes that the same processing logic applies to all entity

types at the specified location.

94

ProModel allows for assignments to be made to both variables and entity attributes within

the process operation of a Processing table record. However, the translation software currently

assumes that all assignments are made to variables.

ProModel allows for branching to specified with multiple records in the Processing

table’s Routing subtable. However, the translation software assumes that only two-way branches

occur and that their destinations are specified in consecutive records. The translation software

also assumes that the sum of percentage conditions is 100%.

4.7.5 PIMODES to Arena Results

Arena data modules for entity types, resources, and queues are automatically generated

when related flowchart modules are specified. Therefore, the translation software does not map

PIMODES information to these items. However, this can cause a problem if the PIMODES

version of the model contains Queue activities with different queue types because Arena queues

can only have a single queue type. Since PIMODES Queue activities are not directly translated

to Arena, the associated connections to and from Queue activities are lost. Since Arena does not

support a concept of locations, the PIMODES Location information is lost.

4.7.6 PIMODES to AnyLogic Results

Since AnyLogic does not support a concept of locations, the PIMODES Location

information is lost. The current version of the translation software does not construct the

connections to Resource objects.

95

4.7.7 PIMODES to ProModel Results

The current version of the translation software does not construct the Processing table’s

Routing subtable. This results in a loss of control flow specification.

4.7.8 Experimentation Results Summary

The demonstration and testing models only contain supported items. Therefore, no issues

of scope arose during the translations. However, observed problems were associated with issues

of:

• syntax (data exposure from legacy applications),

• semantics (PIMODES ontology support), and

• automated conversions (translation software design and code).

4.8 Demonstration Script

The translation software user interface (see Figure 11) is fairly simple and intuitive to

use. However a demonstration script was developed to ensure repeatability. The script provides

step-by-step instructions for executing the translation software with one of the demonstration

models. The script is provide at http://www.opendes.org/PIMODES/Artifacts/PIMODES Demo

Script.pdf.

96

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Demo%20Script.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Demo%20Script.pdf

Figure 11. PIMODES Translation Software User Interface

4.9 Web Site

The project support website is available at: http://www.opendes.org/PIMODES/. The

site provides information about the effort, the PIMODES ontology, the demonstration translation

software, and softcopies of the research artifacts.

4.10 Results Artifact Summary

In addition to the dissertation text, the work products identified in Table 4 were generated

as a result of the research. Each of the artifacts is provided on the project website.

97

http://www.opendes.org/PIMODES/

Table 4. Artifact Summary

Document Title / Hyperlink Format
PIMODES Research Artifacts Requirements Specification /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Requirements.pdf

Microsoft Word

PIMODES Ontology Design Document /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Ontology Design.pdf

Microsoft Word,
Visio

PIMODES Ontology Description Report /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Ontology Description.pdf

Microsoft Access DB
Tool,
OWL output

PIMODES Translation Software Design Document /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Translation SW Design.pdf

Microsoft Word,
Visio UML dataflow
diagrams

PIMODES Translation Software Description Report /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Code.pdf

ASP.NET,
XSLT

PIMODES Demonstration and Test Models /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Models.pdf

Microsoft Word,
Visio

PIMODES Demonstration Script /
http://www.opendes.org/PIMODES/Artifacts/PIMODES
Demo Script.pdf

Microsoft Word

98

http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Requirements.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Requirements.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Description.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Ontology%20Description.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Translation%20SW%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Translation%20SW%20Design.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Code.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Code.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Models.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Models.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Demo%20Script.pdf
http://www.opendes.org/PIMODES/Artifacts/PIMODES%20Demo%20Script.pdf

5 CHAPTER FIVE: CONCLUSIONS

This chapter presents research conclusions, offers recommendations to the problem

investigated, discusses implications for future studies, and addresses the implications of the

results.

5.1 Research Conclusions

The PIMODES research demonstrated that a process interaction DES ontology can be

developed and that compliant models can be interchanged between legacy applications using

automated translation software.

5.1.1 Process Interaction DES Ontology Development

The PIMODES research demonstrated that a process interaction DES ontology could be

developed. DES concepts from literature and legacy applications were harmonized into a

concept map that provided the basis for an ontology design. The ontology design was encoded

into an OWL ontology file. The PIMODES ontology provides formal computer-parseable

descriptions of process interaction DES concepts with OWL class and property specifications.

The use of software technology including Semantic Web technology provides benefits over a

simple text file approach. For example, entity types in a model can be distributed on the Web,

identified with a URI reference, and associated with a domain ontology. Ontology-enabled

software can enforce constraints on conforming instance files, leading to early detection of

errors.

99

The PIMODES ontology refines and formalizes key process interaction DES concepts.

PIMODES requires explicit individual start and end nodes in the control flow flowcharts. This

serves to remove ambiguity and helps determine model completion status. PIMODES also

defines a formal relationship between the activity, flowchart node, and location concepts.

PIMODES formally defines the concept of an “Entity Type” which is often confused with the

concept of the associated entities that are instances of the “Entity Type”.

5.1.2 Legacy Application Model Interchange Feasibility

The PIMODES research also demonstrated that popular legacy application process

interaction DES models can be interchanged using the PIMODES ontology. Significant portions

of models authored using legacy applications were translated to the PIMODES format with

translation software. PIMODES model data was also translated into legacy formats. The

interchange experiments showed that:

• Legacy application process interaction DES model representations share a high degree of
commonality,

• Vendors must expose their model data to allow for interchange, and
• Software can be developed to automate the translation of model data to and from the

PIMODES format.

5.1.2.1 Legacy Model Representation Approach Commonality

Extensive semantic commonality exists in legacy process interaction DES languages.

This is due to common objectives and a common heritage (family tree) of process interaction

DES concepts. Similarities also resulted from the selection of the four primary legacy

applications to review.

100

Although there are considerable similarities, there are also differences. For example, the

ProModel location concept is more important for shop floor models but practically useless in

describing processes performed by distributed Web services in a Service Oriented Architecture.

Software applications also differ in their use of composite operations (e.g., Arena’s “Process”

flowchart module) for authoring convenience.

Older simulation applications tend to follow a functional approach while many newer

applications (e.g., AnyLogic) use an object-oriented approach. This difference may mirror the

trends in the broader software industry which has migrated from functional programming to

object-oriented programming. In an object-oriented approach, activities are treated as objects

(manipulators) and entities are represented as messages between them.

This research effort demonstrated that models from various legacy simulation

applications can be interchanged. The loss of data associated with these conversions varies. The

loss depends largely on how applications expose their model data and the semantics of how the

information represents the application’s particular perspective of the process interaction world

view of discrete event simulation.

5.1.2.2 Vendors Must Expose Their Model Data to Allow Interchange

Legacy applications store model data in their internal data structures. A major feature of

most commercial packages is their authoring GUI that populates their model data structures.

However, vendor model representations are often overly coupled with their user interfaces,

resulting in interchange challenges. Model interchange requires legacy applications to expose

101

their data and import new data. The easiest method of interchange would be to use PIMODES

natively. The next simplest approach is to use XML - the approach used by AnyLogic.

5.1.2.3 Translation Software Feasibility

This effort demonstrated that the development of automated translation software is

feasible. The software is constrained by vendors’ support for importing and exporting model

data. The demonstration translation software shows that models developed with existing popular

applications can be interchanged with each other. Model developers can now begin to share

models. The translation software can be extended to support additional simulation packages.

5.2 Recommendations

PIMODES research results should be leveraged to improve the state of the process

interaction DES practice. PIMODES should be promoted as a “strawman” for a process

interaction DES model representation interchange standard. Tool vendors should be educated on

the benefits of providing a native PIMODES view of their internal model representations. Users

should be told about the benefits of model reuse and the technology options for interchanging

models. The theoretical descriptions of process semantics should be investigated and discussed

to develop a consensus formalism that could serve as the basis for an ontology.

102

5.3 Implications for Future Studies

 PIMODES research results can support a variety of future research studies. Additional

work could investigate the scope and design of the PIMODES ontology as well as software

applications to leverage the ontology. Research could also be performed regarding the

aggregation and dispersion of model components using PIMODES.

5.3.1 Ontology Scope

The PIMODES requirements document specifies model data that must be supported by

the ontology. New requirements could be added to the PIMODES requirement specification to

support additional applications. Support for additional languages (e.g., FlexSim, GoldSim,

Gensys G2) would help validate the PIMODES ontology and lead to improvements.

The PIMODES ontology provides a foundation for ontology-based simulations. The

PIMODES ontology could be connected to upper ontologies to support semantic joins with other

ontologies. Additional process interaction DES concepts could be adopted to PIMODES such as

supporting hierarchical models, and including additional process concepts (e.g., schedules, sets).

PIMODES currently supports only a single “flat” level of process steps. However, complex

models require hierarchical models and PIMODES could be extended to support them.

PIMODES could be incorporated into the SCORM family of standards for interchange training

simulations. As a common language, PIMODES enables testing benchmarking by allowing for

direct comparisons of models authored with various simulation software packages.

103

5.3.2 Ontology Design

A variety of designs could result from the PIMODES ontology requirements. Alternative

designs could be developed. A significant model reuse challenge is the variety of approaches for

representing mathematical expressions, especially distribution functions. The commonality of

expression representations should be addressed, perhaps by investigating the use of MathML.

Similarly, rules could be used to formalize the expression of conditions.

A variety of graphical representations are used to describe processes. A formal ontology

of diagrams could help differentiate between methods for representing control flow. An

associated graphical language could be investigated. UML 2.0 ADs are insufficient because of

the need to describe resource requirement associations and branching logic.

5.3.3 Software Application Development

New software can now be developed to support process interaction DES users. Open

source software initiatives would be consistent with the open nature of the PIMODES ontology.

Authoring software could edit PIMODES models as a native file format. Other software could

execute PIMODES models. Eventually, new technologies such as Web services could support

the format. A model editor could be developed that uses PIMODES as its native data format.

The editor would help users visualize and manipulate translated data.

The PIMODES focus is on describing a model. However, a small amount of additional

data could describe an experiment. Such data would include replication restrictions and other

data to support simulation execution. Software could execute the PIMODES models and provide

output statistics to users. This would avoid the need for translating to/from legacy simulation

104

software application model formats. A popular trend in software development is the use of Web

services. Web services could be developed to provide PIMODES model authoring and execution

using software distributed on the Web. This approach would be consistent with the distributed

model capabilities enabled by the PIMODES ontology and the web-ready features of OWL.

5.3.4 Aggregation and Dispersion

PIMODES could be used to support the aggregation and dispersion of model contents. A

model author might want to assemble a new model from portions of existing models that are

represented with various languages. The existing models could be converted to the PIMODES

format and then portions of interest could be extracted from the converted models and assembled

into a new PIMODES model.

Another use case could involve splitting a PIMODES model into components that are

then converted to other formats for execution by various simulation applications. In this way,

the best features of different packages could be used to simulate specific portions of the original

model.

5.4 Implications of the Results

The development of the PIMODES ontology represents a new opportunity to share DES

models. Many common operations and concepts are supported. Therefore, a great deal of legacy

model content can be interchanged using the ontology.

105

The PIMODES ontology represents a new open process interaction DES language,

formalized with an OWL ontology, for interchanging process interaction DES models.

Researchers can extend the PIMODES language with additional concepts and activities.

The PIMODES ontology enables a new ontology-based approach to process interaction

DES model interchange that supports reuse. Ultimately, model development can be better,

faster, and cheaper through the reuse enabled by using PIMODES.

106

LIST OF REFERENCES

Andrews, T. et al (2003). Business Process Execution Language for Web Services, Version 1.1.
Retrieved March 18, 2006 from http://xml.coverpages.org/BPELv11-
May052003Final.pdf.

Ankolekar, A., Paolucci, M., & Sycara, K. (2004). Spinning the OWL-S Process Model Toward

the Verification of the OWL-S Process Models. Proceedings of the Semantic Web
Services Workshop at the Third International Semantic Web Conference.

Arief, L. B., Speirs, N. A. (2000). A UML Tool for an Automatic Generation of Simulation

Programs. Proceedings of the Second International Workshop on Software and
Performance.

Balci, O., Bertelrud, A. I., Esterbrook, C. M., & Nance, R. E. (1998). Visual Simulation

Environment. Proceedings of the 1998 Winter Simulation Conference.

Ball, P. (1996). Introduction to Discrete Event Simulation. Proceedings of the Second

DYCOMANS workshop on Management and Control: Tools in Action. Retrieved March
7, 2005 from http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html.

Banks, J. (1996). Software for Simulation. Proceedings of the 1996 Winter Simulation

Conference.

Banks, J. (2001). Panel Session: The Future of Simulation. Proceedings of the 2001 Winter

Simulation Conference.

Banks, J., & Carson, J. S. II (1985). Process-interaction Simulation Languages. Simulation 44:5,

225-235.

Banks, J. & Carson J. S., (1986). Introduction to Discrete-event Simulation. Proceedings of the

18th Winter Simulation Conference.

Bapat, V. & Swets, N. (2000). The Arena Product Family: Enterprise Modeling Solutions.

Proceedings of the 2000 Winter Simulation Conference.

Barros, F. J. (1995). Dynamic Structure Discrete Event System Specification: a New Formalism

for Dynamic Structure Modeling And Simulation. Proceedings of the 27th conference on
Winter simulation.

Belanger, T. C. (1994). The Indispensable Task Network. AIPE Facilities.

107

http://xml.coverpages.org/BPELv11-May052003Final.pdf
http://xml.coverpages.org/BPELv11-May052003Final.pdf
http://www.dmem.strath.ac.uk/%7Epball/simulation/simulate.html

Benjamin, P., Akella, K.V., Malek, K., & Fernandes, R. (2005). An Ontology-Driven
Framework For Process-Oriented Applications. Proceedings of the 2005 Winter
Simulation Conference 2005.

Berners-Lee, T. (1998). What the Semantic Web can represent. Retrieved September 14, 2006

from http://www.w3.org/DesignIssues/RDFnot.html.

Berners-Lee, T. (1999). Weaving the Web.

Berners-Lee, T. (2000). Semantic Web. Presentation at XML 2000. Retrieved September 14,

2006 from http://www.w3.org/2000/Talks/1206-xml2k-tbl/.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American 284

(5): 34–43.

Blais, C., & Lacy, L. W. (2004). Semantic Web: Implications for Modeling and Simulation

System Interoperability, Proceedings of the Fall 2004 Simulation Interoperability
Workshop.

Bobeanu, C., Kerckhoffs, J. H., & Van Landeghem, H. (2004). Modeling of Discrete Event

Systems: A Holistic and Incremental Approach using Petri Nets. ACM Transactions on
Modeling and Computer Simulation (TOMACS), Volume 14 Issue 4.

Bock, C. (1999). Three Kinds of Behavior Model. Journal of Object-Oriented Programming.

Volume 12, Number 4.

Bock, C. (2003). UML 2 Activity and Action Models. Journal of Object Technology, Volume 2,

Number 4.

Bock, C., & Gruninger, M., (2005). PSL: A Semantic Domain for Flow Models. Journal of

Software and Systems Modeling, 4:2.

Brutzman, D., Zyda, M., Pullen, J.M., & Morse, K.L. (2002). Extensible Modeling and

Simulation Framework (XMSF) Challenges for Web-based Modeling and Simulation.
Retrieved September 5, 2005 from http://www.movesinstitute.org/xmsf.

Butler, M.H. (2006). Is the Semantic Web Hype?. Retrieved June 12, 2006 from

http://www.hpl.hp.com/personal/marbut/isTheSemanticWebHype.pdf

Carey, S. A., Kleiner, M.S., Hieb, M.R., & Brown, R., (2002a). Standardizing Battle

Management Language – Facilitating Coalition Interoperability. MSIAC M&S Journal,
Vol. 4 #2.

Carey, S. A., Kleiner, M.S., Hieb, M.R., & Brown, R. (2002b). Development of a C2 Standard of

Task Representation for C4ISR Systems, Simulations, and Robotics: Battle Management

108

http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.movesinstitute.org/xmsf

Language. Paper presented at the 2002 Command and Control Research and Technology
Symposium. Track 3: Modeling and Simulation.

Carroll, J. J., & DeRoo, J. (2004). OWL Web Ontology Language Test Cases. Retrieved

September 14, 2006 from: http://www.w3.org/TR/owl-test/.

Cassandras, C.G., & Lafortune, S. (1999). Introduction to Discrete Event Systems. Kluwer.

Cavarra, A., Riccobene, E., & Scandurra, P. (2004) A Framework to Simulate UML Models:

Moving from a Semiformal to a Formal Environment. Paper presented at the ACM
Symposium on Applied Computing.

Clementson, A. T. (1986). Simulation with Activities using C.A.P.S/E.C.S.L (the British

Approach to Discrete-event Simulation). Proceedings of the 1986 Winter Simulation
Conference.

Cota, B. A., Fritz, D. G., & Sargent, R. G. (1994). Control Flow Graphs as a Representation

Language. Proceedings of the 1994 conference on Winter Simulation Conference.

Cota, B. A., & Sargent, R.E. (1992). A modification of the process interaction world view.

ACM Transactions on Modeling and Computer Simulation (TOMACS), 2 (2): 109-129.

Crain, R. C. (1997). Simulation using GPSS/H. Proceedings of the 1997 Winter Simulation

Conference.

Daconta, M. C., Obrst, L. J., & Smith, K. T. (2003). The Semantic Web: A Guide to the Future of

XML, Web Services, and Knowledge Management. Wiley Publishing.

DaCosta, B. (2002). XML Support for OneSAF Objective System Behaviors. Proceedings of the

11th CGF Conference.

DaCosta B., Lucas, T., Outar, R., & Helton, D. (2003). OneSAF Repository Framework:

Defining, Storing, and Interchanging XML Data. Proceedings of the Spring 2003
Simulation Interoperability Workshop.

Davis, P. K., & Anderson, R. H. (2003). Improving the Composability of Department of Defense

Models and Simulations. RAND National Defense Research Institute, 2003.

Davis, D. A., & Pegden, C. D. (1988). Introduction to SIMAN. Proceedings of the 1988 Winter

Simulation Conference.

Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., & Stein, L.A. (2004). OWL Web Ontology Language Reference. World
Wide Web Consortium (W3C) Recommendation. Retrieved September 14, 2006 from
http://www.w3.org/TR/owl-ref/.

109

http://www.w3.org/TR/owl-test/
http://www.w3.org/TR/owl-ref/

Dubiel, B., & Tsimhoni, O. (2005). Integrating Agent Based Modeling into a Discrete Event

Simulation. Proceedings of the 2005 Winter Simulation Conference.

Fensel, D. (1998). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer.

Filippov, A. (2003). AnyLogic Technical Overview, Retrieved November 12, 2005 from:

http://www.anylogic.jp/download/any5presentation.pdf.

Fineberg, M. L. (1995). A comprehensive taxonomy of human behaviors for synthetic forces

(IDA Paper P-3155). Alexandria, VA: Institute for Defense Analysis.

Fishman, G. S. (1978). Principles of Discrete Event Simulation. New York: John Wiley & Sons.

Fishwick, P. A. (2004). Toward an Integrative MultiModeling Interface: A Human-Computer

Interface Approach to Interrelating Model Structures. SCS Transactions on Modeling and
Simulation.

Fishwick, P. A., & Miller, J. A. (2004). Ontologies for Modeling and Simulation: Issues and

Approaches. Proceedings of the 2004 Winter Simulation Conference.

Franta, W. R. & Maly, K. (1977). An Efficient Data Structure for the Simulation Event Set.

Communications of the ACM 20(8): 596-602 (1977)

Gerber, W. J., & Lacy, L. W. (2004a). Standard Ontological Behavior Representation to Support

Composability (extended abstract). Proceedings of the 13th Behavior Representation in
Modeling and Simulation Conference.

Gerber, W. J., & Lacy, L. W. (2004b). Behavior Composability Support Through Standardized

Ontology Representations. Proceedings of the Interservice/Industry Training, Simulation
and Education Conference (I/ITSEC).

Glynn, P.W. (1989). A GSMP formalism for discrete event systems. Proceedings IEEE 77, 1

Jan. 14-33, Vol. 77, Issue 1.

Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2004). Ontological Engineering.

London: Springer.

Gravitz, P., Sheehan, J., & McLean, T. (1999) Common Activities in Data Interchange Format

(DIF) Development. Proceedings of the Spring 1999 Simulation Interoperability
Workshop.

110

http://www.anylogic.jp/download/any5presentation.pdf

Gruber, T. R. (1993). A Translation approach to portable ontology specifications. Knowledge
Acquisition, An International Journal of Knowledge Acquisition for Knowledge Based
Systems 5 (2), 199-220.

Guo, L., Chen-Burger, Y., & Robertson, D. (2004). Mapping a Business Process Model to a

Semantic Web Service Model. Proceedings of the IEEE International Conference on
Web Services (ICWS'04).

Guru, A., Savory, P., & Williams, R., (2000). A Web-based Interface for Storing and Executing

Simulation Models. Proceedings of the 2000 Winter Simulation Conference.

Hall, R.J., & Zisman, A. (2004a). OMML: A Behavioral Model Interchange Format.

Proceedings of the 12th IEEE International Requirements Engineering Conference
(RE’04).

Hall, R. J., & Zisman, A. (2004b). Model Interchange and Integration for Web Services. TAV-

WEB Proceedings/ACM SIGSOFT SEN

Hanrahan, R. P. (1995). The IDEF Process Modeling Methodology. Retrieved July 23, 2005

from http://www.stsc.hill.af.mil/crosstalk/1995/06/IDEF.asp.

Harrell, C. R., Ghosh, B., & Bowden, R. (2000). Simulation Using ProModel.

Harrell, C. R., & Price, R. N. (2000). Software/modelware tutorials I: Simulation modeling and

optimization using ProModel. Proceedings of the 32nd conference on Winter simulation.

Harrell, C. R., & Price, R. N. (2003). Simulation Modeling Using Promodel Technology,

Proceedings of the 2003 Winter Simulation Conference.

Harrison, G.A., Maynard, D.S., & Pollak, E. (2004). Automated Database And Schema-Based

Data Interchange For Modeling And Simulation. Proceedings of the 2004 Winter
Simulation Conference.

Harward, G.B. (2005). Suitability of the NIST Shop Data Model as a Neutral File Format for

Simulation. master’s thesis, BYU.

Hayes, P., Horrocks, I., & Patel-Schneider, P. F. (2004). OWL Web Ontology Language

Semantics and Abstract Syntax

Henriksen, J. O., & Crain, R. C. (2000). GPSS/H: a 23-Year Retrospective View. Proceedings of

the 2000 Winter Simulation Conference.

Hieb, M., Pullen, J., Sudnikovich, W., & Tolk. A. (2004) Extensible Battle Management

Language (XBML): A Methodology for Web Enabling Command and Control for

111

http://www.stsc.hill.af.mil/crosstalk/1995/06/IDEF.asp

Network Centric Warfare. Proceedings of the 2004 Command and Control Research and
Technology Symposium The Power of Information Age Concepts and Technologies.

Hobbs, R. L. (2003). Using XML to Support Military Decision-Making. Paper presented at the

2003 XML Conference and Exposition.

Ingalls, R. G. (1986). Automatic Model Generation. Proceedings of the 1986 Winter Simulation

Conference.

Joint Warfighting Center (1997). Handbook for the Design and Use of Operational Templates.

Karayanakis, N. M. (1995). Advanced System Modelling and Simulation with Block Diagram

Languages. Boca Raton : CRC Press.

KBSI (2005). IDEF3 Process Description Capture Method. Retrieved September 14, 2006 from

http://www.idef.com/idef3.html

Kelton, W. D., Sadowski, R. P., Sturrock, D. T. (2003). Simulation with Arena, 3rd ed.,

McGraw-Hill.

Kreutzer, W. (1986). Systems Simulation: Programming Styles and Languages. Wokingham,

England: Addison-Wesley.

Lacy, L. W. (2001). Semantic Web Applications for Modeling and Simulation. Retrieved

September 13, 2006 from http://www.daml.org/2001/07/dmso-applications/semantic-
web-071101.ppt

Lacy, L. W. (2004) DARPA DAML Final Report. DRC Report #DRC E-8970U.

Lacy, L. W. (2005) OWL: Representing Information Using the Web Ontology Language.

Victoria, Canada: Trafford Publishing.

Lacy, L. W. (2006). Interchanging Discrete Event Simulation Models using PIMODES and

SRML. Proceedings of the Fall 2006 Simulation Interoperability Workshop.

Lacy, L. W., & Dugone, T. (2000a). Using XML To Share Offline Simulation Data. Proceedings

of the 2000 Summer Computer Simulation Conference 2000.

Lacy, L., & Dugone, T. (2000b). Computer Generated Forces Behavior Representation and

Reuse Using the eXtensible Markup Language (XML). Proceedings of the Fall 2000
Simulation Interoperability Workshop.

Lacy, L., Dugone, T., & Youngren, R. W. (2001). Standard Data Exchange Methods for

Equipment Characteristics And Performance Data. Proceedings of the 2001
Interservice/Industry Training, Simulation and Education Conference (I/ITSEC).

112

http://www.idef.com/idef3.html

Lacy, L. W., & Gerber, W. J. (2004). Potential Modeling and Simulation Applications of the

Web Ontology Language – OWL. Proceedings of the 2004 Winter Simulation
Conference.

Lacy, L., & Henninger, A. (2003). Developing Primitive Behavior Ontologies using the

Ontology Web Language. Proceedings of the 2003 Interservice/Industry Training,
Simulation and Education Conference (I/ITSEC).

Lacy, L., & O’Brien, L. (1997). Conceptual Modeling for WARSIM 2000. Proceedings of the

1997 Interservice/Industry Training Systems and Education Conference.

Lacy, L., Randolph, W., Harris, B., Youngblood, S., Sheehan, J., Might, R., & Metz, M. (2001).

Developing a Consensus Perspective on Conceptual Models for Simulation Systems.
Proceedings of the Spring 2001 Simulation Interoperability Workshop.

Lacy, L., Stone, G.; & Dugone, T. D. (1999a). Sharing HLA Scenario Data. Proceedings of the

Fall 1999 Simulation Interoperability Workshop.

Lacy, L., Stone, G.; & Dugone, T. D. (1999b). XML Data Interchange Format Standards for

HLA-Related Data Interoperability. Proceedings of the 1999 Southeastern Simulation
Conference.

Lacy, L., Stone, G.; & Dugone, T. D. (2001). Representing Computer Generated Forces

Behaviors Using eXtensible Markup Language (XML) Techniques. Proceedings of the
Tenth Conference on Computer Generated Forces.

Lacy, L., & Tuttle, C. (1998). Interchanging Simulation Data using XML. Proceedings of the

1998 Fall Simulation Interoperability Workshop.

Laughery, R. (1998). Computer Simulation As A Tool For Studying Human-Centered Systems.

Proceedings of the 1998 Winter Simulation Conference.

Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis. McGraw-Hill.

Liles, D. H., & Presley, A. R. (1996). Enterprise Modeling Within An Enterprise Engineering

Framework. Proceedings of the 1996 Winter Simulation Conference.

Lubell, J. (2001). XML Representation of Process Descriptions In Professional XML Meta Data.

Wrox Press.

Markovitch, N. A., Profozich, D. M. (1996). Simulation Modelling Support via Network Based

Concepts. Proceedings of the 1996 Winter Simulation Conference.

Mayer, R. J., Menzel, C. P., & Mayer, P. (1991). IDEF3 Technical Report.

113

McGuinness, D. L. (2002). Ontologies Come of Age. In D. Fensel, J. Hendler, H. Lieberman, &

W. Wahlster (Eds.), Spinning the Semantic Web: Bringing the World Wide Web to Its
Full Potential. MIT Press. Retrieved from:
http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-
citation).htm

McGuinness, D. L., Fikes, R., Hendler, J., & Stein. L. A. (2002). DAML+OIL: An Ontology

Language for the Semantic Web. IEEE Intelligent Systems, Vol. 17, No. 5, pages 72-80.

McGuinness, D. L., van Harmelen, F. (2004). OWL Web Ontology Language Overview. World

Wide Web Consortium (W3C) Recommendation. Retrieved September 13, 2006 from
http://www.w3.org/TR/owl-features/.

Meeks, A. O., Aviles, G., & Lacy, L. W. (2004). Auto-Authoring Instruction from Ontological

Representations of Procedures. Proceedings of the 2004 Interservice/Industry Training,
Simulation and Education Conference (I/ITSEC).

Mendling, J., Pérez de Laborda, C. , & Zdun, U. (2005). Towards Semantic Integration of XML-

based Business Process Models. In K. D. Althoff, A. Dengel, R. Bergmann, M. Nick, &
T. Roth-Berghofer (Eds.) Proceedings of the WM2005: Professional Knowledge
Management - Experiences and Visions. Semantic Model Integration Workshop (SMI
2005) as part of the 3rd Conference Professional Knowledge Management (WM 2005),
Kaiserslautern, Germany, April 2005, pages 513-517.

Menzel, C., & Grüninger, M. (2001). A Formal Foundation for Process Modeling. Proceedings

of the 2001 International Conference on Formal Ontology in Information Systems.

Mili, F., & Ghanekar, S. (2005). Building and Using an OWL-S Ontology of Tasks, Paper

presented at the 2005 OWL Workshop at the International Semantic Web Conference.

Miller, J. A., & Baramidze, G. (2005). Simulation and the Semantic Web. Proceedings of the

2005 Winter Simulation Conference.

Miller, J. A., & Fishwick, P. A. (2004). Investigating Ontologies for Simulation Modeling. Paper

presented at the 2004 Simulation Symposium.

Miller, J. A., Silver, G. A., & Lacy, L. W. (2006). Ontology Based Representations Of

Simulation Models Following The Process Interaction World View. Proceedings of the
2006 Winter Simulation Conference (in press).

Nainani, B. (2005). Supporting the Business Process Lifecycle using Standard-based Tools.

WebServices Journal, Vol.5 Issue 4.

114

http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-citation).htm
http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-citation).htm
http://www.w3.org/TR/owl-features/

Nance , R. E. (1993)., A History of Discrete Event Simulation Programming Languages , ACM
SIGPLAN Notices, Volume 28 Issue 3.

Nance, R. E. & Sargent, R.G. (2002). Perspectives on the evolution of Simulation. Operations

Research 50 (1): 161-172.

Narain, S. (1991). An Axiomatic Basis for General Discrete-event Modeling. Proceedings of the

23rd Winter Simulation Conference.

Nielsen, N. R. (1991). Application of AI Techniques to Simulation. In Fishwick, Modjeski (Eds.)

Knowledge-Based Simulation Methodology and Application.

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your

First Ontology. Technical Report KSL-01-05, Retrieved September 13, 2006 from:
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html.

Odhabi, H. I., Paul, R. J., & Macredie, R. D. (1998). Developing a Graphical User Interface for

Discrete Event Simulation. Proceedings of the 30th Winter Simulation Conference.

O’Reilly, J. (2002). Introduction to AWESIM. Proceedings of the 2002 Winter Simulation

Conference.

Oscarsson, J., Moris, M. U. (2002). Documentation of Discrete Event Simulation Models for

Manufacturing System Life Cycle Simulation. Proceedings of the 2002 Winter
Simulation Conference.

Overstreet, C. M., & Nance, R. E. (1985). A Specification Language to Assist in Analysis of

Discrete Event Simulation Models. Communications of the ACM, Volume 28 Issue 2

Pace, D. K. (2001). Conceptual Model Development for C4ISR Simulations. Paper presented at

the Fifth International Command and Control Research and Technology Symposium.
Retrieved September 13, 2006 from:
http://www.dodccrp.org/events/2000/5th_ICCRTS/cd/papers/Track2/059.pdf

Page, E. H. (1994). Simulation Modeling Methodology: Principles and Etiology of Decision

Support, PhD Dissertation.

Pegden, C. D. (1983). Introduction to SIMAN. Proceedings of the 1983 Winter Simulation

Conference.

Pegden, C. D., Shannon, R. E., & Sadowski, R.P. (1995). Introduction to Simulation Using

SIMAN. McGraw-Hill.

115

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.dodccrp.org/events/2000/5th_ICCRTS/cd/papers/Track2/059.pdf

Pew, R. W., & Maver, A. S. (editors) (1998). Modeling Human and Organizational Behavior:
Application to Military Simulations. Report of the US National Research Council's panel
on Modeling Human Behavior and Command Decision Making (Representation for
Military Simulations). also published by National Academies Press.

Pidd, M. (1984). Computer Simulation in Management Science. Chichester: John Wiley & Sons.

Pidd, M. (2002). Computer Simulation in Management Science, Fourth Edition. Chichester: John

Wiley & Sons.

Pidd, M. (2004). Simulation Worldviews – So What?. Proceedings of the 2004 Winter

Simulation Conference.

Pilone, D. (2005). UML 2.0 in a Nutshell. O’Reilly

Pooch, U. W., & Wall, J. A. (1993). Discrete Event Simulation. Boca Raton, Florida: CRC Press.

Praehofer, H., & Pree, D. (1993). Visual modeling of DEVS-based multiformalism systems

based on higraphs. Proceedings of the 25th Winter Simulation Conference.

Pritsker, A. A. B. (1986). Introduction to Simulation and Slam II

Pritsker, A. A. B., O’Reilly, J. J., & LaVal, D. K. (1999). Simulation with Visual SLAM and

AweSim. New York: John Wiley & Sons.

ProcessModel (1999) User’s Manual, ProcessModel Corp., Provo, UT.

Radiya, A., & Sargent, R. G. (1994). A Logic-Based of Discrete Event Modeling and Simulation.

ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 4 Issue
1.

Reichenthal, S. W. (2002). SRML-Simulation Reference Markup Language W3C Note.

Retrieved September 13, 2006 from: http://www.w3.org/TR/SRML.

Reichenthal, S. W. (2004). SRML Case Study: Simple Self-Describing Process Modeling and

Simulation. Proceedings of the 2004 Winter Simulation Conference.

Reichenthal, S. W., & Gustavson, P. L. (2003). Manufacturing BOMs with SRML for Process-

Oriented Federations. Proceedings of the Fall 2003 Simulation Interoperability
Workshop.

Risner, S., Porter, K., Lacy, L., O’Brien, L., & Kollmorgen, G. (1998). Conceptual Modeling in

the Joint Simulation System (JSIMS). Proceedings of the 1998 Fall Simulation
Interoperability Workshop.

116

http://www.w3.org/TR/SRML

Roberts, R. S. (1991). Simulation Languages and Database Theory: Some Considerations from
the Entity-Relationship Model. Proceedings of the 1991 Winter Simulation Conference.

Rohrer, M. W. (2000). Software/modelware tutorials I: AutoMod product suite: AutoMod

tutorial. Proceedings of the 32nd Winter Simulation Conference Hierarchical modeling
for discrete event simulation (panel)

Russell, N., van der Aalst, W., ter Hofstede, A., & Wohed, P. (2006). On the Suitability of UML

2.0 Activity Diagrams for Business Process Modelling, Third Asia-Pacific Conference on
Conceptual Modelling (APCCM2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology, Vol. 53., Markus Stumptner, Sven Hartmann and
Yasushi Kiyoki, Ed.

Schenck, D. A., & Wilson, P. R. (1994). Information Modeling: The EXPRESS Way. Oxford

University Press.

Schriber, T. J. (1991). An Introduction to Simulation Using GPSS/H. New York.

Schriber, T. J., & Brunner, D. T. (2001). Inside Discrete-Event Simulation Software: How it

Works and Why it Matters. Proceedings of the 2001 Winter Simulation Conference.

Schruben, L. (1983). Simulation Modeling with Event Graphs. Communications of the ACM,

Volume 23, Number 11.

Schruben, L. (1992) Graphical model structures for discrete event simulation. Proceedings of the

24th conference on Winter simulation.

Seila, A. F. (2005). The Case for a Standard Model Description for Simulation. International

Journal of Simulation and Process Modeling, Volume 1, Nos. 1/2.

Sheehan, J. (2001). Data Provisioning Using Authoritative Data Sources, Paper presented at the

NDIA SBA Conference. Retrieved September 5, 2005 from:
http://www.dtic.mil/ndia/2001sbac/sheehan.pdf.

Sheehan, J., Prosser, T., Conley, H., Stone, G., Yentz, K, & Morrow, J. (1998). Conceptual

Models of the Mission Space (CMMS): Basic Concepts, Advanced Techniques, and
Pragmatic Examples. Proceedings of the Spring 1998 Simulation Interoperability
Workshop.

Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology Language Guide.

World Wide Web Consortium (W3C) Recommendation. Retrieved September 13, 2006
from http://www.w3.org/TR/owl-guide/.

117

http://www.dtic.mil/ndia/2001sbac/sheehan.pdf
http://www.w3.org/TR/owl-guide/

Son, Y. J., Jones, A. T., & Wysk, R. A. (2000). Automatic Generation of Simulation Models
from Neutral Libraries: an Example. Proceedings of the 2000 Winter Simulation
Conference.

Son, Y. J., Jones, A. T., & Wysk, R. A. (2003). A Component Based Simulation Modeling from

Neutral Component Libraries. Computers & Industrial Engineering 45 (2003) 141–165.

Sowa, J. F., (2000) Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Pacific Grove, CA: Brooks/Cole.

Storrle, H., & Hausmann , J. H. (2005). Towards a Formal Semantics of UML 2.0 Activities.

Software Engineering 2005: 117-128

Sulistio, A., Yeo, C. S., & Buyya, R. (2004). A Taxonomy of Computer-based Simulations and

its Mapping to Parallel and Distributed Systems Simulation Tools. Retrieved September
13, 2006 from: http://www.gridbus.org/papers/simulationtaxonomy.pdf

Swain, J. J. (2003). Simulation Reloaded, OR/MS Today, Retrieved September 13, 2006 from:

http://www.lionhrtpub.com/orms/orms-8-03/frsurvey.html.

Swegles, S. (1997). Business Process Modeling with SIMPROCESS. Proceedings of the 1997

Winter Simulation Conference.

Sycara, K., Martin, D., McGuinness, D. L., McIlraith, S. & Paolucci, M. (2004). OWL-S

Technology for Representing Constraints and Capabilities of Web Servcies. Paper
presented at the W3C Workshop on Constraints and Capabilities for Web Services.

Syrjakow, M., Syrjakow, E., & Szczerbicka, H. (2002). Towards a Component-Oriented Design

of Modeling and Simulation Tools. Proceedings of Conference on AI, Simulation &
Planning In High Autonomy Systems.

Thatte S. (2001) XLANG: Web Services For Business Process Design, Microsoft Corporation.

Trick, M. A. (2005). Types of Simulation. Retrieved September 13, 2006 from:

http://mat.gsia.cmu.edu/simul/node7.html

Vitolins, V., & Kalnins, A. (2005). Semantics of UML 2.0 Activity Diagram for Business

Modeling by Means of Virtual Machine. Proceedings Ninth IEEE International EDOC
Enterprise Computing Conference, pp. 181.-192.

WfMC (1999) Workflow Management Coalition, Interface 1: Process Definition Interchange

Process Model, Document Number WfMC TC-1016-P, Retrieved September 13, 2006
from: http://www.wfmc.org/standards/docs/TC-1016-
P_v11_IF1_Process_definition_Interchange.pdf

118

http://www.gridbus.org/papers/simulationtaxonomy.pdf
http://www.lionhrtpub.com/orms/orms-8-03/frsurvey.html
http://mat.gsia.cmu.edu/simul/node7.html
http://www.wfmc.org/standards/docs/TC-1016-P_v11_IF1_Process_definition_Interchange.pdf
http://www.wfmc.org/standards/docs/TC-1016-P_v11_IF1_Process_definition_Interchange.pdf

Whitman, L., Huff, B., & Presley, A. (1997). Structured models and dynamic systems analysis:
the integration of the IDEF0/IDEF3 modeling methods and discrete event simulation.
Proceedings of the 29th conference on Winter simulation.

Woolfson, M. M, & Pert, G. J. (1999). An Introduction to Computer Simulation. Oxford

University Press.

Zeigler, B. P. (1976). Theory of Modelling and Simulation. New York: Wiley & Sons.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation (2nd).

San Diego: Academic Press.

119

	Iterchanging Discrete Event Simulationprocess Interaction Modelsusing The Web Ontology Language - Owl
	STARS Citation

	 ABSTRACT
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	1 CHAPTER ONE: INTRODUCTION
	1.1 Subject Problem
	1.2 Research Purpose
	1.3 Study Significance
	1.4 Chapter Contents

	2 CHAPTER TWO: LITERATURE REVIEW
	2.1 Models and Simulations
	2.1.1 Definition / Scope
	2.1.1.1 Systems
	2.1.1.2 Models
	2.1.1.3 Simulations

	2.1.2 Types of Simulations
	2.1.3 Discrete Event Simulations
	2.1.4 Discrete Event Simulation World Views
	2.1.4.1 Event-based Approach
	2.1.4.2 Activity-based Approach
	2.1.4.3 Process Interaction Approaches
	2.1.4.4 Non-Classical Approaches
	2.1.4.5 World View Description Summary

	2.2 Model Representation
	2.2.1 Process Interaction Concepts
	2.2.2 Model Development Process
	2.2.3 Simulation Software Implementation Approaches
	2.2.3.1 Simulation Language Categories
	2.2.3.2 Visual Interactive Modeling Systems (VIMS)
	2.2.3.3 Object-Oriented Simulation languages
	2.2.3.4 Agent Based Simulation

	2.2.4 Process Interaction Modeling Software Packages
	2.2.4.1 Arena Software Package
	2.2.4.2 AutoMod
	2.2.4.3 ProModel
	2.2.4.4 Witness
	2.2.4.5 ProcessModel
	2.2.4.6 SIMPROCESS
	2.2.4.7 Software Package Summary

	2.2.5 Process Interaction Modeling Languages
	2.2.5.1 GPSS/H
	2.2.5.2 Micro Saint
	2.2.5.3 SIMAN
	2.2.5.4 SLAM / Visual SLAM
	2.2.5.5 DES Process Interaction Language Summary

	2.2.6 Process Representations
	2.2.6.1 Business Process Representation / Process Modeling
	2.2.6.2 Military Operations Representations
	2.2.6.3 Graphical Representations of Software Applications
	2.2.6.4 Web Services Representations
	2.2.6.5 Process Interaction Modeling Representations

	2.2.7 Formal DES Semantics

	2.3 Interchanging Simulation Information
	2.3.1 Simulation Information Interchange Motivation and Requirements
	2.3.2 Simulation Information Representation
	2.3.3 Simulation Data Interchange Formats
	2.3.4 XML Simulation DIFs
	2.3.5 XML-based Simulation Interoperability Standards

	2.4 OWL Ontological Representations of Simulation Information
	2.4.1 Current Web
	2.4.2 Ontologies
	2.4.3 Semantic Web
	2.4.4 OWL
	2.4.5 Ontology Engineering Processes
	2.4.5.1 DIF Development Process
	2.4.5.2 Ontology Engineering

	2.4.6 Simulation Ontologies

	2.5 Representing DES Models with Ontologies
	2.6 Background Literature Summary

	3 CHAPTER THREE: METHODOLOGY
	3.1 Instrumentation
	3.2 Procedures
	3.2.1 Research Planning
	3.2.2 Literature Search
	3.2.3 PIMODES Ontology Development
	3.2.3.1 Specifying Requirements
	3.2.3.2 Designing the Ontology
	3.2.3.3 Encoding the Ontology

	3.2.4 Ontology Testing and Use Demonstrations
	3.2.4.1 Demonstration Translation Software Design
	3.2.4.2 Software Coding
	3.2.4.3 Demonstration and Testing Model Development and Experimentation

	3.2.5 Research Artifact Documentation

	3.3 Limitations
	3.3.1 Concept Limitations
	3.3.1.1 Universal Language Development Approach Concept Limitation
	3.3.1.2 Process Interaction DES Formalism Concept Limitation
	3.3.1.3 Vendor Dependencies Concept Limitation
	3.3.1.4 Adoption Concept Limitation

	3.3.2 Approach Limitation
	3.3.2.1 Scope Approach Limitation
	3.3.2.2 Ontology Design Approach Limitation
	3.3.2.3 Ontology Language Choice Approach Limitation
	3.3.2.4 Translation Software Design and Coding Approach Limitations

	4 CHAPTER FOUR: RESULTS
	4.1 Research Plan
	4.2 Requirements Specification
	4.3 Ontology Design Document
	4.3.1 Legacy Model Representation Analysis
	4.3.2 Harmonized Concepts
	4.3.3 Objective PIMODES Ontology Description
	4.3.4 Legacy Application Support
	4.3.5 Graphical Representations

	4.4 PIMODES Ontology Description Report
	4.5 Translation Software Design
	4.6 Translation Software Code
	4.7 Demonstration and Test Models Report
	4.7.1 Arena to PIMODES Results
	4.7.2 ProcessModel to PIMODES Results
	4.7.3 AnyLogic to PIMODES Results
	4.7.4 ProModel to PIMODES Results
	4.7.5 PIMODES to Arena Results
	4.7.6 PIMODES to AnyLogic Results
	4.7.7 PIMODES to ProModel Results
	4.7.8 Experimentation Results Summary

	4.8 Demonstration Script
	4.9 Web Site
	4.10 Results Artifact Summary

	5 CHAPTER FIVE: CONCLUSIONS
	5.1 Research Conclusions
	5.1.1 Process Interaction DES Ontology Development
	5.1.2 Legacy Application Model Interchange Feasibility
	5.1.2.1 Legacy Model Representation Approach Commonality
	5.1.2.2 Vendors Must Expose Their Model Data to Allow Interchange
	5.1.2.3 Translation Software Feasibility

	5.2 Recommendations
	5.3 Implications for Future Studies
	5.3.1 Ontology Scope
	5.3.2 Ontology Design
	5.3.3 Software Application Development
	5.3.4 Aggregation and Dispersion

	5.4 Implications of the Results

	 LIST OF REFERENCES

