
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Text-image Restoration And Text Alignment For Multi-engine Text-image Restoration And Text Alignment For Multi-engine

Optical Character Recognition Systems Optical Character Recognition Systems

Nikolai Kozlovski
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kozlovski, Nikolai, "Text-image Restoration And Text Alignment For Multi-engine Optical Character
Recognition Systems" (2006). Electronic Theses and Dissertations, 2004-2019. 850.
https://stars.library.ucf.edu/etd/850

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/850?utm_source=stars.library.ucf.edu%2Fetd%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

TEXT-IMAGE RESTORATION AND TEXT ALIGNMENT
FOR MULTI-ENGINE OPTICAL CHARACTER RECOGNITION SYSTEMS

by

NIKOLAI KOZLOVSKI
B.S.Cp.E. University of Central Florida, 2004

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2005

 ii

© 2005 Nikolai Kozlovski

 iii

ABSTRACT

Previous research showed that combining three different optical character recognition

(OCR) engines (ExperVision® OCR, Scansoft OCR, and Abbyy® OCR) results using voting

algorithms will get higher accuracy rate than each of the engines individually. While a voting

algorithm has been realized, several aspects to automate and improve the accuracy rate needed

further research.

This thesis will focus on morphological image preprocessing and morphological text

restoration that goes to OCR engines. This method is similar to the one used in restoration

partial finger prints. Series of morphological dilating and eroding filters of various mask shapes

and sizes were applied to text of different font sizes and types with various noises added. These

images were then processed by the OCR engines, and based on these results successful

combinations of text, noise, and filters were chosen.

The thesis will also deal with the problem of text alignment. Each OCR engine has its

own way of dealing with noise and corrupted characters; as a result, the output texts of OCR

engines have different lengths and number of words. This in turn, makes it impossible to use

spaces a delimiter as a method to separate the words for processing by the voting part of the

system. Text aligning determines, using various techniques, what is an extra word, what is

supposed to be two or more words instead of one, which words are missing in one document

compared to the other, etc. Alignment algorithm is made up of a series of shifts in the two texts

to determine which parts are similar and which are not. Since errors made by OCR engines are

due to visual misrecognition, in addition to simple character comparison (equal or not), a

technique was developed that allows comparison of characters based on how they look.

 iv

Dedicated to Jane, mother, father, grandmother, and Jack.

 v

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Arthur Weeks and Dr. Samuel Richie for

academic support and supervision while working on this thesis. Also, I would like to thank Dr.

Donald Malocha, for reading and correcting some of the earlier drafts.

 vi

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGMENTS .. v

TABLE OF CONTENTS... vi

LIST OF FIGURES ... viii

LIST OF TABLES.. xii

LIST OF ACRONYMS/ABBREVIATIONS.. xiv

CHAPTER ONE: INTRODUCTION... 1

OCR .. 1

Previous Work .. 2

Problem Statement .. 6

Proposed Solution ... 6

CHAPTER TWO: MORPHOLOGICAL IMAGE PROCESSING.. 9

Introduction to Morphological Image Filters.. 9

Implementation of Morphological Filters for Binary Images... 13

Morphological Filters And Image Restoration ... 14

Benchmarking Performance of Optical Character Recognition Engines 23

Relating Sizes and Shapes of Structuring Elements of Morphological Filters to Font Sizes and

Types of Noise .. 25

CHAPTER THREE: TEXT ALIGNMENT ... 36

Introduction to Text Alignment .. 36

Text Alignment of Two Documents Using ASCII Comparison... 38

 vii

Analysis of the Performance of Aligning Algorithm Based Only on Plain ASCII Comparison

... 49

Text Alignment of Two Documents Using Visual Comparison... 51

Analysis of the Performance of Aligning Algorithm Based on Visual Character Comparison

... 66

Analysis of the Performance of Aligning Algorithm Based on Visual Character Comparison

and Line Representation of Characters ... 74

Improving Algorithm for Finding Next Similar Part.. 75

Alignment of individual words of two texts ... 80

Alignment of individual words of three texts ... 88

Performance of Aligning Algorithm... 92

CHAPTER FOUR: CONCLUSIONS... 94

APPENDIX A: SOURCE CODE FOR MORPHOLOGICAL FILTERS.................................... 96

APPENDIX B: SOURCE CODE FOR TEXT ALIGNMENT ALGORITM 101

LIST OF REFERENCES.. 115

 viii

LIST OF FIGURES

Figure 1: Example of Distortion due to Filters Built-in into Copiers ... 6

Figure 2: Result of Change-tracking Feature of Microsoft® Word® 2000. 8

Figure 3: a) Example of Dilation Filter, b) Example of Erosion Filter... 10

Figure 4: Example of Opening Filter (Erosion Followed by Dilation)... 11

Figure 5: Example of Closing Filter (Dilation Followed by Erosion) .. 12

Figure 6: a) Broken Character; b) Restored Character by Closing Filter 12

Figure 7: Binary Image and Structuring Element ... 13

Figure 8: Summation of Overlapping Pixels .. 13

Figure 9: a) Dilation, and b) Erosion .. 14

Figure 10: Image that was used for benchmarking the performance of median and opening and

closing morphological filters. ... 15

Figure 11: Portion of Image of Figure 10 That Will Be Used to Examine Various Noises and

Effects of Filters.. 16

Figure 12: a) Image with Custom Noise, b) Applied to It Closing Filter 5x5 16

Figure 13: a) Image with Pepper Noise of probability 0.05, b) Applied to It Opening Filter 5x5 17

Figure 14: a) Image with Salt Noise of probability 0.05, b) Applied to It Closing Filter 5x5 18

Figure 15: a) Image with Salt and Pepper Noise of probabilities 0.10 each, b) Applied to It

Median Filter 5x5.. 19

Figure 16: a) Image with Salt Noise of probabilities 0.4 each, b) Applied to It Closing Filter 5x5

... 20

Figure 17: Simulation of Suspect Characters and Words and Its Exponential Fit........................ 24

 ix

Figure 18: One of the Eleven Images of Text of Font Size 10pt in This Case Scanned at 300dpi

That Is Used Throughout This Section ... 26

Figure 19: Ratio of Image Difference before and after Application of Closing Filter versus Mask

and Font Sizes ... 27

Figure 20: Ratio of Image Difference before and after Application of Opening Filter versus Mask

and Font Sizes ... 28

Figure 21: Number of Good Characters Recognized by Abby’s OCR Engine versus Mask and

Font Sizes.. 30

Figure 22: Number of Good Characters Recognized by Omni’s OCR Engine versus Mask and

Font Sizes.. 31

Figure 23: Seven Shapes of Masks of Size 7x7.. 32

Figure 24: a) Image, b) Result of FineReader, c) Result of OmniPage, d) Result of Expervision36

Figure 25: Algorithm for Text Aligning ... 39

Figure 26: Algorithm for Finding Next Similar Part of Text.. 44

Figure 27: Diagram for Algorithm for Finding Next Similar Part of Text................................... 46

Figure 28: Diagram for Algorithm for Finding Next Similar Group of Characters 47

Figure 29: Example of Visual Character Comparison.. 52

Figure 30: a) Capital “W” of Font Times New Roma, b) Capital “W” of Font Courier New...... 52

Figure 31: Two characters that need to be aligned ... 53

Figure 32: Character padded with zeros ... 53

Figure 33: Correlation of two characters shown in Figure 31 .. 54

Figure 34: Difference of aligned characters; in white shown overlapped parts and in grey shown

parts that did not overlap... 55

 x

Figure 35: Difference of aligned characters; certain parts of unaligned pixels are de to difference

in width of some features of characters .. 55

Figure 36: a) Unaligned pixels, b) Unaligned pixels after application of closing filter with

structuring element of cross shape and size 3x3 pixels .. 56

Figure 37: Closed unaligned pixels added beck to aligned pixels .. 57

Figure 38: Graphical representation of amount of pixels of each of three colors......................... 58

Figure 39: Graphical representation of equations 3.5, 3.6, and 3.7 .. 60

Figure 40: Graphical representation of equations 3.6, 3.7, and 3.8 .. 62

Figure 41: Example of Success of Visual Character Comparison.. 67

Figure 42: Example of Line Representation and Comparison of Characters 68

Figure 43: Line Representation of Characters “a” through “p”.. 69

Figure 44: Vertical Summation of Pixels of a) Character “H” and b) Character “h”................... 70

Figure 45: 3-level Threshold Applied to Figure 44 .. 70

Figure 46: Characters of Font Impact ... 71

Figure 47: Algorithm for Detecting Next Similar Character Using Line Representation of

Characters ... 72

Figure 48: Algorithm for Detecting Next Similar Character Using Line Representation of

Characters in Action ... 73

Figure 49: Matrix-like Representation of All Possible Three-character Combinations within Two

Six-character Long Strings ... 76

Figure 50: Shaded Regions Show Where Combination of Compared Characters Starts for a)

Three-, b) Four-, c) Five-, and d) Six-Character Long Masks.. 76

Figure 51: Translating Matrix of Characters into Matrix of Difference of Characters 77

 xi

Figure 52: Masks a) [1 1 1], b) [1 0 1 1], and c) [1 1 0 1] Applied to Character Difference Matrix

... 78

Figure 53: a) Minimum Values of the Three Matrices, b) Number of Matrix to Which the

Minimum Value Belongs.. 78

Figure 54: a) Minimum Values of the Three Matrices after Threshold Was Applied, b) Number

of Matrix to Which the Minimum Value Belongs .. 79

Figure 55: Sum of Squares of Shifts versus Position in Difference Matrix in 3D and 2D views. 80

Figure 56: Example of Combination of cases 1.2 and 2.1 .. 84

Figure 57: Example of Combination of cases 1.1 and 2.1 .. 85

Figure 58: Example of Combination of cases 1.3 and 2.1 .. 86

Figure 59: Algorithm for Aligning of Three Texts... 89

Figure 60: Example of Aligning of Three Texts... 90

 xii

LIST OF TABLES

Table 1 Examples of Errors Found in Multi-engine Environment ... 3

Table 2 Accuracy Improvements with Voting.. 5

Table 3 Abbreviations and Descriptions of Noises Used ... 21

Table 4 First Set of Images Processed by Abbyy ... 21

Table 5 First Set of Images Processed by Omni ... 22

Table 6 Results of Application of Closing Filter and ABBYY’s OCR Processing...................... 32

Table 7 Results of Application of Closing Filter and Omni’s OCR Processing........................... 33

Table 8 Results of ABBYY’s OCR Processing of 375 Images with Various Font Sizes, Noise

Densities, and Filtered by Closing Filter of Various Mask Sizes ... 34

Table 9 Result of Aligning Text Using Space as a Delimiter... 37

Table 10 Example of Aligning Process Based on the Algorithm of Figure 25 41

Table 11 Sample Data Stored in One of Three Lists after First Part of Alignment...................... 50

Table 12 Visually Similar Fragments of Texts That Were Not Flagged as Similar During Plain

ASCII Comparison.. 51

Table 13 Fragment of a table for character similarity look-up ... 63

Table 14 Fragment of a table for character difference look-up .. 64

Table 15 Four Characters with Most Similar to Them Characters ... 65

Table 16 Misalignment due to High Thresholds... 66

Table 17 Visually Similar Fragments of Texts That Were Not Flagged as Similar During Visual

Character Comparison .. 67

 xiii

Table 18 Groups of Characters That Were Marked as Similar by Adding Line Representation of

Characters ... 74

Table 19 Examples of Masks and Their Applications .. 77

Table 20 Possible Combinations of Numbers of Spaces in Different Parts 81

Table 21 Possible Combinations of Ending and Beginning of Similar Parts 82

Table 22 Combinations of Cases of Table 20 and Table 21 and Corresponding to Them Actions

... 82

Table 23 Sample of Two Aligned Texts ... 86

Table 24 Examples of Merged Words after Aligned of Two Texts ... 87

Table 25 Sample of Three Aligned Texts ... 91

 xiv

LIST OF ACRONYMS/ABBREVIATIONS

OCR Optical Character Recognition

ASCII American Standard Code for Information Interchange

 1

CHAPTER ONE: INTRODUCTION

OCR

In this modern day and age it is hard to imagine printing a book or an article without first

typesetting it on a computer. This not only gives the ability to easily edit and change the text

but also distributes work electronically and search pages and pages of valuable information with

single stroke of keyboard. It might come as a surprise that about 90% of all information that is

available only as a hard copy [1]. This information is made up of old books and articles that are

still of a value to the society but have never been transformed into digital format, publications for

which digital copies are forever lost, or government related papers that have been typed using

typewriters.

When somebody needs to access a certain article a request is sent out to an archive

warehouse, where personnel then have to physically locate the document, make a copy, and then

send it back, to the person who requested the document. In case of a small article it might not

be such a big deal. If, on the other hand, a corporate lawyer who needs to see every legal case

between years of 1981 and 2005 that had to do with guns, drugs, oil, and violence on TV,

literally thousands of pages would be received. At this point there are several options; the

lawyer could hire somebody to help find whatever it is he/she is looking for, the lawyer could

hire somebody to enter everything on the computer and then search through the material using

some kind of search engine, or he/she could ask a computer to convert everything from hard

copy into digital format. While OCR technology is constantly being improved, the cost

efficiency of the last option is constantly going down, and is becoming more and more popular.

 2

The method by which scanned image of a hard copy becomes text entered on the computer is

called optical character recognition (OCR). One big disadvantages of this method is inaccuracy.

A lot of time and money have been spent on research so that computers can be able to recognize

text as well as a human being [2].

Previous Work

There are several leading companies which are trying to develop a better OCR engine.

Doculex is one of these companies. In addition to designing an OCR engine of their own and

providing document conversion as a service, they are exploring a possibility of using two other

OCR engines of their competitors to provide a better digital copy of document based on the

results of the three OCR engines [1].

A first look at University of Central Florida at the associated statistical problem was

completed by Mercedes McDonald where she showed that a voting scheme can be introduced

based on the performance of the three OCR engines to improve overall accuracy [1]. Her

calculations were based on a rather simple model. It was concluded that the accuracy of multi-

engine OCR is better than the accuracy of each individual OCR engine. Mercedes ran OCR

engines on the set of clean images of various fonts and styles. After examining errors made by

those OCR engines, she classified them into several types. In order for her to determine whether

multi-engine environment will be a success she focused on four types of errors shown in Table 1.

Type 1 is the case when two words in some OCR processed engines were recognized as one

word, and in another as two words. Even though, two engines recognized it as one word, if

Doculex’s OCR-It has greater accuracy when it comes to recognizing when one word ends and

 3

another begins, the voting engine picks the correct Doculex’s result. Type 2 error happens when

a word had a dash and some engines ignored it or inserted a space after the dash. Given that

Abbyy’s FineReader has a greater accuracy recognizing dashes, the voting engine will again pick

the correct answer. Type 3 error has to do with Omni’s and Abbyy’s misrecognizing comma and

space delimited numbers. They often ignore the space. More commonly, when comma is

between the digits as a part of formatting of a number, the voting engine cannot give more voting

weight to Doculex’s OCR-It; therefore, the wrong answer will be chosen. Type 4 error is

considered to be the case when two out of three engines got the answer right and there is no

special vote weighting for this particular case. In the benchmarks ran by McDonald, this

category of errors resulted in correct voting.

Table 1
Examples of Errors Found in Multi-engine Environment

Types of Errors: Type 1 Type 2 Type 3 Type 4
 Only 1 engine
 displayed error

Original - Correct chief elected war-laden April 3, 1959

Omni chiefelected warladen April 3,1959

Doculex chief elected war- laden April 3, 1959

Abbyy chiefelected war-laden April 3,1959

Outcome w/ voting CORRECT CORRECT INCORRECT CORRECT

Mercedes created a look up table that connected the types of errors to the OCR engines

and specific font sizes and styles. This look up table was used as a basis for a voting engine.

Even though, she was not able to provide an approximation of how much more text can be

 4

recovered correctly, she showed that it is possible to achieve greater accuracy with a multi-

engine environment [3].

This algorithm was later realized in work done by Chris Sprague [3]. The multi OCR

engine achieved 91.07% accuracy, which was 2.27% better than the most accurate single OCR

engine of OmniPage Pro. Benchmarking the OCR engines individually versus a voting method

for real-life documents, he achieved the results given in Table 2. In this table Sprague shows

difference in inaccuracy percentage of each engine and inaccuracy percentage of multi-engine

OCR voting systems for ten documents in columns one through three. The forth column shows

average of those differences. Some of the differences came out to be negative, which means that

a particular engine performed better than the voting system applied to three of them. Overall,

however, the voting scheme improved results by 10.03% [3].

 5

Table 2
Accuracy Improvements with Voting

Accuracy Difference Table Average Accuracy Difference
OCR-It OmniPage FineReader

28.33% 2.12% 4.55% 11.67%

0.30% 0.00% -1.19% -0.30%

1.34% 0.67% -0.17% 0.61%

2.22% 1.78% 0.89% 1.63%

36.84% 5.26% 52.63% 31.58%

12.15% 8.10% 3.64% 7.96%

16.84% -0.51% 3.06% 6.46%

32.62% 4.23% 1.69% 12.85%

20.74% 0.74% 7.40% 9.63%

43.03% 0.31% 11.14% 18.16%

 Average 10.03%

In developing the voting process, Sprague noted several issues could be addressed in

further development of a multiengine OCR voting system. Some of the documents have hand

writing, which is ignored by some OCR engines and somewhat processed by the others, and he

also noted that some of the documents have characters that were broken apart as demonstrated in

Figure 1 [3]. For example, in the word “amendment” of the first line of Figure 1, the letter “m”

is broken up and might be potentially recognized as “n” and “i". Also Letter “E” of word

“Escrow” is broken up and could be misrecognized as “I” and symbol “;”. While the first

 6

problem is hard to eliminate, the second problem can be partially solved using morphological

filters.

Figure 1: Example of Distortion due to Filters Built-in into Copiers

Problem Statement

Most OCR engines use some form of image processing to restore a document image. The

goal of preprocessing is to remove noise, and separate actual text from images and other non-text

elements that are not to be processed by OCR engine. The goal of this thesis is to try to improve

the document images before it is applied to an OCR engine using morphological filters. Another

aspect that will be dealt in this research is text alignment between the text outputs that are

produced by each OCR engine. Before a multi-engine voting can take place, the voting engine

needs to know where each word is located in each processed text document.

Proposed Solution

While Chris Sprague was implementing the voting system, several repeating problems

with quality of scanned images were noticed. One of the major degradations has to do with the

fact that the copies provided are not the copies of the original but the copies of the copies. Many

 7

copiers now days have built in image filters. These filters can introduce breaks in the characters

after making a copy of the copy many times [3]. Examples of such distortions are shown in

Figure 1.

Distortion demonstrated in Figure 1 can be somewhat fixed using morphological filters,

to be more specific a combination of erosion and dilation filters. These filters will be discussed

further in Chapter 2. This technique is often used in preprocessing of finger prints. In case of

additive noise, these filters can be used to reduce the noise and increase overall OCR accuracy.

While preprocessing can greatly improve the final OCR, outcome without knowing

which word is where in each of the three documents, voting cannot take place at all. In previous

work by Chris Sprague and Mercedes McDonald, the possibility of using already existing

documents to compare functions were discussed. Linux users are probably familiar with

DocDiff [1]. There are also programs available for windows such as Document Compare feature

of Microsoft Word and DiffDoc by Softlnterface© [4]. Such programs are designed for the case

when existing text was modified and not acquired from an alternate source. They seek out

portions of text that did not match, given that some of the text will be exactly the same, which is

not the case in this application. Appling change tracking software to OCR processed files would

often result in flagging of large sections of text which makes voting impossible. Figure 2 shows

Word’s® 2000 results, where a large portion of the text at the end of the sample was marked as

different. Since the voting system accepts single words only, it would be impossible to pick the

correct answer. This kind of software is designed to keep track of changes not typos and errors,

and has not proven to be efficient for this particular problem. Alignment of three texts produced

by three OCR engines required more of a unique solution, which is designed to compare two or

more texts that essentially are the same but have differences in letters with reasonable frequency.

 8

Perhaps a visual comparison of the text would perform better than the plain ASCII comparison.

Character degradation needs also be taken in consideration to allow the alignment engine to see

where OCR programs could have made a mistake.

Figure 2: Result of Change-tracking Feature of Microsoft® Word® 2000.

Sprague and Mercedes have developed means by three separate OCR engines can be

brought together to form a multi-engine OCR system using voting scheme. While voting

algorithm is an essential part of the system, the complete system in order to become autonomous

and more reliable, image preprocessing and text aligning algorithms have to be developed.

Chapter two of this thesis discusses the concepts of morphological filters. Erosion and dilation

are discussed in great detail since these filters are the basis of document restoration. Chapter

three discusses ways to align words of the three documents that are produced by three OCR

engines after scanning the same page. Chapter four summarizes the content and discuses

possible future work.

a a SELLER AND PURCHASER; /Ј\ AGRBE(4 AGREE
Purchaser will deposit $2,320,000.00 as
earnesteamest money pursuant to thothe Buy-S&fc~l
/ provisions with Escrow Agent on or before May
19, 1998, by cashier's cheeky wire transfcrof t
(•cashiers clucc" w ire lransf ofrcady U.S.

 9

CHAPTER TWO: MORPHOLOGICAL IMAGE PROCESSING

Introduction to Morphological Image Filters

Morphological operators come from set theory [5]. The two basic morphological filters

are erosion and dilation, and the most common applications of these filters involve binary

images. In image processing the erosion filter tends to reduce size of bright spots, while dilation

tends to do the inverse. Figure 3.a gives an example of dilation and Figure 3.b gives an example

of erosion. It is commonly considered that the object that is being dilated or eroded consists of

high values (white). For the problem covered in this chapter black ink will be considered a high

value or object value. In Figure 3.a, light rectangle is the object that being dilated and the dark

rounded rectangle around it is what was dilated onto the original object. The circle (in this

particular example) is called the structuring element or sometimes in image processing referred

to as the mask. In this particular case, it is solid and shown hallow for demonstration purposes.

Basically, structuring element defines what shapes of the object will be preserved and what

shapes of the object will be discarded. Dilation can be expressed with equation 2.1. It basically

means that set A dilated by set B is a union of sets A + b where b is an element of all elements of

set A with all elements of set B.

Dilation of A by B = A⊕B = {∪(A+b)|b∈B) (2.1)

where:

A is an object that is dilated,

B is a structuring element, and

b is an element of B

 10

Erosion is expressed by the equation 2.2. This equation implies that the set A eroded by

set B is composed of elements p such that all of the elements from set B added to p belong to set

A.

Erosion of A by B = AӨB = {p|(B+p)⊆A} (2.2)

where:

A is an object that is eroded,

B is a structuring element, and

p is an element of AӨB

a) b)

Figure 3: a) Example of Dilation Filter, b) Example of Erosion Filter

Dilation filter in case of a circle can be thought of as a wheel that is being rolled on the

perimeter outside of the object. The center of the wheel, then, describes the perimeter of the

dilated object. Erosion, on the other hand would be similar to rolling the wheel on the perimeter

inside the object.

 11

The opening filter is erosion followed by dilation. This filter can be used to remove

small specs and noise that are small enough to fit inside the structuring. An opening filter is

demonstrated in Figure 4 and expressed as

A○B = (AӨB)⊕B (2.3)

A closing filter, on the other hand, connects elements that are closer than the size of the

mask and removes the hole that can fit inside the mask. Results a of closing filter are

demonstrated in Figure 5 and expressed by as

A●B = (A⊕B)ӨB (2.4)

Figure 4: Example of Opening Filter (Erosion Followed by Dilation)

The original object is the light grey portion of the left image in Figure 4. The dilated object then

is formed by tracing the circular structuring element about the inside of object shown on the left

of Figure 4. As the circle is rotated about object shown in gray it traces a new contour as shown

in black. Similarly, erosion of the dilated object is shown on the right of Figure 4, this type the

circular structuring element traces the eroded object outside. Because the structuring element

cannot fit into the bump on the object, the bump will be smoothed out. After applying the

dilation filter, since most of the information about the bump was discarded, it will come back as

a significantly smaller bump.

 12

Figure 5: Example of Closing Filter (Dilation Followed by Erosion)

In the case of a closing filter, the structuring element is too big for the gap between the two

original objects shown in light grey. This will cause the structuring element to cover a larger

area. Since the information about the gap has now been lost, after applying the erosion filter, the

two objects will now be connected to each other.

Figure 6: a) Broken Character; b) Restored Character by Closing Filter

Figure 6 demonstrates how a closing filter can connect broken apart characters. The size of the

structuring element has to be bigger than the gap. However, if the structuring element is too big,

the closing filter can not only distort the character but also make it completely unrecognizable.

In this particular example the gap was 5 pixels wide, and a 7x7 round mask was applied. Even

 13

with this small size of the mask, there is slight distortion that can be seen in the upper right

corner inside the letter.

Implementation of Morphological Filters for Binary Images

Discussed in this section, is one of the simpler ways to implement erosion and dilation

filters for binary images.

Figure 7: Binary Image and Structuring Element

Figure 7 shows a binary image on the left that will be subjected to erosion and dilation

filters of structuring element shown in the same figure on the right.

Figure 8: Summation of Overlapping Pixels

Figure 8 shows an intermediate state of applying the two morphological filters to the

original image. The structuring element is then moved across the image. For each placement of

structuring element a sum of values of pixels that are covered by the structuring element is

 14

computed. Since the structuring element consists of 5 pixels, the maximum sum would be five

and the minimum sum would be zero.

a) b)

Figure 9: a) Dilation, and b) Erosion

After the sums have been computed a threshold is applied to the set of sums that will

produce the binary image. If the filter is dilation the threshold is always zero, if the filter is

erosion the threshold is the maximum possible sum, which in this case is five. From Figure 9.a it

can be concluded that the output image will take on the new features similar to the shape of the

structuring element.

Morphological Filters And Image Restoration

In order to establish where to start with examining of morphological filters and their

effects on images with various fonts, sizes, and added noises, test image was created. This image

contained by printing to an image at 300dpi (a value recommended by developers of most OCR

engines) of a document that contained several types of fonts, such as Time New Romans and

Courier New, sizes, such as 8pt, 10pt, 12pt, and 14pt, of both normal and bold weights, and

italicized style. This image was subjected to impulse (salt and pepper) noise of probability of

0.005 for both salt and pepper and a custom made filter that introduced horizontal gaps in

 15

characters of width half the thickness of characters of 12pt size as shown in Figure 10 and Figure

11.

Figure 10: Image that was used for benchmarking the performance of median and opening and
closing morphological filters.

 16

Opening, closing, and median filters were then applied to those images.

Figure 11: Portion of Image of Figure 10 That Will Be Used to Examine Various Noises and
Effects of Filters

a)

b)

Figure 12: a) Image with Custom Noise, b) Applied to It Closing Filter 5x5

 17

In Figure 12 closing filter was able to somewhat restore the gaps produced by custom

filter noise. However, that was the case only for smaller fonts. In case when the font was too

small, the closing filter actually connected the parts of the characters that were not supposed to

be connected.

a)

b)

Figure 13: a) Image with Pepper Noise of probability 0.05, b) Applied to It Opening Filter 5x5

Opening filter successfully removed the of pepper noise in the Figure 13 only where the

page was supposed to be blank. However, it has done significant amount of damage to the actual

 18

text as can be seen in the text with the smaller font. By the preserved text, one can note that size

of the mask of opening filter must be smaller than the features of the text present in the image.

a)

b)

Figure 14: a) Image with Salt Noise of probability 0.05, b) Applied to It Closing Filter 5x5

In case of Figure 14, the closing filter was able to successfully restore the text. It can be

noted that in the case of smaller text, where gap between the characters and features within

characters was smaller than the size of the structuring element used, the filter connected non-

desired sections of text.

 19

a)

b)

Figure 15: a) Image with Salt and Pepper Noise of probabilities 0.10 each, b) Applied to It
Median Filter 5x5

The median filter was successful in removing pepper noise and restoring the pixels.

However, this particular filter is known to work great on impulse noise. While it might not be

suitable for this particular application, its numerous modifications must be kept in mind.

 20

a)

b)

Figure 16: a) Image with Salt Noise of probabilities 0.4 each, b) Applied to It Closing Filter 5x5

Similarly to results of Figure 14, in case of Figure 16, the closing filter restored most of

the text, and only added a slight distortion to the smaller text.

 21

Since the closing filter delivered the most remarkable results, it was then examined more

closely using additional types of noises listed in Table 3.

Table 3
Abbreviations and Descriptions of Noises Used

Abbreviation Description
cus Custom filter that generates gaps in horizontal features of characters
 comparable to the thickness of characters of 12pt font scanned at 300dpi

ds01 Dust and Spec filter of Adobe Photoshop® 6.0 with mask size 1

ds03 Dust and Spec filter of Adobe Photoshop® 6.0 with mask size 3

sp005005 Salt and pepper noise with probabilities 0.005

Table 4
First Set of Images Processed by Abbyy

Image Suspect characters Total characters
cus 451 2610

cus_out 910 2691

ds01 32 2316

ds01_out 507 2382

ds03 702 2335

ds03_out 813 2419

original 7 2306

original_out 676 2412

sp005005 12 2306

sp005005_out 916 2404
Note: File names with postfix "out" are processed with closing filter.

 22

Table 5
First Set of Images Processed by Omni

Image Suspect words Total words

cus 187 390

cus_out 184 358

ds01 14 371

ds01_out 119 356

ds02 104 333

ds02_out 136 383

ds03 134 324

ds03_out 157 395

original 1 354

original_out 126 350

sp005005 15 355

sp005005_out 183 361
Note: File names with postfix "out" are processed with closing filter.

Square mask 3x3 was used in erosion and dilation filters. According to results of Table 4

and Table 5, only Omni was able to perform better after applying opening and closing filters in

the case of noise from the custom filter which simulated the effect of characters breaking up after

the page has been copied over and over again.

Based on the previous results the following changes to the experiment can be done: the

noise model can be improved since it has been shown not to be vary effective, the shape of the

mask of morphological filter can be changed to preserve more rounded features of the font, and

 23

an additional filter can be used, such as median filter, which is also a morphological filter in case

of binary images, to eliminate salt and pepper (impulse, in general) noise. Opening/closing filter

did not perform well in the case of pepper noise. Closing/opening filter; on the other hand did

not perform well in the presence of salt noise. This has limited the conclusion that could be

derived from this experiment. Even though; presence of various font sizes and styles might have

seemed like a good idea, having this variety hurt statistical outputs of OCR engines.

While these experiments were not systematic, they helped to establish several important

things about closing and opening filters and their application. Effects of these filters greatly

depend on the size and the shape of structuring element. Also, selection of size of structuring

element must be done accordingly to the font size and resolution of the image. From these

conducted experiments it can also be concluded that the noise model that needs to be considered

is salt noise of various densities.

Benchmarking Performance of Optical Character Recognition Engines

Two out of three OCR engines (Abbyy’s and Omni’s) provide qualitative description of

the output that they produce. Abbyy’s OCR engine as a feed back provides number of words

found and number of suspect words. Suspect words are those words that have one or more

characters that the OCR engine was not able to recognize exactingly, meaning that the OCR

engine had several characters in its database that looked similar to what it saw in the image.

Omni’s OCR engine provides the number of suspect characters. While it is hard to connect the

two values together its possible to relate them for a known fragment of the text. In

benchmarking the performance of morphological filters the same text file will be used. Since the

 24

average length of words and total number of words is known, it can be easily correlated which

values of suspect characters correspond to suspect words. By creating a two-dimensional array

filled with zeros of height equal to number of words and width equal to the average number of

characters in the word and setting cells at random with value one will provide the relationship

between the number of suspect characters (number of ones introduced) and number of suspect

words (number of rows that have at least one cell with value one).

Figure 17: Simulation of Suspect Characters and Words and Its Exponential Fit

Figure 17 shows the simulated data and its exponential fit. At first, when the number of

suspect characters is low, the probability that one word will have two of them is very low;

therefore, it behaves as a linear function in the beginning, which means that for the most suspect

 25

character will result in one suspect word. When the number of suspect characters is high, the

probability that each word has suspect character is very high; therefore, at a certain point the

number of suspect characters stops increasing and approaches an asymptote. The exponential fit

is described by equation 2.5.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

−
601

n

eWw (2.5)

Where:

 W – total number of words in the text,

 w – number of suspect words, and

 n – number of suspect characters.

Value 60 was determined experimentally; however, it most likely is dependant on W and

N (total number of characters in the text). Equation 2.6, is the inverse to equation 2.5, shows

how to obtain the number of suspect characters knowing the number of suspect words.

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−=

W
wn 1ln60 (2.6)

Relating Sizes and Shapes of Structuring Elements of Morphological Filters to
Font Sizes and Types of Noise

As it was noted earlier, the size of the masks used needs to agree with the font size of the

text and resolution at which it was scanned. It is recommended by all three developers of OCR

 26

engines used in this thesis that the documents are scanned at 300dpi. This is the resolution that

will be used throughout this chapter of the thesis.

To be able to relate the results and draw conclusions, the same text was used. Eleven

images were created that would have the same text with eleven different font sizes and constant

font size within each image. Fonts used are 10pt, 11pt, 12pt, 13pt, 14pt, 15pt, 16pt, 17pt, 18pt,

19pt, and 20pt.

Figure 18: One of the Eleven Images of Text of Font Size 10pt in This Case Scanned at 300dpi
That Is Used Throughout This Section

First thing that needs to be determined is the relation ship between the font size and the

mask size such that the clean text does not get distorted. To each of the 11 images opening and

closing morphological filters of mask sizes 3x3, 5x5, 7x7, 9x9, and 11x11 were applied. A

circular shape was used for all of the masks. The outputs of this procedure were 110 images.

One way to describe the effect of the filter on the image is to calculate the difference of the two

images. Since images have different font sizes, in order to be able to compare the results, a ratio

of image difference and number of black pixels will be considered as image degradation value.

In case of no degradation this value will be zero, and will increase with the level of degradation.

 27

Figure 19: Ratio of Image Difference before and after Application of Closing Filter versus Mask
and Font Sizes

Figure 19 shows a graph of image degradation of images versus font size and size of the

applied filters. Since mask sizes of interest are the ones that affect the image but not too much,

from this particular results in can be concluded that the mask size and font size can be related by

equation 2.7.

0.6 1MaskSize FontSize= ⋅ − (2.7)

 28

Figure 20: Ratio of Image Difference before and after Application of Opening Filter versus Mask
and Font Sizes

Figure 20 shows a graph of image degradation of images versus font size and size of the

applied opening filters. Unlike a closing filter, distortion due to an opening filter occurs at

significantly small mask sizes. Relationship of mask size to font size is described by equation

2.8.

0.2 1MaskSize FontSize= ⋅ + (2.8)

This suggests that in case of salt and pepper noise or any noise that introduces gaps

opening filter will distort an image beyond recognition. The only time this filter can be used

 29

successfully is when only pepper noise is present. Since this thesis deals with restoration of

characters by eliminating gaps, this filter is beyond the scope of the thesis.

The focus now falls on the closing filters. Next step in analysis of effects of closing filter

on image is to look at amount of characters recognized by OCR engines and number of

characters flagged as suspect characters by these engines. The 55 images, acquired by applying a

closing filter of five different mask sizes to images of eleven different font sizes, have then been

processed by Abby’s and Omni’s OCR engines. Abbyy’s reported suspect word values have

then been converted to a number of suspect characters. For each of the images, each OCR

engine returns number of characters and number of suspect characters. To represent these two

values as a single graph their differences were taken. This difference represents number of

character that each OCR engine claims to have recognized correctly. This value will be referred

to as number of good characters. In the ideal case, when all characters were recognized and none

of them were marked as suspect characters the output would be 475 characters (409 not counting

white spaces).

 30

Figure 21: Number of Good Characters Recognized by Abby’s OCR Engine versus Mask and
Font Sizes

Figure 21 shows the number of good characters found by ABBYY’s OCR engine. In this

case higher values are better. The distribution of results follows closely the once predicted in

Figure 19. In fact the relationship between the mask size and the font size according to results of

ABBYY’s OCR engine also follow equation 2.7. Selecting mask sizes according to this equation

will correspond to the point of the graph where number of good characters is maximum.

 31

Figure 22: Number of Good Characters Recognized by Omni’s OCR Engine versus Mask and
Font Sizes

Figure 22 shows the number of good characters found by Omni’s OCR engine. This

distribution of results also follows closely the once predicted in Figure 19, however slightly

skewed In fact the relationship between the mask size and the font size according to results of

ABBYY’s OCR engine also is better described by equation 2.9. Selecting mask sizes according

to this equation will correspond to the point of the graph where number of good characters is

maximum.

0.4 1MaskSize FontSize= ⋅ + (2.9)

 32

Equations 2.6, 2.7, 2.8, and 2.9 provide maximum size of the mask that can be used for a

certain font size. It does not mean that the smaller mask cannot be chosen.

Next step is to determine whether the shape of the mask is important or not, and if it is,

which shape will lead to better results.

Figure 23: Seven Shapes of Masks of Size 7x7

Shapes that were chosen for next series of experiments are shown in Figure 23.

According to equation 2.9 the closing filter that used these shapes was applied to the text image

file that had text with a font size 15pt.

Table 6
Results of Application of Closing Filter and ABBYY’s OCR Processing

Shape Image Suspect Total Good
 Difference Ratio Chars Chars Chars
Circle 0.104 0 475 475

Vertical cross 0.14 0 475 475

Diagonal cross 0.252 13 475 462

Diamond 0.124 0 475 475

Diagonal cross w/ circ. 0.243 6 473 467

Vertical bar 0.045 0 475 475

Horizontal bar 0.128 9 475 466

 33

Table 7
Results of Application of Closing Filter and Omni’s OCR Processing

Shape Image Suspect Total Good
 Difference Ratio Chars Chars Chars
Original 0 0 409 409

Circle 0.104 9 409 400

Vertical cross 0.14 16 409 393

Diagonal cross 0.252 64 377 313

Diamond 0.124 6 409 403

Diagonal cross w/ circ. 0.243 29 420 391

Vertical bar 0.045 2 409 407

Horizontal bar 0.128 51 352 301

Filters that distorted the image the least was the filter with masks shaped like a vertical

bar. The most damaging filters turned out to be the two filters shaped like diagonal cross and

diagonal cross with a circle. It can be concluded that the filters do less damage if their shapes

resemble features common to characters. Since this is the case, it means that horizontal bar

could potentially restore breaks in characters without distorting their vertical features. However,

according to results of OCR processing of images there was a significant damage done by the

filters with masks shaped like horizontal bar. Perhaps a shape that resembles areas of characters

that are broken would deliver better results.

Next step is to determine the effects of closing filter on various noises. The simplest

noise model is salt noise. Eleven pictures of different font sizes were subjected to salt noise of

0.005, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5 salt densities. Each of these images were then processed

 34

by closing filters with circular shapes of sizes 3x3, 5x5, 7x7, 9x9, and 11x11. As a result, 385

images were generated. Since results of Omni’s and ABBYY’s OCR engines are loosely

correlated, the images were processed only by ABBYY’s OCR engine. The results were stored

in 3D array, which is hard to represent graphically or in a table. Since at this point any

improvement is of an interest, instead of using values, one could use an indication that there is or

there is not any improvement. The results are shown in Table 8.

Table 8
Results of ABBYY’s OCR Processing of 375 Images with Various Font Sizes, Noise Densities,
and Filtered by Closing Filter of Various Mask Sizes

Font Size Salt
Density

Mask
Size 10pt 11pt 12pt 13pt 14pt 15pt 16pt 17pt 18pt 19pt 20pt
3x3 - - - - - - - - - - -
5x5 - - - - - - - - - - -
7x7 - - - - - - - - - - -
9x9 - - - - - - - - - - -

0.005

11x11 - - - - - - - - - - -
3x3 - - - - - - - - - - -
5x5 - - - - - - - - - - -
7x7 - - - - - - - - - - -
9x9 - - - - - - - - - - -

0.01

11x11 - - - - - - - - - - -
3x3 - - - - - - - - - - -
5x5 - - - - - - - - - - -
7x7 - - - - - - - - - - -
9x9 - - - - - - - - - - -

0.02

11x11 - - - - - - - - - - -
3x3 - - - - - - - - - - -
5x5 - - - - - - - - - - -
7x7 - - - - - - - - - - -
9x9 - - - - - - - - - - -

0.05

11x11 - - - - - - - - - - -
3x3 - - - - - - - - - - -
5x5 - - - - - - - - - - -
7x7 - - - - - - - - - - -
9x9 - - - - - - - - - - -

0.1

11x11 - - - - - - - - - - -
3x3 x - - - x x - x x x x 0.2
5x5 x - - - x x x x x x x

 35

Table 8
Results of ABBYY’s OCR Processing of 375 Images with Various Font Sizes, Noise Densities,
and Filtered by Closing Filter of Various Mask Sizes

Font Size Salt
Density

Mask
Size 10pt 11pt 12pt 13pt 14pt 15pt 16pt 17pt 18pt 19pt 20pt
7x7 - - - - x x x x x x x
9x9 - - - - - x - x x x x
11x11 - - - - - - - - - x -
3x3 x x x x x x x x x x x
5x5 x x x x x x x x x x x
7x7 - x x x x x x x x x x
9x9 - - - x x x x x x x x

0.5

11x11 - - - - - - x x x x x
Note: “-“indicates that there was no improvement in output of OCR engine after application of closing filter
compared to OCR results of image with noise, “x” indicates that there was at least some improvement

With pepper noise density lower than 0.01 OCR engines did not have any problems

recognizing the text. However, for salt densities 0.2 and 0.5, number of recognized characters

went down and number of suspect characters went up for non filtered images. Relationship

between font size and the mask size still follows the same pattern which is described by

equations 2.8 and 2.9.

Results shown in Table 8, Table 7, Table 6, Figure 21, and Figure 22 suggest that

irrelevant of noise the best choice for mask size is dependent on the size of the text. In order to

proceed with exploring of possibilities of implementing morphological filters into a multi-engine

OCR system, a method which allows detection font size of the text in a particular region of an

image is needed, which is beyond the scope of this thesis.

 36

CHAPTER THREE: TEXT ALIGNMENT

Introduction to Text Alignment

Once the document is processed by three OCR engines and before voting can take place,

text needs to be aligned. An alignment of two or more text documents that were generated by

two or more OCR engines is defined as a process of matching words that came from the same

section of the image of that word among the text documents acquired by OCR engines.

a)

b)

c)

d)

Figure 24: a) Image, b) Result of FineReader, c) Result of OmniPage, d) Result of Expervision

Results of an OCR engine is a single text file. A voting engine requires a single word

from each of the documents as an input. If the only problem in OCR processing would have

been misrecognized characters, one could separate words using space as a delimiter and feed that

a a SELLER AND PURCHASER;
(4 AGREE Purchaser will deposit $2,320,000.00

SELLER AND PURCHASER;
/£\ AGRBE Purchaser will deposit $2,320,000.00

"¢ i SELLER AND PURCHASER:
L_ :" ?" : /'_ AGREE Purchaser will deposit $2,320,000.00

 37

into the voting engine. Unfortunately, as demonstrated in Figure 24, in addition to

misrecognized characters there are also parts of the graphics or noise that were not filtered out

and recognized as group of symbols. Also some OCR engines might insert an extra space

between two characters of the same word, or opposite of that, recognize two separate words as

one.

Table 9
Result of Aligning Text Using Space as a Delimiter

OmniPage FineReader Expervision

SELLER a "¢

AND a i

PURCHASER; SELLER SELLER

/£\ AND AND

AGRBE PURCHASER; PURCHASER:

Purchaser (L_

will 4 :"

deposit AGREE ?"

$2,320,000.00 Purchaser :

 will /'_

 deposit AGREE

 $2,320,000.00 Purchaser

 will

 deposit

 $2,320,000.00.

 38

Because of that, simply using spaces as word separators is not possible. Table 9

demonstrates the input that goes into the voting algorithm that was produced by splitting text into

words using space character as a delimiter without any kind of alignment. Multi-engine OCR

system will only be able to correctly vote on the first five sets of three words of Table 9, since

results of FineReader and Expervision are in sync for the first five words. What is needed is

some kind of aligning algorithm that will go through the text and find identical or at least similar

parts. To make the problem easier, first we will align only two documents together using ASCII

comparison.

Text Alignment of Two Documents Using ASCII Comparison

The aligning process of the three text documents from each OCR engine can be broken

down in three parts. First part would take each one of the three possible pairs of the documents

and search for similar and different parts. This step will produce three lists. Elements of each

one of these lists will contain parts of sentences or words. Elements of those lists are then

separated into single using space character as a delimiter. Outcome of this step will give three

tables that will contain alignment between the two documents of word pair. Finally the three

tables will be combined together to form a single list that will contain three aligned columns of

words.

The goal of the first part of text alignment algorithm is to find where is the nearest similar

parts of text in the two documents. These two parts should have to be about 3 to 6 characters

long, since smaller text segments would not necessarily guarantee same point in original text and

bigger text segments is harder to compare to each other. Once a starting text segment of text is

 39

found using various methods listed later in this section it will be determined whether following

text is similar or not. In case when following text becomes significantly different, next chunk of

similar text will need to be found. Graphical representation of the algorithm is shown in Figure

25.

Figure 25: Algorithm for Text Aligning

 40

The algorithm can be divided into eleven blocks and put into a loop that can be

terminated by one or more states within the loop. When the algorithm starts it is set to state one,

where it searches for the first similar part of the text within the starting amount of characters. If

no similar parts were found within given amount of characters, the algorithm goes to state six

where the window size in which it searches is increased. Following that, the system goes to state

eight and checks if the window is within the document. If the window is bigger than the rest of

one of the documents, then there is no reason to search for similar parts since all possible

combinations has already been looked at in the previous iteration with the smaller window and

the system goes to state ten where it saves the text as not similar. From state ten the algorithm

goes into state eleven where the exit flag for the loop is set to an appropriate value to terminate

the main loop. If the window still lays within both of the documents the system goes to state

one, looking for next similar part within, now extended in state six, range of characters.

Once a similar part is found, the position where it starts in both of the documents is

recorded and the system goes to state two where it records the last different parts. From state

two the algorithm goes to state three where it checks whether the next group of characters is

similar or not. Theoretically, this step could be eliminated and the system could go back to state

one. However, when looking for similar characters following already found similar parts the

criterion by which the similarity is determined does not have to be as strict, since chances that

the characters will be similar are higher than the chances that the first few characters within the

default window are going to be similar. If in the state three, it was indeed determined that the

characters are similar, system goes into state four, where it goes out further from the last similar

part found in state one. Following that, comes state seven that makes sure that the end of any of

 41

the documents hasn’t been reached yet. If the search for the next similar group of characters

goes beyond one of the documents, the algorithm then goes to state nine where it saves similar

parts. From state nine the system goes to state eleven where the exit flag for the loop is set to an

appropriate value to terminate the main loop. If in state three, it was determined that the

following characters are not similar, the algorithm goes to state five, where it saves similar parts,

followed by state one, where it searches for next similar part.

The heart of the algorithm lies in the two most important functions which are “Found

next part?” and “Are next characters similar?” The most basic approach is to compare ASCII

values of the characters. As it was mentioned before, the first chunk of similar text needs to be

about 3 or 4 characters long. As shown in Figure 24, the beginning of the documents is not

always similar, which means that several combinations will need to be tried. The algorithm for

finding similar parts is shown in Figure 26.

Table 10 demonstrates this algorithm in action. The two texts that need to be aligned are

“xxxabczzooo” and “yyabczzppp”.

Table 10
Example of Aligning Process Based on the Algorithm of Figure 25

Step State Input to state Output/Action Memory
1 1 xxx

yya

no Empty

2 6 Size of the window Size of the window increased
by one

Empty

3 8 Current position within
each text and current size
of the window

no Empty

4 1 xxxa
yyab

no Empty

 42

Table 10
Example of Aligning Process Based on the Algorithm of Figure 25

Step State Input to state Output/Action Memory

5 6 Size of the window Size of the window increased
by one

Empty

6 8 Current position within
each text and current size
of the window

no Empty

7 1 xxxab
yyabc

no Empty

8 6 Size of the window Size of the window increased
by one

Empty

9 8 Current position within
each text and current size
of the window

no Empty

10 1 xxxabc
yyabcz

Yes, current size mask and
current position

Empty

11 2 Position where last similar
parts ended, current size
mask and current position

Current position increased by
the positions of found similar
parts within window

list(1).diff1=”xxx”
list(1).diff2=”yy”

12 3 zz
zz

Yes 1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

13 4 Current position Increase current position by
number of successfully
matched characters

1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

14 7 Current position No 1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

15 3 zx
zy

Yes 1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

16 4 Current position Increase current position by
number of successfully

1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

 43

Table 10
Example of Aligning Process Based on the Algorithm of Figure 25

Step State Input to state Output/Action Memory
matched characters

17 7 Current position No 1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

18 3 xx
yy

No 1ist(1).diff1=”xxx”
1ist(1).diff2=”yy”

19 5 Start of current similar part - list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”

20 1 ooo
ppp

no list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”

21 6 Size of the window Size of the window increased
by one

list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”

22 8 Current position within
each text and current size
of the window

yes list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”

23 10 End of last similar part - list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”
list(2).diff1=”ooo”
list(2).diff2=”ppp”
list(2).sim1=””
list(2).sim2=””

 44

Table 10
Example of Aligning Process Based on the Algorithm of Figure 25

Step State Input to state Output/Action Memory

24 11 Set exit flag to TRUE list(1).diff1=”xxx”
list(1).diff2=”yy”
list(1).sim1=”zz”
list(1).sim2=”zz”
list(2).diff1=”ooo”
list(2).diff2=”ppp”
list(2).sim1=””
list(2).sim2=””

Figure 26: Algorithm for Finding Next Similar Part of Text

 45

In Figure 26 three-character windows were used to find similar segments of text. In this

particular example, the non similar part would begin at 0 and end at 2 for the first document, and

begin at 0 and end at 1 for the second document. Similarly, the located similar part would begin

at 3 for the first document, and at 2 for the second document. Search for the next similar

character would begin at positions 6 and 5 respectively. Benchmarking will help to determine

whether 3 is an adequate number of characters to compare or, perhaps, longer string of characters

will be required. One of the major disadvantages of this method is that number of comparison

operations is square of number of steps. With a large number of misrecognized text, this method

could be very time consuming. This can be improved by using less strict rules when comparing

the strings; for example, using 4-character long strings and calling them equal if at least 3 of 4

characters are the same would flag “ABBY” and “AEBY” as similar text instead of going out

further to find an exact match. It is important, however, that the characters that are ignored are

not space characters. If there is a disagreement between the two OCR engines whether there

should or should not be a space character, it should be left in the unmatched part and dealt with

along with other unmatched parts. The diagram for the algorithm of finding next similar part is

shown in Figure 27.

 46

Figure 27: Diagram for Algorithm for Finding Next Similar Part of Text

Since three equal characters in the row is stricter than three equal characters out of four,

the algorithm will test for that first. In case such a combination is found, it will return to the

main algorithm flag indicating success set to true and positions in each of the documents where

similar part begins. If no parts of three characters were found, it’ll search for three out of four

equal characters. Again in the case of success, it will return a flag indicating success set to true

and positions in each of the documents where similar part begins. In case of no combinations

were found, the algorithm will return a flag indicating failure set to true.

 47

Figure 28: Diagram for Algorithm for Finding Next Similar Group of Characters

The first algorithm checks if the next character of text are equal to another. If they are

equal, the algorithm returns a flag indicating success and positions by which next window of

comparison needs to be shifted. In this particular case it is always going to be one. If the

characters are not the same, in order to preserve space as a delimiting element and before the

algorithm will check for characters further ahead, it checks whether one of the characters is a

space. If one of the characters is a space (it cannot be both since that would have been flagged as

similar characters by the first comparison), the system will exit to main the algorithm with the

 48

failure flag set to true. If, on the other hand, it is not true, the system will compare if second and

third character of first text are respectively equal to the second and third characters of second

string. If they are all equal, the system will return flag indicating success and positions by which

next window of comparison needs to be shifted. In this particular case it is always going to be

three. In case they are not equal, the system will exit to main algorithm returning the failure flag

set to true.

Since different parts are always followed by similar parts, the most intuitive way to store

aligned text at this point is to store it in the list that is defined as follows:

listText(i).stringDifferentPartText1

listText(i).stringDifferentPartText2

listText(i).stringSimilarPartText1

listText(i).stringSimilarPartText2

Using the text given as an example in Figure 26 the list containing the aligned part would

look as follows:

listText(1).stringDifferentPartText1 = ‘xxx’

listText(1).stringDifferentPartText2 = ‘yy’

listText(1).stringSimilarPartText1 = ‘abczzz’

listText(1).stringSimilarPartText2 = ‘abczzz’

 49

Analysis of the Performance of
Aligning Algorithm Based Only on Plain ASCII Comparison

There are two parameters on which the performance of the first part of the aligning

algorithm is evaluated. The first parameter is the number of similar characters that were found.

It can easily be determined by summing lengths of similar parts. This, however, does not tell us

continuity of found similar parts. The second parameter that is important when talking about the

performance is the number of similar parts found. Low number of similar parts found along with

high total number of similar characters found suggests that there is good continuity. Using

results of Doculex’s and Abbyy’s OCR engines run on a complete image, part of which is shown

in Figure 1, the following results were obtained: the number of similar parts found is 147, the

total numbers of similar characters length of similar parts for each document are 4682 and 4682,

and the total numbers of unmatched characters for both of the documents are 508 and 533. This

means that roughly 10% of the text was not recognized as similar. Sample data stored in one of

the three lists is shown in Table 11.

 50

Table 11
Sample Data Stored in One of Three Lists after First Part of Alignment

 Element and Propery Value

1 listText(21).stringDifferentPartText1 " .., '_'_' _to)dsi [red in /gt_ _ "

2 listText(21).stringDifferentPartText2 ""

3 listText(21).stringSimilarPartText1 "additional m"

4 listText(21).stringSimilarPartText2 "additional m"

5 listText(22).stringDifferentPartText1 "mt"

6 listText(22).stringDifferentPartText2 "on"

7 listText(22).stringSimilarPartText1 "ey payable pursu0nt to the "

8 listText(22).stringSimilarPartText2 "ey payable pursuant to the "

9 listText(23).stringDifferentPartText1 "Ra"

10 listText(23).stringDifferentPartText2 "Bu"

11 listText(23).stringSimilarPartText1 "y-S"

12 listText(23).stringSimilarPartText2 "y-S"

Looking at first two rows of Table 11, one can conclude that in this particular case the

first OCR engine tried to represent some kind of graphics or noise on the page as string of

characters, while second OCR engine ignored it. Fifth and sixth lines of the table demonstrate

the case when two characters where misrecognized by one or both OCR engines. Rows seven

and eight showed that allowing for error digit 0 and corresponding to it in the second text letter

“a” were marked as similar. Ninth and tenth rows again show misrecognized characters by one

or both OCR engines. In this particular case, however, what draws attention is the fact that the

 51

two fragments of text “Ra” and “Bu” look very similar, perhaps using some kind visual

comparison would be more appropriate in this case.

Text Alignment of Two Documents Using Visual Comparison

Further examining parts of the documents that were not marked as similar, it can be noted

that some of those parts even though have different ASCII values look very similar. Some of

those fragments are shown in

Table 12
Visually Similar Fragments of Texts That Were Not Flagged as Similar During Plain ASCII
Comparison

OmniPage Omni

“a” “e”

“pah” “pub”

“cca” “een”

“al” “ni”

“Ra” “Bu”

“0Q0” “000”

Figure 29 demonstrates how visual character comparison could mark different characters

as similar.

 52

Figure 29: Example of Visual Character Comparison

In Figure 29 the lowercase letter “l” is compared to capital “I”, digit “1”, and the

lowercase letter “i”. In grey shown parts of the characters that are common to both the compared

characters. Parts of characters that are not common to both characters are shown in black. The

amount of black essentially tells how much the characters are different from one another.

Since OCR is based mostly on feature extraction, different widths of different parts of the

same character do not have to be accounted. For example, in Times New Roman font, capital

letter “W” has different widths depending on the direction of a particular feature, while same

letter of font Courier New has the same width for every part of the letter as shown in Figure 30.

a) b)

W W
Figure 30: a) Capital “W” of Font Times New Roma, b) Capital “W” of Font Courier New

Since essentially visual character comparison is based on image subtraction, better results

could be achieved if each character has constant width, which makes characters of font Courier

 53

New a better choice. Before character subtraction can take place, each pair of characters must be

aligned in the best possible way. While some characters can be aligned easily manually, such as

lowercase letter “l” and upper case letter “I”, other characters are not that easy to align manually;

for example digit “9” and symbol “$” shown in Figure 31.

Figure 31: Two characters that need to be aligned

One of the ways to do this automatically is to use image correlation, mathematical form

of which is given in the equation 3.1.

∑∑ ++=
s t

tysxwtsfyxc),(),(),((3.1)

where:

c – Result of correlation

f, w – correlated images

Figure 32: Character padded with zeros

 54

Figure 33: Correlation of two characters shown in Figure 31

In this case images that need to be correlated are of equal size. One of the images w is

padded with zeros, as shown in Figure 32, so that its new dimensions are three times bigger than

the original dimensions. Image f is then moved through image w and at each step it is multiplied

with current overlapping part of image w. In case of binary image, high values will only remain

where high values of both images overlap. Those values are then summed together, and this

value is set to image c at position corresponding to current position of image f within image w.

Correlation of the two characters is shown in Figure 33. The highest value then represents the

point where pixels with high value overlapped the most [6]. This point dictates how one

character needs to be shifted with respect to another so that the difference between the two would

be minimal. This point might not be necessarily unique, but mathematically there is no difference

between the points where correlation is at maximum, and any of these points can be chosen.

Both overlapped and not overlapped parts of the characters are of an interest. In order to

preserve this information, different parts can be stored in the difference image as grey, and

overlapped parts can be stored as white as demonstrated in Figure 34.

 55

Figure 34: Difference of aligned characters; in white shown overlapped parts and in grey shown
parts that did not overlap

Since the amount of black can vary depending on how much zero padding was added

during correlation and during image created, to make amount of black comparable to amount of

grey and white, we can calculate what is the lowest amount of black pixels present in all of the

pictures, and subtract it from the rest of the pictures. For this particular set of images, this value

is 17562 with total number of pixels 18432 each.

Figure 35: Difference of aligned characters; certain parts of unaligned pixels are de to difference
in width of some features of characters

 56

Figure 35 shows that sometimes for certain characters unaligned pixels can show up

because of the difference in widths of certain features of the characters. While those parts are

perfectly aligned, presence of those unaligned pixels can through off similarity value. One way

to approach this problem is to apply opening (dilation followed by erosion) filter to the grey part

of the image.

a) b)

Figure 36: a) Unaligned pixels, b) Unaligned pixels after application of closing filter with
structuring element of cross shape and size 3x3 pixels

Figure 36.b shows the unaligned pixels after closing filter was applied. Size of the

structuring element in this case was 3x3. Since the width of features of the characters is on

average 6 pixels, applying filter of the size bigger than the half of the character would lead to

loss of unmatched pixels that are important in calculation of similarity value of the two

characters. Because most of the features of characters of Courier New have rounded edges, cross

shape, closest to round shape in case of 3x3 structuring element, was chosen.

 57

Figure 37: Closed unaligned pixels added beck to aligned pixels

Figure 37 was acquired by disregarding grey pixels of image Figure 35 and adding to it

image shown in Figure 36.b as grey pixels. As a result, the difference of the two characters does

not include false unaligned pixels.

Now that a good representation of aligned and unaligned pixels is acquired, some kind of

mechanism by which a similarity value of the two characters can be determined. Since the

number of pixels is fixed, numbers of white, black and grey pixels can be represented in the form

of equation of a plane as shown in equation 3.2.

Sgwb ppp =++ (3.2)

where:

bp, wp, and gp – numbers of black, white, and grey pixels

S – total number of pixels

 58

Figure 38: Graphical representation of amount of pixels of each of three colors.

Figure 38 demonstrates 3D representation of possible combinations of colors in the

image. Depending on where a particular image falls, the combination of colors, the value of

similarity of the two characters will be assigned. First, transformation from 3D coordinates

(bwg) to coordinates in the plane (xy) is needed as shown in Figure 38. When P falls on W it

means that all pixels aligned and that it is the perfect match, which means that the similarity will

be set to 1. When P falls on B, it means that there were no pixels and two space characters are

compared and their similarity is also 1. If, on the other hand, P falls on G, it means that there

was nothing similar about the two characters and that their similarity will be set to 0. To

simplify further calculations it is better to normalize the coordinates in xy coordinate system,

meaning that both x and y will have range [0, 1]. Using geometry it can be shown that

coordinates of point P(b, e, g) can be related to coordinates (x,y) in plane BWG by equation 3.3.

 59

S
Swby

S
gx

PP
P

P
P

⋅
+−

=

=

2

 (3.3)

Depending on where particular color combination falls value associated with similarity

will be chosen. If image is all black or all white, similarity value should be one; if however,

image is all gray, similarity value should be zero. The first obvious choice is to discard yp, and

express similarity value as shown in equation 3.4.

pp xxSimVal −= 1)((3.4)

However, examining closely what happens along edges WG and BG the following can be

noted. While along WG edge similarity between the two characters can still be expressed s

linear function, along BG edge things are not as straight forward. For larger amounts of grey

pixels and no white pixels similarity value needs to be zero; however, smaller amounts of grey

pixels and no white pixels indicate presence of small characters that could potentially be

punctuation marks or noise. While some OCR engines could recognize them as coma or a dot,

others could have simply discarded them. In this case an exponentially decaying or piecewise

constant function with similar properties would be appropriate. Since most of the time

combinations of grey, white and black colors will fall inside the triangle, an interpolated value of

the two functions can be taken. Equation 3.5 demonstrates such an approach.

 60

()ppBGppWGpp yxfyxfyxSimVal −⋅+⋅= 1)()(),((3.5)

ppWG xxf −=1)((3.6)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅−

−

=

0

375.21875.1
2

1

)(p

p

pBG x

x

xf

15.0

5.01.0

1.00

≤<

≤<

≤≤

p

p

p

x

x

x

 (3.7)

Equation 3.6 defines linear function along WG side, and equation 3.7 defines piecewise

linear function along BG side.

Figure 39: Graphical representation of equations 3.5, 3.6, and 3.7

 61

Figure 40 is a graphical demonstration of equations 3.5 through 3.7. It can be noted that

the functions fBG and fWG do not really go along BG and WG sides respectively, in fact they are

going along BG’ and WG’’, which distorts the desired out put. Equation 3.8 is an improved

SimVal function that takes this fact into consideration.

1 12 2() ()(,) 1 1

0 1

p p
p p

p
WG p BG pp p

p p

p

x x
y y xf x f xSimVal x y x x

x

⎧
− − −⎪ ≠⎪ ⋅ + ⋅= ⎨ − −⎪

⎪ =⎩

 (3.8)

At glance, it might seem that there is a discontinuity at xp equal to one and that the values

could go to infinity. Examining closely, it turns out that for both fractions both denominator and

numerator are linearly approaching zero, which means that, even though, there is a discontinuity,

the limit of both fractions as xp approaches one is equal to a constant value. Since the values of

xp are discrete and they will not be close enough to one, this problem can by overcome by simply

equating the function to a value of zero.

 62

Figure 40: Graphical representation of equations 3.6, 3.7, and 3.8

As shown in Figure 40, functions fBG and fWG this time really do go along BG and WG

sides of triangle.

Now that all tools for comparing characters have been acquired, table with similarity

values can be built.

 63

Table 13
Fragment of a table for character similarity look-up

 a b c d e f g h i j
a 1.000 0.694 0.830 0.734 0.964 0.615 0.577 0.851 0.806 0.494

b 0.694 1.000 0.867 0.644 0.795 0.655 0.571 1.000 0.646 0.418

c 0.830 0.867 1.000 0.921 0.925 0.694 0.800 0.885 0.718 0.534

d 0.734 0.644 0.921 1.000 0.804 0.658 0.711 0.807 0.747 0.634

e 0.964 0.795 0.925 0.804 1.000 0.624 0.694 0.833 0.648 0.465

f 0.615 0.655 0.694 0.658 0.624 1.000 0.549 0.653 0.829 0.486

g 0.577 0.571 0.800 0.711 0.694 0.549 1.000 0.631 0.461 0.701

h 0.851 1.000 0.885 0.807 0.833 0.653 0.631 1.000 0.609 0.489

i 0.806 0.646 0.718 0.747 0.648 0.829 0.461 0.609 1.000 0.747

j 0.494 0.418 0.534 0.634 0.465 0.486 0.701 0.489 0.747 1.000

Table 13 is a part of lookup table for character similarity. For i equal to j, where i is row

index and j is column index, the value in the table is one, because character is exactly equal to

itself. Since similarity of character "a" to character "b" is the same as similarity of character "b"

to character "a", the table is also symmetric about i equal to j. Highlighted in yellow is a great

example of two characters, "b" and "h", similar to each other. In reality this value is less than

one; however, rounded up to three digits of precision it came out to be one. In certain cases,

intuitively, similarity value came out to be too high. For example, characters "d" and "c"

highlighted in red in the table. In Courier New font most of the weight of characters is in lower

portion, which means that the upper part of the character "d" might not have had enough weight

 64

to make similarity value lower. This problem can be partially solved by choosing a different font

and benchmarking the overall performance of the multi-engine OCR system; however this is out

of the scope of this thesis.

In practice, when coding the alignment engine, in order to simplify expressions that will

need to be calculated, it will be easier to use difference value instead of similarity. A difference

value of two characters is simply one less similarity value of the two characters.

Table 14
Fragment of a table for character difference look-up

 a b c d e f g h i j
a 0.000 0.306 0.170 0.266 0.036 0.385 0.423 0.149 0.194 0.506

b 0.306 0.000 0.133 0.356 0.205 0.345 0.429 0.000 0.354 0.582

c 0.170 0.133 0.000 0.079 0.075 0.306 0.200 0.115 0.282 0.466

d 0.266 0.356 0.079 0.000 0.196 0.342 0.289 0.193 0.253 0.366

e 0.036 0.205 0.075 0.196 0.000 0.376 0.306 0.167 0.352 0.535

f 0.385 0.345 0.306 0.342 0.376 0.000 0.451 0.347 0.171 0.514

g 0.423 0.429 0.200 0.289 0.306 0.451 0.000 0.369 0.539 0.299

h 0.149 0.000 0.115 0.193 0.167 0.347 0.369 0.000 0.391 0.511

i 0.194 0.354 0.282 0.253 0.352 0.171 0.539 0.391 0.000 0.253

j 0.506 0.582 0.466 0.366 0.535 0.514 0.299 0.511 0.253 0.000

Table 14 shows a fragment of look-up table with character difference values. Just like

Table 13, this table is also symmetric about its diagonal, and value of zero now represents

identical characters.

 65

Table 15
Four Characters with Most Similar to Them Characters

Character “1” Character “8” Character “I” Character “[“

l 0.004807 S 0.049867 l 0.044152 { 0.025746

I 0.046466 B 0.063210 1 0.046466 (0.045318

i 0.089090 6 0.075887 T 0.075402 | 0.055896

L 0.112948 3 0.118504 L 0.076215 ! 0.114276

j 0.148680 0 0.124118 i 0.168751] 0.132074

! 0.166219 9 0.159772 f 0.196556 } 0.149722

T 0.171959 H 0.167910 J 0.199795 1 0.194807

Table 15 shows four characters and the characters similar with difference values next to

them. When performing text alignment a threshold value will be chosen to determine how big

the difference can be in order for the two characters to be considered similar. Depending on how

big this value is, some characters will have more similarity with some characters than the others.

For example, setting the maximum difference value to 0.005 out of four characters in Table 15

only character “1” will have a similar to it character. In the plain ASCII comparison algorithm

similar parts were determined only when one character in one text file was equal to the character

in the other text file. Since the lookup table does include comparison of a character to itself, and

the difference value is zero, it will always be flagged as similar independent of what the

threshold is. This means that the plain ASCII comparison can be replaced by the visual

comparison.

 66

Analysis of the Performance of
Aligning Algorithm Based on Visual Character Comparison

Outcome of this algorithm can also be characterized by the same parameters as the

outcome of algorithm based only on plain ASCII comparison. Using value of 0.15 for threshold

in finding the next similar word and 0.2 in finding the next similar character, number characters

found similar went up from 4682 to 4823. Number of characters marked as different went down

for both documents from 508 and 533 to 367 and 392. This is a 30% improvement, and while it

is relatively small compared to the total number of characters in the document, this small

difference can make great impact on the further aligning. Total number of similar parts also

went down from 147 to 133. Part of the algorithm that checks if next pair of characters is similar

once the start of similar part is found also is now based on visual character comparison.

Decrease in number of similar parts indicates that when plain ASCII comparison failed to

continue marking similar parts as similar, visual character comparison succeeded. Values used

for threshold can greatly impact the outcome. Increasing the thresholds can improve the results;

however, increasing them too much can introduce misalignment.

Table 16
Misalignment due to High Thresholds

Unmatched Unmatched Matched Matched
Text 1 Text 2 Text 1 Text 2
"n" "" " c" " h"

"ompl" "" "ied " "ave "

"with," "been" " a" " c"

"m" "omplie" "i w" "d w"

 67

Table 16 demonstrates that setting threshold for finding next similar parts at 0.3 and next

similar character at 0.1 resulted in text misalignment. Second line of unmatched text one

actually matches fourth line of unmatched text two.

Figure 41: Example of Success of Visual Character Comparison

Figure 41 shows example of when plain ASCII comparison would fail. From the

beginning of second to last word to the end of the last word out of nine characters only three are

exactly the same. Plain ASCII comparison would flag this part as different, while visual

comparison saw where the OCR engines made errors and flagged those parts as similar.

Table 17
Visually Similar Fragments of Texts That Were Not Flagged as Similar During Visual Character
Comparison

OmniPage Abby

“m” “in”

“ii” “u”

“li” “h”

“am)” “and”

“rn” “m”

“nd” “iul”

Table 17 demonstrates some of the unmatched by visual character comparison fragments

of text that visually are similar. The reason why visual comparison failed in these cases is that

y rights to which it or tl)e Till

y rights to which it or rile 1'il

 68

the characters got broken apart or merged together. As Sprague noted before, due to the fact that

some of the documents were copied over and over again some of the characters lost their least

significant features [3]. In case of most characters vertical features are more important than the

connecting horizontal ones. This resulted in characters breaking apart. For example character

“m” seems to be often misrecognized by Abbyy’s OCR engine as “in” or “rn”. One of the ways

to approach this problem is to include a error lookup table for visual comparison not only single

characters but also combination of characters. Unfortunately, there are too many combinations

that need to be accounted for, which could result in long computational times. Since most of the

time vertical features are preserved, another approach is to represent each character as series of

vertical lines as shown in Figure 42.

Figure 42: Example of Line Representation and Comparison of Characters

Figure 42 shows an example, where two characters are compared to three characters.

Examining unmatched parts and most common fonts in general it can be noted that there are two

most common heights of vertical features of characters.

 69

Figure 43: Line Representation of Characters “a” through “p”

Figure 43 shows line representation of characters “a” through “p”. Characters “a”, “c”,

“e”, “n”, and “o” have the same line representation, which limits application of this method of

character comparison. When using this method looking for next similar character or group of

characters once the start of similar part has been found, there is a good chance that the following

characters are indeed the same. On the other hand, when looking for the start of similar parts of

the two texts, this method can introduce false reseults. There are several ways how this line

representation of characters can be generated. One is to generate this list manually based on

unmatched text. The other method is to generate these values automatically by generating

images of characters, summing pixels vertically, and then applying thresholds.

 70

a) b)

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

Figure 44: Vertical Summation of Pixels of a) Character “H” and b) Character “h”

a) b)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0 02 2

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0 012

Figure 45: 3-level Threshold Applied to Figure 44

Figure 44 and Figure 45 show the two steps of the process that assigns line representation

of characters on the example of characters “H” and “h”. For better results, the Impact font can

be chosen. Characters of this font have vertical features enhanced, which will reduce amount on

levels after threshold, such as shown in Figure 45. Instead of going from level zero to level two

directly, level one appears in between. This can be reduced by using Impact font. To completely

 71

eliminate this intermediate level, its width needs to be compared against previous and next levels

widths. If it is considerably smaller, then it can be discarded.

Figure 46: Characters of Font Impact

Figure 46 demonstrates characters of the Impact font. This font is better for automatic

line representation of characters because vertical features are more enhanced compared to

horizontal ones, and they also have the same widths for all characters. A leading zero is not

necessary and can be discarded. Line representation of characters “H” and “h” can be stored as

follows:

listLineChars(1).line(1) = 2

listLineChars(1).line(2) = 0

listLineChars(1).line(3) = 2

listLineChars(1).line(4) = 0

listLineChars(2).line(1) = 2

listLineChars(2).line(2) = 0

listLineChars(2).line(3) = 1

listLineChars(2).line(4) = 0

A B C D E F G H I J

a b c d e f g h i j

 72

Figure 47: Algorithm for Detecting Next Similar Character Using Line Representation of
Characters

Figure 47 shows an algorithm that uses line representation of characters to group

character-wise uneven groups and mark them as similar. Figure 48 demonstrates application of

this algorithm on two strings “lnn” and “hm”, which have different lengths yet similar looks.

 73

l h

ln h

ln hm

lnn hm

String One String Two

Step 1:

Step 2:

Step 3:

Step 4:

Figure 48: Algorithm for Detecting Next Similar Character Using Line Representation of
Characters in Action

Once line-wise length of the two strings is equal, their patterns are compared. If they are

identical, these two groups of characters are marked as similar. Looking at previous results of

alignment using visual character comparison, it can be noted that these fragments would not

exceed lengths of five characters. Once the length of one of the strings exceeds five characters,

the algorithm returns to the main program indicating end of a similar part. To avoid uneven

number of space characters within similar part it is also being omitted. If one of the added

characters is a space, the algorithm also exits indicating end of a similar part.

 74

Analysis of the Performance of Aligning Algorithm Based on
Visual Character Comparison and Line Representation of Characters

Just like in previous analyses, there are three parameters that affect the performance of

the alignment. Number of similar part went down from 133 to 106. This indicated that the

continuity has increased. Number of similar characters went up from 4682 for both documents

to 4912 for Abbyy’s OCR engine and to 4906 for Omni’s OCR engine. Note that before these

two numbers were the same for both engines. This time line representation of characters made it

possible to match uneven number of characters and mark these parts as similar. From the

difference in the number of similar characters it can be concluded that Abby’s OCR tends to split

characters, while Omni’s OCR tends to merge them.

Table 18
Groups of Characters That Were Marked as Similar by Adding Line Representation of
Characters

OmniPage Abby
h li

ll U

ha lw

a ii

ro m

E li

in m

u ii

mad nuul

ru m

 75

Table 18 demonstrates some more examples in addition to the ones shown in

Table 17, where line representation of characters made successful detection of similar

parts.

Improving Algorithm for Finding Next Similar Part

While the algorithm for finding the next similar part of the text has shown to be efficient,

it has a few major drawbacks. It has a rather complex implementation, which in turn causes it to

be difficult to adjust for certain cases and applications. Matrices are known for their ability to

simplify complex equations and some times even series of complex equations. A matrix-like

approach can be taken in the algorithm for finding similar parts. Two strings “xxxabczzz” and

“yyabczzz” will be used as an example.

First of all, a representation of all possible combinations is needed. Since the smallest

number of characters that are used to flag text as a beginning of similar part is three, number of

possible combinations for strings of three characters long is one, four character-long strings is

four, etc.

x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 y y a b c z

 76

Figure 49: Matrix-like Representation of All Possible Three-character Combinations within Two
Six-character Long Strings

Figure 49 demonstrates how the matrix for finding next similar part can be found.

Picking each non empty cell, above a dashed line, and such that the number of character to the

left is at least two will give a unique three-character combination. In case of four-character

combinations, number of character to the left must be at least four. In general, number of

characters to the left must be length of compared characters (character within the mask) less one,

as demonstrated in Figure 50.

a) b) c) d)

Figure 50: Shaded Regions Show Where Combination of Compared Characters Starts for a)
Three-, b) Four-, c) Five-, and d) Six-Character Long Masks

Next step is to replace characters above the dashed line with a difference value that

corresponds to the character below the dash line. Empty cells can be replaced with values of

one. This way they will not be accounted as similar parts in further calculations.

x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 y y a b c z

x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 y y a b c z

x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 y y a b c z

x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 x x x a b c
 y y a b c z

 77

Figure 51: Translating Matrix of Characters into Matrix of Difference of Characters

Figure 51 demonstrates how to get from matrix of characters to matrix of difference

values. To this new matrix can be applied series of masks. In the implementation of aligning

algorithm following masks were used: [1 1 1], [1 0 1 1], [1 1 0 1], and [1 0 1 0 1]. These are the

masks of size up to five characters that will have unique results. Mask [1 1 1 0] has the same

effect as mask [1 1 1], similarly mask [1 1 0 1 0] will have the same effect as mask [1 1 0 1].

Value of one indicates that the character difference that falls on it will be accounted, and value

zero indicates that the character difference that falls on it will be ignored.

Table 19
Examples of Masks and Their Applications

Mask Array of Differences Output
0.1 0.2 0.3 [1 1 1] 0.3

0.1 0.9 0.2 0.3 [1 1 0 1] 0.9

0.1 0.9 0.2 0.3 [1 0 1 1] 0.3

Table 19 shows how the masks are applied. At each point of the character difference

matrix each mask is applied. Output of each applied mask is the maximum value of the character

a b c
x a b c
x x a b c
x x x a b c
 x x x a b
 x x x a
 x x x
y y a b c z

0 . 65 0 . 63 0.25 1 1 1
0 . 63 0 . 65 0.42 0.18 1 1
0 . 63 0 . 63 0 0 0 1
0 . 63 0 . 63 0.26 0.42 0.18 0.18
1 0 . 63 0.26 0.51 0.25 0.38
1 1 0.26 0.51 0.41 0.23
1 1 1 0.51 0.41 0.12

 78

difference values that fall on cell of the mask of value one. If at any point the mask partially

falls outside of matrix, output in that case is set to one.

a) b) c)

Figure 52: Masks a) [1 1 1], b) [1 0 1 1], and c) [1 1 0 1] Applied to Character Difference Matrix

Figure 52 shows result of the application of the three masks. It can be noted that the last

N-1 columns, where N is the length of the mask, will always be filled with ones.

a) b)

Figure 53: a) Minimum Values of the Three Matrices, b) Number of Matrix to Which the
Minimum Value Belongs

Once the masks have been applied to the character difference matrix, the matrices need to

be combined into one that will have the best (minimum) values. Also an auxiliary matrix is

needed that will keep track of which mask generated the best output. This will allow the

algorithm to know how many characters (size of the mask) have been marked as similar, which

0 . 65 1 1 1 1 1
0 . 65 0 . 65 1 1 1 1
0 . 63 0 . 63 0 1 1 1
0 . 63 0 . 63 0 . 42 0 . 42 1 1
1 0 . 63 0 . 51 0 . 51 1 1
1 1 0 . 51 0 . 51 1 1
1 1 1 0 . 51 1 1

1 1 1 1 1 1
0.63 0.65 1 1 1 1
0.63 0.63 1 1 1 1
0.63 0.63 0.26 1 1 1
1 0.63 0.38 1 1 1
1 1 0 .41 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
0.65 1 1 1 1 1
0.63 0 . 63 1 1 1 1
0.63 0 . 63 0 . 42 1 1 1
1 0 . 63 0 . 51 1 1 1
1 1 0 . 51 1 1 1
1 1 1 1 1 1

0 . 65 1 1 1 1 1
0 . 63 0 . 65 1 1 1 1
0 . 63 0 . 63 0 1 1 1
0 . 63 0 . 63 0 . 26 0 . 42 1 1
1 0 . 63 0 . 38 0 . 51 1 1
1 1 0 . 41 0 . 51 1 1
1 1 1 0 . 51 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 2 1 1 1
1 1 2 1 1 1
1 1 1 1 1 1

 79

indicates at which point it needs to start looking for the next similar character. Figure 53 shows

the threshold results of these two matrices.

a) b)

Figure 54: a) Minimum Values of the Three Matrices after Threshold Was Applied, b) Number
of Matrix to Which the Minimum Value Belongs

After the minimum outputs of the applied masks have been found, the next step is to find

which of these values satisfy the maximum difference. Cells that have value less than the

threshold are equated to one and the ones that are larger are assigned a value of zero. It is not

uncommon to get more than one cell with a value one. The best choice is the one where the shift

is minimal.

1

2

' 2
' 1

Shift N M k l
Shift l

= − + + −
= −

 (3.9)

where:

 Shift1’ and Shift2’ – beginning of similar parts for the two strings

 N – length of compared strings

 M – length of smallest mask

 k, l – position in difference matrix

Equation 3.9 shows the relationship between position within the difference matrix and the

beginning of similar parts within each compared strings. Theoretically, the shift values could be

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 2 1 1 1
1 1 2 1 1 1
1 1 1 1 1 1

 80

negative; however, those values are only possible when the position in the difference matrix falls

on an empty cell. This cell will always have a difference value one and will never have a value

of one after the threshold has been applied. If there are several values of one, the best choice

would be the one that has the smallest sum of squares of theses two values.

Figure 55: Sum of Squares of Shifts versus Position in Difference Matrix in 3D and 2D views

Figure 55 shows graphical representation of relationship of square root of sum of squares

of shifts versus position within difference matrix. There is no shift required when there is value

one in first column middle row.

This new improved method does not improve the amount of text found similar. It allows

the user to easier implement, change, and most importantly, to debug the source code.

Alignment of individual words of two texts

Once similar parts were found, next step on the way to alignment of three text documents

is to align individual words of two texts. Before proceeding, recall that the similar and different

parts are stored in the memory following way:

listText(i).stringDifferentPartText1

 81

listText(i).stringDifferentPartText2

listText(i).stringSimilarPartText1

listText(i).stringSimilarPartText2

It is also important that the similar parts go after the different parts. For example, if the

two texts would start out as similar, first different parts would be empty. The output of this

process will be a list, each element of which will contain two string variables.

listTwoTexts(j).stringWord1

listTwoTexts(j).stringWord2

Since no space characters are allowed in the similar parts unless they match to another

space characters, similar parts can be separated into words using a space character as a delimiter.

Different parts, however, might contain different number of spaces, which makes it impossible to

just use space as a delimiter. Fortunately, all possible combinations can be divided into finite

number of cases shown in Table 20.

Table 20
Possible Combinations of Numbers of Spaces in Different Parts

Case Number Case Description
1.1 Number of spaces is the same for both different parts

1.2 Number of characters in one of the parts is zero, and the other one is not

1.3 Numbers of spaces in both parts are not zero, but not equal to each other

In addition the cases listed in Table 20 additional complexity is created by the fact that

the previous similar parts of the two texts might end with space or other than space character and

the current similar parts might begin with space or other than space character. Since numbers of

spaces and their positions have to be the same for similar parts, it is true to say that if the similar

 82

part of one text begins and/or ends with space then the similar part of the other text also begins

and/or ends with space.

Table 21
Possible Combinations of Ending and Beginning of Similar Parts

Case Number Case Description
2.1 Previous parts end and current parts begin with non-space character

2.2 Previous parts end and current parts begin with space

2.3 Previous parts end with space and current parts begin with non-space
 character

2.4 Previous parts end with non-space character and current parts begin with
 space

Since cases from Table 20 and Table 21 are independent, there are total of twelve

possibilities. Each one of those possibilities requires an action that does not necessarily have to

be unique to that particular combination of cases. Instead of splitting the words on the fly, it is

more efficient to add extra spaces where there is no matching word in one text to another and

replace a space with null if there should not be any separation at that particular space. The nulls

can be changed back to space character after the words have been separated.

Table 22
Combinations of Cases of Table 20 and Table 21 and Corresponding to Them Actions

Combination Action
1.1 and 2.1 No action

1.1 and 2.2 No action

1.1 and 2.3 No action

1.1 and 2.4 No action

1.2 and 2.1 Set spaces to nulls in the string that has spaces

 83

1.2 and 2.2 Set spaces to nulls in the string that has spaces

1.2 and 2.3 Set spaces to nulls in the string that has spaces

1.2 and 2.4 Set spaces to nulls in the string that has spaces

1.3 and 2.1 Insert N2-1 spaces at the first space of different part of first text and N1-1
 spaces at the last space of different part of second text

1.3 and 2.2 Insert N2-1 spaces at the beginning of different part of first text and N1-1
 spaces at the end of different part of second text

1.3 and 2.3 Insert N2-1 spaces at the beginning of different part of first text and N1-1
 spaces at the last space of different part of second text

1.3 and 2.4 Insert N2-1 spaces at the first space of different part of first text and N1-1
 spaces at the end of different part of second text
Note: N1 and N2 are numbers of spaces in different parts of first and second text respectively.

The basic goal behind each action is to make number of spaces the same for both text

documents. After these actions have been applied to the similar and different parts, the texts are

merged together and separated using a space as a delimiter. The output of the separation will be

a list of aligned words. Some of these words will have nulls that need to be changed back to

spaces.

 84

Figure 56: Example of Combination of cases 1.2 and 2.1

Figure 56, Figure 57, and Figure 58 demonstrate combinations of cases 1.2 and 2.1, 1.1

and 2.1, and 1.3 and 2.1 respectively. Other cases are handled in similar way with slightly

differences according to the set of actions specified in Table 22.

Previous
Similar
Parts

Current
Different

Parts
Current
Similar
Parts

“abc def” “xxx” “ghi klm”

“abc def” “y z” “ghi klm”

“abc def” “xxx” “ghi klm”

“abc def” “y ?z” “ghi klm”

“abc defxxxghi klm” “abc defy?zghi klm”

“abc”
“defxxxghi”

“klm”

“abc”
”defy zghi”

”klm”

After actions have been applied

Merged text

Separated text using space as a delimiter

First Text

Second Text

First Text Second Text

 85

Figure 57: Example of Combination of cases 1.1 and 2.1

Previous
Similar
Parts

Current
Different

Parts
Current
Similar
Parts

“abc def” “x x” “ghi klm”

“abc def” “y z” “ghi klm”

“abc def” “x x” “ghi klm”

“abc def” “y z” “ghi klm”

“abc defx xghi klm” “abc defy zghi klm”

“abc”
“defx”
“xghi”
“klm”

“abc”
”defy”
”zghi”
”klm”

After actions have been applied

Merged text

Separated text using space as a delimiter

First Text

Second Text

First Text Second Text

 86

Figure 58: Example of Combination of cases 1.3 and 2.1

Table 23
Sample of Two Aligned Texts

Abbyy OCR Omni OCR
"" "a"

"" "a"

"SELLER" "SELLER"

"AND" "AND"

"PURCHASER;" "PURCHASER;"

"/|\" "(4"

"AGRBE" "AGREE"

"Purchaser" "Purchaser"

"will" "will"

Previous
Similar
Parts

Current
Different

Parts
Current
Similar
Parts

“abc def” “x x x” “ghi klm”

“abc def” “y z” “ghi klm”

“abc def” “x x x” “ghi klm”

“abc def” “y z” “ghi klm”

“abc defx x xghi klm” “abc defy zghi klm”

“abc”
“defx”

“x”
“xghi”
“klm”

“abc”
”defy”

“”
”zghi”
”klm”

After actions have been applied

Merged text

Separated text using space as a delimiter

First Text

Second Text

First Text Second Text

 87

"deposit" "deposit"

"$2,320,000.00" "$2,320,000.00"

"as" "as"

"earnest" "eamest"

"money" "money"

"pursuant" "pursuant"

"to" "to"

"tho" "the"

"Buy-S&l" "Buy-fc~l"

Table 23 shows the first 18 entries in the list of two aligned texts (results of Abby’s and

Omni’s OCR engines).

The only one major drawback of this method is that in case 1.2, when one of the different

parts does not have any spaces and the other has them, the algorithm merges the words.

Table 24
Examples of Merged Words after Aligned of Two Texts

Abbyy OCR Omni OCR
"appropriatc>tifnc^clircct" "appropriatq tifiu; direct"

"transfcrof" "lransf of"

"xlialUlcposit" "shall tTcposit"

This happens only in the different parts, and the best decision that can be made is to

merge the words, since there is no way of telling where the word of the other text needs to be

broken apart. However, from the Table 24 it can be concluded that this situation happens most

of the time where original image file has been significantly corrupted, and even if there would be

 88

a way to break apart joined words, the voting engine would fail since most of the times the rest

of the characters would not be recognized correctly by all three OCR engines.

Alignment of individual words of three texts

Alignment of the three text documents is rather simple. Input to this algorithm would be

three lists of aligned pairs of texts; Omni and Abbyy, Abbyy and Doculex, and Doculex and

Omni. The out put of the algorithm will be a single list containing elements of the words:

listThreeTexts(k).stringWord1

listThreeTexts(k).stringWord2

listThreeTexts(k).stringWord3

If texts would have the same number of words and no noise, merged are broken apart

words, it would simply be a matter of combining element by element. Unfortunately numbers of

elements in each pair of aligned documents are different. It is safe, however, to assume that most

of the spaces of text will be recognized correctly.

 89

Figure 59: Algorithm for Aligning of Three Texts

Given that the input to the algorithm is a set of three lists listTwoTextsOmniAbbyy,

listTwoTextsAbbyyDoculex, listTwoTextsDoculexOmni, the algorithm will be as demonstrated

in Figure 59. What the algorithm does is that it creates six temporary strings that hold word or

several words from each of the element from each of the three lists. It adds to each word an

additional word as needed to even out them in order to get to the point where each of the three

 90

lists agree that these are the aligned parts now stored in these six strings. Out of six strings two

correspond to Abby’s text, two to Omni’s and two to Doculex’s. Within each pair strings have to

be equal to each other. After the common point is reached, the three unique strings are stored in

the output list. Variables i, j, and k are guaranteed to reach their maximum value at the same

time.

Figure 60: Example of Aligning of Three Texts

Figure 60 gives an example of how the three texts are aligned. This particular example

has four steps. Upper part of the figure shows position within each of the three pairs of aligned

texts indicated by blue shading, and lower part shows current values of each of six variables at

each of the four steps. In each step, strings that are not equal are shaded. The green shaded

string is larger than the orange shaded string. In this case, in each of three pairs of two aligned

 91

texts shift of one has occurred, it is not necessary that they will all have equal shifts. On the

fourth step pairs corresponding to the same OCR engine strings are equal, at which point these

values will be stored in output list and the algorithm will move on onto the next set of words.

This part of the aligning algorithm will introduce even more merged words. Just like

with the algorithm for aligning two texts, this normally happens around parts of the text that

OCR engines has hard time processing, which normally indicates that the words would not be

recognized correctly anyway.

Table 25
Sample of Three Aligned Texts

Abbyy OCR Omni OCR Doculex
"" "a" ""|"

"" "a" "i"

"SELLER" "SELLER" "SELLER"

"AND" "AND" "AND"

"PURCHASER;" "PURCHASER;" "PURCHASER:"

"/|\" "(4" "L_ :" ?" : /'_"

"AGRBE" "AGREE" "AGREE"

"Purchaser" "Purchaser" "Purchaser"

"will" "will" "will"

Table 25
Sample of Three Aligned Texts

Abbyy OCR Omni OCR Doculex
"deposit" "deposit" "deposit"

"$2,320,000.00" "$2,320,000.00" "$2,320,000.00"

"as" "as" "as"

 92

"earnest" "eamest" "earnest"

"money" "money" "money"

"pursuant" "pursuant" "pursuant"

"to" "to" "to"

"tho" "the" "the"

"Buy-S&l" "Buy-fc~l" "Buy-S_I"

Table 25 shows a sample of alignment of three texts, which are results of processing of

the hard copy of the text document partially shown in Figure 1 by the three OCR engines.

Performance of Aligning Algorithm

Since the whole purpose of the aligning algorithm is to automate the voting system, the

best way to determine whether the algorithm is successful or not is to use it in the complete

system and compare the output to the results that were acquired from voting on manually aligned

text. For comparison, a below-average quality document was chosen. Comparing the

automatically combined text to the manually combined one, one can notice that the person who

aligned them was able to separate words that were merged together. Also some noise characters

were filtered out based on human perception whether they should or should not be. These two

abilities cannot be programmed into an algorithm without some kind of artificial intelligence.

This disadvantage caused an approximate 7% merged together or mixed with extra characters

text. However, examining more closely, the out put of the voting engine was not correct for

almost 7%. Merged text and extra characters would only be introduced in the areas where image

quality was poor; which is almost always accompanied by a numerous errors within the single

 93

word. Since the words produced by all three OCR engines had errors, the voting engine at the

current state would never be able to generate a correct output. Out of seven hundred manually

aligned words four more than the automatically aligned were voted correctly, which is less than

1%.

 94

CHAPTER FOUR: CONCLUSIONS

At this point it is hard to conclude anything about application of morphological filters in

text restoration. In a large portion of the cases when the OCR made gruesome errors it is hard

even for a human to read the text. There is definitely more research needed in this area, with

possibly introducing some kind of artificial intelligence.

The aligning algorithm did an outstanding job of matching words that were generated by

the three OCR engines processing the same word in the text image. Even though that manually

aligned text looks better 7% of the times for a below-average quality text, the output accuracy of

the multi-engine OCR system went down by about 0.5%.

The difference can be reduced or even eliminated by optimizing many different variables,

most of which were selected intuitively. Optimization and benchmarking can be done as a future

part of future development. Unfortunately, variable and parameters such as thresholds for

similarity when looking for next similar character or next similar section of the text, sizes and

shapes of masks used for detecting the beginning of next similar part, functions used to

determine visual character difference, and a few others do not have a way for analytical selection

and have to be determined experimentally. In addition to benchmarking, the algorithm for text

aligning can be made adaptive. It has been mentioned that setting various masks and thresholds

can introduce conflicts between certain sections of algorithm. Introducing a way by which the

algorithm can go back a step, so that the knowledge of the present iteration can be used to set the

parameters prior to decision being made. Based on the average length of different parts, the

algorithm can start out looking for a next similar part of the text in the larger section text, unlike

in this thesis where the starting windows was of the same size as the smallest mask. Also

 95

eliminating or at least reducing problem with word merging, can make it easy expand the

alignment algorithm from a three-engine OCR to a N-engine OCR system, by simply running

two-text alignment for N-3 additional pairs of texts and adding 2(N-3) “if” statements for the

algorithm that merges two-text alignments into all-text alignment.

A significant improvement in overall voting system performance can be achieved by

aligning characters once words have been aligned, which was also mentioned in Sprague’s thesis

[3]. However, unlike Sprague recommended to split the image into characters, with tools

developed in this thesis for character comparison using visual based techniques, this will not be

necessary.

 96

APPENDIX A: SOURCE CODE FOR MORPHOLOGICAL FILTERS

 97

addSaltPepper.m ..95

fltMorph.m ...96

myAddSalt.m ..96

myGenCirMask.m ...97

myMorph02.m ..97

myMorph.m ..99

addSaltPepper.m

% This program reads in an image and generates images with salt and peper
% noise noise for each image salt and pepper probabilities are specified by
% pNoise and pSalt

imgIn = double(imread('..\text\test.jpg', 'jpg'));
imgIn = round(imgIn ./ max(max(imgIn)));

imgX = size(imgIn, 1);
imgY = size(imgIn, 2);

imgNoise = rand(imgX, imgY);

pNoise = .05;
pSalt = .05;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp005005.jpg');

if(0)
pNoise = .4
pSalt = .2;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp0402.jpg');

pNoise = .6
pSalt = .3;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp0603.jpg');

pNoise = .2
pSalt = .2;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp0202.jpg');

 98

pNoise = .4
pSalt = .4;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp0404.jpg');

pNoise = .6
pSalt = .6;
imgOut = (imgNoise < (pNoise - pSalt)) .* -1 + (imgNoise > 1 - pSalt);
imgOut = imgOut + imgIn;
imgOut = min(imgOut, 1);
imgOut = max(imgOut, 0);
imwrite(imgOut .* 255, '..\text\test_sp0606.jpg');

end

fltMorph.m

% This function realizes dilation/erosion.
% Inputs are image array, mask, and value which will be used as a theshold
% (if lowVal is set to 1 it becomes dilation wrt black color, if lowVal is
% set to sum(sum(myMask)) the filter becomes erosion)

function [imgOut] = fltMorph(imgIn, myMask, lowVal)

% Image invertion
imgIn = 1 - imgIn;

% Initialization
mskX = size(myMask, 1);
mskY = size(myMask, 2);
mskX2 = floor(size(myMask, 1) / 2);
mskY2 = floor(size(myMask, 2) / 2);
imgX = size(imgIn, 1);
imgY = size(imgIn, 2);
imgOut(1:imgX - mskX + 1, 1:imgY - mskY + 1) = 0;

% Processing
for k = 1:mskX;
 for l = 1:mskY;
 if(myMask(k, l) == 1)
 imgOut = imgOut + imgIn(k:imgX - mskX + k, l:imgY - mskY + l);
 end
 end
end
imgOut = (imgOut >= lowVal);

imgOut(imgX - mskX + 2:imgX, 1:imgY - mskY + 1) = 0;
imgOut(1:imgX, imgY - mskY + 2:imgY) = 0;

% Image invertion
imgOut = 1 - imgOut;
% Shift image to center (after filter has been applied the image shifts
% down to the left by half of mask size)
imgOut = circshift(imgOut, [mskX2 mskY2]);

return;

myAddSalt.m

% This function simply adds salt with probability pSalt to an imnage array
% and returns new image array

 99

function [imgOut] = myAddSalt(imgIn, pSalt)
imgX = size(imgIn, 1);
imgY = size(imgIn, 2);

imgNoise = rand(imgX, imgY);
imgSalt = double(imgNoise > (1 - pSalt));
imgOut = max(imgIn, imgSalt);

return;

myGenCirMask.m

% This function generates circle-shaped mask for both even and odd sizes
% Input is length of mask (assumed to be square mask)
% Output is a matrix containing circle-shaped mask

function [mskOut] = myGenCirMask(mskSize)

if(mod(mskSize, 2) == 1)
 mskCenter = ceil((mskSize) / 2);
 mskOut = zeros(mskSize, mskSize);
 for k = 1:mskSize
 for l = 1:mskSize
 if(((k - mskCenter) ^ 2 + (l - mskCenter) ^ 2) <= (mskCenter - 1) ^ 2)
 mskOut(k, l) = 1;
 end
 end
 end
else
 mskCenter = ceil((mskSize) / 2);
 mskOut = zeros(mskSize, mskSize);
 for k = 1:mskSize
 for l = 1:mskSize
 if(((k - mskCenter - .5) ^ 2 + (l - mskCenter - .5) ^ 2) <= (mskCenter) ^ 2
)
 mskOut(k, l) = 1;
 end
 end
 end
end

return;

myMorph02.m

% This filter is a combination of dilation and erosion (opening/closing filters)
% Inputs are original image array, mask matrix, and processing sequence
% (last one not used at this time)
% Output is an filtered image array
function [imgOut] = myMorph02(imgIn, myMask, procSequence)

hiMask = sum(sum(myMask));
loMask = 1;

imgOut = fltMorph(imgIn, myMask, loMask);
imgOut = fltMorph(imgOut, myMask, hiMask);

 100

myMorph.m

% This filter is a combination of dilation and erosion (opening/ closing filters)
% It opens ainput image and saves output to a file
function [imgInName] = myMorph(imgInName, strLoadPath, strSavePath, strImageType)

myMask = [0 0 0; 1 1 1; 0 0 0];

hiMask = sum(sum(myMask));
loMask = 1;

imgIn = double(imread([strLoadPath imgInName '.' strImageType], strImageType));
imgIn = round(imgIn ./ max(max(imgIn)));
imgOut = fltMorph(imgIn, myMask, loMask);
imgOut = fltMorph(imgOut, myMask, hiMask);
imwrite(imgOut * 255, [strSavePath imgInName '_out_cls.' strImageType]);

 101

APPENDIX B: SOURCE CODE FOR TEXT ALIGNMENT ALGORITM

 102

AlignText.m ..100

AlignTexts01a.m...101

AlignWords02.m ..103

compareASCIIv4.m ...105

findNextChar02a.m ...107

findNextPart02a.m...108

fixlines.m ...110

myTrimSpaces.m ...111

AlignText.m

% This is the main function that loads 3 text files, alignes them, and
% stores the output in lstText as described in thesis.
% Text files must meet following requirements
% - no white space characters except space character
% - no mora than one space character in the row, except
% - at the end same number of characters must be inserted as the
% size of the starting find-next-part window plus two
% - no characters that are not in similarity look-up table are allowed

% Output to screen major steps completion (should also be passed as an
% argument in the future)
blnShowProgress = 1;

% Starting timer
tic;

if(blnShowProgress) disp('Staring text alignment ...'); end;

% Opening files (In the final version names of the files would be passed as
% arguments)
inID1 = fopen('input\abby_test.txt');
inID2 = fopen('input\omni_test.txt');
inID3 = fopen('input\doculex_test.txt');

% Loading predefined visula character similarity lookup table
errASCII = importdata('data\errASCIIv3ed3x3.mat');
% Loading automatically pregenerated stick-like representation of
% characters
lstChars = importdata('data\lstChars.mat');
% This function is a programmed manual adjustment of stick-like
% representation of characters
fixlines;

% Reading input files
inText1 = fread(inID1);
inText2 = fread(inID2);
inText3 = fread(inID3);

 103

if(blnShowProgress) disp('Reading of data complete.'); end;

% Setting characters out of range to visually common character 124 (any other
% than space character can be used). Idealy, source code for checking and
% fixing files according to requirements listed at the top of the document
% would be here.
inText1(find((inText1 > 126) + (inText1 < 32))) = 124;
inText2(find((inText2 > 126) + (inText2 < 32))) = 124;
inText3(find((inText3 > 126) + (inText3 < 32))) = 124;

if(blnShowProgress) disp('Text clean-up is complete.'); end;

% Closing input files
fclose(inID1);
fclose(inID2);
fclose(inID3);

% Aligning sections of texts of three pairs of the texts (ORDER IS IMPORTANT)
[intWordsFound12, lstWords12] = compareASCIIv4(inText1, inText2, 3, 6, errASCII, lstChars);
if(blnShowProgress) disp('Alignment of sections of text of first pair is complete.'); end;
[intWordsFound23, lstWords23] = compareASCIIv4(inText2, inText3, 3, 6, errASCII, lstChars);
if(blnShowProgress) disp('Alignment of sections of text of second pair is complete.'); end;
[intWordsFound31, lstWords31] = compareASCIIv4(inText3, inText1, 3, 6, errASCII, lstChars);
if(blnShowProgress) disp('Alignment of sections of text of third pair is complete.'); end;

% Splitting up similar and not similar texts into words for each part of
% aligned text
lstTable12 = AlignWords02(lstWords12);
if(blnShowProgress) disp('First pair of aligned text is divided into words.'); end;
lstTable23 = AlignWords02(lstWords23);
if(blnShowProgress) disp('Second pair of aligned text is divided into words.'); end;
lstTable31 = AlignWords02(lstWords31);
if(blnShowProgress) disp('Third pair of aligned text is divided into words.'); end;

% Final Alignment
lstText = AlignTexts01a(lstTable12, lstTable23, lstTable31);
if(blnShowProgress) disp('Text has been aligned.'); end;

% Generating output file (in final version name of the output file will be
% passed to this function as an argument)
outID = fopen('output\alignedtext01.txt', 'w');
intWords = size(lstText, 2);
for k = 1:intWords
 fwrite(outID, sprintf('%s\t%s\t%s\n', lstText(k).Word1, lstText(k).Word2, lstText(k
).Word3));
end
fclose(outID);
if(blnShowProgress) disp('Output file has been created.'); end;

% Stopping timer.
time = toc;
if(blnShowProgress) disp(sprintf('Text aligned is complete (elapsed time: %d:%d).', floor(
time / 60), round(time - floor(time / 60) * 60))); end;

AlignTexts01a.m

% This function aligns the 3 texts together
% Input is a set of three lists that contaon 3 pairs of texts with aligned
% words
% Output is a single list that contans the 3 aligned texts

function [AlignedTexts] = AlignTexts01a(lstTable12, lstTable23, lstTable31)

% Setting up initial variables

intTable12 = size(lstTable12, 2);

 104

intTable23 = size(lstTable23, 2);
intTable31 = size(lstTable31, 2);

intCurrWord = 1;
intCurrWord12 = 1;
intCurrWord23 = 1;
intCurrWord31 = 1;
lstText = 0; clear lstText;
lstText(1).Word1 = '';
lstText(1).Word2 = '';
lstText(1).Word3 = '';

intCount = 1;

Word12_1 = lstTable12(intCurrWord12).Word1;
Word12_2 = lstTable12(intCurrWord12).Word2;
Word23_1 = lstTable23(intCurrWord23).Word1;
Word23_2 = lstTable23(intCurrWord23).Word2;
Word31_1 = lstTable31(intCurrWord31).Word1;
Word31_2 = lstTable31(intCurrWord31).Word2;

while(intTable12 > intCurrWord12 && intTable23 > intCurrWord23 && intTable31 > intCurrWord31)
% Since words could have been merged by one or more OCR engines, the only
% way to comeup with a single word that is present in all three rexrs is to
% combine several words together until lenght of each combined word in each
% text is the same
 if(strcmp(Word12_1, Word31_2) && strcmp(Word12_2, Word23_1) && strcmp(Word23_2,
Word31_1))
 lstText(intCurrWord).Word1 = Word12_1;
 lstText(intCurrWord).Word2 = Word12_2;
 lstText(intCurrWord).Word3 = Word23_2;
 intCurrWord12 = intCurrWord12 + 1;
 intCurrWord23 = intCurrWord23 + 1;
 intCurrWord31 = intCurrWord31 + 1;
 intCurrWord = intCurrWord + 1;
 Word12_1 = lstTable12(intCurrWord12).Word1;
 Word12_2 = lstTable12(intCurrWord12).Word2;
 Word23_1 = lstTable23(intCurrWord23).Word1;
 Word23_2 = lstTable23(intCurrWord23).Word2;
 Word31_1 = lstTable31(intCurrWord31).Word1;
 Word31_2 = lstTable31(intCurrWord31).Word2;
 end
% IF statements below add next word to shortes pair of combined words
 if(size(Word12_1, 2) > size(Word31_2, 2))
 intCurrWord31 = intCurrWord31 + 1;
 Word31_1 = [Word31_1 ' ' lstTable31(intCurrWord31).Word1];
 Word31_2 = [Word31_2 ' ' lstTable31(intCurrWord31).Word2];
 Word31_1 = myTrimSpaces(Word31_1);
 Word31_2 = myTrimSpaces(Word31_2);
 end

 if(size(Word12_1, 2) < size(Word31_2, 2))
 intCurrWord12 = intCurrWord12 + 1;
 Word12_1 = [Word12_1 ' ' lstTable12(intCurrWord12).Word1];
 Word12_2 = [Word12_2 ' ' lstTable12(intCurrWord12).Word2];
 Word12_1 = myTrimSpaces(Word12_1);
 Word12_2 = myTrimSpaces(Word12_2);
 end

 if(size(Word12_2, 2) > size(Word23_1, 2))
 intCurrWord23 = intCurrWord23 + 1;
 Word23_1 = [Word23_1 ' ' lstTable23(intCurrWord23).Word1];
 Word23_2 = [Word23_2 ' ' lstTable23(intCurrWord23).Word2];
 Word23_1 = myTrimSpaces(Word23_1);
 Word23_2 = myTrimSpaces(Word23_2);
 end

 if(size(Word12_2, 2) < size(Word23_1, 2))
 intCurrWord12 = intCurrWord12 + 1;

 105

 Word12_1 = [Word12_1 ' ' lstTable12(intCurrWord12).Word1];
 Word12_2 = [Word12_2 ' ' lstTable12(intCurrWord12).Word2];
 Word12_1 = myTrimSpaces(Word12_1);
 Word12_2 = myTrimSpaces(Word12_2);
 end

 if(size(Word23_2, 2) > size(Word31_1, 2))
 intCurrWord31 = intCurrWord31 + 1;
 Word31_1 = [Word31_1 ' ' lstTable31(intCurrWord31).Word1];
 Word31_2 = [Word31_2 ' ' lstTable31(intCurrWord31).Word2];
 Word31_1 = myTrimSpaces(Word31_1);
 Word31_2 = myTrimSpaces(Word31_2);
 end

 if(size(Word23_2, 2) < size(Word31_1, 2))
 intCurrWord23 = intCurrWord23 + 1;
 Word23_1 = [Word23_1 ' ' lstTable23(intCurrWord23).Word1];
 Word23_2 = [Word23_2 ' ' lstTable23(intCurrWord23).Word2];
 Word23_1 = myTrimSpaces(Word23_1);
 Word23_2 = myTrimSpaces(Word23_2);
 end

 intCount = intCount + 1;
end

% Return list
AlignedTexts = lstText;

AlignWords02.m

% This function splits similar parts into words
% Input is a list of similar parts
% Outputs is a list of aligned words
function [lstTable] = AlignWords02(lstWords)

intWords = size(lstWords, 2);
strText1 = '';
strText2 = '';

% Code below removes extra space characters at the end of each last word of
% each list
while(~isempty(lstWords(intWords).simWord1) && lstWords(intWords).simWord1(size(
lstWords(intWords).simWord1 ,2)) == 32)
 lstWords(intWords).simWord1 = lstWords(intWords).simWord1(1:size(lstWords(intWords
).simWord1 ,2) - 1);
end
while(~isempty(lstWords(intWords).simWord2) && lstWords(intWords).simWord2(size(
lstWords(intWords).simWord2 ,2)) == 32)
 lstWords(intWords).simWord2 = lstWords(intWords).simWord2(1:size(lstWords(intWords
).simWord2 ,2) - 1);
end

% Code below ads several space characters to the end of last word so that
% the last words of each list would have the same lenght. This is done to
% simplify (mainly eliminate having to deal with last word separately)
% the code.
intSpaces1 = sum(double(lstWords(intWords).simWord1 == 32));
intSpaces2 = sum(double(lstWords(intWords).simWord2 == 32));
if(intSpaces1 ~= intSpaces2)
 lstWords(intWords).simWord1 = [lstWords(intWords).simWord1 ones(1, max(0, intSpaces2 -
intSpaces1)) .* 32];
 lstWords(intWords).simWord2 = [lstWords(intWords).simWord2 ones(1, max(0, intSpaces1 -
intSpaces2)) .* 32];
end

 106

for k = 1:intWords %!!!!!DEAL WITH LAST WORD!!!!!
% First word is treaky, the simplest way to deal with it is to add a dummy character
% followed by space (i.e. "a ") at the begining of each one of the input texts)

% "sum" function is used to calculate number of spaces in the text. Since
% sum of an empty set will generate an error this case needs to be treated
% as an exception
 blnDif1Empty = isempty(lstWords(k).difWord1);
 if(~blnDif1Empty)
 intDif1Spaces = sum(double(lstWords(k).difWord1 == 32));
 else
 intDif1Spaces = 0;
 end
 blnDif2Empty = isempty(lstWords(k).difWord2);
 if(~blnDif2Empty)
 intDif2Spaces = sum(double(lstWords(k).difWord2 == 32));
 else
 intDif2Spaces = 0;
 end
% Below is an implimitation of rools listed in the thesis. Space character
% that did not match between the two texts are going to be set to 1 since
% this value is not used by any other character
 if(intDif2Spaces == intDif1Spaces)
 strText1 = [strText1 lstWords(k).difWord1];
 strText2 = [strText2 lstWords(k).difWord2];
 elseif((intDif2Spaces == 0 && intDif1Spaces >= 1) || (intDif1Spaces == 0 && intDif2Spaces
>= 1))
 if(k ~= 1)
 lstWords(k).difWord1(find(lstWords(k).difWord1 == 32)) = 1;
 lstWords(k).difWord2(find(lstWords(k).difWord2 == 32)) = 1;
 else
 lstWords(k).difWord1 = [ones(1, intDif2Spaces) .* 32 lstWords(k).difWord1];
 lstWords(k).difWord2 = [ones(1, intDif1Spaces) .* 32 lstWords(k).difWord2];
 end
 strText1 = [strText1 lstWords(k).difWord1];
 strText2 = [strText2 lstWords(k).difWord2];
 else
 intSpaces1 = sum(double(lstWords(k).difWord1 == 32)) - 1;
 intSpaces2 = sum(double(lstWords(k).difWord2 == 32)) - 1;
 intSpace1 = min(find(lstWords(k).difWord1 == 32));
 intSpace2 = max(find(lstWords(k).difWord2 == 32));
 intSize1 = size(lstWords(k).difWord1, 2);
 intSize2 = size(lstWords(k).difWord2, 2);
 lstWords(k).difWord1 = [lstWords(k).difWord1(1:intSpace1) ones(1, intSpaces2) .*
32 lstWords(k).difWord1(intSpace1 + 1:intSize1)];
 lstWords(k).difWord2 = [lstWords(k).difWord2(1:intSpace2) ones(1, intSpaces1) .*
32 lstWords(k).difWord2(intSpace2 + 1:intSize2)];
 strText1 = [strText1 lstWords(k).difWord1];
 strText2 = [strText2 lstWords(k).difWord2];
 end

 strText1 = [strText1 lstWords(k).simWord1];
 strText2 = [strText2 lstWords(k).simWord2];

end

% After the nonmatching spaces have been removed number of spaces that will
% be used as a delimiter must be the same
if(sum(double(strText1 == 32)) ~= sum(double(strText2 == 32)))
 disp('ERROR: Number of spaces do not match.');
 return;
end

lstTable(1).Word1 = '';
lstTable(1).Word2 = '';

% Below are two loops that split entire text into a list using space

 107

% character as a delimiter
intCurrWord = 1;
numChars = size(strText1, 2);
for k = 1:numChars
 if(strText1(k) == 32)
 intCurrWord = intCurrWord + 1;
 lstTable(intCurrWord).Word1 = '';
 else
 lstTable(intCurrWord).Word1 = [lstTable(intCurrWord).Word1 strText1(k)];
 end
end

intCurrWord = 1;
numChars = size(strText2, 2);
for k = 1:numChars
 if(strText2(k) == 32)
 intCurrWord = intCurrWord + 1;
 lstTable(intCurrWord).Word2 = '';
 else
 lstTable(intCurrWord).Word2 = [lstTable(intCurrWord).Word2 strText2(k)];
 end
end

% Now that there is no need for delimiting spaces, unmatched spaces that
% have been set to 1 can be changed back to 32
intRows = size(lstTable, 2);
for k = 1 : intRows
 lstTable(k).Word1(find(lstTable(k).Word1 == 1)) = 32;
 lstTable(k).Word2(find(lstTable(k).Word2 == 1)) = 32;
end

compareASCIIv4.m

% This function finds similar parts in two text documents
% inputs: two text documents, number of characters that will be used for
% the first attempt to find next similar part, number of characters that
% will be passed to findNextChar function, array of character comparison
% table, and list that contains stick-like representation of the characters
% Output is a list of series of smatched and unmatched text.

function [intWordsFound, lstWords] = compareASCIIv4(inText1, inText2, intNumComp,
intNumCompNext, errASCII, lstChars)

% Setting up initial values

intWordsFound = 1;
intState = 1;
intPosition1 = 1;
intPosition2 = 1;
intGoBack1 = 1;
intGoBack2 = 1;
intTextLen1 = size(inText1, 1);
intTextLen2 = size(inText2, 1);
intFound = 0;
intShift1 = 0;
intShift2 = 0;
intMoveNext = 1;
intProcessing = 1;

lstWords(1).difWord1 = '';
lstWords(1).difWord2 = '';
lstWords(1).simWord1 = '';
lstWords(1).simWord2 = '';

% Code below is an implementation of alignment algorithm described in the
% thesis. The same numbering for states is used as in flow chart.

 108

while(intProcessing == 1)
 if(intState == 1)
 [intFound, intShift1, intShift2, intSimChunk] = findNextPart02a(
inText1(intPosition1+1:intPosition1 - 1 + intMoveNext + intNumComp),
inText2(intPosition2+1:intPosition2 - 1 + intMoveNext + intNumComp), errASCII, lstChars);
 if(intFound == 1)
 intState = 2;
 else
 intState = 6;
 end
 continue;
 end
 if(intState == 6)
 intMoveNext = intMoveNext + 1;
 intState = 8;
 continue;
 end
 if(intState == 2)
 intPosition1 = intPosition1 + intShift1;
 intPosition2 = intPosition2 + intShift2;
 lstWords(intWordsFound).difWord1 = char(reshape(inText1(intGoBack1:intPosition1 - 1
+ 1), 1, []));
 lstWords(intWordsFound).difWord2 = char(reshape(inText2(intGoBack2:intPosition2 - 1
+ 1), 1, []));
 intGoBack1 = intPosition1+1;
 intGoBack2 = intPosition2+1;
 intPosition1 = intPosition1 + intSimChunk - 1;
 intPosition2 = intPosition2 + intSimChunk - 1;
 intMoveNext = 0;
 intState = 3;
 continue;
 end
 if(intState == 3)
 [intFound, intShift1, intShift2] = findNextChar02a(inText1(intPosition1:intPosition1 +
intNumCompNext), inText2(intPosition2:intPosition2 + intNumCompNext), errASCII, lstChars);
 if(intFound == 1)
 intState = 4;
 else
 intState = 5;
 end
 continue;
 end
 if(intState == 4)
 intPosition1 = intPosition1 + intShift1;
 intPosition2 = intPosition2 + intShift2;
 intState = 7;
 continue;
 end
 if(intState == 5)
 lstWords(intWordsFound).simWord1 = char(reshape(inText1(intGoBack1:intPosition1),
1, []));
 lstWords(intWordsFound).simWord2 = char(reshape(inText2(intGoBack2:intPosition2),
1, []));
 intGoBack1 = intPosition1 + 1;
 intGoBack2 = intPosition2 + 1;
 intMoveNext = 1;
 intState = 1;
 intWordsFound = intWordsFound + 1;
 continue;
 end
 if(intState == 7)
 if((intPosition1 + intNumCompNext <= intTextLen1) && (intPosition2 + intNumCompNext
<= intTextLen2))
 intState = 3;
 else
 intState = 9;
 end
 continue;
 end

 109

 if(intState == 8)
 if((intPosition1 - 1 + intMoveNext + intNumComp <= intTextLen1) && (intPosition2 - 1
+ intMoveNext + intNumComp <= intTextLen2))
 intState = 1;
 else
 intState = 10;
 end
 continue;
 end
 if(intState == 9)
 lstWords(intWordsFound).simWord1 = char(reshape(inText1(intGoBack1:intTextLen1), 1,
[]));
 lstWords(intWordsFound).simWord2 = char(reshape(inText2(intGoBack2:intTextLen2), 1,
[]));
 intState = 11;
 continue;
 end
 if(intState == 10)
 lstWords(intWordsFound).difWord1 = char(reshape(inText1(intGoBack1:intTextLen1), 1,
[]));
 lstWords(intWordsFound).difWord2 = char(reshape(inText2(intGoBack2:intTextLen2), 1,
[]));
 intState = 11;
 continue;
 end
 if(intState == 11)
 intProcessing = 0;
 intState = 12;
 continue;
 end
end

return;

findNextChar02a.m

% This function checks if next character or next set of characters is
% similar
% Inputs: two strings, character similarity table, and list of stick-like
% representations of characters
% Output: Success flag, shift (length) of similar characters part

function [intFound, intShift1, intShift2] = findNextChar02a(inText1, inText2, errASCII,
lstChars)

% Initialization
intFound = 0;
intShift1 = -1;
intShift2 = -1;
% Best value could be determined by benchmarking
dblMaxDiff1 = .2;
intNumSticks = 4;

% Increasing number of masks could speed up the alignment process. Masks
% from findNextPart could also be used here
lstCompare(1).mtxMask = [1];
lstCompare(2).mtxMask = [0 1 1];

intCompares = size(lstCompare, 2);
intStrLen = size(inText1, 1);

% Comparing using masks
for k = 1 : intCompares
 intChars = size(lstCompare(k).mtxMask, 2);
 if(intStrLen > intChars + 1)
 dblMaxCurrDiff = 0;

 110

 for m = 1 : intChars
 dblMaxCurrDiff = max(dblMaxCurrDiff, errASCII(inText1(1 + m) - 31, inText2(1 + m
) - 31) * lstCompare(k).mtxMask(m));
 if((xor(inText1(1 + m) == 32, inText2(1 + m) == 32)))
 dblMaxCurrDiff = 1;
 end
 end
 if(dblMaxCurrDiff <= dblMaxDiff1)
 intFound = 1;
 intShift1 = intChars;
 intShift2 = intChars;
 return;
 end
 end
end

% Comparing using stick like representation of characters. No masks needed
% here

%return; %!!!!!!!!!!!!!!!!!!!! If a error occurs uncomment "return;" and see if that helps
nextChars1 = double(inText1(2:intStrLen)) - 31;
nextChars2 = double(inText2(2:intStrLen)) - 31;
for k = 1 : intNumSticks
 for m = 1 : intNumSticks
 if(sum(nextChars1(1:k) == 1) == 0 && sum(nextChars2(1:m) == 1) == 0)
 nextLines1 = [lstChars(nextChars1(1:k)).lines];
 nextLines2 = [lstChars(nextChars2(1:m)).lines];
 if(size(nextLines1, 2) == size(nextLines2, 2))
 if(sum(nextLines1 == nextLines2) == size(nextLines2, 2))
 intFound = 1;
 intShift1 = k;
 intShift2 = m;
 return;
 end
 end
 end
 end
end

findNextPart02a.m

% This function looks for next similar part
% Inputs: two strings, character similarity table, and list of stick-like
% representations of characters
% Output: Success flag, shift (length) to next similar characters part for
% each text

function [intFound, intShift1, intShift2, intSimChunk] = findNextPart02a(inText1, inText2,
errASCII, lstChars)

% Initialization

 dblMaxDiff = .0000001;
 dblMaxDiff = 0;
 intShift1 = -1;
 intShift2 = -1;
 intFound = 0;
 intSimChunk = 0;
 intMaxChunk = 60;
 intMinOverlap = 3;
 intStrLen = size(inText1, 1);
% If maximum size of a window has been reached this function will terminate
 if(intStrLen == intMaxChunk)
 disp(char(inText1'));
 disp(char(inText2'));
 disp('No further aligning possible');

 111

 return;
 elseif(intStrLen > intMaxChunk)
 return;
 end
% Code below realizes matrix-like approach for finding next similar parts

% Building initial matrix
 inInterText1 = [zeros(intStrLen - intMinOverlap, 1); inText1; zeros(intStrLen -
intMinOverlap, 1)];
 intMatrixY = 2 * intStrLen - 2 * intMinOverlap + 1;
 mtxCompareMatrix = zeros(intStrLen, intMatrixY);
 mtxCompareMatrixMaskSize = zeros(intStrLen, intMatrixY);

 for k = 1 : intMatrixY
 mtxCompareMatrix(:, k) = inInterText1(k : k + intStrLen - 1);
 end
% Replacing characters in the matrix with similarity value
 for k = 1 : intMatrixY
 for l = 1 : intStrLen
 if(mtxCompareMatrix(l, k) == 0)
 mtxCompareMatrix(l, k) = 1;
 elseif(xor(mtxCompareMatrix(l, k) == 32, inText2(l) == 32))
 mtxCompareMatrix(l, k) = 2;
 else
 mtxCompareMatrix(l, k) = errASCII(mtxCompareMatrix(l, k) - 31, inText2(l)
- 31);
 end
 end
 end

% Setting up masks. Performance of the alignment function can be improved
% by using more INDEPENDANT masks
 lstMatchThis(1).mtxMask = [1 1 1];
 lstMatchThis(2).mtxMask = [1 0 1 1];
 lstMatchThis(3).mtxMask = [1 1 0 1];
 intMatchMasts = size(lstMatchThis, 2);
% Matrices with best matches and corresponding to them mask are created
% below
 for k = 1 : intMatrixY
 for l = 1 : intStrLen - intMinOverlap + 1;
 dblSmallestMax = 1;
 for m = 1 : intMatchMasts
 intCurrMaskSize = size(lstMatchThis(m).mtxMask, 2);
 if(intStrLen - l + 1 >= intCurrMaskSize && sum(mtxCompareMatrix(l : l +
intCurrMaskSize - 1, k) == 2) == 0)
 dblCurrMax = max(lstMatchThis(m).mtxMask' .* mtxCompareMatrix(l : l +
intCurrMaskSize - 1, k));
 elseif(intStrLen - l + 1 >= intCurrMaskSize && sum(mtxCompareMatrix(l : l +
intCurrMaskSize - 1, k) == 2) ~= 0)
 dblCurrMax = 1;
 end
 if(dblCurrMax < dblSmallestMax)
 dblSmallestMax = dblCurrMax;
 mtxCompareMatrixMaskSize(l, k) = intCurrMaskSize;
 end
 end
 mtxCompareMatrix(l, k) = dblSmallestMax;
 end
 end

 mtxCompareMatrix(intStrLen - intMinOverlap + 2 : intStrLen, :) = 1;

 mtxCompareMatrix = double(mtxCompareMatrix <= dblMaxDiff);
% Nearest match is selected. This will be more usefull if/when adaptive window
% size wil be implemented
 intMaxShift = intMatrixY ^ 2 + (intStrLen - intMinOverlap + 1) ^ 2;
 for k = 1 : intMatrixY
 for l = 1 : intStrLen - intMinOverlap + 1;
 if(mtxCompareMatrix(l, k) == 1)

 112

 intTempShift1 = - intStrLen + intMinOverlap + k + l - 1 - 1;
 intTempShift2 = l - 1;
 if(intMaxShift > intTempShift1 ^ 2 + intTempShift2 ^ 2)
 intFound = 1;
 intShift1 = intTempShift1;
 intShift2 = intTempShift2;
 intSimChunk = mtxCompareMatrixMaskSize(l, k);
 intMaxShift = intTempShift1 ^ 2 + intTempShift2 ^ 2;
 end
 end
 end
 end

return;

fixlines.m

% This code simply redefines some (all in this case) line-like
% representations of characters

lstChars(1).lines = [0 0];
lstChars(2).lines = [0 2];
lstChars(3).lines = [0 0];
lstChars(4).lines = [0 1 0 1];
lstChars(5).lines = [0 2 1 2];
lstChars(6).lines = [0 2 1 2];
lstChars(7).lines = [0 2 1 2];
lstChars(8).lines = [0 0];
lstChars(9).lines = [0 2];
lstChars(10).lines = [0 2];
lstChars(11).lines = [0 0];
lstChars(12).lines = [0 0 1 0];
lstChars(13).lines = [0 0];
lstChars(14).lines = [0 0];
lstChars(15).lines = [0 0];
lstChars(16).lines = [0 1];
lstChars(17).lines = [0 2 0 2];
lstChars(18).lines = [0 2];
lstChars(19).lines = [0 2 1 2];
lstChars(20).lines = [0 1 0 2];
lstChars(21).lines = [0 1 0 2];
lstChars(22).lines = [0 2 1 2];
lstChars(23).lines = [0 2 0 2];
lstChars(24).lines = [0 1 2];
lstChars(25).lines = [0 2 1 2];
lstChars(26).lines = [0 2 1 2];
lstChars(27).lines = [0 1];
lstChars(28).lines = [0 1];
lstChars(29).lines = [0 0];
lstChars(30).lines = [0 0];
lstChars(31).lines = [0 0];
lstChars(32).lines = [0 1 2];
lstChars(33).lines = [0 2 1 2];
lstChars(34).lines = [0 2 1 2];
lstChars(35).lines = [0 2 0 2];
lstChars(36).lines = [0 2 0 1];
lstChars(37).lines = [0 2 0 2];
lstChars(38).lines = [0 2 0 1];
lstChars(39).lines = [0 2 0 1];
lstChars(40).lines = [0 2 0 2];
lstChars(41).lines = [0 2 0 2];
lstChars(42).lines = [0 2];
lstChars(43).lines = [0 1 0 2];
lstChars(44).lines = [0 2 0 2];
lstChars(45).lines = [0 2];
lstChars(46).lines = [0 2 0 2 0 2];
lstChars(47).lines = [0 2 0 2];

 113

lstChars(48).lines = [0 2 0 2];
lstChars(49).lines = [0 2 0 1];
lstChars(50).lines = [0 2 0 2];
lstChars(51).lines = [0 2 0 2];
lstChars(52).lines = [0 2 1 2];
lstChars(53).lines = [0 2];
lstChars(54).lines = [0 2 0 2];
lstChars(55).lines = [0 2 0 2];
lstChars(56).lines = [0 2 0 2 0 2];
lstChars(57).lines = [0 2 1 2];
lstChars(58).lines = [0 1 2 1];
lstChars(59).lines = [0 1 2 1];
lstChars(60).lines = [0 2];
lstChars(61).lines = [0 2];
lstChars(62).lines = [0 2];
lstChars(63).lines = [0 0 0];
lstChars(64).lines = [0 0 0];
lstChars(65).lines = [0 0];
lstChars(66).lines = [0 1 0 1];
lstChars(67).lines = [0 2 0 1];
lstChars(68).lines = [0 1 0 1];
lstChars(69).lines = [0 1 0 2];
lstChars(70).lines = [0 1 0 1];
lstChars(71).lines = [0 2];
lstChars(72).lines = [0 1 0 2];
lstChars(73).lines = [0 2 0 1];
lstChars(74).lines = [0 1];
lstChars(75).lines = [0 2];
lstChars(76).lines = [0 2 0 1];
lstChars(77).lines = [0 2];
lstChars(78).lines = [0 1 0 1 0 1];
lstChars(79).lines = [0 1 0 1];
lstChars(80).lines = [0 1 0 1];
lstChars(81).lines = [0 2 0 1];
lstChars(82).lines = [0 1 0 2];
lstChars(83).lines = [0 1];
lstChars(84).lines = [0 1 0 1];
lstChars(85).lines = [0 2];
lstChars(86).lines = [0 1 0 1];
lstChars(87).lines = [0 1 0 1];
lstChars(88).lines = [0 1 0 1 0 1];
lstChars(89).lines = [0 1 0 1];
lstChars(90).lines = [0 1 0 1];
lstChars(91).lines = [0 1 1];
lstChars(92).lines = [0 2];
lstChars(93).lines = [0 2];
lstChars(94).lines = [0 2];
lstChars(95).lines = [0 0];

myTrimSpaces.m

% This function trims space characters of a string. It can handle anything
% passed to it.
% Input and output are strings

function [strOut] = myTrimSpaces(strIn)

 strOut = strIn;
 intSize = size(strIn, 2);
 if(sum(double(strIn == ' ')) == intSize)
 strOut = '';
 end
 intSize = size(strOut, 2);
 if(intSize == 1 && strOut(1) == ' ')
 strOut = '';
 elseif(intSize > 1)
 if(strOut(intSize) == ' ' && strOut(intSize - 1) == ' ')

 114

 strOut = strOut(1:intSize - 1);
 end
 intSize = size(strOut, 2);
 if(intSize > 1 && strOut(1) == ' ')
 strOut = strOut(2:intSize);
 end
 end
 intSize = size(strOut, 2);
 if(intSize > 0 && strOut(intSize) == ' ')
 strOut = strOut(1:intSize - 1);
 end
return;

 115

LIST OF REFERENCES

[1] M.T. Rogers, A Statistical Model of Multi-Engine OCR Systems

Masters Thesis, University of Central Florida, Orlando, FL, 2000.

[2] S. M. Richie, Associate Professor, Ph.D., Electrical Engineering, University of Central

Florida, 1989, private communication.

[3] C. Sprague, Autonomous Repair of Optical Character Recognition Data through Simple

Voting and Multi-Dimensional Indexing Techniques, Masters Thesis, University of

Central Florida, Orlando, FL, 2003.

[4] A. Weeks, Ph.D. Electrical Engineering, University of Central Florida, 1987, private

communication.

[5] R. Owens, “Mathematical Morphology”,

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT3/node3.ht

ml.

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition,

Prentice Hall, 2002, p. 607.

	Text-image Restoration And Text Alignment For Multi-engine Optical Character Recognition Systems
	STARS Citation

	 ABSTRACT
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	OCR
	Previous Work
	Problem Statement
	Proposed Solution

	 CHAPTER TWO: MORPHOLOGICAL IMAGE PROCESSING
	Introduction to Morphological Image Filters
	Implementation of Morphological Filters for Binary Images
	Morphological Filters And Image Restoration
	Benchmarking Performance of Optical Character Recognition Engines
	Relating Sizes and Shapes of Structuring Elements of Morphological Filters to Font Sizes and Types of Noise

	 CHAPTER THREE: TEXT ALIGNMENT
	Introduction to Text Alignment
	Text Alignment of Two Documents Using ASCII Comparison
	Analysis of the Performance of Aligning Algorithm Based Only on Plain ASCII Comparison
	Text Alignment of Two Documents Using Visual Comparison
	Analysis of the Performance of Aligning Algorithm Based on Visual Character Comparison
	Analysis of the Performance of Aligning Algorithm Based on Visual Character Comparison and Line Representation of Characters
	Improving Algorithm for Finding Next Similar Part
	Alignment of individual words of two texts
	Alignment of individual words of three texts
	Performance of Aligning Algorithm

	 CHAPTER FOUR: CONCLUSIONS
	 APPENDIX A: SOURCE CODE FOR MORPHOLOGICAL FILTERS
	 APPENDIX B: SOURCE CODE FOR TEXT ALIGNMENT ALGORITM
	 LIST OF REFERENCES

