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ABSTRACT

Signal detection theory (SDT) provides a theoretical framework for describing
performance on decision making tasks, and fuzzy signal detection theory (FSDT) extends this
description to include tasks in which there are levels of uncertainty regarding the categorization
of stimulus events. Specifically, FSDT can be used to quantify the degree to which an event is
‘signal-like’, i.e., the degree to which a stimulus event can be characterized by both signal and
non-signal properties. For instance, an improvised explosive device (IED) poses little threat
when missing key elements of its assembly (a stimulus of low, but not zero, signal strength)
whereas the threat is greater when all elements necessary to ignite the device are present (a
stimulus of high signal strength). This research develops a link between key individual cognitive
(i.e., spatial orientation and visualization) and personality (i.e., extroversion, conscientiousness,
and neuroticism) differences among observers to performance on a fuzzy signal detection task, in
which the items to be detected (IEDs) are presented in various states of assembly. That is, this
research relates individual difference measures to task performance, uses FSDT in target
detection, and provides application of the theory to vigilance tasks. In two experiments,
participants viewed pictures of IEDs, not all of which are assembled or include key components,
and categorize them using a fuzzy rating scale (no threat, low threat potential, moderate threat
potential, or definite threat). In both experiments, there were significant interactions between the
stimulus threat level category and the variability of images within each category. The results of
the first experiment indicated that spatial and mechanical ability were stronger predictors of
performance when the signal was ambiguous than when individuals viewed stimuli in which the

signal was fully absent or fully present (and, thus, less ambiguous). The second study showed



that the length of time a stimulus is viewed is greatest when the signal strength is low and there
is ambiguity regarding the threat level of the stimulus. In addition, response times were
substantially longer in study 2 than in study 1, although patterns of performance accuracy, as
measured by the sensitivity index d’, were similar across the two experiments. Together, the
experiments indicate that individuals take longer to evaluate a potential threat as less critical,
than to identify either an absence of threat or a high degree of threat and that spatial and
mechanical ability assist decision making when the threat level is unclear. These results can be
used to increase the efficiency of employees working in threat-detection positions, such as
luggage screeners, provides an exemplar of use of FSDT, and contributes to the understanding of

human decision making.
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CHAPTER 1: INTRODUCTION

Signal detection theory can be used to quantify performance of a perceptual task, and
differences in that performance vary across task domains and individuals. The proposed research
seeks to investigate a relationship between a person’s characteristics and performance of a signal
detection task in which stimuli consist of both signal and non-signal characteristics, only parts of
a signal are present, as well as to investigate the relationship between duration of stimulus
viewing time and signal ambiguity. A signal refers to a measurable event consisting of stimuli to
be detected or discriminated. For such tasks, it is generally assumed that the signal may be
masked by environmental conditions, some of which may manifest in similar form to the signal,
or that internal processes of the operator (such as psychological state, previous experience or
lack thereof, or random sensory processes) may interfere with proper detection performance; in
either case, these distractors are referred to as the ‘noise’ in which signals are embedded (Green
& Swets, 1966/1988).

Because one is trying to identify a particular object among many potential distractors, a
model in which a signal is embedded in noise is an apt description for a variety of tasks that
require one to distinguish signals from non-signals; examples include detection of defective
products in an assembly line, a radar operator monitoring plane trajectories, or a doctor analyzing
an x-ray to detect a cancerous growth. A large body of research has been dedicated to refining
the ways in which performance of such detection tasks can be analyzed and quantified in an
effort to maximize performance as a function of environmental conditions (Green & Swets,
1966/1988). The present study seeks to add to the literature a consideration of how the
characteristics of the human observer affect task performance. A considerable number of studies

have investigated the individual differences in human characteristics that may be related to

1



performance evaluated in a traditional signal detection theory paradigm (e.g., Cox-Fuenzalida et
al., 2006; Cox-Fuenzalida, Swickert, & Hittner, 2004; Frenkel et al., 2009; Rose et al., 2002;
Singh, Molloy, & Parasuraman, 1993; Szalma, 2009a; Szalma, Hancock, Dember, & Warm,
2006; Szalma & Taylor, 2011). In many cases, the intention of this research is to identify the
salient traits that may lead to efficacious screening procedures for employment of operators in

the discrimination task, or for interface and training design (e.g., Szalma, 2009b).

Overview of Signal Detection Theory

In traditional signal detection theory, a decision is made regarding the presence or
absence of a signal embedded in noise (e.g., an environment containing perceptual distractors).
There are four possible outcomes of such a decision: a hit (responding affirmatively when a
signal is, in fact, present), a miss (failing to detect a signal), a false alarm (responding
affirmatively when no signal is present), or a correct rejection (responding that there is no signal
when it is not present). Figure 1 is a representation of the described possible outcomes. A more
detailed discussion of signal detection theory and all its assumptions follow in the literature

review section.

Response
Signal Noise
Signal + Noise Hit Miss
State of the
World
Noise False Alarm Correct Rejection

Figure 1: Four Outcomes of a SDT task.



Uncertainty in Signal Detection Tasks

The observer in a signal detection task is asked to make a decision in a situation of
uncertainty regarding signal absence/presence. This uncertainty arises because one of the tenets
of the traditional signal detection theory paradigm is that there is uncertainty along the evidence
variable where the noise and signal-plus-noise distributions are represented (Wickens, 2002).
The noise that is always present in the system may be perceived by the operator as a signal (see
the outcomes in Figure 1), but the noise itself does not, in reality, possess the primary
characteristics that define the signal. While this certainly leads to a highly useful and accessible
mathematical model, it fails to capture the reality of many of the situations the model is being
used to quantify.

Many situations that lend themselves to a signal detection analysis have a signal that is
not rigidly defined, but is dynamic in its formation thereby forcing a somewhat arbitrary line to
be drawn to define signal versus non-signal. For example, the high breast density that is present
in some women causes up to twenty percent of breast cancers to be missed during a diagnostic
screening; on the other hand, tissue damage from previous biopsies or a patient’s family history
of cancer may cause a diagnostician to declare the x-ray abnormal when no cancer is present
(National Cancer Institute, 2010). Thus, properties of the situation surrounding the decision
(either external environmental properties or cognitive influences of the decision maker)
introduce uncertainty by either camouflaging a legitimate signal or enhancing the signal-like
properties of noise in such a way that the noise may be mistaken as a signal. This uncertainty
may be exacerbated in the case where a signal can be decomposed; that is, if elements of a signal
can be separated and presented in combinations that do not comprise a complete signal, it may be

more difficult for the decision maker to accurately determine that a signal has been presented. In
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these circumstances, which occur in many operational environments (such as airport luggage
screening in which a weapon could be transported through security in a disassembled form),
fuzzy signal detection theory can be used to provide a more complete model of the detection
process.

Fuzzy Signal Detection Tasks. Fuzzy signal detection theory extends traditional signal
detection theory by allowing one to model uncertainty in the signal observed, the response of the
observer, or both. Instead of stating that a signal is either present or absent, the perceiver has the
option to state that the signal is present to varying degrees; that is, the human operator may
characterize an event as being a ‘partial signal’, rather than being forced into the binary decision
of signal or non-signal. This allows the observer to characterize the event in a manner in keeping
with his perception when the stimulus itself is fuzzy (e.g., when an object has uses as both a
weapon and a non-weapon, such as a razor blade contained in luggage), or to capture perceived
uncertainty when the stimulus is wholly a member of either the category signal or non-signal, but
the observer is influenced by noise (either internal or external) as to the state of the signal (e.g., a
shadow on an x-ray may indicate a structure that has both cancerous and noncancerous
properties).

The use of fuzzy signal detection theory to capture differing degrees of a signal has a
wide variety of application, but has been limited to the contexts of vigilance (Stafford, Szalma,
Hancock, & Mouloua, 2003), hazard perception (Lu, Hinze, & Li, 2011; Wallis & Horswill,
2007), and air traffic control (Masalonis & Parasuraman, 2003). The application of interest here
is the use of signal detection theory to quantify performance of a threat detection task in which
the potential “threat” itself has signal properties to differing degrees. For instance, individuals

may be screened for potentially lethal contraband when entering a government building or before



flying from an airport, but the military also screens environments for threats prior to entering an
area. Of particular interest to this research is identifying threats assembled from common
devices, known as improvised explosive devices (IEDs), or threats that are designed to fit into
their surroundings. In these circumstances, individuals may need to recognize a threat based on
its unassembled, constituent parts, which may not be present in totality; for example, Zorpette
(2008) reported military raids in 2007 targeted at IED-making material (not the IEDs
themselves). Because such tasks have an inherent amount of uncertainty (e.g., when material
could be used for an IED but also has alternate legitimate purposes), fuzzy signal detection
theory offers a more descriptive approach to analysis.

Individual Differences and the Proposed Experiments. Excessive quantities of
materials used to make IEDs, such as that reported by Zorpette (2008) may be relatively easy to
identify as a threat, however a disassembled explosive hidden in luggage, or across different
parts (temporally or spatially) may be much more difficult. For instance, one could disassemble
an explosive and store the pieces in separate parts of a room (or across multiple rooms or
buildings); when viewed by a military search team, the observers may not be viewing these
disassembled, separated pieces in the context in which they would normally be when assembled
into a device. A task in which one must recognize a signal based on the presence of parts of the
signal, which may be separated spatially and rotated from a standard position, depends in large
part on the perception, and the appraisal of that perception, by the human observer. It is
currently unknown whether two individuals would recognize such objects with equivalent speed
and accuracy; consequently, performance of the task may vary as a function of individual
differences among observers. Spatial orientation and visualization are factors that may influence

successful mental rotation and (mental) reassembly of a device from constituent parts in an



abnormal situation (either in position or state of assembly). Spatial orientation and visualization
are, therefore, two of the specific individual difference measures that this research proposed to
investigate.

In keeping with the concept of affordance (Gibson, 2003) and the famous quote of the
Rationalist thinkers of Architecture and Design (derived from the words of Louis Sullivan) that
“form follows function”, many modern tools are designed in such a way that their purpose may
be understood immediately by the user. When an object is disassembled, it may lose some key
features that define the use of the object. For example, a disassembled IED may be stored so that
the trigger and wires are spatially separated, with one of the two components perhaps not even
visible to the observer; similarly, when in separate parts, a disassembled handgun does not
clearly indicate which aspect of the implement is to be held versus which is to be the projectile
conduit.

Costantini, Ambrosini, Scorolli, and Borghi (2011) concluded that object recognition is
first conceived in terms of object use, which may be context dependent, but such isolated
component presentation may detract from an individual’s ability to recognize the potential use of
the object as part of an IED. In fact, the more dissembled the presented object is, the more
difficult it may be to recognize the threat. The research of Castelhano and Heaven (2010)
support this line of reasoning in that the researchers found that speed of recognition is improved
when the key features that define a target are present; the presence of target-feature information
improved recognition speed with greater significance than even the context of scene. Thus, the
absence of key features may have a profound impact on threat detection in situations of

disassembly, regardless of the level of actual threat in the environment.



Further, Huang (2011) argues that object familiarity (e.g., knowing what a C4-
based IED looks like) does not aid recognition of that object’s individual constituent features;
familiarity with the object, according to Huang, only contributes to recognition of an object as a
whole. Compounding this potential for misidentification or lack of identification, Quinlan and
Cohen (2011) demonstrated that response time is faster when more target features are present in
the object to be inspected; in other words, the lower the number of available features (e.g., with a
disassembled IED), the longer the response time necessary to identify that object. In many
situations of imminent threat, our goal should be to shorten identification time as much as
possible. Hollingworth and Henderson (2003) investigated the phenomenon that change
detection is easiest when objects stand out from the scene and their results did not support use of
short term memory, but rather the influence of context. While Hollingworth and Henderson’s
work may seem at first to contradict the findings of Castelhano and Heaven (2010), in fact it is
supportive, pointing towards a hierarchy of contributive factors starting with key features of a
target object, with contextual cues following, and most minimally the contribution of short-term
memory.

Stimulus Viewing Time and Fuzzy Signal Detection Tasks. Arguments have been
made that object categorization occurs simultaneously with object recognition (e.g., Grill-
Spector & Kanwisher, 2005). However, de la Rosa, Choudhery, and Chatziastros (2010)
asserted that there are differences in the response times associated with object detection,
categorization, and identification. With a threat detection task, individuals must not only
recognize and categorize objects, but they must also make a decision regarding the perceived
level of threat the object(s) pose. For instance, it has been shown that dual target searches are

less efficient than single target searches (Menneer et al., 2007); thus, one might speculate that,



when searching for components of a target, the response time might correlate with the number of
components (or distractors) present.  Decision time regarding threat level may suffer
considerably as a result. One purpose for the proposed work is to investigate whether a
relationship exists between the fuzzy membership level of a stimulus, the perceived fuzzy

membership level of a stimulus, and response time.

Spatial Orientation and Visualization and the Current Experiments

When spatially separated, the components of an object being viewed may be interpreted
as potentially belonging simultaneously to multiple categories. It has been demonstrated that
items near the boundaries of categories (such as faces and vowel sounds) have increased
response time for discrimination (e.g., Bonnasse-Gahot and Nadal, 2011; Feldman, Griffiths, and
Morgan, 2009; Kikutani, Roberson, & Hanley, 2008). As noted previously, objects may initially
be recognized in terms of their typical or conventional use; thus, when category membership of
the object is uncertain, an individual may need to perform mental rotations or alignments in order
to ascertain the use of the object. Sun and Gordon (2010) demonstrated that spatial arrangement
influences visual memory retrieval and change detection for an object’s features is influenced by
the orientation of the object. Smith and Dror (2001) speculated that individuals perform a
piecemeal rotation of meaningful objects. Such manipulations may be aided by a high
proficiency in either spatial orientation by way of aiding with recognition of object components
and use, or visualization through aiding with transformations.

Spatial orientation and visualization were selected for the present investigation because
both likely play a role in the ability to recognize objects that could be combined to create a

threat. That is, an operator may need to mentally rotate one or more objects to match a pre-
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formed or pre-trained template from a mental catalogue to see if it can be matched to a
component of an IED or other threat; the degree to which one is able to perform such mental
manipulation is reflected in an individual’s spatial orientation ability. Because IEDs can be
constructed from common materials (The National Academies and the Department of Homeland
Security, 2003), it may not be sufficient to recognize only constituent parts. An individual may
need to mentally assemble the recognized parts of a threat to see whether they fit together in a
way that would constitute a full signal or nearly a full signal; the degree to which one is able to
perform a sequence of steps of cognitive processing is reflected in an individual’s visualization
ability.

Individual Differences in Personality Traits Related to the Task. It has been
previously established that certain personality traits interact with some cognitive task
characteristics to influence performance (e.g., Szalma, 2008, discusses research linking
pessimism, optimism, and extraversion to performance on stressful tasks). Thus, the relation of
both visualization and spatial orientation to performance may be influenced by specific
personality traits, as well as the individual personality traits influencing performance; Finomore,
Matthews, Shaw, & Warm (2009) adopting a resource theory perspective, suggest that
personality traits that impact either resource availability (such as anxiety or extraversion) or
voluntary commitment of resources (such as conscientiousness) may impact performance on a
detection task. Tasks of vigilance (e.g., baggage screening) have been shown to be very
cognitively demanding, and well modeled by resource theory (Warm, Parasuraman, and
Matthews, 2008), thus personality factors should be considered individually and as possible

mediators when investigating primary individual difference measures (and see Szalma, 2009a).



Research Aims

The purpose of the present research was to investigate the joint effects of fuzzy stimulus
category and individual differences among participants that may affect performance of a signal
detection task when the object representing a full signal is disassembled into its constituent parts,
and all such parts may or may not be present when the stimulus is viewed; that is, the current
study investigated three main issues: Individual differences in threat detection performance, use
of FSDT in target detection, and characteristics of stimulus variability and fuzzy membership
that affect performance. These studies analyze and describe performance on a fuzzy signal
detection task with respect to both characteristics of the human operator and elements of the
stimulus.

A threat decomposed into its constituent parts could potentially pose substantial threat in
a military theatre or terrorism screening operation. For example, the safety of the general
population is enhanced if airport screeners are able to identify individual parts hidden in carry-on
luggage that can be assembled into a dangerous weapon; at the same time, it is a waste of
resources to unnecessarily detain and search passengers when only a few of their possessions are
able to be used as weapon parts, and not without vital components that are not present in their (or
other passengers’) luggage. Similarly, military personnel deployed in a foreign country may
need to sweep a building for potential threats prior to entering; this may be accomplished either
by sending troops into the building or through remote viewing with the aid of a robotic camera.
Determining what areas of the building pose a substantial threat may be dependent upon
correctly identifying pieces of weapons or IEDs that may be present in a cluttered environment.
Thus, it is beneficial to know whether particular aspects of personality and/or cognitive ability

are characteristic of an individual skilled in performance of such a fuzzy signal detection task.
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In the present research, the task scenario depicted rooms in an office building which were
swept for IED components using a simulated remote viewing device. The components of the
IEDs were viewed by participants with the IEDs in various stages of assembly; these components
were presented as photographs of typical office surroundings (cluttered environments).
Additional items that can serve as potential distractors were included. Analyses of performance
with regard to individual differences in visualization, spatial orientation, and three personality
traits were performed. Relationships between the length of viewing time and ambiguity of the

signal were explored in a second experiment.

11



CHAPTER 2: LITERATURE REVIEW

The current study examines both fuzzy signal detection theory (FSDT) and aspects of
individual differences in human performance. Because fuzzy signal detection theory was
derived from traditional signal detection theory, a brief discussion of the latter is warranted
followed by a summary of FSDT. This chapter will then conclude with a review of individual

differences directly related to the current research.

Signal Detection Theory

According to Swets (1973), the origins of psychophysics lie in the work of Fechner’s
measurement of the just noticeable differences (JNDs) between stimuli, the basic process of
which was expanded by Thurstone (1927). With the development of electronic communication
devices came the difficulty of analyzing the effects of noise in the system, and statistical decision
theory was applied to this task in the mid-twentieth century, most notably by Blackwell (as
described in Swets, 1973; see also Peterson, Birdsall, & Fox, 1954), who introduced the notion
of an observer’s use of a criterion in decision making. Psychologists at the University of
Michigan continued to refine this theory to quantify descriptions between a physical stimulus
and the perception of that stimulus (e.g., Tanner & Swets, 1954; Swets, Tanner, & Birdsall,
1961). Thus, it was in the realm of psychophysics that signal detection theory (SDT) was first
applied in psychology.

Detection theory, as described by Green and Swets (1988/1966), involves dichotomizing
the world into states of noise or signal plus noise; that is, human beings are inundated with
sensory input, both internal and external, that in terms of performance of a specific task may be
considered a distraction (or potential distraction) termed “noise”. The noise present in any

system is independent of the observer. A signal represents an occurrence of an event which does
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not occur in isolation but is embedded in the noise. For each trial the observer must decide
whether the stimulus presented is a signal. Four outcomes are possible for each trial or
observation (see Figure 1): the participant may respond that there is a signal when one is present
(a “hit”); the participant may decide that there is a signal when one is not present (a “false
alarm”); the participant may state there is no signal when there is in fact a signal present (a
“miss”); or the participant may decide there is no signal when there is none (a “correct
rejection”). Each of these outcomes has an associated probability: the hit rate (HR), the false

alarm rate (FAR), the correct rejection rate (CRR), and the miss rate (MR).

Assumptions of Signal Detection Theory

In the traditional signal detection model, noise is assumed to be omnipresent, and the
noise may be internal or external to the observer; the noise is assumed to be a normally
distributed random variable. When a signal is present, the signal plus noise distribution retains
the standard normal shape but is shifted along the sensory dimensions (see Figure 2); this is the
equal variance assumption of SDT, i.e., that the variance of the signal and noise distribution is
equal to that of the noise distribution. Another assumption is that the perceiver is both a sensor
and a decision maker: When a stimulus is presented, the observer must accurately perceive the
stimulus as either a signal or non-signal; but the observer also sets a criterion by which he will
make his decision of signal or non-signal. The sensitivity of the observer refers to his perceptual
ability to distinguish the signal from the background noise; the most commonly used
mathematical quantity representing the sensitivity is d’, defined as the distance (in standard
deviations) between the noise curve and the signal plus noise curve. Response bias refers to the
observer’s willingness to label an event as signal present, and may vary as a function of the

relative cost of misses and false alarms; for example, one may have a more liberal response bias
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when evaluating spots on an x-ray as potentially cancerous growths figuring that a propensity to
biopsy unnecessarily is a lesser evil than possibly missing a truly cancerous growth. The
parameter § (or In ) is used to represent the response bias although in some instances, such as
vigilance, the criterion index c is superior to # or In 8 (See, Warm, Dember, and Howe, 1997).
In SDT, the sensitivity and response bias of the observer are assumed to be independent of one

another.
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Figure 2: Graphical representations of response categories for traditional SDT
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Limitations of Signal Detection Theory

SDT has proved to be a useful and appropriate tool for a variety of applications (Swets,
Dawes, & Monahan, 2000). However, there are some situations in which the theory does not
capture the complexity of the stimulus and/or perceptual process. A primary limitation of

traditional SDT is that it forces both the state of the world and the response of the observer into
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mutually exclusive categories, often the dichotomy of presence of signal or absence of signal.
That is, an item that has properties of multiple categories cannot be easily represented in the
traditional model; in the dichotomy, the item is either a signal or it is not, with no intermediary
categories. Forcing descriptions into mutually exclusive categories is not always reflective of
occurrences in operational environments. Many signals retain properties of a non-signal, such as
a yellow traffic light that signals that one should be cautious (not that one should stop).
Parasuraman, Masalonis, and Hancock (2000) developed Fuzzy Signal Detection Theory (FSDT)

to address this limitation (and see Hancock, Masalonis, and Parasuraman, 2000).

Fuzzy Signal Detection Theory

FSDT is based on set theory principles developed in the application of fuzzy logic. In
traditional set theory, an item is either an element of a set or it is not; for example, %2 is an
element of the set of “rational numbers” because it has a representation as the ratio of two whole
numbers, whereas 7 is not an element of this set because it fails that criterion. This is the
approach adopted in traditional SDT—an item is either a member of the crisp set ‘signal’ or of
the set ‘non-signal’.

Elements of fuzzy sets, on the other hand, have degrees of membership to the set, rather
than absolute classification of member or nonmember (Zadeh, 1965). Applying this concept to
signal detection theory, an item can simultaneously have properties of both a signal and a non-
signal, to varying degrees. For example, explosive material paired with wires alone cannot be
considered a complete IED if the detonator is missing; however, this is clearly not innocuous
material. Thus, that combination of items has certain properties of the set ‘signal’, without being
a full signal. The same set of items can also be considered to have properties of the set ‘non-

signal’ because it is missing the detonator. The degree of membership in a set can be represented
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with a number between zero and one, with zero corresponding to no membership and one
corresponding to full membership in the set ‘signal’. For example, explosive material paired
with wires might be considered to have degree of membership 0.8 in the set ‘signal’ and
membership 0.2 in the set ‘non-signal’ (numbers arbitrarily assigned for discussion purposes).
This provides a numeric description that the combination of items discussed is much closer to
being an actual IED than it is to being no threat whatsoever. Such a numerical assignment of
category membership can be carried out through use of a mapping function, example procedures
for which are discussed by Parasuraman, Masalonis, and Hancock (2000).

In addition to the properties inherent to the object that assign it category membership to
varying degrees, the observer’s response is also not necessarily confined to being binary and may
differ in perceived degree of signal from that assigned to the stimulus. Specifically, participants
are responsible for both sensing and categorizing the stimulus, but the categorization is no longer
necessarily binary (although it can be — it should be noted that FSDT is also well suited for the
case where the observer must make a binary choice (signal or non-signal) but the stimulus may
be defined as a fuzzy set; Szalma & Hancock, 2013; Szalma, Oron-Gilad, Saxton, & Hancock,
2006). If the desired response is not binary, then observers in the signal detection task will need
to assign a membership level to each observed stimulus along a range of values that can be
transformed to numbers between 0 and 1, where 0 represents that the stimulus has no properties
of a signal and 1 indicates that the stimulus is a signal with no membership in the non-signal
category; that is, the observer is deciding signal membership along a continuum (that may be
discrete or continuous, depending on the application).

Because degrees of membership in the category ‘signal’ or ‘non-signal’ are allowed,

Hancock, Masalonis, and Parasuraman (2000) redefined what constitutes the traditional four
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outcomes of hit (H), miss (M), false alarm (FA), and correct rejection (CR). When a stimulus
belongs to the category signal with membership level s, 0 < s < 1, and the perceiver responds
that the stimulus belongs to the category signal with membership level r, 0 < r < 1, then the
four outcomes are calculated by the following formulae (mixed implication functions;

Parasuraman et al., 2000):

H =min(s,r) @
M =max(s—-r,0) (2)
FA =max(r —s,0) 3)
CR =min(1-s,1-r) (4)

An event in FSDT may have membership in more than one of the four categories of hit,
miss, false alarm, and correct rejection. For example, if a strong signal is present, but an
observer identifies a weak signal as being present, then the observer has made a certain degree of
hit (signal present) and a certain degree of miss (the stimulus was not perceived as being as
‘signal-like’ as it actually is). Parasuraman, Masalonis, and Hancock (2000) asserted that £ and
d' can be computed using the same formulae in both traditional SDT and FSDT, formulae which
involve the hit rate and false alarm rate. Murphy, Szalma, and Hancock (2003; 2004)
demonstrated that FSDT provides a better description of an observer’s sensitivity and response
bias than crisp SDT when the stimulus is not a member of a binary category (signal versus non-
signal; see also Szalma & Hancock, 2013; Szalma et al., 2006).

As with traditional SDT, it is assumed that noise can be internal (to the system or
individual) or external. Also, both noise and signal plus noise have been shown to be normally
distributed in FSDT (Murphy, Szalma, & Hancock, 2004; Szalma et al., 2006; Szalma &
Hancock, 2013; Szalma & O’Connell, 2011). Noise may occur in any sensory medium, but it is

most troublesome when it manifests in the same sensory channel as the one used for the
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detection task (e.g., a visual detection task is most disturbed by visual noise as opposed to
auditory noise, except in that such may cause a break in visual attention), as this is a common
component of many working memory models (e.g., the model of Baddeley and Hitch, 1974;
1986). In any detection task, the nature of the noise present in an event may contribute to a delay
in response by the observer; the degree of membership of the stimulus in FSDT may allow some

useful characterizations of the stimulus to be made.

Fuzzy Membership Level and Observer’s Response Time

Response time has importance in detection theory.  Hancock, Masalonis, and
Parasuraman (2000) concluded, based on the research of Treisman and Gelade (1980), that it
takes longer for the human cognitive system to reach a decision of non-signal than it does to
reach the decision of signal, particularly when abundant noise is present within, or simultaneous
to, a stimulus presentation. The authors reasoned that SDT decisions made the most rapidly (on
average across trials) would have the highest numbers of false alarms, decisions near the average
decision time for the observer would have the highest numbers of hits, and the longest decision
times would have the highest numbers of correct rejections and misses (though more correct
rejections than misses). Hancock, Masalonis, and Parasuraman asserted that the same pattern
emerges in FSDT.

The length of time until response in traditional SDT is related to the ambiguity of the
stimulus; in FSDT, the fuzzy membership level reflects this property of the stimulus. Thus, the
time to decision in a detection task should be related to the degree of membership in the category
signal that the participant perceives and/or the degree of membership in the category signal that
the stimulus actually possesses, although the degree to which this relationship is evident may

depend on the nature of the stimulus. That is, a stimulus that has very low or very high
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membership (or perceived membership) in the category signal may often be associated with a
shorter response time by the observer than a stimulus that has (or is perceived to have) a signal
membership closer to the 0.5 level.

One can then speculate how such a relationship can be quantified. The present research
examined a specific instance with application: when the stimulus is a decomposed IED, which
may generalize to any decomposed weapon. Should it prove to be the case that longer decision
times are associated with somewhat strong signal membership, one application of this fact would
be to design a system in which any rating that is abnormal for the given decision time would be
flagged for further inspection of the stimulus or event. Note that such a relationship would also
have the benefit of providing an efficiency rating of the observer or system; any instance in
which such abnormal ratings were routine would identify the system or observer as being in need

of redesign or remediation, respectively.

Individual Differences

Sometimes two participants will perform differently on identical tasks, or provide
different reactions to identical stimuli, because of different personality or cognitive traits that
vary across individuals and influence perception and cognition. In psychology, the study of
these individual differences can improve explanation and prediction of performance (Cronbach,
1957; 1975; Underwood, 1975). As Cronbach (1956) described, “... personality theory is
applied to weave nomothetic constructs into a construct of the individual’s personality structure,
predictions are then derived by inferring how that structure will interact with the known or
guessed properties of the situation” (p. 173). In other words, Cronbach acknowledged that
performance prediction is an interweaving of time, personality features, individual capacities for

performance, and even such nuances as inclination to perform at a particular time, amongst other
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factors. The end result is the generalized ability to predict performance, which is, and must
always be, a somewhat fluid and labile construct by its very nature, as there are too many
confounds to performance to allow precision.

Because of these individual differences, performance on a detection task varies not only
with the nature of the task or the stimulus but also with the characteristics of the individual
observer. For instance, one observer may set a different criterion than another observer under
the same task conditions, or there may be vast differences in the sensitivity of individual
observers. Such variations are nearly unavoidable, and while there will always be, where human
performance is concerned, a deus ex machina that results in perturbations of expected
performance despite all efforts to impose constraints, it appears the degree to which observers
vary in their response bias or sensitivity is impacted significantly by relevant cognitive or
personality traits. These personal characteristics can be used to generate a model with reliable
accuracy and predictive ability. For these reasons, the present research is concerned with the
influence of traits of personality as well as the cognitive abilities of visualization and spatial
orientation on performance of an IED detection task.

Personality traits. Five emergent factors of personality were first identified by Tupes
and Christal (1961/1992) and later replicated by Norman (1963). The NEO Personality
Inventory was developed as a measure to quantify an individual’s placement along the
dimensions, and is widely used in clinical and research settings (Costa and McCrae, 1992) for
both adolescents and adults (e.g., Decuyper, De Bolle, Boone, and De Fruyt, 2012; Langer, 2011,
Betz and Borgen, 2010; Kotov, Gamez, Schmidt, and Watson, 2010; Hoffman, Buteau, and
Fruzzetti, 2007). The five factors of the model measured by the NEO-PI are extraversion,

agreeableness, conscientiousness, neuroticism, and openness to experience. Table 1 lists
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adjectives McCrae and John (1992) identified to describe the positive poles of the personality
scales. Data from diverse populations indicate that the five-factor model is an apt representation
of personality characteristics regardless of background and culture (McCrae and Costa, 1997).
Three of the five factors (extraversion, conscientiousness, and neuroticism) will be measured for
this research, as these are the traits that have been shown to influence performance on signal

detection tasks, particularly in vigilance.

Table 1. Adjectives McCrae and John (1992) used to describe NEO-PI personality traits

Personality Factor Adjectives

Extraversion “active, assertive, energetic, enthusiastic, outgoing,
talkative”

Agreeableness “appreciative, forgiving, generous, kind, sympathetic,
trusting”

Conscientiousness “efficient, organized, planful, reliable, responsible,
thorough”

Neuroticism “anxious, self-pitying, tense, touchy, unstable, worrying”

Openness to Experience “artistic, curious, imaginative, insightful, original, wide

interests”

Personality and Vigilance. Several studies have investigated the relationship between
the five-factor model and performance in a vigilance or detection task. Matthews and Campbell
(2009) reported that standard personality traits are weak predictors of vigilance performance,
with extroversion and neuroticism showing unique, but small, contributions to prediction of
performance (see also Finomore et al.,, 2009). Rose, Murphy, Byard, and Nikzad (2002),
however, reported that both extraversion and conscientiousness correlated with performance
while neuroticism correlated with aspects of perceived workload. More recent evidence suggests
that these effects may be linked to specific facets of the broader trait (Teo, Szalma, and Schmidt,
2011).
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Extraversion. Davies and Parasuraman (1982) and Finomore, Matthews, Shaw, and
Warm (2009) summarized research that indicates introverts tend to have more correct rejections,
fewer false alarms, and experience less decrement in detections than extroverts; similar findings
are summarized by Berch and Kanter (1984) who further cite research indicating introverts may
have different sensitivity thresholds than extroverts. In a task of auditory vigilance, it has been
shown that performance decreases as workload decreases in extroverts, but the same decline in
performance is not seen in introverts (Cox-Fuenzalida et al., 2006). According to Eysenck
(1989), who performed a summary of relevant literature investigating the relation of extraversion
to vigilance, introverts generally outperform extroverts in vigilance tasks and tend to show a
smaller vigilance decrement.

Koelega (1992) performed a meta-analysis on the relationship between extroversion and
vigilance performance and found that the literature suggests that extroverts underperform
introverts. It should be noted that there are instances in which no correlation between
performance and introversion-extroversion was observed, such as Singh, Molloy, and
Parasuraman (1993), where participants monitored for automation failure in either a fixed-rate or
variable condition; in this study, performance was found to be related to complacency potential
and energetic-arousal, however. Szalma and Taylor (2011) also reported no performance effects
for extroversion during a monitoring task with an automated aid.

Neuroticism. Cox-Fuenzalida, Swickert, & Hittner (2004) showed that high levels of
neuroticism are associated with delayed reaction times in an auditory vigilance task.
Additionally, individuals high in neuroticism exhibited a decline in performance when workload
levels were increased. Szalma and Taylor (2011) reported a similar drop in performance for

individuals high on neuroticism. Eysenck (1989), however, argued that there is little evidence
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for the influence of level of neuroticism in task performance on a vigilance task, suggesting that
the attentional differences between individuals high and low on neuroticism are not affected by
the situational anxiety associated with a vigilance task.

Conscientiousness. Higher levels of conscientiousness have been associated with a
conservative response style in signal detection tasks. Rose et al. (2002) found that individuals
high in conscientiousness tended to commit fewer false alarms and achieved greater perceptual
sensitivity. Burton et al. (2010) investigated the effects of gender and personality on a vigilance
task. Across genders, the study demonstrated that higher conscientiousness was associated with
more conservative response bias. However, the relation of conscientiousness to cognition has
not been explored as extensively as extraversion and neuroticism (Matthews, Deary, &
Whiteman, 2009).

Cognitive Abilities. The personality traits discussed may influence performance directly,
or they may moderate the effects of cognitive abilities (e.g., Arana, Meilan, and Perez, 2008).
The two cognitive abilities that may play an important role in the present research are spatial
orientation and visualization. Spatial orientation is identified as a possible predictor of
performance when a task may require mental rotation and alignment to see if parts fit to a
preprogrammed template. Visualization is reflective of one’s ability to manipulate an object in
an ordered sequence of steps, a skill necessary to correctly assemble devices from constituent
parts. Because the current research is focusing on performance of threat detection when various
parts that can be used to assemble an IED are presented, both spatial orientation and visualization
will be investigated to determine their relation to performance.

Spatial cognition refers to an individual’s knowledge about the spatial properties of

objects, locations, and events (Montello, 2001). It is generally accepted that spatial ability is
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composed of distinct factors (e.g., McGee, 1979), though it should be noted that an argument has
been made to the contrary (e.g., Colon et al., 2001). Spatial orientation and visualization, as
measured by the Kit of Factor-Referenced Cognitive Tests (Ekstrom et al., 1976) are the factors
of spatial ability adopted for the present research. As shall be discussed, both factors may
influence a task in which one is asked to assess a potential threat in its decomposed state (e.g., an
unassembled IED).

Spatial Orientation. It has been demonstrated that individuals high in visual working
memory capacity differ in performance of a visual search when that search relied on top-down
processing (Sobel, Gerrie, Poole and Kane, 2007). Bottom-up attentional processes are involved
when items stand out from their surroundings whereas top-down mechanisms access knowledge
stores to draw attention to items important to the observer (Connor, Egeth, and Yantis, 2004).
Because a detection task requires individuals to focus attention on specific object properties
(rather than just the most salient feature), one might speculate that certain signal detection tasks
(e.g., FSDT tasks) would demonstrate changes in sensitivity as a function of individual
differences in visual working memory (as well as spatial processing and mental rotation). For
example, a significant difference may not exist in the case where an x-ray is being analyzed for a
cancerous growth (parallel to bottom-up processing where one looks for an abnormality to
present itself) but may be prevalent when searching for the components of a weapon that has
been broken down and stored in luggage (requiring top-down processing where one must be able
to detect objects key to the weapon assembly that may not necessarily be salient parts);
additionally, in the latter the observer may need to perform mental rotation and reassembly of the

components.

24



Before one could mentally reassemble the parts, however, those parts must be recognized
within the scene by the observer. Performance on this process of recognition may vary across or
within individuals when the objects viewed are at dissimilar orientations to the templates they
have stored in memory. All theories of object recognition require that a match take place
between the viewed image and an item in the individual’s knowledge store, but theories differ as
to whether that recognition is viewpoint dependent. Viewpoint invariant theories, such as
Biederman’s (1987) theory of recognition by components, hold that object recognition will take
place regardless of the observer’s viewing relation to the object, and some studies have
supported such a theory (e.g., Biederman and Gerhardstein, 1993).

Evidence has been reported, however, for the contrary view—that recognition depends on
the position and orientation of the object when viewed (e.g., Tarr, 1995; Tarr and Pinker, 1989;
Willems and Wagemans, 2001). Tarr and Pinker (1989) argued that evidence suggests that an
individual must mentally rotate an object to match one of possibly several orientations of the
object in memory in order for recognition to occur. Even when objects are presented together,
there is a time delay in matching rotated shapes; Shepard and Metzler (1971) identified a linear
increase in time to recognition of objects as being the same with angular displacement between
the representations in a matching task (not a recognition task) and Larsen and Bundesen (1998)
demonstrated that individuals may mentally translate and rotate objects to determine sameness in
a pattern matching task. Thus, in a situation where one is attempting to mentally reconstruct an
object from its constituent parts, if the positions of those parts are not aligned with the template,
a mental rotation (and possible translation) may need to occur in order for the observer to

recognize the object.

25



Interestingly, Manning and Leach (2002) found a negative correlation between spatial
reasoning ability and diagnostic performance in a mammography screening task. The
researchers hypothesized that individuals high in spatial reasoning may have introduced more
errors by attempting to manipulate the image being viewed.

The task proposed in this research will require mental rotation and manipulation, should
one attempt to mentally reconstruct the decomposed IED from the constituent parts presented.
Thus, the assessment of spatial ability in this task needs to involve mental rotation. The spatial
orientation factor of the Kit of Factor-Referenced Cognitive Tests (Ekstrom et al., 1976) uses a
card rotation test and a cube comparison test to assess one’s ability to spatially manipulate an
object as a whole. Hogan (2012) reported that these tests load on a single factor with acceptable
reliability.

Visualization. In addition to spatial orientation, visualization may affect performance in
a task where one is required to recognize the parts necessary to make a potential threat function
properly. When an object is disassembled, it may take several sequential transformations of the
components to mentally reassemble; when one or more components are absent, this mental
reassembly may be necessary to determine whether enough of the object is present for it to retain
its functional properties. Cheung, Hayward, and Gauthier (2009) found that object recognition
was dependent upon image features; thus, one may need to see, through mental manipulation,
whether constituent parts fit together to form what resembles enough of an image to fit into the
category. That is, mental assembly of the object may be required to determine how much of a
signal the decomposed, separated parts represent.

Thus, individuals high in visualization ability may be better able to identify which parts

fit together and whether those parts can be properly combined to assemble a weapon. Spatial
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visualization has been found to be related to mental animation (Hegarty and Sims, 1994) and
evidence has been provided for mental simulation as a strategy in mechanical reasoning tasks
(Hegarty, 2004). Mechanical comprehension has already been demonstrated to correlate with
performance in a weapons-handling task (Munnoch and Bridger, 2008); the task proposed in this
research differs in that participants will not be directly instructed to assemble a weapon (in this
case, an IED), though they may mentally do so in providing their ratings of the stimuli (in order
to assist with template matching of threat level). Thus, individuals high in visualization may
possess a superior ability to run mental simulations (including ones involving object assembly)
thus leading to better performance on the present detection task.

The Kit of Factor-Referenced Cognitive Tests (Ekstrom, 1976) uses the form board test,
paper folding test, and surface development test to measure the factor of visualization. Carroll
(1990) confirmed the Kit’s measures of two distinct factors in visualization and spatial
orientation. This instrument has been used in establishing the structure of the ASVAB, Armed
Services Vocational Aptitude Battery (Augustin, Gillet, and Curran, 1989) as well as studies
linking spatial ability to a performance measure (e.g., Pak, Rogers, and Fisk, 2006; Lee and Shin,

2011).

Current Study

Performance of a signal detection task, where the signal is presented in constituent parts
separated spatially and which may require rotation or physical manipulation to assemble, may
vary as a function of individual differences in spatial orientation, visualization, the personality
traits of extraversion and conscientiousness, or interactions between cognition and personality
traits. Specifically, the literature indicates that individuals high in spatial orientation or

visualization may outperform those low in these characteristics in correctly identifying

27



disassembled signals. Further, because research has shown that extraversion and
conscientiousness tend to correlate with performance on a signal detection task, it is believed that
these factors may influence performance even among those high in spatial orientation or

visualization. Figure 3 provides a model of the hypothesized relationships among the variables.
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H = High, M = Middle, L = Low, SD = Standard Deviation, e = error

Additionally, it is hypothesized that a relationship exists between the level of fuzzy
membership of a stimulus, the length of time a participant views the stimulus before response,

and the hit and false alarm rate of the participant. Specifically, it is conjectured that both stimuli
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close to full membership in the signal category (i.e., stimuli with a fuzzy membership close to 1)
and stimuli close to no membership in the signal set (i.e., stimuli with a fuzzy membership in the
category of signal close to 0) should require the least amount of viewing time and stimuli nearest
to the middle (i.e., stimuli with a fuzzy membership in the category signal of close to 0.5) should
require the greatest amount of viewing time prior to the participant’s response. It is expected
that a plot of average viewing time against fuzzy membership category across a range of stimuli
can be fitted with a function whose maximum value is obtained when the stimulus is near a fuzzy
rating of 0.5 (see Figure 4 for a sketch of the predicted model). Based on the postulates of
Hancock, Masalonis, and Parasuraman (2000), it is further conjectured that the greatest hit rate
will occur during the middle viewing time and the extrema of the false alarm rate will occur near

the longest and shortest viewing times.

Viewing
time of
stimulus

v

Stimulus’ membership

in the category signal

Figure 4: Hypothesized relationship between stimulus' signal membership and viewing time
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In summary, it is hypothesized that performance on a threat detection task in which the threat
IS presented in a disassembled state:

e May improve with spatial orientation, visualization, or both;

e May be positively correlated with the personality trait of conscientiousness and

negatively related to extroversion and neuroticism;

e May further correlate with interactions between the above listed cognitive abilities and

personality traits;

e May be predicted in part by the ambiguity of the stimulus, and that this may be fitted with

a quadratic or other curvilinear function.

The first hypothesis was investigated using a customary time-restricted forced-response
detection task (Experiment 1) whereas the second hypothesis was investigated using a forced-
response that was not time restricted (Experiment 2). As such, the current research consisted of
two separate experiments using the same stimuli. The first experiment examined the relationship
between performance and the previously identified individual differences. The second
experiment examined the relationship between viewing time of the stimulus and the participants’

response.
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CHAPTER 3: PREVIOUS EXPERIMENT

Prior to the present work, an unpublished study was conducted in which mean ratings of
threat level were obtained for the stimuli to be used in both experiments. Approximately 242
undergraduates at the University of Central Florida viewed the stimuli at three different
durations, and provided a fuzzy response category rating of each photograph at each of the three
speeds (700 ms, 1000 ms, and 1300 ms). Participants were provided instructions similar to those
described in Experiment 1. Participants were also provided the visual color coding on the keys
using the same categories as described in Experiment 1.

This preliminary study employed the same stimuli used in experiments 1 and 2. The data
from that initial work were analyzed in terms of the mean fuzzy category rating and the
variability associated with each photograph at each presentation duration. The photographs were
then grouped by mean and further subdivided by variability. Four groups were thus created: low
stimulus mean (M = 1.298, SD = .112), middle low stimulus mean (M = 1.990, SD = .283),
middle high stimulus mean (M = 2.945, SD =.294), and high stimulus mean (M = 3.726, SD =
.114). Definitions of low, medium, and high stimulus variability were dependent upon the

stimulus mean category, as shown in Table 2.

Table 2. Range of Stimulus Standard Deviations by Mean Category

Low Mean Middle Low Middle High High Mean

Category Mean Category Mean Category Category
Low Variability 0.41-0.53 0.67-0.78 0.68 —0.80 0.39-0.51
Medium Variability  0.54 —0.66 0.79-0.90 0.81-0.93 0.52-0.64
High Variability 0.67 -0.79 0.91-1.04 0.94 -1.06 0.65-0.79
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In this experiment, participants had four choices of response. The instructions for the
experiment (see Appendix A) explained that the lowest category represented a certainty that
there was an absence of threat, the next category represented a low presence of threat, the next
category a high level of threat, and the last category a definite presence of threat. Thus, when
stimuli were divided into low, middle low, middle high, and high categories, the divisions were
intended to reflect the described threat levels. Thus, an unequal partition of the stimulus mean
ratings (1 — 4) was developed: the low stimulus mean category consisted of pictures with means
between 1.0 and 1.49, the middle low stimulus mean category had means between 1.5 and 2.49,
the middle high stimulus mean category had means between 2.5 and 3.49, and the high stimulus
mean category had means between 3.5 and 4.0. Eight pictures were randomly selected from each
of the twelve categories (mean by standard deviation) for use in the current study. Response
times from this previous study were also used to determine the viewing length in the first

experiment of the current research.
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CHAPTER 4: RESPONSE SET DETERMINATION

An initial study was conducted to investigate the number of response choices required to
capture sufficient variability in the fuzzy signal detection task of IED ratings. Response
variability was evaluated by determining the effect of response set size on the discriminability
among stimulus categories. Participants were presented the set of pictures 3 times, and asked to
rate them using 4, 7, and 10 response choices. Participants were randomly assigned to one of the
six possible orders of 4, 7, and 10 response choices. A total of 33 individuals participated in this
pilot study. The results indicated that relatively comparable levels of discriminability were
observed across the three response set sizes. As a result, 4 category choices were used in

subsequent studies.

Methods

Participants. A total of 33 undergraduates (25 female, 8 male) at the University of
Central Florida participated in the study, ranging in age from 18 to 29 (M = 19.12, SD = 0.376).
All participants were recruited using the SONA system and were screened for normal or
corrected-to-normal vision.

Procedure. Participants viewed 96 photographs of components (or distractors) of mock
IEDs in a typical office building environment three times. The Fuzzy membership category
values for the stimuli were established in a previous study using mean ratings of 242
undergraduate students at the University of Central Florida (see Chapter 3). The photographs
used from this previous study were representatives of both mean category rating, and standard
deviation within that category as divided by three approximately equal intervals. Within each of

four mean categories, eight photographs of low standard deviation, eight photographs of medium
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standard deviation, and eight photographs of high standard deviation were selected. Each of
those groups (containing the eight photographs) were further partitioned by the z-scores of the
standard deviations from the mean standard deviation within the group in such a way that two
photos with z-scores below -0.5, four photos with z-scores between -0.5 and 0.5, and two photos
with z-scores above 0.5 were selected. Stimuli were presented to the participants on a standard
desktop computer.

Participants completed an informed consent and a brief demographic questionnaire.
Participants were then presented with a set of instructions describing the task and presented with
the opportunity to ask questions. Each image was presented for 1600 ms, a length slightly longer
than the length used in the previous study and the length of viewing that was used in all
subsequent experiments, and participants were instructed to rate the image on one of three scales
(a 4 point scale, a 7 point scale, and a 10 point scale). Each image was followed by a response
screen that contained a visual image of the scale the participant was to use to rate the image.
Participants were randomly assigned to one of the six possible ordering conditions of the three

response scales. At the conclusion of the experiment, the participants were debriefed.

Results

In analyzing the data, Greenhouse-Geisser was used to correct for violation of sphericity
in all F tests involved; the uncorrected degrees of freedom are reported as well as the epsilon
used for the correction. Participant responses were analyzed with a three-way analysis of
variance comprised of three levels of response choice (4 choices, 7 choices, 10 choices), three
levels of stimulus variability (low, medium, high; see Table 2), and four levels of stimulus mean
rating (1.0 — 1.49, 1.5 - 2.49, 2.5 - 3.49, 3.5 - 4.0). All main effects and interactions were

statistically significant at the .05 significance level (see Table 3).
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Table 3. Omnibus ANOVA for Stimulus Ratings

Effect df € SS MS F p Mp?
Response Choices 2 731 2288.604 1144302 664.748 <.001 .954
Error 64 110.170 1.721
Stimulus Mean 3 617 3794.373 1264.791 314.939 <.001 .908
Error 96 385.535 4.016
Stimulus Variability 2 852  19.560 9.780 20.410 <.001 .389
Error 64 30.667 479

Response Choices*Stimulus 6 450 625.910 104.318 183.895 <.001 .852
Mean

Error 192 108.916 567

Response Choices*Stimulus 4 734 4.100 1.025 6.124 <.001 .161
Variability

Error 128 21.425 167

Stimulus Mean*Stimulus 6 538 128.673 21.446  41.325 <.001 .564
Variability

Error 192 99.638 519

Response Choices*Stimulus 12 521 17.449 1.454 8.074 <.001 .201
Mean*Stimulus Variability
Error 384 69.154 .180

Additional ANOVAs were computed to further investigate the observed interactions; a 4
(stimulus mean rating: 1.0 — 1.49, 1.5 — 2.49, 2.5 — 3.49, 3.5 — 4.0) x 3 (stimulus variability:
low, medium, high) ANOVA was computed for each level of response choice (4 choices, 7
choices, 10 choices). The ANOVAs revealed significant main effects for stimulus mean,
significant main effects for stimulus variability, and significant interactions of stimulus mean and

stimulus variability across all response sets (see Table 4).
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Table 4. 4 x 3 ANOVAs for Stimulus Ratings with Each Response Set Condition

Effect Response F p e €
Set Size
Stimulus Mean 4 F(3,96)=294.707 <.001 .902 .690
7 F(3,96)=288.430 <.001 .900 .735
10 F(3,96)=284.104 <.001 .899 .585
Stimulus Variability 4 F(2, 64)=9.810 <001 .235 .932
7 F(2,64)=12.192 <.001 .276 .826
10 F(2,64)=16.413 <001 .339 .908
Stimulus Mean*Stimulus Variability 4 F(6,192)=28.874 <.001 .474 .520
7 F(6, 192)=29.354 <.001 .478 .595

10 F(6, 192)=26.696 <.001 .455 .656

For each response set condition, the significant stimulus mean by stimulus variability
interaction was explored by computing one-way ANOVAs of the effect of stimulus mean within
each level of stimulus variability. For each response set, there was a significant effect for
stimulus mean across all conditions of stimulus variability (see Table 5). To ensure adequate
variability across response set conditions for the subsequent experiments, the two-way
interaction was also analyzed by computing one-way ANOVAs on the effect of stimulus
variability within each level of stimulus mean for each response set condition. Although a
nonstandard practice of analysis, it was deemed appropriate in this instance to explore the
interactions in both directions in order to more fully evaluate the variability across the response
sets. Each response set showed a significant effect for stimulus variability across mean rating
categories, with the exception of 7 response choices at the highest mean rating category (see

Table 5).
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Table 5. One-way ANOVAs for Stimulus Rating within Each Response Set Size Condition

Effect Condition Response F p Mp? €
Set Size
Stimulus Low Variability 4 F(3,96) =322.461 <.001 .910 .660
Mean 7 F(3,96) =314.894 <.001 .908 .791
10 F(3,96) =276.041 <001 .896 .651
Medium Variability 4 F(3,96) =202.079 <.001 .863 .831
7 F(3,96) =187.801 <.001 .854 .831
10 F(3,96) =202.371 <.001 .863 .647
High Variability 4 F(3,96)=133.711 <.001 .807 .813
7 F(3,96) =153.241 <.001 .827 .831
10 F(3,96)=177.841 <001 .848 .766
Stimulus Mean 1.0 — 1.49 4 F(2, 64) = 23.600 <.001 424 687
Variability 7 F(2, 64) = 34.360 <001 518 .801
10 F(2, 64) =19.103 <.001 .374 756
Mean 1.5 -2.49 4 F(2, 64) = 20.637 <001 .392 .786
7 F(2,64)=22.198 <001 .410 .757
10 F(2, 64) =42.729 <001 572 .891
Mean 2.5 — 3.49 4 F(2, 64) = 36.705 <.001 534 .826
7 F(2, 64) = 38.491 <.001 546 .929
10 F(2, 64) = 18.622 <.001 .368 .901
Mean 3.5 -4.0 4 F(2, 64) = 5.497 001 .147 821
7 F(2,64) =1.701 .20 050 .821
10 F(2, 64) = 4.258 033 117 .696

The interaction between the number of choices and the stimulus mean rating is illustrated
in Figure 5. All response sets yielded increasing functions; as the stimulus mean category
increased, the mean rating increased, a result to be both expected and desired. It is notable that
all three levels of response choices yielded similar patterns across the mean categories. The
effect sizes across the mean differences were calculated for 4, 7, and 10 choices and these data

are presented in Table 6. Note that large effect sizes were obtained across all comparisions

within each response category.
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Table 6. Effect sizes across mean differences by number of response choices

Stimulus Mean Cohen’sd  Cohen’sd  Cohen’sd

Comparison 4 choices 7 choices 10 choices
1.0-1.49t01.5-2.49 1.823 2.023 1.869
1.0-1.49t025-3.49 4.106 4.386 4.253
10-149t03.5-4.0 5.108 5.445 5.413
15-2.49t025-3.49 1.804 1.925 1.965
15-249t035-4.0 2.596 2.787 2.920
25-3.49t035-4.0 -0.980 1.071 1.131

The interaction between the number of choices and the stimulus variablity is shown in
Figure 6. Again, we observe similar patterns across all three response conditions (4, 7, and 10).
It does not appear that increasing the number of response categories results in an increase in

sensitivity to the manipulation of the standard deviation of the stimuli.
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Figure 7, Figure 8, and Figure 9 depict the interaction between stimulus mean category
rating and stimulus variability across the three sets of response choices. Once again, a similar
pattern was observed across response set conditions. Regardless of whether participants were
provided response sets of 4, 7, or 10 choices, the mean ratings increased as the categories
increased with similar functional patterns across variability conditions. For example, perusal of
the Figures reveals that the low variabilty condition produced a similar jump between the 1.5 —

2.49 Mean and the 2.5 — 2.49 Mean across all response sets.
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Effect sizes were calculated within each response set size across the stimulus mean and
stimulus variability conditions. These data are presented in Table 7. What is notable here is that
although the pattern is similar across all response sizes, a few differences emerge. In the 4
response choices condition, there were larger effect sizes for larger stimulus mean ratings and for
larger stimulus variability. Additionally, as the stimulus mean increased, the effect sizes
changed sign across all categories. This indicates that at the lower stimulus mean categories, low
variation images tend to be associated with a lower participant mean rating but at the higher
stimulus mean categories, low variation images tend to have a higher partipant mean rating; that
is, low variation images in the lower stimulus mean categories tend to be rated as a lower threat
than more variable images and low variation images in the higher stimulus mean categories tend
to be rated as a higher threat than more variable images. It was anticipated that this pattern

would be replicated in subsequent experiments.
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Table 7. Effect sizes by response choices across means and standard deviations

Stimulus Variability Cohen’s d Cohen’s d Cohen’s d
Mean compared 4 choices 7 choices 10 choices
1.0-1.49 Low to Medium 0.676 0.933 0.497
Low to High 1.382 1.386 1.077
Medium to High 0.568 0.320 0.454
1.5-2.49 Low to Medium 0.186 0.223 0.225
Low to High 0.830 0.898 0.990
Medium to High 1.714 0.648 0.762
2.5-3.49 Low to Medium -1.273 -1.068 -0.699
Low to High -1.194 -1.194 -0.738
Medium to High 0.052 -0.095 -0.038
35-4.0 Low to Medium -0.769 -0.117 -0.316
Low to High -0.931 -0.246 -0.372
Medium to High -0.108 -0.163 -0.050
Discussion

Based on the analysis, it was concluded that four response categories capture sufficient
variability in ratings, as reflected in the magnitude of the effect sizes for the experimental
manipulations, when participants were provided 4 response choices. The patterns across the
means and standard deviations are similar to those of the 7 and 10 response choice conditions,
but the effect sizes are comparable or larger in the 4 response choice set. For example, looking
at a mean stimulus rating of 1.5 — 2.9 in Table 5, we see that the effect size comparing medium
and high variability is much larger given a response set of 4 choices (1.714) than given a
response set of 7 choices (0.648) or 10 choices (0.762). A similar increase in effect size occurs
in comparing low to medium variability when the mean is 2.5 — 3.49 and again when the mean is
3.5 — 4.0. Across all conditions, we see substantial effect sizes, so we obtain meaningful
differences across mean categories and variability conditions regardless of response set size.

Further, the interaction between mean category and variability condition is present across all
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three response sets. One might expect that increasing the number of response choices would
result in capturing more variability, but the empirical evidence does not indicate that this is the
case for the present stimuli. Although the effect sizes are strong across all three response set
conditions, we appear to gain little by increasing the response set size for participants. The
response set size of 4 was therefore retained for the subsequent studies. Note that this was also
the response set used in the previous studies that established the mean categories for the stimuli

to be used in experiments 1 and 2.
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CHAPTER 5: STUDY 1
Methods

Participants. Because of the use of structural equation modeling in this research, a
direct power analysis was not performed, as too many arbitrary estimates were required. Instead,
charts relating power and sample size were referenced (G. R. Hancock and Freeman, 2001) but
recommended sample sizes were beyond the scope of the present work. To obtain a more
tractable sample size, Kline (2011) recommends a minimum ratio for the number of participants
to the number of parameters, based on the article of Jackson (2003). Using this minimum
recommendation, a minimum sample size of 190 established. A total of 206 undergraduates (135
female, 71 male) at the University of Central Florida participated in the study, ranging in age
from 18 to 58 (M = 20.36, SD = 4.549). Participants were recruited from undergraduate
psychology courses through the SONA system, where they earned course credit for their
participation. The SONA system was used to screen all participants as having normal or
corrected-to-normal vision. All participants completed a brief demographic questionnaire (see
Appendix B).

Experimental Design. Experiment 1 utilized a 3 (stimulus variability: low, medium,
high) x 4 (stimulus mean rating: 1.0 — 1.49, 1.5 - 2.49, 2.5 — 3.49, 3.5 — 4.0) within subjects
design. Here, the stimulus rating level varied between 1 and 4 with 1 indicating that no threat
was present and 4 indicating that a threat was definitely present. The dependent variable was the
threat level (fuzzy membership response category) of the stimulus.

Materials. A total of 96 photographs of components (or distractors) of mock IEDs in a
typical office building environment were used. The stimuli were previously normed in terms of

their Fuzzy membership category using mean ratings of 242 undergraduate students at the
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University of Central Florida (see previous study in chapter 3). The photographs to be used were
randomly selected representatives of both mean category rating, and standard deviation within
that category as divided by three roughly equal intervals. Within each of four mean categories,
eight photographs of low standard deviation, eight photographs of medium standard deviation,
and eight photographs of high standard deviation were used. Each of those groups (containing
the eight photographs) were further partitioned, prior to random selection of the photographs, by
the z-scores of the standard deviations from the mean standard deviation within the group in such
a way that two photos with z-scores below -0.5, four photos with z-scores between -0.5 and 0.5,

and two photos with z-scores above 0.5 were selected (see Table 8).

Table 8. Categories of Variability for Selected Photographs

z < —=0.5 —-0.5<z<05 0.5<z
Low Variability 2 photographs 4 photographs 2 photographs
Medium Variability 2 photographs 4 photographs 2 photographs
High Variability 2 photographs 4 photographs 2 photographs

Stimuli were presented to the participants on a standard desktop computer. A visual
coding system (see Figure 12) was used to represent the response keys on the keyboard: “no
threat” was color coded with green (fuzzy response category 1), “unlikely threat” was color
coded with yellow (fuzzy response category 2), “likely threat” was color coded with orange
(fuzzy response category 3), and “definite threat” was color coded with red (fuzzy response
category 4). In addition to the color-coding with green, yellow, orange, and red, the keys also
displayed the number of their rating (the green key had a 1 on it, the yellow key had a 2 on it,

and so on).
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Measures. Subtests of the Kit of Factor-Referenced Cognitive Tests (Ekstrom, 1976)
were used to measure spatial orientation and visualization, and 50 item domain scale (10 items
per domain factor) from the International Personality Item Pool (IPIP; Goldberg et al., 2006) was
used to measure personality traits.

Procedure. Participants were asked to complete an informed consent and a brief
demographic form. Participants then completed the tests from the Kit of Factor-Referenced
Cognitive Tests and the IPIP (using pen and paper for the cognitive tests and a computerized
version for the IPIP). Participants then viewed several computer screens of instructions
describing the task. In these instructions, participants were told that they would be viewing
images of a building that needs to be scanned for IEDs (see Figure 10 for example IEDs that
were used). The participants received the explanation that an uninhabited remote vehicle has
been sent into the building to take photographs of rooms, and they were viewing these
photographs on a computer monitor (see Figure 11 for example stimuli) for 1600 ms each. They
were instructed to respond to each image with a rating between 1 and 4, where 1 indicates that
the room is free of threats and 4 indicates the room definitely contains a threat. Participants
received instructions that the colors on the response keys on the keyboard represent the different
potential threat levels of the rooms.

Participants were then given an example of the fuzzy ratings using a non-1ED stimulus.
Photographs of a model ship in different stages of assembly were shown to the participants, and
they were told what rating the experimenter would assign to the photograph along with a brief
explanation of the properties of the stimulus that indicate the rating is appropriate. The detailed
instructions are provided in the Appendix A. Following the instructions, participants were asked

if they have any questions regarding the task or the rating system.
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Participants then viewed the pre-selected stimuli on a computer monitor for a duration of
1600 milliseconds. Following the stimulus, a screen requesting a rating was presented and the
participant could not advance to the next trial until a rating had been entered. The presentation
of the stimuli was blocked so that images of low variability across all mean categories appear in
one block, images of medium variability appear in a second block, and images of high variability
appear in a third block. Each block was separated by a masking screen, so that the participants’
ratings of individual pictures should not be influenced by the variability associated with the
preceding picture. The order of mean category block was randomized within each variability
condition. The order of variability block presentation was counter-balanced: six configurations
of the three blocks were possible, and each participant was randomly assigned to one of those six
conditions. The presentation order of the pictures within each block was predetermined by

randomizing the sequence.

At the conclusion of the experiment, participants were debriefed.

Figure 10: Types of IEDs.
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Likely Threat

Figure 12: Visual Coding System.
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Results

Mapping Functions. Each stimulus in the study had a mean rating that fell into one of
four categories: low (1.0 — 1.49); medium low (1.5 — 2.49); medium high (2.5 — 3.49); or high
(3.5 —4). These categorical values defined the state of the world for this study, and a mapping
function is necessary to assign a fuzzy signal strength to each stimulus. Initially, an equal
interval linear mapping function that assigned fuzzy signal strength based on stimulus category
mapping was explored; that is, all pictures with mean ratings from 1.0 — 1.49 were assigned a
fuzzy signal strength of 0, all pictures with mean ratings from 1.5 — 2.49 were assigned a fuzzy
signal strength of 1/3, all pictures with mean ratings from 2.5 — 3.49 were assigned a fuzzy signal
strength of 2/3, and all pictures with mean ratings from 3.5 — 4 were assigned a fuzzy signal
strength of 1. However, it was apparent that a great deal of information was lost with such a
mapping. Using this strategy, fuzzy estimates could not be obtained for the low and high
categories, as these contained no degree of hit or no degree of miss.

Thus, degree of signal was defined for each picture using the mapping

__ picture mean — 1.11
5T 2.79

where 1.11 is the minimum stimulus mean and 2.79 is the range of stimulus means. Thus, the
picture with the lowest stimulus mean was mapped to s = 0 and the picture with the highest
stimulus mean was mapped to s =1. An equal interval linear mapping was used for the
response: a response of low was mapped to r = 0; a response of medium low was mapped to
r = 1/3; a response of medium high was mapped to r = 2/3; and a response of high was
mapped to r = 1.

Preliminary Analysis. In analyzing the data, Greenhouse-Geisser was used to correct

for violation of sphericity in most F tests involved; where appropriate, the uncorrected degrees of
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freedom are reported as well as the epsilon used for the correction. The means and standard
deviations of participant rating responses and participant median response times are provided in

Table 9 and Table 10.

Table 9. Descriptive Statistics for Participant Rating Responses (N=206)

Stimulus Mean Stimulus Response Response
Variability Mean Standard
Deviation
1.0-1.49 Low 1.2364 .32569
Medium 1.4033 41047
High 1.6474 56065
1.5-2.49 Low 2.1011 .60825
Medium 2.2223 56672
High 2.5284 53652
2.5-3.49 Low 3.5041 .38909
Medium 2.9547 47618
High 3.0130 53693
35-4.0 Low 3.8642 .20585
Medium 3.6387 32154
High 3.7027 27813

Table 10. Descriptive Statistics for Participant Response Times (N=206)

Stimulus Mean Stimulus Response Response
Variability Mean Standard

Deviation

1.0-1.49 Low 542.6796  324.82168

Medium 637.1553  467.01625

High 698.0801  493.81265

1.5-2.49 Low 800.5534  562.79445

Medium 798.4369  649.87026

High 765.1820  513.00128

2.5-3.49 Low 552.7840  341.94345

Medium 666.8010  385.79495

High 691.5340  469.64025

3.5-4.0 Low 460.5801  270.74238

Medium 539.5194  285.37100

High 4945583  273.50497
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Participant responses were analyzed with a two-way analysis of variance having four
levels of stimulus mean rating (1.0 — 1.49, 1.5 - 2.49, 2.5 — 3.49, 3.5 - 4.0) and three levels of
stimulus variability (low, medium, high). All main effects and interactions were statistically
significant at the .05 significance level (see Table 11). Pairwise comparisons showed significant
differences between each mean category and significant differences between each variability

category.

Table 11. 4x3 ANOVA of Participant Responses

Effect df € SS MS F P Mp?
Stimulus Mean 3 772 1890.906 630.302 2996.658 <.001 .936
Error 615 129.356 210
Stimulus Variability 2 .966 12.421 6.210 40.973 <.001 .167
Error 410 62.144 152
Stimulus Mean*Stimulus 6 .800 68.245 11.374 147471 <.001 .418
Variability
Error 1230 94.868 077

Additional one-way ANOVAs were computed to further investigate the interactions.
Tests of the effects of mean category at each level of signal variability indicated statistically
significant main effects for stimulus mean at low stimulus variability, F(3, 615) = 2549.425, p <
.001, & = .763, np? = .926, at medium stimulus variability, F(3, 615) = 1712.750, p < .001, ¢ =
875, np? = .893, and at high stimulus variability, F(3, 615) = 1162.175, p < .001, € = .935, n? =
.850. At low stimulus variability, there was a significant linear trend, F(1, 205) = 7851.697, p <
.001, np? = .975, quadratic trend, F(1, 205) = 122.692, p < .001, np? = .374, and cubic trend, F(1,

205) = 179.312, p < .001, np? = .467. At medium stimulus variability, there was a significant
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linear trend, F(1, 205) = 4105.893, p < .001, ny? = .952, and quadratic trend, F(1, 205) = 8.607, p
=.004, np? = .040. At high stimulus variability, there was a significant linear trend, F(1, 205) =
2611.664, p < .001, np? = .927, quadratic trend, F(1, 205) = 16.770, p < .001, n,? = .076, and
cubic trend, F(1, 205) = 33.905, p < .001, np? = .142.

These interactions are depicted in Figure 13. As expected, lower variability stimuli were
associated with lower responses in the lower stimulus mean categories and higher responses in
the higher stimulus mean categories. Figure 13 shows that, as variability increases, ratings
increase in the lower stimulus mean categories; however, there is not a similar trend in the higher

stimulus mean categories.
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Figure 13. Mean Participant Response as a Function of Mean Stimulus Category in Study 1

Note: Error bars are standard errors

Participant median response times were analyzed with a two-way analysis of variance
having four levels of stimulus mean rating (1.0 — 1.49, 1.5 - 2.49, 2.5 — 3.49, 3.5 —4.0) and three
levels of stimulus variability (low, medium, high). All main effects and interactions were
statistically significant at the .05 significance level (see Table 12).
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Table 12. 4x3 ANOVA of Participant Response Times

Effect df € SS MS F P Mp?
Stimulus Mean 3 .827 26079387.898 8693129.299 66.422 <.001 .245
Error 615 80489950.435 130877.968
Stimulus Variability 2 2869702.904 1434851.452 4.188 .016 .020
Error 410 140478527.430 342630.555
Stimulus 6 827  2721061.163  453510.194 5.453 <.001 .026
Mean*Stimulus
Variability
Error 1230 102304089.504 83174.057

Additional one-way ANOVAs were computed to further investigate the interactions.
Tests for the effects of mean category at each level of signal variability indicated statistically
significant main effects for stimulus mean at low stimulus variability, F(3, 615) = 52.650, p <
.001, & = .678, np? = .204, at medium stimulus variability, F(3, 615) = 21.553, p <.001, € = .780,
np? = .095, and at high stimulus variability, F(3, 615) = 27.046, p < .001, € = .965, ny>=.117. At
low stimulus variability, there was a significant linear trend, F(1, 205) = 44.471, p < .001, np? =
.178, quadratic trend, F(3, 615) = 70.586, p < .001, np? = .256, and cubic trend, F(3, 615) =
42.003, p <.001, np?=.170. At medium stimulus variability, there was a significant linear trend,
F(1, 205) = 15.339, p < .001, np? = .070, quadratic trend, F(3, 615) = 41.522, p <.001, np? = .168,
and cubic trend, F(3, 615) = 8.836, p = .003, ny = .041. At high stimulus variability, there was a
significant linear trend, F(1, 205) = 46.333, p < .001, np? = .184, and quadratic trend, F(3, 615) =
33.124, p <.001, np? = .139.

Figure 14 shows the pattern of response time across conditions. Across all levels of

variability, there is an increase in response time at the middle low stimulus mean category, and
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the fastest response time occurring in the high stimulus mean category. Except in the middle low

stimulus mean category, low variability pictures yield faster response times.
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Figure 14. Mean Participant Response Time as a Function of Stimulus Mean Category in Study 1

Note: Error bars are standard errors.

Personality and Cognitive Traits. All cognitive tests penalized for incorrect answers;
thus, negative scores were possible. A perfect score on the ETS Card Rotation Test (S1) is 160
and the lowest score possible is -160; a perfect score on the ETS Cube Comparison Test (S2) is
42 and the lowest score possible is -42; a perfect score on the ETS Form Board Test (VZ1) is 48
and the lowest score possible is -48; a perfect score on the ETS Paper Folding Test (VZ2) is 20
and the lowest possible score is -20; and a perfect score on the ETS Surface Development Test
(VZ3) is 60 and the lowest possible score is -60. For the 50 item version of the International
Personality Item Pool (IPIP), each factor has a max score of 50. The means and standard
deviations of participants’ performance on the cognitive tests and personality factors are shown

in Table 13.
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Table 13. Descriptive Statistics for Cognitve and Personality Tests (N=206)

Trait Mean Standard

Deviation
S1 93.75 35.847
S2 13.33 10.504
VZ1 2.35 16.250
VZ2 5.37 6.838
VZ3 16.78 24.220
Extraversion 31.76 8.736
Emotional Stability 30.94 8.031
Conscientiousness 35.58 6.476
Agreeableness 39.99 6.215
Intellect/Imagination 36.83 5.927

Correlations. Correlations were run between the five cognitive tests (spatial ability:

S1—ETS Card Rotation Test, S2—ETS Cube Comparison Test; visualization ability: VZ1—

ETS Form Board Test, VZ2—ETS Paper Folding Test, VZ3—ETS Surface Development Test),

average sensitivity (d'), average response bias (c), and median average response time (RT).

These correlations were run with the data collapsed over all signal variability categories. All

correlations were significant, except response time only had a significant correlation with S1 (see

Table 14).

Table 14. Correlations of Cognitive Traits with SDT Measures

Correlation Coefficients

S1 S2 VZ1 VZ2 VZ3 d’ C RT

S1 1

S2 515** 1

VZ1 A425%*  609** 1

VZ2 A402*%*  5E2**  641** 1

VZ3 A81**  656**  713**  .694** 1

d’ 245%*  264**  204**  288** . 335** 1

C 259%*  257**  255%*  243**  266**  .366** 1

RT -236**  -.078 022 027 .035 104 -.010 1
**p < .01
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Correlations were also computed between the personality characteristics (extraversion,
emotional stability, and conscientiousness), average sensitivity, average response bias, and
median average response time. These correlations were also computed with the data collapsed
over all signal variability categories. Table 15 shows that extraversion correlated with both
sensitivity and response time, such that higher extraversion scores were associated with lower
sensitivity and longer response time. Emotional stability also correlated positively with response

time.

Table 15. Correlation of Personality Traits with SDT Measures

Correlation Coefficients

Extraversion Emotional Conscientiousness d’ c RT
Stability
Extraversion 1
Emotional Stability .188** 1
Conscientiousness 170* 191** 1
d’ -.165* -.025 .038 1
C -.030 .067 .036 .366** 1
RT -.191** .146* .088 104 -.010 1

*p < .05, *p < .01

Sensitivity. Sensitivity was analyzed with a two-way analysis of variance having three
levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating (1.0 —
1.49,1.5-2.49,25-3.49, 3.5-4.0). All main effects and interactions were statistically
significant at the .05 significance level, with ny? values in the medium-to-large range (see Table

16).
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Table 16. 3 (Stimulus Variability) x4 (Stimulus Mean Category) ANOVA of Sensitivity

Effect df € SS MS F P Mp?
Stimulus Variability 2 14.154 7.077 29.827 <.001 .127
Error 410 97.280 237
Stimulus Mean 3 .891 81.322 27.107 89.896 <.001 .305
Error 615 185.449 .302
Stimulus Variability 6 .899 48.186 8.031 48.590 <.001 .192
*Stimulus Mean
Error 1230 203.295 .165

The interaction between the stimulus variability and the stimulus mean category is
illustrated in Figure 15. As seen in the figure, both medium and high variability pictures resulted
in greater values of d’ for the middle stimulus mean categories. The pictures of low variability,
however, showed a decline between the two middle categories, rising again for the highest mean
category to approximately the same value as the lowest mean category. Both the lowest mean
category and the highest mean category have decreasing values of d' across increasing variability
of the stimulus, whereas the middle two mean categories both peak for medium variability

pictures.
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Figure 15. Mean Sensitivity as a Function of Stimulus Mean Category in Study 1

Note: Error bars are standard errors.

Additional one-way ANOVAs of mean category within each level of variability were
computed to further investigate the interactions. Tests of the effect of mean category at each
level of signal variability indicated significant main effects for stimulus mean at low stimulus
variability, F(3, 615) = 26.417, p < .001, & = .935, ny? = .114, at medium stimulus variability,
F(3, 615) = 104.319, p < .001, & = .874, ny? = .337, and at high stimulus variability, F(3, 615) =
68.509, p < .001, € = .911, np? = .250. At low variability, there was a significant linear trend,
F(1, 205) = 8.062, p = .005, np? = .038, and cubic trend, F(1, 205) = 73.801, p < .001, np? = .265.
At medium variability, there was a significant quadratic trend, F(1, 205) = 254.063, p < .001, 2
= .553. At high variability, there was a significant linear trend, F(1, 205) = 13.918, p < .001,
np? = .064, and quadratic trend, F(1, 205) = 157.379, p <.001, n,% = .434.

Response Bias. Response bias was analyzed with a two-way analysis of variance having

three levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating
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(1.0-1.49,1.5-249,25-3.49, 3.5-4.0). All main effects and interactions were statistically

significant at the .05 significance level (see Table 17).

Table 17. 3 (Stimulus Variability) x4 (Stimulus Mean Category) ANOVA of Response Bias

Effect df € SS MS F P Np?
Stimulus Variability 2 11.503 5.752 26.552 <001 .115
Error 410 88.812 217
Stimulus Mean 3 .840 830.922 276.974 906.174 <.001  .816
Error 615 187.976 .306
Stimulus Variability 6 .885 32.099 5.350 40.905 <.001 .164
*Stimulus Mean
Error 1230 164.116 133

Figure 16 shows the interaction between stimulus mean category and stimulus variability.
As the mean category increases, response bias decreases across all levels of stimulus variability.
Thus, there is an inclination towards responding signal absent for the lowest level of stimulus
mean category (1.0 — 1.49 mean), little bias present at the next lowest level of stimulus mean (1.5
— 2.49 mean), and a tendency to respond signal present at the higher levels of stimulus mean.
Note that signals of lower variability are slightly more inclined to ilicit a stronger response bias
at the medium high stimlulus mean category level (2.5 — 3.49 mean) than the other variability

levels.

59



1.000
800 |
600 | !‘
400 | R
200 |
.000 L NG . . '
-200 | B e ™~

-400 "

-600 | R
-800 | Beerrrientd -3
-1.000 L

Index ¢

1.0 - 1.49 Mean 1.5-2.49 Mean 2.5 -3.49 Mean 3.5-4.0 Mean
Mean Category

eod@ee Low Variability  ==®@ «Medium Variability High Variability
Figure 16. Mean Response Bias as a Function of Stimulus Mean Category in Study 1

Note: Error bars are standard errors.

Tests of the effect of mean category at each level of variability were computed to further
investigate the interactions. The ANOVAs showed significant main effects for stimulus mean at
low stimulus variability, F(3, 615) = 640.479, p < .001, £ = .923, np? = .758, at medium stimulus
variability, F(3, 615) = 440.641, p < .001, £ = .932, ny> = .682, and at high stimulus variability,
F(3, 615) = 426.962, p < .001, & = .857, np? = .676. At low variability, there was a significant
linear trend, F(1, 205) = 2184.355, p < .001, np? = .914, quadratic trend, F(1, 205) = 99.065, p <
001, np? = .326, and cubic trend, F(1, 205) = 49.673, p < .001, np? = .195. At medium
variability, there was a significant linear trend, F(1, 205) = 1002.519, p < .001, np® = .830,
quadratic trend, F(1, 205) = 12.612, p < .001, np? = .058, and cubic trend, F(1, 205) = 34.937, p
<.001, np? = .146. At high variability, there was a significant linear trend, F(1, 205) = 807.754,
p < .001, np? = .798, quadratic trend, F(1, 205) = 9.052, p = .003, np? = .042, and cubic trend,

F(1, 205) = 40.265, p < .001, n,2 = .164.
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Structural Equation Modeling with Cognitive Factors. The results shown in Table 14
indicated strong correlations between the cognitive measures implemented (two spatial tests, S1
and S2, and three visualization tests, VZ1, VZ2, and VZ3). Consequently, one model grouping
these together as the common factor “cognitive skills” was developed (see Figure 17), and a
reasonable model fit was obtained (CFI = 1.000; TLI p? = 1.016; RMSEA < .001, 90% CI (<
.001, .029); AIC = 22.846; y*(4) = .846, p = .932). As seen in the model, the latent factor

accounts for large portions of the observed variance.

Cognitive Skills

.53***
S1 S2 VZ1 Vz2 VZ3
.28 .55 .66 .61 .78
21%*

*p < .05, **p < .01, ***p < .001

Figure 17. Model 1: SEM Model of Single Cognitive Factor

Note: Standardized path coefficients shown. R? values are indicated next to each observed variable. Observed variables not
shown.
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Model 1 groups all cognitive skills into one latent factor. A second latent structure was
tested in which the cognitive skills were grouped by two factors: spatial ability and visualization
ability. The basic structure provided a reasonable fit (CFI = 1.000; TLI p? = 1.016; RMSEA <
.001, 90% CI (< .001, .029); AIC = 22.846; ¥*(4) = .846, p = .932). However, the two factor
model resulted in a poor fit when incorporated into a structural regression model for response
time (CFI = .908; TLI p? = .849; RMSEA = .088, 90% CI (.074, .103); AIC = 354.763; ¥3(83) =
214.763, p < .001) and for sensitivity (CFI = .844; TLI p2 = .790; RMSEA = .078, 90% CI (.064,
.091); AIC = 330.427; ¥?(101) = 226.427, p < .001), although an adequate fit was observed for
response bias (CFI = .988; TLI p? = .982; RMSEA = .031, 90% CI (< .001, .051); AIC =
232.628; ¥?(91) = 108.628, p = .100). As a result, the latent structure of Model 1 was used to
analyze the relation of the cognitive traits to performance.

A structural regression model (Model 2) was developed to analyze sensitivity as a
function of the latent variable specified in Model 1. Model 2 also proved to have a reasonable fit
(CFI = .970; TLI p? = .960; RMSEA = .034, 90% CI (< .001, .052); AIC = 228.779; ¥*(101) =

124.779, p = .054). Figure 18, depicts the structure of Model 2.
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Figure 18. Model 2: Latent Structure of SEM Model Analyzing d’

Middle High Mean
Category

36" 24

*p < .05, **p < .01, ***p < 001

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables not shown.

As seen in the model, Cognitive Skills accounts for more variability in sensitivity
performance across the two middle mean categories, but cognitive skills were not strongly
associated with performance in the two extreme category conditions. Thus, the cognitive traits
predict sensitivity in the conditions in which the stimulus category membership is more

ambiguous.
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Model 3 analyzed variation in response bias as a function of the cognitive skills factor of
Model 1. Model 3 also has a reasonable fit (CFI = .991; TLI p? = .985; RMSEA = .028, 90% CI
(< .001, .049); AIC = 234.449; ¥*(85) = 98.449, p = .151). Figure 19, depicts the structure of

Model 3.
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Figure 19. Model 3: Latent Structure of SEM Model Analyzing Index c
Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their

respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables not shown.
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Cognitive Skills accounts for more variability in criterion setting in the low mean
categories compared to the high mean categories. Higher cognitive skill was associated with
greater conservatism in responding, but more so for stimuli with lower signal membership.

Model 4 analyzed variation in response time as a function of the cognitive skills factor of
Model 1. Model 4 also has a reasonable fit (CFI = .976; TLI p? = .959; RMSEA = .046, 90% Cl
(.025, .064); AIC = 260.005; ¥*(81) = 116.005, p = .007). However, cognitive skills did not
significantly predict response time across levels of mean category. Figure 20 depicts the

structure of Model 4.
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Figure 20. Model 4: Latent Structure of SEM Model Analyzing Response Time
Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their

respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables not shown.
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Structural Equation Modeling Incorporating Personality Traits. Structural
regression analyses were conducted to analyze the effect of the three personality traits on d’, c,
and response time (Models 5, 6, and 7, respectively) and a subsequent analysis illustrates the
interaction between the cognitive and personality characteristics effect on these three
performance criterions (Models 8, 9, and 10, respectively). Analysis of sensitivity is shown in
Model 5 (see Figure 21) and a reasonable model fit was obtained (CFI = 1.000; TLI p? = 1.025;

RMSEA < .001, 90% CI (< .001, .035); AIC = 170.061; 42(65) = 60.061, p = .650).
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Figure 21. Model 5: SEM of Personality Traits Analyzing d*
Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their

respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables not shown.
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The personality factors account for more of the variance in the extreme stimulus mean
categories, having little effect on sensitivity in the middle categories. Individuals high in
conscientiousness are more discriminating than those low on the trait, but only in the low
stimulus mean category. Extroverts tend to be less discriminating, but only at the lowest threat
level, the low stimulus mean category.

Response bias was analyzed in Model 6 (see Figure 22). A reasonable model fit was
obtained (CFI = 1.000; TLI p? = 1.002; RMSEA < .001, 90% CI (< .001, .043); AIC = 187.186;
v?(52) = 51.186, p = .506). However, the personality traits did not significantly predict criterion

setting across levels of mean category.
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Figure 22. Model 6: SEM of Personality Traits Analyzing Index ¢

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables not shown.

Response time was analyzed in Model 7 (see Figure 23), and a reasonable model fit was
obtained (CFI = .970; TLI p? = .934; RMSEA = .054, 90% CI (.030, .076); AIC = 220.797;

+2(48) = 76.797, p = .005).
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Figure 23. Model 7: SEM of Personality Traits Analyzing Response Time

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for response time factors are not shown.

The personality factors accounted for the highest amount of variance in response time in
the middle high stimulus mean category, but contributed substantially to each category.
Extraverts tended to respond faster across all mean categories. Individuals high in emotional
stability and conscientiousness tended to have longer response times, but these differences were
significant only in the middle high and high stimulus mean categories.

Model 8 (Figure 24) illustrates the interaction between cognitive skills and extraversion

on sensitivity performance. A reasonable model fit was obtained (CFI = 1.000; TLI p? = 1.109;
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RMSEA < .001, 90% CI (< .001, < .001); AIC = 154.007; ¥%(65) = 44.007, p = .979). As the
model shows, however, the effect that the cognitive skills factor has on sensitivity does not
depend on extraversion (i.e., the cognitive skills by extraversion interaction term was not

significantly related to performance).
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Figure 24. Model 8: SEM Analysis of Extraversion Interacting with Cognitive skills for d*

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for sensitivity factors are not shown.
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Model 9 (Figure 25) illustrates the interaction between cognitive skills and extraversion
on response bias. A reasonable model fit was obtained (CFI = 1.000; TLI p? = 1.006; RMSEA <
.001, 90% CI (< .001, .040); AIC = 185.104; x*(52) = 49.104, p = .588). As the model shows,
however, the effect that the cognitive skills factor has on criterion setting does not depend on

extraversion.
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Figure 25. Model 9: SEM Model Analysis of Cognitive Skills Interacting with Extraversion for Index ¢

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for response bias factors not shown.

Analysis of response time failed to converge to a solution using the same latent model

structure as in the previous two models, so a path analysis was conducted. Model 10 (Figure 26)
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illustrates the interaction between cognitive skills and extraversion on response time. A
reasonable model fit was obtained (CFI = 1.000; TLI p? = .997; RMSEA = .037, 90% CI (< .001,
.129); AIC = 53.821; *(3) = 3.821, p = .281). As the model shows, however, the effect that

extraversion has on response time does not depend on the cognitive skills factor.
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Figure 26. Model 10: Path Analysis of Cognitive Skills Interacting with Extraversion for Response Time

Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category.
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Model 11 (Figure 27) illustrates the interaction between cognitive skills and emotional

stability on sensitivity. A reasonable model fit was obtained (CFI = 1.000; TLI p? = 1.066;

RMSEA < .001, 90% CI (< .001, .020); AIC = 161.504; x2(65) = 51.504, p = .888). As the

model shows, however, the effect that the cognitive skills factor has on sensitivity does not

depend on emotional stability.
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Figure 27. Model 11: SEM Analysis of Emotional Stability Interacting with Cognitive skills for d*

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for sensitivity factors are not shown.
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Model 12 (Figure 28) illustrates the interaction between cognitive skills and emotional
stability on response bias. A reasonable model fit was obtained (CFI = .999; TLI p? = .997;
RMSEA = .011, 90% CI (< .001, .046); AIC = 189.199; y4(52) = 53.199, p = .428). For every
increase of one unit in emotional stability the regression coefficient for the prediction of response
bias by cognitive skills decreased by -0.20 (middle low mean category) and -0.15 (middle high
mean category). Stated another way, higher emotional stability tended to weaken the
relationship between cognitive skills and response bias, but low emotional stability was

associated with a stronger relationship of cognitive skills to criterion setting.

74



Emotional Stability Cognitive Skills Cognitive Skills x

Mean Centered Mean Centered Emotional Stability
-.13 Py A3 .11
.04 AQ*** 22%* Boxs
-.02
.18* .18* -.15%

v

Low Mean Middle Low Mean Middle High Mean High Mean

Category Category Category Category

21 .20 .07 .03

AOFF* 50%**

*p < .05, **p < .01, ***p < .001

Figure 28. Model 12: SEM Analysis of Emotional Stability Interacting with Cognitive skills for Index ¢

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for response bias factors are not shown.

Response time was again analyzed with a path analysis (Model 13). A reasonable model
fit was obtained (CFI = .999; TLI p? = .992; RMSEA = .058, 90% CI (< .001, .143); AIC =
55.090; ¢*(3) = 5.090, p = .165). Model 13 is depicted in Figure 29. Higher emotional stability
was associated with longer response time, but for the highest mean category this relationship was

stronger for those lower rather than higher on the cognitive skills factor.

75



Emotional Stability Cognitive Skills Cognitive Skills x

Mean Centered Mean Centered Emotional Stability
-05 .
X 15% - 05 .08
15 * 05 _'09
-.14*
.14 .15* -.08
v ;
Low Mean Category Middle Low Mean Middle High Mean | |High Mean Category
Factor Score “ategory Factor Scorg [Category Factor Scorg Factor Score

'82***

*p < .05, **p < .01, ***p < .001

Figure 29. . Model 13: Path Analysis of Cognitive Skills Interacting with Emotional Stability for Response Time

Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category.

Model 14 (Figure 30) illustrates the interaction between cognitive skills and
conscientiousness on sensitivity. A reasonable model fit was obtained (CFI = 1.000; TLI p? =
1.009; RMSEA < .001, 90% CI (< .001, < .001); AIC = 153.565; ¥*(65) = 43.565, p = .981).

Individuals with higher performance on the cognitive skills tests were more sensitive to the
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ambiguous stimuli in the two middle categories, but for the middle low mean condition this

relationship was stronger for those low in conscientiousness.
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Figure 30. Model 14: SEM Analysis of Conscientiousness Interacting with Cognitive skills for d"

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for sensitivity factors are not shown.

Model 15 (Figure 31) illustrates the interaction between cognitive skills and
conscientiousness on response bias. A reasonable model fit was obtained (CFI = .996; TLI p? =

.992; RMSEA = .018, 90% CI (< .001, .049); AIC = 191.521; 42(52) = 55.521, p = .344). As the
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model shows, however, the effect that the cognitive skills factor has on criterion setting does not

depend on conscientiousness.
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Figure 31. Model 15: SEM Analysis of Conscientiousness Interacting with Cognitive skills for Index ¢

Note: Path coefficients are standardized. R? values for each latent factor for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category. Observed variables for response bias factors are not shown.

Response time was again analyzed with a path analysis (Model 16). A reasonable model
fit was obtained (CFI = 1.000; TLI p? = .997; RMSEA = .033, 90% CI (< .001, .127); AIC =

53.688; ¥*(3) = 3.688, p = .297). Model 16 is depicted in Figure 32. As the model shows,
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however, there was no significant interaction effect between conscientiousness and cognitive

skills.
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Figure 32. . Model 16: Path Analysis of Cognitive Skills Interacting with Conscientiousness for Response Time

Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. LMC = Low Mean Category, MLMC = Middle Low Mean Category, MHMC = Middle High Mean
Category, and HMC = High Mean Category.
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Discussion

Ratings and Response Time. The ANOVAs of participants’ responses (Table 11)
indicated that both the mean stimulus rating and variability categories for the stimulus influenced
participants’ responses. Further exploration indicated that within the lower stimulus mean
categories (1.0 — 1.49 and 1.5 — 2.49 mean), participants’ ratings of the stimulus increased as
variability increased. For the higher stimulus mean categories (2.5 — 3.49 and 3.5 — 4.9 mean),
participants’ ratings were highest in the lowest stimulus variability category and lowest in the
medium stimulus variability category. In the lower categories, the higher stimulus variability
categories are deviations from absence of threat and so it should make sense that these pictures
would result in higher mean ratings from participants.

In the upper categories, the higher stimulus variability categories are deviations from
complete presences of threat; it’s interesting, however, that there was a consistent pattern among
the two higher stimulus mean categories of stimuli of medium variability having lower
participant rating scores than stimuli of high variability. A possible explanation for this
phenomenon is that, when faced with greater uncertainty in the presence of degree of threat,
there is a natural inclination for perceived threat level to increase as the uncertainty grows (i.e.,
individuals erring on the side of caution). If this were the case, why then would the lowest
stimulus variability category be associated with the highest ratings? Because it has the clearest
degree of threat. That is, the threat level of images within this category were more consistent
than at medium or high variability.

Participants’ response times also varied as a function of both stimulus mean category and
stimulus variability (see Table 12). Pairwise comparisons revealed that within each stimulus

variability category, response time increased significantly as the mean stimulus category
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increased from low stimulus mean category to middle low stimulus mean category, and then
decreased so that the high stimulus mean category was significantly lower than all other stimulus
mean categories (however, there was not a significant difference between the response time in
the low mean category and the medium high mean category). Thus, participants were fastest
responding to high level threats and were slowest when low level threats were presented. This
pattern suggests that it takes longer for an individual to respond when presented with a stimulus
that is not an immediate threat, and this finding is explored in greater depth in Study 2.

FSDT Measures. Figure 15 illustrates sensitivity effects of stimulus mean category
within each variability category. Pairwise comparisons indicated significant differences among
all conditions with three exceptions (i.e., between the low stimulus mean category and high
stimulus mean category for low and medium variability pictures and between the middle low
stimulus mean category and middle high stimulus mean category for high variability pictures).
The medium and high variability pictures evince the same pattern, but the low variability was
associated with a more dramatic drop in sensitivity for the middle high stimulus mean category.
Figure 15 also shows that individuals are more discriminating in the nebulous categories (the
middle low and middle high stimulus mean categories) than in the extremes. In part, this may be
an artifact of the task: the range of values possible in the middle categories was double that in
the extreme categories, yet the same number of pictures were used in each category. In other
words, the pictures in the low and high categories had means that varied by at most 0.5 (1 — 1.49
and 3.5 — 4.0, respectively) whereas the pictures in the middle low and middle high categories
had means that varied by as much as 1.0 (1.5 — 2.49 and 2.5 — 3.49, respectively). That

limitation, may contribute to lower values of &’ in the low and high stimulus mean categories.
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The higher discrimination in the middle mean categories may also be related to the
response time. The longest response time occurred in the middle low stimulus mean category
(see Figure 14). It may be the case that the higher discrimination was a result of participants
taking longer to respond; that is, the participants may have more carefully considered the more
nebulous stimuli. In any event, it is unlikely that higher levels of uncertainty result in individuals
being more discriminating and further exploration is warranted to determine if this result is an
imbalance in width of the domain categories themselves, an artifact of the FSDT procedure itself,
a result of mapping functions that fail to completely describe the process, or a by-product of the
nature of a threat screening task.

Figure 16 shows that index c decreased across all stimulus mean categories; that is,
participants became more lenient as threat level increased. Considering only the two lower
stimulus mean threat categories, higher variability was associated with lower values of index c;
for the higher stimulus mean categories index ¢ was highest in the medium variability category,
but the lowest index c score switched from the low variability category to the high variability
category between the two mean categories (pairwise comparisons revealed that there was not a
significant difference in response bias in the high stimulus mean category between low
variability pictures and medium variability pictures; all other mean differences were significant).
In the lower stimulus mean categories, the higher variability pictures are deviations from absence
of threat, so a propensity to become more lenient in the higher variability categories seems fitting
in the context of the task. In the higher stimulus mean categories, the higher variability pictures
are deviations from complete presence of threat, so one might argue that the context of the task
would lead individuals to become more conservative for stimuli of higher variability. And while

that is the case in the transition from low variability to medium variability, the opposite is true in
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moving from medium variability to high variability. A possible explanation for this phenomenon
might again be that individuals are inclined to err on the side of caution (in this case, setting a
more lenient criterion) in order to avoid missing a true high-level threat in the presence of
increased uncertainty.

Individual Differences. A general SEM model (Model 1) was developed to analyze the
effects of visualization and spatial ability on task performance. In this model, all predictors
(performance on the five cognitive tests) were allowed to correlate because of the large amount
of variance the traits shared, unrelated to the stimulus mean categories. Model 2 analyzed the
influence of the five cognitive skills on sensitivity. As seen in Figure 18, higher scores on the
cognitive traits were associated with improved sensitivity in the two middle stimulus mean
categories but did not contribute significantly to the two extreme stimulus mean categories. That
is, in the presence of a clear threat or clear lack of threat, individuals with high and low
visualization and spatial skills perform in keeping with one another. However, when a partial
threat exists, individuals high in either visualization or spatial ability achieved greater
discrimination than those low in all such skills. Thus, it may be the case that the cognitive skills
factor assists individuals in evaluating ambiguous stimuli by facilitating recognition of key
aspects of a stimulus that indicate presence or absence of threat. It may be beneficial to rotate,
realign, or attempt to mentally reassemble an IED in order to recognize high versus low level of
threat when the object is presented in a disassembled state. Note that this result is in keeping
with previous studies that suggest that object rotation is necessary for recognition (e.g., Tarr and
Pinker, 1989) and that recognition is dependent upon object features (e.g., Cheung, Hayward,

and Gauthier, 2009).
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Model 3 analyzed the influence of the five cognitive skills on response bias. As seen in
Figure 19, both visualization and spatial ability result in an individual setting a more
conservative criterion in the all but the high stimulus mean category. That is, individuals high on
the cognitive skills factor have a higher threshold for what constitutes a threat when only a
partial signal is presented. It may be the case that such individuals set a higher criterion because
they are engaging in a mental reassembly process instead of deciding threat level purely on the
basis of component recognition. This result is similar to the finding of Larsen and Bundesen
(1998) who also concluded that mental rotation and translation was used when matching an
object to a template. In performing such a mental manipulation, one may become aware of
multiple uses for objects present (when not all necessary to construct an IED are present); as a
result, one may become more cautious in deciding what constitutes a threat. It is also worth
noting that the cognitive factor was not significantly related to response time (Figure 20).

In terms of personality traits, only extraversion and conscientiousness were found to be
significantly related to sensitivity, and only for performance in the low stimulus mean category
(Figure 21).  Extraverts tended to be less discriminating and individuals high in
conscientiousness tended to be more discriminating for very low threat levels. While these
findings are in keeping with previous research (e.g., Berch and Kanter, 1984; Rose et al., 2002),
the restriction of the result to the lowest mean category level may be due to the nature of the task.
In a threat detection task, as opposed to many traditional vigilance tasks (e.g., Becker, Warm,
Dember, & Howe, 1994; Hitchcock et al., 2003; Szalma et al., 2004), there may be a certain
amount of arousal that accompanies higher level threats causing a leveling in performance across
different personality traits. The personality traits did not seem to be related to response bias

(Figure 22).
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Model 7 (Figure 23) analyzed the influence of personality traits on response time, and it
is here that personality traits had the largest effect on performance. Across all stimulus mean
categories, individuals high on extroversion responded faster than those low on extroversion.
Those high on conscientiousness or high on emotional stability took longer to respond in the
high and middle high stimulus mean categories. Extroverts may respond faster because the
nature of the task (sitting quietly) is contrary to their nature. Humphreys and Revelle (1984)
linked performance in extraverts to higher levels of impulsivity; that is, the classification of
extraversion may be intertwined with a higher level of impulsivity that gears one to respond
faster. Conscientious individuals may spend longer evaluating the higher threat categories to
ensure they are correctly analyzing the threat level (i.e., trying to minimize false alarms).
Emotionally stable people may be simply be less reactive to perceived threats compared to those
lower on this trait, but this finding is also in keeping with work showing that individuals low on
neuroticism have a longer response time than those higher on the trait (e.g., Flehmig et al., 2010;
Robinson & Tamir, 2005).

The interaction between extraversion and performance on the five cognitive tests was
analyzed in Models 8 for sensitivity, Model 9 for response bias, and Model 10 for response time,
and yielded no significant influence on performance.

Models 11, 12, and 13 investigated the interaction between emotional stability and
performance on the five cognitive tests. Model 11 showed no significant effect of the interaction
on sensitivity, but Models 12 and 13 resulted in significant interactions. Figure 28 revealed that,
in dealing with more ambiguous stimuli (i.e., in the middle low and middle high stimulus mean
categories), individuals low on emotional stability showed a stronger relationship between

cognitive skills and criterion setting. Individuals high on emotional stability may experience less
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arousal when presented with a threat and, thus, may require fewer cognitive resources in
assessing that threat. The work of Lommen, Engelhard, and van den Hout (2010) lends credence
to this idea, a study in which individuals high in neuroticism were more lenient in declaring an
ambiguous signal threatening only when given a longer time delay to avoid the threat. Figure 29
illustrates that higher performance on the cognitive skills attenuated the positive relationship
between response time and emotional stability, but only for the highest threat level stimuli.
Thus, it may be the case that faster responding to threat stimuli by those low in emotional
stability as a result of increased emotional arousal can be dampened by higher levels of relevant
cognitive skills. Anxiety is known to impair performance on demanding tasks, and to be
particularly hindering in the presence of a threat. That is, lower performance by indviduals high
on anxiety is generally attributed to a preoccupation of worries and self-referent thoughts
(Matthews, 2008). Thus, individuals low on emotional stability have more cognitive activity
interfering with a threat detection task resulting in lower working memory and attentional
resources (Matthews et al., 2000). However, among those low on emotional stability, increased
performance on the cognitive skills factor (the visualization and spatial ability) contributes more
to criterion setting and response time. Thus, individuals high on the cognitive skills factor are
able to access alternate cognitive skills to perform the threat detection task.

The interaction between conscientiousness and performance on the five cognitive tests
was analyzed in Models 14, 15, and 16. No significant interaction was found for response bias
or reaction time, but Model 14 (Figure 30) indicates that individuals low on conscientiousness
had a stronger relationship between higher performance on cognitive skills and increased
sensitivity, but only in the middle low mean category of stimulus threat. It may be the case that

more conscientious individuals tend to more carefully inspect higher threat stimuli than lower
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threat stimuli, but when threat levels are lower (i.e., low membership ambiguous stimuli), the
tendency for conscientious individuals to inspect less carefully may be compensated for by
higher cognitive skills. One problem with this interpretation, however, is that conscientious
individuals tend to be generally more careful and detail-oriented in performing tasks (Matthews,
Deary, & Whiteman, 2009), and would thus likely carefully inspect stimuli regardless of threat
level. It may be that those higher in conscientiousness adopt different strategies for effort

allocation as a function of likelihood and ambiguity of threat.
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CHAPTER 6: STUDY 2

Methods

Participants. A total of 212 undergraduates (131 female, 81 male) at the University of
Central Florida participated in the study, ranging in age from 18 to 47 (M = 19.21, SD = 3.579).
One female participant’s data was omitted because a computer malfunction prevented her from
completing the experiment; total analyzed responses were N = 211. Participants were recruited
from undergraduate psychology courses through the SONA system, where they earned course
credit for their participation. The SONA system was used to screen all participants as having
normal or corrected-to-normal vision.  All participants completed a brief demographic
questionnaire.

Experimental Design. Experiment 2 utilized a 3 (stimulus variability: low, medium,
high) x 4 (stimulus mean rating: 1.0 — 1.49, 1.5 - 2.49, 2.5 — 3.49, 3.5 — 4.0) within subjects
design. The dependent variables are the threat level (fuzzy membership response category) of
the stimulus, length of time the stimulus is viewed prior to response, sensitivity (d°), response
bias (index c).

Materials. The same photographs from experiment one were used again in experiment
two. Stimuli was presented to the participants on a standard desktop computer. A visual coding
system was used to represent the response keys on the keyboard and a visual reminder was
located below the computer screen.

Procedure. Participants were requested to complete an informed consent and a brief
demographic form. Participants then read the same set of instructions as in experiment one.
They also reviewed the same sample stimulus (model ship) and description of the ratings as in

experiment one.
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Participants then viewed the pre-selected stimuli on a computer monitor without time
limit, as the image would advance only when a rating had been entered. Note that this was the
major difference in task structure between experiments 1 and 2. In experiment 1, participants did
not receive the subsequent trial until they entered a response, but the stimulus to be inspected
was presented only for 1600 ms. In experiment 2, the image remained on screen until the
participant responded. The time the participant took to respond to each image was recorded
along with the rating assigned. After a response was entered, participants were then presented
with the next image. The presentation of the stimuli was blocked by variability as in experiment
one, and each block was separated by a screen instructing the participants to press the space bar
on the keyboard to advance. As in the first experiment, each participant was randomly assigned
to one of the six conditions of order of presentation of the blocks of variability. The order of the
pictures in each block were predetermined by random assignment.

At the conclusion of the experiment, participants were debriefed.

Results

In analyzing the data, Greenhouse-Geisser was used to correct for violation of sphericity
in most F tests involved; where appropriate, the uncorrected degrees of freedom are reported as
well as the epsilon used for the correction. The means and standard deviations of participant

rating responses and participant median response times are provided in Table 18 and Table 19.
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Table 18. Descriptive Statistics for Participant Rating Responses (N=211)

Stimulus Mean Stimulus Response Response
Variability Mean Standard
Deviation
1.0-1.49 Low 1.2322 .39432
Medium 1.4437 49778
High 1.6481 57514
1.5-2.49 Low 2.0841 .65479
Medium 2.2293 59482
High 2.6096 56305
2.5-3.49 Low 3.5089 43592
Medium 3.0735 52915
High 3.0344 .56088
35-4.0 Low 3.8205 .33250
Medium 3.6795 39921
High 3.7204 .33852

Table 19. Descriptive Statistics for Participant Response Times (N=211)

Stimulus Mean Stimulus Response Response
Variability Mean Standard
Deviation
1.0-1.49 Low 2037.0735  881.58361
Medium 2244.4194 1128.89580
High 2523.6327 1101.73353
1.5-2.49 Low 2502.2204  1062.66543
Medium 2596.9408 1245.21107
High 2650.8863 1252.98769
2.5-3.49 Low 2027.2867 1096.87902
Medium 2260.9100 1175.61936
High 2333.7180 1289.01850
35-4.0 Low 1594.1043 861.10546
Medium 1884.2678 1034.76981
High 1796.4005  975.64152

Participant Responses. Participant responses were analyzed with a two-way analysis of
variance having four levels of stimulus mean rating (1.0 — 1.49, 1.5 — 2.49, 2.5 — 3.49, 3.5 - 4.0)
and three levels of stimulus variability (low, medium, high). All main effects and interactions
were statistically significant at the .05 significance level, with ny? values large (see Table 20).
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Table 20. 4 (Stimulus Mean Category) x3 (Stimulus Variability) ANOVA of Participant
Responses

Effect df € SS MS F P Np?
Stimulus Mean 3 .708  1945.094 648.365 2133.467 <.001 .910
Error 630 191.458 .304
Stimulus Variability 2 9.262 4.631 39.469 <.001 .158
Error 420 49.280 A17
Stimulus 6 .784 71.563 11.927 177.894 <.001 .459
Mean*Stimulus
Variability
Error 1260 84.479 .067

Additional one-way ANOVAs were computed to further investigate the interactions.
Tests of the effects of mean category at each level of signal variability revealed statistically
significant main effects for stimulus mean at low stimulus variability, F(3, 630) = 1979.507, p <
.001, € = .826, np? = .904, at medium stimulus variability, F(3, 633) = 1423.638, p < .001, ¢ =
754, np? = .871, and at high stimulus variability, F(3, 630) = 1147.826, p < .001, & = .861, 1> =
.845. At low stimulus variability, there was a significant linear trend, F(1, 210) = 4320.226, p <
.001, np? = .954, quadratic trend, F(1, 210) = 120.179, p < .001, np? = .364, and cubic trend, F(1,
210) = 216.291, p < .001, np? = .507. At medium stimulus variability, there was a significant
linear trend, F(1, 211) = 2481.852, p < .001, np? = .922, quadratic trend, F(1, 211) = 18.937, p <
.001, np? = .082, and cubic trend, F(1, 211) = 10.416, p = .001, ny? = .047. At high stimulus
variability, there was a significant linear trend, F(1, 210) = 2287.343, p < .001, n,? = .916,
quadratic trend, F(1, 210) = 30.646, p < .001, n,?>=.127, and cubic trend, F(1, 210) = 83.248, p <
.001, np? = .284. These interactions are depicted in Figure 33. Note that these results replicated

the findings of study 1.
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Figure 33. Mean Participant rating as a Function of Stimulus Mean Category in Study 2

Note: Error bars are standard errors.

Median Response Time. Median response times were analyzed with a two-way analysis
of variance having four levels of stimulus mean rating (1.0 — 1.49, 1.5 — 2.49, 2.5 - 3.49, 3.5 —
4.0) and three levels of stimulus variability (low, medium, high). All main effects and
interactions were statistically significant at the .05 significance level, with a large np? value for
stimulus mean and smaller effects for stimulus variability and the interaction between the factors
(see Table 21).

Table 21. 4x3 ANOVA of Participant Median Response Times

Effect Df € SS MS F p Np?
Stimulus Mean 3 787 219490731.075 73163577.025 97.489 <.001 .317
Error 630 472801732.987 750478.941
Stimulus Variability 2 36781663.927 18390831.963 8.620 <.001 .039
Error 420 896048649.282 2133449.165
Stimulus 6 905 10925164.529 1820860.755 5.453 <.001 .025
Mean*Stimulus
Variability
Error 1260 420740762.596  333921.240

92



Additional one-way ANOVAs were computed to further investigate the interactions.
Tests of the effects of mean category at each level of signal variability indicated statistically
significant main effects for stimulus mean at low stimulus variability, F(3, 630) = 63.710, p <
.001, € = .894, np? = .233, at medium stimulus variability, F(3, 633) = 35.887, p < .001, ¢ = .845,
np? = .14), and at high stimulus variability, F(3, 630) = 64.896, p < .001, & = .922, np* = .236.
Note that in each case the effects were associated with a large n%. At low stimulus variability,
there was a significant linear trend, F(1, 210) = 65.085, p < .001, np? = .237, quadratic trend, F(1,
210) = 106.628, p < .001, n,2 = .337, and cubic trend, F(1, 210) = 23.116, p < .001, ny2 = .099.
At medium stimulus variability, there was a significant linear trend, F(1, 210) = 27.798, p <.001,
np? = .116, quadratic trend, F(1, 210) = 74.416, p < .001, n% = .261, and cubic trend, F(1, 210) =
12.768, p < .001, ny? = .057. At high stimulus variability, there was a significant linear trend,
F(1, 210) = 120.378, p < .001, np? = .364, and quadratic trend, F(1, 210) = 50.988, p < .001, np? =

.195. The interaction is depicted in Figure 34.
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Figure 34. Mean of Median Response Times as a Function of Stimulus Mean Category in Study 2

Note: Error bars are standard errors.
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Sensitivity. Sensitivity was analyzed with a two-way analysis of variance having three
levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating (1.0 —
149, 1.5 - 249, 25 — 349, 35 - 4.0). All main effects and interactions were statistically
significant at the .05 significance level, with large np? values for stimulus mean and the

interaction effect (see Table 22).

Table 22. 3 (Stimulus Variability) x 4 (Stimulus Mean Category) ANOVA of Sensitivity

Effect Df € SS MS F P Mp?
Stimulus Mean 3 .854 89.949 29.983 88.302 <.001 .296
Error 630 213.918 .3402
Stimulus Variability 2 3.855 1.928 10.998 <.001 .050
Error 420 73.613 175
Stimulus Variability 6 .867 45.870 7.645 45778 <.001 .179
*Stimulus Mean
Error 1260 210.425 .167

Additional one-way ANOVAs were computed to further investigate the interaction.
Tests of the effects of mean category at each level of signal variability showed significant main
effects for stimulus mean at low stimulus variability, F(3, 630) = 13.402, p <.001, £ = .920, > =
.060, at medium stimulus variability, F(3, 633) = 105.659, p < .001, € = .831, ny? = .334, and at
high stimulus variability, F(3, 630) = 77.410, p < .001, & = .874, np? = .269. At low stimulus
variability, there was a significant cubic trend, F(1, 210) = 32.915, p < .001, np? = .135. At
medium stimulus variability, there was a significant quadratic trend, F(1, 211) = 219.565, p <
.001, np? = .510, and cubic trend, F(1, 211) = 22.987, p < .001, ny? = .098. At high stimulus

variability, there was a significant linear trend, F(1, 210) = 20.119, p < .001, ny? = .087, quadratic
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trend, F(1, 210) = 158.491, p < .001, n% = .430, and cubic trend, F(1, 210) = 8.554, p = .004, np?
= .039. The interaction between the stimulus variability and the stimulus mean rating is

illustrated in Figure 35. The results closely match those of study 1
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Figure 35. Mean Sensitivity as a Function of Stimulus Mean Category in Study 2

Note: Error bars are standard errors.

Response Bias. Response bias was analyzed with a two-way analysis of variance having
three levels of stimulus variability (low, medium, high) and four levels of stimulus mean rating
(1.0-1.49,1.5-2.49, 25 -3.49, 3.5 -4.0). All main effects and interactions were statistically
significant at the .05 significance level and were associated with values of n,? in the medium-to-

large range (see Table 23)
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Table 23. 3 (Stimulus Variability) x 4 (Stimulus Mean Category) ANOVA of Response Bias

Effect df € SS MS F P Mp?
Stimulus Variability 2 8.867 4.433 24985 <.001 .106
Error 420 74.527 A77
Stimulus Mean 3 .854 851.419 283.806  780.293 <.001 .788
Error 630 229.142 .364
Stimulus Variability 6 919 33.839 5.640 45680 <.001 .179
*Stimulus Mean
Error 1260 155.564 123

Additional one-way ANOVAs were computed to further investigate the
interactions. Tests of the effects of mean category at each level of signal variability showed
significant main effects for stimulus mean at low stimulus variability, F(3, 630)=548.526,
p<.001, £=.948, np?=.723, at medium stimulus variability, F(3, 633)=451.249, p<.001, £=.909,
np2=.681, and at high stimulus variability, F(3, 630)=438.777, p<.001, £=.870, np>=.676.

At low stimulus variability, there was a significant linear trend, F(1, 210) = 1573.142, p < .001,
np? = .882, quadratic trend, F(1, 210) = 90.387, p < .001, n% = .301, and cubic trend, F(1, 210) =
65.613, p < .001, np% = .238. At medium stimulus variability, there was a significant linear trend,
F(1, 211) = 948.733, p < .001, ny? = .818, quadratic trend, F(1, 211) = 30.010, p < .001, np? =
.125, and cubic trend, F(1, 211) = 12.462, p = .001, ny? = .056. At high stimulus variability,
there was a significant linear trend, F(1, 210) = 887.417, p < .001, np? = .809, quadratic trend,
F(1, 210) = 16.007, p < .001, np? = .071, and cubic trend, F(1, 210) = 79.059, p < .001, np? =
274, Figure 36 illustrates the interaction between stimulus mean category and stimulus

variability
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Figure 36. Mean Response Bias as a Function of Stimulus Mean Category in Study 2

Note: Error bars are standard errors.
Structural Equation Modeling. In order to both compare performance patterns with

Study 1 and to further explore the relationships among variables by examining their factor
structure, the data were evaluated using structural equation modeling. Sensitivity was analyzed
in Model 17. This model has a reasonable fit (CFI = .971; TLI p? = .958; RMSEA = .035, 90%
Cl (< .000, .061); AIC = 146.043; y%(46) = 58.043, p = .110). Figure 37, depicts the structure of
Model 17. Stimulus mean category was associated with significant effects in increasing
sensitivity in the middle high and middle low stimulus mean categories. Increases in sensitivity

were significantly related to stimulus mean category for all of the medium variability category.
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Figure 37. Model 17: SEM Model Analyzing d* Under Unconstrained Time

Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. M = Mean, SD = Standard Deviation

Model 18 analyzes response bias using the same latent structure as Model 17. This

model also has a reasonable fit (CFI = .982; TLI p? = .969; RMSEA = .052, 90% CI (.023, .076);

AIC = 163.225; y%(38) = 59.225, p = .015). Figure 38, depicts the structure of Model 18. The

interaction between stimulus mean category and stimulus variability was significantly related to

response bias in every category.
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Figure 38. Model 18: SEM Model Analyzing Index ¢ Under Unconstrained Time

Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. M = Mean, SD = Standard Deviation

The latent structure of the previous two models failed to converge to reasonable solution
in analyzing response time. Although the fit indices appeared reasonable (CFI = .995; TLI p? =
.987; RMSEA = .038, 90% CI (< .000, .072); AIC = 163.373; 32(24) = 31.373, p = .143), illegal
values of estimates were obtained (i.e., negative variances, correlations greater than 1; Kline,
2011). Restructuring by variability and collapsing across stimulus mean category yielded a
model (Model 19) with a reasonable fit (CFI = .949; TLI p? = .923; RMSEA = .094, 90% ClI
(.075, .114); AIC = 218.151; ¥*(44) = 126.151, p < .001). Figure 39, depicts the structure of
Model 19. The interaction between stimulus mean category and stimulus variability was

significantly related to response time in every category.
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Note: Path coefficients are standardized. R? values for each observed variable for performance values are provided next to their
respective variable. M = Mean, SD = Standard Deviation

Discussion

A comparison of Figure 13 with Figure 33 shows that the pattern of participant responses
was similar across Study 1 and Study 2. The similarities are also seen in the analyses of
sensitivity (Figure 15 with Figure 35) and response bias (Figure 16 with Figure 36). Thus,
performance outcomes were similar across the two studies, and the mean ratings corresponded to
those of the participants in the preliminary study.

Model 17 (Figure 37) analyzes the effect of stimulus mean category on d’ with the time
constraint of Study 1 removed. Similar to Study 1, higher levels of sensitivity were obtained for
the middle stimulus mean categories, and this is reflected in the higher regression weights of the

model. Thus, the results of this experiment again confirm the unexpected result of Study 1 that

100



discrimination is greater in the ambiguous categories (middle low and middle high stimulus
mean categories) than in the crisp categories (low and high stimulus mean categories).

The analysis of response bias, Model 18 (Figure 38), shows that criterion setting is
predicted by the stimulus mean category across all levels of stimulus variability, as all regression
weights in the model were significant. Model 19 (Figure 39) indicates that response time is
predicted by stimulus variability across all levels of stimulus mean category, as all regression
weights in the model were also significant.

It had been hypothesized that response times would follow an inverted-U shape, with the
shortest response times occurring on the extremes (low stimulus mean category and high
stimulus mean category) and the longest response times in the middle. However, Figure 34
shows that is not quite the case. The high stimulus mean category did produce the shortest
response times, but the low stimulus mean category had a higher than anticipated response time.
In fact, pairwise comparisons indicated significant differences between each stimulus mean
category except the low and middle high. Although it was predicted that participants would take
a roughly equal amount of time in the low stimulus mean category and high stimulus mean
category, participants take longer to declare a complete absence of threat than to declare a
complete presence of threat. However, this result is in keeping with the assertion of Hancock,
Masalonis, and Parasuraman (2000), based on the research of Treisman and Gelade (1980), that
decision time is longer for a non-signal than for a signal, and is exacerbated by the presence of
noise. In fact, the results of this research show that decision time is longest when a partial signal
is present, but the magnitude of that signal is low (the middle low stimulus mean category).

Thus, the results obtained here provide additional evidence for that assertion.
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CHAPTER 7: GENERAL DISCUSSION

The present work establishes differences in performance based on individual
characteristics (spatial ability, visualization ability, extraversion, emotional stability, and
conscientiousness). Just as importantly, however, this work also establishes differences in
performance based on characteristics of the signal presented (i.e., signal membership and
variability within that signal membership category), which has not been previously established in
other signal detection tasks. The use of FSDT allows the modeling of the ambiguity of the signal
to be reflected in the signal membership category rather than the noise present, as is the case in
traditional SDT. In doing so, performance across studies varied as a function of both stimulus
mean category and stimulus variability. Future work in FSDT should take into account that the
nature of the stimulus itself (signal membership and variability) will be a factor in performance
measures.

Study 1 provides a connection between individual difference measures and performance
on a fuzzy signal detection task. Individuals high in the cognitive traits factor (spatial ability and
visualization) show increased sensitivity in the presence of ambiguous stimuli on a threat
detection task. Further, increased performance on the cognitive skills factor contributes to a
more conservative criterion setting in all conditions but the most obvious presence of threat. One
direct application of this result is that threat screening situations can be optimized by selecting
individuals high in spatial ability or visualization. Additionally, performance can be improved
by integrating technology into the process (e.g., implementing automated decision aids),
particularly for low-level threats where individuals demonstrated the longest inspection time and
performance varied greatly as a function of individual difference measures. Further, monitoring

levels of arousal that might influence impulsivity may be warranted in a threat screening task.
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What is not addressed by this research is whether there are other characteristics that predict as
well, or better, than these two cognitive traits. Because both spatial ability and visualization can
be learned, it may be the case that higher study skills, which aids learning, or general intelligence
may predict the same outcomes.

In this particular threat detection task, personality characteristics did not influence
performance to the extent anticipated. However, because extraversion had a negative impact and
conscientiousness had a positive impact on sensitivity for low threat levels, it would be
appropriate to screen for these characteristics when assigning personnel to a threat detection task.
Perhaps because of higher levels of impulsivity, extraverts are likely to answer quickly, and thus
not discriminate well, when at very low levels of signal. On the other hand, conscientious
individuals are more likely to spend extra effort at the lower signal levels to identify anything
that could potentially be a threat. Together with the cognitive traits of visualization and spatial
ability, all three personality traits (extraversion, conscientiousness, and emotional stability) had
an effect on at least one measure of performance.

Study 2 demonstrated that, for a threat detection task involving ambiguous signals,
individuals take more time to decide on a non-signal than they do on a signal, particularly when
noise is present. Further, the confirmation of results of Study 1 that Study 2 provided illuminates
an interesting fact: for a threat detection task involving ambiguous stimuli, unbounding stimulus
presentation time does not affect performance on FSDT measures. Prior to experimentation, it
was expected that unbounding time would have increased sensitivity, but that did not prove to be
the result. It appears as though sensitivity and criterion setting are independent of time above a
minimum level required for stimulus processing, indicating that the task may be in the data-

limited range of information processing (Norman & Bobrow, 1975). Note that in experiment 1,
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it was the stimulus presentation time that was limited. The response window for each trial was
unbounded in both studies. Thus, differences in response time between the two experiments
reflect time available for stimulus observation rather than time to respond, per se.

Additional research along these lines may answer several questions. First, is the
independence of time and both sensitivity and criterion setting unique to this context? That is,
what about the context of identifying decomposed IEDs in a natural setting lead to that result?
The overall low levels of 4’ in Study 2 indicate that the task itself was challenging by nature. An
unanswered question is whether increased time does not improve performance on all difficult
signal detection tasks.

Additional mathematical questions surrounding this research remain open. One question
that developed from these experiments is whether the range of the values spanning the domain of
the mapping functions needs to be consistent across categories in order to model a detection task
adequately. Note that a continuous mapping of participants’ responses would circumvent this
problem; however, the question itself is theoretically interesting and has practical applications in
situations, such as this research, where assigning stimuli into bins is necessary. Is it the case that
changing the bin width (of the stimulus domain) will affect analysis of the FSDT measures. In
general, additional work on mapping functions is needed.

In terms of response time, this research showed that the decision of non-signal takes
longer than the decision of full signal. An interesting question would be to investigate decision
time related to transition of signals, similar to the transitioning signals used in Fortenbaugh et al.
(2015). That is, instead of transitioning from absence of signal to presence of signal, if
participants were asked to categorize an item transitioning from one signal to another (e.g., a star

transitioning into a planet in a video game, where both valuable signals in terms of scoring points
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because each involves a different task), would response time now take on the inverted quadratic
shape because both extremes are full presence of signal, or would the response time mimic the
results found in Study 2, almost as though the participants were cognitively assigning one signal
to the “non-signal” status and the other as “full signal” status?

Future research may answer the question of whether abilities underlying spatial abilities
(such as general intelligence) have as strong of an effect on performance. Similarly, a
comparison of the effects of training with and without the identified cognitive traits on
performance would prove a useful measure to ensure performance of a screening task is
optimized. Additionally, investigation into alternate cognitive characteristics that might improve
performance on difficult detection tasks is warranted.

Some situations, such as threat detection, do not lend themselves to crisp categorizations
of signal and non-signal. FSDT provides a robust tool for decision analysis in the presence of
such uncertainty. The research conducted here links individual difference measures with

performance on a fuzzy task and provides an application for FSDT analysis.
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APPENDIX A: EXPERIMENTAL INSTRUCTIONS
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Al. Study 1 Instructions

For this experiment, you will be asked to evaluate images of improvised explosive
devices (IEDs) or their parts and judge the degree of threat of the object based on how “bomb-
like” they look. Here is the situation:

Imagine that you are a new member of a military squad whose primary mission is to
secure areas by identifying and removing all potential threats (e.g., guns, bombs, or parts thereof)
so that the area may be repopulated by civilians. Your squad has been called in to clear a local
office building where terrorists used portions of the building as a cover for their operation. The
terrorists have been arrested by military police, and members of your squad will secure the
building so that the civilians employed there may re-enter. Your job is to view images projected
by an unmanned ground vehicle that has been sent into the building and prioritize each situation
into a category based on the perceived level of threat, or how “bomb-like” the components
appear. The ratings will be given to the members of your squad designated to enter the building,
and they will use these ratings to visit the most critical situations first (the highest category, then
proceeding down as time allows).

The terrorists were constructing IEDs using some parts that might commonly be found in

most homes or office buildings.
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Here you see examples of the terrorists’ assembled bombs. The parts that make the

bombs are shown on the next several screens. As you can see, the bombs are made from
common parts but need a device that can trigger the bomb remotely, like a cell phone, and need a

power source, such as a battery or an electronic device.

Wires: Notice that, when viewed Wires: Notice that, when viewed
from a distance, these wires look from a distance, these wires look
very similar to wires commonly very similar to wires commonly
used to connect computer equipment used to connect phone lines to the
(such as connecting a printer to a main network in an office building.
tower).
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C-4: This is another form of plastic explosive. The only purpose of this material is to be

detonated as a bomb.

Power source: This device is used to ignite the bomb. Notice that this is constructed from

common computer parts.
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Remote triggering device: A cell phone is used to remotely trigger the bomb. It is common
knowledge that a cell phone is a familiar device for an ordinary person to possess and people

often leave their cell phones lying about their office.

Calculator: The calculator is used as a power source to ignite the bomb. Be aware that it is not

uncommon to find a calculator in an office environment.
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Lead pipe: This is used as casing for a bomb (e.g., “pipe bomb”). In general, there would be no

other purpose for this to be in an office building.

Soda can: This is used as casing for a bomb. However, it is also common for people to drink

soda at work, so you may find this left in an office environment.

Objects can often be divided into several components. When some of these components
are missing, the purpose of the object may change and it may no longer be recognizable as that
object. For example, when we go to watch a movie, we expect to see certain critical pieces: a
plot, props, a leading actor, and a supporting actor. Lacking some of these components, such as
missing a supporting actor, may not make the movie seem less movie-like. In fact, there could

be an entire movie comprised only of a plot, props, and a single leading actor and we might
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herald this film as a spectacular indie-style film. However, lacking both a leading actor and a
supporting actor makes the film considerably less movie-like. Such a film could exist, perhaps
as a documentary showing only still-life photos, but it would not be what we traditionally think
of as a movie. If we remove a different component, the plot, then a leading actor, a supporting
actor and props alone do not make much of a movie at all. These three objects alone would
barely be reminiscent of a movie at all because they are lacking a very critical component.

Some objects that are not IEDs (and therefore do not pose an immediate threat) still pose
a degree of threat because they have features similar to IEDs. Your job is to remotely view areas
in the building and determine the threat level based on the contents of the room. The rooms you

will be viewing (without any IED parts present) are shown on the next several screens.

General Office 