
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Virtualization And Self-organization For Utility Computing Virtualization And Self-organization For Utility Computing

Mehdi Saleh
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Saleh, Mehdi, "Virtualization And Self-organization For Utility Computing" (2011). Electronic Theses and
Dissertations, 2004-2019. 1961.
https://stars.library.ucf.edu/etd/1961

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1961?utm_source=stars.library.ucf.edu%2Fetd%2F1961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

VIRTUALIZATION AND SELF-ORGANIZATION

FOR UTILITY COMPUTING

by

MEHDI SALEH

Bachelor of Science in Electrical Engineering

Sharif Institute of Technology, 2009

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science Electrical Engineering

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2011

Major Professor: Dan Marinescu

ii

©2011MEHDI SALEH

iii

ABSTRACT

We present an alternative paradigm for utility computing when the delivery of service is subject

to binding contracts; the solution we propose is based on resource virtualization and a self-

management scheme. A virtual cloud aggregates set virtual machines to work in concert for the

tasks specified by the service agreement. A first step for the establishment of a virtual cloud is to

create a scale-free overlay network through a biased random walk; scale-free networks enjoy a

set of remarkable properties such as: robustness against random failures, favorable scaling, and

resilience to congestion, small diameter, and average path length. Constrains such as limits on

the cost of per unit of service, total cost, or the requirement to use only “green" computing cycles

are then considered when a node of this overlay network decides whether to join the virtual cloud

or not.

A VIRTUAL CLOUD consists of a subset of the nodes assigned to the tasks specified by a

Service Level Agreement, SLA, as well as a virtual interconnection network, or overlay network,

for the virtual cloud. SLAs could serve as a congestion control mechanism for an organization

providing utility computing; this mechanism allows the system to reject new contracts when

there is the danger of overloading the system and failing to fulfill existing contractual

obligations. The objective of this thesis is to show that biased random walks in power law

networks are capable of responding to dynamic changes of the workload in utility computing.

iv

This thesis is dedicated to my Mother,

who taught me that even the largest task can be accomplished if it is done one step at a time.

It is also dedicated to my Father,

who taught me that best kind of knowledge to have is that which is learned for its own sake.

v

ACKNOWLEDGMENT

Dr. Dan Marinescu has been the ideal thesis supervisor and instructor. His sage advice, insight

criticisms, and patient encouragement aided the writing of this thesis in innumerable ways.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

1: INTRODUCTION AND MOTIVATION .. 1

2: BIASED RANDOM WALKS & GRAPH ENTROPY .. 7

3: POWER LAW DEGREE DISTRIBUTION AND SCALE-FREE NETWORKS 13

4: VIRTUAL CLOUDS .. 25

5: DISTRIBUTED ALGORITHMS FOR THE FORMATION OF VIRTUAL CLOUDS 29

6: DYNAMIC WORKLOAD DISTRIBUTION .. 50

7: SUMMARY AND FUTURE WORK .. 62

REFERENCES ... 65

vii

LIST OF FIGURES

Figure 1: The virtualization architecture ... 28

Figure 2: Two histograms of the degree distribution .. 39

Figure 3: The number of iterations required for ʋ to be within 2% distance. 40

Figure 4: Simulation Results ... 45

Figure 5: Simulation Results ... 47

Figure 6: The histogram of the number of nodes in a cloud of 1,000 nodes. 49

Figure 7: Comparison of free capacity in a lightly loaded virtual cloud. 54

Figure 8: Free capacity in a lightly loaded virtual cloud after global surge. 55

Figure 9: Free capacity in a virtual cloud with a medium load ... 56

Figure 10: A surge in a system with the average free capacity 10% of the total capacity. 58

Figure 11: The distribution of the free capacity in a virtual cloud with a medium load 59

Figure 12: Free capacity in a heavily loaded virtual cloud. .. 60

viii

LIST OF TABLES

Table 1: A power law distribution with degree γ = 2.5 .. 22

Table 2 : The time required by the algorithm to construct the scale-free network. 41

Table 3: The number of biased random walk steps for the creation of a virtual cloud in a lightly

loaded system when N = 1,000 and M = 5,000. ... 52

1

1: INTRODUCTION AND MOTIVATION

 Utility computing is a generic term for packaging computation and storage as a service; the

concept is inspired by public utilities which provide access to resources such as electricity, water,

or communication bandwidth to the entire population. The illusion of infinite computing, the IT

infrastructure are some of the attractions utility computing offers to individual users and to

organizations that need low-cost access to computing resources. Utility computing is promoted

vigorously by several companies aiming to exploit their expertise in information technology for

providing low-cost, high-quality enterprise computing services; HP [23], Amazon [20], IBM,

and Google are notable examples of companies invested in utility computing.

 Cloud computing refers to an ensemble consisting of applications delivered as services, the

so-called Software as a Service (SaaS), and the software and the hardware enabling data centers

to offer these services. A survey of the state of the art of existing systems and of the classes of

utility computing was conducted in the early 2009 by a group at U. C. Berkeley [4]. The authors

of the study believe that the computation, communication, and storage models of the Amazon

Web Services, Microsoft's Azure, and Google AppEngine ensure scalability and high availability

of resources and discuss new opportunities in mobile interactive applications, parallel batch

processing, decision support systems, and extension of compute-intensive desktop applications.

While utility computing often requires a cloud-like infrastructure, its focus is on the business

model on which providing the computing services are based. Cloud computing is a path to utility

computing; other solutions may emerge in time, such as the one discussed in [35].

2

 We distinguish on-the-spot requests for computing services, from services based on

contracts; the first type is suitable for short-term, occasional requests from single users, while the

second is demanded by large organizations which cannot afford to interrupt, or slow down their

activity due to inadequate response to their computing needs. A contract, or a Service Level

Agreement, SL, may specify: the elements necessary to determine the Class of Service (CoS), the

minimum, average, and the maximum hourly/daily/weekly resource needs, the pattern of

resource utilization, the response time, the range of service compliance indicators, and the

penalties for failing to meet the contractual obligations. Contracts could be beneficial to users as

well as providers of utility computing if an effective management system is in place; they can

ensure QoS for the users and guide the long term investment policies of the providers of services.

In this thesis we are only concerned with the second type of service demands and propose a new

paradigm for the organization of utility computing.

 To operate effectively, a provider of utility computing should minimize the long-term

investments as well as the operating costs. The large peak-to-average resource requirements of

individual applications may prevent the system from reaching optimal operation regions of the

state space. The common answer to the unpredictability of the load of a system and of specific

requirements is Overprovisioning; yet, this approach leads to long-term investments that cannot

be justified. The alternative is to prevent congestion and reject new contracts which require

immediate use of resources when the system operates near capacity; this approach emulates the

congestion control mechanism in the Internet. To minimize the operating costs the organization

providing utility computing could direct service requests to the sites with the lowest energy cost,

redistribute the load and shut down systems when the load is light, or could redistribute the load

3

to minimize the penalties when the system is overloaded and the QoS indicators could not be

met.

 The organization of a system providing utility computing is expected to respond to a set of

often contradictory requirements. A centralized organization of a system with a very large

number of components is problematic even if it is based on a hierarchical system; it is virtually

impossible to accurately determine the global state of the system which as state and control

information has to travel a long path between decision and execution sites. There is a general

agreement that the management of a complex system should be automated, but the extent of the

automation process is still debatable. While self-management is regarded as a highly desirable

option, none of the existing systems for utility computing are based on self-management ideas;

moreover, there are no comprehensive proposals or data supporting this approach.

 Self-management is a facet of the broader concept of self-organization; though self-

organization is difficult to define, its intuitive meaning is reflected in the observation made by

Alan Turing that “global order can arise from local interactions.” [48]. Inspired by biological

systems, self-organization was proposed for networking [38] and even for economical systems

[33]. Self-organization of biological systems is defined as “a process in which patterns at the

global level of a system emerge solely from numerous interactions among the lower-level

components of the system. Moreover, the rules specifying interactions among the system’s

components are executed only with local information, without reference to global patterns”. [12]

Self-organization is used by different types of neural networks including Hopfield networks [27]

and the networks proposed in [38]. The “swarm” algorithms [10], e.g., the Ant Colony Routing,

4

mimic self-organization of social insects. Self-organization schemes have been proposed for

ad-hoc and sensor networks [15], [37].

 Virtualization is the process of simulating the interface to a physical object; traditionally,

virtualization is based on multiplexing, on aggregation, or on emulation. In the first case,

virtualization creates multiple virtual objects from one instance of a physical object; aggregation

creates one virtual object from multiple physical objects; emulation constructs a virtual object

from a different type of physical object. The separation of virtual from physical organization

removes some of the characteristics and/or limitations of computing resources such as size,

internal organization, reliability, or performance. For example, virtual memory enables the

development of code independent of the size of the physical memory, Java Virtual Machine

(JVM) permits the development of platform-independent code, threads allow sharing of a single

processor, Redundant Array of Independent Disks (RAID) increase reliability, as well as, the

performance of secondary storage devices. User Virtual Machines are an important element of

the current architecture of computing clouds.

 Virtualization, in the context of this paper, is based on multiplexing combined with

aggregation. A processor is shared by multiple virtual machines; once an agreement between a

provider and a customer is sealed a set of virtual machines cooperate to satisfy the conditions

imposed by the agreement. In this paradigm virtualization supports self-management, enables the

system to fulfill its contractual obligations, and, used judiciously, could contribute to lower costs.

The solution we propose contrasts with the current organization of many cloud data centers

where the virtual machines are clustered based on the computing needs of the consumers and

each sub cluster is managed by one consumer.

5

 We propose a probabilistic approach for resource virtualization based on biased random

walks; the algorithm allows a subset of systems to create the overlay network interconnecting

these systems. Monte Carlo methods are often used to solve optimization problems in multi-

dimensional search spaces. One of the first applications of computers was based on an algorithm

developed by Metropolis et. Al [39] for sampling in high dimensional probability distributions

using Markov chains. This algorithm is at the heart of the strategy discussed in this paper; given

a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) let 𝜋𝜋 be a strictly positive distribution on 𝑉𝑉 and call 𝑘𝑘𝑖𝑖 the degree of vertex I and

(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 𝑉𝑉 the edge connecting vertices i and j. Then 𝜋𝜋 is a stationary distribution of the Markov

chain with transition probabilities

𝑃𝑃𝑖𝑖 ,𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧

1
𝑘𝑘𝑖𝑖

 𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖
𝑘𝑘𝑖𝑖

 ≤ 𝜋𝜋𝑗𝑗
𝑘𝑘𝑗𝑗

1
𝑘𝑘𝑗𝑗

𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖

 𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖
𝑘𝑘𝑖𝑖

 > 𝜋𝜋𝑗𝑗
𝑘𝑘𝑗𝑗

1 − ∑ 𝑝𝑝𝑖𝑖 ,𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖

� (1)

 The work reported in this thesis is not restricted to a specific computing, communication,

or storage model and it is complementary to the research on virtualization carried out now by

several groups from industry [22], [23]. The virtualization architecture we propose is dynamic,

virtual machines are created in response to an external request when local condition permit and

have a limited lifetime. A virtual machine created on a node must act in concert with the other

members of the virtual cloud and maintain only limited information about its neighbors in the

overlay network. The virtual cloud created in response to SLA provides the services at a minimal

cost and with minimal energy consumption.

6

 The contributions of this thesis are: (i) Algorithms to dynamically create virtual clouds

with a life-span determined by a contract between a user and the service provider. Individual

systems join a virtual cloud based on local information regarding the available capacity, the cost

to provide the service, and the energy consumption. (ii) A self-management scheme which takes

advantage of desirable properties of the overlay network such as; small diameter, robustness to

random failures, resilience to attacks, and scalability. In this scheme self-awareness can be

archived at a small cost as individual systems are required to maintain information only about

immediate neighbors.

 Communication plays a critical role in any complex system and we start our analysis of

virtual clouds with a discussion of the overlay network topology and we analyze biased random

walks in chapter two. Analyzing the properties of scale-free-networks in chapter three. Virtual

clouds and the distributed algorithms for their construction and the simulation studies in chapter

four and five. In chapter six we discuss the results of dynamic workload distribution and we give

a summary and discuss future work in chapter seven.

7

2: BIASED RANDOM WALKS & GRAPH ENTROPY

 A strategy used successfully to locate systems satisfying a set of conditions in applications

such as peer-to-peer systems is based on biased random walks; random walks are reported to be

more efficient in searching for nodes with desirable properties than other methods such as

flooding [21].

 Unfortunately, the application of random walks in a large network with an irregular

topology is unfeasible because a central authority could not maintain accurate information about

a dynamic set of members. A solution is to exploit the fact that sampling with a given probability

distribution can be simulated by a discrete-time Markov chain; indeed consider an irreducible

Markov chain with states (i,j) {0,1,…,S} and let Ƥ = [Ϸij] denote its probability transition

matrix where

𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑋𝑋(𝑡𝑡 + 1) = 𝑗𝑗 | 𝑋𝑋(𝑡𝑡) = 𝑖𝑖] (2)

with X(t) the state at time t. Let 𝜋𝜋 = (𝜋𝜋0,𝜋𝜋1, … ,𝜋𝜋𝑆𝑆) be a probability distribution with nonzero

probability for every state, 𝜋𝜋𝑖𝑖 > 0, 0 ≤ 𝑖𝑖 ≤ 𝑆𝑆. The transition matrix Ƥ is chosen so that 𝜋𝜋 is its

unique stationary distribution thus, the reversibility condition 𝜋𝜋 = 𝜋𝜋Ƥ holds. When g(.) is a

function defined on the states of the Markov channel and we wish to estimate

𝐸𝐸 = ∑ 𝑔𝑔(𝑖𝑖)𝜋𝜋𝑖𝑖𝑆𝑆
𝑖𝑖=0 (3)

 We can simulate the Markov chain at times t = 1,2,…, N and the quantity

𝐸𝐸� = ∑ 𝑖𝑖(𝑋𝑋(𝑡𝑡))
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 (4)

8

is a good estimate of E, more precisely 𝐸𝐸� → 𝐸𝐸 when 𝑁𝑁 → ∞. Hasting [26] generalizes the

sampling method of Metropolis [39] to construct the transition matrix given the distribution 𝜋𝜋.

He starts by imposing the reversibility condition

𝜋𝜋𝑖𝑖 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝜋𝜋𝑗𝑗𝑝𝑝𝑗𝑗𝑖𝑖 (5)

 If 𝑄𝑄 = [𝑞𝑞𝑖𝑖𝑗𝑗] is the transition matrix of an arbitrary Markov chain on the states {0,1,…,S} it

is assumed that

𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑞𝑞𝑖𝑖𝑗𝑗 𝛼𝛼𝑖𝑖𝑗𝑗 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 − ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖 (6)

Two version of sampling are discussed in [26], the one of Metropolis and one proposed by Baker

[6]; the quantities 𝛼𝛼𝑖𝑖𝑗𝑗 are respectively:

𝛼𝛼𝑖𝑖𝑗𝑗𝑀𝑀 = �
1 𝑖𝑖𝑖𝑖 𝜋𝜋𝑗𝑗

𝜋𝜋𝑖𝑖
 ≥ 1

𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖

 𝑖𝑖𝑖𝑖 𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖

 < 1
 � (7)

𝛼𝛼𝑖𝑖𝑗𝑗𝐵𝐵 = 𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖+ 𝜋𝜋𝑗𝑗

 (8)

 For example, consider a Poisson distribution 𝜋𝜋𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑒𝑒(−𝜆𝜆)/𝑖𝑖!; we choose 𝑞𝑞𝑖𝑖𝑗𝑗 = 1
2
 if j

= i -1, i ≠ 0 or j = i + 1, i ≠ 0 and 𝑞𝑞00 = 𝑞𝑞01 = 1/2. Then using Baker’s approach we have

𝑝𝑝𝑖𝑖𝑗𝑗 = �
 𝜆𝜆 (𝜆𝜆 + 𝑖𝑖 + 1)� 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 + 1, 𝑖𝑖 ≠ 0
 𝑖𝑖

(𝑖𝑖 + 𝜆𝜆)� 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 − 1, 𝑖𝑖 ≠ 0
� (9)

and 𝑝𝑝00 = 1
2� and 𝑝𝑝01 = 𝜆𝜆𝑒𝑒

−𝜆𝜆

(1 + 𝜆𝜆𝑒𝑒−𝜆𝜆).� (10)

9

 The algorithm to construct scale-free overlay topologies with an adjustable exponent in

[46] adopts the equilibrium model discussed in [24]. The algorithm is based on random walks in

a connected overlay network G(V,E) viewed as a Markov chain with state space V and a

stationary distribution with a random walk bias configured according to a Metropolis-Hastings

chain [26]. Recall that in this case we assign a weight 𝑝𝑝𝑖𝑖 = 𝑖𝑖−𝛼𝛼 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁,𝛼𝛼 𝜖𝜖 [0,1) to

each vertex and add an edge between two vertices a and b with probability 𝑝𝑝𝑎𝑎 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

� ×

 𝑝𝑝𝑃𝑃 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

� if non exists they repeat the process until mN edges are created and the mean degree

is 2m. Then the degree distribution is

𝑝𝑝(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾 , 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝛾𝛾 = 1+𝛼𝛼
𝛼𝛼

 (11)

 The elements of the transition matrix 𝑃𝑃 = [𝑝𝑝𝑖𝑖𝑗𝑗] are

𝑝𝑝𝑖𝑖𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧

1
𝑘𝑘𝑖𝑖

min ��1
𝑗𝑗
�

1
𝛾𝛾−1 𝑘𝑘𝑖𝑖

𝑘𝑘𝑗𝑗
, 1� (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸

1 − 1
𝑘𝑘𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑖𝑖(𝑖𝑖 ,𝑖𝑖)∈𝐸𝐸 𝑖𝑖 = 𝑗𝑗

0 (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸

� (12)

with 𝑘𝑘𝑖𝑖 the degree of vertex i. An upper bound for the number of random walk steps can be

determined from a lower bound for the second smallest eigenvalue of the transition matrix, a

non-trivial problem.

 We conclude that it is feasible to construct a scale-free global overlay network Ω network

using a biased random walk algorithm. Though algorithms to detect phase transitions in a cloud

are not discussed in this thesis we mention that the degree, γ, of the power law is related to phase

10

transitions [45]; a small variation of γ can lead to an abrupt change in the macroscopic system

behavior, e.g., its susceptibility to epidemics and resistance to failure. The m-th moment of the

power law distribution of a discrete random variable X, 𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) = 𝑘𝑘−𝛾𝛾 is

𝐸𝐸[𝑋𝑋𝑚𝑚] = ∑ 𝑘𝑘𝑚𝑚𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) = ∑ 𝑘𝑘𝑚𝑚𝑘𝑘−𝛾𝛾∞
𝑘𝑘=1 = ∞

𝑘𝑘=1 ∑ 1
𝑘𝑘𝛾𝛾−𝑚𝑚

 ∞
𝑘𝑘=1 (13)

 The first moment 𝐸𝐸[𝑋𝑋] = ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘=1 diverges for 𝛾𝛾 < 2 and is identical to the Riemann’s

zeta function 𝜉𝜉(𝛾𝛾 − 1) for 𝛾𝛾 ∈ (2, ∞); thus, in this range the average vertex degree is limited by

a small constant. The variance 𝐸𝐸[𝑋𝑋2] = ∑ 1
𝑘𝑘𝛾𝛾−2

∞
𝑘𝑘=1 is divergent for 𝛾𝛾 ≤ 3. The moments of a

power law distribution play an important role in the behavior of a network. It has been shown

that the giant connected component (GCC) of networks with a finite average vertex degree and

divergent variance can only be destroyed if all vertices are removed; thus, such networks are

highly resilient against faulty constituents [40].

 Once the global overlay network Γ is constructed we wish to use biased random walks

again to build Γ𝐶𝐶 the overlay network for a virtual cloud. Now one of the core nodes of Γ

initiates the construction of the power law interconnection network of the virtual cloud; the

individual systems populating the vertices of the graph are subject to additional constraints

regarding the distribution of the free capacity.

 To analyze the implication of this strategy we discuss briefly graph entropy. Informally

graph entropy is a measure of the degree of the randomness in a graph. Let G(V,E) be a directed

graph with the set V of nodes of cardinality n = |V| and 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉 the set of edges. Assume

that each node 𝑗𝑗 ∈ 𝑉𝑉 in 𝐺𝐺 has assigned a stochastic variable 𝑥𝑥𝑗𝑗 selected from a state space (or

11

finite alphabet) A with 𝑠𝑠 ≥ 2 elements. For every probability distribution p on the n-tuples

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑎𝑎) ∈ 𝐴𝐴𝑎𝑎 the entropy function 𝐻𝐻𝑝𝑝(𝑆𝑆) is given by:

𝐻𝐻𝑝𝑝(𝑆𝑆) = ∑ 𝑝𝑝(𝑆𝑆, 𝑣𝑣)𝑣𝑣 ∈ 𝐴𝐴𝑎𝑎 𝑖𝑖𝑃𝑃𝑔𝑔𝑠𝑠 �
1

𝑝𝑝(𝑆𝑆,𝑣𝑣)
� (14)

where p(S,v) for 𝑣𝑣 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑎𝑎) ∈ 𝐴𝐴𝑎𝑎 is the probability that a tuple (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑎𝑎) ∈ 𝐴𝐴𝑎𝑎 is

selected with 𝑥𝑥𝑠𝑠1 = 𝑣𝑣𝑠𝑠1 ,𝑥𝑥𝑠𝑠2 = 𝑣𝑣𝑠𝑠2 , … , 𝑥𝑥𝑠𝑠𝑎𝑎 = 𝑣𝑣𝑠𝑠𝑎𝑎 where 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑎𝑎}.

 If H denotes any entropy function Hp then H is normalized and H(j) ≤ 1, ∀𝑗𝑗 ∈ {1,2, … ,𝑎𝑎}

as the logarithms is in base s. It is easy to see that

𝐻𝐻(𝑗𝑗 | 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑎𝑎) = 0 (15)

where (𝑖𝑖1, 𝑗𝑗), (𝑖𝑖2, 𝑗𝑗), … , (𝑖𝑖𝑎𝑎 , 𝑗𝑗) ∈ 𝐸𝐸 are edges with the head node j. indeed this equation states that

there is no uncertainty of the value of the variable 𝑥𝑥𝑗𝑗 if we are given the values of all the

stochastic variables associated with the predecessor vertices of j.

 The private entropy E(G,s) of a graph G over a state space A of size 𝑠𝑠 ∈ {2,3,4, … } is the

supremum of Hp (1,2,…,n) of all entropy functions Hp over A that satisfy the n information

constrains determined by G. The entropy E(G) is the supremum of E(G,s) for 𝑠𝑠 ∈ {2,3,4, … }.

 Clearly, the entropy of a graph with a power-law degree distribution is lower than that of a

random graph, the graph has less randomness; this implies that a random walk in such a network

is more constrained and the number of steps to select the desired number of nodes will be larger.

Indeed our experiments showed that the number of steps to select 1000 nodes by a biased

12

random walk is 40% larger in a graph with a power-law degree distribution than in a random

graph.

 The benefits of a well structured overlay network for a virtual cloud are more important

than the time it takes to set it up; moreover, a virtual cloud typically includes a very small

fraction of the number of systems in the cloud thus, our approach seems reasonable. On the other

hand, time plays a critical role when we need additional resources for a virtual cloud.

13

3: POWER LAW DEGREE DISTRIBUTION AND SCALE-FREE NETWORKS

 The topology of a network used to model the interactions in complex biological, social,

economic and computing systems is described by means of graphs where vertices represent the

entities and the edges represent their interactions. The number of edges incident upon a vertex is

called the degree of the vertex.

 Several models of graphs have been investigated starting with the Erdӧs -Reny model

[19],[20] where the number of vertices is fixed and the edges connecting vertices are created

randomly; this model produces a homogeneous network with an exponential tail, connectivity

follows a Poisson distribution peaked at the average degree 𝑘𝑘� and decaying exponentially for

𝑘𝑘 ≫ 𝑘𝑘�. An evolving network, where the number of vertices increases linearly and a newly

introduced vertex is connected to m existing vertices according to a preferential attachment rule

is described by Barabasi and Albert in [1], [2], [3], [7].

 Regular graphs where a fraction of edges are rewired with a probability p have been

proposed by Watts and Strogatz and called small-worlds networks [50]. Networks, whose degree

distribution follows a power law, 𝑃𝑃(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾 are called Scale-Free networks. The four models

are sometimes referred as ER (Erdӧs-Reny), BA (Barabasi – Albert), WS (Watts – Strogatz), and

SF (Scale-Free) models, respectively [24]. BA networks with aging are investigated in [17]; a

new site of the network is connected to some old site with probability proportional to the

connectivity of the old site as in the BA model and to 𝜏𝜏−𝛼𝛼 where t is the age of old site. The

conclusion is that the network shows a scaling behavior only when 𝛼𝛼 < 1.

14

 A number of studies have shown that scale-free networks have remarkable properties such

as: robustness against random failures [8], favorable scaling [1], [2], [17], resilience to

congestion [24], tolerance to attacks [47], small diameter [14] and average path length [7]. These

properties make scale-free networks very attractive for interconnection networks in many

applications including social systems [42], peer-to peer systems [45], sensor networks [36], [37]

and, as we will argue in this thesis, to utility computing.

 Consider and Erdӧs-Reny (ER) graph 𝐺𝐺𝐸𝐸𝐸𝐸 with N vertices; vertex i has a unique label from

a compact set 𝑖𝑖 ∈ { 1 , … ,𝑁𝑁 }. We wish to rewire this graph and produce a new graph 𝐺𝐺𝑆𝑆𝑆𝑆 where

the degrees of the vertices follow a power-law distribution. The procedure we discuss consists of

the following steps [34]:

1) We assign to each node i a probability

𝑝𝑝𝑖𝑖 = 𝑖𝑖−𝛼𝛼

∑ 𝑗𝑗−𝛼𝛼𝑁𝑁
𝑗𝑗=1

= 𝑖𝑖−𝛼𝛼

𝜁𝜁𝑁𝑁 (𝛼𝛼)
 with 0 < 𝛼𝛼 < 1 (16)

And 𝜁𝜁𝑁𝑁(𝛼𝛼) = ∑ 𝑗𝑗−𝛼𝛼𝑁𝑁
𝑗𝑗=1 (17)

2) We select a pair of vertices i and j and create an edge between them with probability

𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 = (𝑖𝑖𝑗𝑗)−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)
 (18)

And repeat these process n times.

Then the probability that a given pair of vertices i and j is not connected by an edge ℎ𝑖𝑖𝑗𝑗 is

𝑝𝑝𝑖𝑖𝑗𝑗 𝑁𝑁𝐶𝐶 = (1 − 𝑝𝑝𝑖𝑖𝑗𝑗)𝑎𝑎 ≈ 𝑒𝑒−2𝑎𝑎𝑝𝑝𝑖𝑖𝑗𝑗 (19)

And the probability that they are connected is

𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶 = �1 − 𝑝𝑝𝑖𝑖𝑗𝑗 𝑁𝑁𝐶𝐶� = 1 − 𝑒𝑒−2𝑎𝑎𝑝𝑝𝑖𝑖𝑗𝑗 (20)

15

Call 𝑘𝑘𝑖𝑖 the degree of vertex i; then the moment generating function of 𝑘𝑘𝑖𝑖 is

𝑔𝑔𝑖𝑖(𝑡𝑡) = ∏ [𝑗𝑗≠𝑖𝑖 𝑝𝑝𝑖𝑖𝑗𝑗 𝑁𝑁𝐶𝐶 + 𝑡𝑡𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶] (21)

The average degree of vertex i is

𝑘𝑘�𝑖𝑖 = 𝑡𝑡 𝑎𝑎
𝑎𝑎𝑡𝑡
𝑔𝑔𝑖𝑖(𝑡𝑡)�𝑡𝑡 = 1 = ∑ 𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶𝑗𝑗≠𝑖𝑖

� (22)

Thus,

𝑘𝑘�𝑖𝑖 = �(1 − 𝑒𝑒−2𝑎𝑎𝑝𝑝𝑖𝑖𝑗𝑗) =
𝑗𝑗≠𝑖𝑖

��1 − 𝑒𝑒
−2𝑎𝑎 (𝑖𝑖𝑗𝑗)−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)�
𝑗𝑗≠𝑖𝑖

≈ ∑ 2𝑎𝑎 (𝑖𝑖𝑗𝑗)−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)
= 2𝑎𝑎

𝜁𝜁𝑁𝑁2(𝛼𝛼)
∑ (𝑖𝑖𝑗𝑗)−𝛼𝛼𝑗𝑗≠𝑖𝑖 𝑗𝑗≠𝑖𝑖 (23)

This expression can be transformed as

𝑘𝑘�𝑖𝑖 = 2𝑎𝑎
𝜁𝜁𝑁𝑁2(𝛼𝛼)

∑ (𝑖𝑖𝑗𝑗)−𝛼𝛼𝑗𝑗≠𝑖𝑖 = 2𝑎𝑎𝑖𝑖−𝛼𝛼 ∑ 𝑗𝑗−𝛼𝛼𝑗𝑗≠𝑖𝑖

𝜁𝜁𝑁𝑁2(𝛼𝛼)
= 2𝑎𝑎𝑖𝑖−𝛼𝛼 (𝜁𝜁𝑁𝑁 (𝛼𝛼)−𝑖𝑖−𝛼𝛼)

𝜁𝜁𝑁𝑁2(𝛼𝛼)
 (24)

The moment generating function of 𝑘𝑘𝑖𝑖 can be written as

𝑔𝑔𝑖𝑖(𝑡𝑡) = ∏ [𝑗𝑗≠𝑖𝑖 𝑝𝑝𝑖𝑖𝑗𝑗 𝑁𝑁𝐶𝐶 + 𝑡𝑡𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶] = ∏ 𝑒𝑒−(1−𝑡𝑡)𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶𝑗𝑗≠𝑖𝑖 = 𝑒𝑒(1−𝑡𝑡)∑ 𝑝𝑝𝑖𝑖𝑗𝑗 𝐶𝐶𝑗𝑗≠𝑖𝑖 = 𝑒𝑒(1−𝑡𝑡)𝑘𝑘� 𝑖𝑖 (25)

Then we conclude that the probability that 𝑘𝑘𝑖𝑖 = 𝑘𝑘 is given by

𝑝𝑝𝑎𝑎 ,𝑖𝑖(𝑘𝑘) = 1
𝑘𝑘!

 𝑎𝑎
𝑘𝑘

𝑎𝑎𝑡𝑡 𝑘𝑘
𝑔𝑔𝑖𝑖(𝑡𝑡)|𝑡𝑡 = 0 ≈ � 𝑘𝑘

� 𝑖𝑖
𝑘𝑘 !
𝑒𝑒−𝑘𝑘� 𝑖𝑖 (26)

16

When 𝑁𝑁 → ∞ then 𝜁𝜁𝑁𝑁(𝛼𝛼) = ∑ 𝑖𝑖−𝛼𝛼𝑁𝑁
𝑖𝑖=1 converges to the Riemann zeta function 𝜁𝜁𝑁𝑁(𝛼𝛼) for 𝛼𝛼 > 1

and diverges as 𝑁𝑁
1−𝛼𝛼

1−𝛼𝛼
 if 0 < 𝛼𝛼 < 1. For 0 < 𝛼𝛼 < 1 equation (1) becomes

𝑝𝑝𝑖𝑖 = 𝑖𝑖−𝛼𝛼

𝜁𝜁𝑁𝑁 (𝛼𝛼)
= 1−𝛼𝛼

𝑁𝑁1−𝛼𝛼 𝑖𝑖−𝛼𝛼 (27)

When 𝑁𝑁 → ∞, 0 < 𝛼𝛼 < 1, and the average degree of the vertices is 2m, then the degree of vertex

i is

𝑘𝑘 = 𝑝𝑝𝑖𝑖 × 𝑚𝑚𝑁𝑁 = 2𝑚𝑚𝑁𝑁 1−𝛼𝛼
𝑁𝑁1−𝛼𝛼 𝑖𝑖−𝛼𝛼 = 2𝑚𝑚(1 − 𝛼𝛼) � 𝑖𝑖

𝑁𝑁
�
−𝛼𝛼

 (28)

Indeed, the total number of edges in graph is mN and the graph has a power law distribution.

Then

𝑖𝑖 = 𝑁𝑁(𝑘𝑘
2𝑚𝑚(1−𝛼𝛼))

−1
𝛼𝛼 (29)

 From this expression we see that there is a one-to-many correspondence between the

unique label of the node i and the degree k; this reflects the fact that multiple vertices may have

the same degree k. The number of vertices of degree k is

𝑎𝑎(𝑘𝑘) = 𝑁𝑁(𝑘𝑘
2𝑚𝑚(1−𝛼𝛼))

−1
𝛼𝛼 − 𝑁𝑁(𝑘𝑘−1

2𝑚𝑚(1−𝛼𝛼))
−1
𝛼𝛼 = 𝑁𝑁(𝑘𝑘−1

2𝑚𝑚(1−𝛼𝛼))
−1
𝛼𝛼 ��1 + 1

𝑘𝑘
�
−1
𝛼𝛼 − 1� (30)

We denote 𝛾𝛾 = 1 + 1
𝛼𝛼
 and observe that

�1 + 1
𝑘𝑘
�
−1
𝛼𝛼 = 1 + �− 1

𝛼𝛼
� �1

𝑘𝑘
�
−1
𝛼𝛼 + 1

2
�− 1

𝛼𝛼
� �− 1

𝛼𝛼
− 1� �1

𝑘𝑘
�
−1
𝛼𝛼−1

+ ⋯ (31)

We see that

17

𝑎𝑎(𝑘𝑘) = 𝑁𝑁 �(𝑘𝑘−1)(𝛾𝛾−1)
2𝑚𝑚(𝛾𝛾−2) �

−𝛾𝛾+1
× �(1 − 𝛾𝛾) �1

𝑘𝑘
�
−𝛾𝛾+1

− 𝛾𝛾(1−𝛾𝛾)
2

�1
𝑘𝑘
�
−𝛾𝛾

+ ⋯� (32)

 We conclude that the number of iterations to reach the value predicted by the theoretical

model for the number of vertices of degree k is a function of N, of the average degree 2m, and of

γ, the degree of the power law. Next section discusses the properties of scale-free networks.

Scale-Free Networks:

 The degree distribution of scale-free networks follows a power law; we only consider the

discrete case when the probability density function 𝑝𝑝(𝑘𝑘) = 𝑎𝑎𝑖𝑖(𝑘𝑘),𝑖𝑖(𝑘𝑘) = 𝑘𝑘−𝛾𝛾 , and the constant

a is 𝑎𝑎 = 1
𝜁𝜁� (𝛾𝛾,𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎) thus

𝑝𝑝(𝑘𝑘) = 1
𝜁𝜁(𝛾𝛾 ,𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎)

𝑘𝑘−𝛾𝛾 (33)

In this expression 𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎 is the smallest degree of any vertex, and for the applications we discuss

in this thesis 𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎 = 1; is the Hurwitz zeta function

𝜁𝜁(𝛾𝛾,𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎) = ∑ 1
(𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎 + 𝑎𝑎)𝛾𝛾

= ∑ 1
(1+𝑎𝑎)𝛾𝛾

∞
𝑎𝑎=0

∞
𝑎𝑎=0 (34)

 A scale-free network is non-homogeneous; the majority of the vertices have a low degree

and only a few vertices are connected to a large number of edges. On the other hand, an

exponential network is homogeneous as most of the vertices have the same degree. Another

important property is that the majority of the vertices of a scale-free network are directly

connected with the vertices with the highest degree; for example, in a network with N = 130

vertices and m = 215 edges 60% of the nodes are directly connected with the five vertices with

18

the highest degree, while in an exponential network fewer than half, 27%, have this property [2].

The average distance d between the N vertices, also referred to as the diameter of the scale-free

network scales as ln N in fact it has been shown that when 𝑘𝑘𝑚𝑚𝑖𝑖𝑎𝑎 > 2 a lower bound on the

diameter of a network with 2 < γ < 3 is N ln N [14].

 We now discuss a property of SF networks, the universal load distribution [24]. The load

distribution in a directed or undirected SF network follows a power law with the exponent

𝛿𝛿 ≈ 2.2 insensitive to different values of γ in the range, 2 < γ < 3. To reach this conclusion the

authors of [24] assign a weight 𝑝𝑝𝑖𝑖 = 𝑖𝑖−∝, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁,∝ ∈ [0,1) to each vertex and add an edge

between two vertices a and b with probability 𝑝𝑝𝑎𝑎 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

� × 𝑝𝑝𝑃𝑃 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

� if none exists; they

repeat the process until mN edges are created and the mean degree is 2m. Then the degree

distribution is

𝑝𝑝(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾 , 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝛾𝛾 = (1+ 𝛼𝛼)
𝛼𝛼

 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 = 𝛼𝛼𝛾𝛾 − 1. (35)

The probability pi for vertex i can be expressed as

𝑝𝑝𝑖𝑖 = 𝑖𝑖−𝛼𝛼 = 𝑖𝑖
1

𝛼𝛼𝛾𝛾 −1 (36)

When the load 𝑖𝑖𝑖𝑖 at vertex i is defined as the total amount of data packets passing through the

vertex when all pairs of vertices send and receive one data packet between them, then numerical

simulations show that the load distribution follows also a power law when 2 < 𝛾𝛾 < 3

𝑝𝑝𝑖𝑖𝑃𝑃𝑎𝑎𝑎𝑎 (𝑘𝑘) ~ 𝑘𝑘−𝛿𝛿 with 𝛽𝛽 ≈ 0.8 and δ ≈ 1 + 1
𝛽𝛽� = 2.2. (37)

19

The condition 2 < 𝛾𝛾 < 3 implies that 1/2 < 𝛼𝛼 < 1. The communication load is proportional

with the degree of a vertex

𝑖𝑖𝑖𝑖 ~ 𝑘𝑘
𝛾𝛾−1
𝛿𝛿−1 (38)

1The Hurwitz zeta function 𝜁𝜁(𝑠𝑠, 𝑞𝑞) = ∑ 1
(𝑞𝑞+𝑎𝑎)𝑠𝑠

 for 𝑠𝑠, 𝑞𝑞 ∈ ℂ∞
𝑎𝑎=0 and Re(s) > 1 and Re(q) > 0. The

Riemann zeta function is 𝜁𝜁(s,1).

Thus, the load at each vertex is directly proportional with its degree if and only if 𝛾𝛾 = 𝛿𝛿

The communication load at vertex i with degree k and the total communication load are,

respectively,

𝑖𝑖𝑖𝑖 = 𝑐𝑐(𝑁𝑁𝑖𝑖𝑃𝑃𝑔𝑔𝑁𝑁)(𝑁𝑁 𝑘𝑘⁄)𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿 = �𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 𝑐𝑐 ′𝑁𝑁2𝑖𝑖𝑃𝑃𝑔𝑔𝑁𝑁 with 𝑐𝑐 and 𝑐𝑐 ′constants.

(39)

The degree, γ , of the power law is related to phase transitions [45]; a small variation of it can

lead to an abrupt change in the macroscopic system behavior, e.g., susceptibility to epidemics

and resistance to failure. The m-th moment of the power law distribution of a discrete random

variable X,

𝐸𝐸[𝑋𝑋𝑚𝑚] = ∑ 𝑘𝑘𝑚𝑚∞
𝑘𝑘=1 𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) = ∑ 𝑘𝑘𝑚𝑚𝑘𝑘−𝛾𝛾∞

𝑘𝑘=1 = ∑ 1
𝑘𝑘𝛾𝛾−𝑚𝑚

∞
𝑘𝑘=1 (40)

 The first moment 𝐸𝐸[𝑋𝑋] = ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘 = 1 diverges γ < 2 and is identical to the Riemann’s Zeta

function (γ – 1) for 𝛾𝛾 ∈ (2, ∞), thus, in this range the average vertex degree is limited by a small

20

constant. The variance 𝐸𝐸[𝑋𝑋2] = ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘=1 is divergent for γ ≤ 3. The moments of a power law

distribution play an important role in the behavior of a network. It has been shown that the giant

connected component (GCC) of networks with a finite average vertex degree and divergent

variance can only be destroyed if all vertices are removed, thus, such networks are highly

resilient against faulty constituents [40].

 Epidemic or gossip algorithms are often used in communication to accomplish tasks such

as: (i) disseminate information, e.g., topology information; (ii) compute aggregates, e.g., arrange

the nodes in a gossip overlay into a list sorted by some attributes in logarithmic time; or (iii)

manage data replication in a distributed system [25], [29], [30]. The epidemic threshold λ for the

Susceptible-Infectious–Recovered (SIR) [31] and Susceptible–Infectious–Susceptible (SIS) [11]

epidemic models of power networks can be expressed as 𝜆𝜆 = 𝐸𝐸[𝑋𝑋]
𝐸𝐸[𝑋𝑋2]

 the epidemic threshold is

defined as the minimum ratio of infected nodes to the cured nodes per time such that it still

allows the epidemics to continue without outside infections. It follows that λ → 0 if 𝛾𝛾 ∈ (2,3);

in other words; such networks become infinitely susceptible to epidemic algorithms. This

property is very important for dissemination of control information; also self-awareness requires

constant monitoring of other vertices possibly using epidemic algorithms.

 Though our discussion is focused on scale-free overlay networks to support service-level

agreements, it seems reasonable to consider that the physical cloud itself could be logically

interconnected through a scale-free overlay network. Indeed, the cloud could consist of a very

large number of physical units N ≥ 108, located at several sites and interconnected by high-speed

networks. The relatively few high-degree nodes of the overlay network organized as a power law

21

distribution could monitor subsets of nodes at a small distance from each and could gather

performance data for determining the impact of management policies e.g., utilization of

resources (CPU, communication bandwidth, storage, etc.), power consumption, synthetic

indicators regarding the quality of service (missed deadlines, inability to ensure the capacity

required by SLAs, etc.). The global organization of the physical cloud as a scale free network is

important for detecting undesirable global phenomena such as phase transitions; early detection

of phase transitions could result in preventive measures or, in the worst case, to a controlled

transition to a different operating regime when only the most important activities are carried to

completion.

 Vulnerability to attacks could be a problem for networks where the degree of the nodes

follows a power law distribution; indeed, the diameter of these networks increases rapidly when

the most connected nodes are targeted; under an attack a large network could break into isolated

fragments. But again we can exploit the fact that a very small fraction of the nodes have a high

degree of connectivity. We can estimate the number of “core nodes,” nodes with a degree larger

than 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚 when the scale-free network consist of N nodes

𝑁𝑁𝑖𝑖𝑖𝑖𝑚𝑚 = 𝑁𝑁 × Prob (𝑘𝑘 ≥ 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚) (41)

with Prob(𝑘𝑘 ≥ 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚) = 1 − Prob(𝑘𝑘 < 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚) = 1 − ∑ 𝑝𝑝(𝑘𝑘)𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚
𝑘𝑘=1 (42)

We can replicate the 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 critical nodes, each replica mirroring the role of the primary node thus,

not being a member of the logical organization of the overlay network; as Prob (𝑘𝑘 ≥ 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚) is

small we expect the additional cost to be justified by the increased resilience to attacks.

22

As an example we consider the case 𝛾𝛾 = 2.5 and 𝑋𝑋𝑚𝑚𝑖𝑖𝑎𝑎 = 1, Table 1; we first determine the value

of the zeta function 𝜁𝜁(γ, xmin) and approximate 𝜁𝜁(2.5, 1) = 1.341 thus, the distribution function is

𝑝𝑝(𝑘𝑘) = 𝑘𝑘
−2.5

1.341
= 0.745 1

𝑘𝑘2.5 (43)

where k is the degree of each vertex.

The probability of vertices with degree k > 10 is Prob(k > 10) = 1 − Prob(k ≤ 10) = 0.015. This

means that at most 1.5% of the total number of vertices will have more than k edges connected to

them; we also see that that 92.5% of the vertices have degree 1, 2 or 3.

TABLE I:

Table 1: A power law distribution with degree γ = 2.5; the probability, p(k), and 𝒏𝒏𝒌𝒌, the number of
vertices with degree k, when the total number of vertices is N = 𝟏𝟏𝟏𝟏𝟖𝟖.

K p(k) nk
1 0.74

74.5 × 106
2 0.13

13.1 × 106
3 0.04

4.9 × 106
4 0.02

2.3 × 106
5 0.01

1.3 × 106
6 0.00

0.9 × 106
7 0.00

0.6 × 106
8 0.00

0.4 × 106
9 0.00

0.3 × 106
10 0.00

0.2 × 106

The question we address next is how to estimate the degree distribution of any scheme for the

construction of a power-law network. The estimation of the degree distribution from empirical

23

data is analyzed in [13]; according to this study a good approximation for a discrete power law

distribution for a network with P vertices and kmin = 1 is

𝛾𝛾� ≈ 1 + 𝑃𝑃 �∑ 𝑖𝑖𝑎𝑎 𝑘𝑘𝑖𝑖
𝑘𝑘𝑖𝑖− 1 2�

𝑃𝑃
𝑖𝑖=1 �

−1
= 1 + 𝑃𝑃

∑ 2𝑘𝑘𝑖𝑖𝑃𝑃
𝑖𝑖=1

 (44)

 Several measures exist for the similarity/dissimilarity of two probability density functions

of discrete random variables including the trace distance, fidelity, mutual information, and

relative entropy [16], [32]. The trace distance (also called Kolmogorov or L1 distance) of two

probability density functions, 𝑝𝑝𝑋𝑋(𝑥𝑥)and 𝑝𝑝𝑌𝑌(𝑦𝑦), and their fidelity are defined as

𝐷𝐷�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑌𝑌(𝑥𝑥)� = 1
2

 ∑ |𝑝𝑝𝑋𝑋(𝑥𝑥) − 𝑝𝑝𝑌𝑌(𝑥𝑥)|𝑥𝑥 (45)

and 𝑆𝑆�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑌𝑌(𝑥𝑥)� = ∑ �𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑥𝑥)𝑥𝑥 (46)

The trace distance is a metric: it is easy to prove non-negativity, symmetry, the identity of

indiscernible, and the triangle inequality. On the other hand, the fidelity is not a metric, as it fails

to satisfy the identity of indiscernible.

 𝑆𝑆�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑋𝑋(𝑥𝑥)� = ∑ �𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥) 𝑥𝑥 = 1 ≠ 0 (47)

Determining either the L1 distance between the distribution calculated is based on equation (18)

and the one produced by the algorithm discussed in Section III requires information about the

degree of all vertices.

 From Table I we see that the degree-one vertices represent a very large fraction of the

vertices of a power-law network. We wish to determine whether the number of degree-one

vertices provides an adequate stopping criterion instead of the L1.

24

 A recent paper [46] proposes a distributed rewiring scheme to construct scale-free overlay

topologies with an adjustable exponent. An alternative method of creating of the scale-free

overlay network could be based on the gossip-based peer-sampling discussed in [30].

25

4: VIRTUAL CLOUDS

 We assume that the computing systems of the organization supporting utility computing

are distributed across multiple sites and interconnected by high-speed and low-latency networks

reliable networks. This assumption allows us to concentrate on overlay networks and exploit the

properties of the logical organization of communication. A virtual cloud is a subset of the

systems assigned to the tasks specified by a service-level agreement, as well as the overlay

network interconnecting these systems. In a virtual cloud there is no central authority responsible

for resource management; an individual node decides to join a virtual cloud based solely on local

state information provided by the local workload manager [23] and by the local power

management system.

 A scale-free global overlay network supports communication among the large number of

systems, ~ 108 , of the organization providing utility computing. The lifespan of the global

overlay network 𝛤𝛤 is dictated by administrative considerations and it is expected to be of the

order of days if not weeks. The degrees of the nodes of the global overlay network follow a

power law distribution thus, the network is heterogeneous.

 The core nodes of 𝛤𝛤 are the ones with a degree 𝑘𝑘 ≥ 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 ; 𝑘𝑘𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 is a function of the

number of systems in the organization providing utility computing and its user population. The

𝑎𝑎𝑐𝑐 core nodes represent a very small fraction, 𝑎𝑎𝑐𝑐
𝑎𝑎

 , of the total number of nodes, n; if 𝑎𝑎1 denotes

the number of nodes at distance one from a core node then the ratio 𝑎𝑎1
𝑎𝑎−𝑎𝑎𝑐𝑐

 is very close to unity as

shown in chapter three.

26

 The heterogeneity of this scale-free overlay network is exploited for self-management; the

core node of 𝛤𝛤 assume management functions, monitor the system, coordinate activities, and

prevent phase transitions. They periodically collect information regarding the free capacity of

nodes close to them; then, the core nodes exchange such information among them and construct

an approximate distribution of the free capacity at time 𝑡𝑡𝑖𝑖 with mean 𝜇𝜇(𝑡𝑡𝑖𝑖) and variance 𝜎𝜎(𝑡𝑡𝑖𝑖).

 Assuming that the information propagates from one node to another in one unit of time

and that the core nodes form a ring topology to exchange control information then, at time 𝑡𝑡𝑖𝑖 the

𝑎𝑎𝑐𝑐 core nodes will have accurate information about the states of the 𝑎𝑎1 systems at time 𝑡𝑡𝑖𝑖−1; it

will take at most 𝑎𝑎𝑐𝑐 units of time until all core nodes can construct an approximate distribution

of the free capacity. Thus, the distribution of the free capacity available to all core nodes at time

𝑡𝑡𝑖𝑖 reflects the state of the entire system at time 𝑡𝑡𝑖𝑖−(𝑎𝑎𝑐𝑐+1). The actual distribution at time 𝑡𝑡𝑖𝑖 is

slightly different that the one provided by the core nodes; we assume that its mean value

�́�𝜇(𝑡𝑡𝑖𝑖) is uniformly distributed around 𝜇𝜇(𝑡𝑡𝑖𝑖) and the variance �́�𝜎(𝑡𝑡𝑖𝑖) is also uniformly distributed

around 𝜎𝜎(𝑡𝑡𝑖𝑖).

 Once the global overlay network 𝛤𝛤 is constructed we use biased random walks to build 𝛤𝛤𝒸𝒸,

the overlay network for a virtual cloud 𝒸𝒸. Now one of the core nodes of 𝛤𝛤 which will be called

the SLA-Coordinator (SLAC) initiates the construction of the overlay network of the virtual

cloud 𝒸𝒸.

 To determine the size of the overlay network 𝛤𝛤C for the virtual cloud 𝒸𝒸 the SLAC

examines the average and the maximum workload, chooses a distribution of the load and the

number virtual cloud nodes and amplifies this number based on local information regarding the

distribution of the free capacity, of the power consumption per unit of work, of the “green"

27

nodes, and so on. Given the wide range of service demands the SLAC should have access to

Ontology to track various aspects of performance monitoring of the SLA [19].

 The overlay network 𝛤𝛤𝒸𝒸 consists of a number of nodes larger than the number to be

included in the virtual cloud 𝒸𝒸. The selection is a result of successive biased random walks in 𝛤𝛤;

an individual node decides to join a virtual cloud 𝒸𝒸 based solely on local state information

provided by the local workload manager and by the local power management system. The

criteria to join virtual cloud 𝒸𝒸 could be: the free capacity of the node larger than a given

threshold; the cost per unit of service below a certain limit; the node provides “green" computing

cycles and so on. Successive random walks select increasingly smaller subsets of nodes that

satisfy the additional constrains. As a result of this strategy the nodes included in the virtual

clouds are a subset of the nodes of the overlay network; when additional resources are needed we

expand the virtual cloud with nodes of the overlay network we have previously rejected.

 The overlay network supports functions related to explicit application requirements

specified by SLA and for the management of the activities, including workload distribution,

system monitoring, error recovery, minimization of costs and reduction of power consumption,

and so on. The self-awareness and self-repair properties of the virtual cloud benefit from the fact

that the majority of nodes have degree one or two and have to maintain information about the

role of one of two neighbors; when a node fails in most cases there is either one, or at most, two

neighbors which attempt to trigger rewiring and this simplifies the rewiring strategy.

 The basic architecture of the systems we propose is illustrated in Figure 1. Once a request

to join a virtual cloud is received the MVM compares the available capacity and the future

resource commitments with the load and the future resource commitments specified by the

28

request and decides whether the system should join the new virtual cloud or not. When a

decision to join a virtual cloud is taken then the Management Virtual Machines creates a Virtual

Cloud Manager; the VCM will maintain the information regarding the topology of the virtual

cloud and manage communication with the other members of the virtual cloud. Then the VCM

creates the Guest Virtual Machine which will provide the user environment for the application

specified by the SLA.

Figure 1: The virtualization architecture

29

5: DISTRIBUTED ALGORITHMS FOR THE FORMATION OF VIRTUAL
CLOUDS

 The algorithm to construct a power low network using a random walk require each one of

the N nodes of the cloud to have a unique cloudId (cId) selected from a compact set of integers

1 ≤ cId ≤ N. The cId could be assigned to each system by a central authority at the startup time;

alternatively, each system could use the MAC address of one of its network interfaces and then

we can run a distributed sorting of these addresses to obtain the unique cId in the range (1,N).

 The core nodes

 The core nodes should be able to exchange efficiently their local views regarding the state

of the system. A self organization procedure to link the core nodes into a ring structure is

sketched next. To be included in the ring a core node should discover its left and right core

neighbors; initially a core node will set the cId of the left and the right partners as its own. Each

core node is aware of the degree of each one of its neighbors and should send to the neighbors

with a degree k ≥ 2 an identification message with a hop count slightly larger than the diameter

of the network and request that the message be forwarded to their neighbors of degree k ≥ 2 until

the hop count reaches zero. A core node will eventually receive identification messages from all

other core nodes; upon receiving the message it will compare the cId of the message with the

 of Ω are the ones with a degree k ≥ klimit; klimit is a function of the size of

the cloud and its user population. There are only a few high degree nodes thus; there is a natural

selection criteria for core nodes. The core nodes assume management functions, monitor the

system, coordinate activities, and prevent phase transitions; these nodes can be replicated to

increase the resilience to attacks and make the system fault-tolerant. A large fraction of the nodes

of the cloud are directly connected to the core nodes as discussed in Chapter three.

30

current cId of left and of the right partners; if it is smaller than the cId of the left partner, or

larger than the one of the right partner, no action will be taken; if it is larger than the one of the

left partner, but smaller than its own, it will replace the one of the left partner; if it is smaller than

the one of the right partner, but larger than its own, it will replace the one of the right partner.

Finally, the two nodes, one with no left partner and one with no partners will join; this can be

done if each node maintains the larger and the smallest cId it has ever seen in an identification

message.

 The core nodes should estimate several probability distribution functions such as: the cost

per unit of service 𝑆𝑆𝐶𝐶𝑃𝑃𝑠𝑠𝑡𝑡 (𝑐𝑐), the green cycle 𝑆𝑆𝐺𝐺𝑃𝑃𝑒𝑒𝑒𝑒𝑎𝑎 (𝑔𝑔). Each core node would gather the

information from the nodes at distance one and then pass this information to its right partner in

the ring and eventually receive from its right partner a version incorporating a global view. This

information is relatively stable and does not need to be updated frequently. A more complex

process to estimate the distribution of the free capacity of the nodes must be designed; a possible

solution is to require a core node to gather this information periodically from the virtual clouds it

has created and then to exchange it with its core partners.

 The second type overlay networks are the ones created dynamically for virtual clouds;

typically, they have a relatively small number of nodes, 𝑁𝑁𝑞𝑞 ∼ 102− 104, and a limited lifespan.

The heterogeneity of a power law overlay network could be exploited for interconnecting

physical systems located at sites in different geographic areas thus, minimizing the potential

effect of a catastrophic event such as a blackout affecting a large geographic region. The

properties of a scale-free overlay network can be exploited for self-management of a service-

level agreement in a virtual cloud. The self-awareness and self-repair properties of the virtual

31

cloud benefit from the fact that the majority of nodes have degree one or two and have to

maintain information about the role of one of two neighbors; when a node fails in most cases

there is either one, or at most, two neighbors which attempt to trigger rewiring and this simplifies

the rewiring strategy.

 We assume that we have constructed a scale-free global overlay network, Ω with

2 < γ < 3, e.g., using the algorithm described in this section or the one in [46] and we discuss

next how to construct a virtual cloud subject to several constraints in addition to an optimal

overlay network; for example, an SLA could specify the cost the user is willing to pay for the

services, request sites with a cost per unit of service lower than a given threshold, and require

“green” computing cycles. We should include in the virtual cloud only systems whose free

capacity at the time when the virtual cloud is created follows a certain distribution. For example,

we may want to identify systems whose free capacity is uniformly distributed and then partition

the workload for the SLA to guarantee load balancing for the systems included in the virtual

cloud. An application may be naturally decomposed into tasks with a particular distribution of

the workload for example, normal or Poisson distributions; in this case, the additional condition

would be to include systems whose available capacity follows the distribution of the

application’s workload. Incidentally, construction of the virtual cloud could also support co-

scheduling [5], in other words, guarantee that the systems included in the cloud start working on

the tasks required by the SLA at the same time; co-scheduling is important for distributed

applications that require barrier synchronization.

 Given an SLA we construct first an overlay network consisting of a number of nodes

larger than the number we wish to include in the virtual cloud; this selection process is done by a

32

random walk in Ω when we select a node based on criteria such as: whether it provides “green”

computing cycles or not; if its free capacity is larger than a given threshold; or if its cost per unit

of service is below a certain limit. Then we select increasingly smaller subsets of nodes that

satisfy the additional constrains through several random walks. As a result of this strategy the

nodes included in the virtual clouds are a subset of the nodes of the overlay network; when

additional resources are needed we expand the virtual cloud with nodes of the overlay network

we have previously rejected. Recall that the nodes included in the power law network satisfy

minimum requirements regarding the cost per unit of service and energy consumption, thus the

expansion of the virtual cloud may not grantee optimality, but does not sacrifice the objectives to

reduce cost and power consumption.

 The process to create a virtual cloud is initiated by A, one of the core nodes of Ω which

first parses SLAq and determines critical parameters for the cloud including: the number of nodes

Nq; the cost Cq; the parameters of the distribution of the free capacity of the nodes to be included

in the cloud; the maximum power consumption per unit of service, gq; and possibly other

information. The buildup of a virtual cloud consists of the following steps:

Step 1. Select 2 < γ < 3 and compute 𝛼𝛼 = 1
𝛾𝛾−1

; a core node A initiates the creation of Ωq, a scale-

free network with

𝑝𝑝(𝑘𝑘) = 1
𝜁𝜁(𝛾𝛾 ,1)

𝑘𝑘−𝛾𝛾 (48)

and pi, the probability of the vertex with cId = i given by

𝑝𝑝𝑖𝑖 = 𝑖𝑖
1

𝛼𝛼𝛾𝛾 −1 (49)

33

Call 𝛤𝛤1
𝑞𝑞 the set of nodes of Ω included in Ωq and let 𝑁𝑁1

𝑞𝑞 be the cardinality of 𝛤𝛤1
𝑞𝑞 , 𝑁𝑁1

𝑞𝑞 = �𝛤𝛤1
𝑞𝑞 �. If

𝑘𝑘� denoted the average degree of a node of a power law network with the exponent γ then the

number of edges|𝐸𝐸| of this overlay network is

|𝐸𝐸| = 𝑘𝑘� 𝑁𝑁1
𝑞𝑞

2
 with 𝑘𝑘� = ∑ 1

𝑘𝑘𝛾𝛾−1 ∞
𝑘𝑘=1 = 𝜁𝜁(𝛾𝛾 − 1, 0). (50)

Step 2. A random walk in Ωq to select a subset of the nodes of Ωq following a the distribution of

the free capacity; call this subset 𝛤𝛤2
𝑞𝑞 ⊂ 𝛤𝛤1

𝑞𝑞 and let 𝑁𝑁2
𝑞𝑞 < 𝑁𝑁1

𝑞𝑞 be the cardinality of 𝛤𝛤2
𝑞𝑞 .

Step 3. A random walk to select a subset 𝛤𝛤3
𝑞𝑞 ⊂ 𝛤𝛤2

𝑞𝑞 to ensure that the total cost does not exceed

Cq. The cardinality of 𝛤𝛤3
𝑞𝑞 , satisfies the condition 𝑁𝑁3

𝑞𝑞 < 𝑁𝑁2
𝑞𝑞 < 𝑁𝑁1

𝑞𝑞 . First we determine the

average cost per node 𝑐𝑐𝑞𝑞��� = 𝑐𝑐
𝑞𝑞

𝑁𝑁4
𝑞𝑞� and then select the nodes subject to the condition 𝑐𝑐𝑖𝑖 ≤ 𝑐𝑐𝑞𝑞���

with 𝑐𝑐𝑖𝑖 the cost per unit of service for node i.

Step 4. A random walk to select a subset 𝛤𝛤4
𝑞𝑞 ⊂ 𝛤𝛤3

𝑞𝑞 of nodes that can provide the service with a

power consumption per unit of service at or below the threshold eq. The cardinality of 𝛤𝛤4
𝑞𝑞

satisfies the condition 𝑁𝑁4
𝑞𝑞 < 𝑁𝑁3

𝑞𝑞 < 𝑁𝑁2
𝑞𝑞 < 𝑁𝑁1

𝑞𝑞

 It follows the additional constraints filter out systems; the number of nodes in successive subsets

is given by

𝑁𝑁4
𝑞𝑞 = Pr(𝑔𝑔 ≤ 𝑔𝑔𝑞𝑞) × 𝑁𝑁3

𝑞𝑞 = 𝑆𝑆𝑔𝑔𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎 (𝑔𝑔𝑞𝑞) × 𝑁𝑁3
𝑞𝑞 (51)

𝑁𝑁3
𝑞𝑞 = Pr(𝑔𝑔 ≤ 𝑔𝑔𝑞𝑞) × 𝑁𝑁2

𝑞𝑞 = 𝑆𝑆𝑐𝑐𝑃𝑃𝑠𝑠𝑡𝑡 (𝑔𝑔𝑞𝑞) × 𝑁𝑁2
𝑞𝑞 (52)

𝑁𝑁2
𝑞𝑞 = Pr(𝑤𝑤 > 𝑤𝑤𝑞𝑞) × 𝑁𝑁1

𝑞𝑞 = (1 − 𝑆𝑆𝑖𝑖𝑃𝑃𝑒𝑒𝑒𝑒 (𝑤𝑤𝑞𝑞) × 𝑁𝑁1
𝑞𝑞 (53)

34

To include in the virtual cloud 𝑁𝑁𝑞𝑞 systems we determine 𝑁𝑁1
𝑞𝑞 , the number of nodes of the overlay

network from the equation

𝑁𝑁𝑞𝑞 = 𝑁𝑁4
𝑞𝑞 = 𝑆𝑆𝑔𝑔𝑃𝑃𝑒𝑒𝑒𝑒𝑎𝑎 (𝑔𝑔𝑞𝑞) × 𝑆𝑆𝑐𝑐𝑃𝑃𝑠𝑠𝑡𝑡 (𝑔𝑔𝑞𝑞) × �1 − 𝑆𝑆𝑖𝑖𝑃𝑃𝑒𝑒𝑒𝑒 (𝑤𝑤𝑞𝑞)� × 𝑁𝑁1

𝑞𝑞 (54)

Then we compute the number of edges

|𝐸𝐸| = 𝜁𝜁(𝛾𝛾 − 1, 0) 𝑁𝑁1
𝑞𝑞

2
 (55)

 The algorithm to generate the scale-free network Ωq with Nq nodes and |E| edges consists

of the following steps:

1) Use a random walk to select the subset 𝛤𝛤1
𝑞𝑞 of nodes of Ω to be included in Ωq. For example,

select only “green” computing nodes, or nodes based upon their geographic location.

2) Assign each node a vId, 1 ≤ vId ≤ Nq.

3) Set L the random walk length, e.g., L = 10.

4) Set the number of nodes already rewired, 𝑎𝑎𝑃𝑃𝑒𝑒𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎 = 0.

5) Select at random a node from 𝛤𝛤1
𝑞𝑞 , e.g., node a and check if it has any edge that has not been

rewired yet.

a) If NO go to step 5.

b) If YES pick up one of the edges at random and save both endpoints of that edge.

6) Check which one of the endpoints has higher degree, if they were same pick one of at random.

7) Initialize the number of hops for the random walk nhop = 0.

8) Draw a random number 0 < r < 1.

9) Pick up one at random a node in the neighborhood of the original node a, e.g. node b .

35

10) Given the degree da of node a with vIda and the degree db of node b with vIdb, we calculate

ℎ = 𝑎𝑎𝑎𝑎
𝑎𝑎𝑃𝑃
�𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎
𝑣𝑣𝑣𝑣𝑎𝑎𝑃𝑃

�
1

∝𝛾𝛾−1 (56)

a) If h > r send a message to node b.

b) If h ≤ r send a message to node a.

11) Increment the number of hops nhop = nhop + 1.

a) If nhop ≠ L and nhop < 2L go to Step 8.

b) If nhop = L save the node as the target node c then go to Step 8.

c) Else save the node as the second target node d.

12) Connect target nodes to each other.

13) Remove the edge found in Step 5b.

14) Mark the edge you found as a rewired edge.

15) Increment the number of nodes already rewired,

𝑎𝑎𝑃𝑃𝑒𝑒𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎 = 𝑎𝑎𝑃𝑃𝑒𝑒𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎 + 1 (57)

a) If 𝑎𝑎𝑃𝑃𝑒𝑒𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎 ≤ 𝐸𝐸 go to Step 5.

b) Else, the algorithm terminates as we have rewired all edges.

 Once we have constructed the scale-free network Ωq with Nq nodes and |𝐸𝐸| edges we

proceed to select subsets of nodes based on additional restriction. For example, if the free

capacity has a normal distribution we select a subset of 𝑁𝑁2
𝑞𝑞 nodes according to the following

algorithm:

1) Initialize the number of nodes processed np = 0

2) Pick up a random node and call it node a.

36

3) Pick up one of its neighbors at random and call it node b.

4) Draw a random number (0 ≤ r ≤ 1).

5) If Ca is the free capacity of node a and Cb is the free capacity of random neighbor we calculate

𝛽𝛽 = 𝑒𝑒−(𝐶𝐶𝑎𝑎 2−𝐶𝐶𝑃𝑃2) (58)

a) If 𝛽𝛽 ≥ 𝑃𝑃 or 𝛽𝛽 ≥ 1 go to the neighbor.

b) then set b as the new node.

6) Else stay in the the same node a.

7) Increment the number of nodes, 𝑎𝑎𝑝𝑝 = 𝑎𝑎𝑝𝑝 + 1.

a) If 𝑎𝑎𝑝𝑝 < 𝑁𝑁2
𝑞𝑞 go to step 2

b) Else terminate.

Uniform distribution on power remaining:

1) From 100 nodes that we’ve built the normal distribution, pick up a random node and call it a.

2) Find the most nearest power remaining in the nodes next to the random node, e.g. b.

3) If the |𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑃𝑃 | is less than Th = 0.05 go to the node b.

4) Remove the original node e.g. a.

5) Set up the b as new node e.g. a.

6) Increment the number of hops, 𝑎𝑎𝑝𝑝 = 𝑎𝑎𝑝𝑝 + 1

a) If 𝑎𝑎𝑝𝑝 ≤ 10 go to step 2.

b) Else terminate.

7) Else increase the Threshold 0.01 then go to step 2.

37

Simulation Studies:

 Development of a complex system is often based on intensive preliminary simulation

studies; indeed, analytical performance studies of systems with a very large number of

components is rarely feasible and the development of a test bed system can be prohibitively

expensive. In this section we report on our simulation studies of the algorithms and strategies for

the creation of virtual clouds; the simulation environments we used in our research on self-

organization of sensor networks [36], [37] could not handle the requirements of this project and

we developed a C-based simulator running on Linux workstations, as well as, Powerbooks under

MAC OS.

 A first question we address is if the procedure discussed in Chapter Three can be used in

practice to produce a power law distribution; our experiments show that stopping after mN

iterations leads to a distribution of the degrees of vertices resembling a power law, but not to the

one we expected for γ = 2.5.

 Figure 2(a) shows the histogram of the degree distribution for the random graph used as

input to the algorithm; Figure 2(b) shows the histogram of the degree distribution after a number

of iterations equal to the expected number of edges mN = 1.5 × 1000 of the graph of the power

law network. When γ = 2.5 we expect 745 vertices of degree-one for a network with N = 1,000

vertices; the actual number of degree-one vertices is ∼ 380, far from the expected value. Recall

from Chapter Four that degree-one vertices represent a very large fraction of the vertices of a

power-law network this number can be used as an indicator of the similarity between the degree

38

distribution obtained experimentally and the one expected for a power law distribution with the

given the degree of the power law distribution, γ.

(a)

(b)

39

Figure 2: Two histograms of the degree distribution of: (a) the random graph with N = 1,000
vertices used as input to the algorithm in Chapter Three; (b) the graph after one run of the

algorithm with mN = 1,500 iterations.

(a)

(b)

40

(c)

(d)

Figure 3: The fraction of degree-one vertices ʋ= N1 ⁄ N is a function of the number of iterations
when γ = 2.5; the value calculated in Chapter Four is 74.5%. The number of iterations required for
ʋ to be within 2% of the theoretical value is (a) 10 × 105 when N = 1,000 vertices; (b) 1.5 × 105 when

41

N = 1,0000 vertices; (c) 10 × 105 when N = 100,000 vertices; (c) 10 × 106 when N = 1,000,000
vertices.

Table 2 : The time required by the algorithm to construct the scale-free network to converge to the
theoretical value for degree-one vertices is a function of N, the number of vertices.

Number

Vertices

Mean Execution

Time (Sec)

Standard

Deviation (Sec)

95% Confidence

Interval for the

Mean (Sec)

1,000 53.1 68.7 39.6 – 66.5

10,000 28.9 39.5 21.1 – 36.5

100,000 278.6 16.6 275.3 – 281.9

1,000,000 9473.6 424 9390.54 – 9556.7

 As a result of this observation we have modified the algorithm; the new algorithm revisits

an already rewired node and continues to iterate until the number of degree-one vertices is close

to the theoretical value calculated in Chapter Four for the corresponding value of γ. Then we

investigate the stopping criteria for the new algorithm. We have seen in Chapter Three that the

number of iterations to reach the value predicted by the theoretical model for the number of

vertices of degree k is a function of N and of, the degree of the power law; our experiments

confirm this and show that we need about 106 iterations of the algorithm when N = 106.

 Figure 3 shows that the number of iterations necessary to be within 2% of the predicted

value is about 10 × 105 when the number of vertices of the random graph increases from

N =1,000, to 10,000, and then to 100,000; this number increases by an order of magnitude for

N = 1,000,000 vertices. We also notice that the convergence to the theoretical value is slower

when the number of vertices of the random graph increases.

42

 We now discuss the timing requirements for the algorithm to create a scale-free overlay

network. The execution times required by this version of the algorithm to reach the distribution

predicted by the theory are summarized in Table 2. While the time required for the formation of

the scale-free network covering an entire cloud with 106 computing nodes seems prohibitive,

around 2.5 hours, we should keep in mind that the simulations run on an Intel Core 2 Duo E7500

system with 4 GB of memory and a clock rate of 2.93 GHz under Fedora 12 64-bit operating

system; in practice, the algorithm will run on much faster systems. The establishment of the

global scale-free overlay network is one step of the start-up of the cloud and will run once every

few weeks or months. On the other hand, the establishment of the scale-free network for a cloud

with less than 1,000 systems will probably take a few seconds in practice.

 The next question we address regards the error when we compare the number of degree-

one vertices with the one predicted by the power-law as a stopping criterion. A more accurate

solution is to use the L1 distance, but this requires collecting information about the degree of all

nodes. The distributed algorithm to construct a scale-free network uses the following expression

with the constant k = 1 to decide the bias used by node ia to forward the random walk message to

a node in with da and db the degrees of vertices ia and in, respectively.

𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

 �𝑖𝑖𝑎𝑎
𝑖𝑖𝑎𝑎
�

𝑘𝑘
𝛾𝛾𝛼𝛼 −1

 (59)

 We use as a stopping criteria the L1 distance between the degree distribution predicted by

the theoretical model and that produced by the algorithm; we also compare the number of degree

one vertices predicted by the theoretical model and that produced by the algorithm. We observe

that the value of k and the number of iterations required to achieve a certain level of error are a

43

function of the power of the degree distribution and, as expected, by the metrics used to compute

the error. The results summarized in Figures 4 and 5 are for N = 1000 vertices and represent the

averages over 10 runs.

(a)

44

(b)

(c)

45

(d)

Figure 4: Simulation Results

 Figure 4(a) shows that when γ = 2.1 the optimal value is k = 0:8 and that we need 2 × 105

iterations to reach a distance L1 equal to 100. If instead of the L1 norm we use the number of

degree-one vertices, as in Figure 4(b), we need around 0.4×105 iterations when k = 0.75 to be

within 1% of the number of degree-one vertices predicted by the theoretical model. Figure 4(c)

shows that for γ = 2.3 the optimal value is k = 0.9 and we reach a distance L1 of 100 after about

0.7 × 105 iterations; we need around 0.7 × 105 iterations to be within 1% of the number of

degree-one vertices predicted by the theoretical model, Figure 4(d).

46

(a)

(b)

47

(c)

(d)

Figure 5: Simulation Results

48

When γ = 2.5 the optimal value is k = 0.9 and we reach distance L1 of 100 after about 0 : 4×105

iterations, shown in Figure 5(a); we need around 1.2×105 iterations to be within 1% of the

number of degree-one vertices predicted by the theoretical model, shown in Figure 5(b). When

γ = 2.7 the optimal value is k = 0.9 and we reach a distance L1 of 100 after about 2.8×105

iterations, shown in Figure 5(c); we need around 2.5×105 iterations to be within 3% of the

number of degree-one vertices predicted by the theoretical model, shown in Figure 5(d).

 Lastly, we report on the creation of a virtual cloud. We started with a scale-free network

with γ = 2.5 and with 106 nodes discussed earlier. Then we assembled a scale-free network of

5,000 nodes selected through a random walk from the 330,000 “green computing” nodes of the

cloud. The next step was to generate a random number representing free capacities of the 5,000

nodes in this scale-free network. Finally we constructed a normal distribution on 1,000 nodes.

 The execution time for building the normal distribution is less than a second and the time

for the reconstructing of the SF network for the 5,000 nodes was 155 seconds. Figure 5 shows

the distribution of the free capacity of the nodes included in the virtual cloud.

49

Figure 6: The histogram of the number of nodes in a cloud of 1,000 nodes with a normal
distribution of the free capacity, interconnected by a scale-free network of 5,000 nodes. The 5,000

nodes were selected through a random walk in a network of 330,000 of “green-computing” nodes of
a cloud with 10

6
 nodes.

50

6: DYNAMIC WORKLOAD DISTRIBUTION

 In this section we discuss the ability of a virtual cloud to react promptly to dynamic

changes in the workload. We assume that the global overlay network of the cloud, Γ, follows a

power law degree distribution with an exponent 2 < γ < 3.

 When a core node of Γ accepts the role of the SLA Coordinator and receives a request for

an average workload of 𝜔𝜔 units and a peak workload of 𝛼𝛼𝑚𝑚𝑎𝑎𝑥𝑥 × 𝜔𝜔 then it determines the

number of nodes in the virtual cloud, 𝑁𝑁 = |𝐶𝐶|. For example, if the average free capacity is k

workload units per system, then the number of systems in the virtual cloud could be

𝑁𝑁 > �𝛼𝛼𝜔𝜔 𝑘𝑘� � with 1 ≤ 𝛼𝛼 ≤ 𝛼𝛼𝑚𝑚𝑎𝑎𝑥𝑥 ; the ratio of number of nodes in the overlay network,

𝑀𝑀 = ⌈𝛤𝛤𝐶𝐶⌉ versus the number of those included in the virtual cloud, ƞ = 𝑀𝑀/𝑁𝑁 can be in the

range 5 ≥ ƞ ≥ 10 and it is determined using algorithms described in [44]. Then the SLA

Coordinator initiates the creation of the overlay network 𝛤𝛤𝐶𝐶 for virtual cloud C based on its

assessment of the global state of the cloud, in particular on the distribution of the free capacity

and of the information gathered from the SLA data regarding the workload and the terms of the

contract. Once the overlay network is constructed a subset of the nodes are included in the virtual

cloud and one of the core nodes of 𝛤𝛤𝐶𝐶 included in C is chosen as the Cloud Supervisor; its role is

to connect the virtual cloud to the SLA Coordinator which communicates directly with the user.

 The two parameters 𝛼𝛼 and 𝜂𝜂 ultimately control M and N, the number of nodes in 𝛤𝛤𝐶𝐶 and C,

respectively, are affected by the contractual obligations and the penalties. An SLA specifying

stiff penalties could be accommodated by Overprovisioning; it requires a choice of 𝛼𝛼 closer to

51

𝛼𝛼𝑚𝑚𝑎𝑎𝑥𝑥 . To avoid Overprovisioning we could use a larger pool of potential sites for the distribution

of the overload, in other words to select a moderate value of 𝛼𝛼 and a large value of 𝜂𝜂.

 Several workload allocation strategies are possible: increase uniformly the load of nodes

visited during the random walk; a greedy strategy is to saturate each node visited during the

random walk. We say that a node is saturated if its load is 90% of its capacity. In the first case

the load allocated to the node is a small fraction of its free capacity; this strategy allows multiple

virtual clouds operating on the same node to accommodate overloads, but requires a larger

number of steps for the random walk. The greedy strategy reduces the number of steps of the

random walk; when the cloud is lightly loaded this strategy together with a proper choice of the

distribution of the free capacity used to select the nodes of C allows a limited number of nodes to

accommodate the entire load of the cluster and turn off the other nodes to save power.

 Effective strategies for dynamic load management allow virtual clouds to respond to

global surges, an individual surge, or the failures of one or more nodes. A global surge could be

triggered by a sudden increase in demand due to a catastrophic event e.g., the blackout in some

region of the country, while an individual surge is possible due to the large peak to average ratio

of resources specified by a single user. First, we attempt to distribute the additional workload to

the 𝑁𝑁 systems in the C; then, if necessary, the residual workload is distributed to the M - N other

systems connected by 𝛤𝛤𝐶𝐶 , the virtual cloud's overlay network; as a last resort we extend the

random walk to nodes outside 𝛤𝛤𝐶𝐶 .

 The ability of the virtual cloud to accommodate a surge depends on the current load; we

consider three scenarios: a lightly loaded, a medium, and a heavily loaded virtual cloud. The

52

average load in these three cases is 10%, 50% and 80%, respectively, of the capacity of the

systems included in the virtual cloud.

 Next we attempt to quantify the attributes of the virtual cloud important for dynamic

workload management. The average number of steps of the random walk measures the time to

locate the systems able to carry the extra load; the desired versus the actual distribution of the

free capacity after applying an allocation strategy for the extra workload is another useful

measure that reflects in part the properties of the overlay network. We also want to see if these

measures scale with the size of the virtual cloud |𝐶𝐶| and of the overlay network |𝛤𝛤𝐶𝐶|.

 Table 3 shows that a biased random walk in an overlay network with a power law degree

distribution requires about the same number of steps as a biased random walk in a random

network provided that we do not require to revisit the source node of the random walk when the

condition is not met.

Table 3: The number of biased random walk steps for the creation of a virtual cloud in a lightly
loaded system when N = 1,000 and M = 5,000. Four experiments are conducted: I – random walk in

a random overlay network; II - random walk in an overlay network with a power law degree
distribution without the condition revisit the source node of the random walk when the condition is
not met; III - random walk in a graph with a power law degree distribution when the random walk
is forced to revisit the source node when the condition is not met; IV - workload distribution in an

overlay network with a power law degree distribution when we visit all the neighbors of a core
node, then repeat the same process for the next core node.

Experiment Number of steps

I 11,230

II 11,740

III 14,320

IV 43,227

53

It also shows that a biased random walk in an overlay network with a power law degree

distribution requires about three times less steps for workload distribution (11,740 versus 43,227)

than when we visit all neighbors of a core node then move to the next core node of the overlay

network |𝛤𝛤𝐶𝐶| of the virtual cloud C.

 In our simulation experiments a global surge is defined as an increase of the total load of

all the N systems included in the virtual cluster by a factor of 10. The virtual cloud consists of

1,000 systems selected through a random walk out of 5,000 systems. For simplicity, we assume

that the average load of a system in C is 𝜇𝜇𝑐𝑐 ; then the global surge amounts to 10 × 𝜇𝜇𝑐𝑐 workload

units. A simple calculation shows that such a global surge cannot be accommodated by a virtual

cloud with a heavy load thus; the first group of experiments covers only light and medium loaded

virtual clusters.

(a)

54

(b)

Figure 7: The distribution of the free capacity in a lightly loaded virtual cloud after a global surge.
The virtual cloud is interconnected by the overlay network modeled by: (a) a random graph; (b) a

graph with a power law degree distribution.

(a)

55

(b)

Figure 8: The distribution of the free capacity in a lightly loaded virtual cloud after a
global surge for an overly network with a power law degree distribution. (a) Greedy

allocation for the N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of
the free capacity of individual nodes extends the random walk to the M = 5,000 nodes of

|𝜞𝜞𝑪𝑪|.

 First, we compare the effects of a random walk on overlay networks with different

topology for a global surge and a uniform allocation of the extra load described earlier on a

lightly loaded virtual cluster. The distribution of the free capacity after the surge for an overlay

network modeled as a random graph is shown in Figure 7 (a) and the one for a power-law degree

distribution is shown in Figure 7 (b). The distribution of the free capacity as well as the number

of random walk steps are very similar; for the random graph some 24% of the virtual cluster

nodes are saturated (loaded up to 90% of their capacity) versus 28% for the power-law degree

distribution.

 The next sets of experiments consider only a power-law degree distribution of the overlay

network and we compare the greedy with the uniformly load allocation. Figures 8 (a) and (b)

show the distribution of the free capacity in a lightly loaded virtual cloud while Figures 9 (a) and

56

(b) show the distribution of the free capacity in a medium loaded virtual cloud after a global

surge.

(a)

(b)

Figure 9: The distribution of the free capacity in a virtual cloud with a medium load after a global
surge for an overly network with a power law degree distribution. (a) Greedy allocation on the

N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of
individual nodes extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|.

57

In a lightly loaded system a greedy allocation saturates about 70% all the N = 1,000 nodes of C

as we can see Figure 8 (a). Figure 8 (b) shows that when we increase the load on each node by

only 10% we have to extend our search to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶| and about 27% of them

are saturated.

 In a medium loaded system a greedy allocation saturates practically all the N = 1,000

nodes of C as we can see in Figure 9 (a). On the other hand, Figure 9 (b) shows that when we

increase the load on each node by only 10% we have to extend our search to the M = 5,000 nodes

in |𝛤𝛤𝐶𝐶|; then about 50% of them (about 2,500 are saturated. The random walk covered 85% of the

nodes of |𝛤𝛤𝐶𝐶|.

(a)

58

(b)

Figure 10: A surge in a system with the average free capacity 10% of the total capacity.

(a)

59

(b)

Figure 11: The distribution of the free capacity in a virtual cloud with a medium load after a local
surge for an overly network with a power law degree distribution. (a) Greedy allocation on the

N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of
individual nodes extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|.

 Next we consider local surges due to a 10 fold increase of the workload of cluster C and

examine only the medium and high load cases illustrated in Figures 11 (a) and (b) and in Figures

12(a) and (b), respectively. In each case we show the distribution of the free capacity for a

greedy and for a uniform distribution of the load.

 In case of a virtual cloud with a medium load the greedy allocation leads to the saturation

of 95% of the nodes of C, as shown in Figure 11 (a). When we increase the load on each node by

only 10% we have to extend our random walk to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶| and we require 240

steps to accommodate the extra workload; Figure 11 (b) shows that in this case only 6% of the

nodes in |𝛤𝛤𝐶𝐶| are saturated.

60

(a)

(b)

Figure 12: The distribution of the free capacity in a heavily loaded virtual cloud after a local surge
for an overly network with a power-law degree distribution. (a) Greedy allocation on the N = 1,000
nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of individual nodes

extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|.

61

 Figure 12 (a) shows similar results when the virtual cloud is heavily loaded and a greedy

allocation strategy is in effect; 95% of the nodes of C. When we increase the load on each node

by only 10% we have to extend our random walk to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶|, but this time we

need 2,200 additional steps; Figure 12 (b) shows that in this case only 54% of the nodes in |𝛤𝛤𝐶𝐶|

are saturated. These results are consistent with our intuition and with the results for the medium

load.

62

7: SUMMARY AND FUTURE WORK

 The work reported in this thesis is not restricted to a specific computing, communication,

or storage model and it is complementary to the research on virtualization carried out now by

several groups from industry [22], [23]. The virtualization architecture we propose is dynamic,

virtual machines are created in response to an external request when local condition permit and

have a limited lifetime. A virtual machine created on a node must act in concert with the other

members of the virtual cloud and maintain only limited information about its neighbors in the

overlay network. The virtual cloud created in response to a SLA provides the services at a

minimal cost and with minimal energy consumption. We propose a probabilistic approach for

resource virtualization in a computer cloud based on biased random walks; the algorithm allows

us to select a subset of systems and to create the overlay network interconnecting these systems.

 We discuss the algorithms to carry out the random walks when the transition matrix is

d-dimensional as the systems included in the virtual cloud are interconnected by a scale-free

overlay network; these systems are selected through a random walk and could be subject to

additional constrains such as limits on the cost of per unit of service, total cost, or the

requirement to use only “green” computing cycles. Scalability is an obvious, but often ignored

requirement in system design; typically, scalability becomes an issue only if a system is

successful. Attributes such as functionality, reliability, security, and cost are the only concerns in

the early stages of system development. The view expressed in this paper is that scalability

should be an ab-initio concern; the logical organization or the overlay interconnection network is

expected to follow a power-law distribution. The self-management scheme we propose takes

63

advantage of the remarkable properties of scale-free networks such as robustness against random

failures, favorable scaling, and resilience to congestion, small diameter, and average path length.

 Our preliminary results reported in Chapter Six show that the algorithms we propose for

the creation on virtual clouds are relatively efficient and can be used for the implementation of a

test bed system. We plan to develop parallel versions of the algorithm for the random walk and

expect a substantial reduction of the time to create a scale-free network with 106− 108 vertices.

 We collaborate with a group from the University College Cork in Ireland on a physical

implementation of a test bed system based on the WebCom infrastructure [41]. The

implementation of the virtual clouds will take advantage of existing software systems for

resource management such as the capacity planner discussed in [43], the Xin credit scheduler

[49], and performance analysis tools such as the Tivoli system developed by IBM [28].

 The software architecture we work on for the individual systems in a computing cloud

includes a top level Virtual Clouds Manager (VCM) which supervises multiple Virtual Cloud

Engines (VCE) each one of them created in response to an SLA. The decision to join a virtual

cloud is based on local information provided by the capacity planner and by the power

management system running on each system; once a bid to join a virtual cloud is accepted, the

VCM creates the virtual cloud engine for the SLA. A VCE is a virtual machine responsible for

communications with other members of the virtual cloud and for the execution of the sub-set of

activities of the SLA assumed when the local system joined the virtual cloud.

 A service-level agreement spells out QoS guarantees as well as elements required to

determine the Classes of Service for different activities required by the SLA; given the wide

range of service demands the VCE should have access to an ontology to track various aspects of

64

performance monitoring of the SLA [19]. The virtual cloud engine gathers information about its

neighbors in the overlay network, then parses the SLA to identify the set of events to be tracked

during the lifetime of the contract as well as the actions required by each event.

65

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabasi. “The diameter of the world wide web.” Nature,
401:130, 1999.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. “Error and attack tolerance of complex networks.”
Nature, 406:378382, 2000.

[3] R. Albert and A-L. Barab´asi. “Statistical mechanics of complex networks.” Reviews of
Modern Physics, 72(1):48–97, 2002.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, r. Katz,, A konwinski, G. Lee, D. Paterson,
A. Rabkin, I. Stoica, M. Zaharia. “Above the clouds: a Berkeley view of cloud
computing." Technical Report UCB/EECS-2009-28. 2009.

[5] M.J. Atallah, D. C. Marinescu, C.L. Black, H.J. Siegel, and T.L. Casavant. “Models and
algorithms for co-scheduling compute-intensive tasks on a network of workstations.”
Journal of Parallel and Distributed Computing (JPDC), 16(4):319–327, 1992.

[6] A. A. Baker. “Monte Carlo simulations of radial distribution functions for a proton-electron
plasma." Aust. J. Phys. 18:119-133, 1965.

[7] A-L Barab´asi and R. Albert. “Emergence of scaling in random networks.” Science, 286:509–
512, 1999.

[8] A-L. Barab´asi, R. Albert, and H. Jeong. “Scale-free theory of random networks; the
topology of world wide web.” Physica A, 281:69–77, 2000.

[9] B. Bollobas. Random graphs, Academic Press, London, 1985.

[10] Bonabeau, E., Dorigo, M., and Theraulaz, G. “Inspiration from optimization from social
insect behavior.” Nature 406, 39–42, 2000.

[11].N. F. Britton. Essential Mathematical Biology. Springer Verlag, 2004.

[12] Camazine, S. F., Deneubourg, J.-L., Franks, N. R., Sneyd, j., Theraulaz, G., and Bonabeau,
E. Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.,
2001.

[13] A. Clauset, C. R. Shalizi, and M. E. J. Newman. “Power-law distributions in empirical
data.” Siam Reviews, 51:661-704, 2007.

[14] R. Cohen and S. Havlin. “Scale-free networks are ultrasmall.” Phys. Rev. Lett.,
90(5):058701, 2003.

66

[15] Collier, T. C. and Taylor, C. “Self-organization in sensor networks.” Journal of Parallel and
Distributed Computing (JPDC), 64(7):866–873, 2004.

[16] T M. Cover and J. A. Thomas. “Elements of information theory,” Wiley, New York, NY,
1991.

[17] S. N. Dorogovtsev and j. F. F. Mendes. “Evolution of networks with aging of sites.” Phys.
Rev. E, 62(2):18421845, 2000.

[18] P. ErdÖs and A. Renyi. “On random graphs.” Publicationes Mathematicae 6: 290297, 1959.

[19] A. D. H. Farwell, M. J. Sergot, M. Salle, C. Bartolini, D. Tresour, A. Christodoulou.
“Performance monitoring of service-level agreements for utility computin.” Proc IEEE.
Int. Workshop on Electronic Contracting (wec04), 2004.

[20] S. Garfinkel. “An evaluation of Amazon’s grid computing services: EC2, S3, and SQS.“
Technical Report, tr-08-07, Harvard University, 2007.

[21] C. Gkantsidis, M. Mihail, a. Saberi. “Random walks in peer-to-peer networks."
Performance Evaluation, 63(3): 241{263, 2006.

[22] D. Gmach, S. Kompass, A. Scholz, M. Wimmer, and A. Kemper. “Adaptive quality of
service management for entreprize services.” ACM Trans. on the Web (TWEB) 2(1):243–
253, 2009.

[23] D. Gmach, J. Rolia, and L. Cerkasova. “Satisfying service-level objectives in a self-
managed resource pool.” Proc. 3rd. Int. Conf. On Self-Adaptive and Self-Organizing
Systems. pp. 243–253, 2009.

[24] K. I Goh, B. Kahang, and D. Kim. “Universal behavior of load distribution in scale-free
networks." Physical Review Letters, 87:278701, 2001.

[25] I. Gupta, A J. Ganesh, A-M kermarrec. “Efficient and adaptive epidemic-style protocols for
reliable and scalable multicast.” IEEE Trans. on Parallel and Distributed Systems.
17(7):593-605, 2006.

[26] W. K. Hastings. “Monte Carlo sampling methods using markov chains and their
applications." Biometrika, 57:97109, 1970.

[27] Hopfield, J. “Neural networks and physical systems with emergent collective computational
abilities.“ Proc. National Academy of Science 79, 2554–2558, 1982.

[28] IBM. “Tivoli performance analyzer.” www.ibm.com/software/tivoli/products/performance-
analyzer, 2008.

67

[29] M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-based aggregation in large dynamic
networks.” ACM Transactions on Computer Systems, 23(3):219252, 2005.

[30] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen. “Gossip-
based peer sampling.” ACM Trans. Comput. Syst., 25(3):8, 2007.

[31] W. O. Kermack and A. G. Mckendrick. “ A contribution to the theory of epidemics.” Proc.
Royal Soc. London, A, 115:700–721, 1927.

[32] A. N. Kolmogorov. “Three approaches to the quantitative definition of information.”
Problemy Peredachy Informatzii, 1:4-7, 1965.

[33] Krugman, P. R. The self-organizing economy. Blackwell Publishers, 1996.

[34] D. S. Lee, K. I. Goh, B. Kahng, and D. Kim. “Evolution of scale-free random graphs: potts
model formulation.” Nuclear Physics B. 696:351– 380, 2004.

[35] D. C. Marinescu, J. P. Morrison, and H. J. Siegel. “Options and commodity markets for
computing resources.” In market oriented grid and utility computing, R. Buyya and K.
Bubendorf, Eds., Wiley, 2009.

[36] D. C. Marinescu, c. Yu, and G. M. Marinescu. “Self-organization of very large sensor
networks based on small-worlds principles.” Proc. Third IEEE Conf. On self-adaptive
and Self-Organizing Systems, SASO- 09, pp.115-125, 2009.

[37] D. C. Marinescu, C. Yu, and G. M. Marinescu. “Scale-free, self-organizing very large
sensor networks.” Journal of Parallel and Distributed Computing (JPDC), 50(5):612-
622, 2010.

[38] von der Marlsburg, C. “Network self-organization.“ In an Introduction to Neural and
Electronic Networks. S. Zonetzer, J. L. Davis, and C.Lau (Eds.), 421-432, Academic
Press, San Diego, CA, 1995.

[39] N. Metropolis, A. W. Rosenbluth, A. Teller, and E.teller. “Equation of state calculations by
fast computing machines." J. of Chemical Physics, 21(6):1097{1092, 1953.

[40] A. Mondal, S. K. Madria, and M. Kitsuregawa. “Abide: a bid-based economic incentive
model for enticing non-cooperative peers in mobile p2p networks," Proc. Database
Systems for Advanced Applications, DAS-FAA 703{714, 2007.

[41] J P. Morrison, B. Clayton, D. A. Power and A. Patil. “WebCom-G: grid enabled
metacomputing,” The Journal of Neural, Parallel and Scientific Computation, Special
Issue on Grid Computing. H.R. Arabnia, G.S. Gravvanis, m.P. Bekakos, Eds. Vol.
12(3):419–438, 2004.

68

[42] M. E. J. Newman. “The structure of scientific collaboration networks.”Proc. Nat. Academy
of Science, 98(2):404–409, 2001.

[43] J. Rolia, L. Cerkasova, M. Arlit, and A. Andrzejak. “A capacity management service for
resource pools.” Proc. 2nd Symp. on Software and Performance. pp. 224–237, 2005.

[44] M. Saleh and Dan C. Marinescu. Self-organization and virtualization for service-level
agreements on computing clouds, 2011, (submitted).

[45] I. Sholtes, J. Botev, A. Hohfeld, and H. Schloss. “Awareness-driven phase transitions in
very large scale distributed systems,” Proc. SASO-08, Second IEEE Int. Conf. on Self-
Adaptive and Self-Organizing Systems, IEEE Press, pp. 25–34, 2008.

[46] I. Scholtes. “ Distributed creation and adaptation of random scale-free overlay networks.”
Proc. Fourth IEEE Int. Conf. of Self-Adaptive and Self-Organizing Systems, SASO-10,
2010 (in print).

[47] Z. Toroczkai and K. E. Bassler. “Jamming is limited in scale-free systems.” Nature,
428:716, 2004.

[48] A. M. Turing. “The chemical basis of morphogenesis,“ Philos. Trans. Roy. Soc. London
b,237: 37-72, 1952.

[49] Xen wiki. http://wiki.xensource.com/xenwiki/creditscheduler, 2007.

[50] D. J. Watts and S. H. Strogatz. “Collective-dynamics of small-world networks,” Nature,
393:440–442, 1998.

	Virtualization And Self-organization For Utility Computing
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1: INTRODUCTION AND MOTIVATION
	2: BIASED RANDOM WALKS & GRAPH ENTROPY
	3: POWER LAW DEGREE DISTRIBUTION AND SCALE-FREE NETWORKS
	4: VIRTUAL CLOUDS
	5: DISTRIBUTED ALGORITHMS FOR THE FORMATION OF VIRTUAL CLOUDS
	6: DYNAMIC WORKLOAD DISTRIBUTION
	7: SUMMARY AND FUTURE WORK
	REFERENCES

