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ABSTRACT 
 

We present an alternative paradigm for utility computing when the delivery of service is subject 

to binding contracts; the solution we propose is based on resource virtualization and a self-

management scheme. A virtual cloud aggregates set virtual machines to work in concert for the 

tasks specified by the service agreement. A first step for the establishment of a virtual cloud is to 

create a scale-free overlay network through a biased random walk; scale-free networks enjoy a 

set of remarkable properties such as: robustness against random failures, favorable scaling, and 

resilience to congestion, small diameter, and average path length. Constrains such as limits on 

the cost of per unit of service, total cost, or the requirement to use only “green" computing cycles 

are then considered when a node of this overlay network decides whether to join the virtual cloud 

or not. 

A VIRTUAL CLOUD consists of a subset of the nodes assigned to the tasks specified by a 

Service Level Agreement, SLA, as well as a virtual interconnection network, or overlay network, 

for the virtual cloud. SLAs could serve as a congestion control mechanism for an organization 

providing utility computing; this mechanism allows the system to reject new contracts when 

there is the danger of overloading the system and failing to fulfill existing contractual 

obligations. The objective of this thesis is to show that biased random walks in power law 

networks are capable of responding to dynamic changes of the workload in utility computing. 
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1: INTRODUCTION AND MOTIVATION 
 

          Utility computing is a generic term for packaging computation and storage as a service; the 

concept is inspired by public utilities which provide access to resources such as electricity, water, 

or communication bandwidth to the entire population. The illusion of infinite computing, the IT 

infrastructure are some of the attractions utility computing offers to individual users and to 

organizations that need low-cost access to computing resources. Utility computing is promoted 

vigorously by several companies aiming to exploit their expertise in information technology for 

providing low-cost, high-quality enterprise computing services; HP [23], Amazon [20], IBM, 

and Google are notable examples of companies invested in utility computing. 

          Cloud computing refers to an ensemble consisting of applications delivered as services, the 

so-called Software as a Service ( SaaS), and the software and the hardware enabling data centers 

to offer these services. A survey of the state of the art of existing systems and of the classes of 

utility computing was conducted in the early 2009 by a group at U. C. Berkeley [4]. The authors 

of the study believe that the computation, communication, and storage models of the Amazon 

Web Services, Microsoft's Azure, and Google AppEngine ensure scalability and high availability 

of resources and discuss new opportunities in mobile interactive applications, parallel batch 

processing, decision support systems, and extension of compute-intensive desktop applications. 

While utility computing often requires a cloud-like infrastructure, its focus is on the business 

model on which providing the computing services are based. Cloud computing is a path to utility 

computing; other solutions may emerge in time, such as the one discussed in [35]. 
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          We distinguish on-the-spot requests for computing services, from services based on 

contracts; the first type is suitable for short-term, occasional requests from single users, while the 

second is demanded by large organizations which cannot afford to interrupt, or slow down their 

activity due to inadequate response to their computing needs. A contract, or a Service Level 

Agreement, SL, may specify: the elements necessary to determine the Class of Service (CoS), the 

minimum, average, and the maximum hourly/daily/weekly resource needs, the pattern of 

resource utilization, the response time, the range of service compliance indicators, and the 

penalties for failing to meet the contractual obligations. Contracts could be beneficial to users as 

well as providers of utility computing if an effective management system is in place; they can 

ensure QoS for the users and guide the long term investment policies of the providers of services. 

In this thesis we are only concerned with the second type of service demands and propose a new 

paradigm for the organization of utility computing. 

          To operate effectively, a provider of utility computing should minimize the long-term 

investments as well as the operating costs. The large peak-to-average resource requirements of 

individual applications may prevent the system from reaching optimal operation regions of the 

state space. The common answer to the unpredictability of the load of a system and of specific 

requirements is Overprovisioning; yet, this approach leads to long-term investments that cannot 

be justified. The alternative is to prevent congestion and reject new contracts which require 

immediate use of resources when the system operates near capacity; this approach emulates the 

congestion control mechanism in the Internet. To minimize the operating costs the organization 

providing utility computing could direct service requests to the sites with the lowest energy cost, 

redistribute the load and shut down systems when the load is light, or could redistribute the load 
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to minimize the penalties when the system is overloaded and the QoS indicators could not be 

met. 

          The organization of a system providing utility computing is expected to respond to a set of 

often contradictory requirements. A centralized organization of a system with a very large 

number of components is problematic even if it is based on a hierarchical system; it is virtually 

impossible to accurately determine the global state of the system which as state and control 

information has to travel a long path between decision and execution sites. There is a general 

agreement that the management of a complex system should be automated, but the extent of the 

automation process is still debatable. While self-management is regarded as a highly desirable 

option, none of the existing systems for utility computing are based on self-management ideas; 

moreover, there are no comprehensive proposals or data supporting this approach. 

          Self-management is a facet of the broader concept of self-organization; though self-

organization is difficult to define, its intuitive meaning is reflected in the observation made by 

Alan Turing that “global order can arise from local interactions.” [48]. Inspired by biological 

systems, self-organization was proposed for networking [38] and even for economical systems 

[33]. Self-organization of biological systems is defined as “a process in which patterns at the 

global level of a system emerge solely from numerous interactions among the lower-level 

components of the system. Moreover, the rules specifying interactions among the system’s 

components are executed only with local information, without reference to global patterns”. [12] 

Self-organization is used by different types of neural networks including Hopfield networks [27] 

and the networks proposed in [38]. The “swarm” algorithms [10], e.g., the Ant Colony Routing, 
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mimic self-organization of social insects. Self-organization schemes have been proposed for    

ad-hoc and sensor networks [15], [37]. 

          Virtualization is the process of simulating the interface to a physical object; traditionally, 

virtualization is based on multiplexing, on aggregation, or on emulation. In the first case, 

virtualization creates multiple virtual objects from one instance of a physical object; aggregation 

creates one virtual object from multiple physical objects; emulation constructs a virtual object 

from a different type of physical object. The separation of virtual from physical organization 

removes some of the characteristics and/or limitations of computing resources such as size, 

internal organization, reliability, or performance. For example, virtual memory enables the 

development of code independent of the size of the physical memory, Java Virtual Machine 

(JVM) permits the development of platform-independent code, threads allow sharing of a single 

processor, Redundant Array of Independent Disks (RAID) increase reliability, as well as, the 

performance of secondary storage devices. User Virtual Machines are an important element of 

the current architecture of computing clouds. 

          Virtualization, in the context of this paper, is based on multiplexing combined with 

aggregation. A processor is shared by multiple virtual machines; once an agreement between a 

provider and a customer is sealed a set of virtual machines cooperate to satisfy the conditions 

imposed by the agreement. In this paradigm virtualization supports self-management, enables the 

system to fulfill its contractual obligations, and, used judiciously, could contribute to lower costs. 

The solution we propose contrasts with the current organization of many cloud data centers 

where the virtual machines are clustered based on the computing needs of the consumers and 

each sub cluster is managed by one consumer. 
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          We propose a probabilistic approach for resource virtualization based on biased random 

walks; the algorithm allows a subset of systems to create the overlay network interconnecting 

these systems. Monte Carlo methods are often used to solve optimization problems in multi-

dimensional search spaces. One of the first applications of computers was based on an algorithm 

developed by Metropolis et. Al [39] for sampling in high dimensional probability distributions 

using Markov chains. This algorithm is at the heart of the strategy discussed in this paper; given 

a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) let 𝜋𝜋 be a strictly positive distribution on 𝑉𝑉 and call 𝑘𝑘𝑖𝑖  the degree of vertex I and 

(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 𝑉𝑉 the edge connecting vertices i and j. Then 𝜋𝜋 is a stationary distribution of the Markov 

chain with transition probabilities 

𝑃𝑃𝑖𝑖 ,𝑗𝑗 =  

⎩
⎪
⎨

⎪
⎧

1
𝑘𝑘𝑖𝑖

                                 𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖
𝑘𝑘𝑖𝑖

 ≤  𝜋𝜋𝑗𝑗
𝑘𝑘𝑗𝑗

 
1
𝑘𝑘𝑗𝑗

𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖

                             𝑖𝑖𝑖𝑖  𝜋𝜋𝑖𝑖
𝑘𝑘𝑖𝑖

 >  𝜋𝜋𝑗𝑗
𝑘𝑘𝑗𝑗

1 −  ∑ 𝑝𝑝𝑖𝑖 ,𝑗𝑗𝑗𝑗                       𝑖𝑖𝑖𝑖  𝑗𝑗 = 𝑖𝑖              

�                                      (1) 

          The work reported in this thesis is not restricted to a specific computing, communication, 

or storage model and it is complementary to the research on virtualization carried out now by 

several groups from industry [22], [23]. The virtualization architecture we propose is dynamic, 

virtual machines are created in response to an external request when local condition permit and 

have a limited lifetime. A virtual machine created on a node must act in concert  with the other 

members of the virtual cloud and maintain only limited information about its neighbors in the 

overlay network. The virtual cloud created in response to SLA provides the services at a minimal 

cost and with minimal energy consumption. 
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          The contributions of this thesis are: (i) Algorithms to dynamically create virtual clouds 

with a life-span determined by a contract between a user and the service provider. Individual 

systems join a virtual cloud based on local information regarding the available capacity, the cost 

to provide the service, and the energy consumption. (ii) A self-management scheme which takes 

advantage of desirable properties of the overlay network such as; small diameter, robustness to 

random failures, resilience to attacks, and scalability. In this scheme self-awareness can be 

archived at a small cost as individual systems are required to maintain information only about 

immediate neighbors. 

          Communication plays a critical role in any complex system and we start our analysis of 

virtual clouds with a discussion of the overlay network topology and we analyze biased random 

walks in chapter two. Analyzing the properties of scale-free-networks in chapter three. Virtual 

clouds and the distributed algorithms for their construction and the simulation studies in chapter 

four and five. In chapter six we discuss the results of dynamic workload distribution and we give 

a summary and discuss future work in chapter seven. 
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2: BIASED RANDOM WALKS & GRAPH ENTROPY 
 

          A strategy used successfully to locate systems satisfying a set of conditions in applications 

such as peer-to-peer systems is based on biased random walks; random walks are reported to be 

more efficient in searching for nodes with desirable properties than other methods such as 

flooding [21]. 

          Unfortunately, the application of random walks in a large network with an irregular 

topology is unfeasible because a central authority could not maintain accurate information about 

a dynamic set of members. A solution is to exploit the fact that sampling with a given probability 

distribution can be simulated by a discrete-time Markov chain; indeed consider an irreducible 

Markov chain with states (i,j)  {0,1,…,S} and let Ƥ = [Ϸij] denote its probability transition 

matrix where 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑋𝑋(𝑡𝑡 + 1) = 𝑗𝑗 | 𝑋𝑋(𝑡𝑡) = 𝑖𝑖]                             (2) 

with X(t) the state at time t. Let 𝜋𝜋 = (𝜋𝜋0,𝜋𝜋1, … ,𝜋𝜋𝑆𝑆) be a probability distribution with nonzero 

probability for every state, 𝜋𝜋𝑖𝑖  > 0, 0 ≤ 𝑖𝑖 ≤ 𝑆𝑆. The transition matrix Ƥ is chosen so that 𝜋𝜋 is its 

unique stationary distribution thus, the reversibility condition 𝜋𝜋 =  𝜋𝜋Ƥ holds. When g(.) is a 

function defined on the states of the Markov channel and we wish to estimate 

𝐸𝐸 =  ∑ 𝑔𝑔(𝑖𝑖)𝜋𝜋𝑖𝑖𝑆𝑆
𝑖𝑖=0                                          (3) 

          We can simulate the Markov chain at times t = 1,2,…, N and the quantity 

𝐸𝐸� =  ∑ 𝑓𝑓(𝑋𝑋(𝑡𝑡))
𝑁𝑁

𝑁𝑁
𝑖𝑖=1                                             (4) 
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is a good estimate of E, more precisely 𝐸𝐸� → 𝐸𝐸 when 𝑁𝑁 →  ∞. Hasting [26] generalizes the 

sampling method of Metropolis [39] to construct the transition matrix given the distribution 𝜋𝜋. 

He starts by imposing the reversibility condition 

𝜋𝜋𝑖𝑖  𝑝𝑝𝑖𝑖𝑖𝑖 =  𝜋𝜋𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗                                               (5) 

          If 𝑄𝑄 = [𝑞𝑞𝑖𝑖𝑖𝑖 ] is the transition matrix of an arbitrary Markov chain on the states {0,1,…,S} it 

is assumed that  

𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑞𝑞𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑖𝑖𝑖𝑖  = 1 −  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖                    (6) 

Two version of sampling are discussed in [26], the one of Metropolis and one proposed by Baker 

[6]; the quantities 𝛼𝛼𝑖𝑖𝑖𝑖  are respectively: 

𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀 = �  
1        𝑖𝑖𝑖𝑖  𝜋𝜋𝑗𝑗

𝜋𝜋𝑖𝑖
 ≥ 1 

𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖 

   𝑖𝑖𝑖𝑖  𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖

 < 1
     �                              (7) 

𝛼𝛼𝑖𝑖𝑖𝑖𝐵𝐵 =  𝜋𝜋𝑗𝑗
𝜋𝜋𝑖𝑖+ 𝜋𝜋𝑗𝑗

                                            (8) 

          For example, consider a Poisson distribution 𝜋𝜋𝑖𝑖 =  𝜆𝜆𝑖𝑖𝑒𝑒(−𝜆𝜆)/𝑖𝑖!; we choose 𝑞𝑞𝑖𝑖𝑖𝑖 = 1
2
  if           j 

= i -1, i ≠ 0 or j = i + 1, i ≠ 0 and 𝑞𝑞00 =  𝑞𝑞01 = 1/2.  Then using Baker’s approach we have 

𝑝𝑝𝑖𝑖𝑖𝑖 =  �
  𝜆𝜆 (𝜆𝜆 + 𝑖𝑖 + 1)�   𝑖𝑖𝑖𝑖   𝑗𝑗 = 𝑖𝑖 + 1, 𝑖𝑖 ≠ 0
  𝑖𝑖

(𝑖𝑖 +  𝜆𝜆)�         𝑖𝑖𝑖𝑖   𝑗𝑗 = 𝑖𝑖 − 1, 𝑖𝑖 ≠ 0
�                                (9) 

and    𝑝𝑝00 =  1
2�  and 𝑝𝑝01 =  𝜆𝜆𝑒𝑒

−𝜆𝜆

(1 +  𝜆𝜆𝑒𝑒−𝜆𝜆).�                               (10) 
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          The algorithm to construct scale-free overlay topologies with an adjustable exponent in 

[46] adopts the equilibrium model discussed in [24]. The algorithm is based on random walks in 

a connected overlay network G(V,E) viewed as a Markov chain with state space V and a 

stationary distribution with a random walk bias configured according to a Metropolis-Hastings 

chain [26]. Recall that in this case we assign a weight           𝑝𝑝𝑖𝑖 =  𝑖𝑖−𝛼𝛼 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁,𝛼𝛼 𝜖𝜖 [0,1) to 

each vertex and add an edge between two vertices a and b with probability 𝑝𝑝𝑎𝑎 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 

�  ×

 𝑝𝑝𝑏𝑏 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

�  if non exists they repeat the process until mN edges are created and the mean degree 

is 2m. Then the degree distribution is  

𝑝𝑝(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾 ,   𝑤𝑤𝑤𝑤𝑤𝑤ℎ   𝛾𝛾 = 1+𝛼𝛼
𝛼𝛼

                                          (11) 

          The elements of the transition matrix 𝑃𝑃 = [𝑝𝑝𝑖𝑖𝑖𝑖 ] are  

𝑝𝑝𝑖𝑖𝑖𝑖 =  

⎩
⎪
⎨

⎪
⎧

   

1
𝑘𝑘𝑖𝑖

min ��1
𝑗𝑗
�

1
𝛾𝛾−1 𝑘𝑘𝑖𝑖

𝑘𝑘𝑗𝑗
, 1�    (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸

1 −  1
𝑘𝑘𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑖𝑖(𝑙𝑙 ,𝑖𝑖)∈𝐸𝐸                  𝑖𝑖 = 𝑗𝑗        

0                                   (𝑖𝑖, 𝑗𝑗)  ∉ 𝐸𝐸 

�                        (12) 

with 𝑘𝑘𝑖𝑖  the degree of vertex i. An upper bound for the number of random walk steps can be 

determined from a lower bound for the second smallest eigenvalue of the transition matrix, a 

non-trivial problem.  

          We conclude that it is feasible to construct a scale-free global overlay network Ω network 

using a biased random walk algorithm. Though algorithms to detect phase transitions in a cloud 

are not discussed in this thesis we mention that the degree, γ, of the power law is related to phase 
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transitions [45]; a small variation of γ can lead to an abrupt change in the macroscopic system 

behavior, e.g., its susceptibility to epidemics and resistance to failure. The m-th moment of the 

power law distribution of a discrete random variable X, 𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) =  𝑘𝑘−𝛾𝛾  is  

𝐸𝐸[𝑋𝑋𝑚𝑚 ] =  ∑ 𝑘𝑘𝑚𝑚𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) =  ∑ 𝑘𝑘𝑚𝑚𝑘𝑘−𝛾𝛾∞
𝑘𝑘=1 = ∞

𝑘𝑘=1 ∑ 1
𝑘𝑘𝛾𝛾−𝑚𝑚

 ∞
𝑘𝑘=1             (13) 

          The first moment 𝐸𝐸[𝑋𝑋] =  ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘=1  diverges for  𝛾𝛾 <  2 and is identical to the Riemann’s 

zeta function 𝜉𝜉(𝛾𝛾 − 1) for 𝛾𝛾 ∈ (2, ∞); thus, in this range the average vertex degree is limited by 

a small constant. The variance 𝐸𝐸[𝑋𝑋2] =   ∑ 1
𝑘𝑘𝛾𝛾−2

∞
𝑘𝑘=1  is divergent for 𝛾𝛾 ≤ 3. The moments of a 

power law distribution play an important role in the behavior of a network. It has been shown 

that the giant connected component (GCC) of networks with a finite average vertex degree and 

divergent variance can only be destroyed if all vertices are removed; thus, such networks are 

highly resilient against faulty constituents [40]. 

          Once the global overlay network Γ is constructed we wish to use biased random walks 

again to build Γ𝐶𝐶  the overlay network for a virtual cloud. Now one of the core nodes of Γ 

initiates the construction of the power law interconnection network of the virtual cloud; the 

individual systems populating the vertices of the graph are subject to additional constraints 

regarding the distribution of the free capacity. 

          To analyze the implication of this strategy we discuss briefly graph entropy. Informally 

graph entropy is a measure of the degree of the randomness in a graph. Let G(V,E) be a directed 

graph with the set V of nodes of cardinality n = |V| and 𝐸𝐸 ⊆ 𝑉𝑉 ×  𝑉𝑉  the set of edges. Assume 

that each node 𝑗𝑗 ∈ 𝑉𝑉 in 𝐺𝐺 has assigned a stochastic variable 𝑥𝑥𝑗𝑗  selected from a state space (or 
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finite alphabet) A with 𝑠𝑠 ≥ 2  elements. For every probability distribution p on the n-tuples 

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)  ∈  𝐴𝐴𝑛𝑛  the entropy function 𝐻𝐻𝑝𝑝(𝑆𝑆) is given by: 

𝐻𝐻𝑝𝑝(𝑆𝑆) =  ∑ 𝑝𝑝(𝑆𝑆, 𝑣𝑣)𝑣𝑣 ∈ 𝐴𝐴𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠 �
1

𝑝𝑝(𝑆𝑆,𝑣𝑣)
�                                        (14) 

where p(S,v) for 𝑣𝑣 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛) ∈  𝐴𝐴𝑛𝑛  is the probability that a tuple (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈  𝐴𝐴𝑛𝑛  is 

selected with 𝑥𝑥𝑠𝑠1 =  𝑣𝑣𝑠𝑠1 ,𝑥𝑥𝑠𝑠2 =  𝑣𝑣𝑠𝑠2 , … , 𝑥𝑥𝑠𝑠𝑛𝑛 =  𝑣𝑣𝑠𝑠𝑛𝑛  where 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}. 

          If H denotes any entropy function Hp then H is normalized and H(j) ≤ 1, ∀𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} 

as the logarithms is in base s. It is easy to see that 

𝐻𝐻(𝑗𝑗 | 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛) = 0                                          (15) 

where (𝑖𝑖1, 𝑗𝑗), (𝑖𝑖2, 𝑗𝑗), … , (𝑖𝑖𝑛𝑛 , 𝑗𝑗) ∈ 𝐸𝐸 are edges with the head node j. indeed this equation states that 

there is no uncertainty of the value of the variable 𝑥𝑥𝑗𝑗  if we are given the values of all the 

stochastic variables associated with the predecessor vertices of j. 

          The private entropy E(G,s) of a graph G over a state space A of size 𝑠𝑠 ∈ {2,3,4, … } is the 

supremum of Hp (1,2,…,n) of all entropy functions Hp over A that satisfy the n information 

constrains determined by G. The entropy E(G) is the supremum of E(G,s) for 𝑠𝑠 ∈ {2,3,4, … }. 

          Clearly, the entropy of a graph with a power-law degree distribution is lower than that of a 

random graph, the graph has less randomness; this implies that a random walk in such a network 

is more constrained and the number of steps to select the desired number of nodes will be larger. 

Indeed our experiments showed that the number of steps to select 1000 nodes by a biased 
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random walk is 40% larger in a graph with a power-law degree distribution than in a random 

graph.  

          The benefits of a well structured overlay network for a virtual cloud are more important 

than the time it takes to set it up; moreover, a virtual cloud typically includes a very small 

fraction of the number of systems in the cloud thus, our approach seems reasonable. On the other 

hand, time plays a critical role when we need additional resources for a virtual cloud. 
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3: POWER LAW DEGREE DISTRIBUTION AND SCALE-FREE NETWORKS 
 

          The topology of a network used to model the interactions in complex biological, social, 

economic and computing systems is described by means of graphs where vertices represent the 

entities and the edges represent their interactions. The number of edges incident upon a vertex is 

called the degree of the vertex. 

          Several models of graphs have been investigated starting with the Erdӧs -Reny model 

[19],[20] where the number of vertices is fixed and the edges connecting vertices are created 

randomly; this model produces a homogeneous network with an exponential tail, connectivity 

follows a Poisson distribution peaked at the average degree 𝑘𝑘� and decaying exponentially for 

𝑘𝑘 ≫  𝑘𝑘�. An evolving network, where the number of vertices increases linearly and a newly 

introduced vertex is connected to m existing vertices according to a preferential attachment rule 

is described by Barabasi and Albert in [1], [2], [3], [7]. 

          Regular graphs where a fraction of edges are rewired with a probability p have been 

proposed by Watts and Strogatz and called small-worlds networks [50]. Networks, whose degree 

distribution follows a power law, 𝑃𝑃(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾  are called Scale-Free networks. The four models 

are sometimes referred as ER (Erdӧs-Reny), BA (Barabasi – Albert), WS (Watts – Strogatz), and 

SF (Scale-Free) models, respectively [24]. BA networks with aging are investigated in [17]; a 

new site of the network is connected to some old site with probability proportional to the 

connectivity of the old site as in the BA model and to 𝜏𝜏−𝛼𝛼  where t is the age of old site. The 

conclusion is that the network shows a scaling behavior only when 𝛼𝛼 < 1. 
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          A number of studies have shown that scale-free networks have remarkable properties such 

as: robustness against random failures [8], favorable scaling [1], [2], [17], resilience to 

congestion [24], tolerance to attacks [47], small diameter [14] and average path length [7]. These 

properties make scale-free networks very attractive for interconnection networks in many 

applications including social systems [42], peer-to peer systems [45], sensor networks [36], [37] 

and, as we will argue in this thesis, to utility computing. 

          Consider and Erdӧs-Reny (ER) graph 𝐺𝐺𝐸𝐸𝐸𝐸  with N vertices; vertex i has a unique label from 

a compact set 𝑖𝑖 ∈ { 1 , … ,𝑁𝑁 }. We wish to rewire this graph and produce a new graph 𝐺𝐺𝑆𝑆𝑆𝑆  where 

the degrees of the vertices follow a power-law distribution. The procedure we discuss consists of 

the following steps [34]: 

1) We assign to each node i a probability  

𝑝𝑝𝑖𝑖 =  𝑖𝑖−𝛼𝛼

∑ 𝑗𝑗−𝛼𝛼𝑁𝑁
𝑗𝑗=1

=  𝑖𝑖−𝛼𝛼

𝜁𝜁𝑁𝑁 (𝛼𝛼)
  with 0 <  𝛼𝛼 < 1                         (16) 

And   𝜁𝜁𝑁𝑁(𝛼𝛼) =  ∑ 𝑗𝑗−𝛼𝛼𝑁𝑁
𝑗𝑗=1                                        (17) 

2) We select a pair of vertices i and j and create an edge between them with probability  

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 =  (𝑖𝑖𝑖𝑖 )−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)
                                      (18) 

And repeat these process n times. 

Then the probability that a given pair of vertices i and j is not connected by an edge ℎ𝑖𝑖𝑖𝑖  is 

𝑝𝑝𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁 = (1 − 𝑝𝑝𝑖𝑖𝑖𝑖 )𝑛𝑛 ≈  𝑒𝑒−2𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖                                       (19) 

And the probability that they are connected is 

𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶 = �1 − 𝑝𝑝𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁� = 1 −  𝑒𝑒−2𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖                             (20) 



15 
 

Call 𝑘𝑘𝑖𝑖  the degree of vertex i; then the moment generating function of 𝑘𝑘𝑖𝑖  is 

𝑔𝑔𝑖𝑖(𝑡𝑡) =  ∏ [𝑗𝑗≠𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁 +  𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶]                                 (21) 

The average degree of vertex i is 

𝑘𝑘�𝑖𝑖 = 𝑡𝑡 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔𝑖𝑖(𝑡𝑡)�𝑡𝑡 = 1 =  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶𝑗𝑗≠𝑖𝑖

�                             (22) 

Thus, 

𝑘𝑘�𝑖𝑖 =  �(1 − 𝑒𝑒−2𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 ) = 
𝑗𝑗≠𝑖𝑖

��1 − 𝑒𝑒
−2𝑛𝑛 (𝑖𝑖𝑖𝑖 )−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)�  
𝑗𝑗≠𝑖𝑖

 

≈  ∑ 2𝑛𝑛 (𝑖𝑖𝑖𝑖 )−𝛼𝛼

𝜁𝜁𝑁𝑁2(𝛼𝛼)
= 2𝑛𝑛

𝜁𝜁𝑁𝑁2(𝛼𝛼)
∑ (𝑖𝑖𝑖𝑖)−𝛼𝛼𝑗𝑗≠𝑖𝑖  𝑗𝑗≠𝑖𝑖                                 (23) 

This expression can be transformed as  

𝑘𝑘�𝑖𝑖 = 2𝑛𝑛
𝜁𝜁𝑁𝑁2(𝛼𝛼)

∑ (𝑖𝑖𝑖𝑖)−𝛼𝛼𝑗𝑗≠𝑖𝑖 =  2𝑛𝑛𝑖𝑖−𝛼𝛼 ∑ 𝑗𝑗−𝛼𝛼𝑗𝑗≠𝑖𝑖

𝜁𝜁𝑁𝑁2(𝛼𝛼)
=  2𝑛𝑛𝑖𝑖−𝛼𝛼 (𝜁𝜁𝑁𝑁 (𝛼𝛼)−𝑖𝑖−𝛼𝛼 )

𝜁𝜁𝑁𝑁2(𝛼𝛼)
            (24) 

The moment generating function of 𝑘𝑘𝑖𝑖  can be written as  

𝑔𝑔𝑖𝑖(𝑡𝑡) =  ∏ [𝑗𝑗≠𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁 +  𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶] =  ∏ 𝑒𝑒−(1−𝑡𝑡)𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶𝑗𝑗≠𝑖𝑖 =  𝑒𝑒(1−𝑡𝑡)∑ 𝑝𝑝𝑖𝑖𝑖𝑖 𝐶𝐶𝑗𝑗≠𝑖𝑖  = 𝑒𝑒(1−𝑡𝑡)𝑘𝑘� 𝑖𝑖          (25) 

Then we conclude that the probability that 𝑘𝑘𝑖𝑖 = 𝑘𝑘 is given by 

𝑝𝑝𝑑𝑑 ,𝑖𝑖(𝑘𝑘) =  1
𝑘𝑘!

 𝑑𝑑
𝑘𝑘

𝑑𝑑𝑑𝑑 𝑘𝑘
𝑔𝑔𝑖𝑖(𝑡𝑡)|𝑡𝑡 = 0 ≈ � 𝑘𝑘

� 𝑖𝑖
𝑘𝑘 !
𝑒𝑒−𝑘𝑘� 𝑖𝑖                      (26) 
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When 𝑁𝑁 →  ∞ then 𝜁𝜁𝑁𝑁(𝛼𝛼) =  ∑ 𝑖𝑖−𝛼𝛼𝑁𝑁
𝑖𝑖=1  converges to the Riemann zeta function 𝜁𝜁𝑁𝑁(𝛼𝛼) for 𝛼𝛼 > 1 

and diverges as 𝑁𝑁
1−𝛼𝛼

1−𝛼𝛼
 if 0 < 𝛼𝛼 < 1. For 0 < 𝛼𝛼 < 1 equation (1) becomes  

𝑝𝑝𝑖𝑖 =  𝑖𝑖−𝛼𝛼

𝜁𝜁𝑁𝑁 (𝛼𝛼)
=  1−𝛼𝛼

𝑁𝑁1−𝛼𝛼 𝑖𝑖−𝛼𝛼                                            (27) 

When 𝑁𝑁 →  ∞, 0 < 𝛼𝛼 < 1, and the average degree of the vertices is 2m, then the degree of vertex 

i is 

𝑘𝑘 = 𝑝𝑝𝑖𝑖 × 𝑚𝑚𝑚𝑚 = 2𝑚𝑚𝑚𝑚 1−𝛼𝛼
𝑁𝑁1−𝛼𝛼 𝑖𝑖−𝛼𝛼 = 2𝑚𝑚(1 − 𝛼𝛼) � 𝑖𝑖

𝑁𝑁
�
−𝛼𝛼

                (28) 

Indeed, the total number of edges in graph is mN and the graph has a power law distribution. 

Then 

𝑖𝑖 = 𝑁𝑁( 𝑘𝑘
2𝑚𝑚(1−𝛼𝛼))

−1
𝛼𝛼                                               (29) 

          From this expression we see that there is a one-to-many correspondence between the 

unique label of the node i and the degree k; this reflects the fact that multiple vertices may have 

the same degree k. The number of vertices of degree k is 

𝑛𝑛(𝑘𝑘)  =  𝑁𝑁( 𝑘𝑘
2𝑚𝑚(1−𝛼𝛼))

−1
𝛼𝛼 −  𝑁𝑁( 𝑘𝑘−1

2𝑚𝑚(1−𝛼𝛼))
−1
𝛼𝛼 = 𝑁𝑁( 𝑘𝑘−1

2𝑚𝑚(1−𝛼𝛼))
−1
𝛼𝛼 ��1 + 1

𝑘𝑘
�
−1
𝛼𝛼 − 1�      (30) 

We denote 𝛾𝛾 = 1 +  1
𝛼𝛼
 and observe that  

�1 + 1
𝑘𝑘
�
−1
𝛼𝛼 = 1 + �− 1

𝛼𝛼
� �1

𝑘𝑘
�
−1
𝛼𝛼 + 1

2
�− 1

𝛼𝛼
� �− 1

𝛼𝛼
− 1� �1

𝑘𝑘
�
−1
𝛼𝛼−1

+ ⋯      (31) 

We see that 
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𝑛𝑛(𝑘𝑘) = 𝑁𝑁 �(𝑘𝑘−1)(𝛾𝛾−1)
2𝑚𝑚(𝛾𝛾−2) �

−𝛾𝛾+1
× �(1 − 𝛾𝛾) �1

𝑘𝑘
�
−𝛾𝛾+1

− 𝛾𝛾(1−𝛾𝛾)
2

�1
𝑘𝑘
�
−𝛾𝛾

+ ⋯�  (32) 

          We conclude that the number of iterations to reach the value predicted by the theoretical 

model for the number of vertices of degree k is a function of N, of the average degree 2m, and of 

γ, the degree of the power law. Next section discusses the properties of scale-free networks. 

Scale-Free Networks: 

          The degree distribution of scale-free networks follows a power law; we only consider the 

discrete case when the probability density function 𝑝𝑝(𝑘𝑘) = 𝑎𝑎𝑎𝑎(𝑘𝑘),𝑓𝑓(𝑘𝑘) =  𝑘𝑘−𝛾𝛾 , and the constant 

a is 𝑎𝑎 =  1
𝜁𝜁� (𝛾𝛾,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ) thus 

𝑝𝑝(𝑘𝑘) =  1
𝜁𝜁(𝛾𝛾 ,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 )

𝑘𝑘−𝛾𝛾                                         (33) 

In this expression 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  is the smallest degree of any vertex, and for the applications we discuss 

in this thesis 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 1;  is the Hurwitz zeta function 

𝜁𝜁(𝛾𝛾,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ) =  ∑ 1
(𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛)𝛾𝛾

=  ∑ 1
(1+𝑛𝑛)𝛾𝛾

∞
𝑛𝑛=0

∞
𝑛𝑛=0                      (34) 

          A scale-free network is non-homogeneous; the majority of the vertices have a low degree 

and only a few vertices are connected to a large number of edges. On the other hand, an 

exponential network is homogeneous as most of the vertices have the same degree. Another 

important property is that the majority of the vertices of a scale-free network are directly 

connected with the vertices with the highest degree; for example, in a network with N = 130 

vertices and m = 215 edges 60% of the nodes are directly connected with the five vertices with 
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the highest degree, while in an exponential network fewer than half, 27%, have this property [2]. 

The average distance d between the N vertices, also referred to as the diameter of the scale-free 

network scales as ln N in fact it has been shown that when 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  > 2 a lower bound on the 

diameter of a network with 2 < γ < 3 is N ln N [14]. 

          We now discuss a property of SF networks, the universal load distribution [24]. The load 

distribution in a directed or undirected SF network follows a power law with the exponent 

𝛿𝛿 ≈ 2.2 insensitive to different values of γ in the range, 2 < γ < 3. To reach this conclusion the 

authors of [24] assign a weight 𝑝𝑝𝑖𝑖 =  𝑖𝑖−∝, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁,∝  ∈ [0,1)  to each vertex and add an edge 

between two vertices a and b with probability 𝑝𝑝𝑎𝑎 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

� × 𝑝𝑝𝑏𝑏 ∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

�  if none exists; they 

repeat the process until mN edges are created and the mean degree is 2m. Then the degree 

distribution is 

𝑝𝑝(𝑘𝑘) ~ 𝑘𝑘−𝛾𝛾 , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝛾𝛾 = (1+ 𝛼𝛼)
𝛼𝛼

  𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼 =  𝛼𝛼𝛼𝛼 − 1.                 (35) 

The probability pi for vertex i can be expressed as 

𝑝𝑝𝑖𝑖 =  𝑖𝑖−𝛼𝛼 =  𝑖𝑖
1

𝛼𝛼𝛼𝛼 −1                                            (36) 

When the load 𝑙𝑙𝑖𝑖  at vertex i  is defined as the total amount of data packets passing through the 

vertex when all pairs of vertices send and receive one data packet between them, then numerical 

simulations show that the load distribution follows also a power law when 2 <  𝛾𝛾 < 3 

𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑘𝑘) ~ 𝑘𝑘−𝛿𝛿  with 𝛽𝛽 ≈ 0.8 and δ ≈ 1 + 1
𝛽𝛽� = 2.2.          (37) 
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The condition 2 <  𝛾𝛾 < 3 implies that 1/2 <  𝛼𝛼 < 1. The communication load is proportional 

with the degree of a vertex  

𝑙𝑙𝑖𝑖  ~ 𝑘𝑘
𝛾𝛾−1
𝛿𝛿−1                                                      (38) 

1The Hurwitz zeta function 𝜁𝜁(𝑠𝑠, 𝑞𝑞) =  ∑ 1
(𝑞𝑞+𝑛𝑛)𝑠𝑠

 for 𝑠𝑠, 𝑞𝑞 ∈  ℂ∞
𝑛𝑛=0  and Re(s) > 1 and Re(q) > 0. The 

Riemann zeta function is 𝜁𝜁(s,1). 

Thus, the load at each vertex is directly proportional with its degree if and only if 𝛾𝛾 =  𝛿𝛿 

The communication load at vertex i with degree k and the total communication load are, 

respectively, 

𝑙𝑙𝑖𝑖 = 𝑐𝑐(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)(𝑁𝑁 𝑘𝑘⁄ )𝛽𝛽       𝑎𝑎𝑎𝑎𝑎𝑎    𝐿𝐿 =  �𝑙𝑙𝑖𝑖

𝑁𝑁

𝑖𝑖=1

=  𝑐𝑐 ′𝑁𝑁2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 with 𝑐𝑐 and 𝑐𝑐 ′constants.  

(39) 

The degree, γ , of the power law is related to phase transitions [45]; a small variation of it can 

lead to an abrupt change in the macroscopic system behavior, e.g., susceptibility to epidemics 

and resistance to failure. The m-th moment of the power law distribution of a discrete random 

variable X, 

𝐸𝐸[𝑋𝑋𝑚𝑚 ] =  ∑ 𝑘𝑘𝑚𝑚∞
𝑘𝑘=1 𝑃𝑃𝑋𝑋(𝑥𝑥 = 𝑘𝑘) =  ∑ 𝑘𝑘𝑚𝑚𝑘𝑘−𝛾𝛾∞

𝑘𝑘=1 =  ∑ 1
𝑘𝑘𝛾𝛾−𝑚𝑚

∞
𝑘𝑘=1         (40) 

          The first moment 𝐸𝐸[𝑋𝑋] =  ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘  = 1  diverges γ < 2 and is identical to the Riemann’s Zeta 

function (γ – 1) for 𝛾𝛾 ∈ (2, ∞), thus, in this range the average vertex degree is limited by a small 
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constant. The variance 𝐸𝐸[𝑋𝑋2] =  ∑ 1
𝑘𝑘𝛾𝛾−1

∞
𝑘𝑘=1  is divergent for γ ≤ 3. The moments of a power law 

distribution play an important role in the behavior of a network. It has been shown that the giant 

connected component (GCC) of networks with a finite average vertex degree and divergent 

variance can only be destroyed if all vertices are removed, thus, such networks are highly 

resilient against faulty constituents [40]. 

          Epidemic or gossip algorithms are often used in communication to accomplish tasks such 

as: (i) disseminate information, e.g., topology information; (ii) compute aggregates, e.g., arrange 

the nodes in a gossip overlay into a list sorted by some attributes in logarithmic time; or (iii) 

manage data replication in a distributed system [25], [29], [30]. The epidemic threshold λ for the 

Susceptible-Infectious–Recovered (SIR) [31] and Susceptible–Infectious–Susceptible (SIS) [11] 

epidemic models of power networks can be expressed as 𝜆𝜆 =  𝐸𝐸[𝑋𝑋]
𝐸𝐸[𝑋𝑋2]

  the epidemic threshold is 

defined as the minimum ratio of infected nodes to the cured nodes per time such that it still 

allows the epidemics to continue without outside infections. It follows that λ → 0 if 𝛾𝛾 ∈ (2,3); 

in other words; such networks become infinitely susceptible to epidemic algorithms. This 

property is very important for dissemination of control information; also self-awareness requires 

constant monitoring of other vertices possibly using epidemic algorithms. 

          Though our discussion is focused on scale-free overlay networks to support service-level 

agreements, it seems reasonable to consider that the physical cloud itself could be logically 

interconnected through a scale-free overlay network. Indeed, the cloud could consist of a very 

large number of physical units N ≥ 108, located at several sites and interconnected by high-speed 

networks. The relatively few high-degree nodes of the overlay network organized as a power law 
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distribution could monitor subsets of nodes at a small distance from each and could gather 

performance data for determining the impact of management policies e.g., utilization of 

resources (CPU, communication bandwidth, storage, etc.), power consumption, synthetic 

indicators regarding the quality of service (missed deadlines, inability to ensure the capacity 

required by SLAs, etc.). The global organization of the physical cloud as a scale free network is 

important for detecting undesirable global phenomena such as phase transitions; early detection 

of phase transitions could result in preventive measures or, in the worst case, to a controlled 

transition to a different operating regime when only the most important activities are carried to 

completion.  

          Vulnerability to attacks could be a problem for networks where the degree of the nodes 

follows a power law distribution; indeed, the diameter of these networks increases rapidly when 

the most connected nodes are targeted; under an attack a large network could break into isolated 

fragments. But again we can exploit the fact that a very small fraction of the nodes have a high 

degree of connectivity. We can estimate the number of “core nodes,” nodes with a degree larger 

than 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙  when the scale-free network consist of N nodes 

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑁𝑁 × Prob (𝑘𝑘 ≥  𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 )                                    (41) 

with    Prob(𝑘𝑘 ≥  𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 ) = 1 − Prob(𝑘𝑘 <  𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 ) = 1 −  ∑ 𝑝𝑝(𝑘𝑘)𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘=1          (42) 

We can replicate the 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙  critical nodes, each replica mirroring the role of the primary node thus, 

not being a member of the logical organization of the overlay network; as  Prob (𝑘𝑘 ≥  𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 ) is 

small we expect the additional cost to be justified by the increased resilience to attacks. 



22 
 

As an example we consider the case 𝛾𝛾 = 2.5 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 1, Table 1; we first determine the value 

of the zeta function 𝜁𝜁(γ, xmin) and approximate 𝜁𝜁(2.5, 1) = 1.341 thus, the distribution function is 

𝑝𝑝(𝑘𝑘) =  𝑘𝑘
−2.5

1.341
= 0.745 1

𝑘𝑘2.5                                    (43) 

where k is the degree of each vertex. 

The probability of vertices with degree k > 10 is Prob(k > 10) = 1 − Prob(k ≤ 10) = 0.015. This 

means that at most 1.5% of the total number of vertices will have more than k edges connected to 

them; we also see that that 92.5% of the vertices have degree 1, 2 or 3. 

           

TABLE I:  

Table 1: A power law distribution with degree γ = 2.5; the probability, p(k), and 𝒏𝒏𝒌𝒌, the number of 
vertices with degree k, when the total number of vertices is N = 𝟏𝟏𝟏𝟏𝟖𝟖. 

K p(k) nk 
1 0.74

 

74.5 × 106 
2 0.13

 

13.1 × 106 
3 0.04

 

4.9 × 106 
4 0.02

 

2.3 × 106 
5 0.01

 

1.3 × 106 
6 0.00

 

0.9 × 106 
7 0.00

 

0.6 × 106 
8 0.00

 

0.4 × 106 
9 0.00

 

0.3 × 106 
10 0.00

 

0.2 × 106 
 

The question we address next is how to estimate the degree distribution of any scheme for the 

construction of a power-law network. The estimation of the degree distribution from empirical 
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data is analyzed in [13]; according to this study a good approximation for a discrete power law 

distribution for a network with P vertices and kmin = 1 is  

𝛾𝛾�  ≈ 1 + 𝑃𝑃 �∑ 𝑙𝑙𝑙𝑙 𝑘𝑘𝑖𝑖
𝑘𝑘𝑖𝑖− 1 2�

𝑃𝑃
𝑖𝑖=1 �

−1
= 1 +  𝑃𝑃

∑ 2𝑘𝑘𝑖𝑖𝑃𝑃
𝑖𝑖=1

                          (44) 

          Several measures exist for the similarity/dissimilarity of two probability density functions 

of discrete random variables including the trace distance, fidelity, mutual information, and 

relative entropy [16], [32]. The trace distance (also called Kolmogorov or L1 distance) of two 

probability density functions, 𝑝𝑝𝑋𝑋(𝑥𝑥)and 𝑝𝑝𝑌𝑌(𝑦𝑦), and their fidelity are defined as 

𝐷𝐷�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑌𝑌(𝑥𝑥)� =  1
2

 ∑  |𝑝𝑝𝑋𝑋(𝑥𝑥) −  𝑝𝑝𝑌𝑌(𝑥𝑥)|𝑥𝑥                           (45) 

and     𝐹𝐹�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑌𝑌(𝑥𝑥)� =  ∑ �𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑥𝑥)𝑥𝑥                            (46) 

The trace distance is a metric: it is easy to prove non-negativity, symmetry, the identity of 

indiscernible, and the triangle inequality. On the other hand, the fidelity is not a metric, as it fails 

to satisfy the identity of indiscernible. 

 𝐹𝐹�𝑝𝑝𝑋𝑋(𝑥𝑥),𝑝𝑝𝑋𝑋(𝑥𝑥)� =  ∑ �𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥) 𝑥𝑥  = 1 ≠ 0                 (47) 

Determining either the L1 distance between the distribution calculated is based on equation (18) 

and the one produced by the algorithm discussed in Section III requires information about the 

degree of all vertices. 

          From Table I we see that the degree-one vertices represent a very large fraction of the 

vertices of a power-law network. We wish to determine whether the number of degree-one 

vertices provides an adequate stopping criterion instead of the L1.  
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          A recent paper [46] proposes a distributed rewiring scheme to construct scale-free overlay 

topologies with an adjustable exponent. An alternative method of creating of the scale-free 

overlay network could be based on the gossip-based peer-sampling discussed in [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

4: VIRTUAL CLOUDS 
 

          We assume that the computing systems of the organization supporting utility computing 

are distributed across multiple sites and interconnected by high-speed and low-latency networks 

reliable networks. This assumption allows us to concentrate on overlay networks and exploit the 

properties of the logical organization of communication. A virtual cloud is a subset of the 

systems assigned to the tasks specified by a service-level agreement, as well as the overlay 

network interconnecting these systems. In a virtual cloud there is no central authority responsible 

for resource management; an individual node decides to join a virtual cloud based solely on local 

state information provided by the local workload manager [23] and by the local power 

management system. 

          A scale-free global overlay network supports communication among the large number of 

systems,  ~ 108 , of the organization providing utility computing. The lifespan of the global 

overlay network 𝛤𝛤 is dictated by administrative considerations and it is expected to be of the 

order of days if not weeks. The degrees of the nodes of the global overlay network follow a 

power law distribution thus, the network is heterogeneous. 

          The core nodes of 𝛤𝛤 are the ones with a degree 𝑘𝑘 ≥ 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ; 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is a function of the 

number of systems in the organization providing utility computing and its user population. The 

𝑛𝑛𝑐𝑐  core nodes represent a very small fraction, 𝑛𝑛𝑐𝑐
𝑛𝑛

 , of the total number of nodes, n; if 𝑛𝑛1 denotes 

the number of nodes at distance one from a core node then the ratio 𝑛𝑛1
𝑛𝑛−𝑛𝑛𝑐𝑐

 is very close to unity as 

shown in chapter three. 
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          The heterogeneity of this scale-free overlay network is exploited for self-management; the 

core node of 𝛤𝛤 assume management functions, monitor the system, coordinate activities, and 

prevent phase transitions. They periodically collect information regarding the free capacity of 

nodes close to them; then, the core nodes exchange such information among them and construct 

an approximate distribution of the free capacity at time 𝑡𝑡𝑖𝑖  with mean 𝜇𝜇(𝑡𝑡𝑖𝑖) and variance 𝜎𝜎(𝑡𝑡𝑖𝑖). 

          Assuming that the information propagates from one node to another in one unit of time 

and that the core nodes form a ring topology to exchange control information then, at time 𝑡𝑡𝑖𝑖  the 

𝑛𝑛𝑐𝑐  core nodes will have accurate information about the states of the 𝑛𝑛1 systems at time 𝑡𝑡𝑖𝑖−1; it 

will take at most 𝑛𝑛𝑐𝑐  units of time until all core nodes can construct an approximate distribution 

of the free capacity. Thus, the distribution of the free capacity available to all core nodes at time 

𝑡𝑡𝑖𝑖  reflects the state of the entire system at time 𝑡𝑡𝑖𝑖−(𝑛𝑛𝑐𝑐+1). The actual distribution at time 𝑡𝑡𝑖𝑖  is 

slightly different that the one provided by the core nodes; we assume that its mean value                                     

𝜇́𝜇(𝑡𝑡𝑖𝑖) is uniformly distributed around 𝜇𝜇(𝑡𝑡𝑖𝑖) and the variance 𝜎́𝜎(𝑡𝑡𝑖𝑖) is also uniformly distributed 

around 𝜎𝜎(𝑡𝑡𝑖𝑖). 

          Once the global overlay network 𝛤𝛤 is constructed we use biased random walks to build 𝛤𝛤𝒸𝒸, 

the overlay network for a virtual cloud 𝒸𝒸. Now one of the core nodes of 𝛤𝛤 which will be called 

the SLA-Coordinator (SLAC) initiates the construction of the overlay network of the virtual 

cloud 𝒸𝒸. 

          To determine the size of the overlay network 𝛤𝛤C for the virtual cloud 𝒸𝒸 the SLAC 

examines the average and the maximum workload, chooses a distribution of the load and the 

number virtual cloud nodes and amplifies this number based on local information regarding the 

distribution of the free capacity, of the power consumption per unit of work, of the “green" 
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nodes, and so on. Given the wide range of service demands the SLAC should have access to 

Ontology to track various aspects of performance monitoring of the SLA [19]. 

          The overlay network 𝛤𝛤𝒸𝒸 consists of a number of nodes larger than the number to be 

included in the virtual cloud 𝒸𝒸. The selection is a result of successive biased random walks in 𝛤𝛤; 

an individual node decides to join a virtual cloud 𝒸𝒸 based solely on local state information 

provided by the local workload manager and by the local power management system. The 

criteria to join virtual cloud 𝒸𝒸 could be: the free capacity of the node larger than a given 

threshold; the cost per unit of service below a certain limit; the node provides “green" computing 

cycles and so on. Successive random walks select increasingly smaller subsets of nodes that 

satisfy the additional constrains. As a result of this strategy the nodes included in the virtual 

clouds are a subset of the nodes of the overlay network; when additional resources are needed we 

expand the virtual cloud with nodes of the overlay network we have previously rejected. 

          The overlay network supports functions related to explicit application requirements 

specified by SLA and for the management of the activities, including workload distribution, 

system monitoring, error recovery, minimization of costs and reduction of power consumption, 

and so on. The self-awareness and self-repair properties of the virtual cloud benefit from the fact 

that the majority of nodes have degree one or two and have to maintain information about the 

role of one of two neighbors; when a node fails in most cases there is either one, or at most, two 

neighbors which attempt to trigger rewiring and this simplifies the rewiring strategy. 

          The basic architecture of the systems we propose is illustrated in Figure 1. Once a request 

to join a virtual cloud is received the MVM compares the available capacity and the future 

resource commitments with the load and the future resource commitments specified by the 
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request and decides whether the system should join the new virtual cloud or not. When a 

decision to join a virtual cloud is taken then the Management Virtual Machines creates a Virtual 

Cloud Manager; the VCM will maintain the information regarding the topology of the virtual 

cloud and manage communication with the other members of the virtual cloud. Then the VCM 

creates the Guest Virtual Machine which will provide the user environment for the application 

specified by the SLA. 

 

Figure 1: The virtualization architecture 
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5: DISTRIBUTED ALGORITHMS FOR THE FORMATION OF VIRTUAL 
CLOUDS  

 

          The algorithm to construct a power low network using a random walk require each one of 

the N nodes of the cloud to have a unique cloudId (cId) selected from a compact set of integers            

1 ≤ cId ≤ N. The cId could be assigned to each system by a central authority at the startup time; 

alternatively, each system could use the MAC address of one of its network interfaces and then 

we can run a distributed sorting of these addresses to obtain the unique cId in the range (1,N). 

          The core nodes

          The core nodes should be able to exchange efficiently their local views regarding the state 

of the system. A self organization procedure to link the core nodes into a ring structure is 

sketched next. To be included in the ring a core node should discover its left and right core 

neighbors; initially a core node will set the cId of the left and the right partners as its own. Each 

core node is aware of the degree of each one of its neighbors and should send to the neighbors 

with a degree k ≥ 2 an identification message with a hop count slightly larger than the diameter 

of the network and request that the message be forwarded to their neighbors of degree k ≥ 2 until 

the hop count reaches zero. A core node will eventually receive identification messages from all 

other core nodes; upon receiving the message it will compare the cId of the message with the 

 of Ω are the ones with a degree k ≥ klimit; klimit is a function of the size of 

the cloud and its user population. There are only a few high degree nodes thus; there is a natural 

selection criteria for core nodes. The core nodes assume management functions, monitor the 

system, coordinate activities, and prevent phase transitions; these nodes can be replicated to 

increase the resilience to attacks and make the system fault-tolerant. A large fraction of the nodes 

of the cloud are directly connected to the core nodes as discussed in Chapter three. 
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current cId of left and of the right partners; if it is smaller than the cId of the left partner, or 

larger than the one of the right partner, no action will be taken; if it is larger than the one of the 

left partner, but smaller than its own, it will replace the one of the left partner; if it is smaller than 

the one of the right partner, but larger than its own, it will replace the one of the right partner. 

Finally, the two nodes, one with no left partner and one with no partners will join; this can be 

done if each node maintains the larger and the smallest cId it has ever seen in an identification 

message.  

          The core nodes should estimate several probability distribution functions such as: the cost 

per unit of service 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑐𝑐), the green cycle 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑔𝑔). Each core node would gather the 

information from the nodes at distance one and then pass this information to its right partner in 

the ring and eventually receive from its right partner a version incorporating a global view. This 

information is relatively stable and does not need to be updated frequently. A more complex 

process to estimate the distribution of the free capacity of the nodes must be designed; a possible 

solution is to require a core node to gather this information periodically from the virtual clouds it 

has created and then to exchange it with its core partners. 

          The second type overlay networks are the ones created dynamically for virtual clouds; 

typically, they have a relatively small number of nodes, 𝑁𝑁𝑞𝑞  ∼ 102− 104, and a limited lifespan. 

The heterogeneity of a power law overlay network could be exploited for interconnecting 

physical systems located at sites in different geographic areas thus, minimizing the potential 

effect of a catastrophic event such as a blackout affecting a large geographic region. The 

properties of a scale-free overlay network can be exploited for self-management of a service-

level agreement in a virtual cloud. The self-awareness and self-repair properties of the virtual 
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cloud benefit from the fact that the majority of nodes have degree one or two and have to 

maintain information about the role of one of two neighbors; when a node fails in most cases 

there is either one, or at most, two neighbors which attempt to trigger rewiring and this simplifies 

the rewiring strategy. 

          We assume that we have constructed a scale-free global overlay network, Ω with               

2 < γ < 3, e.g., using the algorithm described in this section or the one in [46] and we discuss 

next how to construct a virtual cloud subject to several constraints in addition to an optimal 

overlay network; for example, an SLA could specify the cost the user is willing to pay for the 

services, request sites with a cost per unit of service lower than a given threshold, and require 

“green” computing cycles. We should include in the virtual cloud only systems whose free 

capacity at the time when the virtual cloud is created follows a certain distribution. For example, 

we may want to identify systems whose free capacity is uniformly distributed and then partition 

the workload for the SLA to guarantee load balancing for the systems included in the virtual 

cloud. An application may be naturally decomposed into tasks with a particular distribution of 

the workload for example, normal or Poisson distributions; in this case, the additional condition 

would be to include systems whose available capacity follows the distribution of the 

application’s workload. Incidentally, construction of the virtual cloud could also support co-

scheduling [5], in other words, guarantee that the systems included in the cloud start working on 

the tasks required by the SLA at the same time; co-scheduling is important for distributed 

applications that require barrier synchronization. 

          Given an SLA we construct first an overlay network consisting of a number of nodes 

larger than the number we wish to include in the virtual cloud; this selection process is done by a 
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random walk in Ω when we select a node based on criteria such as: whether it provides “green” 

computing cycles or not; if its free capacity is larger than a given threshold; or if its cost per unit 

of service is below a certain limit. Then we select increasingly smaller subsets of nodes that 

satisfy the additional constrains through several random walks. As a result of this strategy the 

nodes included in the virtual clouds are a subset of the nodes of the overlay network; when 

additional resources are needed we expand the virtual cloud with nodes of the overlay network 

we have previously rejected. Recall that the nodes included in the power law network satisfy 

minimum requirements regarding the cost per unit of service and energy consumption, thus the 

expansion of the virtual cloud may not grantee optimality, but does not sacrifice the objectives to 

reduce cost and power consumption. 

          The process to create a virtual cloud is initiated by A, one of the core nodes of Ω which 

first parses SLAq and determines critical parameters for the cloud including: the number of nodes 

Nq; the cost Cq; the parameters of the distribution of the free capacity of the nodes to be included 

in the cloud; the maximum power consumption per unit of service, gq; and possibly other 

information. The buildup of a virtual cloud consists of the following steps: 

Step 1. Select 2 < γ < 3 and compute 𝛼𝛼 =  1
𝛾𝛾−1

; a core node A initiates the creation of Ωq, a scale-

free network with 

𝑝𝑝(𝑘𝑘) =  1
𝜁𝜁(𝛾𝛾 ,1)

𝑘𝑘−𝛾𝛾                                                (48) 

and pi, the probability of the vertex with cId = i given by 

𝑝𝑝𝑖𝑖 =  𝑖𝑖
1

𝛼𝛼𝛼𝛼 −1                                                    (49) 
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Call 𝛤𝛤1
𝑞𝑞  the set of nodes of Ω  included in Ωq and let 𝑁𝑁1

𝑞𝑞  be the cardinality of 𝛤𝛤1
𝑞𝑞 , 𝑁𝑁1

𝑞𝑞 =  �𝛤𝛤1
𝑞𝑞 �. If 

𝑘𝑘� denoted the average degree of a node of a power law network with the exponent γ then the 

number of edges|𝐸𝐸| of this overlay network is 

|𝐸𝐸| =  𝑘𝑘�  𝑁𝑁1
𝑞𝑞

2
 with 𝑘𝑘� =  ∑ 1

𝑘𝑘𝛾𝛾−1 ∞
𝑘𝑘=1 =  𝜁𝜁(𝛾𝛾 − 1, 0).                  (50) 

Step 2. A random walk in Ωq to select a subset of the nodes of Ωq following a the distribution of 

the free capacity; call this subset 𝛤𝛤2
𝑞𝑞  ⊂  𝛤𝛤1

𝑞𝑞  and let 𝑁𝑁2
𝑞𝑞  <  𝑁𝑁1

𝑞𝑞  be the cardinality of 𝛤𝛤2
𝑞𝑞 . 

Step 3. A random walk to select a subset 𝛤𝛤3
𝑞𝑞  ⊂  𝛤𝛤2

𝑞𝑞  to ensure that the total cost does not exceed 

Cq. The cardinality of 𝛤𝛤3
𝑞𝑞 , satisfies the condition 𝑁𝑁3

𝑞𝑞  <  𝑁𝑁2 
𝑞𝑞 <  𝑁𝑁1

𝑞𝑞 . First we determine the 

average cost per node 𝑐𝑐𝑞𝑞��� =  𝑐𝑐
𝑞𝑞

𝑁𝑁4
𝑞𝑞�  and then select the nodes subject to the condition 𝑐𝑐𝑖𝑖  ≤  𝑐𝑐𝑞𝑞��� 

with 𝑐𝑐𝑖𝑖  the cost per unit of service for node i. 

Step 4. A random walk to select a subset 𝛤𝛤4
𝑞𝑞  ⊂  𝛤𝛤3

𝑞𝑞  of nodes that can provide the service with a 

power consumption per unit of service at or below the threshold eq. The cardinality of 𝛤𝛤4
𝑞𝑞  

satisfies the condition 𝑁𝑁4
𝑞𝑞 <  𝑁𝑁3

𝑞𝑞  <  𝑁𝑁2 
𝑞𝑞 <  𝑁𝑁1

𝑞𝑞  

 It follows the additional constraints filter out systems; the number of nodes in successive subsets 

is given by  

𝑁𝑁4
𝑞𝑞 = Pr(𝑔𝑔 ≤  𝑔𝑔𝑞𝑞)  ×  𝑁𝑁3

𝑞𝑞 = 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑔𝑔𝑞𝑞) × 𝑁𝑁3
𝑞𝑞                          (51) 

𝑁𝑁3
𝑞𝑞 = Pr(𝑔𝑔 ≤  𝑔𝑔𝑞𝑞)  ×  𝑁𝑁2

𝑞𝑞 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑔𝑔𝑞𝑞) ×  𝑁𝑁2
𝑞𝑞                         (52) 

𝑁𝑁2
𝑞𝑞 = Pr(𝑤𝑤 >  𝑤𝑤𝑞𝑞)  ×  𝑁𝑁1

𝑞𝑞 = (1 −  𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑤𝑤𝑞𝑞) × 𝑁𝑁1
𝑞𝑞                    (53) 
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To include in the virtual cloud 𝑁𝑁𝑞𝑞  systems we determine 𝑁𝑁1
𝑞𝑞 , the number of nodes of the overlay 

network from the equation 

𝑁𝑁𝑞𝑞 =  𝑁𝑁4
𝑞𝑞 =  𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑔𝑔𝑞𝑞)  ×  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (𝑔𝑔𝑞𝑞)  × �1 −  𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑤𝑤𝑞𝑞)�  ×  𝑁𝑁1

𝑞𝑞         (54) 

Then we compute the number of edges 

|𝐸𝐸| =  𝜁𝜁(𝛾𝛾 − 1, 0) 𝑁𝑁1
𝑞𝑞

2
                                                   (55) 

          The algorithm to generate the scale-free network Ωq with Nq nodes and |E| edges consists 

of the following steps: 

1) Use a random walk to select the subset 𝛤𝛤1
𝑞𝑞  of nodes of Ω to be included in Ωq. For example, 

select only “green” computing nodes, or nodes based upon their geographic location. 

2) Assign each node a vId, 1 ≤ vId ≤ Nq. 

3) Set L the random walk length, e.g., L = 10. 

4) Set the number of nodes already rewired, 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

5) Select at random a node from 𝛤𝛤1
𝑞𝑞 , e.g., node a and check if it has any edge that has not been 

rewired yet. 

a) If NO go to step 5. 

b) If YES pick up one of the edges at random and save both endpoints of that edge. 

6) Check which one of the endpoints has higher degree, if they were same pick one of at random. 

7) Initialize the number of hops for the random walk nhop = 0. 

8) Draw a random number 0 < r < 1. 

9) Pick up one at random a node in the neighborhood of the original node a, e.g. node b . 
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10) Given the degree da of node a with vIda and the degree db of node b with vIdb, we calculate 

ℎ =  𝑑𝑑𝑎𝑎
𝑑𝑑𝑏𝑏
�𝑣𝑣𝑣𝑣𝑑𝑑𝑎𝑎
𝑣𝑣𝑣𝑣𝑑𝑑𝑏𝑏

�
1

∝𝛾𝛾−1                                        (56) 

a) If h > r send a message to node b. 

b) If h ≤ r send a message to node a. 

11) Increment the number of hops nhop = nhop + 1. 

a) If nhop ≠ L and nhop < 2L go to Step 8. 

b) If nhop = L save the node as the target node c then go to Step 8. 

c) Else save the node as the second target node d. 

12) Connect target nodes to each other. 

13) Remove the edge found in Step 5b. 

14) Mark the edge you found as a rewired edge. 

15) Increment the number of nodes already rewired, 

𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  1                                      (57) 

a) If 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ≤ 𝐸𝐸 go to Step 5. 

b) Else, the algorithm terminates as we have rewired all edges. 

          Once we have constructed the scale-free network Ωq with Nq nodes and |𝐸𝐸| edges we 

proceed to select subsets of nodes based on additional restriction. For example, if the free 

capacity has a normal distribution we select a subset of 𝑁𝑁2
𝑞𝑞  nodes according to the following 

algorithm: 

1) Initialize the number of nodes processed np = 0 

2) Pick up a random node and call it node a. 
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3) Pick up one of its neighbors at random and call it node b. 

4) Draw a random number (0 ≤ r ≤ 1). 

5) If Ca is the free capacity of node a and Cb is the free capacity of random neighbor we calculate  

𝛽𝛽 = 𝑒𝑒−(𝐶𝐶𝑎𝑎 2−𝐶𝐶𝑏𝑏2)                                               (58) 

a) If 𝛽𝛽 ≥ 𝑟𝑟 or 𝛽𝛽 ≥ 1 go to the neighbor. 

b)  then set b as the new node. 

6) Else stay in the the same node a. 

7) Increment the number of nodes, 𝑛𝑛𝑝𝑝 =  𝑛𝑛𝑝𝑝 +  1. 

a) If 𝑛𝑛𝑝𝑝 <  𝑁𝑁2
𝑞𝑞  go to step 2 

b) Else terminate. 

Uniform distribution on power remaining: 

1) From 100 nodes that we’ve built the normal distribution, pick up a random node and call it a. 

2) Find the most nearest power remaining in the nodes next to the random node, e.g. b. 

3) If the |𝑃𝑃𝑎𝑎 −  𝑃𝑃𝑏𝑏 | is less than Th = 0.05 go to the node b. 

4) Remove the original node e.g. a. 

5) Set up the b as new node e.g. a. 

6) Increment the number of hops, 𝑛𝑛𝑝𝑝 =  𝑛𝑛𝑝𝑝 +  1 

a) If 𝑛𝑛𝑝𝑝  ≤ 10 go to step 2. 

b) Else terminate. 

7) Else increase the Threshold 0.01 then go to step 2. 
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Simulation Studies: 

          Development of a complex system is often based on intensive preliminary simulation 

studies; indeed, analytical performance studies of systems with a very large number of 

components is rarely feasible and the development of a test bed system can be prohibitively 

expensive. In this section we report on our simulation studies of the algorithms and strategies for 

the creation of virtual clouds; the simulation environments we used in our research on self-

organization of sensor networks [36], [37] could not handle the requirements of this project and 

we developed a C-based simulator running on Linux workstations, as well as, Powerbooks under 

MAC OS. 

          A first question we address is if the procedure discussed in Chapter Three can be used in 

practice to produce a power law distribution; our experiments show that stopping after mN 

iterations leads to a distribution of the degrees of vertices resembling a power law, but not to the 

one we expected for γ = 2.5. 

          Figure 2(a) shows the histogram of the degree distribution for the random graph used as 

input to the algorithm; Figure 2(b) shows the histogram of the degree distribution after a number 

of iterations equal to the expected number of edges mN = 1.5 × 1000 of the graph of the power 

law network. When γ = 2.5 we expect 745 vertices of degree-one for a network with N = 1,000 

vertices; the actual number of degree-one vertices is ∼ 380, far from the expected value. Recall 

from Chapter Four that degree-one vertices represent a very large fraction of the vertices of a 

power-law network this number can be used as an indicator of the similarity between the degree 
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distribution obtained experimentally and the one expected for a power law distribution with the 

given the degree of the power law distribution, γ. 

 

(a) 

 

(b) 
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Figure 2: Two histograms of the degree distribution of: (a) the random graph with N = 1,000 
vertices used as input to the algorithm in Chapter Three; (b) the graph after one run of the 

algorithm with mN = 1,500 iterations. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3: The fraction of degree-one vertices ʋ= N1 ⁄ N is a function of the number of iterations 
when γ = 2.5; the value calculated in Chapter Four is 74.5%. The number of iterations required for 
ʋ to be within 2% of the theoretical value is (a) 10 × 105 when N = 1,000 vertices; (b) 1.5 × 105 when 
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N = 1,0000 vertices; (c) 10 × 105 when N = 100,000 vertices; (c) 10 × 106 when  N = 1,000,000 
vertices. 

 

Table 2 : The time required by the algorithm to construct the scale-free network to converge to the 
theoretical value for degree-one vertices is a function of N, the number of vertices. 

Number 

Vertices 

Mean Execution 

Time (Sec) 

Standard 

Deviation (Sec) 

95% Confidence 

Interval for the 

Mean (Sec) 

1,000 53.1 68.7 39.6 – 66.5 

10,000 28.9 39.5 21.1 – 36.5 

100,000 278.6 16.6 275.3 – 281.9 

1,000,000 9473.6 424 9390.54 – 9556.7 

 

          As a result of this observation we have modified the algorithm; the new algorithm revisits 

an already rewired node and continues to iterate until the number of degree-one vertices is close 

to the theoretical value calculated in Chapter Four for the corresponding value of γ. Then we 

investigate the stopping criteria for the new algorithm. We have seen in Chapter Three that the 

number of iterations to reach the value predicted by the theoretical model for the number of 

vertices of degree k is a function of N and of, the degree of the power law; our experiments 

confirm this and show that we need about 106 iterations of the algorithm when N = 106. 

          Figure 3 shows that the number of iterations necessary to be within 2% of the predicted 

value is about 10 × 105 when the number of vertices of the random graph increases from            

N =1,000, to 10,000, and then to 100,000; this number increases by an order of magnitude for     

N = 1,000,000 vertices. We also notice that the convergence to the theoretical value is slower 

when the number of vertices of the random graph increases. 
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          We now discuss the timing requirements for the algorithm to create a scale-free overlay 

network. The execution times required by this version of the algorithm to reach the distribution 

predicted by the theory are summarized in Table 2. While the time required for the formation of 

the scale-free network covering an entire cloud with 106 computing nodes seems prohibitive, 

around 2.5 hours, we should keep in mind that the simulations run on an Intel Core 2 Duo E7500 

system with 4 GB of memory and a clock rate of 2.93 GHz under Fedora 12 64-bit operating 

system; in practice, the algorithm will run on much faster systems. The establishment of the 

global scale-free overlay network is one step of the start-up of the cloud and will run once every 

few weeks or months. On the other hand, the establishment of the scale-free network for a cloud 

with less than 1,000 systems will probably take a few seconds in practice. 

          The next question we address regards the error when we compare the number of degree-

one vertices with the one predicted by the power-law as a stopping criterion. A more accurate 

solution is to use the L1 distance, but this requires collecting information about the degree of all 

nodes. The distributed algorithm to construct a scale-free network uses the following expression 

with the constant k = 1 to decide the bias used by node ia to forward the random walk message to 

a node in with da and db the degrees of vertices ia and in, respectively. 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑛𝑛

 �𝑖𝑖𝑎𝑎
𝑖𝑖𝑛𝑛
�

𝑘𝑘
𝛾𝛾𝛾𝛾 −1

                                                           (59) 

          We use as a stopping criteria the L1 distance between the degree distribution predicted by 

the theoretical model and that produced by the algorithm; we also compare the number of degree 

one vertices predicted by the theoretical model and that produced by the algorithm. We observe 

that the value of k and the number of iterations required to achieve a certain level of error are a 
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function of the power of the degree distribution and, as expected, by the metrics used to compute 

the error. The results summarized in Figures 4 and 5 are for N = 1000 vertices and represent the 

averages over 10 runs. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4: Simulation Results 

          Figure 4(a) shows that when γ = 2.1 the optimal value is k = 0:8 and that we need 2 × 105 

iterations to reach a distance L1 equal to 100. If instead of the L1 norm we use the number of 

degree-one vertices, as in Figure 4(b), we need around 0.4×105 iterations when k = 0.75 to be 

within 1% of the number of degree-one vertices predicted by the theoretical model. Figure 4(c) 

shows that for γ = 2.3 the optimal value is k = 0.9 and we reach a distance L1 of 100 after about 

0.7 × 105 iterations; we need around 0.7 × 105 iterations to be within 1% of the number of 

degree-one vertices predicted by the theoretical model, Figure 4(d). 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5: Simulation Results 



48 
 

When γ = 2.5 the optimal value is k = 0.9 and we reach distance L1 of 100 after about 0 : 4×105 

iterations, shown in Figure 5(a); we need around 1.2×105 iterations to be within 1% of the 

number of degree-one vertices predicted by the theoretical model, shown in Figure 5(b). When   

γ = 2.7 the optimal value is k = 0.9 and we reach a distance L1 of 100 after about 2.8×105 

iterations, shown in Figure 5(c); we need around 2.5×105 iterations to be within 3% of the 

number of degree-one vertices predicted by the theoretical model, shown in Figure 5(d). 

          Lastly, we report on the creation of a virtual cloud. We started with a scale-free network 

with γ = 2.5 and with 106 nodes discussed earlier. Then we assembled a scale-free network of 

5,000 nodes selected through a random walk from the 330,000 “green computing” nodes of the 

cloud. The next step was to generate a random number representing free capacities of the 5,000 

nodes in this scale-free network. Finally we constructed a normal distribution on 1,000 nodes.  

          The execution time for building the normal distribution is less than a second and the time 

for the reconstructing of the SF network for the 5,000 nodes was 155 seconds. Figure 5 shows 

the distribution of the free capacity of the nodes included in the virtual cloud. 
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Figure 6: The histogram of the number of nodes in a cloud of 1,000 nodes with a normal 
distribution of the free capacity, interconnected by a scale-free network of 5,000 nodes. The 5,000 

nodes were selected through a random walk in a network of 330,000 of “green-computing” nodes of 
a cloud with 10

6
 nodes.                     
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6: DYNAMIC WORKLOAD DISTRIBUTION 
 

          In this section we discuss the ability of a virtual cloud to react promptly to dynamic 

changes in the workload. We assume that the global overlay network of the cloud, Γ, follows a 

power law degree distribution with an exponent 2 < γ < 3. 

          When a core node of Γ accepts the role of the SLA Coordinator and receives a request for 

an average workload of 𝜔𝜔  units and a peak workload of 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚   ×  𝜔𝜔 then it determines the 

number of nodes in the virtual cloud, 𝑁𝑁 =  |𝐶𝐶|. For example, if the average free capacity is k 

workload units per system, then the number of systems in the virtual cloud could be               

𝑁𝑁 >  �𝛼𝛼𝛼𝛼 𝑘𝑘� � with 1 ≤  𝛼𝛼 ≤  𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 ; the ratio of number of nodes in the overlay network, 

𝑀𝑀 =  ⌈𝛤𝛤𝐶𝐶⌉ versus the number of those included in the virtual cloud, ƞ = 𝑀𝑀/𝑁𝑁  can be in the 

range 5 ≥  ƞ ≥ 10 and it is determined using algorithms described in [44]. Then the SLA 

Coordinator initiates the creation of the overlay network 𝛤𝛤𝐶𝐶  for virtual cloud C based on its 

assessment of the global state of the cloud, in particular on the distribution of the free capacity 

and of the information gathered from the SLA data regarding the workload and the terms of the 

contract. Once the overlay network is constructed a subset of the nodes are included in the virtual 

cloud and one of the core nodes of 𝛤𝛤𝐶𝐶  included in C is chosen as the Cloud Supervisor; its role is 

to connect the virtual cloud to the SLA Coordinator which communicates directly with the user. 

          The two parameters 𝛼𝛼 and 𝜂𝜂 ultimately control M and N, the number of nodes in 𝛤𝛤𝐶𝐶  and C, 

respectively, are affected by the contractual obligations and the penalties. An SLA specifying 

stiff penalties could be accommodated by Overprovisioning; it requires a choice of 𝛼𝛼 closer to 
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𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 . To avoid Overprovisioning we could use a larger pool of potential sites for the distribution 

of the overload, in other words to select a moderate value of 𝛼𝛼 and a large value of 𝜂𝜂. 

          Several workload allocation strategies are possible: increase uniformly the load of nodes 

visited during the random walk; a greedy strategy is to saturate each node visited during the 

random walk. We say that a node is saturated if its load is 90% of its capacity. In the first case 

the load allocated to the node is a small fraction of its free capacity; this strategy allows multiple 

virtual clouds operating on the same node to accommodate overloads, but requires a larger 

number of steps for the random walk. The greedy strategy reduces the number of steps of the 

random walk; when the cloud is lightly loaded this strategy together with a proper choice of the 

distribution of the free capacity used to select the nodes of C allows a limited number of nodes to 

accommodate the entire load of the cluster and turn off the other nodes to save power. 

          Effective strategies for dynamic load management allow virtual clouds to respond to 

global surges, an individual surge, or the failures of one or more nodes. A global surge could be 

triggered by a sudden increase in demand due to a catastrophic event e.g., the blackout in some 

region of the country, while an individual surge is possible due to the large peak to average ratio 

of resources specified by a single user. First, we attempt to distribute the additional workload to 

the 𝑁𝑁 systems in the C; then, if necessary, the residual workload is distributed to the M - N other 

systems connected by 𝛤𝛤𝐶𝐶 , the virtual cloud's overlay network; as a last resort we extend the 

random walk to nodes outside 𝛤𝛤𝐶𝐶 . 

          The ability of the virtual cloud to accommodate a surge depends on the current load; we 

consider three scenarios: a lightly loaded, a medium, and a heavily loaded virtual cloud. The 
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average load in these three cases is 10%, 50% and 80%, respectively, of the capacity of the 

systems included in the virtual cloud. 

          Next we attempt to quantify the attributes of the virtual cloud important for dynamic 

workload management. The average number of steps of the random walk measures the time to 

locate the systems able to carry the extra load; the desired versus the actual distribution of the 

free capacity after applying an allocation strategy for the extra workload is another useful 

measure that reflects in part the properties of the overlay network. We also want to see if these 

measures scale with the size of the virtual cloud |𝐶𝐶| and of the overlay network |𝛤𝛤𝐶𝐶|. 

          Table 3 shows that a biased random walk in an overlay network with a power law degree 

distribution requires about the same number of steps as a biased random walk in a random 

network provided that we do not require to revisit the source node of the random walk when the 

condition is not met.  

Table 3: The number of biased random walk steps for the creation of a virtual cloud in a lightly 
loaded system when N = 1,000 and M = 5,000. Four experiments are conducted: I – random walk in 

a random overlay network; II - random walk in an overlay network with a power law degree 
distribution without the condition revisit the source node of the random walk when the condition is 
not met; III - random walk in a graph with a power law degree distribution when the random walk 
is forced to revisit the source node when the condition is not met; IV - workload distribution in an 

overlay network with a power law degree distribution when we visit all the neighbors of a core 
node, then repeat the same process for the next core node. 

Experiment Number of steps 

I 11,230 

II 11,740 

III 14,320 

IV 43,227 
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It also shows that a biased random walk in an overlay network with a power law degree 

distribution requires about three times less steps for workload distribution (11,740 versus 43,227) 

than when we visit all neighbors of a core node then move to the next core node of the overlay 

network |𝛤𝛤𝐶𝐶| of the virtual cloud C. 

          In our simulation experiments a global surge is defined as an increase of the total load of 

all the N systems included in the virtual cluster by a factor of 10. The virtual cloud consists of   

1,000 systems selected through a random walk out of 5,000 systems. For simplicity, we assume 

that the average load of a system in C is 𝜇𝜇𝑐𝑐 ; then the global surge amounts to 10 ×  𝜇𝜇𝑐𝑐  workload 

units. A simple calculation shows that such a global surge cannot be accommodated by a virtual 

cloud with a heavy load thus; the first group of experiments covers only light and medium loaded 

virtual clusters. 

 

(a) 
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(b) 

Figure 7: The distribution of the free capacity in a lightly loaded virtual cloud after a global surge. 
The virtual cloud is interconnected by the overlay network modeled by: (a) a random graph; (b) a 

graph with a power law degree distribution. 

 

(a) 
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(b) 

Figure 8: The distribution of the free capacity in a lightly loaded virtual cloud after a 
global surge for an overly network with a power law degree distribution. (a) Greedy 

allocation for the N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of 
the free capacity of individual nodes extends the random walk to the M = 5,000 nodes of 

|𝜞𝜞𝑪𝑪|. 

          First, we compare the effects of a random walk on overlay networks with different 

topology for a global surge and a uniform allocation of the extra load described earlier on a 

lightly loaded virtual cluster. The distribution of the free capacity after the surge for an overlay 

network modeled as a random graph is shown in Figure 7 (a) and the one for a power-law degree 

distribution is shown in Figure 7 (b). The distribution of the free capacity as well as the number 

of random walk steps are very similar; for the random graph some 24% of the virtual cluster 

nodes are saturated (loaded up to 90% of their capacity) versus 28% for the power-law degree 

distribution. 

          The next sets of experiments consider only a power-law degree distribution of the overlay 

network and we compare the greedy with the uniformly load allocation. Figures 8 (a) and (b) 

show the distribution of the free capacity in a lightly loaded virtual cloud while Figures 9 (a) and 
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(b) show the distribution of the free capacity in a medium loaded virtual cloud after a global 

surge.  

 
(a) 

 

(b) 

Figure 9:  The distribution of the free capacity in a virtual cloud with a medium load after a global 
surge for an overly network with a power law degree distribution. (a) Greedy allocation on the       

N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of 
individual nodes extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|. 
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In a lightly loaded system a greedy allocation saturates about 70% all the N = 1,000 nodes of C 

as we can see Figure 8 (a). Figure 8 (b) shows that when we increase the load on each node by 

only 10% we have to extend our search to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶| and about 27% of them 

are saturated. 

          In a medium loaded system a greedy allocation saturates practically all the N = 1,000 

nodes of C as we can see in Figure 9 (a). On the other hand, Figure 9 (b) shows that when we 

increase the load on each node by only 10% we have to extend our search to the M = 5,000 nodes 

in |𝛤𝛤𝐶𝐶|; then about 50% of them (about 2,500 are saturated. The random walk covered 85% of the 

nodes of |𝛤𝛤𝐶𝐶|. 

 

(a) 
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(b) 

Figure 10: A surge in a system with the average free capacity 10% of the total capacity. 

 

(a) 
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(b) 

Figure 11: The distribution of the free capacity in a virtual cloud with a medium load after a local 
surge for an overly network with a power law degree distribution. (a) Greedy allocation on the       

N = 1,000 nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of 
individual nodes extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|. 

          Next we consider local surges due to a 10 fold increase of the workload of cluster C and 

examine only the medium and high load cases illustrated in Figures 11 (a) and (b) and in Figures 

12(a) and (b), respectively. In each case we show the distribution of the free capacity for a 

greedy and for a uniform distribution of the load. 

          In case of a virtual cloud with a medium load the greedy allocation leads to the saturation 

of 95% of the nodes of C, as shown in Figure 11 (a). When we increase the load on each node by 

only 10% we have to extend our random walk to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶| and we require 240 

steps to accommodate the extra workload; Figure 11 (b) shows that in this case only 6% of the 

nodes in |𝛤𝛤𝐶𝐶| are saturated. 
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(a) 

 

(b) 

Figure 12: The distribution of the free capacity in a heavily loaded virtual cloud after a local surge 
for an overly network with a power-law degree distribution. (a) Greedy allocation on the N = 1,000 
nodes of the virtual cloud C. (b) Uniform allocation of 10% of the free capacity of individual nodes 

extends the random walk to the M = 5,000 nodes of |𝜞𝜞𝑪𝑪|. 
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          Figure 12 (a) shows similar results when the virtual cloud is heavily loaded and a greedy 

allocation strategy is in effect; 95% of the nodes of C. When we increase the load on each node 

by only 10% we have to extend our random walk to the M = 5,000 nodes in |𝛤𝛤𝐶𝐶|, but this time we 

need 2,200 additional steps; Figure 12 (b) shows that in this case only 54% of the nodes in |𝛤𝛤𝐶𝐶| 

are saturated. These results are consistent with our intuition and with the results for the medium 

load. 
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7: SUMMARY AND FUTURE WORK 
 

          The work reported in this thesis is not restricted to a specific computing, communication, 

or storage model and it is complementary to the research on virtualization carried out now by 

several groups from industry [22], [23]. The virtualization architecture we propose is dynamic, 

virtual machines are created in response to an external request when local condition permit and 

have a limited lifetime. A virtual machine created on a node must act in concert with the other 

members of the virtual cloud and maintain only limited information about its neighbors in the 

overlay network. The virtual cloud created in response to a SLA provides the services at a 

minimal cost and with minimal energy consumption. We propose a probabilistic approach for 

resource virtualization in a computer cloud based on biased random walks; the algorithm allows 

us to select a subset of systems and to create the overlay network interconnecting these systems.    

          We discuss the algorithms to carry out the random walks when the transition matrix is                

d-dimensional as the systems included in the virtual cloud are interconnected by a scale-free 

overlay network; these systems are selected through a random walk and could be subject to 

additional constrains such as limits on the cost of per unit of service, total cost, or the 

requirement to use only “green” computing cycles. Scalability is an obvious, but often ignored 

requirement in system design; typically, scalability becomes an issue only if a system is 

successful. Attributes such as functionality, reliability, security, and cost are the only concerns in 

the early stages of system development. The view expressed in this paper is that scalability 

should be an ab-initio concern; the logical organization or the overlay interconnection network is 

expected to follow a power-law distribution. The self-management scheme we propose takes 
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advantage of the remarkable properties of scale-free networks such as robustness against random 

failures, favorable scaling, and resilience to congestion, small diameter, and average path length. 

          Our preliminary results reported in Chapter Six show that the algorithms we propose for 

the creation on virtual clouds are relatively efficient and can be used for the implementation of a 

test bed system. We plan to develop parallel versions of the algorithm for the random walk and 

expect a substantial reduction of the time to create a scale-free network with 106− 108 vertices. 

          We collaborate with a group from the University College Cork in Ireland on a physical 

implementation of a test bed system based on the WebCom infrastructure [41]. The 

implementation of the virtual clouds will take advantage of existing software systems for 

resource management such as the capacity planner discussed in [43], the Xin credit scheduler 

[49], and performance analysis tools such as the Tivoli system developed by IBM [28]. 

          The software architecture we work on for the individual systems in a computing cloud 

includes a top level Virtual Clouds Manager (VCM) which supervises multiple Virtual Cloud 

Engines (VCE) each one of them created in response to an SLA. The decision to join a virtual 

cloud is based on local information provided by the capacity planner and by the power 

management system running on each system; once a bid to join a virtual cloud is accepted, the 

VCM creates the virtual cloud engine for the SLA. A VCE is a virtual machine responsible for 

communications with other members of the virtual cloud and for the execution of the sub-set of 

activities of the SLA assumed when the local system joined the virtual cloud. 

          A service-level agreement spells out QoS guarantees as well as elements required to 

determine the Classes of Service for different activities required by the SLA; given the wide 

range of service demands the VCE should have access to an ontology to track various aspects of 
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performance monitoring of the SLA [19]. The virtual cloud engine gathers information about its 

neighbors in the overlay network, then parses the SLA to identify the set of events to be tracked 

during the lifetime of the contract as well as the actions required by each event.  
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