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ABSTRACT

In this thesis, we investigate the use of dictionary learning for discriminative tasks on nat-

ural images. Our contributions can be summarized as follows:

• We introduce discriminative deviation based learning to achieve principled handling of the

reconstruction-discrimination tradeoff that is inherentto discriminative dictionary learning.

• Since natural images obey a strong smoothness prior, we showhow spatial smoothness con-

straints can be incorporated into the learning formulationby embedding dictionary learning

into Conditional Random Field (CRF) learning. We demonstrate that such smoothness con-

straints can lead to state-of-the-art performance for pixel-classification tasks.

• Finally, we lay down the foundations of super-latent learning. By treating sparse codes on a

CRF as latent variables, dictionary learning can also be performed via the Latent (Structural)

SVM formulation for jointly learning a classifier over the sparse codes. The dictionary is

treated as asuper-latentvariable that generates the latent variables.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The coding of signals into a sparse representation has numerous benefits that have been

exploited by computer vision researchers over the years. The new sparse representation requires

an over-complete basis1 called a dictionary. The basis can be constructed analytically from off-the-

shelf parametric functions such as a Fourier basis or it can be learned from data. In this thesis, we

investigate how dictionaries can be learned in a discriminative yet stable manner and introduce how

smoothness priors can be incorporated into the learning framework. We also show how dictionaries

can treated as super-latent variables and learned by exploiting a max-margin learning.

Traditionally, dictionaries have been learned in a reconstructive manner with recent suc-

cessful attempts at discriminative learning. Figure 1.1 illustrates the difference between recon-

structive and discriminative dictionary learning. With reconstructive learning, dictionaryDi is

good at representing signals from its own classi, but nothing stops it from being good for some

other class too. Such multiclass representability is not good when dictionaries are used for clas-

sification of signals. But with discriminative learning,Di is encouraged to be representative of

1Number of basis vectors is greater than the signal dimension
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classi and at the same time not representative of other classes. This leads to better classification

of signals.

Reconstructive Discriminative

Class 1 Class 2 Class3

D1 X ? ?

D2 ? X ?

D3 ? ? X

Class 1 Class 2 Class3

D1 X × ×

D2 × X ×

D3 × × X

Figure 1.1: Reconstructive vs. Discriminative DictionaryLearning. With reconstructive learning,

dictionaryDi can begood for classi, but nothing stops it from being good for some other class

too. But with discriminative learning,Di is encouraged to begood for classi andbad for other

classes.

Discriminative dictionary learning, however, leads to an unstable formulation due to the so

called reconstruction-discrimination trade-off. As the dictionaries become more discriminative,

the curvature of the error surface for learning increases. This leads to slower convergence, or none

at all. In this work, we investigate how dictionaries can be learned in a discriminative yet stable

manner.
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We limit our investigation to dictionaries for signals coming from natural images. As

demonstrated in Figure 1.2, natural images exhibit an inherent smoothness in colors, patterns,

textures and especially labels. We explore how these smoothness constraints can be incorporated

into the discriminative dictionary learning framework.

Figure 1.2: Natural images exhibit an inherent smoothness in colors, patterns, textures and espe-

cially labels. We explore how these smoothness and scale constraints can be incorporated into the

discriminative dictionary learning framework.

Contributions : Specifically, the contributions of this thesis for the discriminative dictionary learn-

ing (DDL) problem are:

1. Stable discriminative dictionary learning (Chapter 2).We obtain a formulation that is a

lower-bound on the formulation of Mairalet al. [1] but only needs one tuning parameter.
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We transform this parameter into a true trade-off parameterand constrain its search space to

mitigate the instability problem.

2. Incorporation of pairwise spatial smoothness constraints for dictionary learning by embed-

ding dictionaries in a Conditional Random Field (CRF) (Chapter 3). The formulation from

Chapter 2 is embedded into the node potentials and spatial pairwise constraints on sparse

codes are used in the edge potentials.

3. A proper treatment of Max-Margin dictionary learning in astructured prediction framework

(Chapter 4). We explain how the original formulation of Yang& Yang [2] lacks mathematical

soundness and then present a more sound methodology. We alsointroduce a smoothness

prior based on the discriminative manifold assumption.

The first contribution is general and applicable to any discriminative dictionary learning problem

while the other contributions have only been investigated in the context of natural images to exploit

their inherent neighborhood smoothness.

1.2 Background

In this section, we present an introduction to sparse codingand dictionary learning and

review some of the existing approaches for dictionary learning in both the reconstructive and dis-

criminative settings.
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1.2.1 Sparse Coding

Sparse coding refers to the process of computing a representation of a signal in a new basis

such that the representation contains mostly zeros. The so called “dictionary” is this newer basis

in which the sparse code resides. While the basis vectors arerequired to be of unit norm, they need

not be orthogonal. The basis vectors are also called the atoms of the dictionary and are represented

by the columns of the dictionary matrixD ∈ Dn,k whereDn,k is a Stiefel manifold. In other words,

a dictionary resides in the subspace of matricesR
n×k with columns having unit norms. That is,

Dn,k = {D ∈ R
n×k : ∀i=1,...,k ||di||2 = 1}. A signalx ∈ R

n can be converted to its sparse

representationα∗ ∈ R
k under dictionaryD ∈ Dn,k via the optimization

α
∗ = arg min

α∈Rk
||x−Dα||2 s.t. ||α||0 <= L (1.1)

whereL ∈ Z
+ determines the maximum number of non-zero values allowed and is called the

sparsity factor. With itsℓ0 pseudo-norm constraint, sparse coding is an NP-hard problem whose

solution can be approximated via a greedy approach known as othogonal matching pursuit (OMP)

[3]. An alternative to trueℓ0 sparse coding is the approximateℓ1 sparse coding

α
∗ = arg min

α∈Rk
||x−Dα||2 + λ||α||1 (1.2)

where the amount of sparsity is determined by the sparsity factor λ ∈ R
+. The convexification

from theℓ1 norm in place of theℓ0 norm leads to what is known as the basis pursuit (BP) approach

5



[4]. In what follows, we will useℓ1 sparse coding but the analysis equally applies to the case ofℓ0

or other general forms of sparse coding2.

For a set ofN signalsX = [x1, . . . ,xN ] the (ℓ1) sparse coding problem can be written as

A∗ = arg min
A∈Rk×N

||X−DA||2 + λ

N∑

j=1

||αj||1 (1.3)

whereA = [α1, . . . ,αN ] is the set of sparse codes corresponding to signals inX.

1.3 Dictionary Learning

Dictionary learning, as the name suggests, refers to learning the optimal basis for sparsely

representing a set of input signals. The optimal dictionaryfor a setX is obtained via the optimiza-

tion

D∗ = arg min
D∈Dn,k

A∈Rk×N

||X−DA||2F (1.4)

where matrixA of sparse codes under dictionaryD is itself obtained via optimization using, for

example, (1.3).

Optimizing (1.4) jointly over dictionaryD and sparse codesA is a non-convex problem

but optimizing over either one alone is convex. Therefore, astandard approach for solving (1.4) is

an iterative Lloyd’s type algorithm whereby one parameter is fixed and the optimization is carried

out over the other and then the roles are reversed. K-means isan example of a Lloyd’s type

2Our goal with sparse coding is just to obtain a sparse representation. So the exact method is not crucial to our
analysis.
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algorithm3 in which the optimization successively iterates between computing the cluster means

and assigning the samples to clusters until convergence. What this means here is that one can fix

the dictionaryD and compute the optimal sparse codesA∗ underD. Then, the computed sparse

codes can be fixed and the objective function in (1.4) can be optimized overD alone which is a

convex problem. This process can be repeated until some convergence criterion (e.g. threshold

on average reconstruction error) is met. Note, however, that the computed optimaD∗ andA∗

are not guaranteed to be the global minimum solution becausethe joint non-convexity under both

D,A is broken into convexities underD andA alone. Algorithm 1 summarizes the process.

Algorithm 1 : Dictionary Learning

Input : Set of signalsX = [x1, . . . ,xN ], Initial DictionaryD ∈ R
n×k

Output : Optimal dictionaryD∗ and sparse codesA∗ = [α1, . . . ,αN ]

D∗ ← D;1

while not convergeddo2

A∗ ← argminA ||X−D∗A||2F + λ
∑N

j=1 ||αj||1 using (1.3);3

D∗ ← argminD ||X−DA∗||2F4

end5

Next, we introduce two representative Lloyd’s type algorithms for dictionary learning.

3Lloyd is infact credited as the inventor of the K-means algorithm [5]
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1.3.1 Method of Optimal Directions

In the method of optimal directions (MOD) [6], after computing the optimal sparse codes

the whole dictionary is updated simultaneously by solving the least squares problem

D∗ = arg min
D∈Rn×k

||X−DA||2F (1.5)

in which no constraints are imposed on the column norms. Thiscan be handleda posterioriby

explicitly normalizing each atom (i.e.column) ofD∗.

1.3.2 K-SVD

In the K-SVD algorithm [7], the dictionary update step is changed to sequentially update

one atom of the dictionary at a time. However, it additionally updates the sparse code coefficients

associated with that atom simultaneously. This leads to faster convergence of the algorithm. As

before, letX = [x1, . . . ,xN ] be the set ofN input signals. LetA = [α1, . . . ,αN ] be the sparse

codes ofX under dictionaryD. Letd = Dk be thek-th column of dictionaryD and letα = Ak

be thek-th row ofA. The row-vectorα consists of the sparse coefficients inA that correspond to

8



dictionary atomd. While keeping everything else fixed, K-SVD updatesd andα as

argmin
d,α
||X−DA||2F = argmin

d,α

∥
∥
∥
∥
∥
∥

X−
|Di|∑

m=1

DmA
m

∥
∥
∥
∥
∥
∥

2

F

(1.6)

= argmin
d,α

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(

X−
∑

m6=k

DmA
m

)

︸ ︷︷ ︸

Ek

− Dk
︸︷︷︸

d

Ak

︸︷︷︸

α

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

(1.7)

= argmin
d,α
‖Ek − dα‖2F (1.8)

In order to maintain sparsity ofα, one can restrict the minimization to only those input signals

that used, i.e. that have non-zeros values inα. Let αr be the vector restricted to contain only

the non-zero entries ofα andEr
k is a similarly restricted version ofEk that contains the residuals

for only those input signals that have non-zero coefficientsin α. The restricted minimization then

becomes

argmin
d,αr
‖Er

k − dαr‖2F (1.9)

which is a rank-one matrix approximation problem and is solved by computing the singular value

decomposition (SVD) ofEr
k. Specifically, one needs to computeU∆VT = svd(Er

k) and set

d = U1 andα = ∆(1, 1)V1 whereU1 is the first column ofU andV1 is the first column ofV.

Due to the properties of SVD, theℓ2 norm ofd is already 1 and therefore K-SVD enforces the

unit-norm constraints on the dictionary columns.

Since the process is repeated for each of thek columns of the dictionary, the method is

termed K-SVD. Convergence is guaranteed since every sequential update of a dictionary atom

9



reduces a Frobenius norm associated to it without affectingother terms. However, this method is

compatible withℓ0 sparse coding only (objective function (1.1)).

1.4 Discriminative Dictionary Learning

Traditionally, dictionaries have been learned in a reconstructive manner,i.e. via objective

function (1.4). What this means is that a dictionary is optimized to accurately reconstruct the set of

signals it was trained on. If this set of signals belongs to a particular class, then the dictionary can

be expected to be representative of that class. Therefore, for classification purposes, one separate

dictionary can be trained for each class and a test signalx can be classified as belonging to the

class whose dictionary reconstructsx with the least reconstruction error.

While this reconstructive dictionary based classificationis able to give good classification

results, it has a fundamental weakness when applied to classification problems:Nothing explicitly

stops a dictionary from being representative of other classes too.For instance, a dictionary trained

to accurately reconstruct visual signals of class “bus”canalso tend to reconstruct visual signals

of class “train”with low reconstruction error. Therefore,there is a need to learn dictionaries in a

discriminative manner. By this we specifically mean:Learn dictionaries so that they reconstruct

signals from their own class with low reconstruction error and those from other classes with high

reconstruction error.

10



1.4.1 Extraction of Discriminative Atoms via Mutual Inform ation

For a given reconstructively learned dictionaryD, there can exist random subsets of columns

of D that are more discriminative thanD while being comparably reconstructive. But a random

search for such subsets is not always successful. A more principled approach to searching for such

discriminatively reconstructivesubsets is based on maximization of mutual information between

atoms. Representative works in this direction include [8, 9, 10, 11]. However, the initial recon-

structive dictionary can place an upper limit on the discriminability of the extracted dictionary and

therefore we do not pursue this line of research.

1.4.2 Construction of Discriminative Atoms

A more appealing option is to learn the dictionaries in a discriminative manner. Represen-

tative works in this direction include [1, 12, 13]. The basicidea here is to make the dictionary for

classi representative for classi and explicitly not-so-representative of all other classes. Below we

summarize some existing approaches for discriminative dictionary learning.

1.4.2.1 Discriminative Softmax

LetD1, . . . ,DC be dictionaries learned forC classes of signals. For a signaly, letR ∈ R
C

be the vector of reconstruction errors under each dictionary. If the signaly belongs to classi, then

11



ideally the reconstruction errorRi should be less thanRj for all j 6= i. This can be achieved by the

softmax function employed in [1, 12] that penalizes the reconstruction errorRi for the true class

not being the minimum among all classes. The discriminativesoftmax function is given by

Ci(R) = log

C∑

j=1

e−λ(Rj−Ri) (1.10)

where parameterλ is used as a discriminative parameter in [1, 12]. WhenRi is the smallest among

all classes,Ci(R) is close to0 and asymptotically approaches a linear penalty otherwise.For the

set ofN signals(y1, . . . ,yN) with labels(x1, . . . , xN ), this allows the following discriminative

dictionary learning formulation

min
{Dj}Cj=1

N∑

i=1

Cxi
(R(yi)) + γR(yi) (1.11)

whereγ > 0 controls the reconstruction-discrimination trade-off.

It will be shown in Chapter 2 that parameterλ in fact only controls how good the softmax

is at approximating the step function. It does not make it anymore or less discriminative. This ob-

servation will be used in Chapter 2 to derive a lower bound on the discriminative softmax function

that can be used to mitigate the instability of discriminative dictionary learning.
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1.4.2.2 Inter-dictionary Incoherence

In [13], Ramirezet al. impose inter-dictionary incoherence constraints. This has the effect

of implicitly making the dictionaries more discriminative. Their objective function is

min
{Dj}Cj=1

N∑

i=1

Rixi
+ η

∑

i 6=j

||DT
i Dj ||2F (1.12)

whereRixi
is a shortened form ofR(yi)xi

. The term
∑

i 6=j ||DT
i Dj||2F encourages all dictionaries

to be incoherent from each other, thereby leading to improved discriminability. The discriminabil-

ity constraint is implicit since the reconstruction errorsRi are not explicitly enforced to reflect

their classes. Instead, the dictionaries that yield the reconstruction errors are forced to be indpen-

dent form each other. As a result, the reconstruction errorsare implicitly encouraged to be class

specific.

1.4.2.3 Joint Classifier and Dictionary Learning

If a classifier is learned jointly with the dictionary, then the dictionary is encouraged to

respect classification constraints as well. This leads to discriminative dictionaries and is the under-

lying idea of the following approaches.

Discriminative Extensions of KSVDPham and Venkatesh [14] learned a linear predictive classi-

fier alongwith the reconstructive dictionary that the KSVD algorithm (Section 1.3.2) learns. Dictio-

naries are encouraged to yield sparse codes that match the hypothesis of the learned classifier. As

a result the dictionaries are discriminative. Extensions of this basic idea can be found in [15, 16].
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Joint CRF+Dictionary Learning Yang & Yang [2] embedded dictionary learning in a Conditional

Random Field (CRF) model by learning a linear predictive classifier on sparse codes. As the

parameters of the linear predictor are learned to better classify the sparse codes, the underlying

dictionary becomes more and more discriminative.

This is very similar to the approach in Chapter 2 where we alsoembed dictionaries in a

CRF but instead of learning a linear predictive classifier, we use a simplification of the discrim-

inative softmax function (Section 1.4.2.1) to induce discriminative sparse codes. In addition we

impose smoothness constraints on neighboring sparse codesin the random field. While the CRF

framework naturally allows using such smoothness constraints for dictionary learning, this pro-

vision is surprisingly not exploited by [2]. While our smoothness constraints are geared towards

inducing discriminative sparse codes, they yield an added benefit of forcing the learning procedure

towards stability.

In Chapter 3, we further show that the Max-Margin formulation for learning the linear

predictor in [2] lacks mathematical soundness. We therefore present a more sound treatment of

joint CRF+Dictionary learning via the Latent Structural SVM fomulation.

1.4.3 Regularized Dictionary Learning

Dictionary learning is an inherently ill-posed problem. Tosee this, consider the recon-

struction error||y−Dα||2 for a signaly and its sparse decompositionα under dictionaryD. The

error remains unchanged if a column ofD is scaled by a scalers and the corresponding element
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in the sparse codeα is scaled by1
s
. For a signal setY, since multiple configurations ofD and

those of the sparse codesA can yield the same reconstruction error performance||Y −DA||2F ,

the performance of a dictionary is invariant to its column norms. Therefore, in reconstructive dic-

tionary learning, the unit vectors that generate the columnvectors determine performance and not

the columns themselves. Alternatively, dictionary learning is ill-posed unless it is performed as an

optimization over manifolds of unit vectors.

The unit norm constraint on dictionary atoms is also important for sparse coding algorithms

since they are affected, in accuracy, speed and stability, by the scales of the sparse codes. In [17],

the stability of sparse coding has been linked with all singular values of submatrices ofD being

close to1. The unit norm constraint on dictionary atoms makes the dictionaries well-conditioned

and suitable for sparse coding.

Most dictionary learning approaches enforce the unit norm constraint a posteriori,i.e. the

columns are explicitly normalized after learning. Though this makes the dictionaries suitable for

subsequent sparse coding, the dictionary learning formulation itself can still suffer from insta-

bilities. In [18], Yaghoobiet al. regularize the dictionary learning procedure by includingnorm

constraints in the objective function. This leads to a more stable learning formulation. A somewhat

different approach is introduced in [19] by Daiet al.whereby the sparse codes are regularized. The

underlying idea is that since sparse codes with large magnitudes are indicative of ill-conditioned

dictionaries, imposing a regularization penalty on the sparse codes will force the dictionary learn-

ing procedure to move towards well-conditioned dictionaries.
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The work of Zhenget al. [20] uses the manifold assumption for sparse coding, i.e. points

close in the data distribution should be close in the sparse code distribution. This constraint is in-

corporated into the dictionary learning objective function (1.4) via the use of ak−nearest neighbor

(kNN) graph of the data. If the signalsyi andyj show regularity on the data graph, then the cor-

responding sparse codesαi andαj should show regularity on the corresponding graph for sparse

codes. This yields a graph regularized sparse coding and dictionary learning framework. Similar

ideas are used in [21, 22].

Our work bears some similarity with this idea in the sense that we also enforce sparse code

similarity constraints but we base them on spatial neighbourhoods of images instead of geometric

neighbourhoods of signals.

Our analysis of the instability of dictionary learning has so far has been limited to the case

of reconstructive dictionaries. The case of discriminative dictionary learning brings with itself

another kind of inherent instability due to the so calledreconstruction-discrimination trade-off.

This is explained next.

1.4.4 Reconstruction-Discrimination Trade-off

Discriminative dictionary learning formulations tend to be inherently unstable. The source

of this instability can be seen from the Hessian of the dictionary learning problem (1.4) which can

be written as the outer-productAAT of the sparse codes. In an ideal discriminative setting, sparse
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codes belonging to all signals of classi will be identical and therefore rank(AiA
T
i ) = 1. This is a

manifestation of the so calledreconstruction-discrimination trade-off:

• If the learning formulation favors reconstructive dictionaries, limited discriminability will be

achieved.

• If the learning formulation favors discriminative dictionaries, the optimization becomes un-

stable.

The trade-off dictates thatwhile the Hessian needs to be well-conditioned in order to compute a

dictionary that is discriminative, a discriminative dictionary in turn makes the resulting Hessian

tend towards being ill-conditioned. So a discriminative objective function will approach singular-

ities as the learned dictionaries become increasingly discriminative. This can lead to very slow

convergence or worse – numerical inaccuracies. As a result,while dictionary learning is ill-posed,

discriminative dictionary learning can become ill-conditioned and this problem is inherent to the

discriminative formulation.

To this end, Mairalet al. [1, 12] use a continuation strategy whereby they start-off from a

stable reconstructive dictionary learning formulation and gradually move towards the less stable

but more discriminative formulation. In this way, they attempt to mitigate the effects of instability.

In Chapter 2, we show how the reconstruction-discrimination trade-off can be handled in a slightly

more principled manner.

Interestingly, while learned dictionaries are often eventually used for analyzing natural

images which are characterized by atleast a local smoothness prior, no such local neighborhood
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context is used in the dictionary learning process. The maincontribution of this thesis is the incor-

poration of neighborhood smoothness priors for discriminative dictionary learning. Our motivation

for imposing smoothness constraints is two-fold:

1. Imposing smoothness constraints on sparse codes can leadto regularized dictionary learning

in the manner of [19] and mitigate the effects of the reconstruction-discrimination trade-off.

2. Since we are interested in the analysis of natural images,which exhibit natural smoothness

patterns, dictionaries learned over natural images shouldalso respect such smoothness con-

straints.

In Chapter 3, we show how to discriminatively learn dictionaries while enforcing smooth-

ness constraints from the local spatial neighborhoods. This is done by embedding the dictionary

learning framework in a Conditional Random Field (CRF). In Chapter 4, we do the same but in a

Max-Margin setting. The basic idea is to embed the sparse codes as latent variables in the CRF

and treat the underlying dictionary as asuper-latentvariable.

1.5 Discriminative Sparse Coding

While we focus on learning discriminative dictionaries, alternative approaches exist that

focus on making the sparse coding step discriminative. For instance, Huang and Aviyente [23] add

Fishers discriminant to the sparse coding objection function (1.1) to encourage high interclass and

low intra-class variation in the the resulting sparse codes. However, their formulation simultane-
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ously codes all signals in a sparse and discriminative, supervised manner. In Chapter 4, we show

how discriminability can be added to both the sparse coding and dictionary update steps in a joint

framework.

1.6 Comparison with Prior Work

Table 1.1 presents a comparison of the contributions of thisthesis with related prior works.

It can be seen from the table that prior work is surprisingly lacking in enforcing spatial neigh-

borhood smoothness constraints on the dictionary learningframework. Learning in and for the

structured prediction setting has also not received much attention.
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Table 1.1: Comparison with related prior work.

DL DDL Reg. Spatial. Reg. Str. Pred. Max-Margin

[6] X × × × × ×

[7] X × × × × ×

[18] X × X × × ×

[19] X × X × × ×

[1] X × × × ×

[12] X × × × ×

[13] X × × × ×

[14] X × × × ×

[15] X × × × ×

[16] X × × × ×

[2] X × × X partial

[21] X X X × ×

[22] X X partial × ×

Ours X X X X X
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CHAPTER 2
STABLE DISCRIMINATIVE DICTIONARY LEARNING

Discriminative learning of sparse-code based dictionaries tends to be inherently un-

stable. We show that using a discriminative version of the deviation function to learn

such dictionaries leads to a more stable formulation that can handle the reconstruc-

tion/discrimination trade-off in a principled manner. Results on Graz02 and UCF

Sports datasets validate the proposed formulation.

2.1 Introduction

Sparse coding offers a generalization of vocabulary1 based bag-of-words approaches to

recognition of objects. Whereas a standard bag-of-words approach represents an input signal as an

optimally sparse vector based on the closest vocabulary word, sparse coding allows representing

signals using a linear combination of a few dictionary items. In order to improve upon the ultimate

goal of better recognition/classification, multiple approaches attempt to compute dictionaries in a

discriminative manner.
1Alternative terms in literature are codebooks, dictionaries.
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One approach for obtaining discriminative dictionaries isto compute a large overcomplete

dictionary in a reconstructive manner and then to extract the more discriminative items from it

using mutual information between dictionary items and class labels [9, 10, 11, 24]. But the fun-

damental weakness of this approach is that the initial reconstructive dictionary places a ceiling on

the discriminability of the extracted dictionary.

A better alternative is to incorporate discriminability into the reconstructive dictionary

learning framework [1, 12, 13]. However, these approaches suffer from the instability of the dis-

criminative term and require careful tuning of the reconstructive and discriminative parameters in

order to avoid instability.

In this work we follow this second approach and introduce a discriminative version of the

deviation function that yields a more stable learning formulation by allowing the trade-off between

reconstruction and discrimination to be handled in a more principled manner via constraining the

search-space for the tuning parameter.

2.2 Preliminaries

An input signalx ∈ R
n can be represented using a sparse code vectorαj ∈ R

k under an

overcomplete (n < k) dictionaryDj ∈ R
n×k obtained as the solution to the sparse coding problem

αj = arg min
α∈Rk

||x−Djα||2F s.t ||α||0 ≤ L (2.1)
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whereL is the sparsity factor (maximum number of non-zero coefficients inα)2. This can be

thought of as a generalization of standard vocabulary basedbag-of-words approaches where an

input signal is represented as an optimally sparse vector consisting of only one non-zero coefficient

corresponding to the closest vocabulary word. The reconstruction errorRj for signalx under

dictionaryDj can be computed as

Rj = ||x−Djαj ||2F (2.2)

For a set ofM signalsx1 . . .xM , the optimal reconstructive dictionaryD and sparse codesα can

be computed via

D,α = argmin
D,α

M∑

i=1

R(xi) (2.3)

which can be solved via the KSVD [7] or MOD [6] algorithms.

ForN class classification, per-class dictionariesD1 . . .DN can be learned and a test signal

x can be classified viaargminj=1...N Rj . In order to make the dictionaries more discriminative we

incorporate a discriminative deviation function into the learning framework and this is explained

next.

2.3 Discriminative Deviation Function

For a set of valuesx1, . . . , xN deviation is defined as the difference between an observed

valuexi and the meanx. For a signal belonging to classi we define reconstruction error based

2In the rest of this chapter, sparsity factorL is implied on every sparse codeα.
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discriminative deviation as

Di = Ri −
∑N

j=1Rj

N
(2.4)

which is positive ifRi is above the mean
∑N

j=1 Rj

N
and negative ifRi is below the mean. Minimizing

Di for a signal from classi encourages the reconstruction errorRi to be lowest amongR1, . . . ,RN .

This leads to more discriminability and allows us to obtain the following discriminative dictionary

learning formulation

C({D}Nj=1) = min
{D}Nj=1

N∑

i=1

∑

l∈Si

(Dli + γRli) (2.5)

whereSi is the set of input signals belonging to classi andDli is the discriminative deviation

Di(xl) of signalxl for classi andRli is the reconstruction errorRi(xl). The reconstructive weight

γ > 0 controls the trade-off between discrimination and reconstruction.

One can show via Jensen’s inequality that discriminative deviationDi in (2.4) is a lower-

bound on the discriminative softmax function used by Mairalet al. [1]. Therefore, objective func-

tion (2.5) is also a lower-bound on the discriminative cost function found in [1] with very similar

behavior as demonstrated in Figure 2.1. It is important to note that this behavior is achieved without

the discriminative parameterλ from [1].

To show that deviation is a lower bound on the softmax, we write the discriminative softmax

function from Mairalet al. [1] as

Cλi (R1, . . . ,RN ) = log

(

N

N

N∑

j=1

e−λ(Rj−Ri)

)

(2.6)

= log

(
N∑

j=1

1

N
e−λ(Rj−Ri)

)

+ logN (2.7)
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we can use Jensen’s inequality to write

Cλi (R1, . . . ,RN ) ≥
N∑

j=1

1

N

(
log e−λ(Rj−Ri)

)
+ logN (2.8)

=

N∑

j=1

1

N
(−λ(Rj −Ri)) + logN (2.9)

=
−λ
N

(
N∑

j=1

Rj −NRi

)

+ logN (2.10)

This gives us the following lower-bound on the discriminative dictionary learning cost function

from [1]

Ĉ({D}Nj=1) = min
{D}Nj=1

N∑

i=1

∑

l∈Si

−λ
N

(
N∑

j=1

Rlj −NRli

)

+ λγRli (2.11)

= min
{D}Nj=1

N∑

i=1

∑

l∈Si

(Dli + γRli) (2.12)

where we have dropped the constantlogN and the scaler multipleλ to obtain the same objective

function as (2.5). This lower-bound can be solved forD1 . . .DN without the linear approximations

proposed in [1].

In [1], a continuation strategy is proposed for stable iterative minimization whereby pa-

rameter values are initially set to values corresponding tostable reconstructive optimization and

gradually changed to move towards the more discriminative but less stable optimization. However,

the search space for the parameters remains unclear. We showin the next section how cost function

(2.5) can be made more stable by constraining the search space of the reconstructive parameterγ

and using it as a true trade-off parameter.
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Figure 2.1: Comparison of the discriminative deviation based objective function (2.5) with the dis-

criminative softmax based objective function from [1] for 100 different dictionary configurations.

Function (2.5) exhibits similar behavior without the need for a discriminative parameter as in [1].

2.4 Stable Discriminative Dictionary Learning (SDDL)

By constrainingγ to lie between0 and1, the following more balanced objective function

can be obtained

C({D}Nj=1) = min
{D}Nj=1

N∑

i=1

∑

l∈Si

(1− f(γ))Dli + γRli (2.13)

whereγ is used as a true trade-off parameter. The functionf(·) introduces a non-linearity that

allows a larger range of values ofγ to be considered before running into instability issues. We
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choosef(γ) =
√
γ. As a result, the weight1 −√γ of the less stable discriminative term remains

small for a larger range ofγ values while allowing the weightγ of the more stable reconstructive

term to drop more drastically.

Cost function (2.13) can be optimized via Newton iterations, MOD [6], or KSVD [7]. We

optimize by employing the MOD algorithm.

2.5 Experiments and Results

To validate our formulation, we perform pixel-wise classification on the Graz02 bikes

dataset and on the UCF Sports action dataset.

Graz02 We select the first 300 images of the bike category from the Graz02 dataset and use odd

numbered images for training and even numbered images for testing. For each training image,

dense SIFT features are computed from overlapping patches of size32× 32 with a grid spacing of

12 pixels. For testing images the grid spacing is set to4.

We run 30 iterations of KSVD3 to train 2 separate reconstructive dictionariesDf andDb for

foreground and background respectively using the trainingimages and the provided ground-truth

shape masks. Each dictionary has 256 items and the sparsity factorL is set to8. To demonstrate

the improvement of our discriminative approach over reconstructive approaches, these dictionaries

are used as initial solution for the iterative optimizationof (2.13). For each SIFT feature in a test

3http://www.cs.technion.ac.il/∼ronrubin/software.html
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imageI, we compute the reconstruction errorsRf andRb under both dictionaries and classify as

foreground ifRf < τRb where the optimal value of0 < τ ≤ 1 is learned from the training data

via cross-validation. Alternatively,τ can be set adaptively for each test image based on the first and

second moments of the reconstruction errors. Interpolation is carried out for missing pixel values

and the result is smoothed to obtain the final pixel-wise classification confidence that is used in all

subsequent precision-recall curve calculations.

Figure 2.2 demonstrates that, compared to [1], our stable formulation (2.13) offers more

control over the optimization due to one less parameter to search over and also due to constraining

its only parameter to lie between0 and1. On the other hand, in [1], there is a lack of clarity

as regards to what range of values to consider for the discriminative parameterλ as well as the

reconstructive parameterγ.

Figure 2.3 compares precision-recall curves on the Graz02 bikes dataset using reconstruc-

tively learned dictionaries via KSVD (dashed curves) and discriminatively trained dictionaries via

SDDL (solid curves). Blue curves represent adaptive setting of the classification parameterτ for

each test image. Red curves representτ optimally learned from the training set. It can be observed

that discriminative dictionaries yield better classification performance. The benefit of learning an

optimal τ from the training set can also be observed. The best achievedEER (Equal Error Rate

where precision=recall) is69.5% which is better than that achieved by [13].
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UCF Sports Similar to our setup for the Graz02 dataset, we learn foreground and background

dictionaries on dense STIP descriptors4 [25] for the Diving and Gym (beam) categories from the

UCF Sports actions dataset [26]. We replicate the evaluation setup of Yaoet al. [27] who consider

these two classes to be difficult. We compare against their action localization performance in

Table 2.1. Considering that we neither do tracking nor ground-truth based initialization for test

videos as in [27], our pixel classification based localization is comparable. Figure 2.5 demonstrates

localization results on two selected frames.

Table 2.1: Localization on UCF Sports. Percentage of frameswith localized bounding boxes

having intersection over union with ground-truth> 1
2
. Consider ing that we neither do tracking nor

ground-truth based initialization for test videos as in [27], our pixel classification based localization

is comparable.

Gym (beam) Diving

[27] 62% 68%

SDDL 52% 55%

4http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-2.0-linux.zip
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2.6 Conclusion

We have introduced a new discriminative deviation based formulation for dictionary learn-

ing that is more stable than previous work while requiring only one tuning parameter and handling

the reconstruction-discrimination trade-off in a more principled manner. Its applicability has been

shown on two real-world datasets.

However, while natural images have an inherent smoothness prior, this prior is not utilized

in the dictionary learning framework. In Chapter 3 we describe how such a smoothness prior can

be incorporated into the discriminative dictionary learning framework. This allows discriminative

dictionary learning while respecting smoothness constraints.
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Figure 2.2: Stability comparison of SDDL with the formulation of [1] with high (λ0 = 10) and

low (λ0 = 1) initializations of their discriminative parameterλ and reconstructive parameterγ

initialized to 100. λ andγ were gradually updated as proposed in [1]. All three optimizations

were continued until instability. For [1], learning with high discriminability leads to instability

quickly while not achieving high accuracy while learning with low discriminability takes longer

to achieve high accuracy. In contrast, SDDL achieves fasterlearning and only requires a single

tuning parameter constrained between0 and1.
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Figure 2.3: Comparison of precision-recall curves on the testing set of Graz02 bikes dataset us-

ing reconstructively learned dictionaries via KSVD (dashed curves) and discriminatively trained

dictionaries via SDDL (solid curves). See text for details.
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Figure 2.4:Row 1: Reconstructive dictionaries (KSVD) withRf < Rb based pixel-wise classifi-

cation shows a greater tendency to classify background as foreground whileRow 2: Our discrim-

inatively learned dictionaries (SDDL) withRf < τRb and optimalτ are able to achieve much

better pixel-wise classification.

Figure 2.5: Dictionary based (green) and ground-truth (red) localization on UCF Sports dataset.

Left: Original frame. Middle: Untrained. Right: SDDL Trained.
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CHAPTER 3
LEARNING WITH SMOOTHNESS PRIORS

Natural images are characterized by a smoothness prior. While discriminatively learned

dictionaries have successfuly been employed to classify image pixels, the learning

process has, traditionally, exploited no such prior. We present a novel approach to

discriminative dictionary learning with neighborhood constraints. This is done by

embedding dictionaries in a Conditional Random Field (CRF)and imposing label-

dependent smoothness constraints on the resulting sparse codes at adjacent sites. This

way, a smoothness prior is used while learning the dictionaries and not just to make

inference. This is in contrast with all competing approaches that learn dictionaries

without such a prior. Pixel-level classification results onthe Graz02 bikes dataset

demonstrate that dictionaries learned in our discriminative setting with neighbor-

hood smoothness constraints can equal the state-of-the-art performance of bottom-up

(i.e. superpixel-based) segmentation approaches.

Furthermore, we isolate the benefits of our learning formulation and CRF inference to

show that our dictionaries are more discriminative than dictionaries learned without

such constraints even without CRF inference. An additionalbenefit of our smooth-
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ness constraints is more stable learning which is a known problem for discriminative

dictionaries.

3.1 Introduction

Discriminative learning of sparse-coding based dictionaries has been shown to improve

performance on various computer vision tasks. Interestingly, while these dictionaries are often

eventually used for analyzing natural images which are characterized by a local smoothness prior,

no such local neighborhood context is used in the dictionarylearning process. We show how to

discriminatively learn dictionaries while enforcing smoothness constraints from the local spatial

neighborhoods. This is done by embedding the dictionary learning framework in a Conditional

Random Field (CRF).

Dictionary learning has successfully been used for varioussignal classification tasks such

as pixel-level classification of images [1, 12, 13, 28], object localization [9], image classification

[16], face recognition [29] and video classification [10, 11]. Standard approaches learn dictionaries

either reconstructively [7] or discriminatively [1, 12, 13, 16, 28] but do not attempt to exploit

neighborhood context in the learning process.

Images of real world objects in real world settings exhibit strongly smooth labels. Gen-

erally, object pixels lie adjacent to each other and background pixels lie adjacent to each other.

This calls for a smoothness prior in the energy formulation and it allows us to enforce smoothness

constraints on neighboring sparse code pairs for a dictionary.
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But since boundaries of objects do not share this smoothnessprior, there is a need for a

discontinuity preserving prior too. This discontinuity preserving prior is what allows us to en-

force (non-)smoothness constraints between dictionariesfrom different classes.To the best of our

knowledge, this is the first attempt at learning discriminative dictionaries with intra-class sparse

code smoothness as well as inter-class sparse code (non-)smoothness constraints.

Besides increased discriminability, an additional benefitof such smoothness constraints

is the mitigation of numerical instability which is inherent to discriminative dictionary learning

[1, 28]. Interestingly, a recent stability analysis [19] for reconstructive dictionaries also concluded

that sparse code smoothness plays an important role in stable learning.

3.2 Related Work

Dictionary Learning: One approach for obtaining discriminative dictionaries isto compute a large

overcomplete dictionary in a reconstructive manner and then to extract the more discriminative

items from it using mutual information between dictionary items and class labels [9, 10, 11, 24].

But the fundamental weakness of this approach is that the initial reconstructive dictionary places a

ceiling on the discriminability of the extracted dictionary.

A better alternative is to incorporate discriminability into the reconstructive dictionary

learning framework [1, 12, 13]. However, these approaches suffer from the inherent instability

of the reconstructive/discriminative trade-off and require careful tuning of the reconstructive and

discriminative parameters in order to avoid instability. Khan and Tappen [28] introduce a discrim-
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inative version of the deviation function that yields a morestable learning formulation by allowing

the trade-off between reconstruction and discrimination to be handled in a more principled manner

via constraining the search-space for the tuning parameter. However, instability is still not totally

avoided.

While smoothness priors are ubiquitous in analysis of visual information, dictionary learn-

ing for image analysis has relied on local evidences only. Yang & Yang [2] introduced joint dic-

tionary and CRF parameter learning but the dictionary is used to compute unary node potentials

only and therefore neighborhood smoothness constraints are not exploited in the learning of the

dictionary. Mairalet al. [30] introduce simultaneous sparse coding whereby similarimage patches

are encouraged to have similar sparse codes. We use the same intuition but for learning dictio-

naries instead of sparse code computation and we use a neighborhood structure instead of patch

similarity. The closest related work in terms of smoothnessconstraints is that of Guoet al. [22]

which uses sparse code smoothness constraints for image classification. The key difference from

their work is that we operate on the pixel level and thereforeours is a structured prediction problem

while theirs is a standard classification problem. For a given image, they infer a single label while

we infer the pixel labelling structure. Table 3.1 summarizes the relationships between our work

and its closest counterparts.

Learning with inter-dictionary constraints is used by Yanget al. [31] for an image super-

resolution application by learning coupled dictionaries that enforce the sparse code of a low-

resolution image patch to accurately reconstruct the underlying high-resolution image patch. Our
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formulation uses inter-dictionary constraints for the purposes of discriminative learning and is not

constrained to two dictionaries.

In this work, we merge the discriminative dictionary learning framework of [1, 28] with

the Discriminative Random Field (DRF) framework of [32] anduse the dictionaries to compute

pairwise edge potentials in addition to node potentials. This allows local neighborhood information

to be used when learning dictionaries over the random field.

Table 3.1: Comparison with closely related approaches.

[22] [2] Ours

Structured Prediction × X X

Smoothness ConstraintsX × X

Per-class Dictionaries × × X

Linear Classifier X X ×

Semantic Segmentation:Most (and state of the art) class segmentation approaches merge bottom-

up and top-down cues. The idea is to use an initial (over-)segmentation to choose appropriate seg-

ments from. Representative works include [33] which constructs a CRF over single scale super-

pixels and [34] which use multi-scale superpixels. Using aninitial over-segmentation yields an
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adpative domain for feature computation instead of fixed sub-windows. This can alleviate the scale

selection problem for small/large instances of objects. Another benefit is that these initial segments

naturally tend to preserve object boundaries. In contrast,pure pixel-level top-down class segmen-

tation approaches (which includes the afore-mentioned dictionary-based approaches) need to rely

upon post-processing techniques such as Gaussian smoothing or inference on a CRF to enforce

spatial coherency. Our work moves enforcement of spatial consistency from the post-processing

step to the dictionary learning step. We show in Section 3.5 that such a neighborhood constrained

dictionary learning mechanism can lead to top-down pixel-level classification performance that

matches the bottom-up super-pixel segmentation approaches.

3.3 Preliminaries

For an imagey with ground-truth labelingx, let V be a uniformly spaced grid of image

locations or ‘sites’andyi ∈ R
n be ann dimensional feature vector extracted at sitei ∈ V. For each

sitei,Ni denotes the neighboring sites ofi andxi ∈ {1 . . . C} denotes the true label.

For each feature vectoryi ∈ R
n, let sic ∈ R

k be its sparse code vector under a dictionary

Dc ∈ R
n×k for classc ∈ {1 . . . C}. The sparse code vectorsic is obtained as a solution to theℓ1

sparse coding problem

sic(yi,Dc) = argmin
s∈Rk

1

2
||yi −Dcs||2F + λ||s||1 (3.1)
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which can be solved using the LASSO algorithm1. The reconstruction errorRic for a signalyi

under a dictionaryDc is computed using the optimal sparse code vectorsic obtained via (3.1)

Ric(yi,Dc) =
1

2
||yi −Dcsic||2F + λ||sic||1 (3.2)

Ri ∈ R
C denotes the vector of per-class reconstruction errors for signalyi. Both (3.1) and (3.2) are

rendered non-differentiable with respect to dictionaryDc due to the presence of theℓ1 norm. The

derivatives are therefore computed using implicit differentiation as explained in Section 3.4.2.1.

Discriminative Deviation: For discriminative learning, our energy function makes useof the

discriminative deviation function intriduced in Chapter 2. For thecth entry in a vectorv, deviation

is defined as the difference from the mean

Dv
c = vc − v̄. (3.3)

For a signalyi belonging to classxi with reconstruction error vectorRi ∈ R
C , reconstruction error

based discriminative deviation is

DRi
xi

= Rixi
− R̄i (3.4)

which is positive ifRixi
is above the mean and negative ifRixi

is below the mean. Minimiz-

ing DRi
xi

encourages the reconstruction errorRixi
to be lowest amongRi1, . . . ,RiC. This leads

to more discriminability and allows us to obtain the following discriminative dictionary learning

formulation

min
{D}Nj=1

M∑

i=1

(
DRi

xi
+ γRixi

)
(3.5)

1http://www.di.ens.fr/willow/SPAMS/ and http://www.di.ens.fr/~mschmidt/Software/UGM.html
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whereM is the number of training signals. This encourages dictionaries to be good at recon-

structing signals from their own class while also being bad for signals from other classes. The

reconstructive weightγ > 0 controls the trade-off between discrimination and reconstruction.

3.4 Discriminative Dictionary Learning with Spatial Neighborhood Constraints

Let Y = [y(1), . . . ,y(N)] beN training images with the corresponding labelings denoted

byX = [x(1), . . . ,x(N)]. Without loss of generality, letL be the set of all possible labelings on any

given grid of sites. Clearly,L is an exponentially large set. Then the probability of imagelabeling

x(t) conditioned on the observed imagey(t) can be written as a Gibbs field

P (x(t)|y(t), {D}C1 ,κ) =
1

Z
e−E(x(t),y(t),{D}C1 ,κ) (3.6)

whereZ =
∑

x∈L e
−E(x,y(t),{D}C1 ,κ) is the so-called partition function and

E(x(t),y(t), {D}C1 ,κ) =
∑

i∈V(t)

Ei(x
(t),y(t), {D}C1 ,κ)

=
∑

i∈V(t)

e−κd
(
DRi

xi
+ e−κrec

d Rixi

)

︸ ︷︷ ︸

data term

+ e−κs

∑

j∈Ni

e−κind
s δ̄xixj

+ e−κ
dep
s sdep

︸ ︷︷ ︸

smoothness term

(3.7)

where

sdep =− δxixj

(
Dp

xi
+ µpxi

)
+ δ̄xixj

pxi
(3.8)
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is the data-dependent smoothness term,δ is the Dirac delta function,̄δ is its complement and

p = sTixi
sj (3.9)

is aC dimensional vector of the similarity of sparse codesixi
with all sparse codes of the adjacent

sitej. The weights of the data term and the smoothness term are determined by parametersκd and

κs respectively. Negative exponentials of all weights are used to ensure positive weightings and

unconstrained optimization.

Data term: EncouragesRixi
to be low andRic to be high for allc 6= xi. Value ofκrec

d determines

the weightage given to the reconstructive term relative to the discriminative deviation term.

Data-independent smoothness:The data-independent smoothness termδ̄xixj
penalizes dissimilar

labels on adjacent sites and rewards similar labels.

Data-dependent smoothness:The goal is to encourage signals with the same label to have similar

sparse code vectors and those with different labels to have dissimilar sparse code vectors. During

learning, this encourages dictionaries to be more sensitive to object boundaries. During inference,

this allows smoothing to be reduced at edges (in feature space) and results in sharper segmenta-

tions. For adjacent pixelsi, j with the same labelxi = xj, the data-dependent smoothness term

encourages sparse code vectorssixi
andsjxi

under dictionaryDxi
to be most similar among all

classes. This is achieved by once again employing the discriminative deviation function as used

in the data term.The advantage of using discriminative deviation is dictionary learning with

label-dependent smoothness constraints on adjacent sparse codes. If only the termsTixi
sjxi

is used

instead, then only dictionaryDxi
is affected. Parameterµ ≥ 0 determines the trade-off between
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discriminative deviation and the similarity of the sparse code vectors. For adjacent pixels with

different labels, the sparse code vectors only under dictionaryDxi
are encouraged to be different.

Since our graphical model contains loops, this eventually implies sparse code dissimilarity under

both classesxi andxj . However, no inter-dictionary constraint is enforced in this case.

Energy function (3.7) makes our formulation a Discriminative Random Field (DRF) [32]

which is a variant of a Conditional Random Field (CRF) [35]. Instead of learning linear CRF

parameter vectors, we learn non-linear dictionaries. It has similarities with [2] but has a richer

representational model since it is multiclass, learns discriminative dictionaries, and includes data-

dependent smoothness. Our formulation tries to explain allclasses instead of just foreground.More

importantly, the data-dependent smoothness term includes, in addition to the data, the dictionaries

as well. During learning, this encourages dictionaries to have responses for neighboring pixels

that reflect their labels. Therefore, energy function(3.7) imposes neighborhood constraints on the

discriminative dictionary learning frameworks from [1, 28]. It can also be viewed as the structured

prediction counterpart of [22].

Weights: We use 5 weights to handle 4 terms in (3.7). This can make our formulation somewhat

susceptible to local minima. However, this redundancy helps in dealing with over-smoothed MAP

inference which affects especially pseudolikelihood based minimization [36]. While weightsκd

andκs handle the general trade-off between local evidence and spatial consistency of labels, the

rest of the weights handle more refined aspects of the energy functional: κrec
d handles the trade-

off between discrimination and reconstruction, whileκind
s andκdep

s handle the trade-off between

classical data-independent Potts potentials and data-dependent potentials. A suitable value ofκs
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can control over-smoothness while allowing the more subtleplay between data-independent and

data-dependent smoothness terms to be explored more finely.

3.4.1 Stability

Our smoothness constraints can alternatively be considered aspseudo-regularizationof

dictionaries based on the regularity of pixel labels in natural images.

It is well-known that

1. Sparse coding is sensitive to incoherence among a dictionary’s atoms [7], and

2. Discriminability is increased by having mutually incoherent dictionaries [13].

Therefore, it is beneficial to increase both intra- and inter-dictionary incoherence. Intra-dictionary

incoherence is enforced bȳδxixj
pxi

in Equation (3.8). The discriminative deviation termDp
xi

enforces inter-dictionary incoherence and also leads to well-conditioned dictionaries by requiring

adjacent same-class sparse codes to be similar2. So our formulation contains the well-known

sources of stability. In contrast, despite embedding dictionary learning in a CRF framework, Yang

& Yang [2] do not impose such dictionary-related smoothnessconstraints.

2Relation between smooth sparse codes and dictionary conditioning is explained in [19]
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3.4.2 Inference and Parameter Learning

Computation of (3.6) and its corresponding likelihood function require computation of the

partition functionZ which is intractable due to the exponentially large size of the setL of all

labelings. Therefore, for inference we use approximate techniques such as Mean Field Inference or

Loopy Belief Propagation3. For learning parameters, we use the pseudolikelihood approximation

defined as

P̃ (x(t)|y(t), {D}C1 ,κ) =
∏

i∈V

1

zi
e−Ei (3.10)

where

zi =
C∑

xi=1

e−Ei (3.11)

The advantage of using this approximate pseudolikelihood is that the intractable computation of

the true partition functionZ is replaced by the tractable computation of the local normalization

functionszi. Negative log-pseudolikelihood is then written as

− log P̃ (x(t)|y(t), {D}C1 ,κ) =
∑

i∈V

Ei + log zi (3.12)

The gradient of the negative log-pseudolikelihood with respect to any arbitrary parameterθ ∈

{{D}C1 ,κ} is

∑

i∈V

dEi

dθ
+

1

zi

C∑

xi=1

e−Ei
−dEi

dθ
(3.13)

3Available at http://www.di.ens.fr/~mschmidt/Software/UGM.html
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The only non-trivial gradient in (3.13) isdEi

dDc
for the dictionary of an arbitrary classc. It requires

the computation of the intermediate gradientsdRic

dDc
, dsic
dDc

and dsjc
dDc

for j ∈ Ni. As explained earlier,

these are non-trivial computations and can be performed using implicit differentiation as explained

next.

3.4.2.1 Reconstruction Error Gradient via Implicit Differ entiation

This section presents a method for computing the gradients of the non-differentiable sparse

coding procedure (3.1) and hence for the reconstruction error (3.2) also. Our explanation follows

[37, 38, 2].

In order to computedRic

dDc
, it is beneficial to rewrite theℓ1 sparse coding problem in its

complete form

Ric(yi,Dc) =
1

2
||yi −Dcsic(yi,Dc)||2F + λ||sic(yi,Dc)||1 (3.14)

where sparse codesic(yi,Dc) is fixed and computed via (3.1). Therefore dictionaryDc affects

reconstruction errorRic directly as well as indirectly through the fixed sparse codesic(yi,Dc). To

make the notation clearer, we will drop the subscriptsi andc without loss of generality.

We first computeds
∗

dD
representing the gradient of the optimal sparse code vectors∗ ∈ R

k

corresponding to an arbitrary signaly ∈ R
n under an arbitrary dictionaryD ∈ R

n×k. Sinces∗ is a
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minimizer of the reconstruction errorR(s) = 1
2
||y −Ds||2F + λ||s||1

∇sR(s)|s=s∗ = 0 (3.15)

DT (Ds− y)|s=s∗ = −λsign(s)|s=s∗ (3.16)

DT (Ds∗ − y) = −λsign(s∗) (3.17)

wheresign(·) is an elementwise sign operator andsign(0) = 0. Taking the derivative with respect

toDij on both sides

d

dDij

DT (Ds∗ − y) = − d

dDij

λsign(s∗) (3.18)

For non-zero values thesign(·) function has0 gradient and it has a discontinuity at0. However,

since the the left hand side cannot be infinite, we set the gradient at0 to be0 which makes the

right hand side0k×1. Let∧ be the set of indices of the active set (i.e. non-zero coefficients) ofs∗

and let⊼ be its complement. Sincedsm
dDij

is not well-defined forsm = 0, we set
ds∗

⊼

dDij
= 0|⊼|×1.

Accordingly, we can write

d

dDij

DT (Ds∗ − y) = 0k×1 (3.19)

d

dDi∧j

DT
∧(D∧s

∗
∧ − y) = 0|∧|×1 (3.20)

DT
∧D∧

ds∗∧
dDi∧j

+
dDT

∧D∧

dDi∧j

s∗∧ −
dDT

∧y

dDi∧j

= 0|∧|×1 (3.21)
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and finally

ds∗∧
dDi∧j
︸ ︷︷ ︸

|∧|×1

= (DT
∧D∧)

−1



























−Di∧1s
∗
∧j

...

−Di∧j−1
s∗∧j

yi −Di∧s
∗
∧ −Di∧j

s∗∧j

−Di∧j+1
s∗∧j

...

−Di|∧|s
∗
∧j



























(3.22)

Values in ds∗
∧

dDi∧j

can be placed at corresponding locations to formds
∗

dDij
which will be ak dimen-

sional vector with at most| ∧ | non-zero entries. This allows us to write the gradient with respect

to the whole dictionary as

ds∗

dD
︸︷︷︸

k×nk

=

[

ds∗

dD11
. . . ds∗

dDn1
. . . ds∗

dDnk

]

(3.23)

in whichn| ∧ | columns will each contain at most| ∧ | non-zero entries for a maximum ofn| ∧ |2

non-zero entries out of a total ofnk2 entries. Finally, the derivative of the reconstruction error can

be computed as

dR(s∗,D)

dD
︸ ︷︷ ︸

1×nk

=
∂R

∂s∗

T ds∗

dD
+

∂R

∂D
(3.24)

=
[
−DT (y −Ds∗) + λsign(s∗)

]T

︸ ︷︷ ︸

1×k

ds∗

dD
︸︷︷︸

k×nk

+ (y−Ds∗)T
︸ ︷︷ ︸

1×n

(

−dDs∗

dD

)

︸ ︷︷ ︸

n×nk

(3.25)
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3.4.3 Initialization

D : Dictionaries can be initialized to be random or obtained through K-means, K-SVD or any

other reconstructive or even discriminative dictionary learning technique. In order to allow a fairer

comparison with [2], we initialize via K-means.

κ : Inference on the random field in (3.7) is very sensitive4 to the smoothness weightsκs, κdep
s , and

κind
s . Therefore, before learning, it is important to properly initialize them. Initializingκ = {κd,

κrec
d , κs, κ

ind
s , κdep

s } to {−2,−3,−1, 3, 10} was emiprically found to be a good starting point.

3.5 Experiments and Results

3.5.1 Graz02 Bike Dataset

To validate our formulation, we perform pixel-wise classification on the Graz02 bikes

dataset [39]. We select the first 300 images and use odd numbered images for training and even

numbered images for testing. For each image, dense SIFT features are computed from overlapping

patches of size32× 32 with a grid spacing of20 pixels. Beliefs for missing pixels are interpolated

from their neighborhoods.

A note on smoothing of raw classification results.As noted in [13], the ground-truth masks for

the bikes category in the Graz02 dataset include significantbackground pixels due to the wheel

4[2], for instance, do not attempt to learn their smoothness weightw2 for this reason.
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interior being labelled as bike. As a result, it is possible to obtain ‘improved’5 precision-recall

curves by smoothing the pixel-wise classificatione.g.by a Gaussian filter. This allows the classi-

fications to be closer to the ground-truth even when the system has ‘correctly’6 learned to classify

the wheel interior as background. We therefore show our results (Figure 3.1) with and without

this additional smoothing step. It should be noted that thisadditional smoothing step has been

employed by [1, 13, 28].

Table 3.2 shows that our formulation achieves a better EER than the state-of-the-art in

dictionary learning based approaches. Prior-segmentation based approaches [33, 34] are the state-

of-the-art in such semantic segmentation tasks since they rely on superpixels which naturally lead

to adaptive feature domains and boundary preservation. Ourresults match the superpixel based

method of [33] which, like our approach, uses a single scale7. The state-of-the-art is achieved by

Lempitskyet al. [34] who use a multi-scale superpixel approach and a much richer feature set that

includes geometric information as well. This obviously suggests future research efforts to employ

superpixels instead of fixed grids. But it should not take anything away from the demonstrated

benefits of learning dictionaries with neighborhood smoothness priors. Superpixels can be inte-

grated into the CRF framework almost seamlessly (e.g.[40, 41]). We have shown that a dictionary

learning based approach can yield similar results to state-of-the-art via an appropriate boundary

preservation term that leads to learning of dictionaries with neighborhood constraints.

5Such quantitative vs. qualitative anamolies have been alluded to in [40].
6The VOC dataset, for instance, marks wheel interiors as background.
7Even single scale superpixels offer more scale informationcompared to fixed size patches on fixed grids
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CRF+Dictionary Dictionary Shape Mask

Ours [2] [28] [13] [42]

72.1 62.4 69.5 68 61.8

Table 3.2: Comparison of EER (%) of precision-recall curvesfor pixel-level classfication of

Graz02 bike test set. Our results exceed the state-of-the-art in top-down dictionary learning based

approaches. See text for comparison with bottom-up super-pixel based segmentation approaches.

Benefit of Training Figure 3.1 demonstrates the benefit of training iterations on the equal error

rate (EER) of the precision-recall curve of the Graz02 bike test data. Iteration 0 corresponds to

initial dictionaries computed using K-means. Standard dictionary based approaches like [1, 13,

28] use an additional manual Gaussian smoothing step to impose spatial coherence on the pixel

labels. For comparison, we perform the same smoothing step after CRF inference. Our learning

procedure without additional smoothing was able to learn CRF parameters that out-perform manual

smoothing after 8 iterations.
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Figure 3.1: Benefit of training iterations on the equal errorrate (EER) of the precision-recall curve

of the test data for Graz02 bike category. Our learning procedure without additional smoothing

was able to learn CRF parameters that out-perform manual smoothing after 8 iterations.

Benefit of Neighborhood ConstraintsTable 3.3 demonstrates in isolation the benefits of training

CRF weight parameters and neighborhood constrained learning of dictionaries. Column 1, for

instance, shows that dictionaries learned with neighborhood constraints perform better even when

inference is carried out without spatial propagation of labels and row 2 generally shows that our

learning formulation gives around6% improvement over the initial dictionaries. Similarly, column

3 shows that learning of CRF weights results in around10% improvement.
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Table 3.3: EER values on Graz02 bike test set from usingleft to right : no CRF inference, initial

CRF weight paramtersκ0, learned CRF weight parametersκ∗ andtop to bottom: initial K-means

dictionariesD0 and dictionaries learned with neighborhood constraintsD∗. The benefit of training

CRF weight parameters and the use of neighborhood constraints can be seen in isolation. See text

for details.

No CRF κ0 κ
∗

D0 55.1 58.2 66.7

D∗ 62.3 63.2 72.1
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Figure 3.2: Pixel-wise classification results for some testimages from the Graz02 bike dataset.1st

Row: Original. 2nd Row: Results from the technique in Chapter 2 (Khan & Tappen [28] with

vanilla Gaussian smoothing on raw classification without spatial constraints).3rd Row: Yang &

Yang [2] (CRF with Potts model). The advantages of using boundary-preserving smoothness can

be clearly observed in4th Row: Our CRF inference on a grid with spacing of 4 pixels followed

by interpolation.5th Row: Our CRF inference with classification on a grid with spacing of 20

pixels followed by interpolation. The labellings of [28] and [2] appear to be over-smoothed and

can tend to cross over object boundaries. Such over-smoothing can lead to an inflated EER value

as explained in the text. Implementation of [2] was made available by the original authors.
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3.5.2 Weizmann Horses

We compare the benefit of our formulation on the Weizmann Horses dataset trained on

the first 25 even-numbered images and tested on the first 25 odd-numbered images. Accuracy

criterion is percentage of correctly classified pixels without enforcing spatial consistancy of labels

(i.e.no CRF inference) for any of the compared methods. Competingdictionary based approaches

that are trained without neighborhood smoothness constraints are therefore also tested without

neighborhood information to make the comparison favor those approaches. Table 3.4 shows that

on this dataset too, our dictionaries perform better than competingapproaches even without CRF

inference. Some sample results are shown in Figure 3.3.

Table 3.4: Benefit of learning with spatial smoothness constraints on the Weizmann Horse dataset.

Even without CRF inference, our dictionaries have a better pixel classification percentage on the

test set compared to dictionaries learned without smoothness constraints.

Method Accuracy (%)

KSVD [7] 72

Disc. Deviation [28] 77

Disc. Softmax [1] 77

Ours 80
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Figure 3.3: Some sample results on the Weizmann Horse dataset and VOC 2007 dataset. The

advantage of using neighborhood information can be seen forcat segmentation on the cat and dog

image in which large patches on both animals are similar and yet inference using our dictionaries

was able to extract the cat with rather crisp boundaries.

3.5.3 VOC 2007

Table 3.5 presents the EER values for figure-ground segmentation on the 20 categories of

the Pascal VOC 2007 dataset [43]. Training and testing is performed on the images containing the

relevant category. Figure 3.3 shows some sample results. The advantage of using neighborhood

information can be seen for cat segmentation on the cat and dog image in which large patches on
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both animals are similar and yet inference using our dictionaries was able to extract the cat with

rather crisp boundaries.

For classification against all other categories in the manner of Yang & Yang [2], we trained

a dictionary for the cow category on the 422 training images and tested on all 210 test images. We

obtain8.5% EER on the pixel level compared to the8% on patches reported in [2]. It should be

noted that in [2], going from patch to pixel level was seen to decrease performance by around10%.
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Table 3.5: EER values for figure-ground segmentation on the VOC 2007 dataset.

Class KSVD [7] Ours

aeroplane 35.2 43.7

bicycle 28.3 41.2

bird 35.3 42.3

boat 26.3 35.5

bottle 16.1 30.2

bus 43.7 69.0

car 29.1 43.2

cat 39.9 63.3

chair 9.1 10.6

cow 46.0 70.0

dining table 38.8 52.7

dog 33.3 51.5

horse 36.6 42.0

motorbike 47.2 62.9

person 28.3 43.0

potted plant 23.0 31.4

sheep 47.5 54.3

sofa 21.8 28.0

train 54.3 74.0

tv/monitor 16.3 29.1
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3.6 Conclusion

We have introduced a novel discriminative dictionary learning procedure that imposes

neighborhood contraints during the learning process. Thisis motivated by the smoothness and

boundary-preserving priors on natural images and achievedby embedding dictionary learning in

a CRF framework. As an additional benefit, such smoothness constraints lead to stable dictionary

learning which is inherent to the problem of discriminativedictionary learning. Detailed analysis

on the Graz02 bike dataset demonstrates a distinct quantitative as well as qualitative advantage

over competing dictionary-based approaches.

While results are shown for the2-class case only, the formulation applies to the general

N-class case. However, this can potentially lead to a significant increase in sparse coding com-

putation. An alternative is anN-class learning formulation that performs discriminativesparse

coding on a single dictionary for all classes.

An interesting extension is the use of sparse long range random fields [44] for dictionary

learning via multiscale information.
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CHAPTER 4
SUPER-LATENT LEARNING FOR STRUCTURED PREDICTION

By treating sparse codes as latent variables, we show how a discriminative dictio-

nary can be learned as asuper-latentvariable. The formulation is applicable to both

unstructured and structured prediction tasks. For structured outputs, we show how

dictionaries can be embedded as super-latent variables into conditional random fields

(CRF) and optimized for discrimination using the latent structural SVM formulation.

As in Chapter 3, the CRF embedding allows us to perform discriminative dictionary

learning with spatial smoothness constraints which (i) leads to a more stable mini-

mization and (ii) respects natural smoothness priors. Our smoothness prior takes the

form of adiscriminative manifold assumption.

While the approach in Chapter 3 explicitly modelled the reconstruction errors and

sparse codes for discrimination, in this chapter we jointlylearn a linear classifier with

the dictionary. This leads to a two-stage optimization formulation whereby the classi-

fier encourages the dictionary to yield discriminative sparse codes and the dictionary

encourages the classifier to perform well on the sparse codesthat it yields.

The super-latent formulation is particularly affected by the reconstruction-discrimination

tradeoff. Therefore, it must be handled carefully.
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4.1 Introduction

Learning with latent variables (also known as missing data or hidden variables) is a well-

established area in machine learning. The basic idea is to find optimal values of the latent variables

and then learn the optimization variables for these latent values. The two stages are alternated until

convergence. Typical examples of this idea include the EM algorithm, the K-means algorithm and

latent SVM learning. For dictionary learning too this is a standard technique, exemplified by the

KSVD algorithm, for instance.

If the latent variables are generated by an underlying process whose parameters need to

be searched over, then the underlying parameters can be termed as super-latent variables. In this

chapter, we present an extension of learning with latent variables to learning with latent and super-

latent variables. The formulation is applicable to both unstructured as well as structured prediction

tasks.

While discriminative dictionary learning has been shown toimprove performance on a

number of computer vision tasks [1, 14], the learning formulation has traditionaly been restricted

to non-structured outputs even when the task is structured prediction. Dictionary embedding in

a CRF as in Chapter 3 means that the learning takes place in a structured prediction setting. In

this chapter, we learn discriminative dictionaries in a structured prediction settingvia a structured

prediction formulation. We embed the dictionaries in a Conditional Random Field (CRF) and treat

the resulting sparse codes as latent variables on the CRF. Optimal CRF parameters and optimal

sparse codes can be learned by utilizing the latent Structural SVM formulation [45]. Finally, the
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optimal dictionaries can be learned from the optimal sparsecodes. Since the dictionary determines

the latent variables, we treat the dictionary as a super-latent variable.

Conditional Random Fields are a useful tool for structured prediction tasks since they al-

low dependencies between output variables to be respected.As a result, the output of inference

on a CRF is a structured entity. For problems with missing data, CRFs allow inclusion of latent

variables. However, parameter learning on CRFs requires computation of the so-called partition

function which tends to be intractable. One alternative forlearning CRF parameters without com-

puting the partition function is to replace the probabilities by energies and perform energy mini-

mization via a regularized risk minimization approach. This leads to the so-called Structural SVM

formulation [46] which can be extended to handle latent variables to yield the Latent Structural

SVM formulation [45].

The task that we handle in this work is pixel-level classification of images. That is, for a

given image, we find the class label at each pixel. Natural images obey a certain smoothness prior

whereby neighboring pixels have similar features and similar labels. In other words, a pixel-wise

labeling of an image is a structured entity with dependencies among the pixel labels as opposed

to an unstructured entity with pixel labels being independent of each other. The dependencies are

determined by the particular neighborhood structure imposed by the random field. Therefore, our

task can be formulated as a structured prediction task.

While the approach in Chapter 3 explicitly modelled the reconstruction errors and sparse

codes for discrimination, in this chapter we jointly learn alinear classifier with the dictionary.

This leads to a two-stage optimization formulation wherebythe dictionary is encouraged to yield
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discriminative sparse codes and the classifier is encouraged to perform well on the sparse codes

that the dictionary yields.

We show that the standard formulations of classifier learning with latent variables presented

in [47] for unstructured prediction and in [45] for structured prediction cannot be extended in a

straight-forward manner for learning super-latent varaibles. For discriminative dictionary learn-

ing, this is due, in part, to the reconstruction-discrimination tradeoff. Therefore, we present a

modification that is applicable for the discriminative dictionary learning task.

4.1.1 Notation

Let (x, y, h) ∈ X × Y ×H denote an imagex, its per-pixel labelingy and its per-pixel

latent variable vectorsh, respectively. LetS = {(x1, y1), . . . , (xN , yN)} ∈ (X × Y)N be the

set of input-output pairs. In the following, subscriptk will denote thekth training sample and

subscripti will denoteith pixel location. So, for instance,xk is thekth training image andxi is the

local feature descriptor around theith pixel in any arbitrary imagex. Similarly, hk are the latent

variables corresponding to imagexk andhi is the latent variable vector for theith pixel. Similarly,

yk is an image labeling andyi is the label at theith pixel.
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4.2 Learning with Latent and Super-Latent Variables

In this section, we first present the standard formulation for learning a classifier with latent

variables and then show how this can be extended to optimize asuper-latent variable via the latent

variables. For classifier learning, the goal is to learn the following linear prediction rule

fw(x) = arg max
(y,h)∈Y×H

wTΦ(x, y, h) (4.1)

wherew is the linear predictor andΦ(x, y, h) is a joint feature vector describing the relationship

between inputx, outputy and latent variablesh. For unstructured outputy the formulation resem-

bles [47] and for structured output it resembles [45]. The basic idea for learning classifierw is

to alternate between optimal latent variable computation and optimal classifier computation until

convergence. This is illustrated in Figure 4.1. The intuition is to learn a classifier on optimal latent

variables and then to refine the optimal latent variables based on the learned classfier and so on

until convergence.

w∗ ←→ h∗

until convergence

Figure 4.1: Alternating optimization scheme for learning optimal linear classifierw∗ via latent

variablesh∗.
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The latent variables in our case are sparse codes generated from an underlying dictionary.

If this dictionary is also to be learned, then it can be treated as a super-latent variable and the

standard formulation shown in Figure 4.1 can be extended to include an additional optimization

step over the super-latent variableh′. This is illustrated in Figure 4.2. The intuition is to learn

a classifier that performs well on optimal latent variables and also to learn a super-latent variable

that generates optimal latent variables.

w∗ ←→ h∗(h
′∗)

until convergence

←→
h∗(w∗)←→ h

′∗

until convergence

until convergence

Figure 4.2: Alternating optimization scheme for learning optimal linear classifierw∗ with latent

variablesh∗ and super-latent variableh
′∗.

Since the case of unstructured outputs is simpler, we present in the following sections a

treatment for the more complex case of structured outputs using a Latent Structural SVM.
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4.2.1 Learning The Classifier via Latent Variables

In this section we present the standard method for learning classifierw via (4.1) for the

case of structured outputs.

4.2.1.1 Latent Structural SVM

We first show how to perform the optimizationw∗ ←→ h∗(h
′∗) in Figures 4.1 and 4.2.

Following [45], the linear predictorw can be learned by the following regularized empirical risk

optimization

min
w

||w||2
2

+ C

N∑

k=1

(

max
(ŷ,ĥ)

[wTΦ(xk, ŷ, ĥ) + ∆(yk, ŷ, ĥ)]

)

− C

N∑

k=1

(

max
h

wTΦ(xk, yk, h)
)

(4.2)

This minimization can be performed using the method of subgradients. The approach can be

outlined as

1. Latent Variable Completion

(a) Computeh∗
k = argmaxh∈HwTΦ(xk, yk, h).

2. Loss-Augmented Inference

(a) Computêyk = argmaxy∈Y wTΦ(xk, y, hk) + ∆(yk, y, hk) wherehk are some initial

values for the latent variables.
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(b) Computêhk = argmaxh∈HwTΦ(xk, ŷk, h) which is the same latent variable comple-

tion step as above.

(c) Computêyk = argmaxy∈H wTΦ(xk, y, ĥk) + ∆(yk, y, ĥk).

3. Sub-gradient Descent

(a) wnew = w − η(w + C
∑N

k=1Φ(xk, ŷk, ĥk)− Φ(xk, yk, h
∗
k))

Next, we show equivalence of Latent Structural SVM with the Conditional Random Field

(CRF) formulation containing latent variables. The CRF viewpoint makes the dependency struc-

ture more apparent and gives concrete methods for solving the Latent Variable Completion and

Loss-Augmented Inference steps required for solving the Latent Structural SVM formulation.
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Figure 4.3: Weights to enforce thediscriminative manifold assumptionfrom Equation (4.4). For

similar labels, Euclidean distance in sparse space is penalized according to inverse distance in

feature space (solid curve). For different labels, the relationship is proportional (dashed curve).

4.2.1.2 Conditional Random Field

Structural dependencies between output variables in a Structural SVM are represented by

the joint feature vectorΦ. Such inter-dependencies between output variables can also be repre-

sented using a Conditional Random Field (CRF). The basic idea is to have a Markovian depen-

dency of output labels at the pixel level. The energy of a particular labelingy can be computed

as

Ew(y|x, h) =
∑

i∈V

yiw
T
1 hi −

∑

j∈Ni

w2
mij

2
||hi − hj||2 (4.3)
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whereV is a structured grid of pixel locations,Ni is the set of neighboring grid locations of theith

pixel andmij is a weight for enforcing the manifold assumption – similarity in the latent manifold

should reflect similarity in the original manifold if labelsare similar, otherwise the relationship

should be inverted. The weights can be defined as

mij =







e−η||xi−xj ||2 if yi = yj

1− e−η||xi−xj ||2 if yi 6= yj

(4.4)

in order to penalize non-smoothness of latent variables according to the smoothness of the input

features and the class labels (see Figure 4.3). For instance, if adjacent input signals are similar and

belong to the same class, then the latent variables should besimilar too. Such a weighting allows

our formulation to respect thediscriminative manifold assumptionvia class dependent, spatial

constraints on the input signals and latent variables. Wheninferring labels on the random field,

these constraints lead to boundary-preservation. It should be noted that the structural dependency

of the output labelingy is determined by the definition of the neighborhoodNi which in our case

consists of simple pairwise neighbors.

Denotingw = [w1;w2] andΦi(x, y, h) = [yihi;−
∑

j∈Ni

mij

2
||hi − hj ||2], we can express

our joint feature vector asΦ(x, y, h) =
∑

i∈V Φi(x, y, h) and the CRF energy asEw(y|x, h) =

wTΦ(x, y, h). Therefore, the linear prediction rule of the Latent Structural SVM from Section

4.2.1.1 can be represented in terms of a CRF and vice versa. The view in terms of a CRF makes

the neighborhood structure more apparent.

Furthermore, for the case of separable loss functions, the Loss-Augmented Inference step

required for solving the Latent Structural SVM formulationreduces to standard MAP-inference
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on the CRF. An appropriate choice of the loss function for measuring goodness of a labeling

is the Hamming loss given by1 ∆(yk, y, hk) =
∑

i∈V δ̄ykiyi which simply counts the number of

locations where labelingy differs from the ground-truth labelingyk. Since it can be decomposed

into per-node loss terms, the unary potentials of the CRF canbe appropriately modified. Standard

MAP-inference on the CRF will now yield the solution to the Loss-Augmented Inference step.

We show in the next section that, for our task, the Latent Variable Completion step for

solving the Latent Structural SVM formulation amounts to discriminative sparse coding on the

CRF.

Latent Variable Completion In the language of Latent SVMs, latent variable completion

requires finding the latent variables that maximize the score for the linear prediction rule. Since

the latent variables in our case are sparse codes under a dictionaryD and since they reside on a

random field with an underlying neighborhood structure, latent variable completion amounts to

discriminative sparse coding on a random field. Specifically, the problem that needs to be solved

is

h∗ = argmax
h∈H

wTΦ(x, y, h) (4.5)

= argmin
h

1

2
||x−Dh||2F − αwTΦ(x, y, h) + λ

∑

i

||hi||1 (4.6)

whereα > 0 handles the reconstruction-discrimination tradeoff. Because of the spatial smoothness

term ||hi − hj ||2 in Φi(x, y, h), we avoid joint optimization of thehi’s by optimizing over each

sparse code iteratively. This is an instance of the so-called Cyclic Coordinate Descent approach.

1Even though Hamming loss only requires the labelings, the expression∆(yk, y, hk) reflects the fact that the latent
variableshk determine the labelingy.
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Specifically, we optimize over each sparse code by fixing all other sparse codes

h∗
i = argmin

s

1

2
||xi −Ds||22 − αwTΦi(x, y, s) + λ||s||1 (4.7)

Expressed asmins L(s) + λ||s||1 whereL(s) is smooth, this optimization is exactly what is solved

by the LASSO [48]. However, the inclusion of theℓ2 norm of sparse codes via Φi reduces the

sparsity inducing effect of theℓ1 norm in a manner similar to the elastic net formulation of [49].

Therefore, the value of parameterw2 within the linear predictor controls how much sparsity is

retained. A smaller value retains sparsity. We use a modification of LASSO-shooting [50] to solve

(4.7). LASSO-shooting is also an example of Cyclic Coordinate Descent. Next we give brief

derivation of the algorithm.

Noting that theℓ1 norm ||s||1 has a constant gradient ofsign(s) for non-zero entries in

s, a necessary and sufficient condition on the non-zero entries of s for s to be a minimizer of

L(s) + λ||s||1 is

∂L(s)

∂sp
+ sign(sp) = 0 for {p : sp 6= 0} (4.8)

which can be written as

dTp dpsp +
∑

l 6=p

dTp dlsl − dTp xi − αyiw1p + αw2

∑

j∈Ni

mij(s− hj)p = −λsign(sp) (4.9)

The left-hand side is a linear function ofsp with positive slopeg = dTp dp + αw2

∑

j∈Ni
mij and

interceptc =
∑

l 6=p d
T
p dlsl−dTp xi−αyiw1p−αw2

∑

j∈Ni
mijhjp. The right-hand side is an inverted

step function with a step of−2λ at sp = 0. As can be seen from Figure 4.4, if interceptc of the

right-hand side (dashed line) is less than or equal to|λ|, then Equation (4.9) has no solution and
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thereforesp cannot be part of the active set ofs (i.e.sp must be zero). Otherwise, a solution forsp

exists and can be found using elementary operations. This gives us the following mechanism for

computingsp

sp =







λ−c
g

if c > λ

−λ−c
g

if c < λ

0 if c ≤ |λ|

(4.10)

The process can be cycled through all entries ofs until convergence to yield a discriminative sparse

code that maximizes the score on the linear predictorw while respecting neighborhood constraints

imposed by the CRF grid structure. Therefore, this step amounts todiscriminative sparse coding

on a random field. The converged sparse codes is the solutionh∗
i to (4.7) for theith location. This

iteratively leads to the solutionh∗
k for the whole of training samplek (Objective (4.6)). In terms of

the Latent Structural SVM formulation, computing optimal sparse codesh∗
k for all training samples

completes the Latent Variable Completion step.
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λ

−λ

c > λ

c ≤ |λ|

c < −λ

Figure 4.4: LASSO-Shooting step. Dashed lines represent the left-hand side of Equation (4.9) for

intercepts{> λ,≤ |λ|, < −λ} while the solid step-function in blue is the right-hand side. It can

be seen that both sides will never be equal (i.e.no solution) iff the intercept of the left-hand side is

less than or equal to|λ|.

Since Latent Variable Completion is required for Loss Augmented Inference, we present

some results for Loss Augmented Inference only to illustrate the applicability of the methods in

the pixel-wise calssification task for a few images from the Graz02 bike dataset. By weighting

the Hamming loss appropriately, the inference step should yield most violating labelings that are

close to the inverse of the ground-truth labeling. This behavior is illustrated in Figures 4.5 and 4.6.

Convergence behavior can be seen in Figure 4.7.
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Original Ground-truth Most violating labeling

Figure 4.5: Loss Augmented Inference to find the most violating labeling. Weighted Hamming

loss was used as the loss function∆ to encourage the most violated labeling to be close to the

inverse of the ground-truth labeling. Result shown is afterconvergence.
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Figure 4.6: Some more results for Loss Augmented Inference to find most violating labelings.

Each block shows the ground-truth labeling on the left and the most violating labeling on the right.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Iteration 7 Iteration 8 Iteration 9 Iteration 10 Iteration 11 Iteration 12

Figure 4.7: Convergence behavior of Loss Augmented Inference to find the most violated labeling

shown in Figure 4.5.

4.2.2 Learning the Super-latent Variable via Latent Variables

In this section we show how to perform the optimizationh∗ ←→ h
′∗ from Figure 4.2. To

do so, we first give a concrete meaning to the latent and super-latent variables. As mentioned

earlier, we treat the sparse codes under a dictionaryD ∈ D as our latent variables. Therefore, the

dictionaryD is our super-latent variable. It is easy to see that the Latent Variable Completion step

in Section 4.2.1.1 yields sparse codes that maximize the score of our linear prediction rule. LetX

be the set of all input signals andH∗ be the corresponding set of optimal sparse codes. The goal is

to find a dictionaryD∗ that yields sparse codesH∗ when presented with input signalsX. If such
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a dictionary can be found, then, by construction, it will yield sparse codes that score highly on the

linear prediction rule. In other words, the dictionary would be discriminative.

After independent derivation of this work, it was found thatatleast two approaches [21, 22]

already exist in the computer vision literature that construct discriminative dictionaries in similar

fashion. The idea is straight-forward – find dictionaryD∗ that minimizes the reconstruction error

between the input signalsX and their reconstructions using the given optimal sparse codesH∗.

That is

D∗(X,H∗) = arg min
D∈D

1

2
||X −DH∗||2F (4.11)

This can be solved using either the Lagrangian dual formulation from [51] or, more simply, using

the method of optimal directions (MOD) [6] as

D∗(X,H∗) = π(XH∗T (H∗H∗T )−1) (4.12)

where operatorπ is a projection of the dictionary atoms onto theℓ2-ball.

Our overall 2-level optimization scheme is somewhat similar to standard techniques for

solving models with latent variables. Other examples include EM, K-means and for dictionary

learning, K-SVD. The difference in our approach is that at each level we perform another alternat-

ing optimization. The hierarchy of levels is due to the presence of a super-latent variable. The role

of the latent variables can be understood in each optimization level as follows:

1. w∗ ←→ H∗: Learn classifier that performs well ondiscriminativesparse codes.

2. H∗ ←→ D∗: Learn dictionary that yieldsdiscriminativesparse codes.
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So the latent variable completion step encourages the dictionary to become discriminative by yield-

ing sparse codes that are discriminative and they encouragethe classifier to improve its perfor-

mance on such discriminative sparse codes.

4.2.3 Convergence Analysis

Standard dictionary learning solves

arg min
(D,H)∈D,H

=
1

2
||X −DH||2F (4.13)

by alternating between asparse coding step

H∗ = arg min
H∈H

1

2
||X −D∗H||2F + λ

∑

i

||hi||1 (4.14)

and adictionary update step

D∗(X,H∗) = arg min
D∈D

1

2
||X −DH∗||2F (4.15)

until convergence of the reconstruction error1
2
||X−D∗H∗||2F . Since both steps minimize the same

objective function and the value of the objective function reduces at each update, convergence is

guaranteed.

For our problem of super-latent dictionary learning, however, we modify the sparse coding

step above by adding a discriminative term−αwTΦ to objective (4.14). As a result, convergence

properties of standard dictionary learning do not apply to our formulation. The discriminative

sparse coding step has an objective function different fromthe dictionary update step. This, once
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again, is a manifestation of the reconstruction-discrimination tradeoff. Parameterα plays an impor-

tant role by regularizing the impact of the discriminative term. Therefore, a continuation strategy

can be employed wherebyα is gradually increased from an initially small value that favors stable

reconstruction to a larger value that favors less stable discrimination.

4.3 Dealing with the Reconstruction-Discrimination Tradeoff

A potential problem with the optimization scheme shown in Figure 4.2 is that in practical

applications the reconstruction-discrimination tradeoff limits the ability of the super-latent variable

h
′∗ to generate optimal latent variablesh∗(h

′∗). As a result, a disconnect appears between the two

optimization stages. The classifier learns to perform well on optimal latent variablesh∗ but the

super-latent variable is never able to produce such optimallatent variables. To force a connection

between these two stages, it is better to train the classifieron the latent variables that the super-

latent variable is able to yield,i.e. h(h
′∗) instead ofh∗. This is illustrated in Figure 4.8. For

dictionary learning, the role of the latent variables can beunderstood in each optimization level as

follows:

1. w∗ ←→ H(D∗): Learn classifier that performs well on latent sparse codes under super-latent

dictionaryD∗.

2. H∗ ←→ D∗: Learn super-latent dictionary that yieldsdiscriminativelatent sparse codes.
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So the latent variable completion step encourages the dictionary to become discriminative by yield-

ing sparse codes that are discriminative. The classifier is then encouraged to improve its perfor-

mance on sparse codes that dictionaryD∗ is able to yield.

w∗ ←→ h(h
′∗)

until convergence

←→
h∗ ←→ h

′∗

until convergence

until convergence

Figure 4.8: Overall scheme for alternating optimization ofthe optimal linear classifierw∗ and

latent sparse codesh∗ and super-latent dictionaryh
′∗. Since the super-latent variable can yield

sub-optimal latent variables because of the reconstruction-discrimination tradeoff, the classifier is

forced to perform well on the latent variables that the super-latent variable yields,i.e.h(h
′∗) instead

of h∗.

For optimizationw∗ ←→ h(h
′∗) in Figure 4.8, Latent Variable Completion corresponds to

computingh(h
′∗). For our task, computingh(h

′∗) merely corresponds to a standard sparse coding

step. This is in contrast to the Latent Variable Completion step in 4.2.1.1 where computation of

h∗ corresponds to a discriminative sparse coding step based onthe classifierw for our task. The
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optimization for learningw can therefore be simplified as

min
w

||w||2
2

+ C

N∑

k=1

(

max
(ŷ)

[wTΦ(xk, ŷ, h(h
′∗)) + ∆(yk, ŷ, h(h

′∗))]

)

− C

N∑

k=1

(

wTΦ(xk, yk, h(h
′∗))
)

(4.16)

The corresponding subgradient method can be outlined as

1. Latent Variable Completion

(a) Computehk(h
′∗).

2. Loss-Augmented Inference

(a) Computêyk = argmaxy∈H wTΦ(xk, y, hk(h
′∗)) + ∆(yk, y, hk(h

′∗)).

3. Sub-gradient Descent

(a) wnew = w − η(w + C
∑N

k=1Φ(xk, ŷk, hk(h
′∗))− Φ(xk, yk, hk(h

′∗)))

To isolate the effect of dictionary learning using discriminative sparse codes, we performed

learning on a subset of the Graz02 bikes dataset using no spatial constraints (i.e.unstructured out-

put). Figure 4.9 demonstrates the learning effect of our 2 level optimization scheme when initial-

ized using a dictionary computed via K-means and a classifiercomputed via a linear SVM. Training

set accuracy improved from around68% to around92% before the reconstruction-discrimination

tradeoff made the learning unstable (as can be seen from the drastic changes in accuracy towards

the end).

81



0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

Iteration #

A
cc

ur
ac

y 
(%

)

Figure 4.9: Learning effect of our 2 level optimization scheme when initialized using a dictio-

nary computed via K-means and a classifier computed via a linear SVM. Training set accuracy

improved from around68% to around92% before the reconstruction-discrimination tradeoff made

the learning unstable (as can be seen from the drastic changes in accuracy towards the end).
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4.4 Discussion

In this chapter, we have laid the foundations of super-latent dictionary learning. The super-

latent learning formulation applies to both structured andunstructured prediction tasks.

For structured prediction, the formulation corresponds toa Latent Structural SVM whose

equivalence to a CRF has been explained. The CRF view-point makes the dependency structure

of the output more apparent and allows standard CRF inference algorithms to be used for solving

the SVM formulation. Structured output allows us to impose spatial constraints in the learning

formulation. For tasks without structured outputs and/or not requiring spatial constraints, our

super-latent formulation corresponds to a Latent SVM whichleads to simpler optimization.

A key step in super-latent dictionary learning involves computing a dictionary given the set

of signals and their corresponding discriminative sparse codes. Since the sparse codes are discrim-

inative, the Hessian for the dictioanry learning problem approaches singularities – a manifestation

of the reconstruction-discrimination tradeoff. Therefore, it is important to use a continuation strat-

egy to start from a stable reconstructive setting and gradually move towards the more unstable

discriminaitve setting.

Another potential problem with a straight-forward extension of the latent learning frame-

works from SVM literature [47, 45] to the super-latent learning framework is the possibility of a

disconnect between the two learning stages. A straight-forward extension assumes that the super-

latent dictioanry is able to yield optimal latent sparse codes on which a classifier can then be

trained. But because of the reconstruction-discrimination tradeoff once again, the super-latent
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dictionary is only able to yield sub-optimal latent sparse codes. As a result when classifier perfor-

mance is optimized over the optimal latent sparse codes, it is optimized over something that the

super-latent dictionary is not able to yield. Hence there can be a disconnect between the two opti-

mization stages. We have therefore proposed to optimize theclassifier over latent sparse codes that

a discriminative dictionary actually yields instead of optimally discriminative sparse codes that the

dictionary might never be able to yield. This way the two optimization stages can better influence

each other. That is, the classfier will encourage the dictionary to yield more discriminative sparse

codes while the dictionary will encourage the classifier to perform well on the sparse codes that it

yields.

84



CHAPTER 5
CONCLUSIONS

We have investigated the use of dictionary learning for discriminative tasks on natural im-

ages. We have presented that the reconstruction-discrimination trade-off is a fundamental, inherent

issue when it comes to discriminative dictionary learning.Discriminative learning will necessarily

lead to ill-conditioned dictionaries. To this end, we have presented, in Chapter 2, a method for

mitigating the ill-conditioning problem. Specifically, wehave introduced thediscriminative devia-

tion function to yield a more principled formulation for handling the reconstruction-discrimination

tradeoff. We have shown that discriminative deviation can be seen as a lower-bound on the dis-

criminative softmax function function and hence our formulation is a faithful lower-bound on the

formulation of Mairalet al. [1].

Moreover, since natural images obey a strong smoothness prior, we have shown in Chap-

ter 3 that inclusion of spatial smoothness constraints in the learning formulation benefits dictio-

nary learning for natural image analysis. Such smoothness constraints can be incorporated by

embedding dictionaries in a CRF. We have introduced a novel discriminative dictionary learning

procedure that imposes neighborhood contraints during thelearning process in addition to the in-

ference process. We have also incorporated a boundary-preserving prior on natural images. As

an additional benefit, such smoothness constraints lead to more stable dictionary learning which
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is inherent to the problem of discriminative dictionary learning. Detailed analysis on the Graz02

bike dataset demonstrates a distinct quantitative as well as qualitative advantage over competing

dictionary-based approaches.

Finally, we have laid the foundations ofsuper-latentdictionary learning in Chapter 4. The

super-latent learning formulation applies to both structured and unstructured prediction tasks. In

fact, it does not have to be limited to dictionary learning only. It can be applied to problems in-

volving latent variables whose generating super-latent variables also need to be optimized for. For

the discriminative dictionary learning task, by treating sparse codes as latent variables embedded

in a CRF, we have shown that dictionary learning can also be performed via the Latent Structural

SVM formulation. The sparse code yielding dictionary is treated as a super-latent variable in this

case. We have shown that a key component of the solution restson solving a novel problem ofdis-

criminative sparse coding on a random field. Not surprisingly, the reconstruction-discrimination

tradeoff introduces particular challenges for discriminative super-latent learning and need to be

handled carefuly.

Given that the reconstruction-discrimination tradeoff isa fundamental hurdle for discrim-

inative dictionary learning, it will be worthwhile for future research efforts to be expended at

intelligent ways of avoiding/handling it.

We conclude with a brief take on the justification for sparsity and discuss whether sparsity

can be harmful.
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5.1 Is Sparsity Harmful?

In light of the reconstruction-discrimination trade-off,an important question to ask would

be whether sparsity is beneficial at all? For classficiation tasks, the final goal is discriminability.

Does sparsity have any benefit in terms of learning discriminative representations – or worse, does

sparsity lead to the reconstruction-discrimination tradeoff? Such questions have been addressed

in works such as [52, 53, 54] based on earlier claims that sparse representations lead to better

classification. These works have justifiably concluded1 that the quality of being sparse does not

necessarily lead to better classification accuracy. However, we contend that the goal of sparsity in

discriminative settings should not be better classficationin the first place. The goal of sparsity in

discriminative settings should be just that – sparsity. That is, given a discriminative model, does

there exist a simpler representation?

We first discuss the justification of sparsity in the pure reconstructive setting. In a recon-

structive setting, sparsity can be justified via Occam’s razor – ‘it is vain to do with more what can

be done with fewer’. That is, a signal should be represented with the least possible amount of

complexity. There is no point retaining redundant information in a representation. Indeed, stan-

dard vector quantization is thesparsest possible representationof a signal. In relation to vector

quantization, sparse coding is, in fact, a less sparse representation. This can be viewed as a sort of

anti-razor2. So sparse coding in fact tries to find a model that is simple but not over-simplified.

1It is worth noting that [53] concludes sparsity to be beneficial for dictionary learning but not for the classification
task.

2‘It is vain to try to do with fewer what requires more.’[55]
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For the discriminative setting, we contend that Occam’s razor should still apply – we search

for the simplestdiscriminativerepresentation. Applied to the dictionary learning task inparticular,

the goal is to make dictionaries discriminative by enforcing constraints on intermediate sparse

codes. Requiring these intermediate representations to besparse is just a manifestation of Occam’s

razor.

It must be noted that the reconstruction-discrimination trade-off is not caused by the spar-

sity requirement. It is caused by the discriminability requirement and will persist regardless of

whether the intermediate representations are sparse codesor dense codes. As explained in Section

1.4.4, the trade-off can be understood in terms of the Hessian of the dictionary learning problem.

For a given class of signals, the Hessian can be understood asthe outer-product of the sparse codes.

Discriminability leads to class-specific sparse codes thatresemble each other and hence the Hes-

sian will approach a singular matrix.Crucially, this will be true even when the codes are not sparse

anymore and therefore sparsity is not the real culprit.
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