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ABSTRACT

In this dissertation, we investigate three different problems in the field of Quantum

computation. First, we discuss the quantum complexity of evaluating the Tutte polynomial

of a planar graph. Furthermore, we devise a new quantum algorithm for approximating the

phase of a unitary matrix. Finally, we provide quantum tools that can be utilized to extract

the structure of black-box modules and algebras.

While quantum phase estimation (QPE) is at the core of many quantum algorithms

known to date, its physical implementation (algorithms based on quantum Fourier transform

(QFT) ) is highly constrained by the requirement of high-precision controlled phase shift

operators, which remain difficult to realize. In the second part of this dissertation, we

introduce an alternative approach to approximately implement QPE with arbitrary constant-

precision controlled phase shift operators.

The new quantum algorithm bridges the gap between QPE algorithms based on QFT

and Kitaev’s original approach. For approximating the eigenphase precise to the nth bit,

Kitaev’s original approach does not require any controlled phase shift operator. In contrast,

QPE algorithms based on QFT or approximate QFT require controlled phase shift operators

with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary

constant-precision controlled phase shift operators. From a physical implementation view-

point, the new algorithm outperforms Kitaev’s approach.
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The other problem we investigate relates to approximating the Tutte polynomial. We

show that the problem of approximately evaluating the Tutte polynomial of triangular graphs

at the points (q, 1/q) of the Tutte plane is BQP-complete for (most) roots of unity q. We also

consider circular graphs and show that the problem of approximately evaluating the Tutte

polynomial of these graphs at the point (e2πi/5, e−2πi/5) is DQC1-complete and at points

(qk, 1 + 1−q−k

(q1/2−q−1/2)2
) for some integer k is in BQP.

To show that these problems can be solved by a quantum computer, we rely on the relation

of the Tutte polynomial of a planar G graph with the Jones and HOMFLY polynomial of

the alternating link D(G) given by the medial graph of G. In the case of our graphs the

corresponding links are equal to the plat and trace closures of braids. It is known how to

evaluate the Jones and HOMFLY polynomial for closures of braids.

To establish the hardness results, we use the property that the images of the generators

of the braid group under the irreducible Jones-Wenzl representations of the Hecke algebra

have finite order. We show that for each braid b we can efficiently construct a braid b̃ such

that the evaluation of the Jones and HOMFLY polynomials of their closures at a fixed root

of unity leads to the same value and that the closures of b̃ are alternating links.

The final part of the dissertation focuses on finding the structure of a black-box module

or algebra. Suppose we are given black-box access to a finite module M or algebra over a

finite ring R, and a list of generators for M and R. We show how to find a linear basis and

structure constants for M in quantum poly(log |M |) time. This generalizes a recent quantum

algorithm of Arvind et al. which finds a basis representation for rings. We then show that
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our algorithm is a useful primitive allowing quantum computers to determine the structure

of a finite associative algebra as a direct sum of simple algebras. Moreover, it solves a wide

variety of problems regarding finite modules and rings. Although our quantum algorithm is

based on Abelian Fourier transforms, it solves problems regarding the multiplicative struc-

ture of modules and algebras, which need not be commutative. Examples include finding the

intersection and quotient of two modules, finding the additive and multiplicative identities in

a module, computing the order of an module, solving linear equations over modules, deciding

whether an ideal is maximal, finding annihilators, and testing the injectivity and surjectivity

of ring homomorphisms. These problems appear to be exponentially hard classically.

Thesis Supervisor: Joseph P. Brennan

Title: Professor of Mathematics
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CHAPTER 1
INTRODUCTION

In this dissertation, we find quantum algorithms for mathematical problems that are clas-

sically hard. First, we discuss the quantum complexity of evaluating the Tutte polynomial

of a planar graph. Furthermore, we devise a new quantum phase estimation algorithm us-

ing arbitrary degree phase-shift operators. Finally, we provide quantum tools to find the

structure of black-box modules and algebras.

1. Quantum Phase Estimation with Arbitrary Phase Shift Operators

In Chapter 3 we provide a new quantum algorithm for estimating the phase of a unitary

matrix. Quantum phase estimation (QPE) plays a core role in many quantum algorithms

[Hal07, Sho94, Sho97, Sze04, WCN09]. Some interesting algebraic and theoretic problems

can be addressed by QPE, such as prime factorization [Sho94], discrete-log finding [Sho97],

and order finding.

Problem. [Phase Estimation] Let U be a unitary matrix with eigenvalue e2πiϕ and

corresponding eigenvector |u〉. Assume only a single copy of |u〉 is available, the goal is to

find ϕ̃ such that

Pr(|ϕ̃− ϕ| < 1

2n
) > 1− c, (1.1)

where c is a constant less than 1
2
.

In this dissertation we investigate a more general approach for the QPE algorithm. This

approach completes the transition from Kitaev’s original approach that requires no controlled
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phase-shift operators, to QPE with approximate quantum Fourier transform (AQFT). The

standard QPE algorithm utilizes the complete version of the inverse QFT. The disadvan-

tage of the standard phase estimation algorithm is the high degree of phase-shift operators

required. Since implementing exponentially small phase-shift operators is costly or physi-

cally not feasible, we need an alternative way to use lower precision operators. This was

the motivation for AQFT being introduced — for lowering the cost of implementation while

preserving high success probability.

In AQFT the number of required phase-shift operators drops significantly with the cost

of lower success probability. Such compromise demands repeating the process extra times

to achieve the final result. The QPE algorithm has a success probability of at least 8
π2

[KLM07]. Phase estimation using AQFT instead, with phase-shift operators up to degree m

where m > log2(n) + 2, has success probability at least 4
π2 − 1

4n
[BES96, Che04].

On the other hand, Kitaev’s original approach requires only the first phase-shift operator

(as a single qubit gate not controlled). Comparing the existing methods, there is a gap

between Kitaev’s original approach and QPE with AQFT in terms of the degree of phase-

shift operators needed. In this dissertation our goal is to fill this gap and introduce a more

general phase estimation algorithm such that it is possible to realize a phase estimation

algorithm with any degree of phase-shift operators in hand. In physical implementation of

the phase estimation algorithm, the depth of the circuit should be small to avoid decoherence.

Also, higher degree phase-shift operators are costly to implement and in many cases it is not

physically feasible.
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In this dissertation, we assume only one copy of the eigenvector |u〉 is available. This

implies a restriction on the use of controlled-U gates that all controlled-U gates should be

applied on one register. Thus, the entire process is a single circuit that can not be divided

into parallel processes. Due to results by Griffiths and Niu, who introduced semi classical

quantum Fourier transform [GN96], quantum circuits implementing different approaches

discussed in this dissertation would require the same number of qubits.

2. Additive Approximation of the Tutte Polynomial

The Tutte polynomial T (G;x, y) of a graph G is a two variable generalization of the

chromatic polynomial and was first introduced by William T. Tutte in 1954 [Tut01]. An

important feature of the Tutte polynomial is that it captures a lot of information about the

graph G. For example, T (G; 1, 1) counts the number of spanning trees of a connected graph

G and T (G; 2, 1) counts the number of forests in G. Reference [Wel93] provides a more

extensive collection of graph properties that can be simply read off by evaluating the Tutte

polynomial at suitable points.

The complexity of Tutte polynomial has been studied by many authors. We give some

examples of the results that are relevant to our study. Jaeger, Vertigan and Welsh showed

in [JVW90] that evaluating the Tutte polynomial exactly is #P-hard except for the points on

the hyperbola (x−1)(y−1) = 1 and the four points (x, y) ∈ {(1, 1), (0,−1), (−1, 0), (−1,−1)}.

Goldberg and Jerrum have recently shown in [GJ08] that for rational numbers (x, y) with

x < −1 or y < −1 and not on the hyperbolas Hn : (x − 1)(y − 1) = n where n = 0, 1, 2,

there is no fully polynomial randomized approximation scheme (FPRAS) for approximately
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computing T (G;x, y) for general graphs G. They have also shown that for some other points

there is no FPRAS; for more details see [GJ08].

There are also some results on efficient algorithms for approximately evaluating the Tutte

polynomial of some special types of graphs. For example, Alon, Frieze and Welsh [AFW95]

obtained FPRAS for dense graphs G for points (x, y) where x > 1 and y > 1. We refer the

interested reader to [GJ08] for a review of such algorithms.

The above discussion shows that the problem of exactly and even approximately evalu-

ating the Tutte polynomial is classically hard. In this dissertation we relate the problem of

approximately evaluating the Tutte polynomial of some special types of graphs at certain

points to quantum computing.

We consider two types of graphs, referred to as triangular and circular. We prove that the

problem of providing an additive approximation for the evaluation of the Tutte polynomial of

triangular graphs is BQP-complete. Roughly speaking, the complexity class BQP (Bounded

error Quantum Polynomial time) is the class of problems that can be solved efficiently on

a quantum computer. DQC1 is a quantum complexity class that is contained in BQP.

The difference between DQC1 and BQP is that in DQC1 only one qubit can be initialized

in the state |0〉 and all other qubits are in a completely random (maximally mixed) state

[DFC05]. This “one clean qubit model” was first introduced by Knill and Laflamme in

[KL98]. Our proof establishes that it suffices to consider only triangular graphs to achieve

BQP-hardness. We also show that the problem of providing an additive approximation of the

Tutte polynomial for circular graphs is in DQC1 at the point (e2πi/5, e−2πi/5) and in BQP for
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points (qk, 1 + 1−q−k

(q1/2−q−1/2)2
), where q is a root of unity. To prove these results, we establish

a connection between the problems of approximately evaluating the Tutte polynomial of

triangular and circular graphs and that of approximately evaluating the Jones and HOMFLY

polynomial of plat and trace closures of braids, respectively. It is known that the latter are

related to the quantum complexity classes BQP [AJL06, FKW02, FLW02, KL07a, KL07b,

LK06, WY08] and DQC1 [SJ08].

More precisely, we establish this connection as follows:

• Given an arbitrary braid b we show how to efficiently construct a braid b̃ such that its

plat closure b̃plat is an alternating link and

J(bplat; q) = J(b̃plat; q) , (1.2)

where J(L; q) denotes the evaluation of the Jones polynomial of the link L at q. This

construction relies upon the fact that the images of braid group generators under all

irreducible Jones-Wenzl representations of the braid group Bn have finite order.

• We construct a triangular graph G such that the alternating link D(G) = b̃plat corre-

sponds to the medial graph M(G) of G. Using the connection between the Tutte and

Jones polynomials [Thi87], we obtain

T (G; q, 1/q) = α(G)J(b̃plat; q) , (1.3)

5



where α(G) is complex number of modulus one that is easily computed. These ar-

guments establish that the ability to approximately evaluate the Tutte polynomial of

triangular graphs implies the ability to approximately evaluate the Jones polynomial

of plat closure of braids. Since the latter problem is already known to be BQP-hard,

we see that the approximate evaluation of the Tutte polynomial is also BQP-hard.

• The other direction, i.e., the proof that the problem of approximately evaluating the

Tutte polynomials of triangular graphs is in BQP, is obtained using the above argu-

ments.

• In the case of DQC1, we have to consider the trace closure instead of the plat closure.

The structure of the proofs remains the same. We make use of the result by Shor and

Jordan [SJ08] that evaluating the Jones polynomial of the trace closure of braids at

the fifth root of unity is DQC1-complete.

3. Quantum Algorithms for Black-box Structures

In the final chapter of the dissertation (Chapter 5), we provide quantum algorithms in

order to find the structure of black-box modules and algebras. Suppose we are given black-

box access to a finite module M or algebra over a finite ring R, and a list of generators for M

and R. Here we present an oracle for finding structure constants for black-box mathematical

structures consisting an Abelian group. Finding the structure constants is classically hard

and needs too many queries to the black-box. Moreover we find quantum algorithms for

6



several problems regarding finite black-box modules, which need not be commutative. All

of the algorithms run in time scaling polylogarithmically in the size of the module.

A module is normally specified by a set of elements that generate the module via linear

combination of its elements and multiplication by ring elements. To apply the known quan-

tum techniques for abelian groups we find sets that generate rings and modules as Abelian

groups, that is, by linear combination only. The problem of finding such a generating set

for rings has been already solved by Arvind et al.[ADM06]. Our solution for modules and

algebras generalizes their result.

As shown in [KS05], both integer factorization and graph isomorphism reduce to the

problem of counting automorphisms of rings. The decision version of this counting problem

is contained in AM∩coAM. Therefore it is unlikely to be NP-hard. Integer factorization

also reduces to the problem of finding nontrivial automorphisms of rings and to the problem

of finding isomorphisms between two rings. Furthermore, graph isomorphism reduces to

ring isomorphism for commutative rings. Thus these ring automorphism and isomorphism

problems are attractive targets for quantum computation. Perhaps the quantum algorithms

given in this dissertation can serve as steps toward efficient quantum algorithms for some of

these problems.

Many quantum algorithms, including those for factoring, discrete logarithms, and Pell’s

equation are based on the efficient solution to the Abelian hidden subgroup problem. Sig-

nificant effort has been devoted to finding efficient quantum algorithms for non-Abelian

generalizations of the hidden subgroup problem. In particular, the graph isomorphism prob-
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lem reduces to the hidden subgroup problem for the symmetric group. Our algorithms for

modules and algebras can be viewed as a new approach to obtain quantum algorithms for

non-Abelian problems. Although our quantum algorithms at core rely on the efficient solu-

tion to the Abelian hidden subgroup problem by quantum Fourier transforms, they never-

theless efficiently solve several problems involving the potentially non-Abelian multiplicative

structure of the ring.
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CHAPTER 2
PRELIMINARIES

2.1 Quantum Computing

Quantum computers can outperform classical computers by executing special algorithms.

One of the best examples is Shor’s efficient quantum algorithm for factoring integers. Integer

factorization is known to be an NP problem in classical computation, which means finding

a solution efficiently is difficult. Therefore, the major challenge in quantum computation

is finding new quantum algorithm which can be used to solve problems significantly faster

than classical computation.

A bit is the basic unit of information and the fundamental concept of classical compu-

tation and classical information. An analogous concept used in quantum computation and

quantum information is the quantum bit (qubit).

A classical bit is always in one of the two states 0 or 1. Assume a two-dimensional Hilbert

space with basis {|0〉, |1〉} and complex coefficients. A qubit also has a state but is a unit

vector inside this vector space, which means its a linear combination of basis |0〉 and |1〉 with

complex coefficients α and β such as

|ψ〉 = α|0〉+ β|1〉 (2.1)
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The states |0〉 and |1〉 are known as computational basis states, and form an orthonormal

basis for this vector space. The classical case has only one computational basis, while in

the quantum case any orthonormal basis of the space can be a computational basis too. For

example the following two states also form a basis,

|+〉 =
1√
2
(|0〉+ |1〉), |−〉 =

1√
2
(|0〉 − |1〉). (2.2)

In classical computation we can always read the true value of a bit without disturbing

it but in quantum computation we cannot examine a qubit to determine its quantum state

that means we cannot read the values α and β without destroying the superposition. We

can only read the value of a qubit by measuring it which is projecting it onto one of the

computational basis. When we measure a qubit we get either the result 0, with probability

|α|2, or the result 1, with probability |β|2. Therefore, |α|2 + |β|2 = 1, since the probabilities

must sum to one. Thus, in general a qubit is a unit vector in a two-dimensional Hilbert

space.

Now lets consider multiple qubits. In the classical case two bits would be in one of

the four possible states, 00, 01, 10, and 11. Correspondingly, a two qubit system has four

computational basis states such as |00〉, |01〉, |10〉, |11〉. Therefore a two qubit state is a

superposition of these four states. Hence a two qubit state can be described as the vector

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, (2.3)

10



where the coefficients αij are complex numbers and called amplitudes.

Similar to the case for a single qubit, if we measure a two qubit state the post measurement

state |x〉 will be one of the four possible choices {|00〉, |01〉, |10〉, |11〉} which occurs with

probability |αx|2. Similarly, the condition that probabilities must sum to one should also be

satisfied in this case therefore

∑

x∈{0,1}2

|αx|2 = 1. (2.4)

Quantum gates act on qubits and transfer a quantum state to another quantum state. A

quantum gate on a single qubit can be represented by a unitary matrix. The normalization

condition requires |α|2 + |β|2 = 1 for a quantum state α|0〉 + β|1〉. This must also be true

of the quantum state |ψ〉 = α′|0〉 + β′|1〉 after the gate has acted. This means that the

quantum gate should preserve the norm of the vector which acts on. Its easy to show that

this is a sufficient and necessary condition for a quantum gate to be unitary. By other means

a quantum gate U should satisfy the property U †U = I, where U † is the complex conjugate

transpose of the matrix U , and I is the two by two identity matrix.

A commonly used quantum gate is the Hadamard gate H,

H =
1√
2




1 1

1 −1


 . (2.5)

Other frequently used gates are Pauli gates,
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X =




0 1

1 0


 , Y =




0 −i

i 0


 , Z =




1 0

0 −1


 . (2.6)

The gate X is also known as the NOT-gate.

Similarly, a multi qubit quantum gate is nothing other than a unitary matrix that acts

on a multi qubit. The prototypical multi-qubit quantum logic gate is the controlled-NOT

or CNOT gate. This gate has two input qubits, known as the control qubit and the target

qubit, respectively. The matrix representative for the CNOT is

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(2.7)

and the corresponding circuit would be as follows:

|a〉 • |a〉
|b〉 |a⊕ b〉

.

Unitary quantum gates are always invertible, since the inverse of a unitary matrix is also

a unitary matrix, and thus a quantum gate can always be inverted by another quantum gate.

So the action of any gate on a quantum state is always reversible.
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It has been shown that single quantum gates and the CNOT gate are universal for

quantum computation. This means we can approximate any unitary transformation to

arbitrary accuracy with a quantum circuit using only single qubit gates and the CNOT gate.

Measuring a qubit is not always projecting it on a computational basis. Quantum mea-

surements can be described by a collection {Mm} of operators that act on the state space of

the system. This collection should satisfy the following condition

∑

m

M †
mMm = I. (2.8)

This condition is called the completeness equation.

The probability of an outcome m for a measurement Mm on the quantum system at the

state |φ〉 is given by

Pr(m) = 〈φ|M †
mMm|φ〉 (2.9)

and the state of the system after the measurement is

Mm|φ〉
〈φ|M †

mMm|φ〉
. (2.10)

By the completeness equation we see that the probability of all the possible outcomes

sum to one:

1 =
∑

m

Pr(m) =
∑

m

〈φ|M †
mMm|φ〉. (2.11)
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For comparing two quantum states we can estimate their inner product by sampling the

swap test sufficient many number of times. If the two states are exactly the same their inner

product will be one and if they are orthogonal their inner product is zero. The circuit of the

SWAP test is as follows:

|0〉 H • H

|ψ〉
SWAP

|φ〉

.

The resulting state |f〉 before the measurement is

|f〉 =
1

2

[
|0〉
(
|φ〉|ψ〉+ |ψ〉|φ〉

)
+ |1〉

(
|φ〉|ψ〉 − |ψ〉|φ〉

)]
. (2.12)

Therefore, the probabilities for getting either 0 or 1 from measuring the first qubit is

Pr(0) =
1

2
(1 + |〈φ|ψ〉|2), (2.13)

Pr(1) =
1

2
(1− |〈φ|ψ〉|2). (2.14)

So, as we see, if both states |φ〉 and |ψ〉 are exactly the same the SWAP test will output

0 with probability 1, and if not it might output the wrong value. Therefore, with repeating

this process sufficiently many times with high probability, we are able to decide whether

these two states are the same or not.

Another interesting result regarding black-box groups is due to Watrous[Wat01]. The

results of his work comes in the form of the following theorem.
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Theorem 1 ([Wat01]). There exists a quantum algorithm operating as follows (relative to an

arbitrary group oracle). Given generators g1, . . . , gk such that G = 〈g1, . . . , gk〉 is solvable, the

algorithm outputs the order of G with probability of error bounded by ǫ in time polynomial in

n+ log(1/ǫ) (where n is the length of the strings representing the generators). Moreover, the

algorithm produces a quantum state ρ that approximates the pure state |G〉 = |G|−1/2
∑

g∈G |g〉

with accuracy ǫ (in the trace norm metric).

2.2 Knot Theory

A knot is an embedding of a circle in 3-dimensional Euclidean space R
3 ( by some definitions

S
3). Two knots are equivalent if one can be transformed into the other via an ambient

isotopy which is a deformation of R
3 upon itself. In other words, these transformations

correspond to moving the knot in 3-dimensional space which does not involve cutting the

string or passing the string through itself.

A mathematical knot is the same as the knot we know in real world. Pick a peace of

string, wrap it around itself arbitrarily and then connect the two ends together to form a

closed loop. The easiest way to create a knot is the same way we know knots in real world. A

knot is created by beginning with a one-dimensional line segment, wrapping it around itself

arbitrarily, and then fusing its two free ends together to form a closed loop [Ada00, Sos02].

The most important problem in knot theory is determining the equivalence of two knots.

There are many algorithms that solve this problem, the first algorithm is due to Wolfgang
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Haken in 1960 [Has98]. The running time of an algorithm for knots is measured by the

number of its crossing as the input. All algorithms known to date have running times of at

least NP-hard, which makes them extremely time-consuming. One of the most important

problems in knot theory is to understand how hard this problem really is.

The most common way to visualize knots is to project the knot onto a 2-dimensional

space similar to the shadow of an object over a table. Assume there is a source of light

above a table. If the knot is between the source and the table it will create a shadow on

the table. With moving the knot a little, it is easy to create a one to one correspondence

between the knot and the shadow except at double points. Points in which the knot crosses

itself called crossings [Rol90]. At each crossing there is a over-strand and under-strand, by

creating a break in the strand going underneath the two strands can be distinguished from

each other.

Two knot diagrams are equivalent (belong to the same knot) if one can be transformed

into the other by a sequence of three kinds of moves called the Reidemeister moves. These

moves are depicted in Figure 2.2

Twist and untwist in either direction. Move one strand completely over another. Move

a strand completely over or under a crossing.

A knot invariant is a quantity that is the same for equivalent knots [Ada00, Lic97, Rol90].

This means, if two knot diagrams are equivalent the value given by the invariant should

be equal for both knots. note that the invariant is equal for same knots but it does not

necessarily mean that it would be different for inequivalent knots. There are examples of
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Type I Type II

Type III

Figure 2.1: Reidemeister moves

knots and invariants that the knots are not equivalent but have the same invariant. In other

words, invariants are incapable to distinguish all knots.

The very first known knot invariants are the knot group and the Alexander polynomial.

The knot group is the fundamental group of the knot complement and the Alexander poly-

nomial can be computed from the Alexander invariant which is a module constructed from

the infinite cyclic cover of the knot complement [Lic97, Rol90]. More recent knot invariants

are quantum knot polynomials, Vassiliev invariants and hyperbolic invariants.
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2.2.1 Polynomial invariants of knots

A knot polynomial is a knot invariant that is a polynomial. The most well known and used

knot polynomial is the Jones polynomials. Here we first introduce the Kauffman bracket

which is the building block of the Jones polynomial.

The Kauffman bracket of unoriented link diagrams is defined by the following recursive

relations,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,

〈
D
〉

= (−A2 − A−2)〈D〉 for any diagram D,

〈the empty diagram ∅〉 = 1,

where three pictures in the first formula imply three links diagrams, which are identical

except in one small region where they differ by the crossing changes. The Jones polynomial

can be defined using the Kauffman bracket. The Jones polynomial VL(t) (which is a Laurent

polynomial in the variable t1/2) of an oriented link L is defined by

VL(t) = (−A2 − A−2)−1(−A3)−w(D)〈D〉
∣∣∣
A2=t−1/2

∈ Z[t1/2, t−1/2],

where D is a diagram of L, w(D) is the writhe of D, and 〈D〉 is the Kauffman bracket of

D with its orientation forgotten. The Jones polynomial is an isotopy invariant of oriented
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links uniquely characterized by

t−1VL+
(t)− tVL

−

(t) = (t1/2 − t−1/2)VL0
(t), (2.15)

VO(t) = 1,

where O denotes the trivial knot, and L+, L−, and L0 are three oriented links, which are

identical except in one small region where they differ by the crossing changes or smoothing

as shown in the Figure 2.2. It is shown, by (2.15), that for any knot K, its Jones polynomial

VK(t) belongs to Z[t, t−1].

L+ L− L0

Figure 2.2: Three links L+, L−, L0

Another interesting knot polynomial is the HOMFLY polynomial. The skein polynomial

(or the HOMFLY polynomial) PL(l,m) ∈ Z[l±1,m±1] of an oriented link L is uniquely

characterized by

l−1PL+
(l,m)− lPL

−

(l,m) = mPL0
(l,m),

PO(l,m) = 1,

where O denotes the trivial knot, and L+, L−, and L0 are three oriented links, which are

identical except in one small region where they differ by the crossing changes or smoothing
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as shown in the Figure 2.2. For a knot K, PK(l,m) ∈ Z[l±2,m]. The Kauffman poly-

nomial FL(a, z) ∈ Z[a±1, z±1] of an oriented link L is defined by FL(a, z) = a−w(D)[D] for

an unoriented diagram D presenting L (forgetting its orientation), where [D] is uniquely

characterized by

[ ]
+

[ ]
= z

([ ]
+

[ ])

[ ]
= a

[ ]
,

[O] = 1.

For a knot K, FK(a, z) ∈ Z[a±1, z]. The Q polynomial QL(x) ∈ Z[x±1] of an unoriented

link L is uniquely characterized by

Q
( )

+Q
( )

= x

(
Q
( )

+Q
( ))

Q(O) = 1.

It is known that

VL(t) = PL(t, t1/2 − t−1/2) = FL(−t−3/4, t1/4 + t−1/4),

∆L(t) = PL(1, t1/2 − t−1/2),

QL(z) = FL(1, z),
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where ∆L(t) denotes the Alexander polynomial of L. The variable m of PL(l,m) is called

the Alexander variable [Kaw96, Lic97].

2.2.2 Tutte Polynomial of a Graph

A graph is a set of vertices V and edges E, where vertices are points and edges are line

segments in which connect vertices together. In this section, we introduce a polynomial

corresponding to graphs called the Tutte Polynomial [Tut04]. The Tutte polynomial can be

defined as

TG(x, y) =
∑

F⊆E

(x− 1)c(F )−c(E)(y − 1)c(F )+|F |−|V | . (2.16)

Here, G is a graph with vertex set V and edge set E; The number of connected components

in the graph with vertex set V and edge set F is shown by c(F ). A connected component of

a graph is a subgraph in which any two vertices are connected to each other by an edge.

The Tutte polynomial can also be defined using a deletion-contraction recurrence. The

edge contraction G/uv of graph G is the graph obtained by merging the vertices u and v

and removing the edge uv. If only the edge uv is removed from the graph we write denote

it by G− uv. The Tutte polynomial is defined by the following recurrence relation. TG = 1

if G contains no edges. If G contains i bridges and j loops and no other edges

TG(x, y) = xiyj (2.17)
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otherwise, if e is neither a loop nor a bridge

TG = TG−e + TG/e. (2.18)
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CHAPTER 3
QUANTUM PHASE ESTIMATION WITH ARBITRARY

PHASE SHIFT OPERATORS

Quantum Phase Estimation (QPE) plays a core role in many quantum algorithms [Hal07,

Sho94, Sho97, Sze04, WCN09]. Some interesting algebraic and theoretic problems can be

addressed by QPE, such as prime factorization [Sho94], discrete-log finding [Sho97], and

order finding.

Problem. [Phase Estimation] Let U be a unitary matrix with eigenvalue e2πiϕ and

corresponding eigenvector |u〉. Assume only a single copy of |u〉 is available, the goal is to

find ϕ̃ such that

Pr(|ϕ̃− ϕ| < 1

2n
) > 1− c, (3.1)

where c is a constant less than 1
2
.

In this chapter we investigate a more general approach for the QPE algorithm. This ap-

proach completes the transition from Kitaev’s original approach that requires no controlled

phase shift operators, to QPE with approximate quantum Fourier transform (AQFT). The

standard QPE algorithm utilizes the complete version of the inverse QFT. The disadvantage

of the standard phase estimation algorithm is the high degree of phase shift operators re-

quired. Since implementing exponentially small phase shift operators is costly or physically

not feasible, we need an alternative way to use lower precision operators.
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The structure of this chapter is organized as follows. In Section 3.1 we give a brief

overview on existing approaches, such as Kitaev’s original algorithm and standard phase es-

timation algorithm based on QFT and AQFT. In Section 3.2 we introduce our new approach

and discuss the requirements to achieve the same performance output (success probability)

as the methods above. Finally, we make our conclusion and compare with other methods.

This chapter is based on the paper Quantum Phase Estimation with Arbitrary Constant-

precision Phase Shift Operators co-authored with Chen-Fu Chiang [AC].

3.1 Quantum Phase Estimation Algorithms

3.1.1 Kitaev’s Original Approach

Kitaev’s original approach is one of the first quantum algorithms for estimating the phase of a

unitary matrix [KSV02]. Let U be a unitary matrix with eigenvalue e2πiϕ and corresponding

eigenvector |u〉 such that

U |u〉 = e2πiϕ|u〉. (3.2)

In this approach, a series of Hadamard tests are performed. In each test the phase 2k−1ϕ

(1 ≤ k ≤ n) will be computed up to precision 1/16. Assume an n-bit approximation is

desired. Starting from k = n, in each step the kth bit position is determined consistently

from the results of previous steps.

24



For the kth bit position, we perform the Hadamard test depicted in Figure 3.1, where

the gate K = I2. Denote ϕk = 2k−1ϕ, the probability of the post measurement state is

Pr(0|k) =
1 + cos(2πϕk)

2
, Pr(1|k) =

1− cos(2πϕk)

2
. (3.3)

In order to recover ϕk, we obtain more precise estimates with higher probabilities by

iterating the process. But, this does not allow us to distinguish between ϕk and −ϕk. This

can be solved by the same Hadamard test in Figure 3.1, but instead we use the gate

K =




1 0

0 i


 . (3.4)

|0〉 H K • H

|u〉 U2k−1 |u〉

Figure 3.1: Hadamard test with extra phase shift operator.

The probabilities of the post-measurement states based on the modified Hadamard test

become

Pr(0|k) =
1− sin(2πϕk)

2
, Pr(1|k) =

1 + sin(2πϕk)

2
. (3.5)

Hence, we have enough information to recover ϕk from the estimates of the probabilities.

In Kitaev’s original approach, after performing the Hadamard tests, some classical post

processing is also necessary. Suppose ϕ = 0.x1x2 . . . xn is an exact n-bit. If we are able to
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determine the values of ϕ, 2ϕ, . . . , 2n−1ϕ with some constant-precision (1/16 to be exact),

then we can determine ϕ with precision 1/2n efficiently [Kit96, KSV02].

Starting with ϕn we increase the precision of the estimated fraction as we proceed toward

ϕ1. The approximated values of ϕk (k = n, . . . , 1) will allow us to make the right choices.

For k = 1, . . . , n the value of ϕk is replaced by βk, where βk is the closest number chosen

from the set {0
8
, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
} such that

|ϕk − βk|mod 1 <
1

8
. (3.6)

The result follows by a simple iteration. Let βn = 0.xnxn+1xn+2 and proceed by the

following iteration:

xk =





0 if |0.0xk+1xk+2 − βk|mod 1 < 1/4

1 if |0.1xk+1xk+2 − βk|mod 1 < 1/4

(3.7)

for k = n− 1, . . . , 1. By using simple induction, the result satisfies the following inequality:

|0.x1x2 . . . xn+2 − ϕ|mod 1 < 2−(n+2). (3.8)

In Eq. 3.6, we do not have the exact value of ϕk. So, we have to estimate this value and

use the estimate to find βk. Let ϕ̃k be the estimated value and

ǫ = |ϕ̃k − ϕk|mod 1 (3.9)
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be the estimation error. Now we use the estimate to find the closest βk. Since we know the

exact binary representation of the estimate ϕ̃k, we can choose βk such that

|ϕ̃k − βk|mod 1 ≤
1

16
. (3.10)

By the triangle inequality we have,

|ϕk − βk|mod 1 ≤ |ϕ̃k − ϕk|mod 1 + |ϕ̃k − βk|mod 1 ≤ ǫ+
1

16
. (3.11)

To satisfy Eq. 3.6, we need to have ǫ < 1/16, which implies

|ϕ̃k − ϕk|mod 1 <
1

16
. (3.12)

Therefore, it is required for the phase to be estimated with precision 1/16 at each stage.

In the first Hadamard test (Eq. 3.3), in order to estimate Pr(1|k) an iteration of Hadamard

tests should be applied to obtain the required precision of 1/16 for ϕk. This is done by

counting the number of states |1〉 in the post measurement state and dividing that number

by the total number of iterations performed.

The Hadamard test outputs |0〉 or |1〉 with a fixed probability. We can model an iteration

of Hadamard tests as Bernoulli trials with success probability (obtaining |1〉) being pk. The

best estimate for the probability of obtaining the post measurement state |1〉 with t samples
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is

p̃k =
h

t
, (3.13)

where h is the number of ones in t trials. This can be proved by Maximum Likelihood

Estimation (MLE) methods [HS98].

In order to find sin(2πϕk) and cos(2πϕk), we can use estimates of probabilities in Eq. 3.3

and Eq. 3.5. Let sk be the estimate of sin(2πϕk) and tk the estimate of cos(2πϕk). It is clear

that if

|p̃k − pk| < ǫ0, (3.14)

then

|sk − sin(2πϕk)| < 2ǫ0, |tk − cos(2πϕk)| < 2ǫ0. (3.15)

Since the inverse tangent function is more robust to error than the inverse sine or cosine

functions, we use

ϕ̃k =
1

2π
arctan

(
sk

tk

)
(3.16)

as the estimation of ϕk. By Eq. 3.12 we should have

∣∣∣∣ϕk −
1

2π
arctan

(
sk

tk

)∣∣∣∣
mod 1

<
1

16
. (3.17)

The inverse tangent function can not distinguish between the two values ϕk and ϕk±1/2.

However, because we find estimates of the sine and cosine functions as well, it is easy to
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determine the correct value. The inverse tangent function is most susceptible to error when

ϕk is in the neighborhood of zero and the reason is that the derivative is maximized at zero.

Thus, if

|sk − sin(2πϕk)| = ǫ1 and |tk − cos(2πϕk)| = ǫ2, (3.18)

considering the case where ϕk = 0, then we have

1

2π

∣∣∣∣arctan

(
ǫ1

1± ǫ2

)∣∣∣∣ <
1

16
. (3.19)

By simplifying the above inequality, we have

∣∣∣∣
ǫ1

1± ǫ2

∣∣∣∣ < tan(
π

8
). (3.20)

With the following upper bounds for ǫ1 and ǫ2, the inequality above is always satisfied when

|ǫ1| < 1− 1√
2

and |ǫ2| < 1− 1√
2
. (3.21)

Therefore, in order to estimate the phase ϕk with precision 1/16, the probabilities in

Eq. 3.3 and Eq. 3.5 should be estimated with error at most (2−
√

2)/4 which is approximately

0.1464. In other words, it is necessary to find the estimate of Pr(1|k) such that

∣∣∣∣Pr(1|k)− h

t

∣∣∣∣ <
2−
√

2

4
≈ 0.1464. (3.22)
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There are different ways we can guarantee an error bound with constant probability. The

first method, used in [KSV02], is based on the Chernoff bound. Let X1, . . . , Xm be Bernoulli

random variables, by Chernoff’s bound we have

Pr

(∣∣∣∣∣
1

m

m∑

i=0

Xi − pk

∣∣∣∣∣ ≥ δ

)
≤ 2e−2δ2m, (3.23)

where in our case the estimate is p̃k = 1
m

∑m
i=0Xi. Since we need an accuracy up to 0.1464,

we get

Pr (|p̃k − pk| > 0.1464) < 2e−(0.0429)m. (3.24)

In order to obtain

Pr (|p̃k − pk| < 0.1464) > 1− ε

2
, (3.25)

a minimum of m1 trials is sufficient when

m1 ≈ 24 ln
4

ε

≈ 33 + 24 ln
1

ε
(3.26)

This is the number of trials for each Hadamard test, as we have two Hadamard tests at

each stage. Therefore, in order to have

Pr

(
|ϕ̃k − ϕk| <

1

16

)
> 1− ε. (3.27)
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we require a minimum of

m = 2m1

≈ 47 ln
4

ε

≈ 66 + 47 ln
1

ε
(3.28)

many trials.

In the analysis above, we used the Chernoff bound, which is not a tight bound. If we want

to obtain the result with a high probability, we need to apply a large number of Hadamard

tests. In this case, we can use an alternative method to analyze the process by employing

methods of statistics [SS06].

Iterations of Hadamard tests have a Binomial distribution which can be approximated

by a normal distribution. This is a good approximation when p is close to 1/2 or mp > 10

and m(1 − p) > 10, where m is the number of iterations and p the success probability. In

other words, if we see 10 successes and 10 fails in our process, we can use this approximation

to obtain a better bound.

In Kitaev’s algorithm each Hadamard test has to be repeated a sufficient number of

times to achieve the required accuracy with high probability. Because only one copy of |u〉

is available, all controlled-U gates have to be applied to one register. Therefore, all the

Hadamard tests have to be performed in sequence, instead of parallel, during one run of the
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circuit. A good example for this case is the order finding algorithm. We refer the reader to

[NC00] for more details.

In Kitaev’s approach, there are n different Hadamard tests that should be performed.

Thus, if the probability of error in each Hadamard test is ε0, by applying the union bound,

the error probability of the entire process is ε = nε0. Therefore, in order to obtain

Pr(|ϕ− ϕ̃| < 1

2n
) > 1− ε, (3.29)

for approximating each bit we need m trials where

m = 47 ln
4n

ε
. (3.30)

Since, all of these trials have to be done in one circuit, the circuit consists of mn Hadamard

tests. Therefore the circuit involves mn controlled-U2k
operations. As a result, if a constant

success probability is desired, the depth of the circuit will be O(n log n).

3.1.2 Approach Based on QFT

One of the standard methods to approximate the phase of a unitary matrix is QPE based

on QFT. The structure of this method is depicted at Figure 3.2. The QPE algorithm

requires two registers and contains two stages. If an n-bit approximation of the phase ϕ

is desired, then the first register is prepared as a composition of n qubits initialized in the
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|0〉 H •

QFT †
... · · ·

|0〉 H •

|0〉 H •

|u〉 U20

U21

U2n−1

Figure 3.2: Standard Quantum Phase Estimation.

state |0〉. The second register is initially prepared in the state |u〉. The first stage prepares

a uniform superposition over all possible states and then applies controlled-U2k
operations.

Consequently, the state will become

1

2n/2

2n−1∑

k=0

e2πiϕk|k〉. (3.31)

The second stage in the QPE algorithm is the QFT† operation.

There are different ways to interpret the inverse Fourier transform. In the QPE algorithm,

the post-measurement state of each qubit in the first register represents a bit in the final

approximated binary fraction of the phase. Therefore, we can consider computing each bit

as a step. The inverse Fourier transform can be interpreted such that at each step (starting

from the least significant bit), using the information from previous steps, it transforms the

state

1√
2
(|0〉+ e2πi2kϕ|1〉) (3.32)
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to get closer to one of the states

1√
2
(|0〉+ e2πi0.0|1〉) =

1√
2
(|0〉+ |1〉)

or

1√
2
(|0〉+ e2πi0.1|1〉) =

1√
2
(|0〉 − |1〉). (3.33)

Assume we are at step k in the first stage. By applying controlled-U2k
operators due to

phase kick back, we obtain the state

|0〉+ e2πi0.xk+1xk+2...xn|1〉√
2

. (3.34)

Shown in Figure 3.3, each step (dashed-line box) uses the result of previous steps, where

phase shift operators are defined as

Rk ≡




1 0

0 e2πi/2k


 (3.35)

for 2 ≤ k ≤ n.

By using the previously determined bits xk+2, . . . , xn and the action of corresponding

controlled phase shift operators (as depicted in Figure 3.3) the state in Eq. 3.34 becomes

|0〉+ e2πi0.xk+10...0|1〉√
2

=
|0〉+ (−1)xk+1|1〉√

2
. (3.36)
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|y3〉 H • • |x3〉

|y2〉 R−1
2 H • |x2〉

|y1〉 R−1
3 R−1

2 H |x1〉

Figure 3.3: 3-qubit inverse QFT where 1 ≤ i ≤ 3, |yi〉 = 1√
2
(|0〉+ e2πi(0.xi...x3) |1〉).

Thus, by applying a Hadamard gate to the state above we obtain |xk+1〉. Therefore, we can

consider the inverse Fourier transform as a series of Hadamard tests.

If ϕ has an exact n-bit binary representation the success probability at each step is 1.

While, in the case that ϕ cannot be exactly expressed in n-bit binary fraction, the success

probability P of the post-measurement state, at step k, is

P = cos2(πθ) for |θ| < 1

2k+1
(3.37)

Detailed analysis obtaining similar probabilities are given in Section 3.2.

Therefore, the success probability increases as we proceed. The following theorem gives

us the success probability of the QFT algorithm.

Theorem 1 ([KLM07]). If x
2n ≤ ϕ ≤ x+1

2n , then the phase estimation algorithm returns one

of x or x+ 1 with probability at least 8
π2 .
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|x1〉 H R2 · · · Rm−1 Rm |y1〉

|x2〉 • H · · · Rm−1 Rm |y2〉
... · · · • · · ·
... • · · · • · · ·
... · · · • · · ·

|xn−1〉 · · · H R2 |yn−1〉

|xn〉 · · · • H |yn〉

Figure 3.4: Quantum circuit for AQFT.

3.1.3 Approach Based on AQFT

AQFT was first introduced by Barenco, et al [BES96]. It has the advantage in algorithms

that involve periodicity estimation. Its structure is similar to regular QFT but differs by

eliminating higher precision phase shift operators. The circuit of AQFT is shown in Fig-

ure 3.4. At the RHS of the circuit, for n−m < i ≤ n

|yi〉 =
1√
2
(|0〉+ e2πi(0.xi...xn) |1〉) (3.38)

and for 1 < i ≤ n−m,

|yi〉 =
1√
2
(|0〉+ e2πi(0.xi...xi+m−1) |1〉). (3.39)

Let 0.x1x2 . . . xn be the binary representation of eigenphase ϕ. For estimating each xp,

where 1 ≤ p ≤ n, AQFTm requires at most m phase shift operations. Here m is defined as

the degree of the AQFTm.
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Therefore, phase shift operations in AQFTm requires precision up to e2πi/2m
. The prob-

ability P of gaining an accurate output using AQFTm, when m ≥ log2 n + 2, is at least

[BES96]

P ≥ 8

π2
(sin2(

π

4

m

n
)). (3.40)

The accuracy of AQFTm approaches the lower bound for the accuracy of the full QFT,

which is 8
π2 . A better lower bound is also achieved by Cheung in [Che04]

P ≥ 4

π2
− 1

4n
. (3.41)

Moreover, this indicates the logarithmic-depth AQFT provides an alternative approach

to replace the regular QFT in many quantum algorithms. The total number of the phase

shift operator invocations in AQFTm is O(n log2 n), instead of O(n2) in the QFT. The phase

shift operator precision requirement is only up to 4n, instead of 2n.

By using the AQFT instead of the QFT we trade off smaller success probability with

smaller degrees of phase shift operators and a shorter circuit.

3.2 New Approach With Arbitrary Degree Phase Shift
Operators

In this section we introduce our new approach for QPE. Our approach draws a trade-off

between the highest degree of phase shift operators being used and the depth of the circuit.
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|yn〉 H • • |xn〉

|yn−1〉 R−1
2 H • • |xn−1〉

|yn−2〉 R−1
3 R−1

2 H • |xn−2〉

|yn−3〉 R−1
3 R−1

2 H |xn−3〉
... · · · • ...... · · · •

|y1〉 R−1
3 R−1

2 H |x1〉

Figure 3.5: QPE with only two controlled phase shift operations.

As a result, when smaller degrees of phase shift operators are used, the depth of the circuit

increases and vice versa.

As pointed out in Section 3.1.2, by using information of previous qubits, the full-fledged

inverse QFT transforms the phase such that the phase of the corresponding qubit gets closer

to one of the states |+〉 or |−〉. For our approach, we first consider the case where only the

controlled phase shifts operators R2 and R3 are used (Eq. 3.35). In this case, we only use

the information of the two previous qubits (see Figure 3.5). In such a setting, we show that

it is possible to perform the QPE algorithm with arbitrary success probability.

The first stage of our algorithm is similar to the first stage of QPE based on QFT. Assume

the phase is ϕ = 0.x1x2x3 . . . with an infinite binary representation. At step k, the phase

after the action of the controlled gate U2k
is 2kϕ = 0.xk+1xk+2 . . . and the corresponding

state is

|ψk〉 =
1√
2
(|0〉+ e2πi2kϕ|1〉). (3.42)
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By applying controlled phase shift operators R2 (controlled by the (k − 1)th qubit) and

R3 (controlled by the (k − 2)th qubit) to the state above, we obtain

∣∣∣ψ̃k

〉
=

1√
2
(|0〉+ e2πiϕ̃|1〉), (3.43)

where

ϕ̃ = 0.xk+100xk+4 . . . . (3.44)

It is easy to see that

|ϕ̃− 0.xk+1| <
1

8
. (3.45)

Hence, we can express

ϕ̃ = 0.xk+1 + θ (3.46)

where |θ| < 1
8
. Therefore, the state

∣∣∣ψ̃k

〉
can be rewritten as

∣∣∣ψ̃k

〉
=

1√
2
(|0〉+ e2πi(0.xk+1+θ)|1〉). (3.47)

In order to approximate the phase ϕ at this stage (kth step), we need to find the value

of xk+1 by measuring the kth qubit. In this regard, we first apply a Hadamard gate before

the measurement to the state
∣∣∣ψ̃k

〉
. The post-measurement state will determine the value

of xk+1 correctly with high probability. The post measurement probabilities of achieving |0〉

39



or |1〉 in the case where xk+1 = 0 is

Pr(0|k) = cos2(πθ)

Pr(1|k) = sin2(πθ). (3.48)

Therefore,

Pr(0|k) ≥ cos2(
π

8
) ≈ 0.85

Pr(1|k) ≤ sin2(
π

8
) ≈ 0.15 (3.49)

In the case where xk+1 = 1, the success probability is similar.

By iterating this process a sufficient number of times and then letting the majority decide,

we can achieve any desired accuracy. The analysis is similar to Section 3.1.1. In this case,

all we require is to find the majority. Therefore, by a simple application of the Chernoff’s

bound

Pr

(
1

m

m∑

i=0

Xi ≤
1

2

)
≤ e−2m(p− 1

2
)2 , (3.50)

where in this case p = cos2(π/8). It is easy to see that if a success probability of 1 − ε is

required, then we need at least

m = 4 ln(
1

ε
) (3.51)

many trials for approximating each bit.
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By comparing Eq. 3.30 and Eq. 3.51 (Table 3.1), we see that while preserving the success

probability, our new algorithm differs by a constant and scales about 12 times better than

Kitaev’s original approach in terms of the number of Hadamard tests required (Figure 3.6).

In physical implementations this is very important, especially in the case where only one

copy of the eigenvector |u〉 is available and all Hadamard tests should be performed during

one run of the circuit.
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Figure 3.6: Required trials for estimating each bit in Kitaev’s original approach and our new
approach.

In the algorithm introduced above, only phase shift operators R2 and R3 are used.

When higher phase shift operators are used in our algorithm, the success probability of

each Hadamard test will increase. As a result, fewer trials are required in order to achieve

similar success probabilities. As pointed out in Section 3.1.3, the QPE based on AQFT

requires phase shift operators of degree at least 2 + log n. With this precision of phase shift

operators in hand, the success probability at each step would be high enough such that there
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is no need to iterate each step. In such scenario, one trial is sufficient to achieve an overall

success probability of a constant.

Success Kitaev’s Constant
Probability Original Approach Precision

0.50000 98 3
0.68269 120 5
0.95450 211 13
0.99730 344 24
0.99993 515 39

Table 3.1: Required trials for estimating each bit by using Chernoff’s bound.

Recall the phase estimation problem stated in the introduction. If a constant success

probability greater than 1
2

is required, the depth of the circuit for all the methods mentioned

in this chapter (except the QPE based on full fledged QFT, which is O(n2)), would be

O(n log n) (assuming the cost of implementing the controlled-U2k
gates are all the same).

This means the depth of the circuits differ only by a constant. However, the disadvantage

of Kitaev’s original approach to our new approach is the large number of Hadamard tests

required for each bit in the approximated fraction.

Therefore, the new method introduced in this chapter provides the flexibility of using any

available degree of controlled phase shift operators while preserving the success probability

and the length of the circuit up to a constant.
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CHAPTER 4
QUANTUM COMPLEXITY OF EVALUATING THE TUTTE

POLYNOMIAL

The problem of exactly and even approximately evaluating the Tutte polynomial is classically

hard. In this chapter we relate the problem of approximately evaluating the Tutte polynomial

of some special types of graphs at some points to quantum computing.

The Tutte polynomial T (G;x, y) of a graph G is a two variable generalization of the

chromatic polynomial and was first introduced by William T. Tutte in 1954 [Tut01]. An

important feature of the Tutte polynomial is that it captures a lot of information about the

graph G. For example, T (G; 1, 1) counts the number of spanning trees of a connected graph

G and T (G; 2, 1) counts the number of forests in G. Reference [Wel93] provides a more

extensive collection of graph properties that can be simply read off by evaluating the Tutte

polynomial at suitable points.

The complexity of Tutte polynomial has been studied by many authors. We give some

examples of the results that are relevant to our study. Jaeger, Vertigan and Welsh showed

in [JVW90] that evaluating the Tutte polynomial exactly is #P-hard except for the points on

the hyperbola (x−1)(y−1) = 1 and the four points (x, y) ∈ {(1, 1), (0,−1), (−1, 0), (−1,−1)}.

Goldberg and Jerrum have recently shown in [GJ08] that for rational numbers (x, y) with

x < −1 or y < −1 and not on the hyperbolas Hn : (x − 1)(y − 1) = n where n = 0, 1, 2,

there is no fully polynomial randomized approximation scheme (FPRAS) for approximately

43



computing T (G;x, y) for general graphs G. They have also shown that for some other points

there is no FPRAS; for more details see [GJ08].

There are also some results on efficient algorithms for approximately evaluating the Tutte

polynomial of some special types of graphs. For example, Alon, Frieze and Welsh [AFW95]

obtained FPRAS for dense graphs G for points (x, y) where x > 1 and y > 1. We refer the

interested reader to [GJ08] for a review of such algorithms.

The above discussion shows that the problem of exactly and even approximately eval-

uating the Tutte polynomial is classically hard. In this chapter we relate the problem of

approximately evaluating the Tutte polynomial of some special types of graphs at certain

points to quantum computing.

We consider two types of graphs, referred to as triangular and circular. We prove that the

problem of providing an additive approximation for the evaluation of the Tutte polynomial of

triangular graphs is BQP-complete. Roughly speaking, the complexity class BQP (Bounded

error Quantum Polynomial time) is the class of problems that can be solved efficiently on

a quantum computer. DQC1 is a quantum complexity class that is contained in BQP. The

difference between DQC1 and BQP is that in DQC1 only one qubit can be initialized in the

state |0〉 and all other qubits are in a completely random (maximally mixed) state [DFC05].

This “one clean qubit model” was first introduced by Knill and Laflamme in [KL98]. This

presents an alternative proof for results by Aharonov, Arad, Eban and Landau [AAE07].

Our proof establishes that it suffices to consider only triangular graphs to achieve BQP-

hardness. We also show that the problem of providing an additive approximation of the
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Tutte polynomial for circular graphs is in DQC1 at the point (e2πi/5, e−2πi/5) and in BQP for

points (qk, 1 + 1−q−k

(q1/2−q−1/2)2
), where q is a root of unity. To prove these results, we establish

a connection between the problems of approximately evaluating the Tutte polynomial of

triangular and circular graphs and that of approximately evaluating the Jones and HOMFLY

polynomial of plat and trace closures of braids, respectively. It is known that the latter are

related to the quantum complexity classes BQP [AJL06, FKW02, FLW02, KL07a, KL07b,

LK06, WY08] and DQC1 [SJ08].

This chapter is organized as follows. In Section 4.1 we define formally triangular and

circular graphs. In Section 4.2 we recall the formal definition of additive approximation and

state the three main theorems. In Section 4.3 we prove all the results that we use in proofs

of the theorems.

This chapter is based on the paper On the quantum complexity of evaluating the Tutte

polynomial co-authored with Pawel Wocjan [AW10].

4.1 Definition of Triangular and Circular Graphs

Figure 4.1 presents an example of a triangular graph. The formal definition is given below.

Definition 1. A triangular graph is a graph without loops that is constructed by the following

steps:

1. Draw an n×m grid.
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Figure 4.1: Triangular graph

2. Label the intersection points of the horizontal and vertical lines by (i, j) where i =

0, . . . , n−1 denotes the row index and j = 0, . . . ,m−1 denotes the column index. The

point (0, 0) is the upper-left corner of the grid.

3. The vertex set V of the triangular graph G is an arbitrary subset of the intersections

points that satisfies the following condition: if (i, j) is a vertex with i > 0 then (i−1, j)

is also a vertex.

4. The edge set E satisfies the following two properties:

5. If (i, j) is a vertex with i > 0, then there is exactly one edge between (i, j) and the

vertex (i− 1, j).

6. Two vertices (i, j) and (i′, j′) when j 6= j′, can be connected only if j′ = j + 1.
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Figure 4.2: Circular graph

Figure 4.2 presents an example of a circular graph. The formal definition is given below.

Definition 2. A circular graph is a graph that is obtained as follows.

1. Start with an arbitrary triangular graph on an n×m grid.

2. For each j = 0, . . . , n, add a new edge between the vertices {(0, j) and (mi, j) where

mi = max{a : (a, j) is a vertex of the triangluar graph}.

We refer to n in the above definitions as the width w(G) of the graph G and to m as the

length ℓ(G).
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4.2 Additive Approximation of the Tutte Polynomial of
Triangular and Circular Graphs

To state our results we have to recall the definition of additive approximation as formalized

in [BFL05]. Let I denote a set of problem instances, and suppose we are given a function

f : I → K (K = R or K = C) that is potentially difficult to evaluate exactly. The main

idea is to approximate the function f with respect to some positive normalization function

g : I → R. An additive approximation for the normalized function f/g associates a random

variable Z(I) to any problem instance I ∈ I and ǫ > 0 satisfying

Pr

(∣∣∣∣
f(I)

g(I)
− Z(I)

∣∣∣∣ ≤ ǫ

)
≥ 3/4 . (4.1)

The process is required to run in time that is polynomial in 1/ǫ and the input size of I.

In case where I is the set of all triangular graphs, we consider

f(G) = |TG(q, 1/q)| (4.2)

g(G) = [2]
w(G)
ℓ , (4.3)

where [m]ℓ is the quantum integer [m]ℓ = q
m
2 −q

−m
2

q
1
2 −q

−1
2

when q = e2πi/ℓ.
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In the case where I is the set of circular graphs, we consider

f(G) = Re TG(q, 1/q) (4.4)

or

f(G) = Im TG(q, 1/q) (4.5)

and

g(G) = [2]
w(G)
ℓ . (4.6)

We defined two types of graphs in the previous chapter, referred to as triangular and cir-

cular. We prove that the problem of providing an additive approximation for the evaluation

of the Tutte polynomial of triangular graphs is BQP-complete.

Theorem 2. The problem of additively approximating T (G; q, 1/q) for triangular graphs G

is BQP-complete for q = e2πi/ℓ.

Our proof establishes that it suffices to consider only triangular graphs to achieve BQP-

hardness. We also show that the problem of providing an additive approximation for circular

graphs is in DQC1 at (e2πi/5, e−2πi/5) and in BQP for (qk, 1 + 1−q−k

(q1/2−q−1/2)2
).

Theorem 3. The problem of additively approximating T (G; qk, 1 + 1−q−k

(q1/2−q−1/2)2
) for circular

graphs G is in BQP for q = e2πi/ℓ.

Theorem 4. The problem of additively approximating T (G; e2πi/5, e−2πi/5) for circular graphs

G is DQC1-complete.
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To prove these results, we establish a connection between the problems of approximately

evaluating the Tutte polynomial of triangular and circular graphs and that of approximately

evaluating the Jones and HOMFLY polynomial of plat and trace closures of braids, re-

spectively. It is known that the latter are related to the quantum complexity classes BQP

[AJL06, FKW02, FLW02, KL07a, KL07b, LK06, WY08] and DQC1 [SJ08].

More precisely, we establish this connection as follows:

• Given an arbitrary braid b we show how to efficiently construct a braid b̃ such that its

plat closure b̃plat is an alternating link and

J(bplat; q) = J(b̃plat; q) , (4.7)

where J(L; q) denotes the evaluation of the Jones polynomial of the link L at q. This

construction relies upon the fact that the images of braid group generators under all

irreducible Jones-Wenzl representations of the braid group Bn have finite order.

• We construct a triangular graph G such that the alternating link D(G) = b̃plat corre-

sponds to the medial graph M(G) of G. Using the connection between the Tutte and

Jones polynomials [Thi87], we obtain

T (G; q, 1/q) = α(G)J(b̃plat; q) , (4.8)

where α(G) is complex number of modulus one that is easily computed. These ar-

guments establish that the ability to approximately evaluate the Tutte polynomial of
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triangular graphs implies the ability to approximately evaluate the Jones polynomial

of plat closure of braids. Since the latter problem is already known to be BQP-hard,

we see that the approximate evaluation of the Tutte polynomial is also BQP-hard.

• The other direction, i.e., the proof that the problem of approximately evaluating the

Tutte polynomials of triangular graphs is in BQP, is obtained using the above argu-

ments.

• In the case of DQC1, we have to consider the trace closure instead of the plat closure.

The structure of the proofs remains the same. We make use of the result by Shor and

Jordan [SJ08] that evaluating the Jones polynomial of the trace closure of braids at

the fifth root of unity is DQC1-complete.

4.3 Connection Between Tutte and Jones Polynomials

We associate a link diagram D(G) to a planar graph G (Figure 4.3) such that the graph G

can be recovered by the following way: Color the link diagram as a white/black checkerboard

with the outer region colored as white. Assign a vertex to each black region and connect the

vertices by an edge for any crossing the corresponding regions share. (for more details see

Ref. [Kau01])

It is easy to construct a graph G having D(G), but its not always easy to find a link

diagram such that the link becomes D(G) associated to the planar graph G. Here we give an
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algorithm for constructing braids such that the plat or trace closure of it becomesD(G) of our

special type of graph G. In these algorithms we use the following subroutines: (We labeled

each vertex with (i, j) where i and j are the corresponding row and column, respectively.)

Vertex(i,j):

1. If the vertex (i− 1, j) is marked exit.

2. If i > 1 call Vertex(i− 2,j).

3. If i > 0, For each vertex (k, ℓ) connected to the vertex (i−1, j)

call Edge((i− 1, j), (k, ℓ)).

4. Mark vertex (i− 1, j) if it is not the last vertex in column j.

5. Add σ2j+1 to the braid word b.

Edge((i, j), (k, ℓ)):

1. If the edge
(
(i, j), (k, ℓ)

)
is marked OR ℓ = j exit.

2. If k > 0 call Vertex(k,ℓ).

3. Mark the edge
(
(i, j), (k, ℓ)

)
.

4. Add σ−α
j+ℓ+1 to the braid word b, where α is the weight of the

edge
(
(i, j), (k, ℓ)

)
.

In the following algorithms we do not consider vertical edges of input graphs and for

multiple edges between two vertices we replace them by one edge, weighted by their number.
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The algorithms for triangular and circular graphs are as follows:

Algorithm for finding a braid such that its plat closure

becomes D(G) of the input graph G

1. input: a triangular graph

2. Assume an empty braid word b.

3. For i = 0 to n− 1 do

• If i > 0 and vertex (i, j) is NOT the last vertex in column

j and unmarked do

– Mark the vertex (i, j).

– Add σ2j+1 to the braid word b.

• For k = i to n− 1 do

– Call Edge for all edges between row i and k.

4. Output: braid word b.

←→

• • • •

• • •

•

Figure 4.3: The plat closure of the braid on the left which is D(G) corresponding to the
triangular graph G on the right.
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Algorithm for finding a braid such that its trace closure

becomes D(G) corresponding to the input graph G

1. Input: a circular graph

2. Assume an empty braid word b.

3. For i = 0 to n− 1 do

• For each unmarked vertex (i, j) that is NOT the last

vertex in column j

– Mark the vertex (i, j)

– Add σ2j+1 to the braid word b.

• For k = i to n− 1 do

– Call Edge for all edges between row i and k.

4. Output: braid word b.

Observe that both algorithms always output braid words such that their respective clo-

sures are alternating links. This is because they have the special form in Lemma 1 below.

Lemma 1. If any braid word b in the n-strand Braid group Bn with generators {σ1, . . . , σn−1}

does not contain σ−1
i for odd i’s and does not contain σi for even i’s, then the trace and plat

closure of b is an alternating link.
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←→

• • • •

• •

•

• •

Figure 4.4: The trace closure of the braid on the left which is D(G) corresponding to the
circular graph G on the right.

Since the links are alternating, we can use the correspondence between the Jones (and

HOMFLY) and the Tutte polynomials given by the following theorems.

Theorem 5 ([Thi87]). Let D(G) be a connected alternating oriented link diagram with a

A-regions, b B-regions and writhe ω. Then the Jones polynomial of D(G) is given by the

Tutte polynomial of G,

J(D(G), t) = (−1)ωt(b−a+3ω)/4TG(−t,−1/t). (4.9)

Theorem 6 ([Jae88]). Let G = (V,E) be a connected plane graph. Then for all nonzero

numbers t and x, the HOMFLY polynomial of the corresponding alternating link D(G) is:

H(D(G), t, x) = (−tx)−|V (G)|+1(−x/t)|E(G)|T (G; t2, 1 + ((1− t−2)/x2)). (4.10)
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4.3.1 Unitary Representation of The Braid Groups

Assume the n-strand Braid group [Art91] with generators {σi}. We can represent the braid

group inside a Hecke Algebra Hn(q) [Jon86, Wen88] by mapping each generator σi of Bn

to the generator gi of Hn(q). The Hecke Algebra Hn(q) for any q ∈ C
× of type A is a free

complex algebra generated by 1 and {g1, . . . , gn−1} with relations:

g2
i = gi(q − 1) + q (4.11)

gigjgi = gjgigj |i− j| = 1 (4.12)

gigj = gjgi |i− j| > 1. (4.13)

By defining ei = (q− gi)/(1 + q) we can rewrite the above relations of the Hecke algebra

Hn(q):

e2i = ei (4.14)

eiejei − τei = ejeiej − τej, |i− j| = 1 (4.15)

eiej = ejei, |i− j| > 1, (4.16)

where for q = e2πi/ℓ and τ = [2]−2
ℓ .
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The Jones-Wenzl irreducible representation πλ of the Hecke algebraHn(q) are enumerated

by admissible Young diagrams λ. The image of gi under the irreducible representation πλ

[Jon86, Wen88] is as follows:

πλ(gi) = q1Vλ
− (1 + q)πλ(ei) (4.17)

where Vλ is the vector space on which πλ acts.

For our purposes, it is important that πλ(ei) is an orthogonal projector for all 1 ≤ i ≤ n.

For more details we refer the reader to [Jon86, Wen88, WY08].

For any integer k ≥ 2 we can define the one-variable HOMFLY polynomial for a link L

as

H
(k)
L (q) = HL(qk/2, q1/2 − q−1/2). (4.18)

By [Jon86, Wen88] a representation-theoretic formula for the HOMFLY polynomial of

the trace closure of a braid is

H
(k)
btr (q) = [k]n−1

ℓ q−
k+1

2
e(b)
∑

λ

sλTrπλ(b). (4.19)

where sλ are the Markov weights and for the special case k = 2, we will have the Jones

polynomial of the trace closure of a braid.

There is also a relation with the Jones polynomial of the plat closure of a braid,

|J(bplat, q)| = [2]n−1
ℓ |Tr(πµ(b)P )| (4.20)
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where µ is a particular Young diagram and P is some projector acting on Vµ. (The exact

formula is given in Eq. (5.39) in [WY08]).

Lemma 2. The image of the generator gi of the Hecke Algebra Hn(q) for q = e2πi/ℓ and

integers 2 ≤ k < ℓ <∞ under the Jones-Wenzl representation πλ is of finite order lcm(2, ℓ).

Proof. The irreducible Jones-Wenzl representation πλ is an orthogonal projector therefor,

let P = πλ(ei) where P2 = P and 1Vn = P + P⊥.

πλ(gi) = q(P + P⊥)− (1 + q)P (4.21)

= qP⊥ − P (4.22)

Since P and P⊥ are orthogonal (PP⊥=0) we have,

(πλ(gi))
n = qnP⊥ + (−1)nP. (4.23)

Hence wherever n is even and a multiple of ℓ we have,

(πλ(gi))
n = P⊥ + P (4.24)

= 1Vn . (4.25)

Hence the order of πλ(gi) is lcm(2, ℓ).
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Theorem 7. For any b ∈ Bn there is b̃ ∈ Bn such that the plat and trace closure of b̃ is an

alternating link and we have

H
(k)
btr (e2πi/ℓ) = H

(k)

b̃tr (e2πi/ℓ) (4.26)

J(btr, e2πi/ℓ) = J(b̃tr, e2πi/ℓ). (4.27)

Proof. By Lemma 2 we know that π
(2,ℓ)
λ (σi) has finite order p = lcm(2, ℓ). Assume b =

σe1

i1
σe2

i2
. . . σem

im
with 0 < |ej| < p. Apply the following to the braid word b:

• For σ
ej

ij
if ij is odd and ej < 0 then replace σ

ej

ij
by σ

p+ẽj

ij
.

• For σ
ej

ij
if ij is even and ej > 0 then replace σ

ej

ij
by σ

−p+ẽj

ij
.

By Eq. (4.19), Lemma 2 and Lemma 1 proof is completed.
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CHAPTER 5
QUANTUM PROCESSING OF FINITE BLACK-BOX

MODULES AND ALGEBRAS

Suppose we are given black-box access to a finite module M or algebra over a finite ring

R, and a list of generators for M and R. Here we present an oracle for finding structure

constants for black-box mathematical structures consisting an Abelian group. Finding the

structure constants is classically hard and needs too many queries to the black box. Moreover

we find quantum algorithms for several problems regarding finite black box modules, which

need not be commutative. All of the algorithms run in time scaling polylogarithmically in

the size of the module.

This chapter is organized as follows, In Section 5.1 we provide some necessary algebraic

definitions used in this chapter.

In Section 5.2 we introduce quantum algorithms for finding linear basis and structure

constants of mathematical structures consisting an Abelian group.

In Section 5.3 we discuss how using our quantum algorithms for finding the structure

constants together with additional polynomial time quantum and classical processing we can

solve several module and ring theoretic problems: decomposing ring elements in terms of

generators, testing equality and finding intersection of two ideals, solving systems of linear

equations over R, finding the multiplicative and additive identities in R, computing the

multiplication tensor for R, computing quotient ideals, finding the annihilator of an ideal,

finding the order of an ideal, testing surjectivity and injectivity of ring homomorphisms,
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testing whether a given ring element is a unit, and testing whether a given two-sided ideal

is prime.

In Section 5.4 we show how having the structure constant we can decompose associative

algebras into direct sum for simple algebras. Also, how to solve the module isomorphism

problem in the special case of modules over finite rings. Moreover, we discuss some problems

regarding algebras that can be solved efficiently on a quantum computer.

This chapter is based on the paper Efficient quantum processing of ideals in finite rings

co-authored with Pawel Wocjan, Stephen Jordan and Joseph Brennan [WJA].

5.1 Definitions

Let M be a finite left R-Module over the ring R with identity, which need not be commuta-

tive. A left R-module over the ring R consists of an Abelian group (M,+) and an operation

• : R×M 7→M . For convenience we write r •m = rm for r ∈ R and m ∈M . For all r,s in

R, x,y in M, the multiplication operation satisfies the following relations

1. r(x+ y) = rx+ ry

2. (r + s)x = rx+ sx

3. (rs)x = r(sx)

4. 1Rx = x if R has multiplicative identity 1R.
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Let M̃ = {m1, . . . ,mn} be a subset of M such that each element of M can be obtained

by a linear combination of elements of M̃ with multiplicative scalars from R. We say that

M̃ is a generating set for M . Note that there always exists a generating set M̃ such that

|M̃ | = O(log |M |). We assume here that our quantum computer has only blackbox access to

M . That is, the module and ring elements are assigned arbitrary bit strings by injective maps

η and γ, respectively. We are given a list of bit strings {η(m1), . . . , η(mn)} corresponding

to a generating set, and access to blackboxes implementing f+(η(a), η(b)) = η(a + b) and

f•(γ(a), η(b)) = η(a · b).

The most important structure theorem in group theory is the structure theorem for

finitely generated Abelian groups.

Theorem 8 (Structure theorem for Abelian groups). Let G be a finitely generated Abelian

group. Then there is a unique expression of the form:

G sim= Z
r ⊕ Z/n1Z⊕ Z/n2Z⊕ . . .⊕ Z/nsZ

for some integers r, ni satisfying:

r ≥ 0; ∀i, ni ≥ 2; ni+1 | ni for 1 ≤ i ≤ s− 1.

Any module M has an Abelian group structure (M,+) under addition. Any generating

set {a1, . . . , aℓ} for an Abelian group A yields a homomorphism from Zs1
× . . . × Zsℓ

to A

where s1, . . . , sl are the orders of a1, . . . , aℓ. In additive notation, this homomorphism takes
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the integers z1, . . . , zℓ to
∑ℓ

j=1 zjaj. The structure theorem for finite Abelian groups states

that there exists a generating set for A such that this homomorphism is an isomorphism.

We call this a generating set of the invariant factors, or i. f. generating set for short.

Cheung and Mosca have shown that its possible to determine the structure of a finite

Abelian black box group efficiently on a Quantum computer[CM01].

A module consists an Abelian group but it also has an extra multiplication by ring

elements. In Section 5.2 we provide an efficient quantum algorithm that extracts all the

information needed to multiply random elements of R and M and write it as a linear combi-

nation of generators of M . Let {h1, . . . , hℓ} be an generating set for M . The multiplication

of R and M can be fully specified by the structure constants in the tensor T k
ij defined by

rihj =
ℓ∑

k=1

T k
ijhk. (5.1)

Note that a ring R is also an R-module. Therefore, the i. f. generators for R, their orders,

and the structure constants are called a basis representation for R. The previous work of

Arvind et al. shows how to efficiently quantum compute a basis representation in the special

case of rings. [ADM06].

The case of algebras are very similar to modules. An algebra A over a finite field F

is a vector space over F , together with a F -bilinear operation(multiplication). Therefore,

algebras also consist of an Abelian group with an multiplication operation that can be
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specified by structure constants. Be believe our algorithm would work for any mathematical

structure consisting an Abelian group and other operations.

Because of the similarities between modules and algebras, for convenience we only refer

to modules and leave the algebra case to where its needed.

5.2 Efficient Quantum Algorithm for Finding Structure
Constants

In this section we provide a quantum algorithm for finding structure constants of mathe-

matical structures consisting an Abelian group in particular modules. We first provide an

efficient algorithm in Oracle I to calculate an i. f. generating set for the module M . This

task can also be done by a probabilistic algorithm[ADM06]. This is a necessary step for

our quantum algorithm. The second step would be a quantum algorithm for Oracle II that

decomposes given elements into a linear combination of the generators. Oracle II will provide

us enough tools to compute the structure constants. Our algorithm provide an exponential

speed up with regard to classical algorithms.

We compute all l3 entries of T k
ij by taking each pair ri, hj, using the multiplication or-

acle to find the bit string encoding their product, and then applying the Oracle in step

2. The best existing classical algorithm for finding structure constants requires order |M |

queries[ZMR08]. Many problems in the field of rings and modules can be solved by simple

linear algebra together with these oracles.
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5.2.1 Oracle I: Finding I. F. Generators

Our method for finding an i. f. generating set for (M,+) proceeds in two steps. First we find

a generating set for (M,+). Although the elements of M̃ generate M , they do not generate

M as an Abelian group, that is, by addition only with no left-multiplication by R elements.

After finding a generating set for (M,+) we then convert it to an i. f. generating set for

(M,+) using the quantum algorithms of [CM01, Wat01].

To find a generating set for (M,+), let B̃1 = M̃ and apply the following iteration. Let Bk

be the Abelian group additively generated by B̃k. At the kth step we search for an element

i ∈ M not contained in Bk. If we find one, we let B̃k+1 = B̃k ∪ {i}. For some sufficiently

large k, Bk = M , at which point the search for i fails and the process terminates. We now

show in detail how this works and that we need at most log2 |M | iterations.

Suppose we know B̃k. To find an element of M not contained in Bk, we choose any

generator r ∈ R̃ of R. Let rBk = {r · x|x ∈ Bk}. We create the superpositions

|Bk〉 =
1√
|Bk|

∑

x∈Bk

|x〉 (5.2)

and

|rBk〉 =
1√
|Bk|

∑

x∈Bk

|rx〉. (5.3)

Because Bk and rBk are Abelian groups whose generators we know, these states can be

created efficiently to polynomial precision using the results of [Wat01, CM01].
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To determine the intersection of Bk and rBk we use the swap test to estimate the inner

product 〈Bk|rBk〉. Polynomially many applications of the swap test yield 〈Bk|rBk〉 to 1/poly

precision. Bk ∩ rBk is a subgroup of Bk. Thus by Lagrange’s theorem, either |Bk∩rBk|
|Bk| = 1

or |Bk∩rBk|
|Bk| ≤ 1

2
. These two cases can be distinguished with high reliability by swap tests,

because

〈Bk|rBk〉 =
|Bk ∩ rBk|
|Bk|

. (5.4)

If we find that |Bk∩rBk|
|Bk| ≤ 1

2
then we choose an element i ∈ rBk uniformly at random. We

can do this using the techniques of [Wat01, CM01] to find an i. f. generating set for Bk and

then sampling uniformly from the product of cyclic groups to which Bk is isomorphic. Thus,

along with i we get an expression for i as r times some linear combination of the elements

of B̃k. i is definitely contained in M , and with probability at least 1/2, i is not contained

in Bk. If i ∈ Bk then 〈Bk|i + Bk〉 = 1, otherwise 〈Bk|i + Bk〉 = 0. Thus, to determine

whether i ∈ Bk we create the states |Bk〉 and |i+Bk〉 and use the swap test. If i ∈ Bk we

choose a different random element of rBk and try again. With probability 1− ǫ, this process

terminates in O(log(1/ǫ)) time. Once it does, we let B̃k+1 = B̃k ∪ {i}.

If we instead find that |Bk∩rBk|
|Bk| = 1, we choose a different r ∈ R̃ and swap test again. We

keep repeating this process until we find some r ∈ R̃ such that |Bk∩rBk|
|Bk| 6= 1 or we exhaust

R̃. If |Bk∩rBk|
|Bk| = 1 for all r ∈ R̃ we are done, because Bk = M . We can prove this with the

following lemma.
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Lemma 1. Let M be a left module generated by {i1, . . . , im} over a finite ring R. Let B̃k be

a subset of M containing {i1, . . . , im}. The set of elements Bk additively generated by B̃k is

equal to M if and only if rBk ⊆ Bk ∀r ∈ R̃.

Proof. If rBk ⊆ Bk for all r ∈ R̃ then, because R̃ is a generating set for R, rBk ⊆ Bk for

all r ∈ R. Thus, Bk is a left module in R. By construction, Bk contains i1, . . . , im. By the

definition of generators, M is the smallest left module over R containing i1, . . . , im. Bk is

also contained in M . Thus Bk = M . The converse follows immediately from the fact that

M is a module.

Remark: This lemma can be easily extended to any finite mathematical structure consisting

an Abelian group with an multiplication operation.

In the above procedure, the time needed to obtain each additive generator is poly(log |R|).

Furthermore, every time we add another generator, we increase the size of the generated

group by at least a factor of two. Thus, we need to perform the above iteration at most

log2 |M | times. We can also in polynomial time obtain expressions for the elements of this

set in terms of the original generators for M by recursively composing the expressions we

obtained at each step for i in terms of the preceding generators Bk.

Once we have a set Bk of elements that generateM as an Abelian group, we can efficiently

find an i. f. generating set for (M,+), as well as expressions for the i. f. generators as linear

combinations of Bk using the techniques of [CM01, Wat01]. These techniques also efficiently

yield the additive orders of the i. f. generators.

67



5.2.2 Oracle II: Decomposing Into Linear Combination of
Generators

After finding an i. f. generating set for (M,+), one would like to have a procedure to take

a given element i ∈ M and decompose it as a linear combination of these generators. Note

that i is given as an arbitrary bit string from the encoding η, so initially we know nothing

about i. We can efficiently perform this decomposition as described below.

Let G = Zs1
× Zs2

× . . .× Zsℓ
× Zs, where s1, . . . , sℓ are the orders of the i. f. generators

h1, . . . , hℓ and s is the order of i. Let

f(n1, n2, . . . , nℓ,m) = η

(
ℓ∑

j=1

njhj +mi

)
. (5.5)

This function hides the cyclic subgroup of G generated by

(n1(i), n2(i), . . . , nℓ(i),−1), (5.6)

where n1(i), . . . , nℓ(i) is the decomposition of i in terms of the i. f. generators:

i =
ℓ∑

j=1

nj(i)hj. (5.7)

Using the polynomial time quantum algorithm for the Abelian hidden subgroup problem

[NC00], we thus recover this decomposition.
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From the algorithm of Oracle I we also obtain expressions for i. f. generators in terms of

the original generators of M . Thus one can efficiently convert the expression for r as a linear

combination of generators of M into an expression for r in terms of the original generators

for M .

Note that Oracle II is also a membership test, if the given element is not in the module

the hidden subgroup will be empty.

5.3 Algorithms for Module-Theoretic Problems

In this section we provide a list of problems that can be solved using Oracle I and Oracle II.

As mentioned through out the chapter M is an R-Module over the ring R. Generators of R

and M are provided and we have black-box access to M . Having the structure constants of

a module M the solution to many problems will be reduced to a system of linear Diophan-

tine equations. Other problems can be solved using well known quantum techniques and a

combination of Oracle I and II or similar techniques used in their algorithms. The problems

that can be solved are as follows:

1. Membership test

Here we give an alternative way to test whether a given element is in the module. After

constructing |M〉 and being given a element m, we can use the addition black-box to

construct the co-set state |m+M〉. If m ∈ M then the inner product of these states
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is one, and otherwise it is zero. Thus, the swap test on |M〉 and |m+M〉 tells us

whether m ∈M .

2. Testing equality of modules

Assume we are given two separate generating set for modules M1 = 〈a1, . . . , an〉 and

M2 = 〈b1, . . . , bm〉, we want to see if they are equal. Using Oracle I and II we compute

structure constants ofM1 andM2. Then using oracle II we test if bi ∈M1 for 1 ≤ i ≤ m

and ai ∈M2 for 1 ≤ j ≤ n. If all are true M1 = M2.

3. Inverse of a unit

If r is a unit, then we can find its inverse using the quantum order finding algorithm[Sho97].

If rc = 1 then r−1 = rc−1.

4. Maximal and prime ideal test

We now show how to efficiently determine whether a given two-sided ideal I is prime.

Recall that an ideal I is prime if ab ∈ I implies that a ∈ I or b ∈ I for all a, b ∈ R,

which is equivalent to the fact that the quotient ring S = R/I does not have any

zero-divisors. This already implies that S is a division ring (i.e., each non-zero element

has a multiplicative inverse) since S is finite. Wedderburn’s theorem shows that all

finite division rings are finite fields [LN97]. R/I a field implies I is maximal, thus I is

prime implies I is maximal. The converse is also true.

5. Field test

Let S∗ denote the group of units of the quotient ring S. We choose an element r
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uniformly at random in R. With probability at least 1/2 we have r 6∈ I. Once we

obtain such r we determine the size of the (additively generated) cyclic subgroup 〈r̄〉

of S, where r̄ denotes the image of r in S under the canonical projection. This can be

done by applying Shor’s period finding algorithm to the state (1/
√
q)
∑q

x=0 |x〉|xr+I〉)

where q is a power of 2 with |S|2 < q ≤ 2|S|2. This state can be prepared efficiently.

If S is a field, then with probability at least ϕ(|S| − 1)/|S| ≥ Ω(1/ log |S|) we have

〈r̄〉 = S∗ where ϕ denotes Euler’s totient function. This follows from the fact that the

group of units F
∗
d of an arbitrary finite field Fd with d element is cyclic of order d−1 and

ϕ(m)/m = Ω(1/ logm) for integers m [HW08]. If S is not a field, then S∗ cannot have

order |S| − 1 (otherwise every non-zero element would have a multiplicative inverse,

implying that S is a field). If we find that S is a field then we know I is prime, otherwise

I is not prime. The above procedure for determining whether the quotient ring S is a

field can be applied to any finite black-box ring, offering a simpler alternative to the

algorithm in [ADM06].

6. Problems that can be reduced to systems of linear Diophantine equations

Many problems regarding rings and modules can be reduced to a system of linear Dio-

phantine equations. Moreover, these problems can be solved using known techniques

of Quantum computing as Abelian hidden subgroup problem, SWAP test and order

finding and results of [CM01, Wat01].
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One of these problems is finding a generating set for the intersection of two given

modules. We first show how this problem can be reduced. The other problems can

also be reduced to a system of linear equations in a similar fashion:

• Linear equations

Suppose we wish to solve a linear equation ax = b over R. To do this we find an

i. f. generating set {h1, . . . , hℓ} for R, and decompose a and b in terms of these

generators

a =
∑ℓ

i=1 aihi b =
∑ℓ

i=1 bihi. (5.8)

Let

Aij =
∑

k

akM
i
kj (5.9)

where M i
kj the structure constants. Parametrize x as x =

∑ℓ
i=1 xihi for integers

x1, . . . , xℓ. Then, in an i. f. generating set, ax = b if and only if

ℓ∑

j=1

Aijxj ≡ bi mod si, (5.10)

for each i = 1, 2, . . . , ℓ. (Here si is the additive order of hi.) We can intro-

duce additional integer unknowns k1, . . . , kℓ and rewrite this as a system of linear

Diophantine equations:

ℓ∑

j=1

Aijxj + kisi = bi, i = 1, 2, . . . , ℓ. (5.11)
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A solution to a system of m Diophantine equations in n variables can be found in

poly(n,m) time using the classical algorithms of [CC82]. Thus we can classically

find an integer solution to Eq. 5.11, which has ℓ equations and 2ℓ unknowns,

in poly(ℓ) time. Equation 5.11 is undetermined because the original system of

equations 5.10 is modular.

• Intersection of two modules:

Suppose we are given generating sets for two submodules I = 〈a1, . . . , as〉 and

J = 〈b1, . . . , bt〉 of module M . We wish to find a basis for I ∩ J .

The goal is to reduce this problem to a system of linear Diophantine equations.

Using Oracle I and II we can find the structure constants of M = 〈m1, . . . ,mℓ〉.

Using Oracle II we write generators of I and J as a linear combination of gener-

ators of M . Hence,

aα =
ℓ∑

j=1

IαjmJ , (5.12)

bβ =
ℓ∑

j=1

JβjmJ (5.13)

where 1 ≤ α ≤ s and 1 ≤ β ≤ t. Assume the following equation,

v1a1 + · · ·+ vsas = u1b1 + · · ·utbt, (5.14)

where vi and ui’s are integers.
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Now using the relations Eq. 5.12 the equation above becomes a linear system of

modular equations,

v1I1i + · · ·+ vsIsi = u1J1i + · · ·+ ututi (mod) |mi| (5.15)

where 1 ≤ i ≤ ℓ and |mi| is the order of mi that can be found using Shor’s order

finding algorithm.

Using similar techniques of problem 1 the system above becomes a system of linear

equations.

The solution to this system are elements of I ∩ J . Using techniques of Oracle I

we can find an additive generating set for I ∩ J . Hence applying Oracle I and

II to the additive generating set we can find generators together with structure

constants of I ∩ J .

• Similar Problems:

The following are examples of problems that can be reduced to a system of linear

Diophantine equations.

– Computing the colon ideal:

If I and J are two ideals of the ring R, one defines (I : J) = {x ∈ R|xJ ⊆ I}.

(I : J) is an ideal, and is called an ideal quotient or a colon ideal. (I : J) is

a subgroup of (R,+).
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– Computing the Annihilator:

The left annihilator AS of S = {s1, . . . , sn} ⊆ R is defined as AS = {x ∈

R|xs1 = 0, . . . , xsn = 0}. AS forms a subgroup of (R,+).

– Injectivity and surjectivity of homomorphisms:

Given a black-box implementing a homomorphism ρ : R → R′ between two

rings. Determining whether ρ is injective or surjective.

– Unit test

Given r ∈ R, we want to test if r is a unit. let Rr be the left ideal in R

generated by r. Rr = R if and only if r is a unit.

– Finding the multiplicative and additive identity

5.4 Decomposition of Algebras

One of the fundamental problems in algebra is decomposing mathematical structures into

direct sum of simpler structures. For algebras and modules, in most cases a set of generators

and structure constants are assumed to be given. While having this information in hand

many authors were able to achieve important results regarding associative algebras and

modules. But if the algebra or module was given in a black-box setting, or the set of

generators were not given as a linear basis. Then there is no efficient algorithm to find the

structure constants for these structures. Therefore our algorithms will provide the necessary

tools for these results.
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Its known that the structure of Abelian black-box groups as in the structure theorem of

Abelian groups, can be determined efficiently on a quantum computer[CM01, Wat01]. More-

over, other properties of these groups such as the order of the group and order of its elements

can also be computed using Shor’s algorithm. As we know, there are other structure theo-

rems for mathematical structures such as Modules and Algebras. Therefore In this section

we show that we can generalize this result to more complicated algebraic structures such as

modules and associative algebras. We expect these results can be generalized to any math-

ematical structure containing an Abelian group. In this section we consider decomposition

of associative algebras and modules over finite fields.

An algebra A over a finite field F is a vector space over F , together with a F -bilinear

operation(multiplication). The algebra A with the multiplication forms a ring (not neces-

sarily commutative). If the multiplication is associative the algebra is called an associative

algebra.

An element x ∈ A is called nilpotent if there is a positive integer m such that xm = 0.

An element x ∈ A is called strongly nilpotent if for every y ∈ A, xy is nilpotent. An algebra

is called semi-simple if it has no strongly nilpotent element except zero and called simple

if it has no nontrivial two sided ideals. The following theorem due to Wedderburn [Wed08]

provides a decomposition for semi-simple algebras.
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Theorem 9 (Wedderburn Structure theorem). Let A be a finite dimensional semi-simple

algebra over the field F . Then A can be expressed by a direct sum of simple algebras

A = A1 ⊕ A2 ⊕ · · · ⊕ Ak, (5.16)

where the Ai are the only minimal nontrivial ideals of A. Moreover, each Ai is isomorphic

to a full matrix algebra Mni
(Fi) where Fi is a not necessarily commutative extension field of

F .

The first known algorithms computing the structure of associative algebras are due to

Friedl and Rónyai [FR85], who gave an efficient classical algorithm to compute the Jacobson

radical and to decompose a semi-simple algebra over a finite field as a direct sum of simple

algebras (Wedderburn Structure theorem). In [Ron87] Rónyai gives polynomial algorithms

for problems in associative algebras such as computing the Jacobson radical and finding

zero divisors. In a subsequent paper [IR93] Ivanyos and Rónyai show that constructing a

maximal order in a semisimple algebra over an algebraic number field can be solved by a

efficient classical algorithm if there is an oracle for integer factorization. Were in the quantum

case by Shor’s algorithm we know that this is tractable. Another interesting result is due to

Gianni [GMT89] who provides an efficient algorithm for decomposing Abelian algebras into

local algebras. Chistov, Ivanyos and Karpinski in [CIK97] present a polynomial algorithm

for decomposing Modules over finite fields as direct sums of indecomposable modules.
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As you see, many problems can be solved by deterministic or probabilistic methods for

algebras and modules when they are given as generators and structure constants. Therefore

the Oracles I and II gives a good primitive to find generators and the structure constants

of algebras and modules if given as black boxes. Hence, Oracles I and II introduced in this

chapter together with known quantum algorithms such as integer factorization, Abelian HSP

and swap test, we can compute many properties of finite associative algebras and modules.

5.5 Directions for Future Work

We conjecture that our quantum algorithms apply to any category possessing a faithful

functor to the category of Abelian groups.

It would be interesting to find efficient quantum algorithms for deciding whether a given

ideal I is principal and computing the group of units R∗ of R.

It is not obvious that the above algorithms extend to arbitrary algebras and modules

over infinite fields. However, it seems likely that the above algorithms could be extended

to a black-box ring R which is endowed with a grading by Abelian groups R0, R1, R2, . . .

and each component Rg is finite. Additionally, we would need a promise, making it possible

to do all the computations in a component Rg for some g. For example, such a situation

occurs for polynomial rings over a finite fields when the number of indeterminates is fixed.

The complexity of the algorithms would then depend on the growth of the Hilbert function,

which measures the dimension of the graded components Rg as R0-modules.
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LIST OF NOTATIONS

〈ψ| bra vector in Dirac’s notation.

〈ψ|φ〉 The scalar (inner) product of |ψ〉 and |φ〉

C
n n-dimensional vector space over the filed of complex numbers.

Hn n-dimensional Hilbert space.

∆L(t) Alexander polynomial of link L

δij Kronecker’s delta function

|ψ〉 ket vecor in Dirac’s notation.

|ψ〉〈φ| The outer product of |ψ〉 and |φ〉

|ψ〉 ⊗ |φ〉 The tensor product of |ψ〉 and |φ〉

I, σx, σy, σz The identity and the Pauli matrices:

I ≡




1 0

0 1


 ; σx ≡




0 1

1 0


 ; σy ≡




0 −i

i 0


 ; σz ≡




1 0

0 −1




In The n× n identity matrix

Pr(m) Probability of obtaining m

R The field of real numbers

∑
m Summation over index m
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Z The field of integers

AT Transpose of matrix Amn

A† Complex conjugation of matrix Amn. For instance, if

A =




α1

α2

α3




, then A† =

(
α∗

1 α∗
2 α∗

3

)

c(G) Number of connected components of graph G

CNOT The controlled-NOT gate, its matrix representation is

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




e = 2.718 . . . Euler’s number

E Edge set of a graph

eiα Euler’s formula: eiα = cosα+ i sinα

FL(a, z) Kauffman polynomial of link L

G− e Graph obtained by removing edge e

G/e Graph obtained by contracting edge e
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H,S, T The Hadamard (H), phase (S), and π/8 (T ) matrices for one qubit gates:

H ≡ 1√
2




1 1

1 −1


 ; S ≡




1 0

0 i


 ; T ≡




1 0

0 exp(iπ/8)




i =
√
−1 Imaginary number. Square root of -1.

Mm Measurement operator

PL(ℓ,m) HOPMFLY polynomial of link L

TG(x, y) Tutte polynomial of graph G

V Vertex set of a graph

VL(t) Jones polynomial of link L

w(G) Width of graph G

AQFT Approximate quantum Fourier transform

BQP Bounded error quantum polynomial time

DQC1 Deterministic quantum computation with one quantum bit

FPRAS Fully Polynomial Randomized Approximation Scheme

QFT Quantum Fourier transform

QPE Quantum phase estimation
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