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ABSTRACT

In this dissertation, we consider differential games for multi-agent systems under distributed in-

formation where every agent is only able to acquire information about the others according to a

directed information graph of local communication/sensornetworks. Such games arise naturally

from many applications including mobile robot coordination, power system optimization, multi-

player pursuit-evasion games, etc. Since the admissible strategy of each agent has to conform to

the information graph constraint, the conventional game strategy design approaches based upon

Riccati equation(s) are not applicable because all the agents are required to have the information

of the entire system. Accordingly, the game strategy designunder distributed information is com-

monly known to be challenging. Toward this end, we propose novel open-loop and feedback game

strategy design approaches for Nash equilibrium and noninferior solutions with a focus on linear

quadratic differential games. For the open-loop design, approximate Nash/noninferior game strate-

gies are proposed by integrating distributed state estimation into the open-loop global-information

Nash/noninferior strategies such that, without global information, the distributed game strategies

can be made arbitrarily close to and asymptotically converge over time to the global-information

strategies. For the feedback design, we propose the best achievable performance indices based ap-

proach under which the distributed strategies form a Nash equilibrium or noninferior solution with

respect to a set of performance indices that are the closest to the original indices. This approach

overcomes two issues in the classical optimal output feedback approach: the simultaneous opti-

mization and initial state dependence. The proposed open-loop and feedback design approaches are

applied to an unmanned aerial vehicle formation control problem and a multi-pursuer single-evader

differential game problem, respectively. Simulation results of several scenarios are presented for

illustration.
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CHAPTER 1: INTRODUCTION

In this chapter, the basic background knowledge of differential game theory, multi-agent systems,

and distributed information structures is covered, the motivation of this research is raised, and the

scope of this dissertation is defined.

1.1 Background

1.1.1 Differential Game Theory

The game theory was originated from economics [1] in 1940s and has been widely applied in many

areas such as control systems engineering, military and aerospace engineering, power systems,

communication network, biomedical science, etc. It has been extensively studied and explored

by many researchers in the past decades and becomes a quite mature area nowadays. The game

theory basically deals with situations where two or more players are involved and making deci-

sions to pursue their own objectives which could be their profits, performance, or utility functions

in applications. Each player makes its own decision to achieve certain outcome of its objective

function. This decision is called the player’s strategy. A set that contains all the possible strategies

from which the player can choose in the game is called the player’s admissible strategy set.

During the development of the game theory, different types of games have emerged. Some typical

classifications of the games are introduced as follows:

1. In terms of the time dependence of the strategy, there are static games and dynamic games.

In a static game, every player only makes a one-shot strategy. Moreover, for a two-player

static game, if every player’s admissible strategy set contains a finite number of strategies,
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the game is also called a matrix game. That is because the outcomes corresponding to all

the possible combinations of the two players’ admissible strategies can be put into a matrix

form.

In a dynamic game, every player makes a strategy profile or trajectory as a function of

(continuous or discrete) time for the entire game process. If the players’ state dynamics

are governed by differential equations, then the game is also called a differential game and

the objective functions that the players try to maximize or minimize are usually called the

performance indices.

2. In terms of the players’ willingness to collaborate, there are noncooperative games and co-

operative games.

In a noncooperative game, every player is assumed to focus onpursuing its own objective

only and not to collaborate with others. A typical solution to the noncooperative game is the

well-known Nash equilibrium [2]. The Nash equilibrium can be interpreted as a state where

no player has the intend to unilaterally deviate from its strategy and if it does so, then a loss

will occur in its objective function. Therefore, the Nash equilibrium can be regarded as a

“safe” solution to prevent any player from cheating and is preferred in many applications

of games with noncooperative players. The Nash equilibriumcan be obtained by utilizing

the standard static optimization technique for the static game and by utilizing the optimal

control theory [3] for the dynamic game. Note that the existence or uniqueness of the Nash

equilibrium for a noncooperative game is not always guaranteed.

In a cooperative game, although individual players have their own objective, they are as-

sumed to collaborate with each other to jointly improve their objective functions. Therefore,

a cooperative game are also regarded as a multi-objective optimization problem. A typical

solution to the cooperative game is called the noninferior solution or Pareto optimality [4].

The noninferior solution can be interpreted as a state whereit is impossible to improve any

2



player’s objective function without loss in at least one player’s objective function. To obtain

the noninferior solution, only a single optimization problem needs be solved with the objec-

tive function being a convex combination of all the players’objective functions. For all the

different choices of convex parameters, a noninferior set or Pareto frontier can be generated.

Note that unlike the Nash equilibrium, the player has the intend to deviate from the noninfe-

rior solution unilaterally. As such, the noninferior solution is preferred in the situation where

all the players in the game are restricted to stick with the noninferior strategy or within the

same team.

3. In terms of the strategy making sequence, there are Nash games and Stackelberg games for

noncooperative games. In a Nash game, all the players make decisions simultaneously and

the Nash equilibrium can be obtained as we have already introduced. While in a Stackelberg

game, there exists a sequence of decision making, that is, some of the players will make

decisions first as the leaders and announce their strategiesto the rest of the players, and the

rest of the players as followers will then make decisions to react to the leaders’ announced

strategies. In a Stackelberg game, it is assumed that all thefollowers are rational and will

react to the leaders’ strategies in an optimal way. Knowing that the following will react

optimally, the leaders will naturally announce strategiesthat will optimize their objective

functions. The players’ strategies are said to be Stackelberg strategies. Clearly, the leaders

in a Stackelberg game has the advantage over the followers under the condition that they

have to know the objectives of all the followers. A typical example of the Stackelberg games

is the oligopoly market where there are several big dominated companies as the leaders and

the other small companies as the followers. The big companies usually have information

advantage over the small companies and their policies have great impact on these small

companies.

4. In terms of the relationship among the players’ objectivefunctions, there are zero-sum games
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and nonzero-sum games. In a zero-sum game, the sum of all the players’ objective functions

is equal to zero. Therefore, the total gain in some players’ objective functions is equal to

the total loss in the other players’ objective functions. Therefore, the players have conflict

objectives. In a zero-sum game, the Nash equilibrium is alsoknown as a saddle-point solu-

tion. One typical example of the zero-sum games is the one-pursuer one-evader game where

the pursuer tries to minimize the distance between the evader and itself at the terminal time

while the evader tries to maximize such a distance.

In a nonzero-sum game, the sum of all the players’ objective functions is not equal to zero.

In this research, since we focus on the differential games, in what follows, the historical develop-

ment of the differential games is briefly introduced and the associated literatures are reviewed.

It has been commonly regarded that the introductory work on the differential game theory was done

by Isaacs in 1950s with major applications in military situations and pursuit-evasion games. His

book [5] focuses on the zero-sum differential games and the well-known Hamilton-Jacobi-Isaacs

partial differential equation for deriving the feedback Nash Strategy was proposed. From Isaacs’

pioneering work on, a plenty of results on differential games have been coming out consistently.

Necessary conditions for a certain type of differential games to have a saddle point solution were

derived in [6], where the calculus of variation technique was utilized first time in the differential

games. One of the most important works on nonzero-sum games is [7]. This paper focuses on both

static and differential nonzero-sum games. Three types of solutions were discussed, that is, the

Nash equilibrium, minmax solution, and noninferior solution (later known as the solution to the

cooperative game). The Nash equilibrium of the nonzero-sumlinear quadratic game was obtained

by solving the the coupled differential matrix Riccati equations. In [8], an important property of

the linear quadratic differential games was discovered that the limiting solution of the coupled dif-

ferential Riccati equations does not necessarily become the solution to the game over the infinity
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time. In [9, 10, 11], the uniqueness and existence of the Nashequilibrium for linear quadratic

games were studied. In parallel with the research on differential Nash games, there exist many

research works on differential Stackelberg games. Static and differential Stackelberg game was in-

vestigated in [12, 13]. In [12], the Stackelberg solution was derived for linear quadratic differential

games. In [13], the important property of the Stackelberg solution, the inconsistency, was discussed

and hence it was shown that the well-known Bellman’s optimality principle does not hold for the

Stackelberg games. The existence and uniqueness of the Stackelberg solution were further studied

in [14, 15, 16, 17, 18]. After 1980, the research works started focusing on the potential applications

of the differential game theory to all kinds of real life applications. In [19], the idea of differential

game theory was successfully applied to theH∞ robust optimal control design problem where the

designer is regarded as one player and the noise is regarded as the other player. In [20], the output

consensus problem was formulated and solved under the cooperative differential game framework.

In [21], a problem where a group of agents as defenders are trying to protect an asset from being

destroyed by an intruder was considered and solved as a linear quadratic differential game. In [22],

the online solution for the differential games was considered using the reinforcement learning. In

[23], the interaction between the microgrid and main grid inthe future smart grid was formulated

as a discrete time Stackelberg game and the optimal generation dispatch are obtained. Among a va-

riety of interesting applications of the differential gametheory, the pursuit-evasion game has been

widely studied for decades. A pursuit-evasion game basically models the process where several

pursuers try to chase several evaders for a certain period oftime, while the evaders try to escape

at the same time. Solving a pursuit-evasion game essentially involves developing strategies for

the pursuers and evaders such that their prescribed performance indices are optimized. After the

pioneering work [5], the saddle point solutions for a type ofzero-sum single-pursuer single-evader

games were considered in [24]. Nonzero-sum pursuit-evasion games were introduced and investi-

gated as an example of the Nash equilibrium strategies in [7]and as an example of leader-follower

Stackelberg strategies in [12]. In [25], a two-pursuer one-evader game was considered. In [26],
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a two-evader one-pursuer cooperative defending game was considered. In [27], the structured

strategies on improving the cooperative pursuit was discussed. In [28, 29, 30], pursuit-evasion

games with formation control that makes pursuers spread around the evader were studied. In [31],

a homicidal chauffeur game with collaborative pursuers wasdiscussed. In [32, 33], a derivative

based strategy design approach was proposed for multi-player pursuit-evasion games. In [34],

pursuit-evasion games integrating communication theory to deal with the spatial jamming problem

was discussed. In [35, 36], multi-player pursuit-evasion game with evaders having higher speed

than the pursuers was considered. The conventional multi-player pursuit-evasion games assume

that either the pursuers or the evaders are able to have global information of the overall system,

that is, every pursuer is able to observe all the other pursuers and evaders, and every evader is

able to observe all the other pursuers and evaders. However,in many applications of the pursuit-

evasion game, the players (either the pursuers or the evaders) might only be able to have limited

information of the overall system. For instance, due to the sensing range capability or the obstacles

in the environment, each player might have a limited capability to observe a subset of the players

in the game. This type of multi-player pursuit-evasion games with incomplete information were

investigated in [37, 38, 39, 40, 41]. A short survey [42] is recommended as a dedicated report on

the pursuit-evasion games.

1.1.2 Multi-Agent Systems

As the modern system becomes more complex and large-scaled,a single system usually consist of

several subsystems (or agents). This type of systems are called multi-agent systems. The control

objective of such a system is to coordinate the subsystems tocomplete a certain task while at the

same time maintaining the stability of the overall system. In most of the multi-agent systems, to

achieve the coordination among the agents, there usually exists local communication or sensor

networks such that the agents are able to exchange certain information with each others through
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the networks. In recent years, there is a surge of research works on such systems with the potential

applications in multi-vehicle coordination, signal synchronization, distributed generator control in

the future smart grid, etc. In what follows, we will briefly review the research subjects and existing

results on the multi-agent systems.

A large part of the research works on multi-agent systems arededicated to the consensus problem

[43, 44, 45]. This problem is essentially designing controlinputs for the agents such that their out-

puts under these controls become identical as time goes to infinite. The control design to achieve

a consensus in the multi-agent systems is also known as the cooperative control design [46] which

is generally a control law that utilizes the information available to individual agents only. The

consensus problem can be better illustrated by the following typical applications. A rendezvous

problems is a consensus problem where a group of agents (e.g.mobile vehicles) needs be con-

trolled to arrive at a common location in a physical environment. Note that the final rendezvous

location achieved by the agents does not need to be predetermined under the typical consensus

algorithm or cooperative control law. A flocking problem is aconsensus problem where a group of

agents (e.g. mobile vehicles) needs be controlled to achieve a common constant velocity. Note that

similar to the rendezvous problem, the final common velocityachieved by the agents does not need

to be predetermined under the typical consensus algorithm or cooperative control law. A formation

control problem [47, 48, 49] is a consensus problem where a group of agents needs be controlled

to form a prescribed formation. The formation control problem can be regarded as a combination

of a rendezvous problem and flocking problem because the formation control problem is a ren-

dezvous problem where the prescribed formation distance between any two agents is zero and the

formation control problem is also a flocking problem where agents’ velocities must be identical

to preserve the formation. A synchronization problem [50, 51, 52, 53] is a consensus problem

where the agents’ outputs need be controlled to track a prescribed reference trajectory. Unlike

the previous rendezvous, flocking, and formation control problems where the consensus value is
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identical and constant as times goes to infinity, the reference trajectory as the consensus value of

the synchronization problem is usually time-varying. Synchronization problems has great poten-

tial applications in power generation industry in terms of synchronization of the voltage, phase,

or frequency among a large number of distributed generatorsin the future smart grid. As we can

clearly see from the above applications, the consensus is a “stable” status of a multi-agent system,

however, is different from the conventional concept of stability where all the states or outputs of the

agents vanish as the time goes to infinite. Therefore, to distinguish with the conventional concept,

the stability for the consensus of multi-agent systems is called the cooperative stability, which is a

status where an agreement on all the agents’ states of interest is achieved.

Another research area is dedicated to the optimal control design in the multi-agent systems. The

optimal control design for a multi-agent system is essentially finding the control input compatible

with the communication or sensor network for each and every agent such that a given performance

index is minimized. Due to the communication or sensor network constraint, the classical optimal

control design approach [3] is generally not applicable. For instance, since the linear feedback

control for each agent has to be structured, the well-known Riccati equation approach for the

linear quadratic optimal control is not applicable becausethe feedback gain matrix obtained by

this approach is a full matrix in general. As such, a different optimal control design approach

must be proposed for multi-agent systems. In what follows, we briefly introduce major research

directions toward solving this problem (with the focus on linear systems). There are approaches

based on optimal output feedback control design. Since the linear feedback control in a multi-

agent system can be treated as multiple control inputs with different output feedback channels,

the problem can be solved under the framework of optimal output feedback control design. The

pioneering works on the optimal output feedback control design are [54, 55] where the basic idea

is to parameterize the gain matrix and optimize it directly with respect to the given performance

index. In these papers, an gradient based iterative algorithm for computing the optimal feedback

8



matrix was proposed for the finite and infinite time horizon. The computational complexity of this

algorithm was later shown to be NP-hard in [56]. A comprehensive survey on the optimal output

feedback control was included in [57]. Applying the optimaloutput feedback control design to

the multi-agent systems was discussed in [58] in terms of optimal decentralized control design and

a numerical algorithm similar to the one in [54] was proposed. There are approaches based on

the transformation technique. In [59], the optimal decentralized control for a string of vehicles

was derived using the spatial transformation technique, where the dynamics and the information

exchange pattern were assumed to be identical for every vehicle. In [60, 61], the transformation

technique was further explored and the property of identical agents’ dynamics and information

exchange pattern was defined as spatially invariance. Thereare approaches based on the convex

optimization technique. Since the optimal control design for multi-agent systems is generally a

non-convex problem, the conventional convex optimizationtools cannot be applied. In [62, 63],

this non-convex problem was recasted as a convex problem under rather strict conditions. Other

approaches include the graph approach [64] and linear quadratic approach for identical systems

[65]. The optimal control problem for multi-agent system has been investigated for a long time

and commonly regarded as a very hard problem.

There are research works that utilize the differential gametheory to solve the multi-agent control

problem. In [66], the formation control problem was formulated as a noncooperative differential

game and the receding horizon Nash equilibrium was solved. In [67], the consensus problem was

formulated as a cooperative differential game and the Nash bargain solution among the Pareto-

efficient solutions was found using linear matrix inequality (LMI) approach. In [68], a zero-sum

game was formulated between the sensor network and an intelligent moving target, and a robust

target position estimator was obtained.

There are many other research areas on multi-agent systems,including robust control, time-delay

control, network optimization, etc, which cannot be fully covered in this dissertation. A compre-
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hensive review on the multi-agent systems can be found in [69].

1.1.3 Distributed Information Structures

An important factor of a differential game is each player’s information structure. In a differential

game, each player’s information structure is extremely important because its strategy profile re-

sulted from the different information structures can be completely different. There are two typical

information structures. One is the open-loop information structure and the other is the feedback

information structure. Consequently, we call the open-loop strategy for the player’s strategy un-

der open-loop information structure and feedback strategyfor the player’s strategy under feedback

information structure.

In the conventional game, the information available to the player is assumed to be “global” where

every player is assumed to have the information of all the other players in the game. Therefore, in

this case, the player is under open-loop information structure if only the global information of the

system at the initial time is available to it along the game process as shown in Figure 1.1.

t
0

Global Information

Figure 1.1: Global open-loop information structure

The player is under feedback information structure if the global information of the system is avail-
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able to it at every instant of time along the game process as shown in Figure 1.2.

t0

…... …...

Global InformationGlobal Information Global Information

Figure 1.2: Global feedback information structure

If the game takes place in a large-scale system such as a multi-agent system, each agent is only

able to have the information of a subset of (possibly neighboring) agents through the local com-

munication or sensor networks. In this situation, since theglobal information is not available any

more, the players are said to have distributed information.Therefore, we can extend the concepts

of open-loop and feedback information structures under distributed information. The distributed

open-loop information structure is shown in Figure 1.3 where the blue subset inside the circle (the

global information) stands for the distributed information available to the player.

t
0

Distributed 

Information

Distributed 

Information

Figure 1.3: Distributed open-loop information structure
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The distributed feedback information structure is shown inFigure 1.4 where the blue subset inside

the circle (the global information) stands for the distributed information available to the player.

t0

…... …...

Distributed 

Information

Distributed 

Information

Distributed 

Information

Distributed 

Information

Distributed 

Information

Distributed 

Information

Figure 1.4: Distributed feedback information structure

Moreover, the strategy under distributed open-loop information structure is called the distributed

open-loop strategy and the strategy under distributed feedback information is called the distributed

feedback strategy.

1.2 Motivation and Scope

The motivation of this dissertation lies in the following two aspects.

1. The first aspect is that most of the existing results on differential games assume that every

player has global information and the games under distributed information have not been

well studied, which is in fact quite common and important in many applications involving

large-scale systems, such as multi-agent systems.

2. The second aspect is that in conventional multi-agent control design problem, the agents are

assumed to pursue a goal of optimizing a common performance index. However, it is of

12



practical interest to consider a situation where individual agents try to optimize their own

objective functions.

The above two aspects actually lead to considering the differential game problem for multi-agent

systems under distributed information. So far, there are very few research works in this area.

Therefore, it is in a great demand to propose a strategy design approach such that each agent only

utilizes the information available to it. In this dissertation, we will focus on the linear quadratic

differential games in the multi-agent system where the dynamics of each agent is governed by

a linear differential equation and the performance index ofeach agent is in the quadratic form.

We will consider the design approaches of Nash equilibrium and noninferior solutions under both

distributed open-loop and feedback information structures. The remainder of this dissertation is

organized as follows:

In Chapter 2, the linear quadratic differential games in themulti-agent system under distributed

information is formulated.

In Chapter 3, the open-loop strategy design based upon Riccati equation is introduced first. A

distributed strategy design approach is then proposed by integrating a novel distributed state esti-

mation law.

In Chapter 4, the feedback strategy design based upon Riccati equation and the classical design

based upon optimal output feedback control are introduced first. A distributed strategy design

approach is then proposed based on a novel concept of the bestachievable performance indices.

In Chapter 5, the proposed approaches are applied to an unmanned aerial vehicle formation control

problem and a multi-pursuer single-evader differential game problem with limited observations.

13



In Chapter 6, the dissertation is concluded with the summaryof the results obtained in this research

and the future research directions.
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CHAPTER 2: PROBLEM FORMULATION

In this chapter, the linear quadratic differential game in an N-agent system is formulated and

formal definitions of related concepts are given.

2.1 System Dynamics

There areN agents who have decoupled linear dynamics and given by

ẋi(t) = Ai(t)xi(t) + B̂i(t)ui(t) (2.1a)

yi(t) = Ci(t)xi(t), (2.1b)

for i = 1, · · · , N , wherexi ∈ R
ni is the state vector,ui ∈ R

mi is the control input,yi ∈ R
r is the

output vector. MatricesAi(t), B̂i(t), Ci(t) are time-varying and of proper dimensions. Since each

agent is an independent entity in real life applications, weassume that{Ai, Bi} is a controllable

pair, matrixBi is of full column rank (meaning no redundant input), and matrix Ci is of full row

rank (meaning no redundant output). Agenti’s initial state is given byxi0 = xi(0). Note that all

the agents’ outputs have the same dimension, which is normally required by most of the multi-

agent system applications such as formation control, synchronization, pursuit-evasion games, etc.

Denotingx = [xT
1 · · · xT

N ]
T andy = [yT1 · · · yTN ]

T , the overall system can be expressed more

compactly as

ẋ(t) = A(t)x(t) +
N∑

j=1

Bj(t)uj(t) (2.2a)

y(t) = C(t)x(t), (2.2b)
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where

A(t) =









A1(t)

. . .

AN(t)









, Bi(t) =















0n1×mi

...

B̂i(t)

...

0nN×mi















, C(t) =









C1(t)

. . .

CN(t)









, (2.3)

where0nj×mi
is thenj × mi zero matrix forj = 1, · · · , N and matrixB̂i(t) is theith block of

matrixBi(t).

2.2 Information Structure

The agents in the system is able to exchange information withothers through the communica-

tion/sensor network. This information exchange pattern orinformation flow among the agents is

often described by a directed information graph denoted byG(t) = (V, E(t)) where nodevi ∈ V

represents agenti for i = 1, · · · , N and edgeeij ∈ E represents the directional information flow

from nodej to nodei (it is always true thateii ∈ E since agenti can always have its own in-

formation). If the information exchange pattern is fixed over time, then the graph is fixed. If the

information exchange pattern changes over time (due to possible communication failure or obsta-

cles in the environment, etc.), then the graph is time-varying. In this dissertation, we primarily

consider the fixed information exchange pattern and hence wemake the following assumption.

Assumption 2.1.The information graph in the multi-agent system is fixed.

For example, Figure 2.1 shows a fixed information graph amongfour agents.
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2

1

3
4

Figure 2.1: Information graph among four agents

Clearly, in this graph,V = {v1, v2, v3, v4} andE = {e11, e22, e33, e44, e21, e31, e41, e23, e34}. Several

important concepts related with the information graph are introduced as follows:

Definition 2.1 (Path). In directed graphG, a path from nodevi to nodevj is a sequence of directed

edges that connect from nodei to nodej.

Based on the definition of path, the globally reachable node can be defined as follows:

Definition 2.2 (Globally Reachable Node). In directed graphG, nodevi is globally reachable if

there exist paths from nodevi to nodevj for all j = 1, · · · , N, j 6= i.

In some literature, the globally reachable node is also regarded as the root node of the spanning

tree of the graph. Furthermore, based on the definition of globally reachable node, the graph

connectivity is defined as follows:

Definition 2.3 (Connected Graph). Directed graphG is connected if it contains at least one glob-

ally reachable node.
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One important matrix associated in the graph theory is the Laplacian matrix [70]. This matrix is

denoted asL = [Lij ], where

Lij =







−lij if eij ∈ E andi 6= j

∑N
j=1,j 6=i lik if i = j

0 otherwise

, (2.4)

wherelij is a positive scalar. For example, the Laplacian matrix associated with the graph in Figure

2.1 is given by

L =












0 0 0 0

−l21 l21 + l23 −l23 0

−l31 0 l31 + l34 −l34

−l41 0 0 l41












.

The Laplacian matrix has numerous well-known properties, two of which are presented as follows:

Proposition 2.1. The Laplacian matrix has the following properties:

1. If a directed graph is connected, then the null space of theassociated Laplacian matrix is

spanned by a single vector1N , where1N is anN × 1 vector with all the entries equal to 1.

2. All the eigenvalues of the Laplacian matrix associated with any directed graph have non-

negative real parts.

The above concepts of the graph theory in fact describe the distributed information among the

agents. For the differential game in theN-agent system, the distributed open-loop and feedback

information structure can be formally defined as follows:

• agenti is under theopen-loopinformation structure if its strategy at timet can only depends
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on the initial output of agentj, yj(0), for all j such thateij ∈ E on the directed information

graphG.

• agenti is under thefeedbackinformation structure if its strategy at timet can only depend

on the output of agentj, yj(t), at the current timet for all j such thateij ∈ E on the directed

information graphG.

2.3 Performance Indices

In the multi-agent system, each agent tries to minimize its own performance index. In this disser-

tation, we consider the following performance indices for the agents:

Ji =
1

2
‖y(tf)‖

2
Fi
+

1

2

∫ tf

0

[‖y(t)‖2Qi(t)
+ ‖ui(t)‖

2
Ri(t)

]dt ∀i = 1, · · · , N. (2.5)

where wheretf is the terminal time of the game,‖ui(t)‖
2
Ri(t)

= uT
i (t)Ri(t)ui(t), and matrixRi(t)

is positive definite to ensure the convexity. MatricesFi andQi are usually positive semi-definite,

however, some exception exists (e.g. pursuit-evasion games). The above performance indices

can be utilized to characterize a plenty of applications in multi-agent systems. Several typical

applications of the multi-agent system characterized by performance index (2.5) with the different

choices of matricesFi andQi are presented and explained as follows.

1. Output Regulation. In this application, matricesFi, Qi, andRi are positive definite for all

i = 1, · · · , N . A typical choice of the coefficients for the output regulation that takes the

information graph into account is

‖y(tf)‖
2
Fi

=
∑

eij∈E

fij‖yj(tf)‖
2
2 and ‖y(t)‖2Qi(t)

=
∑

eij∈E

qij(t)‖yj(t)‖
2
2.
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where‖ · ‖2 stands for the Euclidean norm andfij, qij(t) are positive scalars for allj =

1, · · · , N and all t ∈ [0, tf ]. In this case, performance index (2.5) essentially means that

agenti tries to drive the entire output vector to zero while at the same time minimizing its

control effort over the entire process.

2. Output Consensus. In this application, matricesFi andQi are positive semi-definite for all

i = 1, · · · , N and matrixRi is positive definite for alli = 1, · · · , N . A typical choice of the

coefficients for the output consensus that takes the information graph into account is

‖y(tf)‖
2
Fi

=
∑

eij∈E

fij‖yi(tf )− yj(tf )‖
2
2 and ‖y(t)‖2Qi(t)

=
∑

eij∈E

qij(t)‖yi(t)− yj(t)‖
2
2.

In this case, performance index (2.5) essentially means that agenti tries to drive all the output

vectors (or part of the output vectors) to a common value while at the same time minimizing

its control effort over the entire process.

3. Multi-Pursuit Single-Evasion Game. Suppose that the outputyi stands for agenti’s posi-

tion and agents2 toN (pursuers) try to chase agent1 (evader) who tries to evade the pursuers.

In this situation, the performance indices of the agents aregiven by (2.5) where matricesF1

andQ1 are negative definite, matrixR1 is positive definite, matricesFi andQi are positive

definite for all i = 2, · · · , N , and matrixRi is positive definite for alli = 2, · · · , N . A

typical choice of the coefficients is

‖y(tf)‖
2
Fi

= fi‖yi(tf )− y1(tf )‖
2
2, ‖y(tf)‖

2
F1

= −

N∑

j=1

f1j‖y1(tf )− yj(tf)‖
2
2,

‖y(t)‖2Qi(t)
= qi(t)‖yi(t)− y1(t)‖

2
2, ‖y(t)‖2Q1(t)

= −
N∑

j=1

q1j(t)‖y1(t)− yj(t)‖
2
2,

wherefi, qi, f1j , andq1j are positive scalars for allj = 2, · · · , N . In this case, performance

index J1 essentially means that the evader tries to maximize its distances to the pursuers
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while at the same time minimizing its control effort over theentire process and on the other

hand, performance indexJi for all i = 2, · · · , N essentially means that the pursueri tries to

minimize its distances to the evader while at the same time minimizing its control effort over

the entire process.

2.4 Game Solutions

Given the system equation in (2.2) and performance indices in (2.5), a differential game problem

is formulated. In this dissertation, we consider both the noncooperative game and the cooperative

game for the multi-agent system and the different types of solutions to these games are introduced

as follows. If the differential game for theN-agent system is noncooperative, the Nash equilibrium

[2] is defined as follows:

Definition 2.4 (Nash Equilibrium). For the differential game in theN-agent system defined by

system dynamics in (2.2) and performance indices in (2.5), the strategiesu∗
1, · · · , u

∗
N form a Nash

equilibrium if the inequalities

Ji(u
∗
1, · · · , u

∗
N) ≤ Ji(u

∗
1, · · · , u

∗
i−1, ui, u

∗
i+1, u

∗
N) ∀ui ∈ Ui ∀i = 1, · · · , N (2.6)

hold, whereUi is agenti’s admissible strategy set.

Moreover, theε-Nash equilibrium for the noncooperative differential game for theN-agent system

is defined as follows:

Definition 2.5 (ε-Nash equilibrium). Given the differential game in anN-agent system defined by

system dynamics in (3.11) and performance indices in (5.9) and a real non-negative parameter

ε, the agents’ strategies are said to form anε-Nash equilibrium if it is not possible for any agent
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to reduce more thanε in its performance index value by unilaterally deviating from its strategy.

Formally, strategiesu1, · · · , uN form anε-Nash Equilibrium if the inequalities

Ji(u
∗
1, · · · , u

∗
N) ≤ Ji(u

∗
1, · · · , u

∗
i−1, ui, u

∗
i+1, · · · , u

∗
N) + ε ∀ui ∈ Ui, i = 1, · · · , N. (2.7)

hold, whereUi is agenti’s admissible strategy set.

It is clear that every Nash Equilibrium is equivalent to anε-Nash equilibrium whereε = 0. If the

differential game for theN-agent system is cooperative, the noninferior solution (also known as

the Pareto optimality solution) is defined as follows:

Definition 2.6 (Noninferior Solution). For the differential game in anN-agent system defined

by system dynamics in (2.2) and performance indices in (2.5), the strategiesu∗
1, · · · , u

∗
N form a

noninferior solution if there existsi ∈ {1, · · · , N} such that the inequalities

Ji(u1, · · · , uN) ≤ Ji(u
∗
1, · · · , u

∗
N) ∀u1 ∈ U1, · · · , uN ∈ UN ∀i = 1, · · · , N (2.8)

do not hold with at least one strict inequality, whereUi is agenti’s admissible strategy set.

The noninferior solution can be interpreted as a solution inwhich any changes made do not help

improve every agent’s performance index value.
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CHAPTER 3: OPEN-LOOP GAME STRATEGIES

In this chapter, we consider the open-loop game strategy design for both the Nash equilibrium and

noninferior solution in the formulatedN-agent system. We will first introduce the existing Riccati

equation approach and then present the proposed approach based on a distributed state estimation

algorithm.

3.1 Riccati Equation Approach

To derive the open-loop game strategy, we utilize the well-known Pontryagin’s minimum principle

[71] which yields the necessary optimality conditions for both the Nash equilibrium strategy and

noninferior solution strategy. These two types of strategies are presented as follows:

Open-loop Nash Equilibrium Strategy: The open-loop Nash equilibrium under the linear quadratic

framework is well-known [7] and the result is presented as the following theorem without proof.

Theorem 3.1.For the differential game in anN-agent system defined by system dynamics in (2.2)

and performance indices in (2.5), the strategies

ui(t) = −R−1
i (t)BT

i (t)Pi(t)φ(t, 0)x(0) ∀i = 1, · · · , N (3.1)

form an open-loop Nash equilibrium, where matrixφ(t, 0) is the closed-loop state transition matrix

defined byφ(t, 0) = eĀt andĀ = A −
∑N

j=1BjR
−1
j BT

j Pj , and matrixPi(t) is the solution to the

following coupled differential Riccati equations

Ṗi + PiA+ ATPi − Pi

N∑

j=1

BjR
−1
j BT

j Pj + CT
i QiCi = 0 ∀i = 1, · · · , N (3.2)
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with the boundary conditionPi(tf ) = CT (tf )FiC(tf).

Open-loop Noninferior Solution Strategy: The noninferior solution strategy is essentially de-

rived by minimizing the following convex combination of allthe agents’ performance indices

J =
N∑

j=1

αjJj (3.3)

where0 ≤ αj ≤ 1 and
∑N

j=1 αj = 1. This minimization is essentially a optimal control prob-

lem with parametersα1, · · · , αN . The open-loop noninferior solution under the linear quadratic

framework was obtained in [7] and the result is presented as the following theorem without proof.

Theorem 3.2. For the differential game in anN-agent system environment defined by system dy-

namics in (2.2) and performance indices in (2.5), the strategies

ui(t) = −
1

αi
R−1

i (t)BT
i (t)P (t)φ(t, 0)x(0) ∀i = 1, · · · , N (3.4)

form an open-loop noninferior solution, where matrixφ(t, 0) is the closed-loop state transition

matrix defined byφ(t, 0) = eĀt andĀ = A−
∑N

j=1
1
αj
BjR

−1
j BT

j P , and matrixP (t) is the solution

to the following differential Riccati equation

Ṗ + PA+ ATP −

N∑

j=1

1

αj
PBjR

−1
j BjP +

N∑

j=1

αjC
T
j QjCj = 0 (3.5)

with the boundary conditionP (tf) =
∑N

j=1 αjC
T
j (tf )FjCj(tf).

Note that the above approaches requires to solve for the matrix Pi(t) from the coupled differential

Riccati equations in (3.1) backward in time or matrixP (t) from the differential Riccati equation in

(3.5) backward in time. After solving the differential equation (usually with the aid of computer),
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the matrix solution will generally become a full matrix withall the entries being nonzero. There-

fore, by looking at the expression in (3.1) or (3.4), individual agents in the game needs to have the

complete knowledge of the initial state information,x(0), in order to implement their open-loop

Nash equilibrium strategies or noninferior solution strategies. In the conventional game problem,

this requirement has no problem because it is always assume that all the required information is

available for each and every player. However, if the differential game takes place in a multi-agent

system under distributed information, then agenti can acquire the information of the agentj only

if eij ∈ E and hence is not able to implement the strategy (3.1) or (3.4)derived using the Riccati

equation(s) approach.

3.2 Distributed Game Strategy Design

Realizing that the open-loop Nash equilibrium and noninferior solution expressed in (3.1) and (3.4)

are not implementable in the multi-agent system under distributed information, a new approach for

the open-loop Nash equilibrium and noninferior solution design must be proposed for the agents

such that they can carry it out to accommodate the distributed information. To achieve this, first of

all, the performance needs be well structured according to the information graph among the agents.

We define a block diagonal matrixDi ∈ R
Nr×Nr as follows:

Di =
∑

eij∈E

(djd
T
j )⊗ Ir ∀i = 1, · · · , N, (3.6)

where⊗ is the Kronecker product andIr is ther× r identity matrix. The thejth diagonal block is

equal toIr if eij ∈ E and 0 ifeij /∈ E . For instance, the matricesD1, D2, D3, D4 for the information
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graph shown in Figure 2.1 are

D1 =












Ir 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0












, D2 =












Ir 0 0 0

0 Ir 0 0

0 0 Ir 0

0 0 0 0












, D3 =












Ir 0 0 0

0 0 0 0

0 0 Ir 0

0 0 0 Ir












, D4 =












Ir 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ir












,

respectively. The product of(Diy) is a vector with thejth block entry toyj if eij ∈ E and 0 if

eij /∈ E . Therefore, we consider the structured performance index (2.5) with matrices

Fi = DT
i F̃iDi (3.7)

andQi = 0, which can be expressed as

Ji =
1

2
‖y(tf)‖

2
DT

i F̃iDi
+

1

2

∫ tf

0

‖ui(t)‖
2
Ri(t)

dt ∀i = 1, · · · , N. (3.8)

where matrixF̃i can be selected appropriately to achieve desired control objective of agenti as

discussed in Section 2.3. Basically, performance index (3.8) means that agenti tries to minimize

a cost term that only involves the outputs of agentj for all eij ∈ E at the terminal time while at

the same time minimizing its control effort over the entire game process. For the differential game

defined by system (2.2) and performance indices (3.8), it will turn out that the open-loop Nash

equilibrium and noninferior solution have explicit expressions and can be utilized to construct a

distributed strategy synthesis algorithm under certain condition. First of all, we define a new state

vector as

zi = Ci(t)φi(tf , t)xi(t) (3.9)
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whereφi(tf , t) = eAi(tf−t). Differentiating the above equation with respect tot and recalling

system dynamics in (2.1) yields:

żi =Ciφ̇ixi + Ciφiẋi = B′
i(t)ui, (3.10)

whereB′
i(t) = Ciφi(tf , t)B̂i. Denotingz = [zT1 · · · zTN ]

T , the system dynamics can be expressed

more compactly as follows:

ż =









B′
1u1

...

B′
NuN









=

N∑

j=1

B̃juj (3.11)

whereB̃j(t) = (dj ⊗ Ir)B
′
j(t) anddj is anN × 1 vector with thejth entry equal to 1 and the other

entries equal to 0. Since it is clear thatz(tf ) = y(tf), performance indices in (3.8) can be also

expressed as

Ji =
1

2
‖z(tf )‖

2
Fi
+

1

2

∫ tf

0

‖ui(t)‖
2
Ri(t)

dt ∀i = 1, · · · , N. (3.12)

where matrixFi is as defined in (3.7).

3.2.1 Nash Strategy Design

The open-loop Nash equilibrium can be derived using Pontryagin’s minimum principle and is

presented as follows.

Theorem 3.3. For the differential game in anN-agent system under distributed information de-
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fined by system dynamics in (3.11) and performance indices in(5.9), the strategies

ui =−R−1
i B̃T

i D
T
i F̃iDiM

−1z(0) (3.13)

for i = 1, · · · , N form an open-loop Nash equilibrium if matrixM defined by

M = INr +
N∑

j=1

SjFj, (3.14a)

Sj =

∫ tf

0

B̃j(t)R
−1
j (t)B̃T

j (t)dt, (3.14b)

is invertible.

Proof. We define the Hamiltonian for agenti as

Hi =
1

2
‖ui‖

2
Ri

+ λT
i

N∑

j=1

B̃juj

where vectorλi ∈ R
Nr is the Lagrangian multiplier. Since the second order partial derivative of

Hi with respect toui is equal toRi and hence is positive define, the following conditions forui to

minimize the performance index are necessary and sufficient

ż =
∂Hi

∂λi

=
N∑

j=1

B̃juj, (3.15a)

λ̇i = −
∂Hi

∂z
= 0, λi(tf) = Fiz(tf ), (3.15b)

∂Hi

∂ui

= Riui + B̃T
i λi = 0. (3.15c)

Condition (3.15b) indicates thatλi is a constant vector and hence

λi(t) = Fiz(tf ) ∀t ∈ [0, tf ]
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From (3.15c), we obtain

ui =− R−1
i B̃T

i λi = −R−1
i B̃T

i Fiz(tf ) = −R−1
i B̃T

i D
T
i F̃iDiz(tf ). (3.16)

Substituting (3.16) into (3.15a) and integrating both sides from0 to tf yield

(

INr +

N∑

j=1

SjFj

)

z(tf ) =z(0)

Mz(tf ) =z(0) (3.17)

where matricesM andSj are defined in (3.14). Therefore, if the matrixM is invertible, then

z(tf ) = M−1z(0). (3.18)

Substituting (3.18) into (3.16) yields the open-loop Nash strategy (3.13).

Note thatM−1 in (3.13) is generally a full matrix. Therefore, implementing open-loop Nash

strategyui in (3.13) will still requires every agent to have the complete knowledge of the initial

statez(0) = [zT1 (0), · · · , z
T
N (0)]

T . However, it is worthwhile noting that if we define a new vector

z̃ = [z̃T1 · · · z̃TN ]
T such thatz̃ = M−1z(0), then the strategyui expressed in (3.13) has an

interesting distributed property, that is, agenti is able to implement (3.13) as long as agentj

sends its the information of̃zj to agenti for all eij ∈ E because the productDiM
−1z(0) = Diz̃ =

∑

eij∈E
dj ⊗ z̃j in (3.13) only needs the information ofz̃j for all eij ∈ E . Therefore, in order for the

agents to obtain the value ofz̃ in a distributed manner, the basic idea is to let the agents exchange

the estimates denoted byzf1 , · · · , z
f
N through the communication network and make these estimates

asymptotically converge to the actual value ofz̃1, · · · , z̃N . Toward that end, we have the following

result.
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Theorem 3.4. For the differential game in anN-agent system environment defined by system dy-

namics in (3.11) and performance indices in (5.9), if

1. matrix(−M) in (3.14a) is Hurwitz (all the eigenvalues have negative real parts) and

2. agenti updates its state estimate,zfi ∈ R
r, for all i = 1, · · · , N according to

żfi = g
[

zi(0)− zfi − (dTi ⊗ Ir)SiD
T
i F̃iDiz

f
]

(3.19)

from any initial conditionzfi (0), whereg is a positive scalar andzf = [(zf1 )
T · · · (zfN)

T ]T ,

then

lim
t→∞

zfi (t) = (dTi ⊗ Ir)M
−1z(0) = z̃i(tf). (3.20)

Proof. Stacking equation (3.19) fromi = 1 to i = N yields

żf =g

[

z(0)− zf −

N∑

j=1

SjFjz
f

]

=g
[
z(0)−Mzf

]
. (3.21)

where matrixM is defined in (3.14a). If matrix(−M) is Hurwitz, linear system (3.21) with

respect tozf is asymptotically stable starting from any initial conditionzf (0) andzf asymptotically

converges to the equilibrium of the differential equation (3.21), that is,

lim
t→∞

zf (t) = M−1z(0).

Multiplying (dTi ⊗ Ir) on both sides of the above equation yields (3.20), indicating that agenti’s

state estimate,zfi (t), converges tõzi ast goes to infinity.
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Note that to carry out the estimation law (3.19), agenti only needs to

• retain its private information:zi(0), Si, Fi,

• sendits state estimatezfi to agentj if eji ∈ E , and

• receivethe state estimate(s)zfj from agentj for all eij ∈ E because the product(Diz
f ) in

(3.19) is a function ofzfj for all eij ∈ E only.

Since it is better to make the distributed state estimation algorithm (3.19) converge fast, one can

increase the positive scalarg to achieve satisfactory convergence speed. Note that to successfully

implement the above state estimation law (3.19), a criticalcondition is that all the eigenvalues of

matrix M defined in (3.14a) have to have positive real parts. This condition appears to be quite

stringent, however, this condition can be satisfied in many multi-agent system applications, such

as the rendezvous problem and formation control problem. Note that one important feature of the

proposed algorithm is that to implement it, every agent doesnot need to know the other agents’

system dynamics, performance indices, or the overall graphconnection. This fully distributed

feature of the proposed approach is preferred in many real life applications.

With this distributed state estimation law, one possible way to implement the open-loop Nash strat-

egy is to let all the agents in the system communicate for a while until a satisfactory convergent

value of the state, saȳzf , is reached before the game starts. The agents will then implement the

open-loop Nash strategy expressed in (3.13) withDiM
−1z(0) replaced byDiz̄

f . Such a design

approach can be regarded as an offline computation among the agents. Although the offline ap-

proach provides accurate enough open-loop Nash strategy, it may not be applicable to the situation

that requires the real-time implementation. To overcome this issue, combining the open-loop Nash

strategy expressed in (3.16) along with the state estimation algorithm (3.19), an online open-loop
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Nash strategy design algorithm is proposed as follows:.

żfi = g
[

zi(0)− zfi − (dTi ⊗ Ir)SiD
T
i F̃iDiz

f
]

(3.22a)

ui = −R−1
i B̃T

i D
T
i F̃iDiz

f (3.22b)

for all i = 1, · · · , N . Since differential equation (3.22a) is asymptotically stable, the strategy

(3.22b) is actually an approximate of the actual open-loop Nash strategy in the early (transient)

stage of the game and becomes sufficiently close to the actualopen-loop Nash strategy thereafter.

Therefore, the inequalities (2.6) in the definition of Nash equilibrium in fact does not hold un-

der this online computing strategy and the agents can have the intend to deviate unilaterally. To

quantify the agents’ willingness to unilaterally deviate from the proposed strategy in (3.22), we

utilize the concept ofε-Nash equilibrium in Definition 2.5. In what follows, the proposed online

computing strategies in (3.22) will be shown to form anε-Nash equilibrium and the value ofε will

be derived. First of all, we present the following lemmas:

Lemma 3.1. All the eigenvalues of matrix

Sjj = (dTj ⊗ Ir)SjD
T
j F̃j(dj ⊗ Ir) (3.23)

has nonnegative real parts for allj = 1, · · · , N where matrixSj is defined in (3.14b).

Proof. Substituting (3.14b) into (3.23) yields

Sjj = (dTj ⊗ Ir)Sj(dj ⊗ Ir) = (dTj ⊗ Ir)

∫ tf

0

B̃j(t)R
−1
j (t)B̃T

j (t)dtD
T
j F̃j(dj ⊗ Ik).
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Due to the definition ofDj in (3.6) andB̃j = (dj ⊗ Ir)B
′
j, the above equation becomes

Sjj =

∫ tf

0

B′
j(t)R

−1
j (t)(B′

j)
T (t)dt

︸ ︷︷ ︸

a

(dTj ⊗ Ir)F̃j(dj ⊗ Ik)
︸ ︷︷ ︸

b

.

Since both terma and termb are positive semi-definite, all the eigenvalues of matrixSjj have

nonnegative real parts.

Lemma 3.2. If (−M) is Hurwitz for matrixM defined in (3.14a), supposing that matrixP is the

unique positive definite solution to the Lyapunov equation

−MTP − PM = −I, (3.24)

then for linear system

θ̇ = −gMθ (3.25)

with the initial stateθ(0), the inequalities

∫ tf

0

‖θ‖22dt ≤
2γmaxV (0)

gγmin

(1− e−gγmintf ), (3.26a)

∫ tf

0

‖θ‖2dt ≤
2
√

2γmaxV (0)

gγmin
(1− e−gγmintf /2). (3.26b)

hold, where‖·‖2 stand for Euclidean norm,V (0) = 1/2θT (0)Pθ(0), γmin = 1/λmax(P ), λmax(P )

is the largest eigenvalue of matrixP , γmax = 1/λmin(P ), andλmin(P ) is the smallest eigenvalue

of matrixP .

Proof. If matrix (−M) is Hurwitz, we consider the quadratic Lyapunov functionV = 1/2θTPθ

for system (3.25), where matrixP is the solution to the Lyapunov equation (3.24). The derivative
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of the Lyapunov function along the trajectory of system (3.25) is

V̇ =
1

2
θT (−gMTP − gPM)θ = −

g

2
‖θ‖22 ≤ −

g

2λmax(P )
θTPθ = −gγminV

where the last inequality is due to the propertyθTPθ ≤ λmax(P )‖θ‖22. The above differential

inequality yields

1

2
λmin(P )‖θ‖22 ≤

1

2
θTPθ = V (t) ≤ e−gγmintV (0) =⇒ ‖θ‖22 ≤ 2γmaxe

−gγmintV (0).

Therefore, integrating the above inequality from0 to tf yields (3.26a) and the square root of the

above inequality from0 to tf yields (3.26b).

We now present theε-Nash equilibrium for the proposed strategy (3.22) as the following theorem:

Theorem 3.5. For the differential game in anN-agent system under distributed information de-

fined by system dynamics in (3.11) and performance indices in(5.9), if(−M) is Hurwitz for matrix

M defined in (3.14a), then the online computing strategies described by (3.22) form anε-Nash

equilibrium where

ε = max
i=1,··· ,N

εi (3.27)

where

εi =
2‖F̃Ri‖2γmaxV (0)

gγmin
(1− e−gγmintf ) +

8‖M̃i‖2W
2
maxγmaxV (0)

g2γ2
min

(1− e−gγmintf /2)2, (3.28)
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scalarsγmin, γmax, andV (0) are defined in Lemma 3.2 withθ(0) = zf (0)−M−1z(0),

F̃Ri = DT
i F̃iDiB̃iR

−1
i B̃T

i D
T
i F̃iDi, (3.29a)

M̃i = MF i + tfM
T
i F̃RiMi, (3.29b)

MF i = MT (di ⊗ Ir)(I + Sii)
−1F̃ii(I + Sii)

−1(dTi ⊗ Ir)M, (3.29c)

F̃ii = (dTi ⊗ Ir)F̃i(di ⊗ Ir), (3.29d)

Mi = I − (di ⊗ Ir)(I + Sii)
−1(dTi ⊗ Ir)M, (3.29e)

Wmax = max
0≤t≤tf

‖W (t)‖2, W (t) =
N∑

j=1

B̃jR
−1
j B̃T

j D
T
j F̃jDj , (3.29f)

and matrixSii is defined in (3.23).

Proof. First of all, if knowing every other agent will choose the online computing strategy (3.22),

the best strategy of agenti in response to these strategies is

u∗
i =− R−1

i B̃T
i D

T
i F̃iDiz

∗(tf) (3.30)

which is obtained from (3.16), wherez∗i is agenti’s state trajectory under the best reaction strategy

u∗
i in (3.30). Denotingzj as the state trajectory of agentj (j 6= i) for all eij ∈ E under strategy

(3.22) yields

Diz
∗(tf) = (di ⊗ Ir)z

∗
i (tf ) +

∑

eij∈E,j 6=i

(dj ⊗ Ir)zj(tf).

Then,u∗
i in (3.30) becomes

u∗
i =− R−1

i B̃T
i D

T
i F̃i



(di ⊗ Ir)z
∗
i (tf ) +

∑

eij∈E,i 6=j

(dj ⊗ Ir)zj(tf)





=− R−1
i B̃T

i D
T
i F̃i [Diz(tf )− (di ⊗ Ir)∆zi(tf )] (3.31)
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where∆zi = zi − z∗i . We denoteJi as the performance index value of (3.8) if every agent chooses

strategy (3.22) andJ∗
i as the performance index value of (3.8) if agenti chooses strategy (3.31)

and every other agent chooses strategy (3.22). The difference betweenJi andJ∗
i is

Ji − J∗
i =

1

2
(‖Diz(tf )‖

2
F̃i
− ‖Diz

∗(tf)‖
2
F̃i
) +

1

2

∫ tf

0

(‖ui‖
2
Ri

− ‖u∗
i ‖

2
Ri
)dt

=
1

2
[Diz(tf )−Diz

∗(tf )]
T F̃i[Diz(tf ) +Diz

∗(tf )] +
1

2

∫ tf

0

(ui − u∗
i )

T
i Ri(ui + u∗

i )dt

=
1

2
∆zTi (tf)F̃ii∆zi(tf ) +

1

2

∫ tf

0

∆uT
i Ri(∆ui + 2u∗

i )dt (3.32)

whereF̃ii is defined in (3.29d) and∆ui = ui − u∗
i . Since the dynamics of∆zi is as follows:

∆żi = żi − ż∗i = B′
iui −B′

iu
∗
i = B′

i∆ui, (3.33)

integrating the above equation from0 to tf yields

∆zi(tf ) =

∫ tf

0

B′
i∆uidt

Substituting the above equation into (3.32) and recalling the expression ofu∗
i in (3.30) yield

Ji − J∗
i =

1

2
∆zTi (tf)F̃ii∆zi(tf ) +

1

2

∫ tf

0

∆uT
i Ri∆uidt. (3.34)

Clearly, the value of(Ji − J∗
i ) shown above is always nonnegative which is as expected. To find

the value or upper bound of(Ji−J∗
i ), it is necessary to find the values of∆zi(tf ) and∆ui. Toward

that end, first of all, solving the differential equation in (3.21) yields

zf (t) = M−1z(0) + θ(t). (3.35)

whereθ(t) is defined in (3.25) with the initial stateθ(0) = zf (0)−M−1z(0). The system dynamics
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(3.11) when every agent chooses strategy (3.22b) becomes

ż = −
N∑

j=1

B̃jR
−1
j B̃T

j D
T
i F̃jDjz

f , −Wzf (3.36)

whereW is defined in (3.29f). Substituting (3.35) into (3.36) yields

ż = −WM−1z(0)−Wθ. (3.37)

Since
∫ tf

0

Wdt =
N∑

j=1

SjFj

where matricesFj andSj are defined in (3.7) and (3.14b), integrating equation (3.37) from 0 to tf

yields

z(tf ) =

(

I −

N∑

j=1

SjFjM
−1

)

z(0)−

∫ tf

0

Wθdt. (3.38)

Recalling the definition of matrixM in (3.14a), we have

(

I +

N∑

j=1

SjFj

)

M−1 = I =⇒ M−1 = I −

N∑

j=1

SjFjM
−1.

Hence, equation (3.38) becomes

z(tf ) = M−1z(0)−

∫ tf

0

Wθdt. (3.39)

Second, substitutingu∗
i in (3.31) into (3.10) yields

ż∗i = −(dTi ⊗ Ir)B̃iR
−1
i B̃T

i D
T
i F̃i [Diz(tf )− (di ⊗ Ir)∆zi(tf)]
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Integrating the above equation from0 to tf yields

z∗i (tf ) =zi(0)− (dTi ⊗ Ir)SiD
T
i F̃i [Dizi(tf )− (di ⊗ Ir)∆zi(tf )]

=zi(0) + Sii∆zi(tf )− (dTi ⊗ Ir)SiFiz(tf )

whereSii is as defined in (3.23). Therefore, substituting the above equation into the expression of

∆zi(tf) yields

∆zi(tf ) =zi(tf)− z∗i (tf ) = zi(tf)− zi(0)− Sii∆zi(tf) + (dTi ⊗ Ir)SiFiz(tf )

After some manipulations, we arrive at

(I + Sii)∆zi(tf) =(dTi ⊗ In)[Mz(tf )− z(0)]

As we showed in Lemma 3.1, all the eigenvalues ofSii in the right hand side of the above equation

have nonnegative real parts and hence matrix(I + Sii) is invertible. Therefore,

∆zi(tf) = (I + Sii)
−1(dTi ⊗ Ir) [Mz(tf )− z(0)] (3.40)

Therefore, substituting (3.39) into (3.40) yields the value of∆zi(tf ) as follows:

∆zi(tf ) =− (I + Sii)
−1(dTi ⊗ Ir)M

∫ tf

0

Wθdt. (3.41)
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The value of∆ui obtained as follows:

∆ui = ui − u∗
i =−R−1

i B̃T
i D

T
i F̃iDiz

f +R−1
i B̃T

i D
T
i F̃iDiz

∗(tf )

=−R−1
i B̃T

i D
T
i F̃iDiz

f +R−1
i B̃T

i D
T
i F̃iDiz(tf )−R−1

i B̃iD
T
i F̃i(di ⊗ Ir)∆zi(tf )

=−R−1
i B̃T

i D
T
i F̃iDi[z

f − z(tf )]−R−1
i B̃iD

T
i F̃i(di ⊗ Ir)∆zi(tf ), (3.42)

Recalling (3.18) and (3.39), the value of[zf − z(tf )] in the above equation can be obtained as

zf − z(tf ) =θ +

∫ tf

0

Wθdt (3.43)

Substituting (3.41) and (3.43) into (3.42) yields

∆ui =− R−1
i B̃T

i D
T
i F̃iDi

(

θ +Mi

∫ tf

0

Wθdt

)

,− R−1
i B̃T

i D
T
i F̃iDivi, (3.44)

wherevi = θ + Mi

∫ tf
0

Wθdt and matrixMi is defined in (3.29e). Given the value of∆zi(tf ) in

(3.41) and∆ui in (3.44), the upper bound of(Ji − J∗
i ) can be derived from (3.34) as follows:

Ji − J∗
i =

1

2
∆zTi (tf )F̃ii∆zi(tf) +

1

2

∫ tf

0

∆uT
i Ri∆uidt

=
1

2

(∫ tf

0

Wθdt

)T

MF i

(∫ tf

0

Wθdt

)

+
1

2

∫ tf

0

vTi F̃Rividt (3.45)

where matrixMF i is defined in (3.29c) and matrix̃FRi is defined in (3.29a). Since

1

2

∫ tf

0

vTi F̃Rividt =
1

2

∫ tf

0

(

θ +Mi

∫ tf

0

Wθdt

)T

F̃Ri

(

θ +Mi

∫ tf

0

Wθdt

)

dt

≤

∫ tf

0

θT F̃Riθdt + tf

(∫ tf

0

Wθdt

)T

MT
i F̃RiMi

(∫ tf

0

Wθdt

)

(3.46)
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Substituting (3.46) into (3.45) yields

Ji − J∗
i ≤

∫ tf

0

θT F̃Riθdt+

(∫ tf

0

Wθdt

)T

M̃i

(∫ tf

0

Wθdt

)

≤‖F̃Ri‖2

∫ tf

0

‖θ‖22dt+ ‖M̃i‖2W
2
max

(∫ tf

0

‖θ‖2dt

)2

where matrixM̃i is defined in (3.29b) andWmax is defined in (3.29f). Recalling Lemma 3.2,

substituting inequalities in (3.26) into the above inequality yields (3.28). The maximum value in

{ε1, · · · , εN} will satisfy the inequalities (2.7). Therefore, online computing strategies (3.22) form

anε-Nash equilibrium.

Note that as shown in (3.28), it is clear that the value ofεi decreases asg becomes larger. Therefore,

we can claim that there exists a scalarg such that the online computing strategies in (3.22) forms

anε-Nash equilibrium that can be arbitrarily close to the Nash equilibrium in (3.13).

3.2.2 Noninferior Strategy Design

The open-loop Noninferior solution can also be derived using Pontryagin’s minimum principle and

is presented as follows.

Theorem 3.6. For the differential game in anN-agent system under distributed information de-

fined by system dynamics in (3.11) and performance indices in(5.9), the strategies

ui =−
1

αi
R−1

i B̃T
i

N∑

j=1

αjD
T
j F̃jDjM

−1
p z(0) ∀i = 1, · · · , N (3.47)

form an open-loop noninferior solution where0 ≤ αj ≤ 1 for all j = 1, · · · , N and
∑N

j=1 αj = 1
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if matrixMP defined by

MP =

(

INr +
N∑

j=1

N∑

k=1

αk

αj

SjD
T
k F̃kDk

)

, (3.48)

is invertible, where matrixSj is defined in (3.14b).

Proof. Given system dynamics in (3.11) and performance indices in (5.9), to find the noninferior

solution, we define a convex combination ofJ1, · · · , JN as shown in (3.3), which is

J =
1

2
zT (tf )

(
N∑

j=1

αjD
T
j F̃Dj

)

z(tf ) +
1

2

∫ tf

0

(
N∑

j=1

αju
T
j Rjuj

)

dt. (3.49)

We define the Hamiltonian as

H =
1

2

(
N∑

j=1

αju
T
j Rjuj

)

+ λT
N∑

j=1

B̃juj

where vectorλ ∈ R
Nr is the Lagrangian multiplier. Since the second order partial derivative of

H with respect tou1, · · · , uN are all equal toαiRi and hence is positive define, the following

conditions foru1, · · · , uN to minimize the performance index are necessary and sufficient

ż =
∂H

∂λ
=

N∑

j=1

B̃juj, (3.50a)

λ̇ = −
∂H

∂z
= 0, λ(tf) =

N∑

j=1

αjD
T
j F̃jDjz(tf ), (3.50b)

∂H

∂ui
= αiRiui + B̃T

i λ = 0 ∀i = 1, · · · , N. (3.50c)
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Condition (3.50b) indicates thatλ is a constant vector and hence

λ(t) =

N∑

j=1

αjD
T
j F̃jDiz(tf ) ∀t ∈ [0, tf ]

From (3.50c), we obtain

ui =−
1

αi

R−1
i B̃T

i λ = −
1

αi

R−1
i B̃T

i

N∑

j=1

αjD
T
j F̃jDjz(tf ). (3.51)

Substituting (3.59) into (3.50a) and integrating both sides from0 to tf yield

(

INr +
N∑

j=1

1

αj

Sj

N∑

k=1

αkD
T
k F̃kDk

)

z(tf ) =z(0)

MP z(tf ) =z(0) (3.52)

where matrixMP is defined in (3.48) and matrixSj is defined in (3.14b). Therefore, if the matrix

MP is invertible, then

z(tf ) = M−1
P z(0). (3.53)

Substituting (3.53) into (3.59) yields the open-loop Nash strategy (3.47).

Again, note thatM−1
P in (3.47) is generally a full matrix. Therefore, implementing open-loop

noninferior strategyui in (3.47) will still require every agent to have complete knowledge of the

initial state of all the agents,z(0) = [zT1 (0), · · · , z
T
N (0)]

T . However, just like the proposed open-

loop Nash strategy design approach in the previous section,we are also able to apply the same idea

to the open-loop noninferior strategy design. Toward that end, we have the following result:

Theorem 3.7. For the differential game in anN-agent system environment defined by system dy-

namics (3.11) and performance indices (5.9), if
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1. matrix(−MP ) in (3.48) is Hurwitz and

2. agenti updates the estimate of its state,zfi ∈ R
r, according to

żfi = g

[

zi(0)− zfi − (dTi ⊗ Ir)
1

αi

Si

N∑

j=1

αjD
T
j F̃jDjz

f

]

∀i = 1, · · · , N (3.54)

from any initial conditionzfi (0), whereg is a positive scalar andzf = [(zf1 )
T · · · (zfN)

T ]T ,

then

lim
t→∞

zfi (t) = (dTi ⊗ Ir)M
−1
p z(0). (3.55)

Proof. The proof is in the same fashion as the one for theorem 3.4. Stacking equation (3.54) from

i = 1 to i = N yields

żf =g

[

z(0)− zf −

N∑

j=1

1

αj
Sj

N∑

j=1

αjD
T
j F̃jDjz

f

]

=g
[
z(0)−MP z

f
]
. (3.56)

where matrixMP is defined in (3.48). If matrix(−MP ) is Hurwitz, linear system (3.56) with

respect tozf is asymptotically stable starting from any initial conditionzf (0) andzf asymptotically

converges to the equilibrium of the differential equation (3.56), that is,

lim
t→∞

zf (t) = M−1
P z(0).

Multiplying (dTi ⊗ Ir) on both sides of the above equation yields (3.55).

Note that one can increase the positive scalarg to achieve satisfactory convergence speed of the

state estimation process. Also note that it is not clear so far whether implementing (3.54) only re-
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quires each agent to have the information available to it only. In fact, there exist several conditions

on the information graph and agents’ performance indices such that the estimation law (3.54) can

be carried out in a distributed manner. These conditions arepresented in the following corollary.

Corollary 3.1. For the differential game in anN-agent system environment defined by system

dynamics (3.11) and performance indices (5.9), if

1. the information graph among the agents is undirected1 and

2. matrixF̃j has the following structure

F̃j = (djd
T
j )⊗ F̃ jj

j +
∑

ejk∈E,k 6=j

[(dkd
T
k )⊗ F̃ kk

j + (djd
T
k )⊗ F̃ jk

j + (dkd
T
j )⊗ F̃ kj

j ], (3.57)

for all j = 1, · · · , N ,

then the state estimation law in (3.54) can be expressed as

żfi = g






zi(0)− zfi − S ′

i




∑

eij∈E

F̃ ij
i zfi +

∑

eji∈E,j 6=i

αj

αi

(

F̃ ij
j zfj + F̃ ii

j z
f
i

)










. (3.58)

for all i = 1, · · · , N .

Proof. For agenti, matrixDj defined in (3.6) can be expressed as

Dj =







(did
T
i )⊗ Ir +

∑

ejk∈E,k 6=i

(dkd
T
k )⊗ Ir if eji ∈ E

∑

ejk∈E,k 6=i

(dkd
T
k )⊗ Ir if eji /∈ E

1A graph is undirected if every edge is bidirectional, that is, edgeseij ∈ E indicateseji ∈ E .
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for all j = 1, · · · , N and hence recalling (3.14b), we have

Si

N∑

j=1

αjD
T
j F̃jDj =(di ⊗ Ir)S

′
i

∑

eji∈E

αj(d
T
i ⊗ Ir)F̃jDj , (3.59)

whereS ′
i =

∫ tf
0

B′
iR

−1(B′
i)
Tdt. Substituting (3.57) into (3.59) yields

Si

N∑

j=1

αjD
T
j F̃jDj =(di ⊗ Ir)S

′
i

∑

eji∈E

αj(d
T
i ⊗ Ir)

{

(dkd
T
k )⊗ F̃ jj

j

+
∑

ejk∈E,k 6=j

[(dkd
T
k )⊗ F̃ kk

j + (djd
T
k )⊗ F̃ jk

j + (dkd
T
j )⊗ F̃ kj

j ]

}

Dj

After some mathematical manipulations to the above equation and using the property of a undi-

rected graph (bidirectional edges), we arrive at

Si

N∑

j=1

αjD
T
j F̃jDj = (di ⊗ Ir)S

′
i



αi

∑

eij∈E

(dTj ⊗ F̃ ij
i ) +

∑

eij∈E,j 6=i

αj(d
T
j ⊗ F̃ ij

j + dTi ⊗ F̃ ii
j )





(3.60)

Therefore, substituting (3.60) into (3.54) yields (3.58)

It is clear that under the conditions in Corollary 3.1, the state estimation law expressed in (3.57)

for agenti only requires it to receive the state estimatezfj from agentj for all eij ∈ E . Therefore,

this estimation law can be carried out by individual agents in a distributed manner. Note that the

two conditions in Corollary 3.1 can be successfully satisfied for many applications of the multi-

agent system and this will be illustrated in an example laterin Chapter 5. Compared with the state

estimation law for the Nash equilibrium in the previous section (which does not require each agent

to have the information of the system dynamics and performance indices of other agents and the

overall information topology), the proposed state estimation law for the noninferior solution does

not require each agent to know the overall information topology either, however, it requires each
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agent to have the information of the convex combination parametersα1, · · · , αN (which need be

assigned to individual agents due to the nature of the cooperative game) and the coefficients̃F ij
j

andF̃ ii
j in the performance index of agentj for eij∈E .

Similar to the open-loop Nash strategy design algorithm, toimplement the open-loop noninferior

strategy, the state estimation law (3.58) can be carried outoffline first until a certain convergent

value of the state is achieved. Moreover, an online open-loop noninferior strategy design algorithm

based on (3.59) can be proposed similar to (3.22) as follows:.

żfi = g






zi(0)− zfi − S ′

i




∑

eij∈E

F̃ ij
i zfi +

∑

eji∈E,j 6=i

αj

αi

(

F̃ ij
j zfj + F̃ ii

j z
f
i

)










(3.61a)

ui = −R−1
i (B′

i)
T




∑

eij∈E

(F̃ ij
i zfi ) +

∑

eij∈E,j 6=i

αj

αi

(F̃ ij
j zfj + F̃ ii

j z
f
i )



 (3.61b)

for all i = 1, · · · , N . Although the above online computing algorithm is approximate to the actual

noninferior strategy, it is obvious that the convergence speed of (3.61a) can be made arbitrarily

fast by adjusting the value ofg and hence the strategy in (3.61) can be arbitrarily close to the

noninferior strategy by choosing a proper value ofg.

3.3 Extensions

In the previous sections, we have proposed the distributed open-loop Nash strategy design approach

and distributed open-loop noninferior strategy design approach for differential games in the multi-

agent system under distributed information. Several extensions are presented as follows:

1. Note that these strategies are developed based on performance indices (5.9) which do not

contain the integral costs on the quadratic form of the state, while the general performance
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indices in (2.5) contain such costs. The advantage of including such integral costs on the state

is to improve the transient behavior of the state trajectoryunder the resulting Nash strategies

or noninferior strategies. However, in order to develop a distributed game design approach

based on the novel state estimation law, it is required that such integral costs on the state to

be eliminated. Fortunately, for most of the applications inthe multi-agent systems, such as

rendezvous, formation control, flocking, etc., a satisfactory performance on the terminal state

is much more important than the performance on the transientstate. Therefore, adopting the

performance indices (5.9) is a reasonable choice in most of the applications and hence the

proposed approaches are applicable. Alternatively, one possible approach to improve the

transient behavior of the state is dividing the entire game horizon [0, tf ] into l intervals, that

is,

[0, tf ] = [0, t1] ∪ (t1, t2] ∪ · · · ∪ (tl−2, tl−1] ∪ (tl−1, tf ].

The proposed distributed game strategy design approaches can then be carried out by the

agents at each and every time interval based on the performance indices (5.9) with the entire

time horizon[0, tf ] replaced by the above smaller time intervals and the terminal statez(tf )

replaced byz(i) for all i = t1, · · · , tl−1, tf . As an approximate of the original problem,

this alternative game problem with several smaller horizons will not render game strate-

gies that are exactly the same as the ones derived based on theoriginal performance in-

dices. However, since this approach takes several sampled states at the transient time instants

t1, t2, · · · , tl−2, tl−1 into account, the resulting state trajectory will have better transient per-

formance than the one over only one horizon[0, tf ].

2. For the differential game over the infinite time horizon, that is,tf = ∞, in order to implement

the proposed open-loop distributed strategy design approach, one possible approach is to

combine this approach with the receding horizon control technique [72] which has been

widely used and given very good results in practice applications. Specifically, in this case,
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we will consider the following receding horizon performance indices instead of (5.9)

Ji =
1

2
‖z(τ + tf )‖

2
Fi
+

1

2

∫ τ+tf

τ

‖ui(t)‖
2
Ri(t)

dt ∀i = 1, · · · , N. (3.62)

The mechanism of implementing the receding horizon controlis shown in Figure. 3.1.

tf

τ1 τ2  

τ1+tf  … …

t

tf

τ2+tf  

Figure 3.1: Receding horizon control mechanism

Specifically, at timeτ = τ1, the Nash equilibrium or noninferior solution of the differential

game with performance indices (3.62) is solved for the time interval[τ1, τ1+ tf ]. The agents

will implement the corresponding Nash strategies or noninferior strategies fromτ1 to τ2

whereτ2 ≤ τ1+ tf . The Nash equilibrium and noninferior solution will be recalculated from

τ2 to τ2 + tf and the agent will implement the corresponding strategies from τ2 to τ3. This

procedures will be repeated as the game proceeds. We should point out that since the game

is over the infinite time horizon, the stability of the multi-agent system is fairly important,

however, this issue with the receding horizon control technique is largely open and still under

investigation.

3. As we know, the feedback game strategy is preferred than the open-loop one in many real life

applications because the feedback strategies can react to the instantaneous disturbance in the

states. A practical way to convert the proposed open-loop design approach into a feedback-

like type is to utilize the sampled-Nash approach [73]. Toward that end, we consider the
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following performance indices instead of (5.9):

Ji =
1

2
‖z(tf )‖

2
Fi
+

1

2

∫ tf

tk

‖ui(t)‖
2
Ri(t)

dt ∀i = 1, · · · , N, t = 1, · · · , l. (3.63)

where0 = t1 ≤ t2 ≤ · · · ≤ tl < tf . Combining the distributed online computing Nash strat-

egy in (3.22), the sampled distributed open-loop Nash strategy design algorithm is proposed

as follows.

Algorithm 3.1. At t = tk for all j = 1, · · · , l,

1. Agents measure and calculatez1(tk), · · · , zN (tk).

2. Agent implement (3.22) (for Nash strategy) or (3.61) (fornoninferior strategy) with

zi(0) replaced byzi(tk) for i = 1, · · · , N , respectively.

3. Oncet = tk+1 arrives, the agents repeat the step 1 and 2 by lettingtk → tk+1.

Clearly, since the agents measure the states multiple timesduring the process and will hence

be more aware of the unexpected change in the system.

In this chapter, we considered the open-loop game strategy design approach in the multi-agent

system under distributed information structure. The basicidea of the proposed approach is to let the

agents in the system exchange certain information among themselves according to the information

graph such that their strategies asymptotically converge to the Nash or noninferior strategies that

can only be implemented under global information originally. This approach can be applied to

most of the applications in multi-agent systems and can alsobe extended to the differential games

over the infinite time horizon and differential games under feedback information structure.
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CHAPTER 4: FEEDBACK GAME STRATEGIES

In this chapter, we consider the game strategy design under distributed feedback information struc-

ture. The Riccati equation approach and the conventional optimal output feedback design approach

are introduced first. A novel distributed game strategy design approach is then proposed based on

the concept of best achievable performance indices.

4.1 Riccati Equation Approach

Feedback Nash Equilibrium Strategy: The feedback Nash equilibrium can be obtained by either

using the Pontryagin’s minimum principle or solving the Hamilton-Jacobi-Bellman partial differ-

ential equations. The well-known feedback linear quadratic Nash equilibrium [7] is presented as

the following theorem without proof.

Theorem 4.1. For the differential game in anN-agent system environment defined by system dy-

namics (2.2) and performance indices (2.5), the strategies

ui = −R−1
i (t)BT

i (t)Pi(t)x(t) ∀i = 1, · · · , N (4.1)

form a feedback Nash equilibrium, where matrixPi(t) is the solution to the following coupled

differential Riccati equations

Ṗi + PiBiR
−1
i BT

i Pi + PiĀ + ĀTPi + CT
i QiCi = 0 ∀i = 1, · · · , N (4.2)

with the boundary conditionPi(tf ) = CT
i (tf )FiCi(tf) andĀ = A−

∑N
j=1BjR

−1
j BT

j Pj .

It is clear that since the coupled differential Riccati equation for the open-loop Nash equilibrium
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in (3.2) and the ones for the feedback Nash equilibrium in (4.2) are different, the open-loop Nash

strategy in (3.1) and feedback one in (4.1) are completely different.

Feedback Noninferior Solution Strategy: Since the noninferior solution is derived by solving

the linear quadratic optimal control problem with respect to the convex combination of the perfor-

mance indices in (3.3), the noninferior solution under the feedback information structure will turn

out to be in the same as (3.4) with the product of[φ(t, 0)x(0)] replaced withx(t). We present the

following theorem.

Theorem 4.2. For the differential game in anN-agent system environment defined by system dy-

namics in (2.2) and performance indices in (2.5), the strategies

ui(t) = −
1

αi

R−1
i (t)BT

i (t)P (t)x(t) ∀i = 1, · · · , N (4.3)

form a feedback noninferior solution, where matrixP (t) is the solution to the differential Riccati

equation (3.5) with the boundary conditionP (tf) =
∑N

j=1 αjC
T
j (tf)FjCj(tf ).

To derive the feedback Nash equilibrium or feedback noninferior solution, one has to solve the

differential Riccati equations (4.2) or differential Riccati equation (3.5) backward in time. Unfor-

tunately, like the open-loop Nash equilibrium and noninferior solution, the solution will generally

become a full matrix. Therefore, there is generally no way for the agents in the system to imple-

ment the feedback Nash strategy or noninferior strategy without the complete information of the

state information,x(t), at every instant of timet. To overcome this issue, we introduce an existing

distributed game strategy design approach based on the optimal output feedback control in the next

section.
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4.2 Optimal Output Feedback Approach

In this section, we consider the differential game in theN-agent system under distributed feedback

information structure. In order to conform to the underlying information graph constraint, the

agents’ linear structured strategies are in the following form:

us
i =

∑

eij∈E

Kijyj , Ks
iDiy = Ks

iDiCx ∀i = 1, · · · , N,

where the superscripts in us
i means that the strategy is structured,Ks

i = [Ks
i1 · · · Ks

iN ] ∈ R
mi×Nr,

and matrixDi is defined in (3.6). The structure ofus
i indicates that the strategy of each agent can

only be a feedback of the output information that is available to it only according to the information

graph. DenotinĝCi = DiC, the structured strategies are expressed as

us
i = Ks

i Ĉix ∀i = 1, · · · , N. (4.4)

which are apparently in the output feedback form. The basic idea of applying the optimal out-

put feedback approach [54] to the game strategy design is to parameterizing matrixKs
i in (4.4)

and derive the Nash equilibrium or noninferior solution directly with respect to this variables

Ks
1 , · · · , K

s
N . In what follows, we present the distributed Nash strategy and noninferior strategy

design using the optimal output feedback approach.

4.2.1 Nash Strategy Design

With parameterizedKs
1 , · · · , K

s
N in (4.4), the Nash equilibrium is presented as the followingthe-

orem based on the optimal output feedback approach.

Theorem 4.3. For the differential game in anN-agent system under distributed feedback infor-

52



mation structure defined by system dynamics (2.2) and performance indices (2.5), the strategies in

(4.4) form a feedback Nash equilibrium if the following equations holds:

ẋ = Āx, (4.5a)

Ā =

(

A+

N∑

j=1

BjK
s
j Ĉj

)

, (4.5b)

Ṗi + PiĀ+ ĀTPi + CTQiC + ĈT
i (K

s
i )

TRiK
s
i Ĉi = 0 (4.5c)

Pi(tf) = CT
i FiC (4.5d)

RiK
s
i Ĉixix

T
i Ĉ

T
i +BT

i Pixx
T ĈT

i = 0, (4.5e)

hold for all i = 1, · · · , N .

Proof. Substituting structured strategies (4.4) into performance indices (2.5) yields

Ji =
1

2
‖y(tf)‖

2
Fi
+

1

2

∫ tf

0

[‖y‖2Qi
+ ‖Ks

i Ĉix‖
2
Ri
]dt. (4.6)

The Hamiltonian is defined as

Hi =
1

2
‖x‖2CTQiC

+
1

2
‖Ks

i Ĉix‖
2
Ri

+ λT
i

(

A +

N∑

j=1

BjK
s
j Ĉj

)

x,

where vectorλi is the Lagrangian multiplier. According to the Pontryagin’s minimum principle,
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the necessary optimality conditions are

ẋ =
∂Hi

∂λi

=

(

A+
N∑

j=1

BjK
s
j Ĉj

)

x, (4.7a)

λ̇i = −
∂Hi

∂x
= −CTQiCx− ĈT

i (K
s
i )

TRiK
s
i Ĉix−

(

A+

N∑

j=1

BjK
s
j Ĉj

)T

λi, (4.7b)

λi(tf ) = CT
i FiCix(tf ), (4.7c)

∂Hi

∂Ks
i

= RiK
s
i Ĉixx

T ĈT
i +BT

i λix
T ĈT

i = 0. (4.7d)

for all i = 1, · · · , N . Lettingλi = Pix and substituting it into the above equations yields equations

(4.5).

Obviously, if matrix(Ĉixix
T
i Ĉ

T
i ) is invertible, then the optimalK can be obtained directly from

condition (4.7d) as

Ks
i = −R−1

i BT
i λix

T ĈT
i (Ĉixix

T
i Ĉ

T
i )

−1. (4.8)

Substituting (4.8) into (4.7a) and (4.7b) yields a highly nonlinear two-point boundary value prob-

lem, which is difficult to solve. Moreover, matrix(Cixix
T
i C

T
i ) is generally not invertible. There-

fore, in order to solve forKs
1 , · · · , K

s
N , a gradient based iterative algorithm is proposed as follows.

Algorithm 4.1.

1. Choose any time-varying feedback gainsKs0
1 (t), · · · , Ks0

N (t) for t ∈ [0, tf ] as the initial

guessing.

2. At stepk, substituteKs
i (t) = Ksk

i (t) for all i = 1, · · · , N into equations (4.5a) and (4.5c)

and solve forx(t) andP1(t), · · · , PN(t) for t ∈ [0, tf ].
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3. If

max
0≤t≤tf

‖(RiK
sk
i Ĉi +BT

i Pi)xx
T ĈT

i ‖2

is less than a stopping criteria, thenKsk
1 (t), · · · , Ksk

N (t) are the solutions. Otherwise, go to

step 4.

4. UpdateKsk
i (t) according to

K
s(k+1)
i (t) = Ksk

i (t)− ǫi
∂Hi

∂Ks
i

(Ksk
i ) ∀i = 1, · · · , N, (4.9)

whereǫi is the step size and∂Hi

∂Ks
i

(Ksk
i ) is defined in (4.7d) withKs

i replaced withKsk
i . Set

k → k + 1 and go to step 2.

4.2.2 Noninferior Strategy Design

With parameterizedKs
1, · · · , K

s
N in (4.4), the noninferior solution is presented as the following

theorem based on the optimal output feedback approach.

Theorem 4.4. For the differential game in anN-agent system under distributed feedback infor-

mation structure defined by system dynamics (2.2) and performance indices (2.5), the strategies in
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(4.4) form a feedback noninferior solution if the followingequations holds:

ẋ = Āx, (4.10a)

Ā =

(

A+

N∑

j=1

BjK
s
j Ĉj

)

, (4.10b)

Ṗi + PiĀ+ ĀTPi +

N∑

j=1

αj [C
TQjC + ĈT

i (K
s
i )

TRiK
s
i Ĉi] = 0 (4.10c)

Pi(tf ) = CT
i FiC (4.10d)

αiRiK
s
i Ĉixx

T ĈT
i + BT

i λx
T ĈT

i = 0, (4.10e)

hold for all i = 1, · · · , N .

Proof. Substituting structured strategies (4.4) into performance indices (2.5), the convex combina-

tion of the agents’ performance indices becomes

J =
1

2

N∑

j=1

αj‖y(tf)‖
2
Fj

+
1

2

∫ tf

0

N∑

j=1

αj [‖y‖
2
Qj

+ ‖Ks
j Ĉjx‖

2
Rj
]dt. (4.11)

The Hamiltonian is defined as

H =
1

2

N∑

j=1

αj(‖x‖
2
CTQjC

+ ‖Ks
j Ĉjx‖

2
Rj
) + λT

(

A+

N∑

j=1

BjK
s
j Ĉj

)

x,

where vectorλ is the Lagrangian multiplier. According to the Pontryagin’s minimum principle,
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the necessary optimality conditions are

ẋ =
∂H

∂λ
=

(

A+
N∑

j=1

BjK
s
j Ĉj

)

x, (4.12a)

λ̇ = −
∂H

∂x
= −

N∑

j=1

αj[C
TQjC + ĈT

i (K
s
i )

TRiK
s
i Ĉi]x−

(

A +

N∑

j=1

BjK
s
j Ĉj

)T

λ, (4.12b)

λ(tf) =

N∑

j=1

αjC
T
j FjCjx(tf ), (4.12c)

∂H

∂Ks
i

= αiRiK
s
i Ĉixx

T ĈT
i +BT

i λx
T ĈT

i = 0 (4.12d)

for all i = 1, · · · , N . Lettingλ = Px and substituting it into the above equations yields equations

(4.10).

Therefore, a gradient based iterative algorithm for derivingKs
1 , · · · , K

s
N that satisfy the conditions

in (4.10) can be proposed in the same fashion as Algorithm 4.1.

There are several issues regarding the optimal output feedback based game strategy design ap-

proach, which are illustrated as follows:

1. It is important to point out that using the optimal output feedback design approach, the de-

rived feedback gainsKs
1 , · · · , K

s
N for both the Nash equilibrium and noninferior solution

will depend upon the state,x(t), as shown in equation (4.5e) and equation (4.10e). More-

over, it is equivalent to say that these feedback gains in fact depend upon the initial state,

x(0). Therefore, different sets of feedback matrices have to be derived given different initial

states of the system. One way to overcome the initial state dependence is assuming that the

initial state,x0, is a random variable with certain probabilistic distribution [54]. Under this

assumption, the agents will try to minimize the expected value of performance indices in

(2.5). The initial state dependence is hence eliminated because the resulting feedback matri-
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ces are only dependent on the covariance of the random initial state, which is assumed to be

a given value.

2. For the differential game in a multi-agent system environment, since every agent’s strategy

has influence on other agents’ performance indices values, the structured strategies defined

in (4.4) with the feedback gainsKs
1 , · · · , K

s
N need to be simultaneously parameterized and

optimized with respect to the performance indices in order to obtain the distributed Nash

equilibrium and noninferior solution. In other words, the optimal output feedback based

approach requires all the agents to be able to choose the feedback gains freely. However, if

there exists a certain constraint for the agent on its choiceof the feedback matrix, then there

is no way to apply the game strategy to each and every agent derived using optimal output

feedback approach.

Realizing the existing issues in the optimal output feedback based approach, we propose a novel

design approach for both Nash equilibrium and noninferior solution under distributed feedback

information in the following section.

4.3 Best Achievable Performance Indices Approach

In this section, we present the distributed game strategy design based on a novel concept of best

achievable performance indices. As shown in Section 4.1, with the structure constraints imposed

on the feedback gain matrices, it is generally not possible for the agent’s strategies form a Nash

equilibrium or noninferior solution with respect to the original performance indices using the Ric-

cati equation approach. However, in real life applications, the performance indices as a design

criteria can usually be adjusted according to the real operation condition or situation. This in-

spires us to consider the game strategy design in a reverse manner. The basic idea of the approach
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proposed in this section is as follows: For any structured strategies of the agents that conform to

the information graph constraint, based on the inverse optimality, there exist a set of performance

indices for the agents such that their structured strategies form a Nash equilibrium or noninferior

solution. Among all the possible sets of performance indices, we find one set that is closest to the

original set of indices. Therefore, the designed Nash equilibrium or noninferior solution is chosen

to be the one corresponding to the closest set of performanceindices. In what follows, we present

the Nash strategy and noninferior strategy design approachbased on the proposed concept of the

best achievable performance index.

4.3.1 Nash Strategy Design

First of all, all the possible sets of performance indices with respect to which the structured strate-

giesus
1, · · · , u

s
N described in (4.4) form a Nash equilibrium are presented as the following theorem

based on inverse optimality.

Theorem 4.5.For the differential game in anN-agent system under distributed feedback informa-

tion structure defined by system dynamics (2.2) and performance indices (2.5), the strategies (4.4)

form a Nash equilibrium with respect to the following performance indices:

Js
i =

1

2
‖x(tf )‖

2
CT

i FiCi
+

1

2

∫ tf

0

(‖x‖2Qs
i
+ xTΓT

i ui + uT
i Γix+ ‖ui‖

2
Ri
)dt ∀i = 1, · · · , N (4.13)

where

Qs
i = −ATPi − Ṗi − PiA + ĈT

i (K
s
i )

TRiK
s
i Ĉi +

N∑

j=1,j 6=i

(PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi),

(4.14a)

Γi(Ki) = −RiKiĈi − BT
i Pi, (4.14b)
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andPi is any symmetric differentiable matrix with terminal conditionPi(tf) = CT
i (tf )FiCi(tf ).

Proof. Consider the Lyapunov functionVi = 1/2xTPix for agenti where matrixPi is symmetric,

differentiable, and satisfies the terminal conditionPi(tf ) = CT
i (tf)FiCi(tf ). The derivative ofVi

along the trajectory of system (2.2) is

V̇i =
1

2
(Ax+

N∑

j=1

Bjuj)
TPix+

1

2
xT Ṗix+

1

2
xTPi(Ax+

N∑

j=1

Bjuj). (4.15)

Integrating the above equation from0 to tf yields

Vi(tf ) =Vi(0) +
1

2

∫ tf

0

[(Ax+

N∑

j=1

Bjuj)
TPix+ xT Ṗix+ xTPi(Ax+

N∑

j=1

Bjuj)]dt

=Vi(0) +
1

2

∫ tf

0

[(Ax+

N∑

j=1

Bjuj)
TPix+ xT Ṗix+ xTPi(Ax+

N∑

j=1

Bjuj)

+ ‖ui −Ks
i Ĉix‖

2
Ri

− ‖ui −Ks
i Ĉix‖

2
Ri

+
N∑

j=1,j 6=i

xT (PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi)x

−

N∑

j=1,j 6=i

xT (PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi)x]dt,

=Vi(0) +
1

2

∫ tf

0

{−‖x‖2Qs
i
− xTΓT

i ui − uT
i Γix− ‖ui‖

2
Ri

+ ‖ui −Ks
i Ĉix‖

2
Ri

+
N∑

j=1,j 6=i

[(uj −Ks
j Ĉjx)

TBT
j Pix+ xTPiBj(uj −Ks

j Ĉjx)]}dt,

where matricesQs
i andΓi are defined in (4.14). Hence, recalling the definition of the performance

index in (4.13) andPi(tf) = CT
i (tf )FiCi(tf ), one can obtain

Js
i =Vi(0) +

1

2

∫ tf

0

‖ui −Ks
i Ĉix‖

2
Ri

+
N∑

j=1,j 6=i

[(uj −Ks
j Ĉjx)

TBT
j Pix+ xTPiBj(uj −Ks

j Ĉjx)]dt. (4.16)
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Since matrixRi is positive definite, it is clear that performance indexJs
i in (4.16) reaches its

minimum whenus
i = Ks

i Ĉix andus
j = Ks

j Ĉjx for j 6= i. Since the above analysis holds for

all i = 1, · · · , N , the inequality in (2.6) withJi replaced byJs
i holds if u∗

i = KiĈix for all

i = 1, · · · , N . Therefore, structured strategies (4.4) form a Nash equilibrium.

Theorem 4.5 provides all the possible sets of performance indices (parameterized by feedback

gain Ks
1 , · · · , K

s
N andP1, · · · , PN ) with respect to which the structured strategiesus

1, · · · , u
s
N

expressed in (4.4) form a Nash equilibrium. For the convenience of the following analysis, we

assume that matricesP1, · · · , PN are chosen to be the solutions to the coupled differential Riccati

equations in (4.2). Comparing the set of performance indices in (4.13) with the set of original

performance indices in (2.5), the differences between themare the values of matricesQs
i and

Γi for all i = 1, · · · , N . If Qs
i = CT

i QiCi andΓ = 0, thenJs
i becomes identical toJi and

structured strategyus
1, · · · , u

s
N form a Nash equilibrium with respect to the original performance

indices. However, it is generally not possible to find propervalues ofKs
1 , · · · , K

s
N that achieve

this. Therefore, one way is to find a set of performance indices among all possible performance

indices in (4.13) which is closest to the ones in (2.5), that is, to makeQs
i as close to(CT

i QiCi) as

possible and makeΓ as close to 0 as possible. We call such set of performance index (closest to the

original indices) thebest achievable performance indices, which is defined formally as follows.

Definition 4.1. Given the set of performance indices in (4.13) and the set of original performance

indices in (2.5), if

∫ tf

0

‖Qs
i − CT

i QiCi‖
2
fdt and

∫ tf

0

‖Γi‖
2
fdt ∀i = 1, · · · , N (4.17)

are simultaneously minimized by feedback matricesKs
i (t) = Ks∗

i (t) for all i = 1, · · · , N where

‖ · ‖f is the Frobenius norm, then the set of performance indexJs∗
1 , · · · , Js∗

N corresponding to

Ks∗
1 (t), · · · , Ks∗

N (t) among all the sets of performance indices in (4.13) are called the best achiev-
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able performance indices.

The concept of best achievable performance indices can be interpreted as a set of performance

indices that is in the class of performance indices described by (4.13) while is also closest to the

original indices (2.5) in terms of the Frobenius norm of the difference between the performance

index coefficient matrices. Note that if matrixCi is invertible, then both‖Qs
i − CT

i QiCi‖
2
f and

‖Γi‖
2
f can achieve the minimum value, zero, under the feedback matrix Ks∗

i = −R−1
i BTPiĈ

−1
i .

Substituting this feedback matrix into (4.14a) yields the differential Riccati equations (4.2). As

such, the result reduces to the Nash equilibrium of the linear quadratic differential game. How-

ever, if matrixĈ is not invertible, findingKs
i = Ks∗

i for all i = 1, · · · , N to minimize the terms

in (4.17) simultaneously is quite difficult. Therefore, in order to find matricesKs∗
1 (t), · · · , Ks∗

N (t)

corresponding to the best achievable performance indices,we need to solve a multi-objective op-

timization problem of minimizing
∫ tf
0

‖Qs
i − CT

i QiCi‖
2
fdt and

∫ tf
0

‖Γi‖
2
fdt for all i = 1, · · · , N

simultaneously. One way to accomplish this is to minimize a convex combination of these terms

as follows.

φ(Ks
1 , · · · , K

s
N) =

∫ tf

0

Hdt, (4.18)

where

H =
N∑

j=1

(βj1‖Q
s
j − CT

j QjCj‖
2
f + βj2‖Γj‖

2
f) (4.19)

where0 ≤ βj1 ≤ 1, 0 ≤ βj2 ≤ 1, and
∑N

j=1(βj1 + βj2) = 1. The minimization problem reduces

to finding matricesKs∗
1 (t), · · · , Ks∗

N (t) such that

φ(Ks∗
1 (t), · · · , Ks∗

N (t)) ≤ φ(Ks
1(t), · · · , K

s
N(t)) ∀Ks

1(t), · · · , K
s
N(t). (4.20)

This minimization problem is generally quite difficult to solve analytically. A possible numerical
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approach is using gradient based iterative algorithms [74]. Since these algorithms will require an

expression for the gradient ofH(t) with respect toKs
1(t), · · · , K

s
N(t). Recalling the property of

the Frobenius norm‖S‖2f = Tr(STS) where Tr(·) is the matrix trace operation, equation (4.19)

becomes

Hi =
N∑

j=1

{βj1Tr[(Qs
j − CT

j QjCj)
2] + βj2}Tr(ΓjΓ

T
j ).

Hence, the partial derivatives ofH with respect toKs
1 , · · · , K

s
N are

∇Ks
i
H =4βi1RiK

s
i Ĉi(Q

s
i − CT

i QiCi)Ĉ
T
i

+ 4

N∑

j=1,j 6=i

βj1[B
T
i Pj(Q

s
j − CT

j QjCj)Ĉ
T
i ] + 2βj2RiΓiĈ

T
i ∀i = 1, · · · , N. (4.21)

The following gradient based iterative algorithm is proposed:

Algorithm 4.2.

1. ChooseKs0
1 (t), · · · , Ks0

N (t) for t ∈ [0, tf ] as the initial guessing.

2. If

max
0≤t≤tf ,i=1,··· ,N

‖∇Ks
i
H(Ksk

1 , · · · , Ksk
N )‖2

is less than a stopping criteria where∇Ks
i
H(Ksk

1 , · · · , Ksk
N ) is defined in (4.21) withKs

i (t) =

Ksk
i (t) for all i = 1, · · · , N , thenKsk

1 (t), · · · , Ksk
N (t) are the solutions. Otherwise, go to

step 3.

3. UpdateKsk
1 (t), · · · , Ksk

N (t) according to

K
s(k+1)
i (t) = Ksk

i (t)− ǫi∇Ks
i
H(Ksk

1 , · · · , Ksk
N ) ∀i = 1, · · · , N
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whereǫi is the step size. Setk → k + 1 and go to step 2.

Note that by varying the coefficientβ11, · · · , βN1 andβ12, · · · , βN2, a noninferior set of the solu-

tions can be generated. An appropriate choice of these coefficients can be made to place a desired

emphasis on minimizing each and every term in (4.17).

4.3.2 Noninferior Strategy Design

The same idea of the Nash strategy design can be also applied to the noninferior strategy de-

sign. First of all, all the possible sets of performance indices with respect to which the structured

strategiesus
1, · · · , u

s
N described in (4.4) form a noninferior solution are presented as the following

theorem based on inverse optimality.

Theorem 4.6. For the differential game in anN-agent system under distributed feedback infor-

mation structure defined by system dynamics (2.2) and performance indices (2.5), the strategies in

(4.4) form a noninferior solution with respect to the following performance indices

Js
i =

1

2
‖x(tf )‖

2
CT

i FiCi
+

1

2

∫ tf

0

(‖x‖2Qs
i
+ xTΓT

i ui + uT
i Γix+ ‖ui‖

2
Ri
)dt ∀i = 1, · · · , N (4.22)

where

Qs
i = −ATP − Ṗ − PA+ ĈT

i (K
s
i )

TRiK
s
i Ĉi, (4.23a)

Γi(K
s
i ) = −RiK

s
i Ĉi −

1

αi

BT
i P, (4.23b)

and P is any symmetric differentiable matrix withP (tf) =
∑N

j=1 αjC
T
j (tf )FjCj(tf) and 0 ≤

αi ≤ 1 for all i = 1, · · · , N and
∑N

j=1 αj = 1.
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Proof. Consider the Lyapunov functionV = 1/2xTPx. The derivative ofV along the trajectory

of system (2.2) is the same as (4.15). Integrating (4.15) from 0 to tf yields

V (tf) =V (0) +
1

2

∫ tf

0

[(Ax+

N∑

j=1

Bjuj)
TPx+ xT Ṗ x

+ xTP (Ax+
N∑

j=1

Bjuj)]dt

1

2
xT (tf )

(
N∑

j=1

αjC
T
j FjCj

)

x(tf) =V (0) +
1

2

∫ tf

0

[(Ax+
N∑

j=1

Bjuj)
TPx+ xT Ṗ x

+ xTP (Ax+

N∑

j=1

Bjuj)

+

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj

−

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj
]dt,

=V (0) +
1

2

∫ tf

0

N∑

j=1

αj[−‖x‖2Qs
j
− xTΓT

j uj − uT
j Γjx

− ‖uj‖
2
Rj

+ ‖ui −Ks
i Ĉixi‖

2
Rj
]dt,

where matricesQs
i andΓi are defined in (4.23). Hence, denoting thatJs =

∑N
j=1 J

s
j whereJs

j is

defined in (4.22), we have

Js = V (0) +
1

2

∫ tf

0

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj

dt.

Sinceαj ≥ 0 and matrixRj is positive definite for allj = 1, · · · , N , it is clear from the above

equation thatus
j = Ks

j Ĉjx for all j = 1, · · · , N are the optimal strategies and hence form a

noninferior solution for any givenα1, · · · , αN .

Note that only if the parametersα1, · · · , αN are given, the expression of performance indices

Js
1 , · · · , J

s
N in (4.22) can be obtained for any structured strategiesus

1, · · · , u
s
N in (4.4). For the
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convenience of the following analysis, we assume that the value of matrixP are chosen to be

the solution to the differential Riccati equation in (3.5).The definition of the best performance

indices in this case is in fact the same as Definition 4.1 with matricesQs
i andΓs

i replaced by the

ones in (4.23). Similar to the Nash strategy design, to find matricesKs∗
1 , · · · , Ks∗

N corresponding

to the best achievable performance indices, we solve a minimization problem with respect to the

convex combination in (4.18). In this case, the partial derivatives ofH with respect toKs
1 , · · · , K

s
N

become

∇Ks
i
H =4βi1RiK

s
i Ĉi(Q

s
i − CT

i QiCi)Ĉ
T
i + 2βj2RiΓiĈ

T
i ∀i = 1, · · · , N (4.24)

where matricesQs
i andΓi are defined in (4.23). Therefore, with the expression of the gradient

in (4.24), the same gradient based iterative algorithm as Algorithm 4.2 can be utilized to derive

Ks∗
1 , · · · , Ks∗

N corresponding to the best achievable performance indices algorithm for any given

set of parametersα1, · · · , αN . Again, by varying the coefficientβ11, · · · , βN1 andβ12, · · · , βN2, a

noninferior set of the solutions can be generated. An appropriate choice of these coefficients can

be made to place a desired emphasis on minimizing each and every term in (4.17).

With the best achievable performance indices approach proposed, in what follows, we point out

several features of this approach and how this approach overcomes the issues in the previous opti-

mal output feedback based approach.

1. MatricesKs∗
1 , · · · , Ks∗

N derived using the best achievable performance indices approach for

both the Nash equilibrium and noninferior solution are independent on the initial state.

2. The optimal output feedback approach requires every agent to be able to choose the feedback

gain matrices freely and optimize the parameterized feedback gainsKs
1 , · · · , K

s
N simultane-

ously. While using the best performance indices approach, no such requirement is needed.
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Specifically, if the structured strategies for one or more agents are fixed, then the best achiev-

able performance indices can still be applicable in the sense that the rest agents can optimize

their feedback matrices such that the set of performance indices with respect to which all the

agents’ strategies (the optimized strategies and the fixed strategies) form a Nash equilibrium

or noninferior solution are closest to the original set of performance indices.

4.4 Feedback Game Strategy Design over the Infinite Time Horizon

In this section, we consider the feedback Nash strategy and noninferior strategy design for the dif-

ferential games over the infinite time horizon in the multi-agent systems under distributed feedback

information structure.

For the game over the infinite time horizon, we assume that dynamics (2.1) for every agent is

time-invariant, stablizable, and detectable. The performance indices are given by

Ji =
1

2

∫ ∞

0

(‖y‖2Qi
+ ‖ui‖

2
Ri
)dt ∀i = 1, · · · , N (4.25)

where matrixQi is time-invariant and positive semi-definite (with exceptions in cases such as the

pursuit-evasion games) and matrixRi is time-variant and positive definite for alli = 1, · · · , N . If

the strategies of all the agents are constrained to be (4.4),then the following result similar result to

Theorem 4.5 is obtained.

Theorem 4.7. For the differential game in anN-agent system under distributed feedback infor-

mation structure defined by system dynamics (2.2) and performance indices (4.25), the strategies

in (4.4) with form a Nash equilibrium with respect to the following performance indices:

Js
i =

1

2

∫ ∞

0

(‖x‖2Qs
i
+ xTΓT

i ui + uT
i Γix+ ‖ui‖

2
Ri
)dt ∀i = 1, · · · , N (4.26)
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if the closed-loop systeṁx = (A+
∑N

j=1BjK
s
j Ĉj)x is asymptotically stabilize, where

Qs
i = −ATPi − PiA + ĈT

i (K
s
i )

TRiKiĈi +

N∑

j=1,j 6=i

(PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi), (4.27a)

Γi = −RiK
s
i Ĉi −BT

i Pi, (4.27b)

and matrixPi is symmetric.

Proof. Consider the Lyapunov functionVi = 1/2xTPix for agenti. Its derivative along the trajec-

tory of (2.1) is

V̇i =
1

2
(Ax+

N∑

j=1

Bjuj)
TPix+

1

2
xTPi(Axi +

N∑

j=1

Bjuj). (4.28)

If the closed-loop system is asymptotically stable, integrating (4.28) from0 to ∞ yields

Vi(∞) = 0 =Vi(0) +
1

2

∫ ∞

0

[(Ax+

N∑

j=1

Bjuj)
TPix+ xTPi(Ax+

N∑

j=1

Bjuj)]dt

=Vi(0) +
1

2

∫ ∞

0

[(Ax+
N∑

j=1

Bjuj)
TPix+ xTPi(Ax+

N∑

j=1

Bjuj)

+ ‖ui −Ks
i Ĉix‖

2
Ri

− ‖ui −Ks
i Ĉix‖

2
Ri

+
N∑

j=1,j 6=i

xT (PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi)x

−

N∑

j=1,j 6=i

xT (PiBjK
s
j Ĉj + ĈT

j (K
s
j )

TBT
j Pi)x]dt,

=Vi(0) +
1

2

∫ ∞

0

{−‖x‖2Qs
i
− xTΓT

i ui − uT
i Γix− ‖ui‖

2
Ri

+ ‖ui −Ks
i Ĉix‖

2
Ri

+

N∑

j=1,j 6=i

[(uj −Ks
j Ĉjx)

TBT
j Pix+ xTPiBj(uj −Ks

j Ĉjx)]}dt,

where matricesQs
i andΓi are defined in (4.27). Hence, recalling the definition of the performance
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index in (4.26), we have

Js
i =Vi(0) +

1

2

∫ ∞

0

‖ui −Ks
i Ĉix‖

2
Ri

+

N∑

j=1,j 6=i

[(uj −Ks
j Ĉjx)

TBT
j Pix+ xTPiBj(uj −Ks

j Ĉjx)]dt.. (4.29)

Since matrixRi is positive definite, the inequalities in (2.6) hold true with Ji replaced byJs
i

if u∗
i = Ks

i Ĉix for i = 1, · · · , N . Therefore, the structured strategies in (4.4) form a Nash

equilibrium.

For the convenience of the following derivation, the valuesof matricesP1, · · · , PN are chosen to

be the solutions to the algebraic version of the coupled differential Riccati equations in (4.2) by

settingṖ1 = · · · = ṖN = 0. Therefore, with all the possible performance indices parameterized

in (4.26), the definition of best achievable performance indices over the infinite time horizon is as

follows:

Definition 4.2. Given the set of performance indices in (4.26) and the set of original performance

indices in (4.25) over the infinite time horizon, if

‖Qs
i − CT

i QiCi‖
2
f and ‖Γi‖

2
f ∀i = 1, · · · , N (4.30)

are simultaneously minimized by feedback matricesKs
i (t) = Ks∗

i (t) for all i = 1, · · · , N where

‖ · ‖f is the Frobenius norm, then the set of performance indexJs∗
1 , · · · , Js∗

N corresponding to

Ks∗
1 (t), · · · , Ks∗

N (t) among all the sets of performance indices in (4.26) are called the best achiev-

able performance indices.

Note that if matrixĈi is invertible, both‖Qs
i − CT

i QiCi‖
2
f and‖Γi‖

2
f can achieve the minimum

value, 0, under the feedback matrixKs
i = −R−1

i BTPiĈ
−1
i . Substituting this feedback matrix
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into (4.27a) yields the algebraic version of differential Riccati equations (4.2). In the case that

matrix Ĉi is not invertible, we need to utilize a numerical algorithm to find feedback matrices

Ks∗
1 , · · · , Ks∗

N corresponding to the set of best achievable performance indices. Toward that end,

we define a convex combination of the terms in (4.30) as an objective function to minimize, which

is the same asH in (4.19). Hence, with the same expression of partial derivatives ofH with respect

toKs
1 , · · · , K

s
N in (4.21), the following gradient based iterative algorithm similar to Algorithm 4.2

is proposed to derive the feedback matricesKs∗
1 , · · · , Ks∗

N .

Algorithm 4.3.

1. ChooseKs0
1 (t), · · · , Ks0

N (t) as the initial guessing such that the closed loop system matrix

(A+
∑N

j=1BjK
s0
i Ĉi) is asymptotically stable.

2. If (Ai+
∑N

j=1BjK
sk
j Ĉj) is asymptotically stable and‖maxi=1,··· ,N ∇Ksk

i
Hi(K

sk
1 , · · · , Ksk

N )‖f

is less than a stopping criteria where∇Ks
i
H(Ksk

1 , · · · , Ksk
N ) is defined in (4.21) withQs

i and

Γi defined in (4.27) andKs
i (t) = Ksk

i (t) for all i = 1, · · · , N , thenKsk
1 (t), · · · , Ksk

N (t) are

the solutions. Otherwise, go to step 3.

3. UpdateKsk
1 (t), · · · , Ksk

N (t) according to

K
s(k+1)
i (t) = Ksk

i (t)− ǫi∇Ks
i
H(Ksk

1 , · · · , Ksk
N ) ∀i = 1, · · · , N

whereǫi is the step size. Setk → k + 1 and go to step 2.

By varying the coefficientsβ1, a noninferior set of the solutions can be generated and an appropriate

choice can be made.

The same idea can be applied to the noninferior strategy design over the infinite time horizon. First

of all, we have the following theorem similar to (4.8).
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Theorem 4.8. For the differential game in anN-agent system under distributed feedback infor-

mation structure defined by system dynamics (2.2) and performance indices (2.5), the strategies in

(4.4) form a noninferior solution with respect to the following performance indices

Js
i =

1

2

∫ ∞

0

(‖x‖2Qs
i
+ xTΓT

i ui + uT
i Γix+ ‖ui‖

2
Ri
)dt ∀i = 1, · · · , N (4.31)

if the closed-loop systeṁx = (A+
∑N

j=1BjK
s
j Ĉj)x is asymptotically stabilize, where

Qs
i = −ATP − PA+ ĈT

i (K
s
i )

TRiK
s
i Ĉi, (4.32a)

Γi(K
s
i ) = −RiK

s
i Ĉi −

1

αi
BT

i P, (4.32b)

matrixP is symmetric,0 ≤ αi ≤ 1 for all i = 1, · · · , N , and
∑N

j=1 αj = 1.

Proof. Consider the Lyapunov functionV = 1/2xTPx. The derivative ofV along the trajectory

of system (2.2) is the same as (4.28). If the closed-loop system is asymptotically stable, integrating

(4.28) from0 to∞ yields

V (∞) = 0 =V (0) +
1

2

∫ tf

0

[(Ax+
N∑

j=1

Bjuj)
TPx+ xT Ṗ x+ xTP (Ax+

N∑

j=1

Bjuj)]dt

=V (0) +
1

2

∫ tf

0

[(Ax+

N∑

j=1

Bjuj)
TPx+ xT Ṗ x+ xTP (Ax+

N∑

j=1

Bjuj)

+

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj

−

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj
]dt,

=V (0) +
1

2

∫ tf

0

N∑

j=1

αj [−‖x‖2Qs
j
− xTΓT

j uj − uT
j Γjx

− ‖uj‖
2
Rj

+ ‖uj −Ks
j Ĉjx‖

2
Rj
]dt,

where matricesQs
i andΓi are defined in (4.32). Hence, denoting thatJs =

∑N
j=1 J

s
j whereJs

j is
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defined in (4.31), we have

Js = V (0) +
1

2

∫ tf

0

N∑

j=1

αj‖uj −Ks
j Ĉjx‖

2
Rj

dt.

Sinceαj ≥ 0 and matrixRj is positive definite for allj = 1, · · · , N , it is clear from the above

equation thatus
j = Ks

j Ĉjx for all j = 1, · · · , N are the optimal strategies and hence form a

noninferior solution for any givenα1, · · · , αN .

For convenience, the values of matrixP in (4.32) is chosen to be the solution to the algebraic

version of the differential Riccati equation in (3.5) by setting Ṗ = 0. The definition of best

achievable performance indices in this case is the same as Definition 4.2 with matricesQs
i andΓi

defined in (4.32). with the same expression of partial derivatives ofH with respect toKs
1 , · · · , K

s
N

in (4.24), the same gradient based iterative algorithm as Algorithm 4.3 can be utilized to derive

Ks∗
1 , · · · , Ks∗

N corresponding to the best achievable performance indices algorithm for any given

set of parametersα1, · · · , αN . Again, a noninferior set of the solutions can be generated by varying

the coefficientsβ1 and an appropriate choice can be made.

Note that in the Algorithm 4.3, the initial guessing has to bea stabilizing feedback gain and the

stability of the closed-loop system is verified at every iteration to make sure that the closed-loop

system under the resulting control is asymptotically stable. Therefore, we are confronted with two

issues. One is that whether the system can be stabilized by the structured strategies in the form of

(4.4), and the other is how to find an initial stabilizing control to start the algorithm if the system

is stabilizable. One possible approach is to utilize the Lyapunov stability criterion, which is to find

solution to the following Lyapunov inequality

P

(

A +

N∑

j=1

BjK
s
j Ĉj

)

+

(

A+

N∑

j=1

BjK
s
j Ĉj

)T

P < 0, (4.33)
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There exist many numerical approaches to solve this problem, one of which is based on the linear

matrix inequality (LMI) technique. The inequality above can be converted into a LMI feasibility

problem and there exist many software tools to solve the LMI feasibility problem efficiently such

as YALMIP [75]. Moreover, if the LMIs are feasible, the software program will automatically

generate a feasible solution, which can be used as the initial stabilizing feedback gain to initialize

Algorithm 4.3. Please refer to [76] for more details for a possible approach.

In this chapter, we considered the game strategy design approach in the multi-agent system under

distributed feedback information structure. The basic idea of this approach is to design structured

feedback strategy for the agents such that these strategiesform a Nash equilibrium or noninferior

solution with respect to a set of performance indices that are closest to the original indices. This

approach overcomes several shortcomings in the conventional optimal feedback based approach

and is extended to the game over the infinite time horizon.
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CHAPTER 5: APPLICATIONS

In this chapter, two application examples of the differential games in multi-agent systems are

considered. One is the unmanned aerial vehicles (UAVs) formation control problem and the other

is the multi-pursuer single-evader differential game withlimited observations. The former one is

solved using the proposed open-loop noninferior strategy design approach and the latter one is

solved using the best achievable performance indices approach.

5.1 UAV Formation Control Using Differential Game Approach

In this section, we considerN UAVs that are trying to form a prescribed formation and design

open-loop controls for each and every UAV to achieve this objective. The point-mass dynamics of

UAVs are modeled as follows [77] and are shown in Figure 5.1:

ẋi = Vi cos γi cosχi, (5.1a)

ẏi = Vi cos γi sinχi (5.1b)

ḣi = V sin γi (5.1c)

V̇i =
Ti −Di

mi

− g sin γi (5.1d)

γ̇i =
L cosφi −mig cos γi

miVi
(5.1e)

χ̇i =
Li sin φi

miVi cos γi
(5.1f)

for i = 1, · · · , N , wherexi is the down-range displacement,yi is the cross-range displacement,hi

is the altitude,Vi is the ground speed which is assumed to be equal to the airspeed in this paper,

γi is the flight path angle,χi is the heading angle,Ti is the engine thrust,Di is the drag,mi is the

74



UAV mass,g is the acceleration due to gravity,Li is the lift, andφi is the banking angle. The three

control inputs of UAVi is the banking angleφi, lift Li, and engine thrustTi.

Ti Vi

γi

Di

yi

xi

hi

Li

mig Vi

χi

ϕi

Figure 5.1: UAV Model

It is shown in [77] that the highly nonlinear UAV model in (5.1) can be pre-linearized using feed-

back linearization to be

ẍi = uxi, ÿi = uyi, ḧi = uhi (5.2)

whereuxi, uyi, anduhi are the virtual acceleration control inputs. These virtualcontrol inputs and
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the real control inputs are related through the following equations

φi = tan−1

(
uyi cosχi − uxi sinχi

(uhi + g) cos γi − (uxi cosχi + uyi sinχi) sin γi

)

(5.3a)

Li = mi
(uhi + g) cos γi − (uxi cosχi + uyi sinχi) sin γi

cosφi

(5.3b)

Ti = mi[(uhi + g) sin γi + (uxi cosχi + uyi sinχi) cos γi] +Di (5.3c)

wheretanχi = ẏi/ẋi andsin γi = ḣi/Vi. Therefore, after the virtual control inputs are designed

based on the linear model (5.2), the real control inputs can then be obtained by substituting the

virtual ones into equations in (5.3). Expressing (5.2) in terms of state-space representation yields

żi = Azi +Bui, (5.4a)

pi = Cpzi (5.4b)

vi = Cvzi (5.4c)

wherezi = [pTi vi]
T is the state vector,pi is the position vector,vi is the velocity vector,ui =

[uT
xi
uT
yi
uT
hi
]T is the virtual acceleration control vector,

Ai =






0 1

0 0




⊗ I3, Bi =






0

1




⊗ I3, Cp = [1 0]⊗ I3, Cv = [0 1]⊗ I3,

Suppose that individual UAVs are able to communicate with each other according to a directed

information graphG = (V, E). To achieve the formation requirement, graphG is assumed to be

connected. Since the objective of the UAVs is to form a prescribed formation, assuming that the

desired displacement vector pointing from UAVj to UAV i is µij , the formation requirement can
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be expressed mathematically in terms of the following performance index for UAVi to minimize:

Ji =
∑

eij∈E

1

2
[‖pi(tf )− pj(tf)− µij‖

2 + ‖vi(tf)− vj(tf)‖
2] +

ri
2

∫ tf

0

‖ui‖
2dt (5.5)

for all i = 1, · · · , N , where‖ · ‖ is the Euclidean norm or distance andri is a positive scalar.

Performance index (5.5) means that UAVi will try to minimize the sum of the terminal formation

errors and terminal velocity errors according to the information graph while at the same time

minimizing its control effort made during the entire process. The largerri is, the larger penalty is

placed on the control effort. Note that coefficientsr1, · · · , rN are not necessarily the same because

the choices of these coefficients reflect the real situation.For instance, if UAVi has sufficient fuel

in its tank, it will naturally choose a small value ofri in order to keep the desired formation with

others actively. On the contrary, if UAVi does not have much fuel left in its tank, it will naturally

choose a large value ofri to preserve its energy or fuel cost. Therefore, we assume that the UAVs

will play a cooperative game and collaborate with each otheras a team to achieve the prescribed

formation. This leads to solving the multi-objective optimization problem in (3.3) and finding the

noninferior solution of the game. Toward that end, similar to (3.9), we define new state vectors as

spi(t) = [1 (tf − t)]zi(t) and svi(t) = [0 1]zi(t). (5.6)

Differentiating both sides of (5.6) with respect tot and recalling system dynamics (2.2) yield

ṡpi = B̃pui and ṡvi = B̃vui, (5.7)

whereB̃p = (tf − t)I3 andB̃v = I3. Based on the propertiesspi(tf ) = pi(tf ) andsvi(tf ) = vi(tf)
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for spi andsvi defined in (5.6), the performance indices in (5.5) can be rewritten as

Ji =
∑

eij∈E

1

2
[‖spi(tf)− spj(tf)− µij‖

2 + ‖svi(tf )− svj(tf)‖
2] +

ri
2

∫ tf

0

‖ui‖
2dt. (5.8)

for all i = 1, · · · , N . The convex combination in (3.3) withJi defined in (5.8) can be expressed as

J =
N∑

j=1

αj

2

∑

ejk∈E

[‖spj(tf)− spk(tf )− µjk‖
2 + ‖svj(tf)− svk(tf )‖

2]

+
N∑

j=1

αjrj
2

∫ tf

0

‖uj‖
2dt ∀i = 1, · · · , N, (5.9)

whereαj > 0 for all j = 1, · · · , N . Similarly to (2.4), we define the Laplacian matrixL = [Lij ] ∈

R
N×N associated with the graph among theN UAVs as follows:

Lij =







−(αi + αj) if eij ∈ E for j 6= i

0 if eij /∈ E for j 6= i

−

N∑

q=1,q 6=i

Liq if j = i

, (5.10)

It is obvious thatLT = L because the graph is assumed to be undirected and hence matrix L is pos-

itive semi-definite. Before we present the result of open-loop noninferior solution, the following

lemma is introduced.

Lemma 5.1. All the eigenvalues of matrixM defined by

M = [I2N +W ⊗ (R−1L)]⊗ I3, (5.11)
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has positive real parts, where

W =






wpp wpv

wvp wvv




 , (5.12a)

wpp =

∫ tf

0

B̃pB̃
T
p dt =

t3f
3
, wpv =

∫ tf

0

B̃pB̃
T
v dt =

t2f
2

(5.12b)

wvp =

∫ tf

0

B̃vB̃
T
p dt =

t2f
2
, wvv =

∫ tf

0

B̃vB̃
T
v dt = tf , (5.12c)

R = diag{µ1r1, · · · , µNrN}, (5.12d)

and diag{·} stands for “diagonal matrix”.

Proof. Firstly, since it is obvious that matrixW defined by (5.12a)-(5.12c) is positive define, all

its eigenvalues are positive. Secondly, since matrixR in (5.12d) is a positive diagonal matrix, the

product of(R−1L) becomes a new weighted Laplacian matrix whose eigenvalues still have non-

negative real parts. Thirdly, since the eigenvalues of matrices’ Kronecker product are the product

of these matrices’ eigenvalues, all the eigenvalues of matrix [W ⊗ (R−1L)⊗ I3] have non-negative

real parts. Therefore, all the eigenvalues ofM in (3.14a) have positive real parts.

The open-loop Nash equilibrium solution is now presented asthe following theorem similar to

Theorem 3.3.

Theorem 5.1.Given the differential game amongN UAVs with system dynamics (5.7) and perfor-

mance indices (5.8), the strategies

u∗
i =−

1

αiri
FiM

−1











sp(0)

sv(0)




+Wµµ




+

1

αiri
B̃T

p µi ∀i = 1, · · · , N (5.13)
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form an open-loop Nash equilibrium, where matrixM is defined in (3.14a),

sp = [sTp1 · · · sTpN ]
T , sv = [sTv1 · · · sTvN ]

T , (5.14a)

Fi = [B̃T
p B̃T

v ][I2 ⊗ (dTi L)⊗ I3], (5.14b)

Wµ =






wpp

wvp




⊗R−1 ⊗ I3, (5.14c)

µ =
[
µT
1 · · · , µT

N

]T
, (5.14d)

µi =
∑

eij∈E

(αi + αj)µij ∀i = 1, · · · , N, (5.14e)

L is the Laplacian matrix defined in (5.10),di ∈ R
N is a vector with theith entry equal to 1 and the

other entries equal to 0, and scalarswpp andwvp are defined in (5.12b) and (5.12c), respectively.

Proof. We define the Hamiltonian for UAVi as

Hi =

N∑

j=1

αjrj
2

‖uj‖
2 +

N∑

j=1

λT
pjB̃puj +

N∑

j=1

λT
vjB̃vuj

where vectorsλpi andλvi are the Lagrangian multipliers. According to the well-known Pontrya-
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gin’s minimum principle [71], the necessary conditions foroptimality are

ṡpi =
∂Hi

∂λpi
= B̃pui, ṡvi =

∂Hi

∂λvi
= B̃vui (5.15a)

λ̇pi = −
∂Hi

∂spi
= 0, λ̇vi = −

∂Hi

∂svi
= 0, (5.15b)

λpi(tf) =
∑

eij∈E

(αi + αj)[spi(tf)− spj(tf)− µij], (5.15c)

λvi(tf ) =
∑

eij∈E

(αi + αj)[svi(tf )− svj(tf)], (5.15d)

∂Hi

∂ui
= αiriui + B̃T

p λpi + B̃T
v λvi = 0,

∂2Hi

∂u2
i

= αiri > 0. (5.15e)

Conditions (5.15b)-(5.15d) indicate thatλpi andλvi are constant vectors. Substituting them into

(5.15e) yields

ui =−
1

αiri
B̃T

p λpi −
1

αiri
B̃T

v λvi

=−
1

αiri
B̃T

p

∑

eij∈E

(αi + αj)[spi(tf )− spj(tf )− µij]

−
1

αiri
B̃T

v

∑

eij∈E

(αi + αj)[svi(tf )− svj(tf)]. (5.16)

Substituting (5.16) into (5.15a) and integrating both sides from0 to tf yield

spi(tf ) +
wpp

αiri

∑

eij∈E

(αi + αj)[spi(tf)− spj(tf)]

+
wpv

αiri

∑

eij∈E

(αi + αj)[svi(tf)− svj(tf )] = spi(0) +
wpp

αiri
µi (5.17)
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and

svi(tf) +
wvp

αiri

∑

eij∈E

(αi + αj)[spi(tf )− spj(tf )]

+
wvv

αiri

∑

eij∈E

(αi + αj)[svi(tf )− svj(tf)] = svi(0) +
wvp

αiri
µi (5.18)

where scalarswpp, wpv, wvp, wvv are defined in (5.12b)-(5.12c) andµi is defined in (5.14e). Com-

bining (5.17) and (5.18) and stacking them fromi = 1 to i = N yield






sp(tf )

sv(tf)




 = M−1












sp(0)

sv(0)




+











wpp

wvp




⊗ R−1 ⊗ I3




µ







(5.19)

where vectorssp andsv are defined in (5.14a), matrixM is defined in (5.11) and invertible accord-

ing to Lemma 5.1, and vectorµ is defined in (5.14d). Therefore, rewriting (5.16) as

ui =−
1

αiri
Fi






sp(tf )

sv(tf )




+

1

αiri
B̃T

p µi (5.20)

whereFi is defined in (5.14b) and substituting (5.19) into (5.20) yields (5.13). Sincesp(0), sv(0)

are in fact functions of the initial statez(0) through (5.6), strategiesu∗
1, · · · , u

∗
N in (5.13) form an

open-loop Nash equilibrium.

Due to the information graph constraint, the following terminal position and velocity estimation

law similar to Theorem 3.4 is presented.

Theorem 5.2. If UAV i updates its vectorhi in continuous time from any initial guesshpi(0) and
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hvi(0) according to






ḣpi

ḣvi




 =g

{






spi(0)

svi(0)




+

1

αiri






wpp

wvp




µi −






hpi

hvi






−
1

αiri
(W ⊗ I3)

∑

eij∈E

(αi + αj)











hpi

hvi




−






hpj

hvj











}

(5.21)

whereg is a positive scalar, matrixW is defined in (5.12a), and vectorµi is defined in (5.14e),

then

lim
τ→∞






hp(τ)

hv(τ)




 =






sp(tf )

sv(tf)




 , (5.22)

wherehp = [hT
p1 · · ·hT

pN ]
T , hv = [hT

v1 · · ·hT
vN ]

T , and vectorssp(tf ) andsv(tf ) are as defined in

(5.19).

Proof. Stacking equation (5.21) fromi = 1 to i = N yields






ḣp

ḣv




 = g












sp(0)

sv(0)




−M






hp

hv




+Wµµ







. (5.23)

where matrixM is defined in (5.11), matrixWµ is defined in (5.14c), and vectorµ is defined in

(5.14d). Since all the eigenvalues of matrixM has positive real parts as shown in Lemma 5.1, ma-

trix (−M) is Hurwitz. Therefore, linear system with respect to[hp; hv] in (5.23) is asymptotically

stable starting from any initial conditionh(0) and will converge to the equilibrium, i.e.,

lim
τ→∞






hp(τ)

hv(τ)




 = M−1












sp(0)

sv(0)




+Wµµ







.

where the right hand side of the above equation is equal to thevector [sp(tf); sv(tf)] defined in
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(5.19). Therefore, equation (5.22) holds.

Given the state estimation law in (5.21), an online open-loop Nash strategy design algorithm simi-

lar to (3.22) is proposed as follows:

u∗
i =−

1

αiri
B̃T

p

∑

eij∈E

(αi + αj)(hpi − hpj − µij)−
1

αiri
B̃T

v

∑

eij∈E

(αi + αj)(hvi − hvj), (5.24)

wherehpi andhvi satisfy the equation (5.21) for alli = 1, · · · , N .

For illustration, we apply this online open-loop Nash strategy design algorithm to a five-UAV

system. The parameters in [49] are utilized for this simulation: The weight of UAVi ismi = 20kg

for all i = 1, · · · , N . The gravity constant isg = 9.81kg/m2. The dragDi is calculated as follows

[78]:

Di =
0.5ρ(Vi − Vwi)

2SCD0 + 2kdk
2
nL

2/g2

ρ(Vi − Vwi)2S

whereρ is the atmospheric density and equal to1.225kg/m3, Vwi is the gust,S is the wing area

and equal to1.37m2, CD0 is the zero-lift drag coefficient and equal to 0.02,kd is the induced drag

coefficient and equal to 0.1, andkn is the load-factor effectiveness and equal to 1. The gustVwi is

modeled as follows [79]:

Vwi = V̄wi + δVwi

V̄wi = 0.215Vmlog10(hi) + 0.285Vm

whereV̄wi is the normal wind shear,Vm is the mean wind speed and equal to4m/s at the altitude of

80m, andδVwi is the wind gust turbulence on UAVi and assumed to be a Gaussian random variable

with zero mean and a standard deviation equal to 0.09Vm. The real control inputs of the UAV have
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the following constraints:Ti < 125N , −294.3N < Li < 392.4N , and−80◦ ≤ φi ≤ 80◦ for all

i = 1, · · · , N . We assume that the UAVs are trying to form a desired V-shape in the same altitude

shown in Figure 5.2 and the underlying undirected information graph is also shown in this figure.

UAV 1

UAV 2

UAV 4

Aircraft 3

UAV 5

UAV 3

Figure 5.2: V-shape formation and information graph

Hence, UAV 1 will act as a reference for the other UAVs. The corresponding graph Laplacian

matrix is

L =














2α1 + α2 + α3 −α1 − α2 −α1 − α3 0 0

−α1 − α2 α1 + α4 + 2α2 0 −α4 − α2 0

−α1 − α3 0 α1 + α5 + 2α3 0 −α3 − α5

0 −α2 − α4 0 α2 + α4 0

0 0 −α3 − α5 0 α3 + α5














.

where0 ≤ α1, · · · , α5 ≤ 1 are the convex parameters and
∑5

i=j αj = 1. The desired offset vectors

of the formation among the UAVs are

µ21 =








−100

−100

0








m, µ31 =








100

−100

0








m, µ42 =








−100

−100

0








m, µ53 =








100

−100

0








m.
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The initial positions of the UAVs are

p1(0) =








0

0

90








m, p2(0) =








−80

0

80








m, p3(0) =








90

0

70








m, p4(0) =








−120

0

60








m, p5(0) =








150

0

65








m.

The initial velocities of the UAVs are

v1(0) =








0

50

0








m/s, v2(0) =








0

60

0








m/s, v3(0) =








0

40

0








m/s, v4(0) =








0

65

0








m/s, v5(0) =








0

45

0








m/s.

The five UAVs’ performance indices are given by (5.5) withtf = 30 andri = 1 for all i = 1, · · · , 5.

With αi = 0.2 for all i = 1, · · · , 5, the the UAVs’ trajectories derived using the online open-loop

Nash strategy design algorithm (5.24) are shown in Figure 5.3. The left plot shows the trajectories

in 3-dimensional space and the right plot shows the trajectories inx − y plane. In the figure, the

circles indicate the UAVs’ initial positions and the triangles indicate the UAVs’ terminal positions.
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Figure 5.3: UAVs’ trajectories in 3D andx− y plane

Clearly, the UAVs’ positions form the desired V-formation at the terminal time. For illustrative

purpose, the UAVs’ trajectories onx axis,y axis, andh axis are shown independently in Figure 5.4.

Moreover, the UAVs’ velocities in the three axis and three real control inputs obtained according

to the relationship (5.3) are also shown in Figure 5.4. All ofreal control inputs are within the

specified constraints.
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Figure 5.4: UAVs’ positions, velocities, and real control inputs
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5.2 Multi-Pursuer Single-Evader Differential Game with Limited Observations

In this section, we consider a differential game over a finitetime horizon in which only the evader

is assumed to have global sensing capability which allows itto observe all the pursuers at all times.

Each pursuer, on the other hand, has a limited sensing capability which allows it to observe the

evader and/or other pursuers only if they fall within its sensing range. A practical example of such

a situation occurs when a well-equipped UAV with a very wide range of sensing capability must

evade several (possibly a large number of) weakly-equippedpursuing UAVs. In what follows,

we derive the feedback Nash strategies for both the pursuersand evader using the best achievable

performance indices based approach.

We define the following displacement vectorzi between pursueri and the evadere as shown in

Figure 5.5

zi = xe − xi ∀i = 1, · · · , N. (5.25)

wherexe ∈ R
n is the evader’s position vector andxi ∈ R

n is pursueri’s position vector.

Pursuer 1

Pursuer 2

Pursuer N

Evader

…...

Figure 5.5: Displacement vectors
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We assume that a collective objective of the pursuers is to minimize the sum of the weighted

distances between the evader and themselves at a terminal time tf > 0 while at the same time

minimizing these distances and their control efforts over the time interval[0, tf ]. Hence, the group

of pursuers tries to minimize the following performance index:

Jp =

N∑

j=1

fpj
2
‖zj(tf )‖

2 +

∫ tf

0

N∑

j=1

(qpj
2
‖zj‖

2 +
rj
2
‖uj‖

2
)

dt, (5.26)

whereuj is pursuerj’s velocity control input,‖ · ‖ is the Euclidean norm, and scalarsfpj , qpj , and

rj are positive weights forj = 1, · · · , N . On the other hand, we assume that the evader’s objective

is to maximize the sum of the weighted terminal distances between the pursuers and itself while at

the same time maximizing these distances and minimizing itscontrol effort over the time interval

[0, tf ]. Hence, the evader will try to minimize the performance index:

Je =−

N∑

j=1

fej
2
‖zj(tf)‖

2 +

∫ tf

0

N∑

j=1

(

−
qej
2
‖zj‖

2
)

+
re
2
‖ue‖

2dt, (5.27)

whereue is the evader’s velocity control input and scalarsfej , qej , andre are positive weights

for j = 1, · · · , N . To express the system dynamics more compactly, we define thevectorz =

[zT1 ; · · · z
T
N ]

T which, along with (5.25), yields

ż = Beue +Bpup. (5.28)

where matrixBe = 1N ⊗ In, 1N ∈ R
N×1 is a vector with all the entries equal to 1,up =

[uT
1 · · · uT

N ]
T , Bp = −IN ⊗ In. The performance indices (5.26) and (5.27) can be rewritten
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as

Jp =
1

2
‖z(tf )‖

2
Fp

+
1

2

∫ tf

0

(‖z‖2Qp
+ ‖up‖

2
Rp
)dt, (5.29a)

Je =
1

2
‖z(tf )‖

2
Fe

+
1

2

∫ tf

0

(‖z‖2Qe
+ ‖ue‖

2
Re
)dt, (5.29b)

where‖z‖2F = zTFz and

Fp = diag{fp1, · · · , fpN} ⊗ In, Fe = −diag{fe1, · · · , feN} ⊗ In

Qp = diag{qp1 , · · · , qpN} ⊗ In, Qe = −diag{qe1, · · · , qeN} ⊗ In

Rp = diag{r1, · · · , rN} ⊗ In,

and “diag” stands for “diagonal matrix”. Hence, given the system dynamics in (5.28) and per-

formance indices in (5.29), a differential nonzero-sum game between the group of pursuers and

the evader is formed. To accurately model the sensing capabilities and limited observations of

the pursuers, we assume that pursueri has a sensing range defined by a sensing radiusri > 0.

If the Euclidean distance between pursueri and the evader is less than or equal tori, that is,

‖xi − xe‖ ≤ ri, then pursueri is able to observe the evader, otherwise, pursueri cannot observe

the evader. Consequently, we define a binary scalarhi(t) to represent pursueri’s ability to observe

the evader at timet as follows:

hi(t) =







1 if ‖xi(t)− xe(t)‖ ≤ ri

0 if ‖xi(t)− xe(t)‖ > ri

. (5.30)

Similarly, if the the Euclidean distance between pursueri and pursuerj is less than or equal tori,

that is,‖xi − xj‖ ≤ ri, then pursueri is able to observe pursuerj, otherwise, pursueri cannot

observe pursuerj. Consequently, we can use an unweighted Laplacian matrix,L(t) = [Lij(t)] ∈
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R
N×N , similar to (2.4) to described the observations among the pursuers at every instant of timet,

where

Lij(t) =







−1 if ‖xi(t)− xj(t)‖ ≤ ri for j 6= i

0 if ‖xi(t)− xj(t)‖ > ri for j 6= i

−

N∑

l=1,l 6=i

Lil if j = i

(5.31)

for i, j = 1, · · · , N .

For the formulated pursuit-evasion game with limited observations, the following practical issue

needs to be noticed: Although the evader has sufficiently wide observation range to observe all the

pursuers’ positions at every instant of time, it really has no information on the individual pursuers’

observation radiir1, · · · , rN or how these pursuers obverse each other among themselves. There-

fore, we assume that during the game process, the evader has no knowledge of the existence of

limited observations among the pursuers and the overall information topology. On the other hand,

for the pursuers, we assume that all of them are aware of theirlimited observation capabilities as

well as the evader’s global observation capability.

Given the formulated pursuit-evasion game problem, every player is able to solve for the Nash

equilibrium using the well-known Riccati equation approach, however, only the evader who ob-

serves all the pursuers can implement this Nash strategy. According to [7], for the game defined

by system (5.28) and performance indices (5.29), the classical linear feedback Nash strategies are

u∗
p = −R−1

p BT
p Ppz (5.32a)

u∗
e = −R−1

e BT
e Pez, (5.32b)
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where matricesPp andPe are solutions to the coupled differential Riccati equations

Ṗp + Qp − PpBpR
−1
p BT

p Pp − PpBeR
−1
e BT

e Pe − PeBeR
−1
e BT

e Pp = 0 (5.33a)

Ṗe +Qe − PeBpR
−1
p BT

p Pp − PpBpR
−1
p BT

p Pe − PeBeR
−1
e BT

e Pe = 0. (5.33b)

with boundary conditionPp(tf) = Fp andPe(tf ) = Fe. The expressions for the evader’s Nash

strategy in (5.32b) is indeed linear feedback controls of the global state vectorz. Since the evader

has no knowledge of the existence of the pursuers’ limited observations, it naturally implements

the feedback Nash strategy (5.32b) as its control input during the game, assuming that the pursuers

are implementing strategy (5.32a). From the pursuers’ perspective, since each of them has limited

observation, there is no way for them to implement their Nashstrategy described in (5.32a). There-

fore, a Nash strategy design approach must be proposed for the group of pursuers to accommodate

their limited observations constraint while at the same time maintaining a Nash equilibrium with

the evader’s strategy (5.32b). First of all, the pursuers’ admissible controlup needs to be prop-

erly structured in order to fit into the limited observation constraint that each pursuer must operate

under. Toward this end, we propose the following structuredfeedback strategies for the pursuers:

us
i =hi(t)Kie(t)zi(t)
︸ ︷︷ ︸

a

+Kip(t)

N∑

j=1

Lij(t)zj(t)

︸ ︷︷ ︸

b

∀i = 1, · · · , N (5.34)

where scalarhi(t) is defined in (5.30), scalarLij(t) is defined in (5.31), matricesKie ∈ R
n×n and

Kip ∈ R
n×n are feedback gains to be determined. Terma in (5.34) represents a control component

of pursueri to chase the evader directly if it observes the evader. Termb in (5.34) is known as a

cooperative control component, that is, a feedback controlof the difference between the position of

pursueri and those of the pursuers that it observes. The expression ofpursueri’s control in (5.34)

means that when pursueri is able to observe the evader (i.e. whenhi(t) = 1), it will chase the
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evader while at the same time it follows the nearby pursuers that it can observe. When pursueri is

unable to observe the evader (i.e. whenhi(t) = 0), it has no choice but to merely follow the nearby

pursuers. The control expression in (5.34) can be rewrittenusing the more compact notation as

us
i =Kie[0 · · · 0 (hiIn) 0 · · · 0]z +Kip[(Li1In) · · · (LiNIn)]z , MiCiz, (5.35)

whereMi = [Kie Kip] ∈ R
n×2n and

Ci =






0 · · · 0 (hiIn) 0 · · · 0

(Li1In) · · · · · · (LiNIn)




 ,

wherehi andLij are defined in (5.30) and (5.31). Therefore, the pursuers’ control vectorus
p =

[(us
1)

T · · · (us
N)

T ]T can be written asus
p = Mpz, where

Mp = [(M1C1)
T · · · (MNCN)

T ]T . (5.36)

The problem now reduces to finding a set of matricesM∗
1 , · · · ,M

∗
N such that feedback gainM∗

p =

[(M∗
1C1)

T · · · (M∗
NCN)

T ]T and the resulting pursuers’ strategy

us∗
p = M∗

p z (5.37)

can still form a Nash equilibrium with the evader’s strategyu∗
e in (5.32b). As we mentioned in

Chapter 4, using the optimal output feedback based approach, all the players’ structured controls

and the corresponding feedback gains need to be simultaneously parameterized and optimized

with respect to the given set of performance indices to obtain the Nash equilibrium. This cannot

be implemented in our game setup since as mentioned earlier,the evader will be implementing the

Nash strategy (5.32b) and hence it is not possible to simultaneously parameterize and optimize it
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along with the strategy of the pursuers to form a Nash equilibrium. Therefore, the best achievable

performance indices based approach is utilized to design Nash strategies for the pursuers. The

following result similar to Theorem 4.5 is presented.

Theorem 5.3.For the pursuit-evasion game described by system dynamics (5.28) and performance

indices (5.29), for an arbitrary set of matricesM1, · · · ,MN , the strategiesu∗
e in (5.32b) andus

p =

Mpz form a Nash equilibrium

Js
p(u

s
p, u

∗
e) ≤ Js

p(up, u
∗
e), ∀up ∈ Up (5.38a)

Js
e (u

s
p, u

∗
e) ≤ Js

e (u
s
p, ue), ∀ue ∈ Ue, (5.38b)

with respect to performance indices

Js
p =

1

2
‖z(tf )‖

2
Fp

+
1

2

∫ tf

0

(‖z‖2Qs
p
− uT

p Γz − zTΓTup + ‖up‖
2
Rp
)dt, (5.39a)

Js
e =

1

2
‖z(tf )‖

2
Fe

+
1

2

∫ tf

0

(‖z‖2Qs
e
+ ‖ue‖

2
Re
)dt, (5.39b)

where

Qs
p = MT

p RpMp − PpBpR
−1
p BT

p Pp +Qp (5.40a)

Γ = BT
p Pp +RpMp, (5.40b)

Qs
e = −PeBpR

−1
p (RpMp +BT

p Pp)− (RpMp +BT
p Pp)

TR−1
p BT

p Pe +Qe. (5.40c)

matricesPp andPe are the solutions to (5.33) and matrixMp is as given in (5.36).

Proof. Consider Lyapunov functions

Vp =
1

2
zTPpz and Ve =

1

2
zTPez. (5.41)
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DifferentiatingVp in (5.41) with respect tot and integrating it from0 to tf yield

Vp(tf)− Vp(0) =
1

2

∫ tf

0

[
− ‖z‖2Qs

p
− ‖u‖2Rp

+ uT
p Γz + zTΓTup

+ 2zTPpBe(ue +R−1
e BT

e Pez) + ‖up −Mpz‖
2
Rp

]
dt.

Hence,

Js
p =Vp(0) +

∫ tf

0

1

2
‖up −Mpz‖

2
Rp

+ zTPsBe(ue +R−1
e BT

e Pez)dt, (5.42)

whereJs
p is defined in (5.39a). Similarly, we can show that

Js
e =Ve(0) +

∫ tf

0

1

2
‖ue +R−1

e BT
e Pez‖

2
Re

− zTPeBp(up −Mpz)dt, (5.43)

whereJs
e is defined in (5.39b). SinceRp andRe are positive definite, it is obvious from (5.42) and

(5.43) that given performance indices defined in (5.39), theinequalities in (2.8) holds forup = Mpz

andu∗
e = −R−1

e BT
e Pe. Hence, strategies (5.32b) and (5.37) form a Nash equilibrium with respect

to performance indices in (5.39). Clearly, ifMp can be written asMp = −R−1
p BT

p Pp, thenJs
p in

(5.39a) becomes identical to (5.29a) andJs
e in (5.39b) becomes identical to (5.29b).

Therefore, according to the definition of best achievable performance index in (4.1), to find the

optimal matrixM∗
p (t) corresponding to the best achievable performance indices,we need to solve

a multi-objective optimization problem of minimizing‖Qs
p −Qp‖

2
f , ‖S‖2f , and‖Qs

e −Qe‖
2
f simul-

taneously. Hence, we letH(t) in (4.19) be

H(t) =β1‖Q
s
p −Qp‖

2
f + β2‖S‖

2
f + β3‖Q

s
e −Qe‖

2
f

=β1Tr[(Qs
p −Qp)

2] + β2Tr(STS) + β3Tr[(Qs
e −Qe)

2] (5.44)
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where0 < βj < 1 for j = 1, 2, 3, and
∑3

j=1 βj = 1. SinceMp is as defined in (5.36), the

minimization in (4.20) is actually done with respect toM1(t), · · · ,MN(t). With the gradient of

H(t) with respect toM1(t), · · · ,MN(t) expressed as follows:

∇Mi
H =(dTi ⊗ In)[4α1RpMp(Q

s
p −Qp) + 2α2RpS − 4α3B

T
p Pe(Q

s
e −Qe)]C

T
i . (5.45)

for all i = 1, · · · , N , wheredi ∈ R
N is a vector with theith entry equal to 1 and the other

entries equal to 0, a gradient based iterative algorithms similar to Algorithm 4.2 can be adopted to

find matricesM∗
1 (t), · · · ,M

∗
N(t). Also note that by varying the coefficientsβ1, β2, β3 in (5.44), a

noninferior set of the solutions can be generated. An appropriate choice of these coefficients can

be made to place a desired emphasis on the importance of minimizing each of the three terms in

(5.44) as compared to the other two.

For illustrative purpose, let us consider a three-pursuer single-evader differential game taking place

in a planar environment and defined over a time interval[0, 3]. Suppose thatxi = [xT
i1 x

T
i2]

T ∈ R
2

represents playeri’s position andui = [uT
i1 uT

i2]
T ∈ R

2 represents playeri’s velocity control.

Hence, in equation (2.2), we have

Be =









I2

I2

I2









and Bp = −









I2 0 0

0 I2 0

0 0 I2









.

The performance indices are given by (5.29) withtf = 3, Fp = Qp = qI6, Rp = I6, Fe = Qe = I6,

andRe = I2, whereq is a positive scalar that can be varied to analyze different scenarios. As shown

in Figure 5.6, we assume that the pursuers’ initial positions arex1(0) = (−3, 0), x2(0) = (3, 0),

x3(0) = (5, 1), the evader’s initial position isxe(0) = (0, 1), and the pursuers’ sensing radii are

the same and equal to 4. Clearly, att = 0, pursuer 1 can only observe the evader, pursuer 2 can

97



(-3,0)

(5,1)

(3,0)

(0,1)

Pursuer 1 Pursuer 2

Pursuer 3
Evader

X1

X2

0

Figure 5.6: Initial positions of three pursuers and single evader

observe the evader and pursers 3, and pursuer 3 can only observe pursuer 2. Further, we assume

that the evader is captured if the minimum distance between the pursuers and evader is less than a

capture radiusσ = 0.1, which is shown as a light black circle centered at the evaderin Figure 5.6.

In this example, we will consider two different scenarios:

• Scenarios 1: q = 1. Pursuers put equal emphasis on minimizing their distancesto the evader

and minimizing their control effort.

• Scenario 2: q = 5. Pursuers put more emphasis on minimizing their distances to the evader

than on minimizing their control effort.

Evader’s Strategy: The Evader solves the coupled differential Riccati equations (5.33) and im-
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plements the corresponding Nash strategy. This yields solutionsPp andPe in the following form:

Pp =









Pp1 Pp2 Pp2

Pp2 Pp1 Pp2

Pp2 Pp2 Pp1









⊗ I2, Pe =









Pe1 Pe2 Pe2

Pe2 Pe1 Pe2

Pe2 Pe2 Pe1









⊗ I2

where the plots ofPp1(t), Pp2(t), Pe1(t), andPe2(t) for both scenarios are shown in Figure 5.7.

Hence, the evader’s feedback Nash strategies (5.32b) in terms ofz1, z2, z3 can be expressed as

u∗
e =(Pe1 + 2Pe2)(z1 + z2 + z3).
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Pursuers’ Strategy: To derive the pursuers’ strategy, we assume that for implementation purpose,

the pursuers perform sensing only at discrete instants of timet0, t1, · · · , t299, wheret0 = 0, t300 =

tf = 3. Sincetj−tj−1 = 0.01 is quite small for allj = 1, · · · , 300, we assume that the observations

among the players can be regarded to be constant within such asmall time interval(tj − tj−1). We

also assume that the pursuers will carry out the proposed best achievable performance indices

approach with the following (arbitrary) choice of coefficients in (5.44):α1 = 1/4, α2 = 1/2, and

α3 = 1/4.

Scenario 1: In this scenario, the motion trajectories of the pursuers and evader over time are shown

in Figure 5.8. The distances between the pursuers and evaderover time are shown in Figure 5.9

where the capture radiusσ = 0.1 is shown in terms of a dashed black horizontal line. Clearly,

in this scenario, none of the pursuer is able to capture the evader when the final timetf = 3 is

reached. Furthermore, the change in the observations amongthe players is reflected in the changes

of hi(t) in (5.30) and Laplacian matrix withLij(t) defined in (5.31).
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Figure 5.8: Motion trajectories of the pursuers and evader for Scenario 1
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In this scenario, the values ofh1(t), h2(t), h3(t) and the value of the Laplacian matrixL(t) have

changed as follows:

h1(t) =







1 0 ≤ t ≤ 2.91

0 2.91 < t ≤ 3

h2(t) =







1 0 ≤ t ≤ 2.91

0 2.91 < t ≤ 3

h3(t) = 0 0 < t ≤ 3

and L(t) =






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





0 0 0

0 1 −1

0 −1 1









0 ≤ t ≤ 0.16









1 −1 0

−1 2 −1

0 −1 1









0.16 < t ≤ 0.52









1 −1 0

−1 1 0

0 0 0









0.52 < t ≤ 3

.

The change inhi(t) means that pursuers 1 and 2 lose observation of the evader after t = 2.91 while

pursuer 3 was never able to observe the evader for the entire game. The change in the Laplacian

matrix essentially means that only pursuers 2 and 3 can observe each other fort ∈ [0, 0.16], pursuer

2 can observe pursuers 1 and 3 fort ∈ (0.16, 0.52] while pursuers 1 and 3 cannot observe each

other at this time interval, and only pursuers 1 and 2 can observe each other for the rest time

t ∈ (0.52, 3].

Scenario 2: In this scenario, the motion trajectories of the pursuers and evader are shown in

Figure 5.10. The distances between the pursuers and evader are shown in Figure 5.11 where the

the capture radiusσ = 0.1 is shown in terms of a dashed black horizontal line. Clearly,in this

scenario, pursuer 2 is the first one to capture the evader att = 1.2.
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Figure 5.10: Motion trajectories of the pursuers and evaderfor Scenario 2
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Figure 5.11: Distances between the pursuers and evader for Scenario 2
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During the entire game, the values ofh1(t), h2(t), h3(t) and the value of the Laplacian matrixL(t)

have changed as follows

h1(t) = 1 0 < t ≤ 3

h2(t) = 1 0 < t ≤ 3

h3(t) =







0 0 ≤ t ≤ 0.29

1 0.29 < t ≤ 3

and L(t) =






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−1 −1 2






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The change ofhi(t) means that aftert = 0.29, all the pursuers are able to observe the evader.

The change of the Laplacian matrix means that only pursuers 2and 3 can observe each other for

t ∈ [0, 0.11], pursuer 2 can observe pursuers 1 and 3 fort ∈ (0.11, 0.41] while pursuers 1 and 3

cannot observe each other at this time interval, and all the pursuers are able to observe each other

for the rest timet ∈ (0.41, 3].

It would be interesting to determine a critical valueqc of q which separates the escape and capture

regions of the evader. That is, ifq < qc, the evader escapes and ifq ≥ qc the evader is captured at

a time instantt ∈ [0, 3]. For this game, the critical value ofq has been determined to beqc = 1.38.

Figure 5.12 shows the motion trajectories of the pursuers and evader whenq = qc = 1.38. Figure

5.13 shows the distances between the pursuers and evader when q = qc = 1.38, where the capture

time occurs att = 1.55.
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Figure 5.12: Trajectories of the pursuers and evader whenq = qc = 1.38
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Figure 5.13: Distances between the pursuers and evader whenq = qc = 1.38
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CHAPTER 6: CONCLUSION

This dissertation focuses on the Nash strategy and noninferior strategy designs for linear quadratic

differential games in the multi-agent system under distributed open-loop and feedback information

structures. We first introduced the basic concepts in the game theory and multi-agent control

systems, reviewed the existing results in these fields, raised the motivation of this research, and

defined the scope of this dissertation. As the main results, we proposed novel open-loop and

feedback game strategy design approaches to overcome the conventional approaches’ incapabilities

in dealing with the distributed information constraint. The contributions of this dissertation can be

addressed as follows:

1. In terms of the open-loop strategy design, the proposed approach integrates a distributed

state estimation algorithm into the classical open-loop game strategy.

– The proposed approach can be carried out in a distributed manner where every agent is

able to implement it by exchanging the state estimates with other agents according to

the information graph.

– The proposed approach renders approximate strategies of the original open-loop Nash

or noninferior strategies which can only be implemented under global information and

these approximate strategies can be made arbitrarily closeto the original open-loop

Nash or noninferior strategies.

2. In terms of the feedback strategy design, the proposed approach is based on the concept of

best achievable performance indices.

– The proposed approach renders structured strategies whichhas structured feedback

gain matrices that conform to the information graph constraint.
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– Compared with the classical output feedback optimal approach, the proposed approach

renders strategies that are independent on the initial state of the system and does not

requires all the agents to parameterize and optimize the feedback gain matrices simul-

taneously.

Two illustrative application examples on an unmanned aerial vehicle formation control problem

and a multi-pursuer single-evader differential game problem with limited observations were solved

and the simulation results corresponding to different scenarios are presented.

With the already obtained results, the future research can be carried out in the following possible

directions:

For the open-loop design, the possible directions are as follows. First, applying the idea in the pro-

posed open-loop strategy design approach to feedback strategy design will be significant because if

the feedback strategy design approach is obtained, then theproblems of more realistic importance

including the differential games for multi-agent systems under time-varying information graph can

be tackled. Second, the proposed approach can be successfully implemented if the convergence

condition of the state estimation law is valid, which is the case for most of the consensus prob-

lems. Therefore, exploring the condition in more details orfinding conditions where the condition

always holds will be interesting and very important.

For the feedback design, the best achievable performance indices approach requires an authority to

carry out the computing algorithm with the knowledge of the overall information topology and all

the agents’ information and then distribute the resulting game strategy to each and every agent. In

order to have an better adaptation to the time-varying information graph, an approximate approach

to the proposed approach that requires less information need be proposed.
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