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ABSTRACT

In this dissertation, we consider differential games foldtragent systems under distributed in-
formation where every agent is only able to acquire inforamaaibout the others according to a
directed information graph of local communication/sensatworks. Such games arise naturally
from many applications including mobile robot coordinatipower system optimization, multi-
player pursuit-evasion games, etc. Since the admissitategly of each agent has to conform to
the information graph constraint, the conventional gamatexjy design approaches based upon
Riccati equation(s) are not applicable because all thetager required to have the information
of the entire system. Accordingly, the game strategy desigier distributed information is com-
monly known to be challenging. Toward this end, we proposehapen-loop and feedback game
strategy design approaches for Nash equilibrium and nenorfsolutions with a focus on linear
qguadratic differential games. For the open-loop desigpr@pmate Nash/noninferior game strate-
gies are proposed by integrating distributed state estimaito the open-loop global-information
Nash/noninferior strategies such that, without globabinfation, the distributed game strategies
can be made arbitrarily close to and asymptotically corerenger time to the global-information
strategies. For the feedback design, we propose the bastable performance indices based ap-
proach under which the distributed strategies form a Nashiequm or noninferior solution with
respect to a set of performance indices that are the clasésé toriginal indices. This approach
overcomes two issues in the classical optimal output feddbpproach: the simultaneous opti-
mization and initial state dependence. The proposed apgmand feedback design approaches are
applied to an unmanned aerial vehicle formation contrabfem and a multi-pursuer single-evader
differential game problem, respectively. Simulation tesaf several scenarios are presented for

illustration.
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CHAPTER 1: INTRODUCTION

In this chapter, the basic background knowledge of diffeaégame theory, multi-agent systems,
and distributed information structures is covered, theivaton of this research is raised, and the

scope of this dissertation is defined.

1.1 Background

1.1.1 Differential Game Theory

The game theory was originated from economics [1] in 1940$as been widely applied in many
areas such as control systems engineering, military arabpace engineering, power systems,
communication network, biomedical science, etc. It haslmdensively studied and explored
by many researchers in the past decades and becomes a gtute ar@a nowadays. The game
theory basically deals with situations where two or more/@ta are involved and making deci-
sions to pursue their own objectives which could be theififsgerformance, or utility functions
in applications. Each player makes its own decision to aehaertain outcome of its objective
function. This decision is called the player’s strategy.eAthat contains all the possible strategies

from which the player can choose in the game is called theepgdmissible strategy set.

During the development of the game theory, different tydegames have emerged. Some typical

classifications of the games are introduced as follows:

1. In terms of the time dependence of the strategy, thergaiie games and dynamic games.

In a static game, every player only makes a one-shot stratdgyeover, for a two-player

static game, if every player’'s admissible strategy setaiosta finite number of strategies,
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the game is also called a matrix game. That is because thermasccorresponding to all
the possible combinations of the two players’ admissibigtsgies can be put into a matrix

form.

In a dynamic game, every player makes a strategy profile g@ctay as a function of
(continuous or discrete) time for the entire game processhel players’ state dynamics
are governed by differential equations, then the game sadBed a differential game and
the objective functions that the players try to maximize amimize are usually called the

performance indices.

. In terms of the players’ willingness to collaborate, thare noncooperative games and co-

operative games.

In a nhoncooperative game, every player is assumed to focysiauing its own objective
only and not to collaborate with others. A typical solutiorttie noncooperative game is the
well-known Nash equilibrium [2]. The Nash equilibrium caa interpreted as a state where
no player has the intend to unilaterally deviate from itatstgy and if it does so, then a loss
will occur in its objective function. Therefore, the Nashuédprium can be regarded as a
“safe” solution to prevent any player from cheating and isf@mred in many applications
of games with noncooperative players. The Nash equilibigam be obtained by utilizing
the standard static optimization technique for the stadimeg and by utilizing the optimal
control theory [3] for the dynamic game. Note that the exisgeor uniqueness of the Nash

equilibrium for a noncooperative game is not always guaesht

In a cooperative game, although individual players havée then objective, they are as-
sumed to collaborate with each other to jointly improvetiobjective functions. Therefore,
a cooperative game are also regarded as a multi-objectiimiaption problem. A typical
solution to the cooperative game is called the noninferadutgon or Pareto optimality [4].

The noninferior solution can be interpreted as a state wihe@émpossible to improve any
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player’s objective function without loss in at least oneygles objective function. To obtain
the noninferior solution, only a single optimization prefn needs be solved with the objec-
tive function being a convex combination of all the playajective functions. For all the
different choices of convex parameters, a noninferior s®aweto frontier can be generated.
Note that unlike the Nash equilibrium, the player has theridtto deviate from the noninfe-
rior solution unilaterally. As such, the noninferior satut is preferred in the situation where
all the players in the game are restricted to stick with theimferior strategy or within the

same team.

3. In terms of the strategy making sequence, there are Nasbgyand Stackelberg games for
noncooperative games. In a Nash game, all the players maksaies simultaneously and
the Nash equilibrium can be obtained as we have alreadydintexd. While in a Stackelberg
game, there exists a sequence of decision making, thatnse &6 the players will make
decisions first as the leaders and announce their strategies rest of the players, and the
rest of the players as followers will then make decisionstict to the leaders’ announced
strategies. In a Stackelberg game, it is assumed that albtosvers are rational and will
react to the leaders’ strategies in an optimal way. Knowhag the following will react
optimally, the leaders will naturally announce stratedrest will optimize their objective
functions. The players’ strategies are said to be StackgHiteategies. Clearly, the leaders
in a Stackelberg game has the advantage over the followeler uhe condition that they
have to know the objectives of all the followers. A typicabexple of the Stackelberg games
is the oligopoly market where there are several big domtheatenpanies as the leaders and
the other small companies as the followers. The big compamseally have information
advantage over the small companies and their policies hesegt gnpact on these small

companies.

4. Interms of the relationship among the players’ objedtivetions, there are zero-sum games



and nonzero-sum games. In a zero-sum game, the sum of alblyer g objective functions
is equal to zero. Therefore, the total gain in some playdb@aiive functions is equal to
the total loss in the other players’ objective functions efidiore, the players have conflict
objectives. In a zero-sum game, the Nash equilibrium is latsovn as a saddle-point solu-
tion. One typical example of the zero-sum games is the ongdpuone-evader game where
the pursuer tries to minimize the distance between the ewatkitself at the terminal time

while the evader tries to maximize such a distance.

In a nonzero-sum game, the sum of all the players’ objectinetfons is not equal to zero.

In this research, since we focus on the differential ganmewhat follows, the historical develop-

ment of the differential games is briefly introduced and tbsoaiated literatures are reviewed.

It has been commonly regarded that the introductory workerlifferential game theory was done
by Isaacs in 1950s with major applications in military sitoas and pursuit-evasion games. His
book [5] focuses on the zero-sum differential games and #lekmown Hamilton-Jacobi-Isaacs
partial differential equation for deriving the feedbacksN&Strategy was proposed. From Isaacs’
pioneering work on, a plenty of results on differential garhave been coming out consistently.
Necessary conditions for a certain type of differential garnto have a saddle point solution were
derived in [6], where the calculus of variation techniqueswiilized first time in the differential
games. One of the most important works on nonzero-sum gamiés iThis paper focuses on both
static and differential nonzero-sum games. Three types®lotisns were discussed, that is, the
Nash equilibrium, minmax solution, and noninferior saduati(later known as the solution to the
cooperative game). The Nash equilibrium of the nonzero4sugar quadratic game was obtained
by solving the the coupled differential matrix Riccati etjoas. In [8], an important property of

the linear quadratic differential games was discoveretitttealimiting solution of the coupled dif-

ferential Riccati equations does not necessarily becomadhution to the game over the infinity



time. In [9, 10, 11], the uniqueness and existence of the Nashlibrium for linear quadratic
games were studied. In parallel with the research on difteaeNash games, there exist many
research works on differential Stackelberg games. Statdd#ferential Stackelberg game was in-
vestigated in [12, 13]. In [12], the Stackelberg solutiorswiarived for linear quadratic differential
games. In[13], the important property of the Stackelbehgtsm, the inconsistency, was discussed
and hence it was shown that the well-known Bellman’s optitygakinciple does not hold for the
Stackelberg games. The existence and uniqueness of tHeeBag solution were further studied
in[14, 15, 16, 17, 18]. After 1980, the research works sthideusing on the potential applications
of the differential game theory to all kinds of real life ajgations. In [19], the idea of differential
game theory was successfully applied to the robust optimal control design problem where the
designer is regarded as one player and the noise is regasdied ather player. In [20], the output
consensus problem was formulated and solved under the imealifferential game framework.
In [21], a problem where a group of agents as defenders argtty protect an asset from being
destroyed by an intruder was considered and solved as a jnadratic differential game. In [22],
the online solution for the differential games was congdarsing the reinforcement learning. In
[23], the interaction between the microgrid and main grithi& future smart grid was formulated
as a discrete time Stackelberg game and the optimal gemedhsipatch are obtained. Among a va-
riety of interesting applications of the differential gatheory, the pursuit-evasion game has been
widely studied for decades. A pursuit-evasion game bdgioabdels the process where several
pursuers try to chase several evaders for a certain peritchef while the evaders try to escape
at the same time. Solving a pursuit-evasion game essgnitiatblves developing strategies for
the pursuers and evaders such that their prescribed peni@erindices are optimized. After the
pioneering work [5], the saddle point solutions for a type@fo-sum single-pursuer single-evader
games were considered in [24]. Nonzero-sum pursuit-esammes were introduced and investi-
gated as an example of the Nash equilibrium strategies iar{dlas an example of leader-follower

Stackelberg strategies in [12]. In [25], a two-pursuer edader game was considered. In [26],
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a two-evader one-pursuer cooperative defending game wasdewed. In [27], the structured
strategies on improving the cooperative pursuit was dssuis In [28, 29, 30], pursuit-evasion
games with formation control that makes pursuers spreathdrthe evader were studied. In [31],
a homicidal chauffeur game with collaborative pursuers diasussed. In [32, 33], a derivative
based strategy design approach was proposed for mul@pfayrsuit-evasion games. In [34],
pursuit-evasion games integrating communication themdetl with the spatial jamming problem
was discussed. In [35, 36], multi-player pursuit-evasiamg with evaders having higher speed
than the pursuers was considered. The conventional maltep pursuit-evasion games assume
that either the pursuers or the evaders are able to havel ghdbamation of the overall system,
that is, every pursuer is able to observe all the other pussaied evaders, and every evader is
able to observe all the other pursuers and evaders. Howevegny applications of the pursuit-
evasion game, the players (either the pursuers or the ejadéght only be able to have limited
information of the overall system. For instance, due to #ressig range capability or the obstacles
in the environment, each player might have a limited capighid observe a subset of the players
in the game. This type of multi-player pursuit-evasion gamwéh incomplete information were
investigated in [37, 38, 39, 40, 41]. A short survey [42] isaemended as a dedicated report on

the pursuit-evasion games.

1.1.2 Multi-Agent Systems

As the modern system becomes more complex and large-seadetyle system usually consist of
several subsystems (or agents). This type of systems deel caulti-agent systems. The control
objective of such a system is to coordinate the subsysterm@tplete a certain task while at the
same time maintaining the stability of the overall systemmiost of the multi-agent systems, to
achieve the coordination among the agents, there usuabysdwcal communication or sensor

networks such that the agents are able to exchange certarmetion with each others through
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the networks. In recent years, there is a surge of researdtswa such systems with the potential
applications in multi-vehicle coordination, signal syrmhization, distributed generator control in
the future smart grid, etc. In what follows, we will brieflyyiew the research subjects and existing

results on the multi-agent systems.

A large part of the research works on multi-agent systemsedeated to the consensus problem
[43, 44, 45]. This problem is essentially designing conitmplts for the agents such that their out-
puts under these controls become identical as time goeéinden The control design to achieve
a consensus in the multi-agent systems is also known as tiperdive control design [46] which
is generally a control law that utilizes the information ibadale to individual agents only. The
consensus problem can be better illustrated by the follgwypical applications. A rendezvous
problems is a consensus problem where a group of agentsr{mbile vehicles) needs be con-
trolled to arrive at a common location in a physical enviremin Note that the final rendezvous
location achieved by the agents does not need to be prede&sfmander the typical consensus
algorithm or cooperative control law. A flocking problem isa@nsensus problem where a group of
agents (e.g. mobile vehicles) needs be controlled to agl@@ommon constant velocity. Note that
similar to the rendezvous problem, the final common velamityieved by the agents does not need
to be predetermined under the typical consensus algorittomaperative control law. A formation
control problem [47, 48, 49] is a consensus problem wher@amof agents needs be controlled
to form a prescribed formation. The formation control peshican be regarded as a combination
of a rendezvous problem and flocking problem because theatowmcontrol problem is a ren-
dezvous problem where the prescribed formation distanteda®s any two agents is zero and the
formation control problem is also a flocking problem wherergg’ velocities must be identical
to preserve the formation. A synchronization problem [5D, &2, 53] is a consensus problem
where the agents’ outputs need be controlled to track a qipescreference trajectory. Unlike

the previous rendezvous, flocking, and formation controbf@ms where the consensus value is



identical and constant as times goes to infinity, the refardrajectory as the consensus value of
the synchronization problem is usually time-varying. Syenization problems has great poten-
tial applications in power generation industry in terms yrichronization of the voltage, phase,
or frequency among a large number of distributed generatdise future smart grid. As we can
clearly see from the above applications, the consensussitable” status of a multi-agent system,
however, is different from the conventional concept of ditgtwhere all the states or outputs of the
agents vanish as the time goes to infinite. Therefore, tindigish with the conventional concept,
the stability for the consensus of multi-agent systemslied¢#he cooperative stability, which is a

status where an agreement on all the agents’ states ofshis@chieved.

Another research area is dedicated to the optimal contdgden the multi-agent systems. The
optimal control design for a multi-agent system is essénti@ding the control input compatible
with the communication or sensor network for each and evgepsuch that a given performance
index is minimized. Due to the communication or sensor netwonstraint, the classical optimal
control design approach [3] is generally not applicabler iRstance, since the linear feedback
control for each agent has to be structured, the well-knowatd® equation approach for the
linear quadratic optimal control is not applicable becatlsefeedback gain matrix obtained by
this approach is a full matrix in general. As such, a différeptimal control design approach
must be proposed for multi-agent systems. In what followes jowefly introduce major research
directions toward solving this problem (with the focus amelir systems). There are approaches
based on optimal output feedback control design. Sinceitiead feedback control in a multi-
agent system can be treated as multiple control inputs witéreint output feedback channels,
the problem can be solved under the framework of optimalwugedback control design. The
pioneering works on the optimal output feedback controigieare [54, 55] where the basic idea
is to parameterize the gain matrix and optimize it directlthwespect to the given performance

index. In these papers, an gradient based iterative atgorior computing the optimal feedback



matrix was proposed for the finite and infinite time horizoheTTomputational complexity of this
algorithm was later shown to be NP-hard in [56]. A comprehansurvey on the optimal output
feedback control was included in [57]. Applying the optinsaltput feedback control design to
the multi-agent systems was discussed in [58] in terms ofr@bidecentralized control design and
a numerical algorithm similar to the one in [54] was proposé&tiere are approaches based on
the transformation technique. In [59], the optimal decai#ed control for a string of vehicles
was derived using the spatial transformation techniquesrevkthe dynamics and the information
exchange pattern were assumed to be identical for evergleehin [60, 61], the transformation
technique was further explored and the property of idehtigants’ dynamics and information
exchange pattern was defined as spatially invariance. Tarerapproaches based on the convex
optimization technique. Since the optimal control designrhulti-agent systems is generally a
non-convex problem, the conventional convex optimizataois cannot be applied. In [62, 63],
this non-convex problem was recasted as a convex problemr uather strict conditions. Other
approaches include the graph approach [64] and linear gtiadgpproach for identical systems
[65]. The optimal control problem for multi-agent systenstmeen investigated for a long time

and commonly regarded as a very hard problem.

There are research works that utilize the differential gémeery to solve the multi-agent control
problem. In [66], the formation control problem was fornmtethas a noncooperative differential
game and the receding horizon Nash equilibrium was solrefb1], the consensus problem was
formulated as a cooperative differential game and the Naspain solution among the Pareto-
efficient solutions was found using linear matrix inequa{ltMI) approach. In [68], a zero-sum

game was formulated between the sensor network and arigetglimoving target, and a robust

target position estimator was obtained.

There are many other research areas on multi-agent systestugling robust control, time-delay

control, network optimization, etc, which cannot be fullyvered in this dissertation. A compre-
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hensive review on the multi-agent systems can be found ijx [69

1.1.3 Distributed Information Structures

An important factor of a differential game is each playenformation structure. In a differential
game, each player’s information structure is extremelydrtemnt because its strategy profile re-
sulted from the different information structures can be plately different. There are two typical
information structures. One is the open-loop informatittncture and the other is the feedback
information structure. Consequently, we call the operplstrategy for the player’s strategy un-
der open-loop information structure and feedback strategthe player’s strategy under feedback

information structure.

In the conventional game, the information available to tlager is assumed to be “global” where
every player is assumed to have the information of all thergphayers in the game. Therefore, in
this case, the player is under open-loop information stimecif only the global information of the

system at the initial time is available to it along the gamapss as shown in Figure 1.1.

Global Information

Figure 1.1: Global open-loop information structure

The player is under feedback information structure if trebgl information of the system is avail-

10



able to it at every instant of time along the game process@srsn Figure 1.2.

Global Information Global Information Global Information

Figure 1.2: Global feedback information structure

If the game takes place in a large-scale system such as aagetltic system, each agent is only
able to have the information of a subset of (possibly neiginigp agents through the local com-
munication or sensor networks. In this situation, sincegllodal information is not available any
more, the players are said to have distributed informafidrerefore, we can extend the concepts
of open-loop and feedback information structures unddridiged information. The distributed
open-loop information structure is shown in Figure 1.3 vetthie blue subset inside the circle (the

global information) stands for the distributed informat@vailable to the player.

Distributed

Information

Figure 1.3: Distributed open-loop information structure
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The distributed feedback information structure is showigure 1.4 where the blue subset inside

the circle (the global information) stands for the disttdmiinformation available to the player.

Distributed Distributed Distributed

Information Information Information

Figure 1.4: Distributed feedback information structure

Moreover, the strategy under distributed open-loop infatian structure is called the distributed

open-loop strategy and the strategy under distributedfsadinformation is called the distributed

feedback strategy.
1.2 Motivation and Scope

The motivation of this dissertation lies in the followingdwaspects.

1. The first aspect is that most of the existing results oredfitial games assume that every
player has global information and the games under disgirtformation have not been
well studied, which is in fact quite common and important iany applications involving

large-scale systems, such as multi-agent systems.

2. The second aspect is that in conventional multi-agerntrabaesign problem, the agents are

assumed to pursue a goal of optimizing a common performaraexi However, it is of

12



practical interest to consider a situation where individagents try to optimize their own

objective functions.

The above two aspects actually lead to considering therdifteal game problem for multi-agent
systems under distributed information. So far, there arg f@w research works in this area.
Therefore, itis in a great demand to propose a strategy nl@gigroach such that each agent only
utilizes the information available to it. In this dissertat, we will focus on the linear quadratic
differential games in the multi-agent system where the dyos of each agent is governed by
a linear differential equation and the performance inderaxfh agent is in the quadratic form.
We will consider the design approaches of Nash equilibrinchr@oninferior solutions under both
distributed open-loop and feedback information strucuréhe remainder of this dissertation is

organized as follows:

In Chapter 2, the linear quadratic differential games inrthéti-agent system under distributed

information is formulated.

In Chapter 3, the open-loop strategy design based upon tRexpaation is introduced first. A
distributed strategy design approach is then proposedtbygrating a novel distributed state esti-

mation law.

In Chapter 4, the feedback strategy design based upon Rempadtion and the classical design
based upon optimal output feedback control are introducet fiA distributed strategy design

approach is then proposed based on a novel concept of thadiestable performance indices.

In Chapter 5, the proposed approaches are applied to an meshagrial vehicle formation control

problem and a multi-pursuer single-evader differentiahggroblem with limited observations.

13



In Chapter 6, the dissertation is concluded with the sumrofttye results obtained in this research

and the future research directions.
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CHAPTER 2: PROBLEM FORMULATION

In this chapter, the linear quadratic differential game mMN&-agent system is formulated and

formal definitions of related concepts are given.

2.1 System Dynamics

There areV agents who have decoupled linear dynamics and given by

~

Ti(t) = A; ()i (t) + Bi(t)us(?) (2.1a)
yi(t) = Ci(t)ws(t), (2.1b)
fori =1,---, N, wherer; € R™ is the state vector; € R is the control inputy; € R" is the

output vector. Matricesl, (), B;(t), C;(t) are time-varying and of proper dimensions. Since each
agent is an independent entity in real life applications assume that A;, B;} is a controllable
pair, matrix B; is of full column rank (meaning no redundant input), and imatt; is of full row
rank (meaning no redundant output). Agéatinitial state is given by, = z;(0). Note that all

the agents’ outputs have the same dimension, which is ntyrmegjuired by most of the multi-
agent system applications such as formation control, spmitation, pursuit-evasion games, etc.
Denotingz = [z .- 24]T andy = [yI --- yL]?, the overall system can be expressed more

compactly as

B(t) = A()z(t) + > B;(t)u(1) (2.2a)

y(t) = Ct)(t), (2.2b)
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where

_Ommi_
Aq(t) : Ci(t)
At) = , Bit)=| B;t) |, Ct)= , (2.3)
_ An(t) | i Cn(t))
[ Oy |
where0,,, x.,, is then; x m; zero matrix forj = 1,--- N and matrixBZ-(t) is theith block of

matrix B;(t).

2.2 Information Structure

The agents in the system is able to exchange information etitbrs through the communica-
tion/sensor network. This information exchange pattermfmrmation flow among the agents is
often described by a directed information graph denoteg@y = (V, £(t)) where node); € V
represents agentfor i = 1,--- , N and edge;;; € £ represents the directional information flow
from nodej to node: (it is always true that;; € £ since agent can always have its own in-
formation). If the information exchange pattern is fixed othne, then the graph is fixed. If the
information exchange pattern changes over time (due talgessommunication failure or obsta-
cles in the environment, etc.), then the graph is time-vayyiln this dissertation, we primarily

consider the fixed information exchange pattern and henaaake the following assumption.

Assumption 2.1. The information graph in the multi-agent system is fixed.

For example, Figure 2.1 shows a fixed information graph anfoagagents.
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Figure 2.1: Information graph among four agents

Clearly, in this gl’aphV = {’Ul, Vg, V3, U4} and€ = {611, €92, €33, €44, €21, €31, €41, €23, 634}. Several

important concepts related with the information graph ateduced as follows:

Definition 2.1 (Path) In directed graphg, a path from node; to nodev; is a sequence of directed

edges that connect from nodé node;.

Based on the definition of path, the globally reachable nadebe defined as follows:

Definition 2.2 (Globally Reachable Node)n directed graphg, nodev; is globally reachable if

there exist paths from node to nodev; forall j =1,--- | N, j # 1.

In some literature, the globally reachable node is alsordsghas the root node of the spanning
tree of the graph. Furthermore, based on the definition dbajlp reachable node, the graph

connectivity is defined as follows:

Definition 2.3 (Connected Graph)Directed graphg is connected if it contains at least one glob-

ally reachable node.
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One important matrix associated in the graph theory is th@dcgan matrix [70]. This matrix is

denoted ag = [£,;], where

_lij if €ij € £ and: 75.]
Lij=q SX  lw ifi=j , (2.4)
0 otherwise

wherel;; is a positive scalar. For example, the Laplacian matrix@ased with the graph in Figure

2.1is given by
0 0 0 0

—lo1 o1 +1los —log 0

—l31 0 lag +1l3a —l34

—l41 0 0 l41

The Laplacian matrix has numerous well-known propertigs,df which are presented as follows:
Proposition 2.1. The Laplacian matrix has the following properties:
1. If a directed graph is connected, then the null space ob$sociated Laplacian matrix is
spanned by a single vecttgk, wherely is an N x 1 vector with all the entries equal to 1.
2. All the eigenvalues of the Laplacian matrix associateith\any directed graph have non-

negative real parts.

The above concepts of the graph theory in fact describe #tekdited information among the
agents. For the differential game in théagent system, the distributed open-loop and feedback

information structure can be formally defined as follows:

e agenti is under thepen-loopinformation structure if its strategy at time&an only depends

18



on the initial output of agent, y;(0), for all j such thak;; € £ on the directed information

graphg.

e agent; is under thdeedbackinformation structure if its strategy at tintecan only depend
on the output of agent y,(¢), at the current timefor all j such thak;; € £ on the directed

information graplg.

2.3 Performance Indices

In the multi-agent system, each agent tries to minimizewts performance index. In this disser-

tation, we consider the following performance indices f@ agents:

aun Fllu®lk,@ldt ¥i=1,--- N. (2.5)

1 , 1 (U
Ji=5ly@)lr +5 [ lly@)l
0

where where is the terminal time of the gamu (t)[|%, ) = w7 () Ri(t)u;(t), and matrixR;(t)

is positive definite to ensure the convexity. Matrideésand(; are usually positive semi-definite,

however, some exception exists (e.g. pursuit-evasion gamehe above performance indices
can be utilized to characterize a plenty of applications ultragent systems. Several typical
applications of the multi-agent system characterized Iofop@ance index (2.5) with the different

choices of matrice$; and(); are presented and explained as follows.

1. Output Regulation. In this application, matrices;, );, and R; are positive definite for all
1 =1,---,N. A typical choice of the coefficients for the output regudatithat takes the

information graph into account is

2= Fully @)l and y®lEe = Y @@y 013

eijef ei]-eg

ly(t5)
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where|| - ||, stands for the Euclidean norm arfg, ¢;;(t) are positive scalars for ajl =
1,---,N and allt € [0,tf]. In this case, performance index (2.5) essentially meaais th
agent;: tries to drive the entire output vector to zero while at theaedime minimizing its

control effort over the entire process.

2. Output Consensus In this application, matrices; and(); are positive semi-definite for all
1 =1,---, N and matrixR; is positive definite foralf = 1,--- , N. A typical choice of the

coefficients for the output consensus that takes the infbomgraph into account is

=" Ffullwilty) —w(t)l3 and Jy@)l30 = Y a®)llvit) — g @)l

ei; €E e;; €E

In this case, performance index (2.5) essentially meansgent tries to drive all the output
vectors (or part of the output vectors) to a common valueendtilthe same time minimizing

its control effort over the entire process.

3. Multi-Pursuit Single-Evasion Game Suppose that the outpyt stands for agents posi-
tion and agent8to N (pursuers) try to chase agdnfevader) who tries to evade the pursuers.
In this situation, the performance indices of the agentgaen by (2.5) where matricels,
and(; are negative definite, matrii, is positive definite, matrices; and(); are positive
definite for alli = 2,---, N, and matrixR; is positive definite for alt = 2,--- | N. A

typical choice of the coefficients is

lytpllE = fillvi(ty) —nn)ls, Ny(t)lz = Z Fiillya(tr) = i (o) 113,
lyN1d.0 = a®llyit) = @13 yOlIE,e un My (t) = y;()]13,
wheref;, ¢;, f1;, andg,; are positive scalars for gJl= 2, --- , N. In this case, performance

index J; essentially means that the evader tries to maximize itsulists to the pursuers
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while at the same time minimizing its control effort over #mire process and on the other
hand, performance indek for all i = 2,--- , N essentially means that the pursugiies to
minimize its distances to the evader while at the same tinmemnizing its control effort over

the entire process.

2.4 Game Solutions

Given the system equation in (2.2) and performance indit€8.b), a differential game problem
is formulated. In this dissertation, we consider both theaomperative game and the cooperative
game for the multi-agent system and the different types loftiems to these games are introduced
as follows. If the differential game for th€-agent system is noncooperative, the Nash equilibrium

[2] is defined as follows:

Definition 2.4 (Nash Equilibrium) For the differential game in thév-agent system defined by
system dynamics in (2.2) and performance indices in (h8)strategies:;, - - - , v} form a Nash

equilibrium if the inequalities

Ji(u; o 7U*N) < Jl(uiv v 7u:—17ui7u:+17U*N) vul € Ui Vi = 17 e 7N (26)

hold, wherel; is agenti’s admissible strategy set.

Moreover, the-Nash equilibrium for the noncooperative differential gafor the/V-agent system

is defined as follows:

Definition 2.5 (s-Nash equilibrium) Given the differential game in aN-agent system defined by
system dynamics in (3.11) and performance indices in (hél)areal non-negative parameter

g, the agents’ strategies are said to form aNash equilibrium if it is not possible for any agent
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to reduce more than in its performance index value by unilaterally deviatingrr its strategy.

Formally, strategies:, - - - , uy form ans-Nash Equilibrium if the inequalities

Ji(uy, - uy) < Ji(ul, -l unul g, uy) e Yy, €Ui=1,--- N (2.7)

hold, whereU; is agent;’s admissible strategy set.

It is clear that every Nash Equilibrium is equivalent tocaNash equilibrium where = 0. If the
differential game for theV-agent system is cooperative, the noninferior solutiosd&nown as

the Pareto optimality solution) is defined as follows:

Definition 2.6 (Noninferior Solution) For the differential game in arV-agent system defined

by system dynamics in (2.2) and performance indices in,(h8)strategies:, - - - ,u}, form a
noninferior solution if there existse {1, --- , N} such that the inequalities
Jl(ulvqu)S‘]l(u;vQL*N) vuleUlvqueUN VZ::[?)N (28)

donot hold with at least one strict inequality, whelg is agent;’s admissible strategy set.

The noninferior solution can be interpreted as a solutiowhich any changes made do not help

improve every agent’s performance index value.
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CHAPTER 3: OPEN-LOOP GAME STRATEGIES

In this chapter, we consider the open-loop game strateggrlés both the Nash equilibrium and
noninferior solution in the formulatedy-agent system. We will first introduce the existing Riccati
equation approach and then present the proposed approsath da a distributed state estimation

algorithm.

3.1 Riccati Equation Approach

To derive the open-loop game strategy, we utilize the wetvin Pontryagin’s minimum principle
[71] which yields the necessary optimality conditions fothbthe Nash equilibrium strategy and

noninferior solution strategy. These two types of straegire presented as follows:

Open-loop Nash Equilibrium Strategy. The open-loop Nash equilibrium under the linear quadratic

framework is well-known [7] and the result is presented asftfiowing theorem without proof.
Theorem 3.1. For the differential game in aiV-agent system defined by system dynamics in (2.2)
and performance indices in (2.5), the strategies

wlt) = =R (OB (O P(1)6(t,0)2(0) Vi=1,--- N (3.)

form an open-loop Nash equilibrium, where matsix, 0) is the closed-loop state transition matrix
defined bys(t,0) = e** and A = A — Zj.vzl B;R; ' BT P;, and matrixP;(t) is the solution to the

following coupled differential Riccati equations

N
P+ PA+ATP,— Py BR;'BIP+ CTQiC; =0 Vi=1,--+ N (3.2)

j=1
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with the boundary conditio®; () = CT(¢;) F;C(t;).

Open-loop Noninferior Solution Strategy. The noninferior solution strategy is essentially de-

rived by minimizing the following convex combination of #tle agents’ performance indices
N
J = Z Oéij (33)
j=1

where0 < «o; < 1 and Z;.V:l a; = 1. This minimization is essentially a optimal control prob-
lem with parameters;, - -- ,ay. The open-loop noninferior solution under the linear qa#dr

framework was obtained in [7] and the result is presentet@ollowing theorem without proof.

Theorem 3.2. For the differential game in av-agent system environment defined by system dy-

namics in (2.2) and performance indices in (2.5), the syig®
uilt) =~ RO (OB OPO)6(1,0)x(0) Vi=1- N (3.4)

form an open-loop noninferior solution, where matrig, 0) is the closed-loop state transition
matrix defined by (¢, 0) = e* and A = A—Zj.v:l L B;R;' BT P, and matrixP(t) is the solution

to the following differential Riccati equation
) N 1 N
P+PA+A™P->" Oé—jPBjRj—lBjPJr > ;07 Q;C=0 (3.5)

J=1 Jj=1

with the boundary conditio® () = 3%, a;CT(t)F;C;(ty).
Note that the above approaches requires to solve for thexfafr) from the coupled differential

Riccati equations in (3.1) backward in time or mathx) from the differential Riccati equation in

(3.5) backward in time. After solving the differential eqioa (usually with the aid of computer),
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the matrix solution will generally become a full matrix wigi the entries being nonzero. There-
fore, by looking at the expression in (3.1) or (3.4), indivédiagents in the game needs to have the
complete knowledge of the initial state informatiari()), in order to implement their open-loop
Nash equilibrium strategies or noninferior solution stgis. In the conventional game problem,
this requirement has no problem because it is always assahalt the required information is
available for each and every player. However, if the diffiticd game takes place in a multi-agent
system under distributed information, then agecdn acquire the information of the agemnly

if e;; € £ and hence is not able to implement the strategy (3.1) or (Rdyed using the Riccati

equation(s) approach.

3.2 Distributed Game Strategy Design

Realizing that the open-loop Nash equilibrium and noniofesolution expressed in (3.1) and (3.4)
are not implementable in the multi-agent system underidigerd information, a new approach for
the open-loop Nash equilibrium and noninferior solutiosige must be proposed for the agents
such that they can carry it out to accommodate the distrbinfermation. To achieve this, first of
all, the performance needs be well structured accordinggaotformation graph among the agents.

We define a block diagonal matriy; € RV"*"" as follows:

Di=)> (dd])&I, Vi=1,--- N, (3.6)

eijef

where® is the Kronecker product an is ther x r identity matrix. The thegth diagonal block is

equal tol, if e;; € £and Oife;; ¢ £. Forinstance, the matricés,, D, D5, D, for the information
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graph shown in Figure 2.1 are

I. 00O I, 0 O I, 0 0 I, 0

0 00O 0 I, O 0 0 O 0 0
Dl = ) D2 - ’ D3 - ) D4 —

0 00O 0 0 I 0 I, 0 0 0

0 00O 0O 0 O 0 0 I, 0 I,

respectively. The product @D,y) is a vector with thejth block entry toy; if ¢;; € £ and O if

e;; ¢ €. Therefore, we consider the structured performance in2l&y (vith matrices

F, = D] F,D; (3.7)
and(@; = 0, which can be expressed as
1 ) I ) .

where matrixF; can be selected appropriately to achieve desired contjettite of agent as
discussed in Section 2.3. Basically, performance inde) (Beans that agemnttries to minimize
a cost term that only involves the outputs of aggfdr all e;; € £ at the terminal time while at
the same time minimizing its control effort over the entiearge process. For the differential game
defined by system (2.2) and performance indices (3.8), ittwih out that the open-loop Nash
equilibrium and noninferior solution have explicit expess and can be utilized to construct a
distributed strategy synthesis algorithm under certamd@n. First of all, we define a new state
vector as

zi = Ci(t)di(ty, t)xi(1) (3.9)
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where¢,(t;,t) = e4its=). Differentiating the above equation with respectttand recalling

system dynamics in (2.1) yields:

4 =Cighir; + Ciidi; = Bj(t)u;, (3.10)

2

whereB!(t) = Ci¢;(tf,t)B;. Denotingz = [T --- 2%]7, the system dynamics can be expressed

more compactly as follows:

Biul N
i=| i | =) By (3.11)
j=1

BEVUN

whereB;(t) = (d; ® I,)Bj(t) andd; is anN x 1 vector with thejth entry equal to 1 and the other
entries equal to 0. Since it is clear thdt;) = y(¢;), performance indices in (3.8) can be also

expressed as

1 1 [ .
T =3Ik + 5 / st Vi=1.-- N, (3.12)

where matrixF; is as defined in (3.7).
3.2.1 Nash Strategy Design

The open-loop Nash equilibrium can be derived using Pogimg minimum principle and is

presented as follows.

Theorem 3.3. For the differential game in av-agent system under distributed information de-
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fined by system dynamics in (3.11) and performance indicgs9), the strategies

u; = — Ry BY DY F,D; M~ 2(0) (3.13)
fori =1,---, N form an open-loop Nash equilibrium if matri¥ defined by
N
M=1Iy+> SiF, (3.14a)
j=1
ty -
S; = / B;(t)R;(t)B] (t)dt, (3.14b)
0

is invertible.
Proof. We define the Hamiltonian for agenas
1 N
H; = §||Ui||§zi + A1 Bju,
j=1

where vector\; € R is the Lagrangian multiplier. Since the second order padtaivative of
H; with respect tay; is equal toR; and hence is positive define, the following conditionsifpto

minimize the performance index are necessary and sufficient

. on, -
p= o= > Bju;, (3.15a)
% =1
ho=-TE— 0 Aeg) = Fslty), (3.15)
<
O _ R+ B = 0. (3.150)
aul-

Condition (3.15b) indicates that is a constant vector and hence

)\Z(t) = E-z(tf) Vt € [O,tf]
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From (3.15c), we obtain
u;=— R 'BI'\; = —R;'BI'Fi2(t;) = —R;'BI' DI'E;D;2(t;). (3.16)

Substituting (3.16) into (3.15a) and integrating both siftem0 to ¢, yield

(INT + Z Sij> z(ty) =2(0)

j=1

M=z(ts) =2(0) (3.17)

where matriced/ andS; are defined in (3.14). Therefore, if the matfik is invertible, then
2(tf) = M2(0). (3.18)
Substituting (3.18) into (3.16) yields the open-loop Nasategy (3.13). O

Note thatM ~! in (3.13) is generally a full matrix. Therefore, implemeutiopen-loop Nash
strategyu; in (3.13) will still requires every agent to have the comglkhowledge of the initial
statez(0) = [2(0),-- -, 21(0)]T. However, it is worthwhile noting that if we define a new vecto

z = [zF .- Z§]T such that: = M~'2(0), then the strategy; expressed in (3.13) has an
interesting distributed property, that is, agerns able to implement (3.13) as long as agegnt
sends its the information af, to agent for all ¢;; € £ because the produé; M ~'2(0) = D;z =

D e, ee 4 @ 25 In (3.13) only needs the information 6f for all e;; € £. Therefore, in order for the
agents to obtain the value 6fin a distributed manner, the basic idea is to let the agermtisaage

the estimates denoted bf/, cee z]{, through the communication network and make these estimates
asymptotically converge to the actual valuezof- - - , Zy. Toward that end, we have the following

result.
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Theorem 3.4. For the differential game in aW-agent system environment defined by system dy-

namics in (3.11) and performance indices in (5.9), if

1. matrix(—M) in (3.14a) is Hurwitz (all the eigenvalues have negative peats) and

2. agent; updates its state estimatf[, e R",foralli =1,---, N according to
i =gla0) - 2 - (@ © 1)S,DT D! (3.19)
from any initial conditionz/ (0), whereg is a positive scalar and’ = [(2/)T --- (2{)7]7,

then

lim 2/ (t) = (dF @ I)YM™'2(0) = Z(ty). (3.20)

t—o00

Proof. Stacking equation (3.19) froin= 1toi = N yields

N
=g [2(0) — 2f - Z S;Fyz!
j=1
=g [2(0) — M2']. (3.21)
where matrix)M is defined in (3.14a). If matrix—M) is Hurwitz, linear system (3.21) with

respect ta’/ is asymptotically stable starting from any initial conditiz/ (0) andz/ asymptotically

converges to the equilibrium of the differential equati8r2Q), that is,

lim 2/ (t) = M~'2(0).

t—o00

Multiplying (dF’ @ I,.) on both sides of the above equation yields (3.20), indigatiiat agent’s

state estimatez,zf (t), converges ta; ast goes to infinity. O
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Note that to carry out the estimation law (3.19), agemtly needs to

e retain its private informationz;(0), .S;, F;
e sendits state estimate[ to agent; if e;; € £, and

e receivethe state estimate(sj' from agent; for all ¢;; € £ because the produ¢D;z/) in

(3.19) is a function ofzf for all e;; € € only.

Since it is better to make the distributed state estimatigarahm (3.19) converge fast, one can
increase the positive scalato achieve satisfactory convergence speed. Note that tessitilly
implement the above state estimation law (3.19), a crittoaldition is that all the eigenvalues of
matrix M defined in (3.14a) have to have positive real parts. This itondappears to be quite
stringent, however, this condition can be satisfied in manitirmagent system applications, such
as the rendezvous problem and formation control problente M@t one important feature of the
proposed algorithm is that to implement it, every agent dedsneed to know the other agents’
system dynamics, performance indices, or the overall gcapmection. This fully distributed

feature of the proposed approach is preferred in many feafiplications.

With this distributed state estimation law, one possiblg teamplement the open-loop Nash strat-
egy is to let all the agents in the system communicate for dewhitil a satisfactory convergent
value of the state, sa¥/, is reached before the game starts. The agents will thereimgit the
open-loop Nash strategy expressed in (3.13) vidtti/ ~'z(0) replaced byD;z/. Such a design
approach can be regarded as an offline computation amongyémésa Although the offline ap-
proach provides accurate enough open-loop Nash strategsyinot be applicable to the situation
that requires the real-time implementation. To overconisisue, combining the open-loop Nash

strategy expressed in (3.16) along with the state estimadigorithm (3.19), an online open-loop
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Nash strategy design algorithm is proposed as follows:.

i =g[a0) - o - (@ © 1,)S,DTF:D;! (3.22a)

u; = —R7'BI'DTEF,D;2? (3.22b)

foralli = 1,---, N. Since differential equation (3.22a) is asymptoticallgbd¢, the strategy
(3.22b) is actually an approximate of the actual open-loagiNstrategy in the early (transient)
stage of the game and becomes sufficiently close to the ampealloop Nash strategy thereafter.
Therefore, the inequalities (2.6) in the definition of Nasfuigbrium in fact does not hold un-
der this online computing strategy and the agents can haveténd to deviate unilaterally. To
guantify the agents’ willingness to unilaterally deviaterh the proposed strategy in (3.22), we
utilize the concept of-Nash equilibrium in Definition 2.5. In what follows, the pased online
computing strategies in (3.22) will be shown to formsaNash equilibrium and the value ofwill

be derived. First of all, we present the following lemmas:

Lemma 3.1. All the eigenvalues of matrix

S;; = (dI ® I,)S;DT F;(d; ® I,) (3.23)
has nonnegative real parts for all= 1, - - - , N where matrixS; is defined in (3.14b).
Proof. Substituting (3.14b) into (3.23) yields

t - -
Siy=(d] ® I)S;(d; ® I) = (d} ®1,) /O B;(t)R;(t)B] (t)dtD] F(d; ® I).
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Due to the definition oD, in (3.6) andB; = (d; ® 1) B}, the above equation becomes

J
.

-~

su= [ BOR O (0 @ © L) o L)

'
a

Since both ternw and termb are positive semi-definite, all the eigenvalues of maffjx have

nonnegative real parts. O

Lemma 3.2. If (—M) is Hurwitz for matrix) defined in (3.14a), supposing that matfixs the

unique positive definite solution to the Lyapunov equation
~MTP - PM = —1I, (3.24)

then for linear system

6= —gMo (3.25)

with the initial statef(0), the inequalities

ly
/ 102 < 2mxVO) (1 gty (3.263)
0

min

b 24/ 2V max
/ 16|20t < w(l it /2), (3.26b)
0

min

hold, wherg| - ||, stand for Euclidean norni; (0) = 1/267(0) P(0), Ymin = 1/Amax(P)s Amax(P)
is the largest eigenvalue of matriX, v.x = 1/Amin(P), and Apnin(P) is the smallest eigenvalue

of matrix P.

Proof. If matrix (— M) is Hurwitz, we consider the quadratic Lyapunov functién= 1,267 Pg

for system (3.25), where matrik is the solution to the Lyapunov equation (3.24). The deirreat
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of the Lyapunov function along the trajectory of system $3.i2

‘ L 7 T g 2 g T
=—0'(—gM*" P —gPM)§ = —= < —— PO =— :
V 29 ( g g )9 2”9”2 = 2)\max(P)9 9 g’ymlnv

where the last inequality is due to the propeftyPd < \...(P)||0]|2. The above differential

inequality yields

1
(PG < 567PO = V() < eV (0) = (|03 < 2jnae TV (0).

N | —

Therefore, integrating the above inequality fronto ¢, yields (3.26a) and the square root of the

above inequality frond to ¢, yields (3.26b). O

We now present the-Nash equilibrium for the proposed strategy (3.22) as tHeviing theorem:

Theorem 3.5. For the differential game in av-agent system under distributed information de-
fined by system dynamics in (3.11) and performance indid@s9), if (— /) is Hurwitz for matrix

M defined in (3.14a), then the online computing strategiesri®sd by (3.22) form ar-Nash
equilibrium where

£= ma;i;N €; (3.27)

=1,

where

2 F ) max Mz W2 maxv
£ = || R ||2’Y V(O) (1 . 6_9'Ymintf) + 8” H2 2ma2x/7 (0) (1 o e—g’Ymintf/Z)Z’ (328)
9Ymin 9"V min
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scalarsymin, Ymax, andV (0) are defined in Lemma 3.2 with{0) = 2/(0) — M~12(0),

Fr; = D'F,D;B;,R'BI' DT F,D;, (3.29a)

M; = Mp; 4+ t; MF Fgi M;, (3.29h)

Mp; = M7 (d; ® L)(I + Si) " Fy(I + Si)~H(dF ® 1) M, (3.29¢)

Fy=(d] ® I)Fi(d; ® I,,), (3.29d)

M;=1—(d;® L)+ Sy) " (dl ®I,)M, (3.2%)
N

Winax = o W@z, W(t) = 2. B;R;'B] D} F;D;, (3.291)

and matrixS;; is defined in (3.23).

Proof. First of all, if knowing every other agent will choose theioel computing strategy (3.22),

the best strategy of ageiin response to these strategies is
u; = — R;'BIDIF,D, 2" (t) (3.30)

which is obtained from (3.16), wheeé is agent’s state trajectory under the best reaction strategy
u; in (3.30). Denoting:; as the state trajectory of agen{; # ¢) for all e;; € £ under strategy
(3.22) yields

Diz*(t;) = (di @ L)z (ty) + > (d; @ L,)z(ty).

eij €E,jFi

Then,u} in (3.30) becomes

uj == R7'BIDIFy [(di @ L)z (tp) + Y (d; @ I)z(ty)

€i; €EEi#]

= — R7'BI'DI'F; [Diz(t;) — (d; ® 1) Azi(tg)] (3.31)
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whereAz; = z; — z}. We denoteJ; as the performance index value of (3.8) if every agent choose
strategy (3.22) and;* as the performance index value of (3.8) if agehooses strategy (3.31)

and every other agent chooses strategy (3.22). The differdeetweery; and.J; is

Ji = J; :§(||Diz(tf)||?:ﬂi — || Diz (tf)llfai)+§/0 (il %, = [l 1%, )t
1 . 1[4 T
—3(Dislts) — Dis” () BDistty) + Dis” )+ 5 [ (s = )T R+ e
0
1 T [ 1 b T *
:§Azi (tr)Filz(ty) + 3 Au; Ri(Au; + 2u)dt (3.32)
0

whereF}; is defined in (3.29d) andu; = u; — u}. Since the dynamics akz; is as follows:
integrating the above equation frdimo ¢, yields
ty
0
Substituting the above equation into (3.32) and recallimgexpression ai; in (3.30) yield
1 - I
0

Clearly, the value of J; — J;) shown above is always nonnegative which is as expected. do fin
the value or upper bound 6f; — J;*), itis necessary to find the valuesat;(t ;) andAw;. Toward

that end, first of all, solving the differential equation 8141) yields
() = M~12(0) + 6(t). (3.35)

whered(t) is defined in (3.25) with the initial stat§0) = 2/ (0) — M ~12(0). The system dynamics
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(3.11) when every agent chooses strategy (3.22b) becomes
N ~ ~ ~
¢=-=> BR;'BfDI'F;D;2/ & -2/ (3.36)
j=1
wherelV is defined in (3.29f). Substituting (3.35) into (3.36) yield
3= -WM'2(0) — We. (3.37)

Since
ty N
/ wdt =Y " S;F,
0 =1

where matrices; andS; are defined in (3.7) and (3.14b), integrating equation (@m0 to ¢,
yields

N ty
2(tp) = (I — Z SijM‘1> 2(0) — / Wodt. (3.38)
j=1 0

Recalling the definition of matrid/ in (3.14a), we have

N N
(I + ZSJFJ) M'=1 = M'=I-) S;FM"

j=1 j=1

Hence, equation (3.38) becomes
3
2(tp) = M~2(0) —/ Wodt. (3.39)
0
Second, substituting; in (3.31) into (3.10) yields

5 = —(d] ® L)BiR; ' BI DT F; [Diz(ty) — (di ® L) Az(ty)]
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Integrating the above equation franto ¢, yields

21 (tg) =2(0) — (df ® L)SiD] F; [Dizi(t;) — (d; @ I,) Az(ty)]

wheresS;; is as defined in (3.23). Therefore, substituting the abowaton into the expression of

Az (ty) yields
Azi(ty) =2i(ty) — 27 (ty) = zi(ty) — 2:(0) = Sulzi(ty) + (df @ L,)SiFiz(ty)
After some manipulations, we arrive at
(I + Siu)Azilty) =(d ® L,)[Mz(t;) — 2(0)]

As we showed in Lemma 3.1, all the eigenvalues@in the right hand side of the above equation

have nonnegative real parts and hence mafrix S;;) is invertible. Therefore,
Azi(ty) = (I + Su) ' (dl @ L) [Mz(t;) — 2(0)] (3.40)
Therefore, substituting (3.39) into (3.40) yields the eati Az;(¢;) as follows:

ty
Ax(ty) = — (T + S) " (d" @ L)M / Wodt. (3.41)
0
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The value ofAu; obtained as follows:

Au; = u; —uf = — R7'BIDIF,D;2f + R7'BIDIE,D, 2 (t)
— — R'BI'DIFiD;2 + Ry BT DI E;D;2(t;) — R 'B;DT Fy(d; ® I,) Az(ty)

=~ R;'BI D] F;Di[2" — =(ty)] = R ' BiD] Fi(d; ® 1) Azi(ty), (3.42)
Recalling (3.18) and (3.39), the value[ef — z(¢;)] in the above equation can be obtained as
ty
2 —2(ty) :9+/ Wodt (3.43)
0
Substituting (3.41) and (3.43) into (3.42) yields

- - Ly
Au; = — R;'BI' D] F,D; (9 + M, / Wedt)
0

2 _ R7'BYDIF,Dv;, (3.44)

wherev; = 0 + M, fotf Wodt and matrix)M; is defined in (3.29¢). Given the value At; () in
(3.41) andAw; in (3.44), the upper bound ¢f/; — J;) can be derived from (3.34) as follows:

- ty
0

1 ! éd
=5 (fo W ’f)

where matrix\M ; is defined in (3.29¢) and matrix; is defined in (3.29a). Since

1 [tr . 1 [t ty T ty
0 0 0 0

tr tr T _ ty
< / 0T Fri0dt + t; ( / W@dt) MF Fr; M; < / Wedt) (3.46)
0 0 0
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ty 1 [t .
Mp; < / Wedt) +5 / vl Friv;dt (3.45)
0 0



Substituting (3.46) into (3.45) yields

ty N ty - ty
Ji—Jr < / 0T Fr,0dt + < / W@dt) M; < / W@dt)
0 0 0

- tf ~ tf 2
< il / 10]12d + [ VT2 ( / ||e||2dt)

where matrixZ; is defined in (3.29b) and,. is defined in (3.29f). Recalling Lemma 3.2,

T

substituting inequalities in (3.26) into the above inegyalields (3.28). The maximum value in
{e1,- -+ ,en} will satisfy the inequalities (2.7). Therefore, online qouting strategies (3.22) form

ane-Nash equilibrium. O

Note that as shown in (3.28), itis clear that the valug diecreases asbecomes larger. Therefore,
we can claim that there exists a scajasuch that the online computing strategies in (3.22) forms

ane-Nash equilibrium that can be arbitrarily close to the Naghildrium in (3.13).

3.2.2 Noninferior Strategy Design
The open-loop Noninferior solution can also be derivedgi§iantryagin’s minimum principle and
is presented as follows.

Theorem 3.6. For the differential game in av-agent system under distributed information de-

fined by system dynamics in (3.11) and performance indicgs9), the strategies

N
L 1 pr T - -1 .
w=——R'B Zlajpj F;D;M;*2(0) Vi=1,--- N (3.47)
J:
form an open-loop noninferior solution whete< o; < 1forall j=1,--- | N ande.V:1 a; =1
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if matrix Mp defined by

N N
Mp = <INT +3°3 %s,pf Fka> , (3.48)

Qo
j=1 k=1

is invertible, where matrix¥); is defined in (3.14b).

Proof. Given system dynamics in (3.11) and performance indice5.®)(to find the noninferior

solution, we define a convex combination.gf - - - | Jy as shown in (3.3), which is

N t N
1 - 1 [U
J = §ZT(tf) <§ jajD;?FDj> 2(tr) + 5/ <§ aju;ijuj> dt. (3.49)

J=1

We define the Hamiltonian as
1 N N ~
H =3 (Z aju]TRjuj> + A7) Bju
j=1 Jj=1

where vectorn € RV is the Lagrangian multiplier. Since the second order pattaivative of

H with respect touy, - -- ,uy are all equal tax; R; and hence is positive define, the following
conditions foru,, - - - , uy to minimize the performance index are necessary and suificie

C0H L -

Z = a = ZBJ'U]', (350a)

j=1
. OH N 3
A=—2-=0, Aty) = > ;DI F;D;z(ty), (3.50b)
j=1
OH -
o = o;Ru; + B'X=0 Vi=1,--- N. (3.50¢)
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Condition (3.50Db) indicates thatis a constant vector and hence

N
At) = a;DIF;Diz(ty) Wt € [0,ty]

j=1
From (3.50c), we obtain

N
1 - 1, -
wi=— —RPBIA=——R'BI'Y ;DI FiDyz(ty). (3.51)

7 K .7:1

Substituting (3.59) into (3.50a) and integrating both siftem0 to ¢, yield

N N
1 ~
<INT + Z Oz_SJ Z OékDngDk> Z(tf) :Z(O)
j=1

I k=1

Mpz(ty) =2(0) (3.52)

where matrix)Mp is defined in (3.48) and matri¥; is defined in (3.14b). Therefore, if the matrix
Mp is invertible, then

2(ty) = Mp'2(0). (3.53)

Substituting (3.53) into (3.59) yields the open-loop Natsategy (3.47). O

Again, note thatV/,' in (3.47) is generally a full matrix. Therefore, implemergtiopen-loop
noninferior strategy:; in (3.47) will still require every agent to have complete whedge of the
initial state of all the agents,(0) = [27 (0),- -, 2%(0)]*. However, just like the proposed open-
loop Nash strategy design approach in the previous seeti®are also able to apply the same idea

to the open-loop noninferior strategy design. Toward that e have the following result:

Theorem 3.7. For the differential game in av-agent system environment defined by system dy-

namics (3.11) and performance indices (5.9), if
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1. matrix(—Mp) in (3.48) is Hurwitz and

2. agent updates the estimate of its sta;té,e R", according to
R "
d=g|a0) -2 —(df ®,)—8) ;D] F;D;2'| Vi=1,---,N  (3.54)
Q; -
7=1
from any initial conditionz/ (0), wherey is a positive scalar and’ = [(2/)T --- ({)7]T

then
lim 2 () = (df ® 1) M, '2(0). (3.55)
Proof. The proof is in the same fashion as the one for theorem 3.4ki&taequation (3.54) from

1 =1toi= N yields

N N
1 ~
=1 7  j=1

<

=g [2(0) — Mp2']. (3.56)

where matrixMp is defined in (3.48). If matriX—Mp) is Hurwitz, linear system (3.56) with
respectta’ is asymptotically stable starting from any initial conditiz’ (0) andz/ asymptotically

converges to the equilibrium of the differential equati8rbg), that is,

lim 2/ (t) = Mp"2(0).

t—o00

Multiplying (d¥ ® I,.) on both sides of the above equation yields (3.55). O

Note that one can increase the positive scalar achieve satisfactory convergence speed of the

state estimation process. Also note that it is not clear iswifeether implementing (3.54) only re-
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quires each agent to have the information available to it.dnlfact, there exist several conditions
on the information graph and agents’ performance indiceh that the estimation law (3.54) can

be carried out in a distributed manner. These conditionpsented in the following corollary.

Corollary 3.1. For the differential game in arv-agent system environment defined by system

dynamics (3.11) and performance indices (5.9), if

1. the information graph among the agents is undirett

2. matrixF; has the following structure

Fy=(dd) )@ FP + Y [(ddf) @ F* + (d;df) @ Fi* + (dpd]) @ Fi7], (3.57)
ek EE k#]

forall j=1,---,N,
then the state estimation law in (3.54) can be expressed as

of _ f [ o f QG (g f . pii f
zl =94 2(0)—z =8 Z FPz] + Z o (Fjjzj + F} zl> . (3.58)

e;; €E € €E,j#1

foralli=1,---,N.

Proof. For agent, matrix D; defined in (3.6) can be expressed as

(dd) @I+ Y (ddf) @1, ifej €€
D — ek E€E ki
Y (dd)) @1, ifej; ¢ €

Ejkeg,k75i

A graph is undirected if every edge is bidirectional, thaedges:;; € £ indicatese;; € £.
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forall j =1,---, N and hence recalling (3.14b), we have

N
S ;DI F;D; =(d; ® 1,)S] >~ oy(d] ® I,)F; D, (3.59)

j:l ejies

whereS! = fotf B!R™'(B!)Tdt. Substituting (3.57) into (3.59) yields

N
5,3 a;DIED; =(di @ 1,)S! Y ay(dl ® L»){(dkd%) ® F}’

7=1 ejieé'
+ Y ((dedd) @ FF* + (dydf) @ FI* + (did]) @ F7) }Dj
ejkeg,k#j
After some mathematical manipulations to the above equatia using the property of a undi-

rected graph (bidirectional edges), we arrive at

N
5 Y DI ED; = (@ o 1)) | Y (@ @ BN+ Y oyl @ B+ df @ F)
o cij €€ €ij €€, j#i

(3.60)
Therefore, substituting (3.60) into (3.54) yields (3.58) O

It is clear that under the conditions in Corollary 3.1, thetetestimation law expressed in (3.57)
for agent; only requires it to receive the state estimaj“tefrom agentj for all ¢;; € £. Therefore,
this estimation law can be carried out by individual agenta distributed manner. Note that the
two conditions in Corollary 3.1 can be successfully satisf@ many applications of the multi-
agent system and this will be illustrated in an example lat€hapter 5. Compared with the state
estimation law for the Nash equilibrium in the previous get{which does not require each agent
to have the information of the system dynamics and perfoomamdices of other agents and the
overall information topology), the proposed state estiomaiaw for the noninferior solution does

not require each agent to know the overall information toggleither, however, it requires each
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agent to have the information of the convex combinationipatarsa, - - - , ax (which need be
assigned to individual agents due to the nature of the catipergame) and the coefficien%j

andF;"' in the performance index of agenfor ¢;;ce¢.

Similar to the open-loop Nash strategy design algorithnimjglement the open-loop noninferior
strategy, the state estimation law (3.58) can be carriedfblirte first until a certain convergent
value of the state is achieved. Moreover, an online opep-hmminferior strategy design algorithm

based on (3.59) can be proposed similar to (3.22) as follows:

z”if:g 2;(0) —z — ZF”f Z < ”f+F” f) (3.61a)
e €E e;i€E, ];éz
w=—RBYT | () Y SR 4 EE) (3.61)
eing Eljeg,j3ﬁl
foralli =1,---, N. Although the above online computing algorithm is apprcadieto the actual

noninferior strategy, it is obvious that the convergenoceesipof (3.61a) can be made arbitrarily
fast by adjusting the value af and hence the strategy in (3.61) can be arbitrarily closén¢o t

noninferior strategy by choosing a proper value of

3.3 Extensions

In the previous sections, we have proposed the distribygted-toop Nash strategy design approach
and distributed open-loop noninferior strategy desigrmraggh for differential games in the multi-

agent system under distributed information. Several exbeis are presented as follows:

1. Note that these strategies are developed based on parfoenindices (5.9) which do not

contain the integral costs on the quadratic form of the stabdle the general performance
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indices in (2.5) contain such costs. The advantage of imofLglich integral costs on the state
is to improve the transient behavior of the state trajectmyer the resulting Nash strategies
or noninferior strategies. However, in order to developsriiuted game design approach
based on the novel state estimation law, it is required thett stegral costs on the state to
be eliminated. Fortunately, for most of the applicationthiea multi-agent systems, such as
rendezvous, formation control, flocking, etc., a satisfacperformance on the terminal state
is much more important than the performance on the transtatd. Therefore, adopting the
performance indices (5.9) is a reasonable choice in mosteoépplications and hence the
proposed approaches are applicable. Alternatively, ossiple approach to improve the
transient behavior of the state is dividing the entire gaornizbn [0, ¢/] into [ intervals, that
is,

[O,tf] == [O,tl] U (tl, tg] Uu---u (tl_g, tl—l] U (tl_l,tf].

The proposed distributed game strategy design approaemethen be carried out by the
agents at each and every time interval based on the perfeenadgices (5.9) with the entire
time horizon|0, ¢ /] replaced by the above smaller time intervals and the tedratatez(¢;)
replaced byz(i) for all i = ¢;,--- ,¢,_1,t;. As an approximate of the original problem,
this alternative game problem with several smaller hoszaill not render game strate-
gies that are exactly the same as the ones derived based onigh®l performance in-
dices. However, since this approach takes several santpled sit the transient time instants
ti,ta, -+, t_o, t;_1 INtO @account, the resulting state trajectory will have @ettansient per-

formance than the one over only one horizost ¢|.

. Forthe differential game over the infinite time horizdattis,t ; = oo, in order to implement
the proposed open-loop distributed strategy design appraane possible approach is to
combine this approach with the receding horizon controhnépe [72] which has been

widely used and given very good results in practice appboat Specifically, in this case,
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we will consider the following receding horizon performarnadices instead of (5.9)

1 1 T+t .
Ji =5 ll=(r + to)ll, + 5/ lui()ll7,mdt Vi=1,--- N. (3.62)

The mechanism of implementing the receding horizon coigrsthown in Figure. 3.1.

T+l (ZRu
| ! . - >
1T ) i i t
\ > 2% 4
% v
Iy f

Figure 3.1: Receding horizon control mechanism

Specifically, at timer = 71, the Nash equilibrium or noninferior solution of the ditetial
game with performance indices (3.62) is solved for the tinterval|r;, 7 +t]. The agents
will implement the corresponding Nash strategies or namiof strategies from to =
wherer, < 13 +t;. The Nash equilibrium and noninferior solution will be recdated from
7, to 75 + t; and the agent will implement the corresponding strateg@s -, to 5. This
procedures will be repeated as the game proceeds. We shmntdpt that since the game
is over the infinite time horizon, the stability of the mudiient system is fairly important,
however, this issue with the receding horizon control tegphais largely open and still under

investigation.

. As we know, the feedback game strategy is preferred tleapgan-loop one in many real life
applications because the feedback strategies can re&et itsstantaneous disturbance in the
states. A practical way to convert the proposed open-losdepproach into a feedback-

like type is to utilize the sampled-Nash approach [73]. Talmhat end, we consider the
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following performance indices instead of (5.9):

1 1 (Y .
J; :§||Z(tf)||%i + 5/ lui(t) %m0t Vi=1, Nt=1,--,1L (3.63)
2%

where) =t; <t, <-.- <{; < t;. Combining the distributed online computing Nash strat-
egy in (3.22), the sampled distributed open-loop Nashesiyatlesign algorithm is proposed

as follows.
Algorithm 3.1. Att =t¢, forall j=1,--- 1,

1. Agents measure and calculatgty), - - - , zy (tx).

2. Agent implement (3.22) (for Nash strategy) or (3.61) (foninferior strategy) with

2;(0) replaced byz; () fori = 1,--- | N, respectively.

3. Oncet =t arrives, the agents repeat the step 1 and 2 by letting> ;...

Clearly, since the agents measure the states multiple tiomésg the process and will hence

be more aware of the unexpected change in the system.

In this chapter, we considered the open-loop game strategigml approach in the multi-agent
system under distributed information structure. The biaisia of the proposed approachis to let the
agents in the system exchange certain information amomgsblees according to the information
graph such that their strategies asymptotically convesghd Nash or noninferior strategies that
can only be implemented under global information origyallhis approach can be applied to
most of the applications in multi-agent systems and cantasextended to the differential games

over the infinite time horizon and differential games un@e&dback information structure.
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CHAPTER 4: FEEDBACK GAME STRATEGIES

In this chapter, we consider the game strategy design unsteibdted feedback information struc-
ture. The Riccati equation approach and the conventioriahapoutput feedback design approach
are introduced first. A novel distributed game strategygteapproach is then proposed based on

the concept of best achievable performance indices.

4.1 Riccati Equation Approach

Feedback Nash Equilibrium Strategy The feedback Nash equilibrium can be obtained by either
using the Pontryagin’s minimum principle or solving the Hiom-Jacobi-Bellman partial differ-
ential equations. The well-known feedback linear quadrgash equilibrium [7] is presented as

the following theorem without proof.

Theorem 4.1. For the differential game in av-agent system environment defined by system dy-

namics (2.2) and performance indices (2.5), the strategies

form a feedback Nash equilibrium, where matfiXt) is the solution to the following coupled

differential Riccati equations
P+ PB;R'B'P,+ PA+ A"P,+ CTQ,C; =0 Vi=1,--- N (4.2)
with the boundary conditiof,(t;) = CT(t;)FiCi(t;) and A = A — E;V:l B;R;'BTP;.

It is clear that since the coupled differential Riccati etpafor the open-loop Nash equilibrium
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in (3.2) and the ones for the feedback Nash equilibrium iB)(dre different, the open-loop Nash

strategy in (3.1) and feedback one in (4.1) are completdigrent.

Feedback Noninferior Solution Strategy Since the noninferior solution is derived by solving
the linear quadratic optimal control problem with respedhie convex combination of the perfor-
mance indices in (3.3), the noninferior solution under gedback information structure will turn
out to be in the same as (3.4) with the producist, 0)x(0)] replaced withz(¢). We present the

following theorem.
Theorem 4.2. For the differential game in av-agent system environment defined by system dy-
namics in (2.2) and performance indices in (2.5), the sgiat®

ui(t) = —iRi_l(t)BiT(t)P(t)x(t) Vi=1,--- N (4.3)

Q;

form a feedback noninferior solution, where matfixt) is the solution to the differential Riccati

equation (3.5) with the boundary conditid?(t;) = 37| o;CT () F;C;(ty).

To derive the feedback Nash equilibrium or feedback noniofesolution, one has to solve the
differential Riccati equations (4.2) or differential Ratcequation (3.5) backward in time. Unfor-
tunately, like the open-loop Nash equilibrium and noniigiesolution, the solution will generally
become a full matrix. Therefore, there is generally no waytlie agents in the system to imple-
ment the feedback Nash strategy or noninferior strateglyowitthe complete information of the
state informationg (), at every instant of timé. To overcome this issue, we introduce an existing
distributed game strategy design approach based on thealmtutput feedback control in the next

section.
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4.2 Optimal Output Feedback Approach

In this section, we consider the differential game in M@gent system under distributed feedback
information structure. In order to conform to the undertyinformation graph constraint, the

agents’ linear structured strategies are in the followorgt.

uf = Y Kyy; £ K;Dyy = K;DiCx Vi=1,--- N,
€i; €E
where the superscriptin «; means that the strategy is structurd,= [K3, --- K3y| € R™*N7,
and matrixD; is defined in (3.6). The structure aof indicates that the strategy of each agent can
only be a feedback of the output information that is avaddolit only according to the information

graph. Denoting’; = D;C, the structured strategies are expressed as

~

— K:Cx Vi=1,--- N. (4.4)

which are apparently in the output feedback form. The baka iof applying the optimal out-
put feedback approach [54] to the game strategy design iaremgeterizing matrix<; in (4.4)

and derive the Nash equilibrium or noninferior solutionedity with respect to this variables
K3, ---, K%. In what follows, we present the distributed Nash stratagy @oninferior strategy

design using the optimal output feedback approach.

4.2.1 Nash Strategy Design
With parameterized(;, - - - , K3 in (4.4), the Nash equilibrium is presented as the followtimey
orem based on the optimal output feedback approach.

Theorem 4.3. For the differential game in av-agent system under distributed feedback infor-
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mation structure defined by system dynamics (2.2) and pedioce indices (2.5), the strategies in

(4.4) form a feedback Nash equilibrium if the following etjoias holds:

i = Az, (4.5a)
N A~

A= (A +) BjK;cj> : (4.5b)
j=1

P+ PA+ AP 4+ CTQ,C + CT(K:)TRK:C; = 0 (4.5c)

Py(ty) = CJF,C (4.5d)

RK:Cixial CT + BT Paa™CT = 0, (4.5€)

holdforalli =1,---, N.

Proof. Substituting structured strategies (4.4) into perforneaindices (2.5) yields

2 1 K
b [

1 ~
Ji = Slly(ts) o, | 17 Cia ]l (4.6)

The Hamiltonian is defined as

N
1 1 A s
H; = SllelErg.0 + S Caallh, + A7 <A + :BJ'K;CJ) L

j=1

where vector\; is the Lagrangian multiplier. According to the Pontryagiminimum principle,
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the necessary optimality conditions are

. OH, S
b=t = A+ BiKC; |, (4.7a)
1 j=1
OH, al !
N =— 0x2 = -CTQ;Cx — CT (K" R K;Cyz — (A +) BjK;’Cj> i, (4.7b)
j=1
Ni(ty) = CTECix(ty), (4.7c)
8Hi 5 A T AT T T AT
ies = Bl Caa CF + B A2 CT = 0. (4.7d)
forall: =1, ---, N. Letting\; = P,z and substituting it into the above equations yields equnatio
(4.5). 0

Obviously, if matrix(C;z;27 CT) is invertible, then the optimak can be obtained directly from
condition (4.7d) as

)

Substituting (4.8) into (4.7a) and (4.7b) yields a highlyiear two-point boundary value prob-
lem, which is difficult to solve. Moreover, matriéC;z;z! C!') is generally not invertible. There-

fore, in order to solve foK}, - - - , K3, a gradient based iterative algorithm is proposed as fallow

Algorithm 4.1.

1. Choose any time-varying feedback gaikig(¢),--- , K3 (t) for t € [0,¢,] as the initial

guessing.

2. At stepk, substitutek;(t) = K:*(¢) forall i = 1,--- , N into equations (4.5a) and (4.5c)

and solve forz(t) and Py (t), - - - , Pn(t) fort € [0, t4].
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max ||(R;K*C; + BT P)az"CT ||,

0<t<ty
is less than a stopping criteria, theii;*(t), - - - | K3¥(t) are the solutions. Otherwise, go to

step 4.
4. UpdateK:*(t) according to

oK

K1) = K3k()

7

(K:*) Vi=1,---,N, (4.9)

2

whereg; is the step size ang%(Kf’f) is defined in (4.7d) withi<? replaced withK:*. Set

k — k + 1 and go to step 2.

4.2.2 Noninferior Strategy Design

With parameterized<s, - - - | K3 in (4.4), the noninferior solution is presented as the foiig

theorem based on the optimal output feedback approach.

Theorem 4.4. For the differential game in av-agent system under distributed feedback infor-

mation structure defined by system dynamics (2.2) and pedioce indices (2.5), the strategies in
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(4.4) form a feedback noninferior solution if the followieguations holds:

i = Az, (4.10a)

—_ N A~

A= (A +) BjK;Cj> : (4.10b)

j=1

. N ~ ~

P+ PA+ATP+Y " 0,[CTQ;C + CT(K;) RiK;Ci) = 0 (4.10c)
j=1

Py(ty) = C{ F,C (4.10d)

o R K:CixaT CT + B\ TCT = 0, (4.10e)

holdforalli =1,---, N.

Proof. Substituting structured strategies (4.4) into perforneandices (2.5), the convex combina-

tion of the agents’ performance indices becomes

Zajny EI2, + / Z% lyll3, + 1 Crall?, Jot (4.11)

The Hamiltonian is defined as

N N
1 s A 5
=5 D aillzlerg,c + 155 C|R,) + AT <A+ Z&&-@) z

J=1 J=1

where vecton is the Lagrangian multiplier. According to the Pontryagiminimum principle,
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the necessary optimality conditions are

OH al .
b= = (A +) BjKjCj> z, (4.12a)
j=1
' oH N A A N A T
A== = > a;[CTQ;C + CF (K} RK; Clr — (A +) BjK;Cj> A,  (4.12b)
j=1 J=1
N
Mtp) =Y oy CTF;Calty), (4.12¢)
j=1
aH 8 A T AT T T AT
forall: =1,---, N. Letting\ = Pz and substituting it into the above equations yields equnatio
(4.10). 0
Therefore, a gradient based iterative algorithm for dagviy, - - - , K3, that satisfy the conditions

in (4.10) can be proposed in the same fashion as Algorithm 4.1

There are several issues regarding the optimal output éagdbased game strategy design ap-

proach, which are illustrated as follows:

1. Itis important to point out that using the optimal outpegdback design approach, the de-
rived feedback gain’}, - - - , K3 for both the Nash equilibrium and noninferior solution
will depend upon the stateyt), as shown in equation (4.5e) and equation (4.10e). More-
over, it is equivalent to say that these feedback gains indapend upon the initial state,
z(0). Therefore, different sets of feedback matrices have toebieetl given different initial
states of the system. One way to overcome the initial stgierd¥ence is assuming that the
initial state,zq, is a random variable with certain probabilistic distribat[54]. Under this
assumption, the agents will try to minimize the expectediealf performance indices in

(2.5). The initial state dependence is hence eliminatedusecthe resulting feedback matri-
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ces are only dependent on the covariance of the randoml stiii@, which is assumed to be

a given value.

2. For the differential game in a multi-agent system enviment, since every agent’s strategy
has influence on other agents’ performance indices valbesttuctured strategies defined
in (4.4) with the feedback gainsy, - - - , K3 need to be simultaneously parameterized and
optimized with respect to the performance indices in ordeolitain the distributed Nash
equilibrium and noninferior solution. In other words, thgtimal output feedback based
approach requires all the agents to be able to choose thedeledains freely. However, if
there exists a certain constraint for the agent on its chafitiee feedback matrix, then there
is no way to apply the game strategy to each and every agemedersing optimal output

feedback approach.

Realizing the existing issues in the optimal output feelili@@sed approach, we propose a novel
design approach for both Nash equilibrium and noninferautson under distributed feedback

information in the following section.

4.3 Best Achievable Performance Indices Approach

In this section, we present the distributed game strategigddrased on a novel concept of best
achievable performance indices. As shown in Section 4.th thie structure constraints imposed
on the feedback gain matrices, it is generally not possiiaife agent’s strategies form a Nash
equilibrium or noninferior solution with respect to theginal performance indices using the Ric-
cati equation approach. However, in real life applicatiaghge performance indices as a design
criteria can usually be adjusted according to the real djp@r&ondition or situation. This in-

spires us to consider the game strategy design in a reverseemd he basic idea of the approach
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proposed in this section is as follows: For any structurestejies of the agents that conform to
the information graph constraint, based on the inverseragity, there exist a set of performance
indices for the agents such that their structured stragdgien a Nash equilibrium or noninferior
solution. Among all the possible sets of performance irglieee find one set that is closest to the
original set of indices. Therefore, the designed Nash #xjiwim or noninferior solution is chosen
to be the one corresponding to the closest set of performadms. In what follows, we present
the Nash strategy and noninferior strategy design apprbaséd on the proposed concept of the

best achievable performance index.

4.3.1 Nash Strategy Design

First of all, all the possible sets of performance indicethwespect to which the structured strate-
giesuj, - - - , uy, described in (4.4) form a Nash equilibrium are presentet@gllowing theorem

based on inverse optimality.

Theorem 4.5.For the differential game in arv-agent system under distributed feedback informa-
tion structure defined by system dynamics (2.2) and perfoceandices (2.5), the strategies (4.4)

form a Nash equilibrium with respect to the following perf@nce indices:

1 1 [y .
Jp = St rne, + 5 | (el + o T+l T+ sl ) Vi =L N (423
i A 0 7 ?

where
. A~ ~ N ~ ~
Q) =—A"P,— b= PA+ Cl(K)"R,K;Ci+ > (BB;K;C; + C] (K;)"B] P,
J=1,j#i
(4.14a)
Ii(K;) = —R;K,C; — BI'P, (4.14b)
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and P, is any symmetric differentiable matrix with terminal caimh P;(¢,) = C7 (¢;) FiCi(ty).

Proof. Consider the Lyapunov functiorj = 1/227 P,z for agenti where matrixP; is symmetric,
differentiable, and satisfies the terminal conditigit ;) = C/ (¢;)F;C;(t;). The derivative ofV;

along the trajectory of system (2.2) is
o1 al 1. 1 N
V=5 (A + > Bjuy) P + §xTP,-x + §xTP,-(A:): +Y  Bjuy). (4.15)

j=1 j=1

Integrating the above equation fraio ¢, yields

1 [ N . N
Vi(ty) =Vi(0) + = / [(Az + Z Bju)" Pix + 2" Pir + 2" Py(Az + Z Bju;)|dt
0 =

2 ,
7=1
1 [ N . N
=Vi(0) + 5 /0 (Az+ Y Bju))"Pa+ 2" Pa + 2" P(Az + > Bju;)
j=1 j=1

N
+lu; — K Cial3, — |lui — K;Cixl|3, + > 2" (PB;KC; + Cf (K;) "B P)x

j=1j#i
N A A
— Y 2"(PBK;C; + C (K;)" B P)aldt,
j=1,j7#i

o: — o T uy — uf Ty — il %, + lJus — K G,

i)+ [ -l

N
+ ) [(uj — K;Cjx)" B P + 2" PBj(u; — K;Cyx)]}dt,

i=1j#i

where matriceg); andl’; are defined in (4.14). Hence, recalling the definition of tagrmance

index in (4.13) and>,(t;) = C} (t;)F;Ci(t;), one can obtain

1 [t R
Vi + 5 [l KiCuall,
0
N A A
+ Y [y — K:Cya)" B Px + 2" P,Bj(u; — K;Cja)]dt. (4.16)
j=1,j#i
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Since matrixR; is positive definite, it is clear that performance indéxin (4.16) reaches its
minimum whenu; = Kf@ix andu; = Kjéj:c for j # i. Since the above analysis holds for
all i = 1,--- | N, the inequality in (2.6) withJ; replaced byJ? holds if v} = K;Cyz for all

1=1,---,N. Therefore, structured strategies (4.4) form a Nash dayitilin. O

Theorem 4.5 provides all the possible sets of performandiees (parameterized by feedback
gain K3,--- , K3 and P, - - -, Py) with respect to which the structured strategigs. - - , u3,
expressed in (4.4) form a Nash equilibrium. For the convereeof the following analysis, we
assume that matricdy, - - - , Py are chosen to be the solutions to the coupled differentiedai
equations in (4.2). Comparing the set of performance irsdiog4.13) with the set of original
performance indices in (2.5), the differences between themthe values of matriceg; and
[;foralli = 1,--- N. If Q¢ = CI'Q,C; andT" = 0, thenJ? becomes identical to; and
structured strategyy, - - - , uy form a Nash equilibrium with respect to the original perfame
indices. However, it is generally not possible to find propa&lues of K7, - - - | K3 that achieve
this. Therefore, one way is to find a set of performance iredamaong all possible performance
indices in (4.13) which is closest to the ones in (2.5), thatd makeRs as close tqC! Q,C;) as
possible and makE as close to 0 as possible. We call such set of performance (obiesest to the

original indices) théest achievable performance indiceswhich is defined formally as follows.
Definition 4.1. Given the set of performance indices in (4.13) and the setigihal performance

indices in (2.5), if

ly ty
/ 1Q: - CTQ.CPdt and / N2 Vi=1,-- N (4.17)
0 0

are simultaneously minimized by feedback matrikgét) = K:*(¢t) forall i = 1,--- , N where
| - || is the Frobenius norm, then the set of performance indgx: - - , J3* corresponding to

K(t),---, K (t) among all the sets of performance indices in (4.13) are ddlhe best achiev-
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able performance indices.

The concept of best achievable performance indices cantempisted as a set of performance
indices that is in the class of performance indices desgriye(4.13) while is also closest to the
original indices (2.5) in terms of the Frobenius norm of thiéedence between the performance
index coefficient matrices. Note that if matiiX is invertible, then bothlQ; — C7Q,C;|| and
|T;|2 can achieve the minimum value, zero, under the feedbackxmif = —R; ' BT P,C; .
Substituting this feedback matrix into (4.14a) yields thigedential Riccati equations (4.2). As
such, the result reduces to the Nash equilibrium of the tigeadratic differential game. How-
ever, if matrixC' is not invertible, findingks = K foralli = 1,--- , N to minimize the terms
in (4.17) simultaneously is quite difficult. Therefore, irder to find matrices<*(¢), - - - , K3/ (¢)
corresponding to the best achievable performance indieesieed to solve a multi-objective op-
timization problem of minimizingf,” ||Q; — CrQiCy||7dt and [’ ITi||7dt foralli = 1,--- | N
simultaneously. One way to accomplish this is to minimize@avex combination of these terms

as follows.

ly
(S, K = / Ha, (4.18)
0

where

H=Y (8ullQ5 — CIQ;CilI3 + BilIT51|3) (4.19)

N
—1

J

where0 < 3;; < 1,0 < B85, < 1, ande.Vzl(ﬁjl + Bj2) = 1. The minimization problem reduces

to finding matriced<;*(t), - - - , K3 (¢) such that
G(ET(t), -+, KX (1) < (KT (t), -+, K§(2)  VET(E), -+ KR (D). (4.20)

This minimization problem is generally quite difficult tolge analytically. A possible numerical
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approach is using gradient based iterative algorithms [$#]ce these algorithms will require an
expression for the gradient éf (¢) with respect toi§(¢), - - - , K3 (t). Recalling the property of
the Frobenius nornjS||7 = Tr(STS) where Tk-) is the matrix trace operation, equation (4.19)

becomes
N
H; =) {BnTr(Q) — CTQ;C))*) + B} Tr(T;I]).
j=1
Hence, the partial derivatives &éf with respect taky, - - - | K3, are

Vi:H :45i1Rszéi(Qf - CZTQzCz)ézT

N
+4 ) BulBIPi(Q; — CTQ,CH)CT] + 28 RTC Vi=1,--- N. (4.21)

j=1,j#i
The following gradient based iterative algorithm is progabs

Algorithm 4.2.

1. Choosek;°(t), -+, K(t) fort € [0,t;] as the initial guessing.

2. If
max N||VK,§H(ka>"'7Kff)||2

OStStf7Z:177

is less than a stopping criteria wheXey: H (K", - - - | K3F) is defined in (4.21) withs (t) =
Kg*t)foralli = 1,--- N, thenK%(t), -, K3¥(t) are the solutions. Otherwise, go to

step 3.

3. UpdateK:*(t), - - -, K3¥(t) according to
K () = KM0) - Vi H(KGE, - K¥) Yi=1--- N

(2
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whereg; is the step size. Sét— £ + 1 and go to step 2.

Note that by varying the coefficiet, - - - , By1 and 5y, - - - , Bn2, @ noninferior set of the solu-
tions can be generated. An appropriate choice of these ceets can be made to place a desired

emphasis on minimizing each and every termin (4.17).

4.3.2 Noninferior Strategy Design

The same idea of the Nash strategy design can be also applib@ honinferior strategy de-
sign. First of all, all the possible sets of performancedediwith respect to which the structured
strategies:;, - - - , u} described in (4.4) form a noninferior solution are presewigthe following

theorem based on inverse optimality.

Theorem 4.6. For the differential game in av-agent system under distributed feedback infor-
mation structure defined by system dynamics (2.2) and pedioce indices (2.5), the strategies in

(4.4) form a noninferior solution with respect to the follog performance indices

1 I :
1 0 k2

where

Qi = —ATP - P — PA+ CI(K})TRK:C,, (4.23a)

Ti(KS) = —RK:C; — iBf P, (4.23b)
;

and P is any symmetric differentiable matrix with(¢;) = E;V:l

OéjCjT(tf)FjCj(tf) and 0 <

aiglforallz':l,---,Nande-Vzlaj:l-
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Proof. Consider the Lyapunov functioi = 1/227 Pz. The derivative of” along the trajectory
of system (2.2) is the same as (4.15). Integrating (4.1) frao ¢, yields
1 [ N .
V(ty) =V (0) + 5 / [(Az + Z Bju;)" Px + 2" Px
0

J=1

N
+a"P(Az 4+ Bjuy))dt

j=1
1 T a T 1 t a T T T
j=1 J=1
N
+ .CE'TP(AZIZ' + Z BjUj)
j=1

N N
+ > ajlluy — K Gl = aylluy — K3Ca||3, Jdt,

j=1 j=1

VO +3 [ ekl

=1

2 T T
Q3 xfjuj qu]x

— Nl + llui — K3 Cias||, ],

where matrices); andI’; are defined in (4.23). Hence, denoting thiat= E;.Vzl J; where J; is

defined in (4.22), we have

\ 1 & .
i=1

Sincea; > 0 and matrixR; is positive definite for allj = 1,--- , N, it is clear from the above
equation that; = Kjéjx forall j = 1,---, N are the optimal strategies and hence form a
noninferior solution for any giveny, - - - , ay. 0J
Note that only if the parameteks,, - - -, ay are given, the expression of performance indices

J7, -+, J3 in (4.22) can be obtained for any structured strategies- - , u% in (4.4). For the
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convenience of the following analysis, we assume that ttheevaf matrix P are chosen to be
the solution to the differential Riccati equation in (3.9)he definition of the best performance
indices in this case is in fact the same as Definition 4.1 wigttrimesQ); andI’; replaced by the
ones in (4.23). Similar to the Nash strategy design, to fintHioes K*, - - - | K3 corresponding
to the best achievable performance indices, we solve a raatian problem with respect to the
convex combination in (4.18). In this case, the partiahdgives of H with respect ta<y, - - - |, Ky,

become
Vi H =48 RK;Ci(Q5 — CTQ:C)CF + 28,,RTCE Vi=1,-- N (4.24)

where matrices); andl’; are defined in (4.23). Therefore, with the expression of ttaelignt

in (4.24), the same gradient based iterative algorithm g®rthm 4.2 can be utilized to derive

K§*, -+, K3f corresponding to the best achievable performance indigesitam for any given
set of parameters,, - - - , a. Again, by varying the coefficiertt;,, - - - , Sy1 andpSia, - - -, B2, @

noninferior set of the solutions can be generated. An apaigpchoice of these coefficients can

be made to place a desired emphasis on minimizing each andteven in (4.17).

With the best achievable performance indices approachogeaf in what follows, we point out
several features of this approach and how this approaclt@ves the issues in the previous opti-

mal output feedback based approach.

1. MatricesK7{*, - - -, K3 derived using the best achievable performance indicesapprfor

both the Nash equilibrium and noninferior solution are peledent on the initial state.

2. The optimal output feedback approach requires everytagée able to choose the feedback
gain matrices freely and optimize the parameterized feddgainsKy, - - - , K3, simultane-

ously. While using the best performance indices approactsuch requirement is needed.
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Specifically, if the structured strategies for one or morerdig are fixed, then the best achiev-
able performance indices can still be applicable in theestret the rest agents can optimize
their feedback matrices such that the set of performandeasdvith respect to which all the
agents’ strategies (the optimized strategies and the fixategies) form a Nash equilibrium

or noninferior solution are closest to the original set af@enance indices.

4.4 Feedback Game Strategy Design over the Infinite Timezdori

In this section, we consider the feedback Nash strategy anthferior strategy design for the dif-
ferential games over the infinite time horizon in the mugeat systems under distributed feedback

information structure.

For the game over the infinite time horizon, we assume thaamycs (2.1) for every agent is

time-invariant, stablizable, and detectable. The peréoroe indices are given by

1 o0
si=5 [

where matrix@); is time-invariant and positive semi-definite (with exceps in cases such as the

o+ llwil%)dt Vi=1,--- N (4.25)

pursuit-evasion games) and matfixis time-variant and positive definite forall=1,--- | N. If
the strategies of all the agents are constrained to be {det) the following result similar result to

Theorem 4.5 is obtained.

Theorem 4.7. For the differential game in av-agent system under distributed feedback infor-
mation structure defined by system dynamics (2.2) and pedioce indices (4.25), the strategies

in (4.4) with form a Nash equilibrium with respect to the daling performance indices:

1 o0
J5 ==
r=3 el

o + 2 TTu + ul Tiw + ||u||3)dt Vi=1,--- | N (4.26)
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if the closed-loop systein= (A + 7 | B;K;C;)x is asymptotically stabilize, where

N
Q= —A"P,— PA+CH(E)REGC+ Y (PBK:C;+ CY(K)'BIP),  (4.27a)

j=1,j#i

I, = —R;K:C;, — BT'P, (4.27b)
and matrixP; is symmetric.

Proof. Consider the Lyapunov functiori = 1/227 P,z for agenti. Its derivative along the trajec-
tory of (2.1) is

N N
. 1 1
Vi= (e + Y Byu) P+ ol P(Awi + ) Byuy). (4.28)

J=1 J=1

If the closed-loop system is asymptotically stable, ing¢igg (4.28) from) to oc yields

N N
1 o0
Vi(oo) = 0 =V;(0) + 5 /0 (Az+ > Bju))" P+ 2" Pi(Az + ) Bju,)ldi

j=1 j=1

N N
1 o
=Vi(0) + 5 /0 (Az+ Y Bju;)"Pa + 2" P(Ax + ) Bju;)

J=1 J=1

N
+lu; — K3, — [lui — K;Cixll3, + Y 2" (BB KC; + CF (K;) " BY P

j=1,5#i
N
— Y 2"(PB;K;C; + CJ(K;)" Bl P)aldt,
j=1,j#i

o — " T uy — uf Tiw — |lwil| %, + lJus — K Ca3,

i)+ [ (-l

N
+ > [(uj — K;Cja)" B P + 2" PBj(u; — K;Cyx)]}at,

j=1,j#i

where matriceg); andl’; are defined in (4.27). Hence, recalling the definition of tagrmance
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index in (4.26), we have

1 [ A
V0 + 5 [ - K,
0

N
+ > (uj — K;Cjx)" B P + 2" PB;(u; — K;Cyx)]dt.. (4.29)

=1,

Since matrixR; is positive definite, the inequalities in (2.6) hold true lwif; replaced by.J?

if uf = Kfé’ix fori = 1,---,N. Therefore, the structured strategies in (4.4) form a Nash
equilibrium. O
For the convenience of the following derivation, the valagmatricesP;, - - - , Py are chosen to

be the solutions to the algebraic version of the coupleckuifitial Riccati equations in (4.2) by
settingP, = --- = Py = 0. Therefore, with all the possible performance indices petarized
in (4.26), the definition of best achievable performanceécesi over the infinite time horizon is as

follows:

Definition 4.2. Given the set of performance indices in (4.26) and the setigihal performance

indices in (4.25) over the infinite time horizon, if
lQ; - ¢l QiCil} and Tyl Vi=1,--- N (4.30)

are simultaneously minimized by feedback matrikgét) = K*(¢) forall i = 1,--- , N where
| - || is the Frobenius norm, then the set of performance indgx. - - , J3* corresponding to
K(t),---, K (t) among all the sets of performance indices in (4.26) are ddlie best achiev-

able performance indices.

Note that if matrixC; is invertible, both||Q: — CTQ;C;||2 and ||T;||3 can achieve the minimum

value, 0, under the feedback matid = —R-'BTP,C;"!. Substituting this feedback matrix
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into (4.27a) yields the algebraic version of differentiat¢ati equations (4.2). In the case that
matrix C; is not invertible, we need to utilize a numerical algorithonfind feedback matrices
K7, -+, K3f corresponding to the set of best achievable performanceesdToward that end,
we define a convex combination of the terms in (4.30) as arctgefunction to minimize, which
is the same a# in (4.19). Hence, with the same expression of partial deviea of H with respect
to K7, --- , K3 in (4.21), the following gradient based iterative algamtkimilar to Algorithm 4.2

is proposed to derive the feedback matriégs, - - - | K.

Algorithm 4.3.

1. ChooseK:%(t),--- , K¥(t) as the initial guessing such that the closed loop systemixnatr

(A+ Z;V:l B;K:°C;) is asymptotically stable.

2. If (AﬁZj.V:l B;K:*C;) is asymptotically stable anfimax;_; ... x Vs Hi (K35, K30 |
is less than a stopping criteria wheXes H(K5*, - - -, K3F) is defined in (4.21) witlp; and
I; defined in (4.27) and; (t) = K:*(t) foralli = 1,--- | N, thenK;*(t),--- , K3F(t) are

the solutions. Otherwise, go to step 3.

3. UpdateK;*(t),--- , K3¥(t) according to

K00 = KM — Vi HKES oo KX Vi=1,00 N

(2

whereg; is the step size. Sét— £ + 1 and go to step 2.

By varying the coefficients;, a noninferior set of the solutions can be generated and@oppate

choice can be made.

The same idea can be applied to the noninferior strateggesier the infinite time horizon. First

of all, we have the following theorem similar to (4.8).
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Theorem 4.8. For the differential game in av-agent system under distributed feedback infor-
mation structure defined by system dynamics (2.2) and pedioce indices (2.5), the strategies in

(4.4) form a noninferior solution with respect to the follog performance indices

1 o
J5— =
r=3) el

if the closed-loop systein= (A + 3 | B;K:C;)x is asymptotically stabilize, where

o + 2 TTu + ul Tiw + ||u||3)dt Vi=1,--- | N (4.31)

Qi = —ATP - PA+ CT(K;)"RK;C, (4.32a)
A 1
Iy(Kf) = —R;K;C; — —B]'P, (4.32b)
Q;
matrix P is symmetric) < o; < 1foralli=1,--- N, ande.V:1 a; = 1.

Proof. Consider the Lyapunov functioi = 1/227 Pz. The derivative of” along the trajectory
of system (2.2) is the same as (4.28). If the closed-looeyst asymptotically stable, integrating
(4.28) from0 to oo yields

ty N . N
V(o) =0=V(0) + % /0 [(Az + Z Bjuj)' Pz + o' Pz + 2" P(Az + Z Bju;)|dt

j=1 7j=1

1 ty N ) N
=V (0) + 5 /0 [(Az + Z Bju;)" Pz + 2" Pz + 2" P(Az + Z Bju;)

J=1 Jj=1

N N
+ Y aylluy = KiChallg, = aglluy — K3 Cja||3, Jdt,

j=1 j=1
1 [ &

VO +3 [ Pal-la
j=1

= lluil&, + lluy — K5 Cial7Jdt,

2 T T
Qs iju] quJx

where matrices); andI’; are defined in (4.32). Hence, denoting thiat= Z;V:l J; where J7 is
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defined in (4.31), we have

s 1 t = s A
j=1

Sincea; > 0 and matrixR; is positive definite for alj = 1,--- | N, it is clear from the above
equation thatu} = K;C‘jx forall ;j = 1,---, N are the optimal strategies and hence form a
noninferior solution for any giveny, - - - , ay. 0J

For convenience, the values of matiikin (4.32) is chosen to be the solution to the algebraic
version of the differential Riccati equation in (3.5) bytsey P = 0. The definition of best
achievable performance indices in this case is the samefastda 4.2 with matriceg); andl’;
defined in (4.32). with the same expression of partial déviea of H with respect tak;, - - - | K%,

in (4.24), the same gradient based iterative algorithm g®rthm 4.3 can be utilized to derive

Ky, .- K3f corresponding to the best achievable performance indigesitam for any given
set of parameters,, - - - , ay. Again, a noninferior set of the solutions can be generayadbying

the coefficients}; and an appropriate choice can be made.

Note that in the Algorithm 4.3, the initial guessing has toabstabilizing feedback gain and the
stability of the closed-loop system is verified at everyatem to make sure that the closed-loop
system under the resulting control is asymptotically stabherefore, we are confronted with two
issues. One is that whether the system can be stabilizecelstrilnctured strategies in the form of
(4.4), and the other is how to find an initial stabilizing qohto start the algorithm if the system
is stabilizable. One possible approach is to utilize thepluyeov stability criterion, which is to find

solution to the following Lyapunov inequality

N N T
P (A + ZBJ-K;Q) + (A +) BjK;éj> P <0, (4.33)

j=1 7j=1
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There exist many numerical approaches to solve this prolem of which is based on the linear
matrix inequality (LMI) technique. The inequality abovendae converted into a LMI feasibility
problem and there exist many software tools to solve the Lédkibility problem efficiently such
as YALMIP [75]. Moreover, if the LMIs are feasible, the sotive program will automatically
generate a feasible solution, which can be used as thd stiiailizing feedback gain to initialize

Algorithm 4.3. Please refer to [76] for more details for agibke approach.

In this chapter, we considered the game strategy desigmagipin the multi-agent system under
distributed feedback information structure. The basi@idkthis approach is to design structured
feedback strategy for the agents such that these strafegiess Nash equilibrium or noninferior

solution with respect to a set of performance indices thatchrsest to the original indices. This
approach overcomes several shortcomings in the convehtigriimal feedback based approach

and is extended to the game over the infinite time horizon.
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CHAPTER 5: APPLICATIONS

In this chapter, two application examples of the differaenames in multi-agent systems are
considered. One is the unmanned aerial vehicles (UAVs)dtion control problem and the other
is the multi-pursuer single-evader differential game Miithited observations. The former one is
solved using the proposed open-loop noninferior strateapigth approach and the latter one is

solved using the best achievable performance indices appro

5.1 UAV Formation Control Using Differential Game Approach

In this section, we conside¥ UAVs that are trying to form a prescribed formation and desig
open-loop controls for each and every UAV to achieve thigcije. The point-mass dynamics of

UAVs are modeled as follows [77] and are shown in Figure 5.1:

t; = Vj; cosy; cos x;, (5.1a)
y; = V; cosy; sin x; (5.1b)
h; =V sinv; (5.1¢)
,_T,-Di
Vi = — gsiny; (5.1d)
my;
3= L cos ¢; — m;g cos; (5.1¢)
m;V;
. Lz sin i
fi = i (5.10)
m;V; cos;
fori=1,---, N, wherez; is the down-range displacement,s the cross-range displacemeint,

is the altitude)V; is the ground speed which is assumed to be equal to the airapdles paper,

~; is the flight path angley; is the heading angld}; is the engine thrust); is the dragymn; is the
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UAV mass,g is the acceleration due to gravity; is the lift, andg; is the banking angle. The three
control inputs of UAV: is the banking angle;, lift L;, and engine thrust;.

A

Vi

Figure 5.1: UAV Model

It is shown in [77] that the highly nonlinear UAV model in ($.dan be pre-linearized using feed-

back linearization to be

Tj = Ugs, Ui = Uy hz = Up;i (5-2)

whereu,;, u,;, anduy,; are the virtual acceleration control inputs. These viraaaitrol inputs and
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the real control inputs are related through the followingagpns

Uyi COS Xi — Ug; SIN X
¢ = tan™! X X (5.3a)
(un; + g) cosy; — (g €OS X; + Uy; sin x;) siny;
L —m, (uni + g) cosy; — (g COS X; + Uy sin ;) siny; (5.3b)
cos @;
T; = my[(up; + g) siny; + (g cos X; + uy; sin x;) cosv;] + D; (5.3¢c)

wheretan y; = ¢;/4; andsin~y; = hi/VZ—. Therefore, after the virtual control inputs are designed
based on the linear model (5.2), the real control inputs ban be obtained by substituting the

virtual ones into equations in (5.3). Expressing (5.2) migof state-space representation yields

22- = AZZ' + BUZ‘, (54a)
Di = szi (54b)
Vi = Csz' (54C)

wherez; = [p!' ;)T is the state vectop; is the position vectory; is the velocity vectory,; =

[ul, w) uf | is the virtual acceleration control vector,

01 0
Ai == ® 13, Bz - ® 13, Cp == [1 0] ® I3, Cv - [0 1] ® I3,
0 0 1
Suppose that individual UAVs are able to communicate wittheather according to a directed
information graphg = (V, £). To achieve the formation requirement, graplis assumed to be

connected. Since the objective of the UAVs is to form a pibsdrformation, assuming that the

desired displacement vector pointing from UAMo UAV i is 1;;, the formation requirement can

76



be expressed mathematically in terms of the following pentnce index for UAV; to minimize:

1 r. U
Ti=Y Slllpity) = pslts) = gl + Nlvalty) = v ()17 + 52/0 (ARG (5.5)
ei; €€

foralli = 1,---, N, where|| - || is the Euclidean norm or distance andis a positive scalar.
Performance index (5.5) means that UAWill try to minimize the sum of the terminal formation
errors and terminal velocity errors according to the infation graph while at the same time
minimizing its control effort made during the entire proge$he larger; is, the larger penalty is
placed on the control effort. Note that coefficients: - - , r, are not necessarily the same because
the choices of these coefficients reflect the real situaoninstance, if UAV: has sufficient fuel
in its tank, it will naturally choose a small value gfin order to keep the desired formation with
others actively. On the contrary, if UAYdoes not have much fuel left in its tank, it will naturally
choose a large value of to preserve its energy or fuel cost. Therefore, we assumehtbaJAVs
will play a cooperative game and collaborate with each o#isea team to achieve the prescribed
formation. This leads to solving the multi-objective opization problem in (3.3) and finding the

noninferior solution of the game. Toward that end, simitaf3.9), we define new state vectors as
spi(t) =[1 (ty —t)]zi(t) and s,(¢) =0 1]z(2). (5.6)
Differentiating both sides of (5.6) with respectitand recalling system dynamics (2.2) yield

Spi = Bpui and Sm‘ = Bvui, (57)

whereB, = (t; — t)Is and B, = I5. Based on the propertias;(t ;) = p;(t;) ands,(t;) = vi(t;)
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for s,; ands,,; defined in (5.6), the performance indices in (5.5) can beit®mras

1 'r'l ty
Ji=) Slllspilts) = sp(ty) = pigll? + swilty) = sos(t) 1) + By /0 [AlRe (5.8)

eijef

foralli =1,---, N. The convex combination in (3.3) with defined in (5.8) can be expressed as

Z D llsnitr) = spiltr) = piull* + lsui (tg) = sur(t7)|1]

ejkeé‘

alr’ f .
oy 2/ JuglPde ¥i=1,--- N, (5.9)
j=1

whereo; > 0forall j =1,---, N. Similarly to (2.4), we define the Laplacian matix= [£,;] €

RY*N associated with the graph among tidJAVs as follows:

(

—(Ozi—FOéj) if €ij €5forj7éi
— Y Ly =i
\  ¢=lg#i

It is obvious thatZ” = £ because the graph is assumed to be undirected and hence fiatgos-
itive semi-definite. Before we present the result of opesplaoninferior solution, the following

lemma is introduced.

Lemma 5.1. All the eigenvalues of matrix/ defined by

M =[Ly +W® (R'L)]® I, (5.11)
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has positive real parts, where

) Wy
w=|" ", (5.12a)
Wyp  Wyy
ty t3 ly ~ ~ t2
Wyp = /0 B,Bldt = gf Wy = /0 B dt = Ef (5.12b)
ty t2 ty ~ ~
Wyp = / Bngdt = —f, Woyy = / Bngdt = tf, (512C)
0 2 0
R =diag{uir1,- -+, unra}, (5.12d)

and diad -} stands for “diagonal matrix”.

Proof. Firstly, since it is obvious that matri¥” defined by (5.12a)-(5.12c) is positive define, all
its eigenvalues are positive. Secondly, since mdkrir (5.12d) is a positive diagonal matrix, the
product of(R~*£) becomes a new weighted Laplacian matrix whose eigenvatiliesase non-
negative real parts. Thirdly, since the eigenvalues of icegt Kronecker product are the product
of these matrices’ eigenvalues, all the eigenvalues ofimatf @ (R~'£) @ I3] have non-negative

real parts. Therefore, all the eigenvalues\ofin (3.14a) have positive real parts. 0J
The open-loop Nash equilibrium solution is now presentethasfollowing theorem similar to
Theorem 3.3.

Theorem 5.1. Given the differential game amomig UAVs with system dynamics (5.7) and perfor-

mance indices (5.8), the strategies
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form an open-loop Nash equilibrium, where matkikis defined in (3.14a),

Sp = [53;1 e SZN]Ta Sy = [3,51 tr SZN]T, (5148.)
F,=[BY BY[L® (d[L)® L), (5.14b)
Wpp 1
W, = ® R ® I3, (5.14c¢)
Wop
_ 1,7 71T
n= |:/"L1 e nuN} ) (514d)
Hi = Z (i +aj)py; Vi=1,--- N, (5.14e)
eijes

L is the Laplacian matrix defined in (5.1@), € R" is a vector with theéth entry equal to 1 and the

other entries equal to 0, and scala¥s, andw,, are defined in (5.12b) and (5.12c), respectively.

Proof. We define the Hamiltonian for UAVY as

N
j=1

N N
T - -
]2] Jug||* + E AbiBpu; + § AL Byu;
=1 =1

where vectors\,; and \,; are the Lagrangian multipliers. According to the well-kmoRontrya-
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gin’s minimum principle [71], the necessary conditionsdptimality are

Spi = gi = Byui, by = gf — Byu;
Apiltr) = > (0 + ) spilts) = sp(ts) — puag),
e €E
Moilty) = D (a4 az)[suilty) = s (ts)],
e €€
88];[; = qur;u; + Bg)\m + BZ)\M- =0, 8827};2 = ayr; >

Conditions (5.15b)-(5.15d) indicate thaf; and \,; are constant vectors
(5.15e) yields

(5.15a)
(5.15b)

(5.15c)

(5.15d)

0. (5.15€)

. Substituting them into

1 = 1 -
= BTN . — —— BT .
ul O[Z’I’Z P )\pz O{ZT’Z v )\’U’l
1 -
= a,T,BZ Z (i + ) [spi(ty) — spj(ty) — i)
v eijef
1 -
_ Q'T'BZ D (ai + ap)[suilty) — su;(tp)]. (5.16)
v eing
Substituting (5.16) into (5.15a) and integrating both siftem0 to ¢, yield
w
spilts) + D (i + ) [spilty) = sps(ty)]
v eijeg
Wpv , . , — 5. = s..(0 Yep . 517
+ o Z (@i +aj)[svi(ty) — sui(tr)] = 5pi(0) + P (5.17)
) ez‘jef ()
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and

QT eijeé‘
+ N () [suilty) = su5(E0)] = $00(0) + — L, (5.18)
;T o o€ ! J a,Ty

where scalars,,, wy,, wy,, w,, are defined in (5.12b)-(5.12c) andis defined in (5.14e). Com-
bining (5.17) and (5.18) and stacking them from 1 to: = N yield

s,(t 5,(0 w
p( f) ! p( ) i P ®R_1®]3 u (5.19)

su(tr) sv(0) Wop
where vectors, ands, are defined in (5.14a), matri¥ is defined in (5.11) and invertible accord-
ing to Lemma 5.1, and vecteris defined in (5.14d). Therefore, rewriting (5.16) as

Sy(t N
PR R BT, (5.20)

;T Sv(tf> ;T

U; = —

whereF; is defined in (5.14b) and substituting (5.19) into (5.20)dég5.13). Since;,(0), s,(0)
are in fact functions of the initial statg0) through (5.6), strategies, - - - , v} in (5.13) form an

open-loop Nash equilibrium. O

Due to the information graph constraint, the following terat position and velocity estimation

law similar to Theorem 3.4 is presented.

Theorem 5.2.If UAV i updates its vectok; in continuous time from any initial guess;(0) and
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h(0) according to

P B { 5pi(0) 1 |Wpp i — hpi
hvi Svi (0) il va hm
1 ho; h,;
——(WeL)Y (w+a) || =" } (5.21)
v eij €E hvi hvj

whereg is a positive scalar, matrix}” is defined in (5.12a), and vectgt, is defined in (5.14e),

then

im || Z |0 , (5.22)

T h(7) su(tr)

whereh, = [nL, .- -hTT, h, = [RL, --- kI |7, and vectorss,(t;) ands,(t) are as defined in
P pl pN vl vIN p\tf f

(5.19).

Proof. Stacking equation (5.21) froin= 1toi = N yields

}.Lp I R VAL W p . (5.23)

ho sv(0) Py
where matrix}M is defined in (5.11), matrixV, is defined in (5.14c), and vectaris defined in
(5.14d). Since all the eigenvalues of mattikhas positive real parts as shown in Lemma 5.1, ma-
trix (—/) is Hurwitz. Therefore, linear system with respectig; »,] in (5.23) is asymptotically
stable starting from any initial condition(0) and will converge to the equilibrium, i.e.,

h, (7 s,(0
i |0 e 15O

T by (1) 5,(0)

where the right hand side of the above equation is equal toeghtr[s,(tf); s,(tf)] defined in
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(5.19). Therefore, equation (5.22) holds. 0J

Given the state estimation law in (5.21), an online opempldash strategy design algorithm simi-

lar to (3.22) is proposed as follows:

* J R 1 -
u; = — TB,T > (i + ) (hpi =y — pig) — EBZ > (i + ) (hoi — hy),  (5.24)

& eijef 62‘]‘65
whereh,,; andh,; satisfy the equation (5.21) foral=1,--- , N.

For illustration, we apply this online open-loop Nash sggt design algorithm to a five-UAV
system. The parameters in [49] are utilized for this simokatThe weight of UAV: is m; = 20kg
foralli =1,---, N. The gravity constant ig = 9.81kg/n?. The dragD; is calculated as follows
[78]:

_0.5p(V; = Viyi)2SCpo + 2kak2 L? [ g

D;
p(Vz - Vwi)25

wherep is the atmospheric density and equalltd25kg/m?, V,,; is the gust,S is the wing area
and equal td .37m?, C'p, is the zero-lift drag coefficient and equal to 0.@2,s the induced drag
coefficient and equal to 0.1, arg is the load-factor effectiveness and equal to 1. The gysis

modeled as follows [79]:

Vwi = Vwi + 6Vwi

Vipi = 0.215V,,,109,0(hs) + 0.285V},,

whereV,,; is the normal wind sheaV,, is the mean wind speed and equalto/s at the altitude of
80m, and)V,,; is the wind gust turbulence on UAVand assumed to be a Gaussian random variable

with zero mean and a standard deviation equal to19,09 he real control inputs of the UAV have
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the following constraints7; < 125N , —294.3N < L; < 392.4N, and—80° < ¢; < 80° for all
1=1,---, N. We assume that the UAVs are trying to form a desired V-shaplee same altitude

shown in Figure 5.2 and the underlying undirected infororagraph is also shown in this figure.

Figure 5.2: V-shape formation and information graph

Hence, UAV 1 will act as a reference for the other UAVs. Theresponding graph Laplacian

matrix is
201 + a9 + a3 -] — Q2 -1 — Q3 0 0
—Q] — Qo a1 + ayg + 200 0 —Qy — Qi 0
L= —Q1 — Q3 0 a1 + as + 2a3 0 —Q3 — Q5
0 —Qip — Q4 0 Qg + oy 0
| 0 0 —Q3 — Q5 0 a3 + as i
where0 < ay,---, a5 < 1 are the convex parameters an:j a; = 1. The desired offset vectors
of the formation among the UAVs are
—100 100 —100 100
Ho1 = [—=100| M, t31 = [ =100 | M, a2 = [ =100 | M, 53 = | —100 [ M.
0 0 0 0
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The initial positions of the UAVs are

0 —80 90 ~120 150
p1(0)=10|m p(0)=1| 0 | M ps(0)= |0 |m ps(0)=1] 0 |m ps(0)=| 0 | M
90 80 70 60 65

The initial velocities of the UAVs are

0 0 0 0 0
v1(0) = |50| mis v2(0) = |60| Misv3(0) = [40| M/s vs(0) = |65] misvs(0) = [45| mis
0 0 0 0 0
The five UAVS’ performance indices are given by (5.5) with= 30 andr; = 1forall: =1,--- 5.
With o; = 0.2foralli = 1,--- 5, the the UAVS’ trajectories derived using the online opeogl
Nash strategy design algorithm (5.24) are shown in FiguBeEhe left plot shows the trajectories
in 3-dimensional space and the right plot shows the trajistonz — y plane. In the figure, the

circles indicate the UAVS' initial positions and the tridegindicate the UAVS’ terminal positions.
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Figure 5.3: UAVs’ trajectories in 3D and— y plane

Clearly, the UAVs’ positions form the desired V-formationthe terminal time. For illustrative
purpose, the UAVS’ trajectories anaxis,y axis, andh axis are shown independently in Figure 5.4.
Moreover, the UAVS’ velocities in the three axis and threa mntrol inputs obtained according
to the relationship (5.3) are also shown in Figure 5.4. Alredl control inputs are within the

specified constraints.
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Figure 5.4: UAVS’ positions, velocities, and real contrgbuts
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5.2 Multi-Pursuer Single-Evader Differential Game withrliied Observations

In this section, we consider a differential game over a fitiite2 horizon in which only the evader
is assumed to have global sensing capability which allovesabserve all the pursuers at all times.
Each pursuer, on the other hand, has a limited sensing daypathich allows it to observe the
evader and/or other pursuers only if they fall within itssiag range. A practical example of such
a situation occurs when a well-equipped UAV with a very widage of sensing capability must
evade several (possibly a large number of) weakly-equippeduing UAVS. In what follows,
we derive the feedback Nash strategies for both the pursmergvader using the best achievable

performance indices based approach.

We define the following displacement vectgrbetween pursuerand the evadet as shown in
Figure 5.5
2 =T — T Vi=1,---,N. (5.25)

wherez, € R" is the evader’s position vector angl € R" is pursuer’s position vector.

Evader

1Z

A
Pursuer 1

Pursuer 2

Pursuer N

Figure 5.5: Displacement vectors
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We assume that a collective objective of the pursuers is tomize the sum of the weighted
distances between the evader and themselves at a ternmead ti> 0 while at the same time
minimizing these distances and their control efforts olaerttme interval0, ¢;]. Hence, the group

of pursuers tries to minimize the following performancedrd

N N
fo, Y Iy, Ty
D=3 s+ [ (Bl + L) e (5.26)
— 0 =1
whereu; i || - | is the Euclidean norm, and scalds, ¢,,, and
r; are positive weights fof = 1, - - - , N. On the other hand, we assume that the evader’s objective

is to maximize the sum of the weighted terminal distanceséen the pursuers and itself while at
the same time maximizing these distances and minimizingpitsrol effort over the time interval

0,ts]. Hence, the evader will try to minimize the performance inde

N
e, ey Te
== Gl + [ Z 2 ) 2 o ek 5.27)

whereuw, is the evader’s velocity control input and scaldts, ¢.;, andr. are positive weights
for; = 1,---,N. To express the system dynamics more compactly, we defineettter > =

(2T ... 21T which, along with (5.25), yields
% = Bou, + Byu,. (5.28)

where matrixB, = 1y ® I,, 1y € RV*! is a vector with all the entries equal to &, =

Wl - Wl)", B, = —Iy @ I,. The performance indices (5.26) and (5.27) can be rewritten
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as

1 1 (U
o =512t 15, + 5 / (12113, + e, ), (5.292)

1 1 (U
Je =5 ll=(t0)llr. + 5/0 (12112, + lluellz, o, (5.29b)

where||z||%2 = 2T Fz and

F,=diag{f,, - fon } @ I, F,=—diag{f.,,  , fen} ® I,
Qp — diag{qu. .. ,qu} ® In7 Qe = —diag{qu e 7qu} ® 1,

R, = diag{ri, - ,rn} ® L,

and “diag” stands for “diagonal matrix”. Hence, given thetgyn dynamics in (5.28) and per-
formance indices in (5.29), a differential nonzero-sum gdmatween the group of pursuers and
the evader is formed. To accurately model the sensing dapegband limited observations of
the pursuers, we assume that pursubkas a sensing range defined by a sensing radius 0.

If the Euclidean distance between pursuemnd the evader is less than or equalb-tpthat is,
|z — z.|| < 7, then pursuef is able to observe the evader, otherwise, purswannot observe
the evader. Consequently, we define a binary séalay to represent pursués ability to observe

the evader at timeas follows:
hi(t) = ' - (5.30)

Similarly, if the the Euclidean distance between purswerd pursuey is less than or equal tq,

that is,

z; — x| < ry;, then pursuet is able to observe pursugy otherwise, pursuer cannot

observe pursuef. Consequently, we can use an unweighted Laplacian maitix,= [L;;(¢)] €
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RN "similar to (2.4) to described the observations among thsysus at every instant of tinte

where )
-1 i [|ai(t) — 2, (8)]| < 7 for j # 1
— ) Ly ifj=i
1=1,1#£i

fori,j=1,---,N.

For the formulated pursuit-evasion game with limited oliagons, the following practical issue
needs to be noticed: Although the evader has sufficientlgwltservation range to observe all the
pursuers’ positions at every instant of time, it really hasmformation on the individual pursuers’
observation radii, - - - , 7y or how these pursuers obverse each other among themseha®-T
fore, we assume that during the game process, the evadeohamwledge of the existence of
limited observations among the pursuers and the overalinmédtion topology. On the other hand,
for the pursuers, we assume that all of them are aware ofltheied observation capabilities as

well as the evader’s global observation capability.

Given the formulated pursuit-evasion game problem, evéayep is able to solve for the Nash
equilibrium using the well-known Riccati equation apprioakbowever, only the evader who ob-
serves all the pursuers can implement this Nash strateggordimg to [7], for the game defined

by system (5.28) and performance indices (5.29), the caldsnear feedback Nash strategies are

uwr=—R Bl P, (5.32a)

u=—R;'BTP,z, (5.32b)
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where matrice$’, and P, are solutions to the coupled differential Riccati equagion

P,+Q,— P,B,R,'B'P, — P,B.R;'B'P. — P.B.R;'B'P, =0 (5.33a)

P.+Q.— P.B,R,'BI'P, — P,B,R,'BI'P. — P.B.R;'BI'P. = 0. (5.33b)

with boundary conditiorP,(¢;) = F, and P.(t;) = F.. The expressions for the evader's Nash
strategy in (5.32b) is indeed linear feedback controls efglobal state vectar. Since the evader
has no knowledge of the existence of the pursuers’ limiteskepkations, it naturally implements
the feedback Nash strategy (5.32b) as its control inpuhduhie game, assuming that the pursuers
are implementing strategy (5.32a). From the pursuerspeets/e, since each of them has limited
observation, there is no way for them to implement their Nasdtegy described in (5.32a). There-
fore, a Nash strategy design approach must be proposedesfgrdlip of pursuers to accommodate
their limited observations constraint while at the sameetmmaintaining a Nash equilibrium with
the evader’s strategy (5.32b). First of all, the pursuedshigsible controk:, needs to be prop-
erly structured in order to fit into the limited observati@nstraint that each pursuer must operate

under. Toward this end, we propose the following structdieedback strategies for the pursuers:

N
g = hi() Kie(D)z:(1) + Ky (1 ZL Vi=1,--- N (5.34)

where scalah;(t) is defined in (5.30), scaldr;;(¢) is defined in (5.31), matrices;. € R"*™ and
K;, € R™*" are feedback gains to be determined. Terim (5.34) represents a control component
of pursuer: to chase the evader directly if it observes the evader. Tem(5.34) is known as a
cooperative control component, that is, a feedback coafitble difference between the position of
pursuer; and those of the pursuers that it observes. The expressmursidier;’s control in (5.34)

means that when pursugis able to observe the evader (i.e. whe(t) = 1), it will chase the
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evader while at the same time it follows the nearby pursuesit can observe. When pursuas
unable to observe the evader (i.e. witeft) = 0), it has no choice but to merely follow the nearby

pursuers. The control expression in (5.34) can be rewritggmg the more compact notation as

(2

uf =K [0 -+ 0 (hil,) 0 -+ 0)z+ Kyp[(LinL,) -+ (LinIn)]z = M;Ciz, (5.35)

whereM; = [K,, K;,] € R"**" and

whereh; and L;; are defined in (5.30) and (5.31). Therefore, the pursuerstrobvectoru;, =

[(u$)™ -+ (u3y)"]" can be written as? = M,z, where

M, = [(MyC)T -+ (MyCy)T]T. (5.36)

The problem now reduces to finding a set of matrie£s - - - , My such that feedback gailr; =

[(M;C)T -+ (M3 Cy)T]T and the resulting pursuers’ strategy

uy = Mz (5.37)

can still form a Nash equilibrium with the evader’s strategyin (5.32b). As we mentioned in
Chapter 4, using the optimal output feedback based appradidhe players’ structured controls
and the corresponding feedback gains need to be simultalyeparameterized and optimized
with respect to the given set of performance indices to alitae Nash equilibrium. This cannot
be implemented in our game setup since as mentioned e#rkezyader will be implementing the

Nash strategy (5.32b) and hence it is not possible to simedtasly parameterize and optimize it
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along with the strategy of the pursuers to form a Nash equilib. Therefore, the best achievable
performance indices based approach is utilized to desig [Strategies for the pursuers. The

following result similar to Theorem 4.5 is presented.

Theorem 5.3.For the pursuit-evasion game described by system dynabi8)(and performance
indices (5.29), for an arbitrary set of matricég,, - - - , My, the strategies; in (5.32b) andu;, =

M,z form a Nash equilibrium

o (us ul) < J2(upul), Vu, €U, (5.38a)
Je(up, ug) < J2(up, ue),  Vue € U, (5.38b)

with respect to performance indices

1 I
Jp = §|IZ(tf)||%p + 5/0 (121G —up Tz — 2" T up + [y, )k, (5.39a)
s 1 2 1 t 2 2
Jo = 5ll=(tp)llF + 5 ; (Izllgs + lluellz, )dt, (5.39b)
where
Q: = M, R,M, — P,B,R,'B/'P, + Q, (5.40a)
I'=B!P,+ R,M,, (5.40b)
Qi = _PeBpR:;l(RpMp + B;FPP) - (RPMP + B;FPP)TRngITPE + Qe‘ (5'400)

matricesP, and P, are the solutions to (5.33) and matri,, is as given in (5.36).
Proof. Consider Lyapunov functions

1 1
V, = §ZTsz and V, = 5,zTPe,z. (5.41)
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DifferentiatingV/, in (5.41) with respect to and integrating it front) to ¢, yield

Vilts) =0 = [ [~

+22"P,Be(uc + R, ' Bl Poz) + |Jup — Myz||% | di.

é; — ||u||%p + ugfz + 21T,

Hence,

p

tf 1
Jy =V,(0) + / Sl = M|, + 2" PoBe(ue + R.' Bl P.z)dt, (5.42)
0
whereJ; is defined in (5.39a). Similarly, we can show that

e

tf 1
JS=V,(0) + /0 §Hue + R;'BI'P.z||%, — 2" P.By(u, — M,z)dt, (5.43)

whereJ? is defined in (5.39b). SincB, and R, are positive definite, it is obvious from (5.42) and
(5.43) that given performance indices defined in (5.39)irthqualities in (2.8) holds far, = M,z
andu’ = —R-!BT P,. Hence, strategies (5.32b) and (5.37) form a Nash equilibsith respect
to performance indices in (5.39). Clearly,l\f, can be written ag/, = —R;IBZPZ,, thenJ; in

(5.39a) becomes identical to (5.29a) affdn (5.39b) becomes identical to (5.29b). O

Therefore, according to the definition of best achievabléopemance index in (4.1), to find the
optimal matrixA/;(t) corresponding to the best achievable performance indieeseed to solve
a multi-objective optimization problem of minimizinf@)s — Q, |17, [|1S||7, and||Q: — Q.[|7 simul-

taneously. Hence, we |éf(¢) in (4.19) be

H(t) =p111Q5 — Qpll7 + BlSNF + B31lQ: — Qell7
=B Tr(Q5 — Qp)*] + BoTr(STS) + BsTr{(QF — Q.)] (5.44)
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where0 < 8; < 1for j = 1,2,3, and}_} | 3; = 1. Sincel, is as defined in (5.36), the
minimization in (4.20) is actually done with respect (¢),-- -, My(t). With the gradient of

H(t) with respect taV/;(t), - - - , My (t) expressed as follows:

2

Vi H =(d @ I,)[40n R,M,(Q5 — Qp) + 202 R, S — 4oz Bl P.(Q2 — Q.)|C (5.45)

foralli = 1,---, N, whered; € R" is a vector with theith entry equal to 1 and the other
entries equal to 0, a gradient based iterative algorithmgagi to Algorithm 4.2 can be adopted to
find matricesM; (¢),--- , M (t). Also note that by varying the coefficients, 5., 55 in (5.44), a

noninferior set of the solutions can be generated. An apaigpchoice of these coefficients can
be made to place a desired emphasis on the importance of mimgheach of the three terms in

(5.44) as compared to the other two.

For illustrative purpose, let us consider a three-pursingites-evader differential game taking place
in a planar environment and defined over a time inteja]. Suppose that; = [z}, 25]" € R?
represents playei's position andu; = [u, ul]? € R? represents playes velocity control.

Hence, in equation (2.2), we have

I2 IQ 0 O
B. = |1, and B,=—|0 I, 0
Iy 0 0 I

The performance indices are given by (5.29) with= 3, F,, = Q, = qls, R, = Is, . = Q. = I,
andR, = I,, whereg is a positive scalar that can be varied to analyze differegriarios. As shown
in Figure 5.6, we assume that the pursuers’ initial pos#tiarex;(0) = (—3,0), 22(0) = (3,0),
z3(0) = (5,1), the evader’s initial position is.(0) = (0, 1), and the pursuers’ sensing radii are

the same and equal to 4. Clearlytat 0, pursuer 1 can only observe the evader, pursuer 2 can
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Pursuer 3
(5,1)
Pursuer 2
(3,0)

Pursuer 1
('390)

Figure 5.6: Initial positions of three pursuers and singider

observe the evader and pursers 3, and pursuer 3 can onlywelmesuer 2. Further, we assume
that the evader is captured if the minimum distance betwleepdrsuers and evader is less than a
capture radiug = 0.1, which is shown as a light black circle centered at the evadEigure 5.6.

In this example, we will consider two different scenarios:

e Scenarios 1 ¢ = 1. Pursuers put equal emphasis on minimizing their distatoci® evader

and minimizing their control effort.

e Scenario 2 ¢ = 5. Pursuers put more emphasis on minimizing their distaractsetevader

than on minimizing their control effort.

Evader’s Strategy. The Evader solves the coupled differential Riccati equni(5.33) and im-
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plements the corresponding Nash strategy. This yieldsieaki”, and P, in the following form:

P,

pl

P

p2

Pp2 Pel Pe2 Pe2
b, = Py Pp Py ® Iy, P = Py P. P ® I

Pp2 Pp2 Ppl Pe2 Pe2 Pel

where the plots of°,;(t), P (t), P.1(t), and P.(t) for both scenarios are shown in Figure 5.7.

Hence, the evader’s feedback Nash strategies (5.32b)nstefz,, 2», 23 can be expressed as

u: :(Pel + 2Peg)(2’1 + Z9 + 2’3).

Scenario 1 (q=1) Scenario 2 (q=5)

25 5
2 4
1.5} P,
Lag 3_
P,
1 p
5 T 2
0.5} P
P 1
0_ (=74
Py
P
-0.5 De1 0 el
|:’e1
"o 05 1 15 2 25 3 "0 05 1 15 2 25 3

Figure 5.7: Plots oF,;(t), Pa(t), P.i(t), andP.o(t)
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Pursuers’ Strategy. To derive the pursuers’ strategy, we assume that for impigation purpose,
the pursuers perform sensing only at discrete instantsn@&j, ¢, - - - , ta99, Wherety = 0, t3g0 =

t; = 3. Sincet;—t;_; = 0.01is quite smallforallj =1, - - - , 300, we assume that the observations
among the players can be regarded to be constant within ssrolalhtime intervalt; —¢;_,). We
also assume that the pursuers will carry out the proposeddobsevable performance indices
approach with the following (arbitrary) choice of coeffieig in (5.44):a4 = 1/4, s = 1/2, and

az = 1/4.

Scenario 1 In this scenario, the motion trajectories of the pursuatsevader over time are shown
in Figure 5.8. The distances between the pursuers and epadetime are shown in Figure 5.9
where the capture radius = 0.1 is shown in terms of a dashed black horizontal line. Clearly,
in this scenario, none of the pursuer is able to capture thdeawhen the final timeé; = 3 is
reached. Furthermore, the change in the observations athemdpyers is reflected in the changes

of h;(t) in (5.30) and Laplacian matrix with,;(¢) defined in (5.31).
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; ;
—afe— Pursuer 1
~=fe— Pursuer 2
—=fe— Pursuer 3
3l —©— Evader
25
ol
-~
1.5
1L
0.5
0
-14

Figure 5.8: Motion trajectories of the pursuers and evaoleBtenario 1

18 T T
- Between pursuer 1 and evader
Between pursuer 2 and evader
161 Between pursuer 3 and evader

Distance

Figure 5.9: Distances between the pursuers and evaderdéoago 1
101



In this scenario, the values 0§ (t), ha(t), hs(t) and the value of the Laplacian matiiXt) have

changed as follows:

-
0 0 0
0o 1 -1 0<t<0.16
1 0<t<291 0 -1 1
hi(t) = L
0 291<t<3
1 -1 0
1 0<t<291 and L(t) = -1 2 —1| 016<t<052 .
ha(t) =
0 291<t<3 0 -1 1
hs(t)= 0 0<t<3 1 -10
-1 1 0 052 <t<3
0 0 0

The change if;(¢) means that pursuers 1 and 2 lose observation of the evader aft2.91 while
pursuer 3 was never able to observe the evader for the emtine.gThe change in the Laplacian
matrix essentially means that only pursuers 2 and 3 canwabseach other fot € [0, 0.16], pursuer

2 can observe pursuers 1 and 3 foe (0.16,0.52] while pursuers 1 and 3 cannot observe each
other at this time interval, and only pursuers 1 and 2 canrgbseach other for the rest time

t € (0.52,3].

Scenario 2 In this scenario, the motion trajectories of the pursuerd evader are shown in
Figure 5.10. The distances between the pursuers and eva&dsih@wn in Figure 5.11 where the
the capture radius = 0.1 is shown in terms of a dashed black horizontal line. Cleanlthis

scenario, pursuer 2 is the first one to capture the evadetdt 2.
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1.4

T
—sle— Pursuer 1
== Pursuer 2
—k— Pursuer 3
=—©— Evader

Figure 5.10: Motion trajectories of the pursuers and evémte8cenario 2

5 T T
Between pursuer 1 and evader
Between pursuer 2 and evader
451 Between pursuer 3 and evader H
4+ i
35 -

Distance

Figure 5.11: Distances between the pursuers and evadecdoaBo 2
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During the entire game, the valuesiaf(t), hy(t), hs(t) and the value of the Laplacian matixt)

have changed as follows

hit)= 1 0<t<3

hat)= 1 0<t<3

0 0<t<0.29
ha(t) =
1 029<t<3

and L(t) =

0<t<0.11

0.11 <t<041

041 <t<3

The change of:;(t) means that aftet = 0.29, all the pursuers are able to observe the evader.

The change of the Laplacian matrix means that only pursuargl23 can observe each other for

t € [0,0.11], pursuer 2 can observe pursuers 1 and 3fer(0.11,0.41] while pursuers 1 and 3

cannot observe each other at this time interval, and all tineyers are able to observe each other

for the rest timeg € (0.41, 3].

It would be interesting to determine a critical valyeof ¢ which separates the escape and capture

regions of the evader. That is,df< ¢., the evader escapes and if ¢. the evader is captured at

atime instant € [0, 3]. For this game, the critical value gfhas been determined to he= 1.38.

Figure 5.12 shows the motion trajectories of the pursuedseaader when = ¢. = 1.38. Figure

5.13 shows the distances between the pursuers and evaderwhe. = 1.38, where the capture

time occurs at = 1.55.



16

T
+ Pursuer 1
~—fe— Pursuer 2
—k— Pursuer 3
—©— Evader

Figure 5.12: Trajectories of the pursuers and evader whery, = 1.38

5 T T
= Between pursuer 1 and evader
Between pursuer 2 and evader
451 = Between pursuer 3 and evader H
4l i
35r i

Distance

Figure 5.13: Distances between the pursuers and evaderghen = 1.38
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CHAPTER 6: CONCLUSION

This dissertation focuses on the Nash strategy and noronfgrategy designs for linear quadratic
differential games in the multi-agent system under diateld open-loop and feedback information
structures. We first introduced the basic concepts in theegdmaory and multi-agent control

systems, reviewed the existing results in these fieldsedaise motivation of this research, and
defined the scope of this dissertation. As the main resuléspmposed novel open-loop and
feedback game strategy design approaches to overcometentional approaches’ incapabilities
in dealing with the distributed information constraint.eltontributions of this dissertation can be

addressed as follows:

1. In terms of the open-loop strategy design, the proposedoaph integrates a distributed

state estimation algorithm into the classical open-loap@atrategy.

— The proposed approach can be carried out in a distributed@enavhere every agent is
able to implement it by exchanging the state estimates witeraagents according to

the information graph.

— The proposed approach renders approximate strategies ofitfinal open-loop Nash
or noninferior strategies which can only be implementedenmgdiobal information and
these approximate strategies can be made arbitrarily ¢tosiee original open-loop

Nash or noninferior strategies.

2. In terms of the feedback strategy design, the proposedagip is based on the concept of

best achievable performance indices.

— The proposed approach renders structured strategies whglstructured feedback

gain matrices that conform to the information graph coimstra
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— Compared with the classical output feedback optimal agrahe proposed approach
renders strategies that are independent on the initia sfathe system and does not
requires all the agents to parameterize and optimize tlibéedk gain matrices simul-

taneously.

Two illustrative application examples on an unmanned agghicle formation control problem
and a multi-pursuer single-evader differential game prwhlvith limited observations were solved

and the simulation results corresponding to different ades are presented.

With the already obtained results, the future research earalried out in the following possible

directions:

For the open-loop design, the possible directions are &sifel First, applying the idea in the pro-
posed open-loop strategy design approach to feedbac&gtraesign will be significant because if
the feedback strategy design approach is obtained, theagrabéems of more realistic importance
including the differential games for multi-agent systemder time-varying information graph can
be tackled. Second, the proposed approach can be sucbessfulemented if the convergence
condition of the state estimation law is valid, which is tlese for most of the consensus prob-
lems. Therefore, exploring the condition in more detailfirating conditions where the condition

always holds will be interesting and very important.

For the feedback design, the best achievable performadmemapproach requires an authority to
carry out the computing algorithm with the knowledge of terall information topology and all

the agents’ information and then distribute the resultiagng strategy to each and every agent. In
order to have an better adaptation to the time-varying médion graph, an approximate approach

to the proposed approach that requires less informatiot be@roposed.
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