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ABSTRACT 

 The main objective of this work is to gain basis for rational design of catalysts used in 

fuel cells for conversion of chemical energy stored in hydrogen molecules into electric energy, as 

well as photo-catalysts used for hydrogen production from water under solar irradiation. This 

objective is achieved by applying the first principles computational approach to reveal 

relationship among compositions of materials under consideration, their electronic structure and 

catalytic activity. 

 A major part of the work is focused on electro-catalysts for hydrogen fuel cells. Platinum 

(Pt) is widely used in the electrodes of fuel cells due to its good catalytic properties. However, Pt 

is an expensive and scarce element, its catalytic activity is not optimal and also it suffers from 

CO poisoning at anode. Therefore the search for new catalytic materials is needed for large scale 

implementation of fuel cells. The main direction of search of more efficient electro-catalysts is 

based in the design in which an active element monoatomic layer (AE) is deposited on a metal 

substrate (MS) made of a cost-effective material. Two goals are achieved by doing this: on the 

one hand, the cost of the catalytic system is reduced by reducing the amount of the AE in the 

system and on the other hand the catalytic properties of the AE can be tuned through its 

interactions with the MS. 

 In the first part of this work the Pd-based alloys and layered structures have been studied 

as promising electro-catalysts for the ORR on the fuel cell cathodes, more precisely Pd-Co alloys 

and Pd/M/Pd (M=Co,Fe). There exists a robust model linking the activity of a surface toward 

ORR to computable thermodynamic properties of the system and further to the binding energies 
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of the ORR intermediates on the catalyst surface. A more challenging task is to find how to tune 

these binding energies through modification of the surface electronic structure that can be 

achieved by varying the surface composition and/or morphology. To resolve this challenge, the 

electronic structure, binding energies of intermediates and the ORR free energies have been 

calculated within the density functional theory (DFT) approximation. The results presented in 

this work show that in contrast to the widely accepted notion, the strain exerted by a substrate on 

AE hardly affects the surface activity toward ORR, while the hybridization of the electronic 

states of the AE-and MS-electronic states is the key factor controlling the catalytic properties of 

these systems. Next it is shown that the catalytic activity of the promising anode electrocatalysts, 

such as Pt/M, M=Au, Ru and Pd, is also determined by the AE-MS hybridization with a minor 

effect of the strain. Furthermore, we have shown that, if AE is weakly bound to the substrate (as 

it is for Pt/Au), surface reconstruction occurs. This leads to the breaking of the relation between 

the electronic structure of the clean surface and the reactivity of the sytem. Other kind of 

promising ORR catalysts is designed in the form of Ru nanoparticles modified by chalcogens. In 

this work, I present the results obtained for small Ru clusters and flat Ru facets modified with 

chalcogens (S, Se and Te). The O and OH binding energies are chosen as descriptors of the 

ORR. The results on the two systems are compared, concluding that large clusters with relative 

large flat facets have higher catalytic activity due to the absence of low coordinated and thus 

high reactive Ru atoms. 

 Regarding the problem of the hydrogen production via photo-catalytic splitting of water, 

one of the challenges is tuning the band gap of the photo-anodes to optimal levels. Graphitic 

carbon nitride (g-C3N4) is a promising material to be used as a photo-anode, however, a 
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reduction of the band gap width by rational doping of the material would improve the efficiency 

significantly. This issue is addressed in the last chapter of this work. Two problems are 

considered: a) the stability of the doped system and b) the band gap width. To address the first 

problem the ab-initio thermodynamics approach has been used, finding that the substitution of C 

and N with the doping agent (B, C, N, O, Si and P) is thermodynamically preferred over the 

interstitial addition of dopant to the g-C3N4 structure. However, due to high kinetic energy 

barriers for the detachment of C and N atoms, involved in the substitution doping, the interstitial 

addition found to be kinetically more favorable. Since the density functional theory fails to 

reproduce the band gap of semiconductors correctly, the GW approximation was used to study 

the band gap of the system. The results indicate that the g-C3N4 system maintain its 

semiconductor character if doped with B, O and P under certain conditions, while reducing the 

band gap. 
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CHAPTER 1: INTRODUCTION 

 In the past 10 to 15 years, a great progress has been made in application of first principles 

computational methods to surface science and nano-science. Currently, the first principles 

calculations are widely used to unveil the nature of novel and technologically important 

properties of solid surfaces and nanostructures and even to predict materials with desired 

properties. There are several factors contributed to this progress. First, the dramatically enhanced 

power of computers (work stations, clusters and high-performance supercomputers) made it 

feasible to perform the first-principles atomistic calculations for the systems with broken 

periodicity and low symmetry, such as surfaces and nanoparticles. Second, newly-developed 

very efficient computer codes utilize the improved, more accurate, first principles 

approximations. Finally, a number of robust models have been proposed, which link the material 

properties in question to the computable characteristics, such as electronic structure, vibrational 

spectra, binding energies of adsorbates. As a result, the first principles computational methods 

have become a powerful means for understanding the mechanisms underlying phenomena 

critical for technologically important applications and for design of advanced materials.  

 Among the most exciting and promising applications of the first principles methods are 

those related to so-called hydrogen economy that is a cycle comprised of three main stages: a) 

production of hydrogen, which can be achieved by different means, for example it can be 

obtained from fossil fuels, thermolysis, or photo-catalytic water splitting; b) storage of hydrogen; 

and c) conversion of the chemical energy stored in hydrogen molecules into electric energy using 

hydrogen fuel cells. Note that the product of reactions in the fuel cells is clean water. Therefore, 
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if hydrogen is produced by the photo-catalytic splitting of water under solar irradiation, it makes 

a perfectly clean and renewable cycle of energy production. Importantly, all three stages of the 

cycle work. However, in current designs, some elements of this scheme (mostly catalysts) are too 

expensive and not quite efficient. New materials are needed to reduce the cost and increase 

effectiveness of this technology. This is thus not surprising that an enormous effort has been 

made to discover these materials, and the first principles computational approach is extensively 

used to provide a basis for the future discoveries.  

 In this work, first principles methods are applied to understand the relationships between 

the composition, electronic structure and properties of the key elements of the above scheme, 

namely, electro-catalysts responsible for the energy conversion in fuel cells and photo-anodes 

used for the photo-catalytic splitting of water. 

1.1 Conversion of the Hydrogen Chemical Energy Into Electric Power 

 Fuel cells, such as the proton exchange membrane fuel cells (PEMFC) and the direct 

methanol fuel cells (DMFC) convert the hydrogen chemical energy into electric power. As clean 

renewable sources of energy they can offer great advantages for various applications, however, a 

number of obstacles remain to their large scale implementation. First, fuel cells are unacceptably 

expensive, since the Pt-based catalysts used in both electrodes of the fuel cell, make up a major 

part of the cost. Search for new electro-catalytic materials with a reduced loading of precious 

metals is critical for commercialization of PEMFC and DMFC. Second, performance of both 

PEMFC and DMFC suffers from low rate of the oxygen reduction reaction (ORR) on the Pt 
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cathode, which decreases the onset potential for ORR (~0.9V vs standard hydrogen electrode 

(SHE), compared to 1.23 V (SHE) of ideal potential), and hence reduces fuel cell efficiency [1]. 

 Clearly, the great advantages of fuel cells can be efficiently utilized only if the cost of the 

electrodes is dramatically reduced and their electro-catalytic properties are significantly 

improved. The search of new electro-catalysts for ORR is conducted in several directions. One of 

them focuses on the systems including the Pt monolayer deposited on a Pt-free substrate. The 

Adzic and Mavrikakis research groups combining experimental studies and first principles 

calculations have made a significant progress in this direction [2, 3, 4, 5, 6]. The authors have 

found some Pt/M structures with the ORR activity comparable or even higher than that on bulk 

Pt. These works also provide insight into the mechanisms of formation of the layered surface 

structures and their effect on the ORR energetics. Since such catalysts are mostly synthesized in 

the form of the 2 - 5 nm nanoparticles, surface atoms (Pt) make a significant fraction of volume 

of the nanoparticles. The Pt load is still high, which is a disadvantage of these systems. It is thus 

not surprising that much effort has been made to find efficient Pt-free electro-catalysts for ORR. 

1.2 Production of Hydrogen Chemical Energy 

  Photo-Catalytic water splitting into its constituents using solar energy is the most 

interesting and clean way to produce hydrogen. Photo-catalytic materials provide an efficient 

way to harvest the solar energy converting it into hydrogen chemical energy. However, several 

obstacles have to be overcome before they are able to compete with other sources of hydrogen. 
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  Photo-catalytic systems split the water molecule by establishing a potential difference 

between the two electrodes using a photon, in this case a photon coming from the sun. After the 

potential difference between the electrodes has been established, the process follows as ordinary 

electrolysis. This sets the first requirement for the photo-catalytic material, since 1.23 eV are 

needed in order to split the water molecule into its constituents, the photo-catalytic material 

should be a semiconductor with a band gap higher than 1.23 eV. The second requirement comes 

from the desire to use the sun as source of photons, the highest intensity in the solar spectrum is 

reached in the visible range, which spans between 380 and 780 nm. Then a semiconductor with a 

band gap between 3.26 and 1.59 eV is desired. The third requirement arises from the position of 

the valence and conduction bands, H
+
/H2 reduction and O2/H2O oxidation potentials should be 

situated within the band gap of the semiconductor. The fourth requirement deals with the 

electronic carriers mobility, when the photon is adsorbed on the semiconductor and the electron-

hole pair is created, the recombination of the electron hole pair is an undesired effect, then high 

carrier mobility is preferred. Finally the material should be stable, maintaining its structure 

through the reaction. 

 The oxygen evolution was first reported by Boddy[7] in 1968, but was not until 4 years 

later that Fujishima and Honda[8] reported the photo-electro-chemical water splitting that 

various semiconductor materials started to be tested as photo-catalysts. Among the several 

semiconductors studied[9] having desirables band gaps, some of them suffer of having the edge 

of the valence and conduction band in the wrong position. This is the case of MoS2, WO3 and 

Fe2O3 among other. On the other hand, materials such as TiO2[10, 11] and K3Ta3B2O12[12, 13] 

which are very stable materials and highly efficient as photo-catalytic systems, adsorb light only 
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in the UV range of the solar spectrum. While other materials such as CdS with a band gap of 2.4 

eV is not stable. Therefore the search for semiconductor materials with the previously mentioned 

properties is a topic of extensive research.  

1.3 Thesis Objectives  

 The purpose of this thesis is to study and analyze the factors controlling the properties of 

several electro- and photo-catalytic systems using density functional theory. The results are 

divided into two chapters (chapters 3 and 4), one containing the analysis of electro-catalytic 

systems towards the ORR and the second containing the analysis of photo-catalytic systems 

towards the hydrogen evolution reaction. 

 In order to study the catalytic activity of the different systems towards the ORR, chapter 

3 starts by giving a description of the model used to study this reaction. In order to characterize 

the catalytic activity of the different systems we used the d-band center model to characterize the 

O, OH and OOH binding energies, which in turn are used as descriptors of the ORR. 

 On section 3.2 and 3.3 we discus, compare and contrasts the results obtained for Pd-Co 

systems. Section 3.2 deals with Pd1-x–Cox alloys with varying Co concentration x = 0, 0.25, and 

0.5, as well as the Pd0.75Co0.25(111) alloy covered with one monolayer of Pd (Pd/Pd0.75Co0.25). 

The reaction energetics is traced to the electronic structure of the alloy surfaces in order to reveal 

the main factors controlling the ORR in the system. Based on these results, section 3.3 presents 

our results on the rational design of two Pd based system comprised of a Pd substrate followed 

by a monolayer of Co or Fe and Pd monolayer on top, (Pd/Co/Pd) and (Pd/Fe/Pd) systems.  On 
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both sections the O, OH and OOH adsorption energies are used as descriptors of the ORR, the 

electronic structure of the Pd and Co atoms is analyzed, finding the hybridization between Pd 

and Co atoms the key factor controlling the enhancement in the system catalytic activity.  

 On section 3.4 we focus on the Pt/MS (MS= Ru, Pt and Au) system, studying and 

analyzing the strain and hybridization effects and its contributions to the change of the Pt d 

states. In this section we will use the OH binding energy as a descriptor of the system’s catalytic 

activity towards the ORR.  

 To conclude with chapter 3, on section 3.5 and 3.6 we present our density functional 

theory based calculations results explaining the experimentally observed electro catalytic activity 

towards the ORR enhancement on chalcogen (O, S, Se and Te) modified Ru surfaces and small 

clusters. On section 3.4 the chalcogen adsorption and island formation is studied. The O 

adsorption energy is used as a descriptor of the system’s electro-catalytic activity toward the 

ORR and the effect of chalcogens on the Ru(0001) surfaces’s catalytic activity is analyzed. On 

section 3.5 the size and shape effects on the reactivity of the Se modified small Ru nanoparticles 

(1.2 nm in size Ru nanoparticles) are studied and compared to the results obtained on section 3.4, 

allowing us to draw conclusions on the ORR process and electronic structure of the 

experimentally observed 2nm -5nm Ru clusters, where systematic first principles studies are still 

not feasible. 

 The photo-catalytic materials topic is addressed on chapter 4, where the band gap of g-

C3N4, which is a promising material to be used as photo-anode, is analyzed. On section 4.2 we 

study and systematically analyze the changes in the electronic structure of g-C3N4 caused by 
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doping the system with B, self C and N doping, O, P and Si atoms. These elements were chosen 

as dopants because they contain the same, or similar, amount of valence electrons as C and N 

and are expected to be good candidates to replace N or C atom, slightly altering the band gap, 

without destroying the original system’s electronic structure.  
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CHAPTER 2: THEORETICAL BACKGROUND 

 This chapter presents the basic ideas used in solving the many body problem in 

condensed matter. We will start by stating the quantum many body problem ruled by 

Schrödinger equation, which in general give rise to a coupled differential equation with many 

degrees of freedom. On the second section of this chapter we will present the basic ideas of the 

Born-Oppenheimer approximation where the movement of the ions is decoupled from the 

movement of the electrons in the system, reducing the number of coupled degrees of freedom in 

the problem. Next, we present the basic ideas, similarities and differences of the Hartree, 

Hartree-Fock approximations and Density Functional Theory. To conclude with this chapter the 

GW formalism is presented. 

2.1 Many-Body Problem in Condensed Matter 

 Most of important material properties, such as cohesive energy, character of conductivity 

and surface reactivity, are determined by behavior of valence electron. The valence electrons are 

essentially quantum system that can be described using quantum mechanics methods. In 

particular the electronic states can be found as a solution to the Schrödinger equation 

 ̂    ,           (2.1) 

where E are the eigenvalues and Ψ the eigenstates. The Hamiltonian used to describe a crystal or 

a nanoparticle, a collection of nucleus and electrons, follows the general form:  
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   ,        (2.2) 

where RI are the coordinate of each one of the P nucleus, MI and Zi are their masses and nuclear 

charges respectively, and ri are the coordinates of each one of the N electrons. 

 The Schrödinger equation with the Hamiltonian described on (2.2) is a partial differential 

equation with 3(N + P) coupled degrees of freedom, which cannot be easily decoupled and can 

be solved analytically only for a few of cases, such as  hydrogenoid atoms or the H2
+
 molecule. 

Systems such as surfaces and nanoparticles may contain hundreds of nucleus and thousands of 

electrons, in order to solve these we will use several approximations. 

2.2 Adiabatic Approximation 

 In order to simplify the above problem, it can be argued that the electrons move much 

faster than the nucleus. In fact, the ratio of masses between an electron and a proton is 1/1836, 

which means that velocity of the nucleus would be less than 3 percent of the electron’s velocity 

in the case of the hydrogen atom, when the electron and the nucleus have the same kinetic 

energy. Then, it is possible to assume that the cloud of electrons surrounding the nucleus reacts 

instantaneously to its movement, while staying in the ground state for each particular spatial 

configuration of the nucleus. This allows us to decouple the nucleus wave function and the 

electronic wave function, and write the total (nucleus plus electron) wave function as the product 

of these two. This can be summarized in the Born-Oppenheimer approximation[14] as follows: 
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         ∑                ,        (2.3) 

where  n(R,t) are the wave function of the nucleus while  n(R,r) correspond to (the electronic 

wave functions) the Eigen states of the time independent Schrödinger equation: 

 ̂                     ,        (2.4)  

where the electronic Hamiltonian  ̂  is given by: 

 ̂   
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    ,    (2.5) 

the first term is the kinetic energy contributions, the second term corresponds to the electron-

nucleus interaction and the last term takes into account the interaction between electrons. This is 

still a partial differential equation with 3N coupled degrees of freedom, which cannot be solved 

exactly. We thus need more approximations. 

2.3 Hartree Approximation 

 In 1928 Douglas Rayner Hartree proposed that the total electron wave function can be 

written as the product of individual one-electron orbitals. He proposed that electrons in an atom 

will feel what is known as the Self-Consistent Field[15, 16] (HSCF), which is the effective field 

generated by the nucleus plus the one generated by the other electrons. To describe this idea the 

total wave electron function was written as: 

      ∏       
 
   .          (2.6) 
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 At this point we should mention that for now on we will use Hartree units, where me, e,   

and 
 

    
 are equal to the unity.  

 The Hamiltonian will be given by the equation (2.5), which we will rewrite as: 

 ̂  ∑  ̂    
 
    

 

 
∑ ∑  ̂         

 
   ,        (2.7) 

where  ̂     contains the kinetic contribution plus the electron-nucleus and electron-external field 

contribution: 

 ̂      
 

 
   

   ̂                   (2.8) 

and  ̂       describes the electron-electron Coulomb interaction: 

 ̂       
 

|     |
.          (2.9) 

 Doing this, we have two contributions to the total energy EHSCF, 

       |∑  ̂    
 
   |   and        |

 

 
∑ ∑  ̂         

 
   |   . The first one can be written 

as: 

     ∑ ∫      ̂           
   .        (2.10) 

 Replacing the total electron wave function with the product of the individual one-electron 

orbitals, equation (2.6), and taking into account that the one electron orbitals are normalized to 1, 

we obtain: 

     ∑ ∫ ∫  
        

      ̂                        
 
   , 
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which can be rewritten as: 

     ∑    
 
   ,          (2.11) 

where 

    ∫  
      ̂             .         (2.12) 

 The second contribution E
(2)

 can be treated in a similar way: 

     
 

 
∑ ∑    

 
   

 
   ,          (2.13) 

where Jij is: 

    ∫
            

|     |
      ,         (2.14) 

then we can write the HSCF energy as: 

     ∑    
 
    

 

 
∑ ∑    

 
   

 
   .        (2.15) 

 Now, since the first N one-electron orbitals construct the ground state of the system (state 

with lower energy), the variation of the system EHSCF energy with respect to   
      is 0, in other 

words: 
      

   
     

  . Then, using Lagrange multipliers with the constrain  ∫ |      |
        , 

we can write: 

 

   
     

[      ∑    ∫ |      |
        

   ]   ,      (2.16)  
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where    are the Lagrange multipliers. Also it is important to say at this point that we will assume 

that the states        are not coupled to the   
     . The variation of the second term on the left 

hand side with respect to   
      is a straight forward procedure and can be written as: 

 

   
     

∑    ∫ |      |
        

            ,      (2.17) 

while the variation of EHSCF will have 3 terms that according to equations (2.8), (2.12), (2.14) 

and (2.15) will be: 
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            . (2.20) 

 Plugging this back into equation (2.16), we get the following one-particle Schrödinger 

equation: 

[
  

 
   

       ∑ ∫
  (  )

|     |

 
      ]               .      (2.21) 

 The second and third term on the left hand side of the equation can be combined into one 

effective potential. Then, the potential experienced by one electron will be comprised of the 

potential generated by the nucleus plus the electric potential generated by all the other electrons, 

as originally proposed by Hartree: 
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      .        (2.22) 

 It is important to mention that in the HSCF formality, the sum of the Eigen values    does 

not equal the total energy of the system under consideration. This can be easily seen by 

multiplying equation (2.21) by   
      and integrating over the whole space, which leads to: 

       ∑    
 
   , 

leading immediately to: 

      ∑   
 
    

 

 
∑ ∑    

 
   

 
   .        (2.23) 

 Equation (2.21) represents a set of N coupled differential equations, where the potential 

depends on Eigen functions, see equation (2.22). This Schrödinger equation has to be solved 

iteratively starting with a trial wave function and again recalculating the effective potential until 

convergence is achieved. 

 The problem with Hartree approximation is that treats the electrons as distinguishable 

particles when in reality they are not. The problem lies in the construction of the wave function, 

equation (2.6), which does not follow the Pauli’s principle. This leads to the Hartree-Fock 

approximation. 
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2.4 Hartree-Fock Approximation 

 In 1930 J. C. Slater[17] and V. A. Fock point out that the Hartree method could be 

improved by writing the wave function not as a product of the one-electron orbilats, but as a 

linear combination of such functions with permuted indices. In the work done by Fock [18, 19] 

the exchange effects are included, but his work was too abstract in order to be successfully 

implemented. In 1935 Hartree reformulate his original work based on Slater’s and and Fock’s 

work, this is known as the Hartree-Fock approximation. 

 In the Hartree-Fock approximation the total wave function is constructed as the well-

known Slater determinant of N one-electron orbital wave functions. Doing this, the Pauli’s 

principle that requires an antisymmetric total wave function under the exchange of two electrons 

is satisfied. In order to show the general properties and features of this method we will use a two 

electron system, the generalization to N particles will be obvious. We will start by writing the 

total wave function as: 

         
 

√ 
[                     ],      (2.24) 

where the i in       refers to the ith one-electron orbital and the j to the spatial and spin 

coordinates of the electron j condensed in one variable xj = (rj,σj). 

 The Hamiltonian will have the general form shown in equation (2.7) and again we will 

have two contributions to the energy that we will call E
(1)

 and E
(2)

. We will start by writing E
(1)

: 

     ∫∫         [ ̂      ̂    ]              ,     (2.25) 
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giving rise to 8 terms of the form: 

      
   

 
 

 
∫∫  

      
     ̂                    , 

where i ≠ j and l ≠ m (due to antisymmetric nature of the total wave function         ). Among 

this terms we have       
   

       
   

 and       
   

       
   

, all the other terms vanish because they 

contain terms of the form ∫  
             which are equal to zero due the orthonormal 

nature of the one-electron orbital functions. On the other hand, 
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   ,       (2.27) 

then we can write E
(1)

 as: 

     
 

 
(      

   
       

   
       

   
       

   
)         .    (2.28) 

 This can easily be generalized to an N electron system as: 

     ∑    
 
   .          (2.29) 

 the energy E
(2)

 coming from the electron-electron interaction has four terms of the form: 

       
   

 
 

 
∫∫  

      
     ̂                      . 
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 Again, the 1/2 factor comes from the normalization of the Slater determinant. Due to the 

nature of the  ̂       operator (see equation (2.9)) and the construction of the wave function 

through the Slater determinant, we have k ≠ l, i ≠ j and m ≠ n: This gives rise to two kind of 

terms, the first one when i=k=m and j=l=n, and the second one when i=k=n and j=l=m. The 

first kind are called Coulomb integrals and have exactly the same expression as the ones found in 

the Hartree approximation (see equation (2.14)): 

           
   

 
 

 
∫∫  

      
     ̂                      .     (2.30) 

 The second kinds of terms are called exchange integrals and have the form: 

           
   

 
  

 
∫∫  

      
     ̂                      .    (2.31) 

 The similarity between these two equations is remarkable, the difference lies in the fact 

that in the last equation    and   
  are associated to different electrons. The Kij contributions to 

the energy have no classical interpretation, it comes from the construction of the total wave 

function as a Slater determinant of the one-electron orbitals (implemented to satisfy Pauli’s 

principle), the negative character of these terms comes, again, from the construction of the total 

wave function, but the physical interpretation is that the exchange interaction reduces the 

Coulomb interaction by pushing electrons away from each other resulting in a lack of electronic 

density. 

 Coming back to the energy E
(2)

, we have 4 terms contributing to this energy, but due to 

symmetry of the  ̂       operator ( ̂      =  ̂      ), two of them are identical to the other two 

allowing us to write the E
(2)

 as: 
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   ]         .    (2.32) 

 These results can easily be generalized to an N electron system as: 

     
 

 
∑ ∑          

 
   

 
   ,        (2.33) 

allowing us to write the total energy of the system EHF as: 

    ∑    
 
    

 

 
∑ ∑          

 
   

 
   ,       (2.34) 

where the 1/2 factor is included to avoid the doubled counting in the sum, also is important to 

notice that the term i=j could have been included in the sum because the self-interaction diagonal 

terms of Jii exactly cancels with the corresponding Kii terms. 

 In an analogous way as the one previously described in the Hartree approximation, 

minimization of EHF respect to   
    ,  using Lagrange multipliers with the orthonormalization 

constrain, leads to the one electron Schrödinger equations: 

 ̂          ∑ [∫  
     ̂                   ]  

 
     

∑ [∫  
     ̂                   ]         

 
   ,      (2.35) 

the first term correspond to the kinetic and the electron-nucleus interaction (see equation (2.8)), 

the second term is direct coulomb interaction  ̂  (obtained also in the Hartree approximation) and 

finally we have the exchange term  ̂ , which is not a diagonal operator in the sense that when 

applied to an orbital    produces a different orbital    . This is: 
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 ̂        [∫  
     ̂              ]      .      (2.36) 

 It can be easily seen from equation (2.35) that: 

       ∑          
 
   ,         (2.37) 

allowing us to write EHF as: 

    ∑   
 
    ∑ ∑          

 
   

 
   .       (2.38) 

 In the same way as in the Hartree formalism, equation (2.35) has to be solved iteratively 

starting from a trial wave function, until convergence is achieved.  

 The Hartree-Fock formalism accounts for most of the total energy, but fails to take into 

account for correlation effects. One of the efficient means to take into account this effect is the 

Density Functional Theory (DFT), This will be discussed in the following section. 

2.5 Density Functional Theory 

 At the same time as Hartree developed his approximation previously described on 1927, 

L. H. Thomas and E. Fermi, independently, work and proposed what today is known as the 

Thomas-Fermi theory. The idea was to assume that the fundamental variable of the many body 

electronic problem was the charge density ρ(r), where the energy of the system is a functional of 

the density. 

 Thomas-Fermi theory suffers of several problems and in general does not reproduce 

correctly the system’s energy. It is worth mentioning because it sets up the basis of the DFT 
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which is very successful in attempting to solve the many bodies problem and improves the 

energy accuracy obtained in the Hartree and Hartree-Fock approximations. 

 The Density Functional Theory, as its name suggests, is a theory based on the functional 

of the charge density, the difference with the Hartree and Hartree-Fock approximations lies in 

the fact that in the latter two the electron orbitals are the base of the approximation and have 

physical meaning, while in the DFT the electrons orbitals have no physical meaning. The one-

electron orbitals are used as an artificial mathematical tool to reproduce the charge density, 

which, as we mentioned earlier, is the base of this theory. 

 The density functional theory is based on the Hohenberg-Kohn theorem, which is, in fact, 

divided in two theorems [20]:  

2.5.1 Hohenber– Kohn Theorem 

 Hohenberg-Kohn theorem Part a: "The external potential vext(r) is (to within a 

constant) a unequivocally determined by the electronic charge density”[
 
21]. 

 Proof: The proof is based on reduction to the absurdity and begins assuming that there 

are two potentials, vext(r) and v’ext(r), both giving rise to the same electronic density ρ(r). The 

Hamiltonians will be given by  ̂   ̂   ̂     ̂    and   ̂   ̂    ̂     ̂    with ground 

state wave function and energy Φ, Φ’, and       | ̂|  ,        | ̂|    respectively. 

Then, the variational principle tells us that: 

      | ̂|             (2.39) 
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      | ̂    ̂   ̂ |           (2.40) 

      | ̂ |       | ̂   ̂ |          (2.41) 

     
     | ̂     ̂   

 |           (2.42) 

     
  ∫    [            

    ]  .       (2.43) 

 In the same way interchanging the prime sign in equation (2.39) we get: 

  
     ∫    [            

    ]  ,       (2.44) 

adding this two equations (43 and 44) we found the clear contradiction 0<0, which lead us to the 

conclusion that the external potential is univocally determined by the charge density. This 

concludes the proof. 

 On the other hand, the energy of the system is indeed a functional of ρ(r): 

 [    ]   [    ]     [    ]      [    ], 

where T[ρ(r)], Uee[ρ(r)] and Vext[ρ(r)]  denotes the kinetic, electron-electron interaction and 

external potential contributions to the energy respectively. Then, doing  [    ]   [    ]  

   [    ] and     [    ]  ∫            we get: 

 [    ]   [    ]  ∫          ,        (2.45) 

which lead us to the second theorem: 
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 Hohenberg-Kohn theorem Part b: The density ρ(r) that minimizes the total energy 

functional (equation (2.45)) is the ground state density, this is: 

    [    ]   [ ̃   ].         (2.46) 

Proof: see reference [21 page 57] 

2.5.2 Kohn– Sham Equations 

 In 1965 Kohn and Sham [22] found that a non-interacting system of electrons will be 

exactly described by an anti-symmetric wave function, such as the one given by the Slater 

determinant. Doing so the ground state density matrix is: 

     ∑          
     

   ,         (2.47) 

where φi(r) are the one electron orbitals and fi are the corresponding occupation number. The 

Hamiltonian of such non-interacting reference system will be given by: 

 ̂  ∑ [ 
 

 
  

        ]  
 
            (2.48) 

where N is the number of electrons and vR is the potential of the non-interacting system called 

reference potential. The key point is that the reference potential vR is such that will produce the 

same density ρ(r) of the real interacting system and then the Hohenberg-Kohn’s theorem ensures 

that the ground state energy of the interacting and non-interacting systems coincides. As it was 

mentioned earlier, the ground state wave function of such non-interacting system of electrons 

will be given by the Slater determinant: 
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√  
  [                      

    
 ],      (2.49) 

with Ns=N/2 (two electrons per level), the ground state charge density will be given by equation 

(2.47), with fi=2 for i≤N/2 and fi=0 for i≥N/2 , this is:  

      ∑ |     |
    

   .         (2.50) 

 At this point it is important to say that one electron orbitals    do not represent real 

electrons (this is just a mathematical tool used to reach our goal). The real physical meaning is 

the sum of the square norm of these quasi particles orbitals, see equation (2.50), which coincides 

with the ground state charge density of the real electron-electron interacting system. 

 These quasi particle orbitals, or Kohn-Sham orbitals, will be the first Ns solutions to the 

following eigenvalue problem: 

 ̂          ,          (2.51) 

where  ̂    is the one electron Hamiltonian:  

 ̂     
 

 
  

        .         (2.52) 

 Equation (2.51) and (2.50) are known as Kohn-Sham equations. Now we will focus on 

finding the reference potential, we will start by assuming that the kinetic energy of the full 

interacting system can be written as: 

  [ ]   
 

 
∑    | 

   
   |            (2.53) 
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 Now, the universal density functional F[ρ] is: 

 [ ]    [ ]  
 

 
∫∫

         

|    |
         [ ]       (2.54) 

 Is important to note that all the information about the kinetic correlation ignored in TR[ρ] 

is contained in Exc[ρ]: Plugging F[ρ] into the energy functional E[ρ] = F[ρ] +∫             ,  

we get: 

   [ ]    [ ]  ∫               
 

 
∫∫

         

|    |
         [ ],   (2.55) 

then using Lagrange multipliers and the constrain ∫         we obtain: 

 

     
(   [ ]    ∫         )          (2.56) 

   [ ]

     
         ∫

     

|    |
    

    [ ]

     
  .       (2.57) 

 The energy functional of the non-interacting system ER[ρ] is: 

  [ ]    [ ]  ∫            .        (2.58) 

 Using again the Lagrange multipliers and the restriction∫         , we get: 

 

     
(  [ ]     ∫         )          (2.59) 

   [ ]

     
         .          (2.60) 

 Since the energy of the non-interacting system should be equal to the energy of the 

interacting one and the number of particles is the same in both systems, the chemical potentials 
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μR and μ, see equations (2.57) and (2.60), are equal to each other. Then we are able to write the 

reference potential vR as: 

              ∫
     

|    |
    

    [ ]

     
.       (2.61) 

 At this point it is important to note that the reference potential vR is a function of the 

charge density ρ(r), which is a function of the Kohn-Sham orbitals φi(r). This means that 

equations (2.50), (2.51) and (2.61) have to be solved self consistently. 

 Now we are in the position to evaluate the energy of the interacting system, see equation 

(2.55), by writing the external potential in terms of the reference potential via equation (2.61) we 

have: 

   [ ]    [ ]  ∫          
 

 
∫∫

     (  )

|    |
         [ ]  ∫    

    [ ]

     
    (2.62) 

   [ ]   ∑   
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         [ ]  ∫     

    [ ]

     
  .   (2.63) 

 A similar equation is obtained for spin polarized systems: 

   [     ]  ∑ ∑     
 
   

 
    

 

 
∫∫

     (  )

|    |
         [     ]  ∫    

    [     ]

     
  . (2.64) 

 The first two terms are known, while the last two terms containing the exchange and 

correlation contributions Exc are still unknown. We can split the term Exc into an exchange and a 

correlation term as: 

      [ ]    [ ].          (2.65) 
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 (We changed to the non-spin polarized case, since it has a simpler notation. 

Generalization to spin polarized case will be done when needed.) 

 The expression for the exchange term Ex[ρ] is provided by the Hartree-Fock method, see 

equation (2.31) which will be rewritten as: 

  [ ]  ∑       ,          (2.66) 

where: 

    ∫∫  
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|     |
                  ,      (2.67) 

leaving, in principle, Ec[ρ] as the only unknown in the expression the system’s energy EKS[ρ]. 

 In 1927 and 1928 independently Thomas and Fermi proposed to express the kinetic, 

exchange and correlation contributions to the energy as: 

  [    ]  ∫            ,         (2.68) 

where       is the energy density and α stands for kinetic, exchange or correlation. In the case of 

uniform electron gas the expression for the exchange energy density can be simplified as: 
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where    √
 

   

 
 is the mean inter-electronic distance expressed in atomic units. As can be seen, 

the denser the system (small distance between electrons), the higher the contribution of the 

exchange term. Unfortunately the determination of the correlation energy is a difficult many 

body problem, even for the homogenous gas, and there is not a simple expression for the 

correlation contribution to the energy. 

 In 1971 L. Hedin and B. I. Lundqvist proposed an expression for the correlation 

contribution    [23]: 
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],      (2.70) 

where C and A are constants. Also, an Exact solution, in the very high and low charge density 

regime was proposed by Perdew and Zunger in (1981) [24]: 

  
  [ ]  {

                            
 

    √       
     ,      (2.71) 

where A, B, C, D, β1, β2 and γ  are constants. As mentioned earlier the previous expressions for 

the exchange and correlation contribution to the energy are accurate for the homogenous electron 

gas (ρ does not depend on r), the search for an expression for a real inhomogeneous gas will lead 

us the local density approximation (LDA) and gradient expansions. 

2.5.3 Local Density Approximation 

 In the LDA formalism the inhomogeneous electron charge density is considered to be 

locally homogenous. The expression for the exchange and correlation energy density is given by: 
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   ,        (2.72) 

where  ̃  
    is the exchange and correlation hole (for the homogeneous electron gas) and is given 

by: 

 ̃  
         [ ̃ (|    |     )   ],       (2.73) 

where  ̃ (|    |     ) is the pair correlation function for the homogeneous electron gas (It is 

local because depends only on the charge density at the point r and the distance between the 

point r and   ) and of course the exchange and correlation energy will take the same form of 

equation (2.68): 

   
   [    ]  ∫       ̃ 

        .        (2.74) 

 In practice the LDA exchange and correlation contribution to energy    
   [    ] is 

calculated by writing the exchange and correlation energy density as the sum of the exchange 

and correlation energy densities: 

  ̃ 
   [    ]    ̃

   [    ]    ̃
   [    ],       (2.75) 

where   ̃
   [    ] is given by the exchange energy density of the homogeneous electron gas, see 

equation (2.69), and   ̃
   [    ] as one of the approximations for the homogeneous electron gas 

previously discussed, see equation (2.70) or (2.71). 

 The LDA works well for system where the electronic density does not vary abruptly and 

somehow is uniform such as in metals. 
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 At this point it is important to note that it may seems logical to use the exact expression 

for the exchange energy given by equation (2.66), while using the LDA for the correlation 

contribution to the energy to improve the LDA performance. In fact by doing so, the results 

obtained by LDA do not significantly improve. The reason behind this lies in the fact that the 

separation of the exchange and correlation energy into EX and EC is just matter of practicality, 

both terms are connected and by taking EX at a higher level of accuracy it cannot compensate for 

the errors made in EC, also the exchange term described in equation (2.66) was obtained by 

constructing the total wave function as a Slater determinant (an arbitrary form). 

 In order to improve the results of the LDA and take into account the inhomogeneities in 

the charge density, an expansion in the charge density in terms of the gradient and higher order 

derivatives can be done. This is known as the gradient expansion. 

2.5.4 The Gradient Expansion 

 The exchange and correlation energy functional can be written as: 

   
   [    ]  ∫        [    ]   [            

      ]  ,    (2.76) 

where an expansion to the fourth order of    [            
      ] takes the form: 

   [            
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 The first two coefficients of the expansion are exact, while the third one is an 

approximation and the fourth, D, is unknown. An expansion of the energy up to a second order is 

known to be a crude approximation valid only for densities that vary slowly. The expansion has 

several problems, for example is not monotonically convergent and has singularities that are only 

canceled when an infinite number of terms are taken into account. 

 To solve these problems, a functional that mimics the summation to infinite order, while 

verifying certain conditions such as long range decay is required. These have been called 

generalized gradient approximations (GGAs). 

2.5.5 Generalized Gradient Approximation 

 Several GGAs have been proposed, among them we have the Langreth-Mehl functional, 

BLYP functional and the one proposed by Perdew, Burke and Ernzerhof (PBE) in 1996, which is 

one of the most widely used [25]. In the PBE approximation, the enhancement factor 

corresponding to the exchange contribution is written as: 

          
 

  
   

 

,         (2.78) 

where μ=0.21951; k=0.804 and   
|     |

    
, while the correlation contribution to the energy is 

given by: 

  
    ∫    [  

                 ]  ,       (2.79) 

where          is a function of the charge density ρ, the magnetization ξ, while t is also function 

of ρ and ξ which can be found in the literature [21]. 
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2.6 GW Approximation 

 In the previous sections we have discussed how to solve the many body electronic 

problem, it has been shown that all the contributions to the energy are known exactly except for 

the exchange and correlation terms. The exact form of the exchange contribution was described 

in the Hartree-Fock section, leaving the correlation contribution as the big unknown. As we have 

mentioned in the previous sections, extensive work towards the solution of this problem has been 

made, making the DFT theory a reliable tool to describe many body systems. On the other hand, 

a major problem is constituted by the fact that the DFT is based on the Hohenberg-Kohn 

theorem, which is only valid for the ground state, therefore the DFT fails to describe exited states 

and as a consequence usually underestimate the band gap of semiconductors. In 1965 Hedin [26] 

made a major contribution to the solution of this problem by showing how exited states can be 

described by approximating the self-energy contribution to the energy as a direct product of the 

green function and the screened Coulomb potential. In this section we will describe the basic 

ideas behind the GW approximation as were written by Hedin in 1965. We will start by writing 

the quasi particle Schrödinger equations as: 

(
   

  
                )       ∫∑             

              ,   (2.80) 

where the vH is the Hartree potential given by the third term in equation (2.21) and Ei denotes the 

quasi particle energy, ∑          is the self-energy term, which can be approximated as an 

expansion of the single particle Green functions G and the screened Coulomb interaction W as 

follows: 
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∑                                  

  ∫∫                                                        .   (2.81) 

 In the GW approximation, as the name suggest, only the first term of the expansion is 

taken into account: 

∑                               .       (2.82) 

 In order to calculate the self-energy contribution to the quasi particle energy we should 

work in the frequency domain by doing a Fourier transformation of the self-energy: 

∑         
  

  
∫                              .     (2.83) 

 Our task now is to find the green function and the screened Coulomb potential. In 

principle the Green function satisfies the following equation: 

(
   

  
                )           ∫∑                               . (2.84) 

 On the other hand, if the Green function for a simpler approximation (DFT) is known, 

then the true Green function can be calculated using the Dyson equation: 

                
     ∬           ∑                         ,  (2.85) 

where  ∑          is the perturbation given by  ∑          ∑                  , with 

         the interaction potential of the reference system. Right hand side of equation (2.85) is a 

functional of G: G=F(G), then equation (2.85) is a fixed point problem. Now, F(G) is a 

contraction (|F(G)-F(G’)|<α|G-G’|, whit α<1 ), then the Banach’ contraction theorem ensures a 
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unique solution for the equation (2.85) and by repeatedly replacing G on the right hand side of 

the equation by                   (by itself) the following symbolic equation is obtained: 

                                               ,   (2.86) 

Which is known to converge rapidly,, which allow us to in the case of G0W0 calculation, only the 

first term in the equation above is taken into account, which is well known for non-interacting 

electrons: 

      
     ∑

       
     

             

 
   ,        (2.87) 

where η is a positive infinitesimal constant and μ is the Fermi energy of the system. 

 On the other hand, the screened coulomb potential W(r,r’,w) is given by: 

          ∫                          ,       (2.88) 

or can be written in reciprocal space as: 

           
    

|   ||    |
      
       ,       (2.89) 

with v(r,r’)=1/|r-r’| and the inverse of the dielectric function   calculated in the random phase 

approximation: 

                   ∫            
            ,     (2.90) 

which can also be written in the reciprocal space as: 

                  
    

|   ||    |
            ,      (2.91) 
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while the response function         is given by: 

            
 

 
∑    (            )          

  
      

|        |          | 
  (    )  | 

      
 

                 
.       (2.92) 

 As mentioned earlier, in the case of the G0W0 approximation the response function and 

the Green function are calculated using the quasi particles orbitals obtained by DFT. 
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CHAPTER 3: FIRST PRINCIPLE STUDIES ON CATALITYC SYSTEMS 

TOWARDS THE OXYGEN REDUCTION REACTION  

3.1 Introduction 

 As described in Chapter 1, the search for new cost-effective and highly active electro-

catalysts for the oxygen reduction reaction (ORR) is of great importance. The most efficient way 

to search is the rational tuning of the catalytic properties of the material by modification of the 

surface composition and/or morphology. Such rational search requires, however, understanding 

of the relationship among the surface composition, electronic structure, reactivity and activity 

toward ORR. One of the goals of the present work is to reveal important details of this 

relationship. To approach this challenging task, first, it is described what is known about this 

reaction. 

 The ORR is a complex multi-step reaction that may include many steps. As summarized 

by Adzic [27], two main pathways are possible: a) direct four electron reduction to H2O (in acid 

media):  

                      ,        (3.1) 

b) peroxide pathway: 

                       ,        (3.2) 

followed by  

                    .        (3.3) 
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 The second step in the pathway (b) has a very high reversible potential that significantly 

reduce the efficiency of the ORR.  

 The ORR has been extensively studied on Pt surfaces. It has been suggested that the 4-

electron pathway is predominant for Pt. The DFT based calculations show that the activation 

energy barriers for O2 dissociation on flat Pt surfaces are high and therefore the molecular 

adsorption is thus preferred [28]. In this case ORR may proceed through the following steps: 

       
             (3.4)  

  
             

          (3.5) 

    
                        (3.6)   

                        (3.7) 

                 ,         (3.8) 

in this notation, “*” denotes the adsorption site at the cathode surface. If oxygen is dissociated 

upon adsorption, the ORR pathway takes the path of equation (3.7) and (3.8) only. 

 The ORR highly depends on the adsorption energies of O, OH and OOH intermediates, 

The authors in [29] and [30] have constructed (O and OH adsorption energies) hyper-volcano 

diagrams for several metallic surfaces, showing that in order to obtain an optimal catalytic 

material the O and OH adsorption energies have to be reduced in the case of Pd and Ru and 

increased in the case of Ag. On the other hand, it has been shown a linear relation between the O 

and OH adsorption energies, as well as between O and OOH adsorption energies [31], suggesting 
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that the O adsorption energy is a good descriptor of the catalytic activity towards the ORR 

[32,33].  

 In this work, the binding energy, also called adsorption energy, characterizing the 

bonding of an atom or intermediate (X) with the surface under consideration was calculated as 

follows: 

                            ,       (3.9) 

where E denotes the calculated total DFT energy per supercell, E(slab) denotes the DFT energy 

of the clean surface under consideration, E(X) is the DFT energy of the insolated atom or 

intermediate and E(X/slab) denotes the DFT energy of the atom or intermediate X adsorbed on 

the surface. Since the total energies of stable systems are negative, EB(X) is positive if adsorption 

of a specie on the slab is favorable. 

 The valence charge density redistribution upon addition of an atom or intermediate (X) to 

the system will be used to explain the mechanisms controlling the bonding of the atom or 

intermediate (X) to the surface. It was defined as: 

                                   ,      (3.10) 

where ρX/system(r) is the valence charge density of system under consideration with the adsorbed 

atom or specie (X), ρsystem(r) is the valence charge density of the pristine system (with no atom or 

spice adsorbed) and finally ρX(r) describes the valence charge density of the insolated added 

atom or specie (X) at the position in the system under consideration. 
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 In order to describe the energies of the reaction depicted in equations (3.4) trough (3.8) 

we used technique proposed by Nørskov and co-authors [29], where they set the reference 

potential as μ(H
+
 + e

−
) = ½μ(H2). Within this approach, the reaction free energy ΔG is 

calculated for each reaction step, which is defined as the difference between free energies of the 

initial and final states of the step. In general, it includes six terms: 

               –                          .     (3.11) 

 Here ΔE is the reaction energies obtained from DFT total energies of the catalyst surface 

with possible configurations of adsorbed reactants or intermediates. The DFT-based calculations 

of vibrational frequencies of adsorbates are used to define zero point energy corrections ΔZPE. 

Entropic contribution TΔS is approximated by the gas phase reaction entropy of reactants or 

intermediates taken from a NIST database [34] (translational contributions are subtracted for 

adsorbed species). If a reaction step involves the electron and proton transfer, the relevant bias 

effects are taken into account by shifting the energy by doing ΔGU=–eU, where U is the 

electrode potential and e is a transferred charge. The term ΔGfield is a contribution of interaction 

of an adsorbate with the local electric field in the electric double layer formed in the vicinity of 

cathode[35]. Finally, for non-zero pH the concentrational entropy correction is added: ΔGpH(pH) 

= kT•ln(10)•pH. Since the ORR proceeds in acidic media (pH  ), in this work this term will be 

neglected. As ΔG is calculated for each step of electro-catalytic reaction, a diagram of the free 

energies of these configurations is built as a function of the electrode potential. 

 Within this model, the onset potential U0 is defined as the potential difference between 

the two electrodes of the fuel cell at zero current. It can be estimated as the maximum value of U 
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at which the reaction is still exothermic. The onset potential will be ruled by the lowest energy 

step (in equation (3.11) of the ORR reaction depicted in equation (3.4) through equation (3.8).  

Two scenarios are possible: a) for low reactive systems (systems with lower reactivity than the 

optimal one), the onset potential will be ruled by the adsorption of OOH (see equation (3.5)), 

U0= ∆G(O2)- ∆G(OOH) and b) for highly reactive systems (systems with higher reactivity than 

the optimal one), the onset potential will be ruled by the OH adsorption,  if ∆G(O) >2∆G(OH) 

then U0  = ∆G(OH), otherwise U0 =∆G(O) – ∆G(OH). Here ∆G(O), ∆G(OH) and ∆G(OOH) 

denote the free energies of the H2 + O*, 1/2•H2 + OH* and 1/2•H2 + OOH* states respectively, 

counted from the free energy of the final state (H2O + *). 

 Among the terms contributing to the free energy described in equation (3.11), the most 

important is the first one (As we mention above ΔGpH  will be neglected, while ΔGfield is also 

negligible due to the small effect of the electric field on the binding energy of O, OH and 

OOH[35]). It has been shown in [29] that the onset potential Uo is determined by the reaction in 

equation (3.7) and (3.8) for highly reactive systems, while for low reactive systems the onset 

potential is determined by the reaction in equations (3.4) and (3.5) . The changes in free energies 

of the O*+2(H
+
+e

−
), HO*+ (H

+
+e

−
) and OOH*+3(H

+
+e

−
) states are thus the key 

characteristics of electro-catalysts for both molecular and dissociative adsorption of O2. Taking 

as a reference the free energy of the final state of the reaction (H2O in gas phase), one can 

express ΔE in equation (3.11) through binding energies of the intermediates and total energies of 

molecules in gas phase. For the states described by equations (3.6), (3.7) and (3.8), it makes:  

                       –           –     
       (3.12) 
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                         –          –            (3.13) 

                             –           –         .   (3.14) 

 The first three terms in equation (3.12), (3.13) and (3.14) are gas phase constant which do 

not depends on the catalytic system under consideration. The entropy contribution to the free 

energy ∆G in equation (3.11) and the zero point energy depends on the vibration frequencies of 

the molecules and do not strongly change upon adsorption. Therefore, in a good approximation 

the free energy diagram is determined by the binding energy of O, OH and OOH. 

3.2 Pd-Co Alloy Surfaces 

 In this work we focus on the Pd1-xCox system. These alloys has been studied 

experimentally and exhibit activity toward ORR comparable to Pt[36, 37], they are also highly 

tolerant to the presence of methanol [38, 39], which is important for use in DMFC, and they are 

much less expensive that the Pt-based catalysts. The best electro-catalytic performance of these 

alloys has been observed for the Co concentration x = 0.2 to 0.33 [37, 38]. For such 

concentration range, the alloys maintains the fcc structure. At elevated temperature they undergo 

surface segregation, which lead to formation the Pd monolayer (skin) on the alloy surface [39]. 

However, as suggested and confirmed in the present work, this segregation is a desirable effect, 

which leads to the enhancement of the ORR rate. 

 According to Ruban et al. in ref[40] a Pd segregation towards the surface in Pd-Co and 

Pd-Fe system is expected due to the large difference in surface segregation energies between Pd 
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and Co/Fe. Concerning Pd-Co systems, Wei et al.in ref[55] have prepared Pd-Co alloys at 

various pH values and characterized its catalytic activity towards the ORR. The XRD patterns 

showed that the Pd-Co alloys maintain the FCC structure of Pd for all the pH at which the 

samples were prepared. However, for the sample prepared at pH 13, the XRD pattern suggests 

that the sample preparation at high pH values leads to the incomplete formation of Pd-Co alloys. 

Furthermore the authors were able to determine that the Pd-Co alloys with a Pd rich surface have 

a higher catalytic activity than the Pd-Co alloys whose surface was comprised of a large amount 

of Co oxide. Similar results were found by Shao and coworkers in ref[39], were they perform 

XRD measurements on Pd-Co alloys, the authors were able to determine that the Pd and Co 

atoms were mixed completely forming a FCC structure. Furthermore, their results indicate that 

the Pd atoms are segregated towards the surface during annealing at high temperatures. 

 In previous work, Lamos and Balbuena used a simple three layer slab made up with Pd, 

Pd0.5Co0.5, and Pd0.75Co0.25 layers to model the segregated Pd0.75Co0.25 (111) surface [41]. The 

authors have calculated the adsorption energies of intermediates and built the free energy 

reaction diagrams for two possible reaction pathways using the Nørskov and co-worker model 

[29]. In this work they attempt to describe the mechanisms controlling the catalytic activity of 

Pd-Co alloys, However, several questions still have to be answered. For example, in [42] the 

authors argue that the contraction of the Pd-Pd bonds upon alloying is responsible for the 

enhancement in the catalytic activity of the system, more precisely, the authors argue an 

enhancement in the catalytic activity due to a change of only 0.05 eV in the adsorption energy of 

O.  We believe this change is too small in order to produce the enhancement in the catalytic 

activity reported in the experiment. Pd atoms in the overlayer make bonds with Co atoms located 
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in the second layer, Cobalt has quite delocalized d-states, which should result in a strong 

hybridization with the d-states of Pd. The spin-polarized local densities of electronic states 

(LDOS) should form a wide d-band overlapping with the dPd-states. One can thus expect a 

significant modification of the Pd d-band upon the dCo–dPd hybridization which, in turn, will 

change the adsorption energies. This important effect has not been studied yet for this system. 

 The studies carried out on ref[41] considered an adsorbate coverage of 0.25 monolayer 

(ML). For other systems [29, 43, 44], it has been shown that there is a strong dependence of the 

reaction energetics with the intermediates and water coverage. To the extent of our knowledge, 

this effect has not been studied in Pd-Co alloys. 

 In the present work, we address the issues raised above. We report the results of accurate 

systematic computational studies of various factors which may control the ORR rate, including 

effects of co-adsorbed intermediates and water on the ORR energetics. We compare and contrast 

the results obtained for Pd–Co alloys with varying Co concentration x = 0, 0.25, and 0.5, as well 

as the Pd0.75Co0.25(111) alloy covered with one monolayer of Pd (Pd/Pd0.75Co0.25). The reaction 

energetics are traced to the electronic structure of the alloy surfaces in order to reveal the main 

factors controlling the ORR in the system.    

3.2.1 Computational Details 

 The experimentally observed Pd-Co electro-catalysts systems are found to be in form of 4 

nm to 11 nm nanoparticles [37,45]. Particles of such size range have large flat facets developed 

at their surfaces. We thus use the flat surface approximation to describe the catalytic properties 

of this system. Since the materials under consideration have the fcc structure, we calculate the 



43 

 

ORR characteristics on Pd-Co(111) surface. This surface is known to be the most stable one and 

the (111) facets are expected to dominate the surface. 

 For all system under consideration, the electronic structure, energetics and equilibrium 

atomic configurations are obtained using the VASP5.2 code [46] with projector augmented wave 

potentials [47] and the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient 

approximation (GGA) for the exchange and correlation functional [48]. All systems, except for 

clean Pd, were calculated taking into account spin polarization.  In order to maintain periodicity 

we use supercells with a 5 layer Pd-Co slab and vacuum layer of 15 Å. For all calculations, the 

supercells had the (2x2) in-plane periodicity (see Figure 1).  The (7x7x1) k-point samplings in 

Brillouin zone used in this work provide sufficient accuracy for the characteristics obtained by 

integration in the reciprocal space. The cut of energy of 400 eV was used for the plane wave 

expansion of wave functions and the 600 eV cut of energy was used for the charge density. To 

achieve structural relaxation, a self-consistent electronic structure calculation was followed by 

calculation of the forces acting on each atom. Based on this information the atomic positions 

were optimized to obtain equilibrium geometric structures in which forces acting on atoms do 

not exceed 0.02 eV/Å. 
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Figure 1: Top view of the surfaces: panel a: Pd(111), panel b: Pd0.75Co0.25, panel c: Pd0.5Co0.5 and panel d: 

Pd/Pd0.75Co0.25. Light grey and dark blue balls represent the Pd and Co atoms, respectively. Black straight 

lines separate supercells. Black crosses mark the preferred adsorption sites for atomic oxygen. 

 

 To obtain ΔZPE used in equation (3.11), we have calculated the vibrational frequencies 

of the adsorbed O and OH using the finite-difference method. Since the masses of the ORR 

intermediates are much smaller than those of the substrate only the adsorbate modes were taking 

into account, while the slab atoms were considered frozen. Five displacements were used for 

each direction with the step of 0.015 Å. The zero point energies obtained from the vibrational 

frequencies were used to calculate the ΔZPE contributions to the reaction free energies. Entropic 

contributions to the reaction free energies were calculated as described in the introduction to this 

chapter. 

 The geometric structures of clean and adsorbed surfaces shown in this section have been 

plotted using the Xcrysden software [49]. 
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3.2.2 Results on O and OH Adsorption With 0.25% Mono Layer Coverage 

 As mentioned earlier, four different systems where taken under consideration to model 

the Pd and Pd-Co alloys, these are: Pd(111), Pd0.75Co0.25(111), Pd0.5Co0.5(111) and  

Pd/Pd0.75Co0.25(111)). First, a geometry optimization of the system was performed, followed by 

the calculation of the binding energies of the intermediates (O, OH and H2O) via equation (3.9).  

 For all systems under consideration, the binding energies were calculated for the atomic 

O adsorbed on all non-equivalent symmetric sites for the supercells with (2x2) in-plane 

periodicity. We have found that for all surfaces the hollow sites are preferred for O adsorption 

(these sites are marked with crosses in Figure 1). The EB(O) values for the preferred adsorption 

sites are listed in the first four rows of Table 1.  As it can see from Figure 1, for the non-

segregated alloys, oxygen prefers to make bonds with the surface Co atoms. In the case of 

Pd0.75Co0.25, it makes one O–Co and two O–Pd bonds with EB(O) larger than that for pure Pd. In 

the case of Pd0.5Co0.5, there are two O–Co and one O–Pd bonds, which results in further 

strengthening of oxygen bonding to the surface. It is important to note that the oxygen – surface 

bonding is found to be weaker for Pd/Pd0.75Co0.25 than for pure Pd. This result supports the 

assumption [29, 30] that an optimal catalyst for ORR has to have lower EB(O) than that for Pd. 

On the other hand, the stronger oxygen – surface bonding found for the non-segregated alloys, 

suggests that these materials will not catalyze ORR efficiently. We thus exclude them from 

further consideration. 
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Table 1: Binding energies and zero point vibration energies calculated for O and OH adsorbed with 0.25 ML 

coverage on the preferred sites of the (111) surfaces of Pd and Pd-Co alloys. 

 

 Since, in the course of ORR, hydroxil may be formed upon “landing” of a proton and 

electron on the adsorbed oxygen, EB(OH) were calculated for the preferred adsorption sites 

obtained for atomic O. These results are shown in the last four rows of Table 1. Note that 

changes in EB(O) and EB(OH) upon varying of the catalyst composition have the same trend, 

with a slight deviation from a linear relation. 

3.2.3 Results on Co-Adsorption of the ORR Intermediates and Water 

 Although it is not easy to measure the coverage of the ORR intermediates in real reaction 

environment and it depends on electrode potential and varies from one material to other, there 

are indications [43, 50,51] that, in general at the fuel cell operation conditions, the coverage is 

higher than the 0.25 ML considered above. Furthermore, in the course of the reaction, the 

intermediates occur to be co-adsorbed with each other or with H2O at the neighboring surface 

sites. To study the effect of such co-adsorption we have calculated EB(O), EB(OH), and EB(H2O) 

for the 0.5 ML coverage of each specie, as well as for the O–OH, O–H2O, and OH–H2O co-

adsorption using the (2x2) supercell. These calculations were performed for Pd and 
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Pd/Pd0.75Co0.25. In initial configurations, O and OH were placed at neighboring hollow sites, 

which are found to be most stable for the 0.25 ML coverage, while water molecule was placed at 

a top site. To avoid an artificial force cancelation at symmetric sites, position and orientation of 

the adsorbates were slightly disturbed. 

Table 2: Binding energies of O and OH calculated for the co-adsorption configurations. 

 

 The relaxed configurations obtained for Pd/Pd0.75Co0.25 are shown in Figure 2 and Figure 

3, while the calculated binding energy values are listed in the Table 2. As we can see from Figure 

2, O atoms adsorbed with 0.5 ML coverage keeps staying at hollow sites reflecting symmetry of 

the system. Due to electronic charge transfer from the metal surface, oxygen atoms become 

negatively charged and thus repel each other. This repulsion causes an increase in the total 

energy of the system, which leads to a significant decrease in the binding energy. Indeed, the 

increase in the O coverage from 0.25 ML to 0.5 ML causes the decrease in EB(O) by 0.579 eV 

and 0.684 eV for Pd and Pd/Pd0.75Co0.25, respectively (see  Tables 1 and 2). 
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Figure 2: The lowest energy configurations for the 0.5 ML hydroxyl adsorption (left panel) and OH–H2O co-

adsorption (right panel). 

 

 For the O–OH co-adsorption, we found that OH moves upon relaxation from the fcc 

hollow site to a bridge and tilts towards O adsorbed at the next fcc hollow site. This behavior 

may be explained as a result of attraction between positively charged H and negatively charged 

O (hydrogen bonds). This reordering reduces the total energy of the system. However, the 

overall effect is a significant weakening of both OH and O bonding to both Pd and 

Pd/Pd0.75Co0.25 caused by O–OH repulsion. 

 We find the hydroxyl adsorbed with 0.5 ML coverage to have two stable configurations. 

The first one is achieved if in an initial configuration two OH are placed in two neighboring fcc 

hollow sites and tilted by a few degrees (to avoid artificial force cancelation). In this case (in the 

course of relaxation) both molecules keep staying at these hollow sites and take positions normal 

to the surface. However, it appears to be a local minimum with EB(OH) equal to 1.812 eV and 

1.962 eV for Pd and Pd/Pd0.75Co0.25, respectively. Indeed, if we initially tilt OH by ~30° and 

move by 0.03 Å from the symmetric position (which is achievable within the frustrated rotation 

vibrational mode), the adsorbates undergo restructuring upon relaxation which results in the 

configuration shown in the left panel of Figure 3. This configuration is found to be much more 
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stable than the symmetric one. As a result we can conclude that upon increase in hydroxyl 

coverage from 0.25 ML to 0.5 ML the OH bonding to metal surface strengthens with an increase 

in EB(OH) of 0.185 eV and 0.196 eV for Pd and Pd/Pd0.75Co0.25, respectively. The hydrogen 

bonds made between the adsorbed species for the arrangement of OH shown in the figure, lead to 

the decrease in the total energy of this system and hence to the increase in EB(OH). 

 
Figure 3: The lowest energy configurations for the 0.5 ML hydroxyl adsorption (left panel) and OH – H2O 

co-adsorption (right panel). 

 

 Co-adsorption with water also affects energetics and geometrical structure of the ORR 

intermediates. we find that in the O–H2O co-adsorbed structure, the O atoms stay at the initial 

hollow site, while H2O slightly shifts from the center of the top site and tilts to make hydrogen 

bonds with O. As a result, the co-adsorption causes increase in EB(O) by 0.223 eV and 0.073 eV 

for Pd and Pd/Pd0.75Co0.25, respectively. 

 The co-adsorption of hydroxyl with water also strengthens the OH bonds to the catalyst 

surface: EB(OH) increases upon the co-adsorption by 0.301 eV and 0.333 eV for Pd and 

Pd/Pd0.75Co0.25, respectively. Note that similar effect has been reported for other metal surfaces 

[29, 52]. As seen from Figure 3 panel b, in the OH–H2O structure, OH is shifted significantly 
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from the hollow toward the bridge sites and tilted to make hydrogen bonds with H2O, which 

stabilize the system. The water molecules are also found to be stabilized on the surfaces upon O 

and OH co-adsorption. For example, as compared to 0.25 ML H2O adsorption, binding energy of 

water to Pd(111) is increased from 0.299 eV to 0.448 eV and to 0.585 eV upon O and OH co-

adsorption, respectively. 

3.2.4 Reaction Free Energy Diagrams 

 The calculated adsorption energies, as well as the zero point energies (shown in Table 1) 

and the entropic contributions were used to build the reaction free energy diagrams. We focus on 

the reaction steps described by equations (3.7) and (3.8). Since the systems under consideration 

are highly reactive towards the O adsorption, we thus include the following states in the 

diagrams: ½O2+H2 gas phase, O*+H2, *OH+½H2, and H2O+*. These states are likely to be the 

rate limiting for ORR [29]. The diagrams were constructed for Pd and Pd/Pd0.75Co0.25 with the 

0.25 ML and 0.5 ML coverage of adsorbates, as well as for configurations with O–OH, O–H2O, 

and OH–H2O co-adsorption.  Figure 4 and Figure 5 show the diagrams built for U=0 (the last 

term contributing to the energy in equation (3.11),        is neglected) 
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Figure 4: Reaction free energy diagram built for Pd for the following intermediate adsorption configurations: 

0.25 ML coverage of the adsorbates (thick solid lines), O – OH and OH – OH co-adsorption (thin solid lines), 

O – O and O – OH co-adsorption (dash lines), and O – H2O and OH – H2O co-adsorption (dash-dot lines). 

The arrowed line shows the U0 determining reaction step. 

 

 Since 0.25 ML coverage of the ORR intermediates is used in many calculations [4, 5, 41, 

42, 53] to characterize electro-catalytic activity of metal or alloy surfaces, we first built the 

reaction free energy diagrams for this coverage. As seen from Figure 4 and Figure 5, for both Pd 

and Pd/Pd0.75Co0.25, ∆G(O)– ∆G(OH) is much smaller than ∆G(OH). Therefore, within the model 

that we use, the onset potential is determined by the O*+H
+
+e

−
→HO* reaction step and its 

value can be estimated as U0 = ∆G(O) – ∆G(OH). This estimate results in U0 equal to 0.30 V and 

0.37 V for Pd and Pd/Pd0.75Co0.25, respectively, which are much smaller than the experimental 

values. It is important to note that this model operates with the thermodynamic quantities and 

does not take into account kinetic barriers. Therefore, it is expected to overestimate the U0 

values. The fact that our calculations result in U0 smaller than in experiment suggests that the 

modeling of the ORR with the 0.25 ML coverage of intermediates considered above is not 

realistic. There are some indications that the solvent effects can only slightly change the 

energetics of these reaction steps [54]. Therefore we focus here on the coverage and co-

adsorption effects. As shown in Figure 4 and Figure 5, the ORR energetics changes dramatically 
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upon co-adsorption and variation of coverage of the intermediates. The co-adsorption with 

oxygen causes a significant increase in both ∆G(O) and ∆G(OH). However, the ∆G(O)– ∆G(OH) 

difference does not change appreciable and hence U0 remain small. Water co-adsorption slightly 

improves the reaction energetics. Since it stabilizes the OH adsorption more than the O one, the 

∆G(O)–∆G(OH) difference increases giving U0 equal to 0.38 V and 0.63 V for Pd and 

Pd/Pd0.75Co0.25, respectively. Note that we modeled co-adsorption of O and OH with 0.25 ML of 

H2O which is certainty less than the water coverage in real reaction environment. One may 

expect that higher coverage of the co-adsorbed water can further improve the reaction energetics. 

 
Figure 5: Reaction free energy diagram built for Pd/Pd0.25Co0.75. Adsorption configurations and line code is 

the same as in Figure 4. 

 

 The most pronounced effect is caused by hydroxyl co-adsorption. As shown in Tables 1 

and 2, EB(O) decreases significantly upon OH co-adsorption, while the increase in the OH 

coverage from 0.25 ML to 0.5 ML slightly stabilizes the system. This effect leads to a significant 

increase in ∆G(O) and decrease in ∆G(OH). As a result, we obtain for both Pd and 

Pd/Pd0.75Co0.25 ∆G(O) to be greater than 2∆G(OH), which makes the HO*+H
+
+e

−
→H2O+* 

reaction step determining for the onset potential. Applying U0= ∆G(OH), we find U0 to be equal 
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to 0.79 V and 0.87 V for Pd and Pd/Pd0.75Co0.25, respectively. These results are in a very good 

agreement with experiment [55]. This finding raises the question whether the OH co-adsorption 

really determines the reaction energetics, or the agreement with experiment is a result of 

cancellation of effects which have not been taken into account? It is clear that overall effect of 

the hydroxyl co-adsorption on ORR can be important if the probability for O and OH, as well as 

for OH and OH, to be adsorbed at neighboring sites in the course of the reaction is high. 

Hydroxyl can be formed as a result of several possible reaction steps: a) O*+H
+
+e

−
→HO*, b) 

*OOH+*→O*+HO*, c) HOOH*+*→2HO* [4]. If water is involved in reaction implicitly it 

also produces OH at some steps [43]. It was also shown that for OH co-adsorbed with water in 

an O2 free environment on Pt(111) the OH–OH interaction is attractive up to the 1/3 ML 

coverage of OH [43, 50]. Based on this consideration, one may expect that in real reaction 

environment, in which all adsorbate configurations corresponding to various reaction steps are 

present, the probability of the O–OH and OH–OH co-adsorption is high and its effect in the ORR 

energetics can be substantial. 

 As we have mentioned earlier, the OH co-adsorption was found to be favorable for the 

reaction energetic. However, it is known [1, 56] that increase in the OH coverage can reduce the 

ORR rate by blocking active sites for the O2 adsorption. These two (thermodynamic and kinetic) 

effects may be competing. On the other hand, as discussed above, the O – OH and OH – OH co-

adsorption can be achieved without significant increase in the OH coverage. 
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3.2.5 Tracing the Reaction Energetics to the Electronic Structure of the Alloys 

 As shown above, the binding energies of the ORR intermediates and hence the reaction 

free energies change significantly upon variation of composition of the Pd-Co alloys. Since 

chemisorption is determined by hybridization between the electronic states of adsorbate and 

surface atoms, in this subsection, we evaluate the effect of the surface composition on the 

hybridization by analyzing LDOS of the adsorbed oxygen and surface atoms for the alloys under 

consideration. As a representative example, in Figure 6, we show LDOS of the Pd d-states and 

Co d-states of the surface atoms and p O-states of the adsorbed oxygen calculated for the 

Pd0.75Co0.25 alloy. One can see that the hybridization of the Pd d-states and O p-states with the 

spin-polarized d Co states induces spin-polarization for the formers. The non-occupied states of 

O, which are important for chemisorptions, are formed in the system due to hybridization with 

the spin-down Co d-states. Since the initial Pd d-states are mostly overlapped energetically with 

the spin-up Co d-states, their hybridization determines the alloying effect on the Pd LDOS. As 

we shall see, this effect leads to a low-energy shift of the Pd d-band. 

 
Figure 6: Spin-resolved LDOS of the surface atoms and adsorbed oxygen calculated for Pd0.25Co0.75. 
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 Since the spin-polarized LDOS has a quite complicated structure, to evaluate the overall 

effect of hybridization on the chemisorptions of oxygen, we analyze the summed spin-up and 

spin-down LDOS. As we have shown above the Pd/Pd0.75Co0.25 structure has the most promising 

reaction energetic among the alloys under consideration. Therefore, we compare and contrast the 

summed d Pd and p O LDOS for this alloy surface and clean Pd surface (as a reference), both 

adsorbed with oxygen (see Figure 7 and Figure 8).  One can see two distinguished peaks (A and 

B) formed in the O p LDOS which align with two Pd d LDOS peaks. This suggests a significant 

hybridization between the O p-sates and the Pd d-states resulting in formation of anti-bonding 

and bonding states represented by A and B peaks, respectively.  It is known that the lesser anti-

bonding states are populated, the stronger covalent bonding is. Taking into account that the A 

peak in both systems is almost totally depopulated, we can thus use the ratio of the A peak 

intensity to the B peak intensity as a qualitative descriptor of the strength the pO – dPd covalent 

bonding in the systems. We find this ratio to be equal to 0.35 and 0.29 for Pd and Pd/Pd0.75Co0.25, 

respectively, suggesting that adsorbed oxygen makes stronger covalent bonds to Pd than to 

Pd/Pd0.75Co0.25 as shown in tables 1 and 2. 

 
Figure 7: Spin-summed LDOS of the surface Pd atom and adsorbed oxygen calculated for Pd(111). 
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 The next question to rise is why the O–Pd covalent bonding is stronger on pure Pd than 

on the Pd/Pd0.75Co0.25 surface. To answer this question we analyze LDOS of surfaces atoms of 

these systems without adsorbate. LDOS of surface Pd atoms calculated for Pd(111) and 

Pd/Pd0.75Co0.25 (111) are plotted in Figure 9. Note that for Pd/Pd0.75Co0.25 there are two kinds of 

Pd surface atoms: one has no Co neighboring atoms and the other has one Co neighbor. LDOS of 

the latter is shown in Figure 9. One can see that the density of the surface Pd d-states around the 

Fermi-level for Pd/Pd0.75Co0.25 is significantly reduced and the entire d-band is shifted towards 

lower energies compared to those for Pd(111). As seen from Figure 9, these effects are more 

pronounced for Pd0.75Co0.25 and even more for Pd0.5Co0.5. It is important to note that the surface 

Pd atom in Pd(111) naturally has no Co neighbors, while in Pd/Pd0.75Co0.25, Pd0.75Co0.25, and 

Pd0.5Co0.5 it has one, three, and six nearest Co neighbors, respectively. We thus find a close 

correlation between energetic position of the d-band of surface Pd atom and the number of its 

Co-nearest neighbors, this is: the more Co neighbors Pd atom has the deeper its d-band is 

located. This correlation reflects the discussed above effect of the hybridization between Pd d-

states and Co d-states, which causes a low energy shift of the Pd d-band. The position of the Pd 

d-band center with respect to the Fermi-level, plotted versus number of Pd-Co bonds, clearly 

illustrates this correlation (see Figure 10). This finding is very important, because the quantity of 

our interest – strength of covalent O–Pd bonding is determined by hybridization of both occupied 

and non-occupied oxygen and metal states, which in turn depends on the density of the metal d-

states around the Fermi-level. If the d-band shifts towards lower energies upon composition 

variation, the density of d-states around the Fermi-level decreases which causes weakening the 

oxygen metal bond. This effect is depicted in the simple and widely used model [57] which 
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correlates the d-band center position with the adsorption energy of oxygen or other species. We 

can thus conclude from our results that the hybridization of Pd d-states and Co d-states in 

Pd/Pd0.75Co0.25 causes a low-energy shift of the d-band center of the surface Pd atoms, with 

respect to that of the Pd(111), which in turn leads to a weakening of the O – Pd covalent bond 

and a decrease in the O binding energy. Note that, as we move from Pd and Pd/Pd0.75Co0.25 to 

Pd0.75Co0.25 and Pd0.5Co0.5, the Pd d-band center is shifted toward lower energies, while the O 

bonding is strengthening significantly. This happens because Pd0.75Co0.25 and Pd0.5Co0.5 have 

surface Co atoms and the O binding energy is determined rather by the stronger Co–O bonding. 

 
Figure 8: Spin-summed LDOS of the surface Pd atom and adsorbed oxygen calculated for 

Pd/Pd0.25Co0.75(111). 
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Figure 9: Spin-summed LDOS of the Pd(111) surface. Pd atom calculated for pure Pd (solid line), 

Pd/Pd0.25Co0.75 (dash line), Pd0.25Co0.75 (dash-dot-dot line) and Pd0.5Co0.5 (dot line). 

 

 As mentioned in Introduction of this chapter, the authors in [42] propose the contraction 

of Pd – Pd bonds caused by alloying with Co to be the factor which changes the electronic 

structure and binding energy of oxygen. Our results bring us to a different conclusion. As seen 

from Figure 9 and Figure 10, the Pd d-band center is deeper for Pd0.75Co0.25 than for 

Pd/Pd0.75Co0.25 even though these two systems have the same lattice parameter and hence the 

same Pd–Pd bond length. Furthermore, as shown in Figure 11, two non-equivalent Pd surface 

atoms of Pd/Pd0.75Co0.25, have significantly different LDOS: the Pd atom that has a Co nearest 

neighbor has lower density of states around the Fermi-level and deeper the d-band center than 

the other Pd surface atom that has only Pd nearest neighbors. The results thus bring us to the 

conclusion that the d-states hybridization between Pd and Co atoms is the main factor which 

controls the LDOS of Pd atoms and the oxygen binding energy in Pd–Co alloys with surface 

segregation. 
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Figure 10: Energy of the Pd d-band center counted for the Fermi-level as a function of the neighboring Co 

atoms. 

 

 
Figure 11: Spin-summed Pd LDOS calculated for Pd/Pd0.25Co0.75(111) for the surface Pd atoms which have no 

Co neighbor (solid line) and has one Co neighbor (dash line). 

 

3.2.6 Conclusions 

 The Pd segregation towards the surface in the Pd-Co alloys observed in experiment is 

essential for improving electro-catalytic properties of these materials. Indeed, the binding energy 

of the ORR intermediates on Pd/Pd0.75Co0.25 are found to be lower than that on Pd(111) which is 
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favorable for the reaction, while the Pd0.75Co0.25 and Pd0.5Co0.5 surfaces are too reactive for ORR 

due to bonding to the surface Co atoms. The results show that the hybridization between Pd d-

states and Co d-states causes the low energy shift of the d-band of surface Pd in Pd/Pd0.75Co0.25, 

which causes weakening the bonding of the intermediates to the surface.  

 Co-adsorption of the ORR intermediate and water is found to change the reaction 

energetics significantly. We have built the ORR free energy diagrams for the Pd and 

Pd/Pd0.75Co0.25 and estimated the onset electrode potential for the reaction. For the intermediates 

adsorbed with 0.25 ML coverage, the estimated from the calculations U0 is found to be much 

lower than in experiment. Co-adsorption with water slightly improves the results, while the 

diagrams built for the O – OH and OH – OH co-adsorption configurations provide U0 which are 

in a good agreement with experiment. The oxygen binding energies, obtained for Pd and 

Pd/Pd0.75Co0.25 support the assumption [32, 33] that EB(O) can be used as a descriptor of the 

ORR activity. 

3.3 First Principle Calculations on Pd/X/Pd Sandwich Like Structures 

 As mentioned on previous sections, considerable effort has been made to reduce the 

content of Pt used in the FC electrodes as well as to enhance the catalytic activity of such 

systems by depositing a Pt monolayer on different substrates[58, 59, 60, 61].  

 Concerning Pt free materials, Pd-based alloys have been extensively studied. In particular 

Pd-Co alloys have shown promising catalytic properties towards the ORR [36, 37, 38, 39]. 

Among the theoretical studies on Pd-Co alloys concerning the study of the ORR, for the 
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purposes of this section, is worth mentioning the work done by Son and Takahashi[62] where 

they study Pd-Co alloys finding that maximizing the number of Co atoms at the second atomic 

layer underneath a Pd skin enhances the catalytic activity of the system. Also, experimental 

results on the literature have shown a Pd segregation towards the surface in Pd-Co alloys, 

resulting in a Pd rich skin [39, 58, 63]. On the other hand, Shao and co-workers [64] have shown 

that on Pd-Fe systems exhibit an enhancement in the catalytic activity towards the ORR 

surpassing the one achieved by carbon supported Pt.  

 There are indications that the interaction between the substrate and the catalytic active 

monolayer on top is responsible for the previously mentioned enhancement in the catalytic 

activity of Pd-Co and Pd-Fe systems, where the system’s surface is rich in Pd. This idea has been 

used by the authors of ref[65], who proposed a rational design of electro catalytic systems 

towards the ORR based on the hybridization between substrate and surface layer. The results on 

Pd-Co alloy systems described in the previous section and published in ref[66] have shown that 

the hybridization of Pd and Co d-states reduces the d-band center of Pd atoms as well as the 

LDOS around the Fermi level, making the Pd atoms less reactive towards O adsorption. Based 

on this idea we propose Pd/M/Pd (M=Co or Fe) systems as a promising ORR catalysts. In this 

section we present our results on such systems comprised of a Pd substrate covered by a 

monolayer of Co or Fe and Pd monolayer on top. Three systems will be described and analyzed 

in this section: Pd slab and Pd slab with a Co or Fe monolayer deposited on the surface followed 

by a Pd skin (Pd/Co/Pd) and (Pd/Fe/Pd) respectively. These three systems have the same lattice 

constant, therefore no strain effects will be present, allowing us to focus on the effects caused by 

the hybridization between the top two layers. 
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 We have a reason to believe that these materials will be stable because of a number of 

experimental works studying similar structures. For example, in the case of Pd-Fe systems, Ueno 

et al.[67] deposited Fe and Pd on Pd(001) surface via an e-beam evaporation source at a 

temperature of 310 K, the authors were able to fabricate Fe/Pd and Pd/Fe/Pd systems. Using low-

energy electron diffraction measurements, the authors were able to determined that in the case of 

Fe/Pd system, the surface was comprised of 35% of Fe atoms and 65% of Pd atoms, while the 

65% of Fe atoms where located at the second layer. On the other hand, for the Pd/Fe/Pd sample, 

the authors found that the surface was comprised only by Pd atoms, the second layer contained 

10% of Fe atoms, while the 90% of the Fe atoms were localized at the third layer. Lehnert and 

coworkers[68] have prepared similar systems where Fe and Co ultrathin layers (1 monolayer)  

have been deposited on Rh(111) and Pt(111) substrates. 

 The Pd-Co and the Pd-Fe bonds are stronger than the Pd-Pd bonds. Also the Co-Co and 

the Fe-Fe bonds are stronger than the Pd-Co and the Pd-Fe bonds. Therefore is energetically 

more favorable to have a Pd/M/Pd  (M=Co or Fe) than a M/Pd system, this behavior will be 

shown on subsection 3.3.5. A deeper analysis on this sandwich-structure system can be found in 

ref[65]. A similar system have been studied by Wadayama et al. in ref[69], where the authors 

deposited Ni onto a clean Pt(111) surface with an electron-beam evaporator at different 

temperatures. Infrared reflection absorption spectroscopy (IRRAS) measures were performed, 

allowing them to make a comparison between the C-O stretch frequency of the CO adsorbed on 

the Ni/Pt sample treated at temperature of 823 K and the CO adsorbed on  a second fabricated 

Pt/Ni/Pt(111) “sandwich” sample. The results indicated that the Ni/Pt sample treated at a 

temperature of 823 K has a Pt/Ni/Pt sandwich-like structure, where the Ni atoms are localized at 
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the second layer. Also the authors show that the catalytic activity towards the ORR is higher in 

the Pt/Ni/Pt structure than in the Pt(111) surface. 

 In order to characterize the Pd/M/Pd (M=Co or Fe) systems, we will continue using the 

idea of relating the d-band center and the O adsorption as was described in [57] ( as is shown for 

different metals on ref[39] and ref[70]) and we will use the O, OH and OOH binding energies as 

a descriptor of the ORR. It is important to highlight the linear relation between the binding 

energies of O,OH and OOH described by Norskov and coworkers[31]. As we will see, this effect 

is present also for the systems under consideration.  

 The results of this study are organized as follows: subsection 3.3.1 starts by giving a short 

description of the computational details. In sub-section 3.3.2 we discuss the change in the d-

LDOS of Pd atoms due to hybridization with Co and Fe atoms on the second layer and how these 

changes affect the binding energy of the intermediates (O, OH and OOH). In sub-section 3.3.3 

we compare the binding energy of the intermediates for a 0.25 monolayer (ML) with and without 

OH and H2O co-adsorption for the three systems under consideration. In sub-section 3.3.4 we 

compare the catalytic activity of the three systems by making a comparison between the free 

energy diagrams as described in the introduction of this chapter. Sub-section 3.3.5 discusses the 

stability of the system in vacuum, against oxidation and in acidic media, which is one of the 

major concerns in fuel cell systems. Finally, the conclusions will be found in sub-section 3.3.6. 

3.3.1 Computational Details 

 For all system under consideration, the electronic structure and the equilibrium position 

of the atoms were obtained using the code VASP 5.2[46], with projector augmented wave 
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potentials [47] and the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient 

approximation (GGA) for the exchange and correlation functional ref[48]. All systems, except 

for clean Pd, were calculated taking into account spin polarization. In order to simulate the 

surface we use a supercells with a 7 layer slab and vacuum layer of 14 Å. For all calculations the 

supercells had the (2 × 2) in-plane periodicity. The (7 × 7 × 1) k-point samplings in Brillouin 

zone used in this work provide sufficient accuracy for the characteristics obtained by integration 

in the reciprocal space. The cutoff energies of 400 eV and 600 eV were used for the plane wave 

expansion of wave functions and charge density, respectively. To achieve structural relaxation, a 

self-consistent electronic structure calculation was followed by calculation of the forces acting 

on each atom. Based on this information the atomic positions were optimized to obtain 

equilibrium geometric structures in which forces acting on atoms do not exceed 0.02 eV/Å. 

 To obtain the zero point energies (ZPE), we have calculated the vibrational frequencies of 

the intermediates O, OH, OOH and H2O using the finite-difference method. Since masses of the 

ORR intermediates are much smaller than those of the substrate, only the intermediates 

vibrational modes were taken into account leaving the slab atoms frozen. Five displacements 

were used for each direction with a step of 0.02 Å. 

 The geometric structures of clean and adsorbed surfaces shown in this article have been 

plotted using the Xcrysden software ref[49]. 

 According to our results on bulk Pd, for the three systems under consideration the lattice 

constant was set to 3.962 Å. The lattice constant mismatch between Pd and Fe or Co has no 

relevance due to the small concentration of Co and Fe in the Pd slab (Co and Fe form an atomic 
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monolayer below the Pd atoms at the surface, followed by Pd bulk). For the Pd/Co/Pd system, 

the layer stacking follows the ABCABC pattern of the Pd(111) surfaces, but in the case of 

Pd/Fe/Pd our results shown that the Pd layer, deposited on top of the Fe layer, prefers to align 

with the Pd layer below the Fe atoms, forming a ABA stacking pattern for the three top most 

layer of the system (Pd/Fe/Pd). The rest of the slab maintains the ABCABC stacking 

configuration. 

3.3.2 Results on the Local Density of States 

   

 
Figure 12: Spin summed LDOS of d-states Pd atoms on the system surface for clean Pd(111) (black line), 

Pd/Co/Pd (blue line) and Pd/Fe/Pd (red line). 

 

 Figure 12 shows the spin summed d-LDOS of one surface Pd atom in each one of the 

systems under consideration (Pd (111) surface, Pd/Co/Pd and Pd/Fe/Pd). As can be seen, the 

magnitude of the LDOS around the Fermi level follow the order Pd(111)> Pd/Co/Pd> Pd/Fe/Pd. 

Using the LDOS shown Figure 12, the d-band center of the Pd surface atoms for each one of the 

system under consideration were calculated, finding that the d-band center of Pd atoms in the  
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Pd/Co/Pd and Pd/Fe/Pd are shifted by  0.260 and 0.307 eV respectively, towards lower energies 

with respect to the Pd(111) system. This shift of the d-band and consequent reduction of the 

LDOS at the Fermi level is expected to lead to a reduction in the intermediates binding energy 

and a consequent increment in the catalytic activity of the system, as we will show in following 

sub-sections. 

 In the previous section we have shown that the hybridization of d-states between Pd and 

Co atoms is responsible for the low energy shift of the d-band center of the Pd atoms. In Figure 

13 panel a we show the spin up and spin down d-LDOS of the Pd and Fe atoms at the surface 

and the second layer respectively, it can be seen that overlapping of the spin down ( spin minor) 

states of the Pd and Fe atoms is small, while the spin up (spin major) states (the occupied d states 

of Pd and Co atoms) strongly  overlap and thus hybridize determining the alloying effect on the 

LDOS and shifting the d-band center to lower levels and reducing the density of states around 

the Fermi level of the surface Pd atoms. In Figure 13 panel b we present  the spin up and spin 

down d-LDOS of the Pd and Co atoms at the surface and the second layer respectively, the 

analysis of the figure is completely analogous to the one done for the Pd/Fe/Pd system (Figure 13 

panel a) described above. 
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Figure 13: Spin resolved d-LDOS. Panel a: Pd/Fe/Pd system. Panel b: Pd/Co/Pd system. Black lines denote 

the d-states of Pd atoms at the top layer, while red lines denote the d-states of Fe or Co atoms (Fe d-states for 

panel a and Co d states for panel b) on the second layer.  

 

3.3.3 Results on O, OH and OOH Binding Energies 

 For the three system under consideration the O, OH and OOH binding energies where 

calculated on all the non-equivalent adsorption sites with a 0.25 coverage (one intermediate per 

unit cell), finding that the fcc hollow site is preferred for the O, OH adsorption, while the bridge 

site is preferred for the OOH adsorption.  

Table 3: O, OH and OOH binding and zero point energies for 0.25 ML coverage on Pd, Pd/Co/Pd and 

Pd/Fe/Pd, on the preferred adsorption site. 

Adsorbate Slab EB(eV) ZPE (ev) 

 

O 

Pd 4.634 0.072 

Pd/Co/Pd 4.071 0.066 

Pd/Fe/Pd 3.853 0.064 

 

OH 

Pd 2.594 0.320 

Pd/Co/Pd 2.534 0.290 

Pd/Fe/Pd 2.427 0.300 

 

OOH 

Pd 1.165 0.423 

Pd/Co/Pd 1.094 0.426 

Pd/Fe/Pd 0.937 0.430 
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 Table 3 presents the binding energies and the zero point energies of intermediates (O, OH 

and OOH) adsorbed on Pd(111), Pd/Co/Pd and Pd/Fe/Pd. In this table it can be seen the linear 

relation between the binding energies of O, OH and OOH mentioned in the introduction. The 

binding energies of the intermediates in the three systems follow the order Pd(111) > Pd/Co/Pd > 

Pd/Fe/Pd. This, as mentioned above, was an expected result since the surface Pd atoms d-band 

center is lower for the Pd/Co/Pd and Pd/Fe/Pd than for Pd(111) systems (see Figure 12). Similar 

results for O binding energy have been reported on Pt-(Co or Fe) systems[71].  

 It is worth noticing that the largest difference in the zero point energy between systems is 

not higher than tens of meV, which is negligible and allow us to take the term “∆ZPEi-T∆Si”  in 

equation (3.11) as constant values for the three systems. As we have mentioned earlier this is: 

∆ZPEi-T∆Si =-0.046, 0.252 and 0.263 eV for O, OH and OOH respectively. 

Table 4: Binding energies of intermediates co-adsorbed with 0.25 ML coverage of OH and H2O, on the 

preferred adsorption site. 

Slab Co-adsorbate O binding 

energy (eV) 

OH binding 

energy (eV) 

OOH binding 

energy (eV) 

 

Pd 

OH 4.230 2.767 1.603 

H2O 4.770 2.874 1.653 

 

Pd/Co/Pd 

OH 3.893 2.773 1.193 

H2O 4.203 2.957 1.692 

 

Pd/Fe/Pd 

OH 3.482 2.495 1.111 

H2O 4.147 2.941 1.651 

 

 To simulate a more realistic scenario, the binding energies of the intermediates shown in 

Table 3 were calculated also with the co-adsorption of OH and H2O, leading to 0.50 ML 

coverage of the intermediates on the surface. This results are presented in Table 4. Comparing 

Table 3 and 4 three different trends are observed: a) the O binding energy decreases with the co-
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adsorption of OH for the three systems, b) OH co-adsorption stabilizes other OH molecules 

adsorbed on the surface and c) water stabilizes all the intermediates (O, OH and OOH). This 

behavior can be explained appealing to the electrostatic interaction between intermediates 

adsorbed on the Pd surface as follows: Upon adsorption, the O and H atoms of the intermediates 

become negatively and positively charged respectively, creating an electrostatic interaction 

between intermediates. Analysis of the geometry and energetics of co-adsorption reveals the 

following trends: despite the attraction between the negative charge O atoms and the positive 

charge H (the H that comprise the OH adsorbed molecule), the electrostatic repulsion between 

the negative charged O atoms, of O and OH, reduces the binding energy. A similar observation is 

done for co-adsorption of O and OH: the positive charged H atoms tilts and rotates towards 

neighboring charged O atoms, see Figure 14, due to the electrostatic attraction between H and O 

atoms, increasing the binding energy of the intermediates (O, OH and OOH). The geometries of 

the intermediates co-adsorbed with other OH and H2O molecules on Pd/Co/Pd and Pd(111) 

surfaces are very similar to the Pd/Fe/Pd ones (see Figure 14), therefore are not present in this 

section. 
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Figure 14: Intermediates adsorbed on Pd/Fe/Pd system. Panel a: relaxed OH co-adsorbed with OH on 

Pd/Fe/Pd (0.5 ML coverage). Panel b: relaxed OH co-adsorbed with H2O on Pd/Fe/Pd (0.5 ML coverage). 

Panel c: relaxed OOH co-adsorbed with H2O on Pd/Fe/Pd (0.5 ML coverage). 

 

3.3.4 Free Energy Diagrams 

 In order to link the intermediates binding energy to the ORR, we have used equation 

(3.11) and the intermediates binding energies presented in tables 3 and 4 to construct the free 

energy diagrams of the ORR in presence of 0.25 ML coverage of water (see Figure 15). On panel 

a the electrode potential is set to 0 eV (U=0), while in panel b the electrode potential was set to 

0.548 eV  (U=0.548 eV). At U=0 eV (see Figure 15 panel a), the reaction is exothermic for the 

three systems under consideration. Now, Figure 15 panel b shows that at U=0.548 eV the only 

system maintaining the exothermic character of the reaction is Pd/Fe/Pd, while the ORR reaction 

on the Pd/Co/Pd and Pd(111) systems becomes non-exothermic in the last two steps. These 

results allows us to conclude that the onset potential and the catalytic properties towards the 

ORR of the three systems under consideration follow the order Pd/Fe/Pd > Pd/Co/Pd > Pd(111). 
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 The enhancement in the catalytic activity of the Pd/Fe/Pd system is in good agreement 

with the experimental results obtained in [64]. The Authors in [64] explain the experimentally 

observed catalytic activity enhancement, by arguing a change in the DOS due to strain effects 

caused by the lattice constant mismatch between Fe and Pd atoms. On the contrary, our results 

suggest that the enhancement in the catalytic activity exhibit by Pd-Fe systems is due to 

hybridization effects between the Pd atoms at the surface and the Fe atoms localized in the 

second layer of the system. 

 
Figure 15: ORR free energy diagrams for Pd(111) (black line), Pd/Co/Pd (blue line) and Pd/Fe/Pd (red line) 

in presence of 0.25 ML of H2O. Panel a: U=0 eV, panel b: U=0.548 eV. 

 

3.3.5 Results on the Stability of the System 

 It has been shown above that the hybridization of the dPd - d(Co, Fe) states is the key 

factor in reducing the reactivity of the system towards the adsorption of the intermediates (O, OH 

and OOH), leading to the enhancement in the catalytic activity of the system. However, it is well 

known that Co and Fe atoms are very reactive towards the adsorption of O (and as a consequence 

towards OH and OOH, see Table 1), making the segregation of Co or Fe atoms towards the 

surface an undesired effect. With this in mind, we performed calculations on the energy 
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difference between the Pd/X/Pd (X=Co or Fe) system and a second system where all the Co or 

Fe have been segregated towards the surface (X/Pd), finding that the segregation of Co and Fe 

atoms towards the surface increases the energy of the system by 0.556 and 0.751 eV per surface 

atom respectively. This allows us to conclude that this particular segregation is energetically not 

favorable. We expected this because the Pd-Co or Pd-Fe bonds are stronger than the Pd-Pd and a 

segregation of Fe or Co towards the surface would reduce the number of Pd-Co and Pd-Fe bonds 

from six to three. 

 Another concern is the penetration of O from the surface to the second layer making a 

bond with the Co or Fe atoms, in other words the oxidation of the second layer. This oxidation 

will lead to a new shift in the d band center towards the Fermi level of the surface Pd atoms, 

making the system more reactive toward the adsorption of the intermediates and leading to a 

reduction of the catalytic activity of the system. This effect can be seen in Figure 16 where we 

show a comparison between the d-LDOS of Pd atoms at the surface with and without oxygen 

bonded to Fe atoms on the second layer. Regarding this issue, our calculation shows that the 

energy of the system increases when the oxygen goes from the surface to the second layer 

(making a bond with the Fe or Co atoms) by 0.332 eV and 0.01 eV respectively. In the first case, 

we can conclude that the Pd/Fe/Pd system is stable toward oxidation. However, for the second 

system (Pd/Co/Pd), even though the difference in energy is small, the oxidation is unlikely to 

happen due to the expected energy barrier between the two states. 
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Figure 16: Spin summed d-LDOS of surface Pd atoms on the Pd/Fe/Pd system. Black line corresponds to the 

pristine Pd/Fe/Pd system. Red line corresponds to the Pd/Fe/Pd system with one O atom in between the Pd 

and Fe layer (oxidized system). 

 

 Now, since the final goal is to use the systems under consideration in FC devices, the 

dissolution potential in acidic media is a major concern in this kind of systems. It is well known 

from literature that the dissolution potential for Pd is 0.95 V (pH0)[72]. Based on the work done 

by Greeley and Norskov [73], if the dissolution potential U
0
 of a given system is known, the 

dissolution potential U of a related system can be calculated trough the following equation: 

                 
              

 
.       (3.15) 

 Where  “l” is the number of electrons transfer ( in this case l=2), EPd,Bulk is the DFT 

calculated energy per Pd atom (Pd bulk calculation), EPd/X/Pd corresponds to the Pd/X/Pd 

(X=Co,Fe) system’s energy, EX/Pd is the energy of the Pd/X/Pd (X=Co,Fe) system without the Pd 

atoms on the first layer (X atoms on top of the Pd (111) surface) and finally N is the number of 

Pd surface atoms in supercell (for the systems under consideration N=4). 
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 Using equation (3.15) we calculated that the dissolution potential (at pH0) for the two 

systems Pd/Co/Pd and Pd/Fe/Pd are 1.23 and 1.32 V respectively, which is higher than the ideal 

onset potential for a proton exchange membrane fuel cell, allowing us to conclude that both 

systems are stable in acidic media. 

3.3.6 Conclusions 

 In this project we proposed the sandwich like structures Pd/Co/Pd and Pd/Fe/Pd as two 

new catalytic materials towards the ORR. Our calculations predict an enhancement in the 

catalytic activity toward the ORR over Pd surfaces due to the reduction in the binding energy of 

the intermediates O, OH and OOH. The lower reactivity of the surface towards the adsorption of 

the intermediates was traced to the hybridization of dPd and d(Co,Fe), which causes a shift to 

deeper energy levels in the d-band center of the surface Pd atoms. Furthermore, according to our 

calculations both systems are stable on vacuum, against oxidation and have a dissolution 

potential higher than the optimal onset potential of a proton exchange membrane fuel cell. 

3.4 Strain and Hybridization Effect on Catalytically Active Monolayers on Metal 

Substrates 

 As we have mentioned in chapter 1, Pt is a widely used material used in both electrodes 

of PEMFC and DMFC. However, several problems have to be overcome before a large scale 

implementation can be possible. For example, the performance of both PEMFC and DMFC 

suffers from low rate of the oxygen reduction reaction (ORR) on the Pt cathode. When Pt is used 

as anode catalysts, it suffers from poisoning by CO, which comes with hydrogen produced from 
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natural gas in the case of PEMFC and as a product of methanol (ethanol) decomposition in the 

case of DMFC (DEFC), without mentioning the scarcity of the element. 

 A great amount of work has been done in order to solve the above mentioned problems. 

For example, a Pt monolayer supported on Au(111) substrate has been reported to be more active 

towards the methanol and ethanol electro-oxidation than Pt(111)[74]. Pt sub-monolayer 

deposited on Ru nano particles[75, 76] and other Pt monolayers on Ir [77] have shown a higher 

CO poisoning tolerance than Pt systems.  

 The reduction in the amount of Pt has been achieved by core-shell nanoparticle designs[2, 

5, 78, 79], in most of these cases the system is comprised by depositing an active element (AE), 

in this case Pt, on top of a metal substrate (MS). This causes two different effects: a) In general, a 

mismatch between the AE and MS lattice constant will occur, the AE will retain the pattern of 

the MS causing a change in the AE-AE bonds, which is a very well-known effect called strain 

and b) the contact of the AE monolayer with the MS causes the hybridization of the electronic 

states. Both effects have a direct impact on the reactivity of the AE towards to O or OH 

adsorption (good descriptors of the ORR, as mentioned in this work). For example, if the AE 

layer in AE/MS is expanded as compared to its bulk bond length, the AE-AE wave function 

overlapping is reduced. This causes a narrowing of the AE d-band, resulting in a shift of the d 

band center towards the Fermi level and the increase of the LDOS at the Fermi level, making the 

AE/MS more reactive towards the O and OH adsorption. Also it is clear that the AE-MS 

hybridization has a direct impact on the AE d-states changing the d-band center and the LDOS at 

the Fermi level. For example, if the reactivity of the AE is low due to deep position of the d-
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states and d-band center and if the MS has a high density of states at the Fermi level, the AE-MS 

hybridization will cause the shift in the d-band center and the increase in the LDOS around the 

Fermi level. This will increase the reactivity of the AE/MS system towards the O and OH 

adsorption[65]. This effect is illustrated in sections 3.2 and 3.3  

 Nevertheless, several authors[74, 39, 80] focus on the strain effect, paying little attention 

to the hybridization effects. In this section we will focus on Pt/MS (MS= Ru, Pt or Au) system, 

studying and analyzing the strain and hybridization effects and its contributions to the change of 

the Pt d-states. We will use the OH binding energy as a descriptor of the system’s reactivity 

because appears as a key intermediate in different reactions such as the ORR, CO removal from 

anodes in FC and the oxygen evolution in the photo-catalytic splitting of water.  

3.4.1 Computational Details 

 For all system under consideration, the electronic structure, energetics and equilibrium 

atomic configurations are obtained using the VASP5.2 code [46] with projector augmented wave 

potentials [47] and the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient 

approximation (GGA) for the exchange and correlation functional [48]. For all the system under 

consideration, a 2x2 Pt(111) layer deposited on top of 5 layer of MS (MS=Pt, Ru(0001) and 

Au(111)) followed by a vacuum of 12 Å  were used. Concerning the K point sampling of the 

Brillouin zone, a (7x7x1) grid around the Γ point was used. The cut of energy of 400 eV was 

used for the plane wave expansion of wave functions and the 605 eV cut of energy was used for 

the charge density. The atoms were allowed to relax until the force acting on each one of the 

atoms in the system was less than 0.02 eV/Å  or less was achieved in each atom. 
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 The figures showing the positions of the atoms were plotted using the Xcrysden software 

ref[49]. 

3.4.2 Results on the LDOS 

 To evaluate the strain and interlayer hybridization effects, we have selected five systems: 

Pt(111) surface, Ru slab covered with a Pt monolayer (Pt/Ru) and a Au slab covered with a Pt 

monolayer (Pt/Au). The lattice constant of the 3 systems, Pt, Pt/Ru and Pt/Au, were set according 

to our DFT calculations of bulk Pt, Ru and Au respectively. In addition to these three systems 

two additional systems were taken under consideration: Pt(111) with lattice parameter contracted 

and expanded to the a-parameter of hcp Ru (Pt-contr) and fcc Au (Pt-expnd). We should mention 

that in the chosen reference frame, all the surfaces are oriented in the xy plane. 

 
Figure 17: Surface Pt atoms d-xy and d-xz LDOS. Left panels: Comparison between Pt/Ru and Pt-contr 

systems, right panels: Comparison between Pt/Au and Pt-expnd systems. Pt-contr stands for Pt slab 

contracted to the a-paramenter of the hcp Ru  bulk system, while  Pt-expnd stands for Pt slab expanded to 

the a-parameter of the fcc Au bulk system. 
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 In Figure 17 we plot, compare and contrast the d-xy and d-xz LDOS of the surface Pt 

atom in the following systems: Pt/Ru(001), Pt/Au(111), Pt(111), Pt-expnd and Pt-contr. As can 

be seen from panel a, the d-xy states respond to the bond contraction and expansion as expected: 

the sub-band is shifted toward lower energies. The d-xz states, however, hardly change upon 

contraction (see panel b of Figure 17). 

 The difference in the strain effect on the d-xy- and d-xz states is naturally explained by 

the fact that the in-plane oriented d-xy states are sensitive to the change in lattice parameter due 

to their geometry. In addition, lattice contraction is usually accompanied by increase in the 

first−second layer separation that compensates the contraction effect on overlapping of the 

surface atom d-xz-states with the second layer electronic states. 

 What is very important here is that surface reactivity is determined by the z-oriented 

states, because they are involved in the hybridization with the adsorbate electronic states. 

However, the z-oriented states hardly react to the contraction. We thus should not expect a 

noticeable decrease in the Pt(111) reactivity upon the lattice contraction even though the d-band 

center moves toward lower energies due to the in-plane state contribution. 

  Next, we compare the d-xy and d-xz states of surface Pt atoms in the contracted Pt(111) 

and Pt/Ru(0001) (see panels c and d in Figure 17). Importantly, both structures have the same in-

plane Pt−Pt bond lengths, therefore, all differences in the projected LDOS should be totally 

attributed to the interlayer hybridization. One can see that, in this case, the difference in the d-xy 

LDOS is not quite pronounced, whereas the d-xz-sub-band is significantly shifted toward lower 

energies as compared to that of the contracted Pt. This shift should cause a decrease in surface 



79 

 

reactivity. We thus can expect the Pt/Ru surface reactivity to be lower than that of Pt(111) that 

purely results from interlayer hybridization of the z-oriented d-states of Pt. 

 We have performed a similar analysis for Pt(111), Pt/Au(111), and Pt(111) with the 

lattice parameter expanded to that of Au (see panels e, f, g and h of Figure 17 ) and came to 

similar conclusions: the lattice expansion of Pt causes a noticeable narrowing of the d-xy-sub-

band (see panel e of Figure 17), while the d-xz-sub-band hardly responds to the expansion (see 

panel f of Figure 17 ). On the other hand, the Pt d-xz sub band in Pt/Au is found to be much 

narrower than that in Pt with both equilibrium and expanded lattice parameters (see panel h of 

Figure 17). This narrowing is caused by the interlayer hybridization of Pt and Au d-states, which 

is weak because of energetic separation of the d-bands of Au and Pt (Au states are localized at 

lower energies than the Pt d-states, see Figure 18). 

 
Figure 18: d-xz LDOS comparison between Pt and Au slabs. Red line: d-xz states of the Au surface atom, 

black line: d-xz states of the Pt surface atom. 
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3.4.3 Results on the system’s reactivity towards the OH adsorption 

 In order to gain more insight into the factors controlling the surface reactivity and to test 

the idea of a major role of the hybridization in the reactivity of layered surfaces, the OH binding 

energies on Pt, Pt/Ru, Pt/Au, Pt-contr and Pt-expnd have been calculated. The results are listed in 

the Table 5, as well as the d-band center positions of the d-xy and d-xz states. Pt is used as 

reference for all the numbers. We find that, as suggested by the analysis of the projected Pt 

LDOS, EB(OH) is significantly lower for Pt/Ru(0001) than for Pt(111) due to the interlayer 

hybridization.  These results are presented in Figure 19 where it can be seen that the correlation 

between the OH binding energy and the d-xz band center is clearer than the correlation between 

the OH binding energy and the d-xy or total d-band center (It is not the case for Pt/Au and we 

will come back to this system next). Therefore, we propose to relate the surface reactivity to the 

z oriented d-states rather than to the entire d-band[81]. 

Table 5: Binding energies of OH on Pt, Pt-contr, Pt/Ru, Pt-expnd and Pt/Au systems and the d-band center 

change of Pt atoms on the surface of these systems. Pt is used as reference for all the numbers. 

 ∆E(d-tot), eV ∆E(d-xy), eV ∆E(d-xz), eV ∆EB(OH), eV 

Pt(111) 0 0 0 0 

Pt-contr -0.12 -0.24 -0.05 -0.01 

Pt/Ru -0.37 -0.35 -0.37 -0.22 

Pt-expnd 0.26 0.50 0.11 0.10 

Pt/Au 0.58 0.69 0.49 0.08 

 



81 

 

 
Figure 19: Band centers changes (respect to Pt slab surface atoms) Vs OH binding energy for Pt/Ru, Pt-contr, 

Pt, Pt/Au, Pt-expnd. Black line: total d-band center, red line: d-xy band center, green line: d-xz band center. 

 

 As we have mentioned above, the results for the OH binding energy on Pt/Au do not 

follow the d-band center or the proposed d-xz band center model, suggesting other contributions 

and mechanism involved on the OH binding energy for this particular system, other than the 

LDOS change. In all the systems under consideration, except for Pt/Au, the adsorption of OH 

does not alter the upper Pt monolayer configuration. In contrast, the OH adsorption on Pt/Au 

generates a surface reconstruction, as shown in Figure 20 (OH adsorbed on Pt/Ru has been 

included in the figure for comparison purposes, see panel b of Figure 20). This effect changes the 

system’s electronic structure and cost extra energy, which results in a break in the correlation 

between the OH binding energy and the change in the LDOS, as shown in Figure 19 and Table 5. 
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Figure 20: OH adsorbed on Pt/M surfaces. Panel a: M=Au, panel b: M=Ru. Grey, yellow, red, blue and light 

blue spheres denote Pt, Au, O, Ru and H atoms respectively. 

 

 The surface reconstruction upon adsorption is a well-known phenomenon that occurs 

when an adsorbate significantly changes the potential energy surface of the system[82]. To give 

an explanation of the observed surface reconstruction on Pt/Au, the Pt monolayer formation 

energy was calculated for all the systems under consideration. The results show that Pt binds 

weaker to Au than to Pt or Ru. More specifically, we found the Pt layer formation energy in 

Pt/Au is 0.464 eV/atom less than the Pt layer formation energy on Pt. On the other hand, the Pt 

layer formation energy in Pt/Ru is 0.632 eV/atom higher than the Pt layer formation energy on 

Pt. Therefore, since the Pt-Au bonds are weaker than the Pt-Pt bonds, and the Pt-Pt bonds have 

been elongated or expanded (due to the gold substrate in the Pt/Au system), the adsorption of OH 

induces the reduction of the Pt-Pt bonds distance, leading to the surface reconstruction. It is 

worth mentioning that to ensure that clean Pt/Au(111) does not undergo the reconstruction, the 

Pt/Au structure was relaxed starting from various perturbed configurations. In particular, it was 

started with the reconstructed Pt/Au configuration shown in Figure 20 panel b, but removing the 
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OH atoms. After relaxation the Pt-Pt bonds reached the original length found in our previous 

results for Pt/Au system, restoring the non-reconstructed surface geometry. 

3.4.4 Conclusions 

 In this project we have shown that the hybridization between layers is the main factor 

controlling the reactivity of the Pt monolayer/substrate systems, whereas contribution of the 

well-known strain effect to the reactivity is not significant. Also it was shown that since in-plane 

d-states are not actively involved in the adsorption process, the changes in the d-z LDOS are a 

better descriptor of the reactivity of the surface. Finally, it was found that for systems where the 

Pt monolayer is weakly bound to the substrate, reconstruction of the monolayer is likely to 

happen upon adsorption, destroying the correlation between the LDOS and the reactivity of the 

system. 

3.5 First Principles Studies on Chalcogen Modified Ru Surfaces  

 Ru catalytic properties towards the ORR are known to be inferior to the ones obtained 

with Pt. As we have mentioned above, the adsorption of O and OH are good descriptors of the 

catalytic activity towards the ORR and according to authors in [30] a reduction in the O and OH 

binding energy has to be made in order to improve the catalytic activity of Ru surfaces. In 1986 

Alonso-Vante and Tributsch shown a high catalytic activity for Mo4.2Ru1.8Se8 systems 

comparable to Pt[83]. Since then, chalcogen modified Ru systems have attracted the attention of 

several groups, it has been shown by several experimental groups that the catalytic activity of Ru 

is enhanced by modifying the Ru system with Se[84, 85, 86, 87] up to a Se concentration of 15% 
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[86, 88]. For higher concentrations, the Se atoms block the active Ru nanoparticles sites reducing 

the catalytic activity of the system. The catalytic activity of Ru has also been enhanced with the 

addition of S and Te[84, 89, 90, 91] but to the extent of our knowledge, the reasons behind this 

enhancement have not been studied. Our previous work on Se modified Ru nano particles[92] 

and the author’s work in ref[93] explains the ORR catalytic activity enhancement due to the 

electrostatic repulsion between the O and Se atoms on the surface, which leads to a weaker O 

adsorption.  

 Dassenoy and coworkers[97] have performed x ray diffraction (XRD) pattern 

experiments on the Ru nanoparticles modified with Se, finding that the particles maintain the hcp 

structure and are more resistant to oxidation than the Ru monometallic nanoparticles. Concerning 

the structure of the Ru nanoparticles, authors in ref[94, 99, 100] have performed x ray diffraction 

pattern experiments finding that the Ru nanoparticles maintain the hcp Ru core while the Se is 

coordinated at the surface of the nanoparticle. Zehl et al.[86] performed XRD experiments and 

were able to determine that the core of the Ru nanoparticle modified with Se had an hcp Ru core. 

Also the authors performed anomalous small-angle X-ray scattering experiments, their results 

allow them to suggest that the nearly spherical Ru nanoparticles with a mean diameter of 2.5 nm 

was decorated with small Se clusters with diameters less than 0.6 nm. Zaikovskii and 

coworkers[101]  have synthesized similar Ru clusters modified with Se, they assume that the Ru 

nano particles are not decorated with Se island, but with Ru selenide clusters with sizes smaller 

than 1 nm. Concerning S and Te modified Ru clusters, Alonso-Vante et al.[90] performed 

extended X-Ray absorption fine structure (EXAFS) experiments on Ru nanoparticles modified 
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with chalcogens (S, Se and Te) and were able to determine that the particles have a Ru hcp core, 

while the chalcogens were coordinated outside the metal core.  

 In summary, Ru systems are known for having poor catalytic activity towards the ORR. 

However, it has been shown that its catalytic activity towards the ORR is improved by modifying 

the system with chalcogens (S, Se and Te). Experimental results have shown that the core of the 

Ru nano particle maintains a Ru hcp structure while the chalcogens are localized on the surface 

and first layers of the nano particles, still, to the extent of our knowledge there are no works in 

the literature explaining in detail this adsorption. In this section we will study in detail the 

chalcogen adsorption on flat Ru(0001) facets. Since it is known that the O and OH binding 

energies should be reduced in order to improve the catalytic activity of Ru systems, we will use 

these binding energies as descriptors of the ORR. The similarities and differences of the 

mechanisms enhancing the catalytic activity of Ru surfaces when modified with S, Se and Te 

will be discussed. 

 This section on Ru surface modified with chalcogens is organized as follows: in 

subsection 3.5.1 we give a description of the computational details. In sub section 3.5.2 we focus 

on the study of the chalcogen island formation and the redistribution of the valence charge 

density upon chalcogen adsorption. In 3.5.3 we show our results for O and OH coadsorbed with 

chalcogens, the results on the effect of chalcogens adsorption on the local density of states 

(LDOS) of the Ru surface atoms and finally in section 3.5.4 we present our conclusions. 
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3.5.1 Computational Details 

 According to experiments, chalcogen modified Ru nanoparticles have sizes ranging from 

0.6 to 4 nm [89, 90, 91, 94]. Particles with these dimensions have flat facets on their surfaces, 

therefore we will model the Ru system using the (0001) facets, which is known to be the most 

stable. 

 For all the systems under consideration the electronic structure and the equilibrium 

position of the atoms were obtained using the code VASP 4.6[46], with projector augmented 

wave potentials[47] and the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient 

approximation (GGA) for the exchange and correlation functional[48]. we used a 3x3 in plane 

periodicity with 5 layers slab and a vacuum of 13 Å to simulate the surface. A (4x4x1) K point 

sampling in the Brillouin zone was used to obtain relaxed structures and energies, while a 

(7x7x1) sampling was used in DOS (density of states) calculations. A cutoff energy of 400 and 

605 eV where used for the plane wave expansion of wave functions and charge density 

respectively. To achieve structural relaxation, a self-consistent electronic structure calculation 

was followed by calculation of the forces acting on each atom. Based on this information the 

atomic positions were optimized to obtain equilibrium geometric structures in which forces 

acting on atoms do not exceed 0.02 eV/Å. 

 In order to calculate the electronic charge corresponding to a particular atom in the 

system, a three dimensional surface around the atom is constructed, assigning the charge inside 

the surface to that particular atom. This surface has the particularity that is defined as the points 
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in space where the charge density reaches a minimum in the direction perpendicular to the 

surface. This is known as Bader analysis[95]. 

 The valence charge redistribution upon X adsorption (X= O, S, Se or Te) was calculated 

using equation (3.10), the binding energy of the intermediates (O and OH) and the chalcogens (S, 

Se and Te) adsorbed on the surface was calculated using equation (3.9), while the formation 

energy per atom is defined as: 

         
                         

 
,        (3.16) 

where the first term on the right hand side is the calculated DFT energy of a free (insolated) 

intermediate or chalcogen, the second term refers to the Ru slab’s energy, the third term is the 

energy of the chalcogen or intermediate adsorbed on the Ru surface and finally n is the number 

of adsorbed atoms per supercell. It is important to note that a positive binding energy represents 

a binding between the intermediate/chalcogen and the surface. 

 Xcrysden software [49] was used to plot the atom positions, while the charge density 

figures in this paper were plotted using the Vesta software [96] 

3.5.2 Results on Chalcogens Binding to the Ru Surface 

 The chalcogen (O, S, Se and Te) binding energy to the Ru surface was calculated using 

equation (3.9), finding that the hcp is the preferred adsorption site with binding energies of 6.19, 

5.87, 5.26 and 4.87 eV for O, S, Se and Te respectively. The chalcogen distribution over the Ru 

surface is an important aspect since it has profound effects on the O adsorption and as a 

consequence on the catalytic activity of the system. To the extent of our knowledge there has not 
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been a clear study concerning the chalcogen adsorption distribution on Ru surfaces. It is 

known[90] that the Ru particle maintain its Ru hcp core while the chalcogens stay near the 

surface. Some authors[86] have suggested a model where Se islands decorate the surface of the 

Ru particle, while others[97] have suggested a statistical distribution of the chalcogen (Se) over 

the surface. Our results for Ru clusters[92] and the author on Ref. [98] show that the Se island 

formation is not energetically favorable due to the electrostatic repulsion between Se atoms 

which acquire negative charge upon adsorption. To the extent of our knowledge these kind of 

analysis have not been performed for S or Te adsorption. Two cases will be considered in this 

section: a) chalcogen atoms adsorbed uniformly on the Ru surface and b) chalcogens atoms 

adsorbed as first neighbors, this will lead to the formation of dimers and trimmers and we will 

refer to this case as island formation. 

 
Figure 21: Chalcogens formation energy. Hollow symbols denote uniform chalcogen adsorption and solid 

symbols denote island formation (dimer and trimer). Black, green, blue and red lines denote formation 

energy of O, S, Se and Te respectively. 

 

 The formation energies corresponding to the island and uniform distribution of chalcogen 

over the Ru(0001) surface have been calculated using equation (3.16), the results are plotted in 
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Figure 21. It is important to note that the formation energy, for island and uniform distribution, 

decreases for all the chalcogens as the number of atoms in the unit cell increases, revealing an 

interaction between the adsorbed chalcogens in both cases. Furthermore and more important it is 

the fact that for all the chalcogens under consideration, except for O (we will address this issue at 

the end of this subsection), the uniform distribution over the surface is energetically preferred. In 

order to explain this behavior a Bader analysis was performed for the case of O, S, Se and Te 

adsorption (see Figure 22 panels e, f , g and h) showing an increment of 0.86, 0.47, 0.28 and a 

decrease of 0.02 electrons respectively, allowing us to conclude that the electrostatic repulsion 

between negatively charge O, S and Se atoms plays a major role in the decrease of the formation 

energy as the number of chalcogens in the supercell increases (see Figure 21), but does not allow 

us to draw any conclusion concerning the mechanisms controlling the Te adsorption or explain 

the behavior for the Te formation energy shown in Figure 21. It is interesting to compare the 

similarities of O adsorption on Ru and Pd surfaces, in both cases the O atom acquire negative 

charge. We would like to highlight the fact that the O binding energy reduction observed for O 

co-adsorbed with other O atom on Pd surfaces shown in Table 2, section 3.2, is due to this effect. 
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Figure 22: Upper panels: charge density redistribution upon chalcogen adsorption with isosurface set to 

 0.024 e/Å
3
, yellow and blue spots represent excess and depletion of charge respectively. Grey balls 

represents Ru atoms.  Lower panels: total charge density volume used in the Bader analysis with isosurface 

set to 0.3 e/A
3
. Panels a and e correspond to O adsorption, panels b and f corresponds to S adsorption, panels 

c and g corresponds to Se adsorption and panels d and h corresponds to Te adsorption. 

 

 We plotted in Figure 22 panels a, b, c and d, the valence charge density redistribution 

upon adsorption of the chalcogens under consideration (O, S, Se and Te). Panel a reveals the 

strong ionic character of the O-Ru bond, while panels b, c and d shows that for S, Se and Te, the 

character of the bond becomes more covalent as we go from S, through Se to Te. This is in good 

agreement with the Bader analysis previously discussed and confirms the electrostatic repulsion 

between negatively charged neighboring O, S and Se.  

 To get more insight into the nature of the chalcogen-Ru bond, in Figure 23 we plot the 

LDOS of the adsorbed chalcogens (p states) and Ru surface atom (d states). Panel a shows the 

deep energy localization of the O p states, which do not appreciable hybridize with the Ru d 

states, confirming the strong ionic character of the O-Ru bond. To evaluate the covalent 

contribution to the bonding, the percentage of non-occupied p states was calculated for each one 

of the chalcogens adsorbed on the surface finding an increase as we go from O to Te ( 17.21%, 
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18.76%, 20.92% and 22.97% in the case of O, S, Se and Te respectively), see panels a, b, c and 

d of Figure 23. This confirms the increasing covalent bonding of chalcogens when moving from 

S, through Se to Te. 

 
Figure 23: LDOS for Ru Surface atoms and the adsorbed chalcogen atoms coordinated to the Ru atoms. 

Panel a: O adsorption, panel b: S adsorption, panel c: Se adsorption, panel d: Te adsorption. Black lines 

represent the d states of the surface Ru atoms coordinated to the chalcogen atom, while red, green, purple 

and blue lines denote O, S, Se and Te p states. 

 

  To shine more light on the factors controlling the island formation energies depicted in 

Figure 21 and more precisely to understand the reduction of binding energy as the number of Te 

atoms in the island increases, in Figure 24, we show the charge density redistribution ∆ρ upon 

adsorption of two chalcogen atoms (S and Te with the isosurface set to  0.08 e/Å
3
) adsorbed in 

neighboring hcp sites (dimer formation). Figure 24 Panel a shows ∆ρ for of two co-adsorbed S 

atoms while panel b shows it for two co-adsorbed Te atoms. It can be seen that the charge 

coming almost entirely from the Ru atoms has been accumulate in the zone between the Ru 

atoms and the chalcogens. This accumulation of charge between the chalcogens (S or Te) and Ru 

electrostatically repels with neighboring S or Te accumulation of charge. Also in Figure 24 panel 

a and b, it can be seen a lower accumulation of charge at the bond with the common Ru (marked 

with red crosses in Figure 24), this is interpreted as a weaker  covalent bond due to the higher 

coordination of this Ru atom. In conclusion: in the case of O, S and Se, an electrostatic repulsion 
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between chalcogens is observed due to the electrostatic charge gained upon adsorption. On the 

other hand, for all the chalcogens except for O (which has a high electronegativity and a strong 

ionic character in its bond with the Ru surface) a weaker covalent bond between the chalcogens 

and the Ru (the Ru bonded to neighboring chalcogens) is observed. These two effects are 

responsible for the reduction of the formation energy per atom with the increase of the number of 

atoms in the island as well as making a uniform chalcogen distribution on the Ru surface 

preferred over the chalcogen island formation.     

 
Figure 24: Electronic charge density redistribution upon two chalcogens (S and Te) adsorbed on neighboring 

hcp sites. Red and blue spots denote accumulation and depletion of charge respectively. Iso-surface value is 

set to 0.08 e/Å
3
. Panel a: S atoms adsorption, panel b: Te atoms adsorption. Grey, yellow, and brown spheres 

denote Ru, S and Te atoms respectively. 

 

 Now we will address the issue concerning the O formation energy for island formation 

and uniform distribution over the surface depicted in Figure 21, this is: the O island and uniform 

distribution formation energies adopt the same values. In other words, the distance between 

adsorbed O atoms does not affect the formation energy. This behavior may seems to contradict 

the previously discussed model where the electrostatic repulsion between negative charged 
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chalcogens (except for Te) atoms was suggested as one of the origin of the decrease in the 

formation energy as the number of atoms in the system increases and the cause of the uniform 

distribution preference over island formation. This behavior can be easily explained by 

comparing two scenarios: a) two O atoms adsorbed on the Ru(0001) surface as first neighbors 

(2.92 Å between O atoms) and b) two O atoms adsorbed as second neighbors (4.73 Å between O 

atoms). According to our Bader analysis, the amount of electronic charge gained by the O atom 

adsorbed as first and second neighbors in both cases is the same (around 0.8 electrons). On the 

other hand, the charge donated from the Ru surface atoms towards the O atoms is 0.22 electrons 

for all the cases except for the case of two O atoms adsorbed on the surface as first neighbors. In 

this case, the Ru atom coordinated to two O experiences a depletion of 0.42 electrons (all other 

Ru atoms coordinated to O atoms experience a depletion of 0.22 electrons) enhancing the ionic 

character of the O-Ru bond and the electrostatic attraction between this Ru and the O atoms. In 

summary, the increment in the electrostatic repulsion between O atoms caused by reducing the 

distance between them is compensated with the increase of the electrostatic attraction between 

the O atom and the doubled-coordinated Ru atom.  

3.5.3 O and OH Binding Energy in Presence of Chalcogens 

 
Figure 25: O adsorbed on the chalcogen modified Ru surface. Red, green and gray spheres denote O, 

chalcogens and Ru atoms. Black lines symbolize the Unit cell. 
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 To evaluate the catalytic properties of Ru surfaces modified by different chalcogens, we 

will use the O and OH binding energy as a descriptor of the reactivity. As already mentioned in 

previous sections and discussed by other authors [30], the O and OH binding energies are good 

descriptors of the ORR. The O and OH binding energy were calculated on Ru surfaces with 1/3 

chalcogen coverage (O, S or Te) and are presented in Table 6 (due to the dimensions of the unit 

cell, two nonequivalent adsorption sites are available for calculate the O binding energy. Table 6 

shows the O and OH adsorption energy on the hcp site. Figure 25 provides a visual description of 

the adsorption geometry in the case of O adsorbed on the chalcogen modified Ru surface). As it 

can be seen, the O and OH binding energies are higher for the clean Ru(0001) surface, followed 

by the O, S, Se and Te modified Ru surfaces, with the Te modified surface the less reactive. This 

allows us to predict a catalytic activity of the chalcogen modified Ru surface in the following 

order: Ru +Te > Ru +S > Ru which is in good agreement with experimental results[91]. In Table 

6, it is important to note that the O binding energy in the Ru surface with a 1/3 of O coverage is 

the highest (except for clean Ru). This is an interesting result because it tells us that the 

electrostatic repulsion is not the main factor contributing to the reduction of the O binding 

energy and the experimentally observed enhancement in the catalytic activity towards the ORR 

already mentioned on chalcogen modified Ru systems.  

Table 6: Binding energy of the intermediates, O and OH, on clean Ru and 1/3 chalcogen covered Ru surfaces. 

                      Surface 
Intermediate 

Clean Ru Ru + 1/3 O 
coverage  

Ru +1/3 S 
coverage 

Ru +1/3 Te 
coverage 

O 6.187 5.695 5.372 5.177 

OH 3.524 3.178 2.676 2.292 
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 The reduction in the binding energy of the intermediates in the presence of chalcogens is 

due to two different effects: one is the electrostatic repulsion between the negatively charged O 

and chalcogen atoms (S and Se), or in the case of Te the redistribution of valence charge 

accumulated between Te and the surface Ru atoms. The second contribution to the decrease in 

the O binding energy is an indirect effect starting as a weakening of the bond between the 

chalcogen and Ru surface atom, due to the higher coordination of the Ru atoms making a bond 

with the O and chalcogen atoms. This causes a decrease in the total energy of the system and a 

decrease in the O binding energy in an indirect way, see equation (3.9). In Figure 26, panel a and 

b, we show the valence charge redistribution upon adsorption of (O and S) and (O and Te) 

respectively. The excess of charge around the O atom loses the symmetry exhibited in the panel 

a of Figure 22. This excess of charge is displaced away from the Ru atom making a bond with 

the O and the chalcogen (Ru atom marked with a red cross) due to the Coulomb repulsion with 

the excess of charge gain by the S atom upon adsorption (our Bader analysis shows an increase 

of 0.41 and 0.84 electrons in the valence charge of S and O respectively, for the configuration 

described in panel a of Figure 26) and the valence charge redistribution (covalent bonds) 

between Te and Ru atoms. The second effect can be easily seen in the lower valence charge 

density redistribution (which is understood as a weaker covalent bond) observed between the Ru 

atom marked with a red cross and the S or Te atom shown in Figure 26 panel a and b 

respectively. The valence charge density redistribution results for O and Se co-adsorption are not 

shown due to its high resemblance with the ones shown in Figure 26. 
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Figure 26: Valence charge density redistribution upon adsorption of O, S and Te, isosurface is set to 0.08 

e/A
3
. Panel a: O and S adsorbed in hcp neighbor sites, panel b: O and Te adsorbed in hcp neighbor sites. 

Yellow and blue spots denote excess and depletion of charge. Grey, red, yellow and brown balls denote Ru, O 

and S atoms. 

   

 To rule out the possibility of a reduction in the intermediates binding energy due to a 

change in the densities of electronic states of the Ru surface atoms with the adsorption of the 

chalcogens on the surface, in Figure 27, we present the d states of surface Ru atoms with and 

without one chalcogen as a first or second neighbor, see panel a and b respectively. The Table 7 

presents the d-band center of the surface Ru atoms with one chalcogen as first neighbor. From 

Table 7 it can be seen that the change in the d-band center of Ru atoms with one chalcogen as 

first neighbor does not exceed 0.1 eV which may cause a slight effect on the O and OH binding 

energy. Figure 27 shows us that the change in the Ru d-states is very small for the Ru atoms with 

one chalcogen as first neighbor (panel a) and negligible for second neighbors (panel b), in other 

words it is a local effect. Therefore we conclude that the reduction in the binding energy of the 

intermediates and the enhanced catalytic activity of Ru with the addition of chalcogens (observed 

by other experimental groups) is due to the previously mentioned charge density redistribution 

upon adsorption of the chalcogens and not to a change in the Ru LDOS, as happen in other 

systems such as Pd-Co.  
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Table 7: Ru surface atoms d-band center with one chalcogen as first neighbor 

System d-band center (eV) 

Clean Ru -1.363 

O as first neighbor -1.468 

S as first neighbor -1.458 

Te as first neighbor -1.418 

 

 
Figure 27: Surface Ru atoms LDOS, panel a: chalcogens as first neighbors, panel b: chalcogens as second 

neighbors. Black lines denote Ru atoms with no chalcogen neighbors, while red, orange and blue lines denote 

Ru atoms with O, S and Te atoms as first or second neighbors respectively. 

   

3.5.4 Conclusions 

 Our results show that the chalcogen island formation is not energetically favorable due to 

two reasons: in the case of O, S and Se, electrostatic repulsion between chalcogens is observed 

due to the charge gained upon the chalcogen adsorption. On the other hand, for all the 

chalcogens, except O (which has a high electronegativity and a strong ionic character in its bond 

with the Ru surface) a weaker covalent bond between the chalcogens and the Ru (the Ru bonded 

to neighboring chalcogens) is observed. 

 For the ORR intermediates adsorption, we found that the O and OH binding energy are 

reduced by the presence of co-adsorbed chalcogens, making the O binding energy the lowest for 
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the Te modified Ru surface. Two mechanisms have been found to be responsible for this O and 

OH binding energy reduction: the first one is the electrostatic repulsion between negative 

charged chalcogen atoms (S and Se) and the intermediates (O and OH), while the second 

mechanism is an indirect effect where the chalcogen covalent bond with the surface is weakened 

due to the higher coordination of the Ru atoms making a bond with the O and chalcogen atoms. 

 Finally we found that the small change in the d-band center and LDOS of Ru surface 

atom caused by chalcogen atoms adsorbed on the surface is negligible and is not responsible for 

the enhancement in the catalytic activity observed in experiments. 

3.6 First Principle Studies of the Size and Shape Effects on the Reactivity of the Se 

Modified Ru Nanoparticles 

 In the previous section we focused on chalcogen (S, Se, Te) modified Ru surface (0001), 

briefly mentioning the effect of Se on the catalytic activity towards the ORR in Ru surfaces and 

doing special emphasis on S and Te. In this section we will focus on Se modified Ru systems. 

More precisely, we study the Se adoption on small Ru nanoparticles and the effect of Se on the O 

and OH binding energy, which are good descriptors of the ORR.  

  This section starts by highlighting the recent studies showing the enhancement in the 

electro-catalytic performance achieved with the RuxSey nanoparticles [94, 99, 100, 101, 102, 

103, 104, 105, 106] . The main conclusions drawn from these works are: a) the best catalytic 

activity is achieved for the few nanometer particles with the Ru core covered with Se at 

composition Ru85Se15, b) these systems have an excellent tolerance to the methanol oxidation, c) 
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the systems have high selectivity for the four-electron oxygen reduction to water (small fraction 

of H2O2), d) the systems exhibit a high stability towards oxidation,  e) the Ru core has the bulk-

like hcp structure and f) it is not clear how Se is distributed over the Ru particle surface.  In the 

previous section we showed that the chalcogens, except Te, accepts electronic charge coming 

from the Ru atoms, causing an electrostatic repulsion between neighboring Se atoms. The 

experimental data using the nuclear magnetic resonance and X-ray photoelectron spectra also 

suggest the electron charge transfer from Ru to Se [107]. As a result, Se atoms tend to scatter 

over the surface rather than from 2D islands or 3D structures [98, 108]. 

 The properties of Se modified Ru systems have been extensively studied[109]. It is well 

known, as we previously showed, that in Ru flat facets (0001) the Se atoms accepts charge from 

the Ru surface atoms causing an electrostatic repulsion between neighboring Se atoms. On the 

other hand, the author of Ref. [93] has shown that the electrostatic repulsion between O and Se 

atoms is responsible for the reduction of the O and OH binding and the enhancement in the 

catalytic activity towards the ORR in Se modified Ru nanoparticles. However, these results were 

obtained for a selenium modified Ru(0001) surface and it still needs to be understood how the 

geometry of small Se/Ru nanoparticles affects this mechanism, which, to the extent of our 

knowledge, has not been done. 

 In the present section we address the questions raised above. We obtain from first 

principles calculations the formation energies of the Se sub-monolayers on Ru nano-particles as 

a function of the Se coverage, as well as oxygen binding energies for different configurations of 

Se on the Ru particles. The calculations have been performed for two Se/Ru particles of ~1.2 nm 



100 

 

size and different geometries. Such a choice allows us to study in details the effects of under-

coordinated Ru sites on the energetics of Se and O adsorption and the electronic structure of the 

system. Our comparison of the results to those obtained for the flat Ru(0001) surface provides a 

clear suggestion of what energetics and electronic structure one can expect for the 2 nm – 5 nm 

particles, which have been observed in experiment and whose systematic first principles studies 

are still not feasible 

3.6.1 Computational Details 

 In this work we study the Se/Ru particles with 105 and 93 Ru atom core. The 93 Ru atom 

particles exhibit relatively large facets, while the 105 Ru atom particle exhibit under-coordinated 

adsorption sites.  

 All calculations in this work have been performed using the VASP5.2 code [46] with 

projector augmented wave potentials [47] and the Perdew - Burke - Ernzerhof (PBE) version of 

the generalized gradient approximation (GGA) for the exchange and correlation functional [48]. 

In order to simulate an insulated nanoparticle and maintain the periodicity, the nanoparticles 

were situated in a cubic unit cell of side 24 Å. 

 Since no dispersion of the electronic states occurs in such systems, the calculations were 

performed only for Γ point of the Brillouin zone, as it is usually done for non-periodic systems 

modeled by a periodic computational method. The cut of energies of 400 eV and 600 eV were 

used for the plane wave expansion of wave functions and charge density, respectively. To 

achieve structural relaxation, the atomic positions were optimized to obtain equilibrium 

geometric structures in which forces acting on atoms do not exceed 0.02 eV/Å. 
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Xcrysden software ref[49] was used to plot the atoms positions, while the charge density figures 

in this paper were plotted using the Vesta software [96] 

3.6.2 Geometry and General Results on the Ru Nanoparticles 

 
Figure 28: Optimized geometric structure of the 105-atom Ru cluster. The inserted numbers provide the 

binding energies for some Ru atoms 

 

 The two Ru cluster systems (93 and 105 atoms) under consideration are very similar, the 

optimized shape of the 105-atoms cluster is shown in Figure 28. The initial shape of the Ru 

cluster was chosen as a spherical cut of the hcp bulk. To avoid unphysical force cancelations 

between atoms (due to the symmetry of the system) all the atoms were randomly moved by 0.02 

Å before performing the relaxation of the system. We found that the relaxed system maintains 

the hcp structure although some of the bond lengths deviate from the hcp Ru bulk. We realized 

that the relaxed structures of the clusters may not represent the lowest energy configuration. 

However, we consider them rather as prototype systems whose geometries include under-

coordinated Ru atoms, which are typical for clusters of this size. The 105-atoms Ru cluster is 

comprised of a central Ru atom, two complete shells and twelve under-coordinated atoms. The 

twelve under-coordinated atoms are comprised of three Ru atoms on top and three Ru atoms 
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below the cluster with binding energies of 5.78 eV, while the remaining six Ru atoms are 

localized on the sides of the cluster with binding energy of 5.38 eV (see Figure 28). The Ru 93-

atoms cluster looks like the 105-atoms Ru cluster without the twelve under-coordinated atoms. 

As it can be seen from Figure 28, the binding energy of Ru atoms to the cluster depends on the 

local geometry and, in particular, on the coordination numbers. Nevertheless, all surface Ru 

atoms bind to the cluster strongly enough to ensure its stability. For comparison, the binding 

energy of a Ru adatom on Ru(0001) is 5.804 eV.  

3.6.3 Results on the Se Formation Energy and Adsorption on the Ru Nano-Cluster 

 In order to understand the mechanisms controlling the Se adsorption on the Ru cluster, 

four different Se/Ru structures were taken under consideration (see Figure 29), where 1, 18, 30 

and 42 Se atoms are evenly distributed over the Ru 105-atoms cluster, which approximately 

corresponds to 1.6%, 30%, 50% and 65% Se coverage respectively. The results on the relaxed 

Se/Ru systems show an expansion of the Ru-core caused by the Se atoms adsorbed on the 

surface. If we define the expansion of the cluster as the average distance of a given shell to the 

central atom in the Ru cluster, the under-coordinated Ru surface atoms expand by 0.127, 0.144 

and 0.180 Å upon adsorption of 18, 30 and 40 Se atoms respectively. While the complete outer 

shell expands only by 0.019, 0.027 and 0.065 Å for these adsorption configurations. 
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Figure 29: Relaxed Se/Ru system for 30, 50 and 65% Se coverage over the Ru 105-atoms cluster. 

 

 Using equation (3.16) the Se formation energy was calculated for the four different Se 

coverages under consideration (1.6, 30, 50 and 65%) on the Ru 105-atoms system. These results 

are shown in Figure 30 where the formation energy for uniform Se coverage over the Ru (0001) 

surface has been included for comparative purposes. As seen from the figure, the Se formation 

energy decreases with the increase in the Se coverage. The coverage dependence of the Se 

formation energy is found to be similar to that obtained for Se on Ru(0001), however the 

absolute values of the Se formation energy are higher on the Ru cluster than on Ru(0001), that is 

due to the higher reactivity of the under-coordinated atoms in the Ru clusters, which are not 

present in the Ru(0001) surface. A Bader analysis shows that the Se atoms accept 0.44, 0.33 and 

0.26 electrons in average for the Se/Ru case of 1.6, 30 and 50% Se coverage respectively. This 

charge transfer is higher than the charge accepted by a Se atom on flat Ru(0001) facets reported 

in the previous section (an increment of 0.28 electron was found for Se atoms adsorbed on 

Ru(0001) surface), confirming a stronger ionic character in the Ru-Se bond in the Ru clusters. 

The reduction in the amount of charge accepted by the Se atom as the Se coverage increases has 

its origin in the increment of the Ru-Se bonds of the surface Ru surface atoms. 
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Figure 30: Se formation energy as a function of the Se coverage. Green line: Ru 105-atoms cluster, black line: 

Ru(0001) facet. 

 

 The reduction in the formation energy as the Se coverage increases in the Ru cluster has 

its origin in two different effects: a) the already mentioned reduction of the charge accepted by 

Se atoms (which is interpreted as a weakening of the ionic bond character) as the Se coverage 

increases and b) the electrostatic repulsion between charged Se atoms.  

 To understand the similarities and differences between Se adsorption on the flat Ru(0001) 

surface and the Ru cluster, we calculated the valence charge density redistribution upon 

adsorption of two Se atoms on a flat(0001) facet of the Ru 93-atom cluster and around an apex of 

the Ru 105-atom cluster. Figure 31, panel a, shows a strong Se-Ru covalent bond. On the other 

hand, a Bader analysis of the situation depicted on panel a of Figure 31 shows an increase of 0.2 

electrons in the adsorbed Se electronic charge, revealing a strong ionic component of the bond 

(not revealed in the charge density redistribution). As can be seen, these results are qualitative 

similar to the ones obtained in the previous section for the chalcogen adsorption on Ru(0001) 

facets (see Figure 22 and Figure 24). In summary, the electrostatic repulsion between adsorbed 

Se atoms plays a major role in the Se formation energy reduction as the Se coverage increases. 
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However, if Se atoms are adsorbed around an under-coordinated Ru apex, the character of the 

Se–Ru bonding is found to be more complicated: in panel b of Figure 31 it can be seen a lower 

accumulation of charge between the Se-Ru bond than the one seen in panel a, suggesting a 

weaker covalent character in the Se-Ru bond when Se atoms make a bond with under-

coordinated Ru atoms. On the other hand, a Bader analysis shows an increase of 0.32 electrons in 

the electronic charge of the Se atoms at the apex (0.12 electrons more than the charge gained by 

Se in the configuration depicted in panel a of Figure 31), revealing a stronger ionic bond. 

Furthermore, under-coordinated atoms are very reactive towards the Se adsorption and are able 

to screen the repulsion between electronegatively charged Ru atoms. Therefore we expect to see 

the formation of small Se islands around the under-coordinated Ru atoms, while a uniform 

distribution of Se atoms is expected in large flat Ru facets due to the electrostatic repulsion 

between Se atoms. 

 
Figure 31: Valence charge density redistribution upon Se adsorption on Ru 93- and Ru 105-atom clusters 

cluster. Yellow spots denote excess of charge, while blue spots denote depletion of charge. Panel a: Two Se 

atoms adsorbed on a flat facet of the Ru 93-atom cluster, panels b: Se adsorption around the apex of the Ru 

105-atom cluster. The isosurface was set to  0.06 e/Å
3
 . Grey and yellow spheres denote Ru and Se atoms 

respectively. 

 

 The LDOS of two Ru atoms atom with coordination numbers 9 and 5 (corresponding to a 

Ru atom in the flat facet of the Ru 93-atoms cluster and a second Ru atom in the apex of the Ru 



106 

 

105-atoms cluster) with and without Se atoms as first neighbors were calculated. These results 

are presented in Figure 32. As can be seen in panel a, the Se atom causes a negligible effect on 

the LDOS of the high-coordinated Ru atoms (the d-band center is shifted only by 0.033 eV 

toward the Fermi-level), while the Se adsorbed around the Ru apex (Figure 32 panel b) causes 

widening of the Ru d-band and a negative shift of the d-band center by 0.106 eV due to 

hybridization between the Se p-states and Ru d-states, which is not large enough  to cause a 

noticeable effect on the reactivity of the system associated to the distribution of Se atoms on Ru 

nanoparticles. 

 
Figure 32: LDOS calculated for Ru atoms with and without Se bonded as first neighbors. Panel a: Ru atom in 

flat facet of the Ru 93-atom cluster, panel b: Ru atom belonging to the apex of the Ru 105-atom cluster. The 

black and red lines represent the densities of the Ru d-states calculated for the clean and Se-adsorbed clusters 

respectively, while the blue lines represent the Se p-states. 
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3.6.4 Results on the Oxygen Adsorption on the Se Modified Ru Nano-Cluster 

 
Figure 33: Oxygen adsorption sites on the Ru and Se/Ru 105-atom cluster. 

 

 As we have mentioned in chapter 1, the O and OH binding energies are good descriptors 

of the ORR, in particular the O binding energy (due to the linear relation between O and OH 

binding energies[31]). Also it has been shown that in order to improve the catalytic activity of 

Ru systems, towards the ORR, the O and OH binding energies have to be reduced[30]. With this 

being said, we calculate the O binding energy for nine different non-equivalent adsorption sites 

of the clean Ru 105-atom core and on the core pre-adsorbed with eighteen Se atoms (see Figure 

33), which corresponds to about 30% Se coverage. These results are listed in Table 8, it can be 

seen that for the clean Ru core the O binding energies range from 5.71–6.53 eV, which is 

determined by a variety of local geometries including the coordination number of Ru atoms and 

number of O–Ru bonds. For example, the highest O binding energy values are obtained for the 

adsorption sites #1 and #5, for which O makes three bonds with under-coordinated Ru atoms, 

while oxygen adsorption on the sites #2 and #3 with higher-coordinated Ru atoms results in the 
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lowest O binding energies. It is important to note that, in general, the Ru 105-cluster is found to 

be more reactive than the Ru(0001) surface, for which the O binding energy is 6.18 eV (see 

Table 6). On the other hand, the presence of Se reduces the O binding energy, that is found to be 

in the range 5.24–6.10 eV. Furthermore, is important to notice the correlation between the O 

binding energies on the Se modified Ru cluster and the number of neighbor Se atoms and its 

distances to the O atoms. For example, the presence of three neighboring Se decreases the O 

binding energy at the #1 site by 1.26 eV, while one Se neighbor of approximately the same O–Se 

distance (site #3) causes a O binding energy reduction of only 0.36 eV. On the other hand, one 

Se neighbor, located closer to the O, reduces O binding energy at the #4 site by 0.87 eV. 

Table 8: Se effects on oxygen adsorption on the Ru nanoparticle. 

Adsorption 
Site 

# of O-Ru 
bonds 

O-Ru bonds 
lengths (Å) 

# of Se 
neighbors 

Distance to Se 
atoms (Å ) 

EB(O) on clean 
Ru cluster (eV) 

EB(O) on 
Se/Ru 
cluster (eV) 

1 3 2.10 3 3.26 6.53 5.27 

2 2 1.91/2.08 2 3.41 5.91 5.39 

3 3 2.03 1 3.23 5.95 5.59 

4 2 1.98 1 2.91 6.47 5.60 

5 3 2.05 1 3.58 6.53 6.00 

6 3 2. 04 2 4.40 6.21 6.10 

7 3 1.98/2.16 4 3.42 5.71 5.24 

8 3 2.04 2 4.40 6.30 5.97 

9 3 2.07 1 3.61 6.29 5.64 

 

 Now, comparing the O binding energies on the Se/Ru cluster to the ones obtained by the 

author on [93] for flat Se/Ru(0001) facets, it can be seen that in general the Se/Ru cluster binds  

the O atoms stronger than the flat Se/Ru(0001) structure. This effect is due to the under-

coordinated and thus more reactive Ru atoms towards the O adsorption. Therefore we can 
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conclude that large Se/Ru nanoparticles with well-developed flat facets are more favorable for 

the ORR than small Se/Ru clusters. 

 
Figure 34: Electronic charge density redistribution upon Se and O adsorption on Ru clusters, isosurface was 

set to 0.04 e/Å
3
. Panel a: Ru 93-atoms cluster, panel b: Ru 105-atoms cluster. Yellow and blue spots denote 

excess and depletion of charge respectively. Grey, red and yellow spheres denote Ru, O and Se atoms 

respectively. 

 

 In order to trace the obtained Se effect on the O binding energy to the electronic structure 

of the system, we go back to Figure 32 panel a, where it can be seen that for high-coordinated Ru 

atoms the change in the LDOS due to Se adsorption is negligible and it is not possible to attribute 

the reduction of the O binding energy. In the same way, in the previous section we have shown 

that for flat Ru(0001) facets the effect of Te and S on the LDOS of the Ru atoms is negligible. 

Figure 32 panel b shows an small change in the d band center (0.106 eV shift towards negative 

values) of under-coordinated atoms belonging to the apex of the Ru 105-atom cluster, that may 

lead to the above mentioned significant reduction in the binding energy of oxygen adsorbed on 

the apex top, see Table 8 adsorption site #1. 

 For further understanding of the nature of the Se effect on oxygen bonding to Ru, we 

analyze the charge density redistribution upon Se and O adsorption on the Ru cluster. As shown 

in Figure 34 panel a, when Se and O are adsorbed on a flat(0001) facet of the Ru 93-atoms 
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cluster, the O accepts a significant amount of electronic charge coming from the Ru atoms, while 

the character of the Se-Ru bond has a higher covalent component. A Bader analysis on the O and 

Se adsorption shows an increase of 0.20 and 0.81 electrons in the electronic charge of the O and 

Se atom respectively, confirming the already mentioned ionic character of the O bond and 

revealing an important ionic character of the Se-Ru bond, not observed on the Figure 34.  

 The reduction in the O binding energy has two contribution analogues to the ones already 

discussed in the previous chapter, these are: a) the electrostatic repulsion between O and Se 

atoms due to the electronic charge accepted by the atoms upon adsorption; b) an indirect effect of 

weakening of bond between the chalcogen and Ru surface atoms, due to the higher coordination 

of the Ru atoms making a bond with  the O and chalcogen atoms. This causes a decrease in the 

total energy of the system and reduction in the O binding energy in an indirect way, see equation 

(3.9). In summary, the charge density redistribution for chalcogen adsorption on the flat facets of 

the Ru 93-atoms nanoparticle is found to be similar to that shown in the previous section for 

chalcogens adsorption on Ru(0001).  For the O adsorption on the apex of the Ru 105-atom 

depicted in Figure 34 panel b, the analysis and conclusions are completely analogous to the one 

mentioned above, with the difference that the Bader analysis shows an slightly increase of 0.1 

electrons in the charge gained by the Se (this is due to the low coordination of the Ru atoms 

comprising the apex). 

3.6.5 Conclusions 

 The results and analysis performed in this section show that small Se/Ru particles are not 

favorable for the ORR due to the under-coordinated Ru atoms presents in such structures, which 



111 

 

are very reactive towards the O adsorption. We thus conclude that the activity of Se/Ru catalyst 

toward the ORR can be improved by synthesizing the material in the form of relatively large 

nanoparticles (larger than 4–5 nm) with well-developed Ru(0001) facets.  

 We have shown that the Se island formation in the flat facets of Ru nanoparticles is not 

energetically favorable due to the electrostatic repulsion between Se atoms. While under-

coordinated Ru atoms may cause the formation of small Se islands around them, due to the high 

reactivity of the under-coordinated Ru atoms towards Se adsorption and the capability to screen 

the electrostatic repulsion between negative charged neighboring Se atoms. 
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CHAPTER 4: FIRST PRINCIPLES CALCULATIONS ON PHOTO-

CATALYTIC SYSTEMS TOWARDS THE HIDROGEN EVOLUTION 

4.1 Introduction 

 Photo-catalytic water splitting is a promising means for clean production of hydrogen 

from a renewable source. The process is the following: when a photon strikes an electron in the 

valence band of the anode, the excited electron may occupy the conduction band, creating an 

electron-hole pair. If the Fermi level of the cathode is lower than the bottom of the conduction 

band of the anode, it is favorable for the electron to transfer to the conduction band of the 

cathode. Once two holes have been generated by two different photons and a difference in 

potential has been established between the two electrodes, due to the two excited electrons now 

in the cathode, the reaction continues as ordinary electrolysis. This is, the water is oxidized 

losing two protons, 1/2O2 +2H
+ 

(at the anode). Next these the two protons may travel towards the 

cathode, where they will be reduced to H2. This reaction is depicted in equations (4.1) trough 

(4.3). 

                    ,        (4.1) 

                                  (4.2) 

                  ,        (4.3)  

where * denotes the anode.  
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 Although oxygen evolution was first reported by Boddy[7] in 1968, only after  Fujishima 

and Honda [8] reported the photo-electro-chemical water splitting in 1972, various 

semiconductor materials started to  be tested as photo-catalysts, as already mentioned in the 

introduction to this work. For example TiO2, among others, have been widely studied. These 

materials have not been successfully implemented due to its wide band gap, which restricts the 

light absorption to the ultraviolet (UV) range, while the solar spectrum contains only the 4% of 

UV irradiation. Others materials such as CdS, with more suitable band gap width (2.4 eV), suffer 

from low stability in the reaction environment. Therefore, considerable effort has been made in 

searching for new stable materials that are photo-catalytically active under visible light 

irradiation [110, 111, 112]. 

 In general, materials used as photo-anodes suffer from three main problems: a) the band 

gap is too wide in order to efficiently use solar radiation, b) once the electron-hole pair is 

generated, low carrier mobility promotes the recombination of the electron hole pair and c) the 

top of the valence band is not lower than the O2/H2O potential making the water oxidation 

unfavorable. In this work, we will focus on the electronic structure and the band gap of the 

anode, and how its width can be tuned to desirable values by doping the semiconductor with 

different elements.  

4.2 Doping Effects on the Electronic and Geometric Structure of Graphitic C3N4 

 As mentioned in the introduction to this chapter, several materials have been studied as 

possible candidates to be implemented as the photo-catalytic anode. In this work, we studied the 
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properties of the graphitic carbon nitride (g-C3N4), which is a promising photo-catalytic material 

and it has been subject of several studies[113,114, 115, 116, 117, 118]. Among its properties, 

three are important to highlight: 1) it is a metal free layered material with a 2.7 eV band gap, 

which means is able to absorb blue light with wavelength up to 450 nm, 2) the H
+
/H2 reduction 

and O2/H2O oxidation potentials are situated within the band gap and 3) it is the most stable 

allotrope of carbon nitrides at ambient conditions, comprised of abundant elements.  

 The g-C3N4 photo-catalytic properties can be improved by resolving the following issues: 

1) the top of the valence band is too close to the O2/H2O oxidation potential lowering the ability 

to oxidize water, 2) the absence of interlayer hybridization of the electronic states restricts the 

carrier mobility, making the electron hole recombination more likely to happen and 3) the band 

gap is still too wide for optimal use of solar energy.  

 The above mentioned issues have been extensively studied and several attempts have 

been made to solve these problems, mainly, by doping or altering the system. For example, other 

authors have tried to dope the material with B[119], C self doping[120], O[121], P[122], S[123], 

CdS[124], Fe[125] and Ag[126] among others. It has been reported that doping causes important 

changes in the g-C3N4 electronic structure and its photo-catalytic activity. For example the 

authors in ref[121] have reported a 0.21 eV reduction in the band gap of the system when the 

system is doped with O, the authors in ref[122] found that the system acquires a metallic 

character with P doping, while the authors in ref[119] reported a negligible decrease of 0.04 eV 

in the band gap with B doping and a dependence of the band gap  on the  sample fabrication 

temperature.  
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 In this work we study and systematically analyze the changes in the electronic structure 

of g-C3N4 caused by the introduction of B, C (C self doping), N (N self doping), O, P and Si 

atoms into the g-C3N4 system. Si and P where chosen as dopants because these elements contain 

the same number of valence electrons as C and N respectively, B has one valence electron less 

than C, while O contains one valence electron more than N. Therefore these elements are 

expected to be good candidates to replace N or C atom, by slightly altering the band gap without 

destroying the electronic structure of the system. To the extent of our knowledge, there are no 

studies in the literature explaining factors controlling the mentioned doping effects, except for 

our previous work on S doped g-C3N4 systems[127]. 

 This section starts by giving a short description of the computational details; in 

subsection 4.2.2 we will study the formation energy of the doped systems and the energy barriers 

involved in the N replacement; on subsection 4.2.3,  4.2.4 and 4.2.5 we make an analysis of the 

doping effects on the g-C3N4 system’s band gap and finally the conclusions can be found on 

section 4.2.6. 

4.2.1 Computational Details 

 To study the doping effects of g-C3N4, two systems were considered: the first one with a 

(1x1) in-plane periodicity, consisting of 28 atoms (12 C and 16 N) with two layers per supercell, 

while the second system has a (2x1) in-plane periodicity and is comprise of 56 atoms (24 C and 

32 N) with two layers per supercell.  

 For all system under consideration, the energetics and equilibrium atomic configurations 

are obtained using the VASP5.2 code[46] with projector augmented wave potentials[47] and the 



116 

 

Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient approximation (GGA) for 

the exchange and correlation functional[48]. A 750 eV cutoff energy for the plane wave 

expansion of the wave function was used, all atoms in the system were allow to relax until the 

forces acting on the atoms were smaller than 0.015 eV/A, For the k-point sampling in the 

Brillouin zone, we used a (5x5x5) and (3x6x5) (for the (1x1) and (2x1) supercell respectively) 

grid centered at the Γ point, that provided sufficient accuracy for the characteristics obtained by 

integration in reciprocal space. To take into account the Van der Waals interaction between 

layers the semi-empirical potential proposed by Grimme [128] was added, as implemented in the 

VASP5.2 code. Our calculations on the g-C3N4 structure optimization shows a lattice constants 

a=b=7.14 A, in excellent agreement with the experimental value of 7.13 A [113]. On the other 

hand we found c=6.15, which is 7 % less than the experimental value [113, 116]. This error is 

attributed to the semi-empirical potential used to reproduce the Van der Waals interaction 

between layers. 

 Since it is well known that DFT poorly reproduces the band gap in semiconductors, the 

GW method in the G0W0 approximation was used[26]. A cutoff energy of 90 eV was used for the 

response function, while 140 and 200 band where used (for the (1x1) and (2x1) supercell 

respectively) to calculate the dielectric matrix and the Green function. Using these parameters 

the calculated band gap for the pristine g-C3N4 system is in good agreement with experiments, as 

it is shown in our previous work [127]. 

 The Xcrysden[49] and the Vesta[96] software were used to plot the atom position, as well 

as the charge density redistributions.  
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 The binding energies and the valence charge redistribution upon addition of an atom were 

calculated using equations (3.9) and (3.10) respectively, while the valence charge redistribution 

upon formation of the system was calculated using the following equation. 

              ∑         ,        (4.4) 

where the first term on the right hand side correspond to the valence charge density of the system 

under considerations, while the second term denotes the summation of the valence charge density 

of the insolated atoms comprising the system, at the position on the original system. 

4.2.2 Formation Energy and Geometry of the doped g-C3N4 System 

 There are two main configurations for the stacking of the layers in the g-C3N4 system, 

these are: in the AA configuration, one layer lies perfectly on top of the other one. In the second 

one, AB configuration, one layer is displaced respect with the other by a certain distance giving 

rise to a family of AB stacking, depending on the displacement. We chose the minimum energy 

AB configuration according to our previous work [127]. 

 Due to the nature of the AB stacking configuration, there are four nonequivalent C and N 

atoms, but due to the small hybridization between layers, we will only consider three and two 

nonequivalent N and C atoms respectively. These are: corner, middle and border N atoms and 

corner and middle C atoms (see Figure 35 panel a). Special cases of doping where hybridization 

between layers plays an important role will be discussed separately. 
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Figure 35: G-C3N4 structure. Panel a: Tri-s-triazine structure. Panel b: Valence charge density redistribution 

upon formation of the system, red and blue spots denotes accumulation and depletion of charge respectively. 

 

 The valence charge density redistribution upon formation of g-C3N4 was calculated using 

equation (4.1) and is plotted in Figure 35 panel b. As seen from panel b of Figure 35, the charge 

density redistribution reflects typical sp
2
 hybridization between C and N atoms, while two 

dangling bonds belonging to the two border N atoms can also be seen in the plot (lone pairs). 

These dangling bonds are assumed to be the most reactive sites of the system where a third atom 

added to the system will prefer to bind. It is important to notice that a weaker covalent bond is 

formed between the corner C and N atom (represented as a lower accumulation of charge 

between the corner C and N atom, see panel b of Figure 35). This weak bond suggest that corner 

C atoms is be more likely to be replaced by the dopants than by middle C atoms, this will be 

confirmed later by our results. 

 As mentioned earlier, we studied the g-C3N4 system doped with B, C, N O, Si and P.  In 

each of these cases, three scenarios are possible: a) addition of the atom to the system (dopant 

binding to the dangling bonds), b) replacement of C atoms by dopants and c) replacement of N 

atoms by dopants. These cases where studied by defining the doping formation energy as: 
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                                 ,      (4.5) 

where Ed-C3N4 denotes the energy of the doped g-C3N4 (DFT energies), the second term EC3N4 is 

the energy of the pristine g-C3N4 system(DFT energies), the third term μd is the chemical 

potential of the dopant atom added to the system, while μreplaced-a is the chemical potential of the 

replaced atom. In this formula we are not taking into account vibrational contribution since these 

makes a small contribution compared to the electronic parts[129]. It is important to note that the 

negative formation energy, in this case, denotes an energetically favorable reaction. 

 The chemical potentials μ were calculated using the standard enthalpy of formation, the 

difference in entropy between atoms in gas phase and the corresponding species at 298.15 K 

listed in tables[130], as well as the DFT energies of the insolated atoms obtained by us. 

Concerning the chemical potentials of C and N, depending on the experimental conditions, μC 

and μN can change, taking the values between an upper and lower limit. The C-rich condition and 

the N-rich condition define the upper boundaries for the chemical potentials of C and N 

respectively. Under extreme C-rich condition, the chemical potential of C, μC, is defined as μC= 

μC[Bulk]. For higher C chemical potentials we will be precipitating graphitic Carbon. In the same 

way, for N-rich condition, the N chemical potential, μN, is defined as μN =1/2 μN2 . These are the 

upper limits for the N and C chemical potentials. The lower limits will be defined using the 

following expression: 

             ,          (4.6) 

where       is approximated by the total energy per formula unit. In this way, the lower limit for 

the N chemical potential will be defined by: 
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,         (4.7) 

while the lower limit of the C chemical potential is defined as: 

  [   ]  
               

 
,         (4.8) 

 The formation energies corresponding to the C-rich condition (upper and lower limit of 

the C and N chemical potentials respectively) and the N-rich condition (upper and lower limit of 

the N and C chemical potentials respectively) are presented in table in Tables 9, 10, 11, 12 and 

13. These tables correspond to the doping formation energies of B, C and N, Si and P, 

respectively. From these tables it can be seen that the addition of atoms to the dangling bonds, in 

all the cases, results in higher formation energy than the substitution of C or N atoms. Our results 

show negative formation energies (energetically favorable) for the replacement of at least one 

nonequivalent N atom for each dopant, except for Si. This result was expected since, with the 

exception of O, N is the most electronegative atom, while Si is the less. Furthermore the big size 

of Si causes the system to experience a considerable in-plane lattice distortion, resulting in an 

increase in the formation energy (if no hybridization between layers occurs). 

Table 9: Formation energies for B doping at T=298.15 K 

 Formation energy in the C 
rich condition (eV) 

Formation energy in the 
N rich condition (eV) 

B substituting corner N atom 0.114675967 0.690245512 

B substituting border N atom -0.361015033 0.214554512 

B substituting middle N atom -0.012321033 0.563248512 

B addition 0.805205085 0.805205085 

B substituting corner C atom -1.683875675 -2.451301735 

B substituting middle C atom -1.592727675 -2.360153735 
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Table 10: Formation energies for C and N self-doping at T=298.15 K 

 Formation energy in the C 
rich condition (eV) 

Formation energy in the 
N rich condition (eV) 

N substituting corner C atom 4.730999358 3.388003752 

N substituting middle C atom 4.647334358 3.304338752 

N addition 3.034424118 2.458854572 

C substituting corner N atom -0.630512358 0.712483248 

C substituting border N atom 0.875104642 2.218100248 

C substituting middle N atom -0.705011358 0.637984248 

C addition 1.828442759 2.59586882 
 

Table 11: Formation energies for O doping at T=298.15 K 

 Formation energy in the C 
rich condition (eV) 

Formation energy in the 
N rich condition (eV) 

O substituting corner N atom 0.64266456 1.218234105 

O substituting border N atom -1.78068644 -1.205116895 

O substituting middle N atom -0.66826244 -0.092692895 

O substituting middle C atom 3.281619918 2.514193857 

O substituting corner C atom 6.083151918 5.315725857 

O addition 2.506775677 2.506775677 
 

Table 12: Formation energies for Si doping at T=298.15 K 

 Formation energy in the C 
rich condition (eV) 

Formation energy in the 
N rich condition (eV) 

Si substituting corner N atom 1.898465686 2.474035231 

Si substituting border N atom 1.396327686 1.971897231 

Si substituting middle N atom 1.027639686 1.603209231 

Si substituting corner C atom -0.665083956 -1.432510016 

Si substituting middle C atom 0.776707044 0.009280984 

Si addition 0.668966804 0.668966804 
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Table 13: Formation energies for P doping at T=298.15 K. “*” denotes nonequivalent substitutions of middle 

C atoms due to the stacking configuration. This nonequivalent substitution leads to the higher hybridization 

between layers and the distortion of the in-plane symmetry of the system. 

 Formation energy in the C 
rich condition (eV) 

Formation energy in the 
N rich condition (eV) 

P substituting corner N atom 0.566464221 1.142033767 

P substituting border N atom -0.367164779 0.208404767 

P substituting middle N atom 1.113167221 1.688736767 

P substituting corner C atom 0.72520458 -0.042221481 

P substituting middle C atom* 1.61316158 0.845735519 

P substituting middle C atom*  0.85102058 0.083594519 

P substituting corner C atom 0.28852658 -0.478899481 

P addition 0.419667339 0.419667339 

 
 

 Due to the difference in nature of the atoms under consideration used to dope the system, 

Tables 9, 10, 11, 12 and 13 do not provide a general pattern to explain which N atoms are 

energetically prefer to be replaced (there are three nonequivalent N atoms in the system). 

Nevertheless, for B, O and P the substitution of the border N atom is energetically preferred. 

This behavior is due to the fact that the C-N bond is very strong. Then, three C-N bonds are 

broken when a corner or middle N atom is replaced, while the replacement of a border N atom 

only requires the elimination of two C-N bonds (see Figure 35 panel a). At this point is important 

to mention that the negative formation energy obtained for O replacing a middle N atom  is due 

to a reconstruction of the in-plane symmetry of the system (after relaxation of the system, the O 

atom only binds to two of the C atoms).  

 Now, Table 10 shows that for the C self-doping case, it is energetically preferred to 

replace middle and corner N atoms, which are atoms with three C-N bonds and even though 

these are very strong bonds, the substitution of a corner or middle N atom with C atom generates 

three C-C binds which are stronger than the C-N bond. In order to test this last idea, in Figure 36, 
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we have plot the charge density redistribution using equation (4.1) for a system where the corner 

N atom has been replaced by a C atom. Indeed the higher accumulation of charge between the C-

C bonds than that between the C-N bonds indicates a stronger C-C covalent bond ( see Figure 

36). 

 
Figure 36: Valence charge density redistribution upon formation of the system where the corner N atom has 

been replaced by C. Blue and red spots denotes depletion and excess of charge respectively. Grey and brown 

spheres denote N and C atoms respectively. 

 

 For the C replacement, the results in Tables 9, 12 and 13 show negative formation energy 

for B, Si and P. P and Si are the biggest atoms in the system and highly distort the lattice when 

replacing a C atom, causing hybridization between layers and reducing the doping formation 

energy of the system. As an example of this behavior, we have included the formation energy for 

the two replacements of nonequivalent C atoms by P atoms (these two C atoms are 

nonequivalent due to the layer stacking configuration of the system as discussed earlier). These 

results are shown in Table 13, where it can be seen that the system with higher in-plane lattice 
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distortion has lower formation energy. In general the replacement of the corner C atom is 

energetically preferred due to the weaker covalent bond with the corner N atom, as already 

mentioned and shown in Figure 35 panel b. It is important to mention that the replacement of 

middle C atoms by O is the only case where the replacement of middle C atoms is energetically 

preferred. This is due to the fact that the replacement of the middle C with O leads to an in-plane 

reconstruction, breaking the g-C3N4 symmetry. For this case, after optimizing the position of the 

atoms in the system, the O atom only binds to 2 N atoms. This results lead us to the conclusion 

that the substitution of C and N atoms is thermodynamically preferred over the addition of 

dopants to the dangling bonds. 

 
Figure 37: Energy barrier for N border atom detachment and transfer to the nearest dangling bonds. Panel 

a: detachment and transfer to upper layer dangling bonds. Panel b: detachment and transfer to in-plane 

closest dangling bonds. The inserted figures show the position of the N atom in the initial state, while the 

arrow indicates the position of the N atom in the final state. 

 

 Even though the previous results indicates a thermodynamic preference for the C and N 

replacement over the addition of dopants to the system, more specific to the dangling bonds, the 

replacement of a C or N atom is a complicated process involving detachment barriers that may 

make these substitutions kinetically unfavorable. With this idea in mind, in Figure 37 we present 
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our results on the activation energy barrier for the detachment of a border N atom and its 

displacement to the closest dangling bonds (to the upper or in its own layer). As it can be seen 

from the figure, the detachment of N, in both cases, involves very high energy barrier (8 eV), 

implying very low rates of such a detachment. Therefore, even though the substitution of C and 

N upon the doping are thermodynamically more favorable than the dopant addition to the 

dangling bonds, the latter, the latter are more favorable in terms of kinetics. Based on this, both 

process will be considered. 

4.2.3 Effects on the Electronic Structure of the System due to the Addition of Dopants to 

the Dangling Bonds in g-C3N4 

 As mentioned earlier, the dangling bonds are the most reactive sites of the system for the 

addition of a dopant. We will start our analysis by studying the valence charge density 

redistribution upon the addition of an atom. Due to the high electronegativity of N, when an atom 

binds to the dangling bonds a donation of electron from the added atom towards the N occurs. 

This excess of electrons is localized in the nearest N and C atoms as pz-states. As an example, 

the charge density redistribution upon addition of B is shown in Figure 38. We should mentioned 

that this mechanism and the valence charge density redistribution results are analogous for all the 

other dopants considered in this work (addition of C, N, O, Si and P). That will not be shown. 
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Figure 38: Valence charge density redistribution upon binding of B to the N’s dangling bonds. Yellow and 

blue surfaces denote accumulation and depletion of charge respectively. The isosurface corresponds to ±0.15 

e/A
3
. Brown, grey and green spheres denote C, N and B atoms respectively. 

 

 The total density of states (TDOS) of all the doped system was calculated within the GW 

approximation and is shown in Figure 39, revealing that the system becomes metallic when a 

dopant (B, C, N, O, Si or P) is added to the N’s dangling bonds. It is important to note that the 

metallic character of the system comes from the introduction of occupied states in the middle of 

the band gap or below the conduction band, depending on the case. The C self-doping is an 

exception, where the band gap is reduced due to the creation of occupied states in the middle of 

the band gap, becoming a smaller band gap semiconductor. 
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Figure 39: Total DOS for the doped systems under consideration. Panel a: addition of B to the dangling 

bonds. Panel b: addition of C to the dangling bonds. Panel c: addition of N to the dangling bonds. Panel d: 

addition of O to the dangling bonds. Panel e: addition of Si to the dangling bonds. Panel f: addition of P to the 

dangling bonds. 

 

 Going back to Figure 38, it can be seen that the already mentioned pz-states population of 

C and N atoms in the system may be the reason of the metallic behavior of the doped systems 

depicted in Figure 39. In order to test this idea, we have calculated the local density of states 

(LDOS) projection over the px, py and pz-states for all the atoms in the unit cell. Due to the fact 

that results on the LDOS projection leads to the same conclusion in all the studied cases 

(addition of B, C, N, O, Si and P), we will only present our results for the addition of C to the 

dangling bonds.  

 Figure 40 presents the px, py and pz LDOS projections for the first and second border N 

neighbor and for the first corner C atom neighbor. From the figure it can be seen that the peak 

(between -1 and 0 eV) in the middle of the band gap (see Figure 39 panel b) has its biggest 

contribution coming from the second C border neighbor atom (Figure 40 panel a). The second 

contributions comes from the first neighbor N border atom (Figure 40 panel c), while the 
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contribution coming from second neighbors N border atom (Figure 40 panel b) is negligible as 

expected (based on the valence charge density redistribution result depicted in Figure 38). These 

results allows us to conclude that the occupied states in the middle of the band gap give rise from 

the creation and population of pz-states on the first and second neighbor atoms to the dopant. 

 
Figure 40: Projected LDOS for the system where a C atom has been adsorbed on the dangling bonds of g-

C3N4. Black line: pz states, blue line: px states, red line: py states. Panel a: projected LDOS for corner C atom 

(first C neighbor to the added C atom). Panel b: projected LDOS for border N atom (second N neighbor to 

the added C atom). Panel c: projected LDOS for border N atom (first N neighbor to the added C atom). 

 

4.2.4 Results on C and N Substitution 

 Our results indicate that the g-C3N4 becomes metallic when any C atom in the system is 

replaced with any of the dopants atoms under consideration. An exception is the O doping where 

the semiconductor character of the system is maintained and the band gap is reduced to 2 eV (see 

Figure 41 panel a), which is in good qualitative agreement with experiments[121]. The 

replacement of corner C atom by O leads to a small elongation of one of the O-(border N) bonds, 

maintaining the original g-C3N4 geometry, see Figure 41 panel a inserted figure. While the 

replacement of a middle C atom leads to the breaking of one of the O-(border N) bonds and the 
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high distortion of the g-C3N4 geometry (see Figure 41 panel b inserted figure), which 

surprisingly barely increase the 2.7 eV band gap of the original g-C3N4 system, see Figure 41 

panel b. 

 
Figure 41: Total density of states for the system where one C has been replaced by one O atom. Panel a: O 

replacing corner C atom, no O-N bond is broken, only a small elongation of one of the O-(border N) bond is 

observed. Panel b: replacement of the middle C atom by O, rupture of one O-N bond is observed, leading to a 

high distortion of the original g-C3N4 structure 

 

 The band gap reduction, to 2 eV, observed in Figure 41 panel a, originates from the 

charge transfer from the N atoms towards the O (the charge transfer is only appreciable for the 

first neighbors. According to our calculations, we observed a depletion of 0.176 electron in the p 

orbitals of the border N atoms) and the back donation of electrons toward the pz-states of N. In 

order to support this idea, we have calculated the LDOS projection over px, py and pz of the 

corner N atom (first neighbor to the O replacing the corner C atom). These results are plotted in 

Figure 42 panel a, also the results of the projected LDOS over p-states of the corner N atom in 

pristine g-C3N4 have been included (Figure 42 panel panel b) for comparison purposes. As can 

be seen, the depletion of charge in the p orbitals generates unoccupied px- and py-states below the 

conduction band (peaks at 2.5 eV in Figure 42 panel a), while the back donation of electrons 

creates pz-states above the valence band (peak at -0.5 eV in Figure 42 panel a). As a consequence 

the band gap of the system is reduced. 
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Figure 42: Local density of states projection on px, py and pz states. Black lines: px states, red lines py states, 

green lines pz states. Panel a: Local density of states of corner N atom first neighbor to O, panel b: Local 

density of states of corner N with no O neighbors. 

 

 On the other hand, the substitution of N introduces states in the middle of the band gap, 

making the system metallic for all the dopants under consideration except for the case where N is 

replaced by B and P, where the system maintains its semiconductor character. The total DOS 

results corresponding to the replacement of N with B, shows that the band gap is reduced to 1.5 

eV when B is replacing a border N atom. For the two other cases (replacement of corner and 

middle n atoms) the system becomes metallic. On the other hand, the results on N replacement 

with P show a reduction in the band gap in the range of 1.8 to 2.5 eV depending on the replaced 

N atom.  

 In Figure 43 we show the results on the electronic structure corresponding to the 

replacement of border N atom by B (panel a) and P (panel b), where it can be seen the above 

mentioned band gap reduction. Replacement of the border N atoms was chosen to be shown in 

this work because constitute the lowest formation energy for all the cases under consideration. 
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Figure 43: Total DOS for border N atom replaced by B and P. Panel a: B replacement, panel b: P 

replacement. Inserted figures show the system’s structure. 

 

 The mechanism responsible for the reduction of the band gap observed in Figure 43 is 

similar to the one depicted in the O replacement of C already mentioned above, this is: pz-states 

of neighbor atoms to the dopant become occupied. These new populated pz-states are localized 

above the valence band, resulting in the reduction of the band gap. This behavior is depicted in 

Figure 44 panel a, where the creation of pz-states between -2 and 0 eV on the first C neighbor (a 

middle C atom) to the dopant (in this case B) are shown (the LDOS of a second middle C atom 

with no B neighbor is shown in Figure 44 panel b for comparison purposes). At this point we 

should mention that the results concerning N replacement by P will not be shown due to its high 

resemblance with the ones already shown in Figure 44. 

 
Figure 44: Middle C atom LDOS. Black, red and green lines denote px, py and pz states respectively. Panel a:  

middle C atom with no B neighbors, panel b: middle C atom coordinated to one B atom. 
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 In order to conclude with this sub section, it is worth mentioning two experimental 

works: In the first one, the authors on [122] were able to dope g-C3N4 with P, finding that the 

system becomes metallic. Also they were able to determine that the P atom were coordinated to 

N atoms, where the authors suggests a C replacement. We quote “Thus the phosphorus 

heteratoms most probably replace the corner or bay carbon in the structure forming P-N bonding 

in the doped C3N4 framework”. These results are in good agreement with our results shown in 

the previous subsection, where P doped g-C3N4 shows a metallic DOS structure for all the cases 

except for N replacement, leaving P doped g-C3N4 as a good candidate for photo catalytic 

purposes. On the other hand, the authors on [119] have reported a negligible change in the band 

gap of the B doped g-C3N4. The authors suggest the attachment of B to corner N atoms, forming 

of NB2 species at the corners of the Tri-s-triazine structure. Our current results are not in 

agreement with the authors in Ref. [119] and further analysis of the band structure of the all 

possible configurations of the B doped g-C3N4 is needed before a conclusion can be made. 

4.2.5 Results on the Effects of Co-Doping 

 The effects of doping the g-C3N4 system with two atoms where extensively studied with 

the idea that the interaction between different dopants could alter the mechanisms responsible for 

the change in the band gap. In order to study such effect, the size of the supercell was doubled, 

maintaining the percentage of dopant concentration constant. Unfortunately, the results show that 

the interaction between different dopants is negligible. Furthermore, our results show that the 

DOS changes according to the individual contributions of the two dopants. As an example in 

Figure 45 we show a comparison between P, B and P-B doped g-C3N4. Figure 45 Panel c shows 
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that the P-B doped systems maintains the 1.5 eV bad gap achieved in B doped system (panel a of 

Figure 43 and Figure 45 ). On the other hand, from Figure 45 panel c, is clear that the 2.7 

original g-C3N4 band gap is reduced due to the creation and population of states above the 

valence band, which are also  present in the B and P doping, see panels a and b of Figure 45.  

 It should be mention that the DOS corresponding to N replacement by P depicted on 

panel b of Figure 43 and Figure 45 differs from each other because the replaced border N atoms 

in both cases are nonequivalent because a relatively large P atom causes hybridization between 

layers. 

 
Figure 45: DOS comparison between B and P replacing a border N atom. Panel a: B doping, panel b: P 

doping, panel c: B and P co-doping. The inserted figures show the geometry of the systems under 

consideration. 

 

 The low interaction between dopants has its origins in the local effect of the dopant. As 

we have shown before, the transfer of electrons from the dopant to the system and the change in 

the LDOS is a local effect, affecting only the first and second neighbors. Therefore, the 
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interaction between dopants does not occur unless they are separated by no more than two 

neighbors, which will require a high concentration of dopants. 

4.2.6 Conclusions 

 The results on the formation energy of the doped systems indicate that the replacement of 

C and N atoms is thermodynamically preferred over the addition of dopants to the g-C3N4 

dangling bonds. However, the results show high kinetic energy barriers for the removal of C and 

N atoms (these processes are involved in the replacement of C and N by the doping agent), 

indicating that the addition of atoms to the system is a possible scenario for the doped g-C3N4 

 Concerning the effects of doping on the electronic structure, we have shown that the 

addition of dopants to the system generates the donation of electrons from the dopant to the 

system, resulting in the population of pz-states of the first N and C neighbors to the dopant. As 

consequence, the system becomes metallic for all the doped systems under consideration. The 

energy of the populated states depends on the dopant under consideration.  

 For the N replacement, we show that the semiconductor character of the system is 

maintained only for the cases where the N atoms were replaced by B or P. Our results are in 

good agreement with the experiments in the case of P doping. Concerning the C replacement 

with O, we show that the system maintains its semiconductor character and the band gap is 

reduced. This is in good qualitative agreement with the experiments. 

 Finally, for the case of co-doping, our results show that the DOS changes according to 

the individual contributions of the two dopants. This behavior is due to the fact that the transfer 
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of electrons between dopant - system and the consequent change in the LDOS are effects 

localized to the first and second neighbors of the dopant. 
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