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ABSTRACT

Photonic lattices consisting of arrays of evanescently coupled waveguides fabricated with pre-

cisely controlled parameters have enabled the study of discrete optical phenomena, both classical

and quantum, and the simulation of other physical phenomena governed by the same dynamics. In

this dissertation, I have experimentally demonstrated transverse Anderson localization of classical

light in arrays with off-diagonal coupling disorder and investigated theoretically and experimen-

tally the propagation of entangled photon pairs through such disordered systems. I discovered

a new phenomenon, Anderson co-localization, in which a spatially entangled photon pair in a

correlated transversally extended state localizes in the correlation space, though neither photon

localizes on its own. When the photons of a pair are in an anti-correlated state, they maintain

their anti-correlation upon transmission through the disordered lattice, exhibiting Anderson anti-

localization. These states were generated by use of parametric down conversion in a nonlinear

crystal. The transition between the correlated and anti-correlated states was also explored by using

a lens system in a configuration intermediate between imaging and Fourier transforming. In the

course of this research, I discovered a curious aspect of light transmission through such disordered

discrete lattices. An excitation wave of a single spatial frequency (transverse momentum) is trans-

mitted through the system and is accompanied by another wave with the same spatial frequency but

opposite sign, indicating some form of internal reflection facilitated by the disordered structure.
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CHAPTER 1: INTRODUCTION

Discrete optics is the study of light confined to networks of guiding structures such as fibers or

waveguides. In such systems, the electric field evolves according to a set of discretized equa-

tions, the parameters of which depend on the specifics of the optical system. Here, I present the

research I have performed and published on light propagation in photonic lattices in both the clas-

sical and quantum regimes. These papers discuss disordered photonic lattices and the onset of

transverse Anderson localization with classical light and quantum entanglement of photon pairs

evolving in disordered lattices. I reveal the related phenomena of Anderson co-localization and

anti-localization, in which an entangled photon pair traversing a disordered photonic lattice local-

izes in correlation space, though neither photon localizes on its own. Additionally, I demonstrate

a gradual transition between these two phenomena. I conclude with an experiment that explores

effects related to the phase or spatial frequency of light propagating in these devices.

In 1935 Einstein, Podolsky and Rosen published a paper questioning the completeness of the quan-

tum mechanical description of reality [1]. They proposed an experiment demonstrating that two

particles that interacted at some time in the past could possess correlations that appeared to violate

the laws of relativity laid down by Einstein years earlier. The EPR paradox, as it came to be known,

was resolved by John S. Bell in 1964 [2]. The notion of entanglement crystallized in the following

decades, followed by an era of experiment and discovery that continues today. Entanglement be-

tween two particles occurs when the state of the particles is no longer separable. In layman’s terms,

this means that neither particle can be completely described without referencing the other. This

means that a measurement made on one particle, determining its state, yields immediate knowl-

edge of the state of the other particle, collapsing its wave function. This occurs instantaneously,

even if the particles are separated by large distances. Causality is preserved, however, as no infor-

mation can be conveyed only by these means. Entanglement is now recognized as one of the most
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counterintuitive and potentially useful phenomena in modern physics. It is a source of rich physics

[3] and enables technologies beyond the bounds of classical physics, such as secure encryption

[4, 5] and quantum computation [6].

Photonic waveguide lattices are integrated, multiport optical interferometers. They consist of

evansescently coupled waveguides, which allows light propagating in one waveguide to couple

to other nearby waveguides. These devices have generated significant interest, as their customiz-

ablility and inherent stability have enabled a variety of experiments that are not practical with bulk

optical systems. These devices can be created such that light propagating in them mimics other

types of particles; one their first uses was to demonstrate and study transverse Anderson local-

ization (AL) [7, 8, 9, 10, 11, 12], a phenomenon native to condensed matter physics [13]. In its

original context, Anderson localization occurs when an electron evolves on a disordered atomic

lattice in the tight binding approximation. In a perfectly periodic lattice, the electron wavefunction

evolves ballistically, traversing the lattice. Once disorder is introduced, perhaps affecting the prob-

ability of hopping between atoms, multiple scattering events serve to localize the electron on its

initial site. In this way, disorder in the system serves to suppress diffusion, rather than enhancing

it. While this effect has proven difficult to observe in its original context, it is readily realized

in photonic lattices, where the electric field of light mimics the evolution of the electron wave

function and the z-direction of the lattice takes on the role of time. As detailed in our research

[9], averaging over multiple realizations of disorder reveals the exponential localization signature,

centered on the input waveguide. This is the subject of the paper in Chapter 2 of this dissertation,

where we demonstrate and detail Anderson localization of light in photonic lattices endowed with

off-diagonal disorder [9].

Once AL has been observed for classical light in photonic lattices, the natural next step is to exam-

ine the evolution light with non-classical properties in such systems. In my research, I explored in

both theory and experiment how spatially entangled photon pairs evolved in array with and with-
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out off-diagonal disorder [14]. In the first of these experiments, detailed in Chapter 3, I coupled

strongly correlated entangled photon pairs into periodic and disordered arrays and measured the

spatial correlations of the emerging photons. I did this for both separable and entangled states. For

the separable states, I recorded a second order correlation functionG(2)(x1, x2) with the same form

as classical AL for both periodic and disordered arrays, as expected. I then coupled into the array

entangled photon pairs such that the photons will always enter the same waveguide, though which

waveguide among those illuminated is unknown. In the periodic case, I observed the ballistic ex-

pansion of the input state, but oriented along the x1 = x2 axis. For the disordered arrays, I observed

a new phenomenon termed Anderson co-localization, in which neither photon localizes on its own

(due to the broad spatial extent of the input state) but the photons do localize in correlation space

along the x1 = x2 axis, meaning the photons emerge from the same or nearby waveguides. In this

paradigm, the entangled photons retained their spatial correlations, even after propagation through

a highly disordered discrete medium.

In the next paper [15], I expanded upon my previous research and explored the action of the dis-

ordered array with input states in which the entanglement was expressed in different ways. First, I

used an anti-correlated two photon entangled input state. Here, the two photons enter the photonic

lattice on opposite sides of a central waveguide (x1 + x2 = Const.). With this input state, we

observed the phenomenon of Anderson anti-localization (AaL). Once again, the photons retain the

spatial correlations present in the input state; now the emerging photons are anti-localized, concen-

trated along the x1 = −x2 axis of the functionG(2)(x1, x2). In addition, I utilize so-called interme-

diate input states, in which the photons are neither stongly localized or anti-localized. Knowledge

of the position of one photon yields a range of positions for the other. I note that the photons are

still entangled, but the entanglement is expressed in the phase (or spatial frequency) correlations

between the photons, not their position. We implement these intermediate states via a fractional

Fourier transforming input optical system, altering it so as to cause a transition between the anti-
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correlated and correlated input states. I predicted and experimentally measure this transition before

and after the array, showing how the spatial correlations are preserved by the array.

In the final paper, I examine the action of the arrays in terms of the spatial frequency of an input

electric field. Photonic waveguide arrays have been extensively studied in the classical and quan-

tum regimes, yet little research has been done on how even the simplest arrays affect the spatial

frequency spectrum. We address this question for periodic and disordered arrays by simulating and

experimentally measuring the magnitude square of the impulse response functions in the spatial

and spatial frequency coordinates. I begin with a review of the theory describing the evolution

of the electric field in one dimensional waveguide arrays and show how it can be reinterpreted

in terms of spatial frequency. I then show how the various impulse response functions, or their

approximations, can be experimentally measured. For the periodic array, I show the detailed struc-

ture generated by observing a spatial frequency output with a spatial impulse input and explain its

origin. In the disordered array, I found that, surprisingly, a spatial frequency impulse input state

is not obscured by the high level of disorder in the array; instead it is split into two components

with opposing spatial frequencies, akin to transmitted and reflected components. This result is per-

haps unexpected, and reinforces the dramatic difference between continuous and discrete optical

systems.
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CHAPTER 2: TRANSVERSE ANDERSON LOCALIZATION WITH

CLASSICAL LIGHT

Introductory Remarks on Experiment One

The following paper was originally published in Optics Express [9]. It details research I performed

using photonic lattices injected with classical light, in which we show transverse Anderson local-

ization of light after shifting the array and averaging the output. This paper begins with a discussion

of the equations that govern the propagation of light in waveguide arrays, followed by numerical

simulations of the results and discussion of the experimental setup. We observe the light to be, on

average, exponentially localized on the input waveguide and verify that the approach of shifting

and averaging on the same array yields the same results as averaging over multiple independent

realizations of disorder.

This experiment serves to characterize the periodic and disordered arrays using classical light,

and to serve as a starting point for understanding the action of the arrays on more complicated

states of light. We show conclusively that these devices induce Anderson localization through both

experiment and numerical simulation.
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Anderson Localization in Optical Waveguide Arrays with Off-Diagonal Coupling Disorder

L. Martin, G. Di Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Sza-

meit, A.F. Abouraddy, D.N. Christodoulides and B.E.A. Saleh, Optics Express, 19, 13636, 2011.

”Copyright 2011 by OSA.”

Abstract

We report on the observation of Anderson wave localization in one-dimensional waveguide arrays

with off-diagonal disorder. The waveguide elements are inscribed in silica glass, and a uniform

random distribution of coupling parameters is achieved by a precise variation of the relative waveg-

uide positions. In the absence of disorder we observe ballistic transport as expected from discrete

diffraction in periodic arrays. When off-diagonal disorder is deliberately introduced into the array

we observe Anderson localization. The strength of the localization signature increases with higher

levels of disorder.

Introduction

Anderson localization is ubiquitous in wave physics. This process naturally arises in any random

lattice system and is known to result from the interference between multiple scattering events.

Under strong disorder conditions this interference can become so severe that it entirely holds the

transport of a quantum mechanical wave-packet. In this regime, Anderson localization occurs.

While in higher dimensions the transition from ballistic to Anderson localization is preceded by

diffusion, in 1D-systems this effect can be directly induced even in the presence of weak disorder

[13, 10]. Over the years Anderson localization has been analyzed in the literature under both

diagonal [13] and off-diagonal disorder conditions [16, 17].
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Lattices of coupled optical waveguides provide a versatile platform for manipulating the flow of

light [18]. In recent years such arrays have been used to directly observe and study optical analogs

of many fundamental quantum mechanical effects like Bloch oscillations [19, 20] , Zener tunnel-

ing [21], continuous-time quantum random walks [22], and other processes [23, 24, 25]. Another

example is Anderson localization that has been directly observed for light propagating in one-

(1D) and two-dimensional (2D) arrays of coupled waveguides [11, 12]. These observations have

been demonstrated for the case of diagonal disorder, i.e., the waveguide propagation constants are

randomized (by randomizing the sizes of the waveguides), while keeping the coupling coefficients

between adjacent waveguides approximately constant (by keeping the waveguide separations con-

stant). Anderson localization for off-diagonal disordered waveguide arrays has been reported for

the first time in Ref. [26]. In such an array, the waveguide elements are all identical (i.e. have

the same propagation constant) while the coupling coefficients are varied by changing their rela-

tive positions. In Ref. [26], disorder-induced localization by averaging over many array samples

having the same degree of disorder was observed in 1D photonic lattices. We report here the

observation of Anderson localization in a 1D optical waveguide array with off-diagonal disorder

having a uniform random distribution of coupling coefficients. We prove through experimental ob-

servation and calculation that the shift invariance of the statistical characteristics of the waveguide

disorder allows one to replace statistical averaging over multiple sample realizations with shifting

the input waveguide excited in the same sample realization. Furthermore, we examine the effect

of the waveguide array length on the propagation dynamics in both the periodic and the disor-

dered arrays.We would like to emphasize that while both diagonal and off-diagonal disorder can

lead to Anderson localization, there are still qualitative differences between them [27]. One such

aspect manifests itself in the level of disorder needed to accomplish 1D localization. In general,

for off-diagonal disorder, stronger level of randomness is necessary compared to that required for

diagonal disorder if the same localization length is to be attained. Reference [28] highlights this

issue among other distinguishing traits of off-diagonal disorder.
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The waveguides used here are fabricated by use of intense infrared femtosecond laser pulses fo-

cused inside transparent silica [29, 30]. The utilized glass allows us to use light of wavelengths

shorter than those used in AlGaAs waveguides in previous demonstrations of Anderson localiza-

tion of light in arrays with diagonal disorder. Glass waveguides also mitigate the low coupling

efficiency of light into high-refractive-index (nAlGaAs ≈ 3.3) waveguides. In our arrays, the waveg-

uides are all identical, i.e. they all have the same propagation constant, while the coupling co-

efficients are randomized by changing the relative positions of the waveguides. We observe that

extended states in a periodic waveguide array become exponentially localized states when the lo-

calization length is shorted [31] by increasing the amount of waveguide positional disorder. The

excellent agreement between experimental observations and theoretical calculations is a testament

to the accuracy of the waveguide fabrication technique.

Random Walk in Waveguide Arrays

The propagation of an optical field along a lossless waveguide array with nearest-neighbor evanes-

cent coupling can be described, in general, by the equation

i
dEn
dz

+ βnEn + Cn,n+1En+1 + Cn,n−1En−1 = 0 (2.1)

where En is the electric field amplitude at the nth waveguide (n = 1,2,· · · ,N), βn is the propagation

constant of the nth waveguide, and Cn,n±1 is the coupling coefficient between adjacent waveguide

elements. We assume lossless propagation and set Cn,n±1 = Cn±1,n . The magnitude of the

coupling coefficients depends exponentially on the separation between adjacent waveguides [30].

We begin by considering a periodic array (Cn,n±1 = C0) of identical βn = β0 waveguides, where-
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upon Eq. (2.1) simplifies to

i
dEn
dz

+ C0 (En+1 + En−1) = 0 (2.2)

For a single-input-site excitation En0 = A0δn,n0 at z = 0, the field in the nth waveguide is given

by

En,n0(z) = A0i
n−n0Jn−n0 (2C0z) (2.3)

where Jn(x) represents a Bessel function of order n, and the output intensity distribuation is

In,n0(z) ∝ |Jn−n0 (2C z) |2. (2.4)

This output distribution exhibits two off-center lobes where most of the optical energy is concen-

trated, and whose distance from the transverse location of the excitation site increases linearly with

the propagation length along the array (see Fig. 2.1a). This is characteristic of discrete diffraction

[18], which is in stark contrast to free-space diffraction where most of the light is concentrated in

a central lobe.
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Figure 2.1: Numerical simulation of optical field propagation when light is injected into the 51st waveg-
uide in a 101-waveguide array. The arrays used in (a) to (d) have increasing degree of disorder. Each plot
results from averagin the intensities of 41 realizations of random disordered arrays described by a uniform
propability distribution function having a mean value C0 =1.8cm−1 and width 2∆, for disorder parame-
ters ∆/C0 = 0, 0.4, 0.55 and 0.70 respectively. The average output intensity distributions for propagation
lengths 35 mm (blue) and 49 mm (green), respectively, corresponding to the lengths of the two samples
used, are shown on the right.

Disorder can be introduced into a waveguide array by one of two strategies. In the first, one

randomly changes the waveguide width, while keeping the distance between waveguide centers

constant. As a result, the propagation constants βn vary from one waveguide to another in the

rangeβ0 ± ∆, while the coupling coefficients are approximately constant, Cn,n±1 = C0 [11, 12].

This disordered array corresponds to the diagonal-disorder model in Andersons original formula-
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tion. In the second strategy, the waveguides are all identical, but the separation between adjacent

waveguides is randomized. The propagation constant is the same for all the waveguides βn = β0,

while the coupling coefficients become random in the range C0 ± ∆. Such an array corresponds

to the off-diagonal-disorder model. In this paper, we focus on waveguide arrays involving off-

diagonal disorder. Propagation in such an array is described by the following equation,

i
dEn
dz

+ Cn,n+1En+1 + Cn,n−1En−1 = 0 (2.5)

Figure 2.2: (a) Experimental setup. LD: laser diode (780 nm); PBS: polarizing beam splitter; OA: optical
attenuator; 5× (NA=0.1) and 10× (NA=0.25) microscope objectives; S: Waveguide Array sample. (b) CCD
image of the periodic waveguide array output (period = 17 µm, and distance from the top of fused silica
slab ≈ 250 µm) when a single waveguide is excited at the input. (c) Measured dependence of the coupling
coefficient C on the waveguide separation for directional couplers fabricated with the same parameters as
the arrays.

In Figs. 2.1b-d we present numerical simulations of the intensity of a field propagating along

such an array averaged over 41 realizations of the random disordered parameters Cn,n±1, chosen

according to a uniform probability distribution with a mean value C0 and width 2∆, for disorder
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parameters ∆/C0 = 0, 0.4, 0.55, and 0.70. Note the transition from extended (Fig. 2.1a) to

exponentially localized (Fig. 2.1d) optical states with increasing disorder.

The Waveguide Array

The waveguides used in this study were fabricated using 800-nm-wavelength femtosecondlaser

pulses focused at a depth of ≈ 250 microns below the surface of polished bulk fused-silica glass

[29, 30], inducing permanent refractive index changes.

A computer-controlled positioning system allows one to write waveguides [29] of transverse size

4×12 µm. At a wavelength of 800 nm, these are single-mode waveguides with NA = 0.06 [30].

We prepared two identical samples each consisting of four waveguide arrays, but having different

lengths, 35 mm and 49 mm, referred to hereon as short and long samples, respectively. The

waveguides in all of the arrays in both samples are identical. Each array consists of 101 waveguides

with nearest-neighbor evanescent coupling. The first array in each sample is periodic with inter-

waveguide separation of 17 µm (numerical simulation of optical field propagation when light is

injected into a single waveguide of the periodic array is shown in Fig. 2.1a), corresponding to

a coupling coefficient C0 = 1.8 cm−1 (Fig. 2.2c). The other arrays are disordered with random

(off-diagonal) coupling coefficients. The values of the coupling coefficients in each array are

described by uniform probability distribution functions all having the same mean value C0, but

with increasingly larger width 2∆ (Fig. 2.1b-d). According to the exponential dependence of C0

on the waveguide separation (Fig. 2.2c), such a uniform distribution of coupling coefficients can

be generated by imposing an exponential distribution on the separation [30].
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Figure 2.3: Data acquisition and analysis. Panel (a) presents data for light injected into the 50th waveguide
(n0 = 50) of the long periodic array. The intensity at the output of the waveguide array is captured with
a CCD camera (shown in the middle). The image is then post-processed to extract the discrete intensity
distribution (In,50) by integrating over rectangular areas 10×30 pixel each centered on the center of each
waveguide (n) shown as the black rectangle. The central red rectangle on the CCD image in panel (a)
indicates the location of the excitation site. The discrete intensity distribution, In,50 is shown as the red
bar-plot. The brightness image in panel (b) displays the distribution, In,n0 of the intensity of the light
measured at the output of the waveguides (n) when only waveguide n0 is illuminated. The red rectangle
on panel (b) indicates the output distribution for light injected into the 50th waveguide. In panel (c) the
displaced distribution, In+n0,n0 is shown. Each distribution of the measured intensity is displaced such that
it is centered about the illuminated waveguide. Only the middle 41 waveguides are illuminated (one at a
time) with the ordinate marking the illuminated waveguide.

Optical Measurement System

The experimental setup used to observe the transition to Anderson localization in the above de-

scribed optical waveguide arrays is shown in Fig. 2.2. A horizontally polarized beam from a diode

laser at 780 nm is attenuated and focused by a 10× microscope objective (NA=0.25) into a single
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waveguide in the array (see Fig. 2.2a). The waveguide array output is imaged on a CCD camera

using a 5× microscope objective (NA= 0.1). A typical output intensity distribution for single-site

excitation in the periodic array in the long sample is shown in Fig. 2.2b, demonstrating clearly the

expected discrete diffraction pattern.

The data recording and analysis procedure is sketched in Fig. 2.3. A single waveguide is illumi-

nated and the intensity of the light at the output of the waveguide array is captured by the CCD

camera. The realization shown in Fig. 2.3a was obtained by injecting light into the 50th waveguide

in the long-sample periodic array. The 2D image was post-processed to extract a discretized 1D

intensity distribution. A rectangle of size 10×30 pixels that covers the image of a waveguide was

integrated and a background term was subtracted. The resulting discrete intensity distribution In,50

is shown as the red-bar plot.

Figure 2.4: Average displaced distribution Īn for long (a) and short (b) periodic waveguide arrays. The
black squares represent a theoretical best-fit with C0 ≈ 1.79cm−1and1.80cm−1 for the short and long arrays,
respectively. The root-mean-square (RMS) width of the experimental distributions (≈ 18.0 and ≈ 25.4) are
shown in (c) as function of the array length. The line represents the best-fit to the linear ballistic expansion
as a function of the array length with C0 ≈ 1.81cm−1.

The uniformity of the waveguide losses is attested by the fact that the total output power Pno =
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∑
n In,no = P is constant ∀no (for fixed input power). We normalized the output intensity with

respect to P,In,no = In,no/P and then averaged the output distributions for different excitation

sites after shifting them by the index of that excitation site (see Fig. 2.3c),

Īn =
∑
no

In+n0,n0 . (2.6)

Figure 2.5: Effect of disorder on the propagation of light through 101-waveguide arrays in the short (first
row, a-c) and long (second row, d-f) samples. The two rows correspond to disorder parameters ∆/C0 ≈
0.44, 0.69 and 0.91 for the short sample, and 0.51,0.70 and 0.87 for the long sample. The color plot in
each panel shows the displaced distributions ¯In+n0,n0 at the output. Each row in the plot corresponds to
the output intensity distribution for a single point excitation at n0 after shifting it by n0. Only the middle
41 waveguides are illuminated (one at a time) with the ordinate marking the illuminated waveguide. The
average of the displaced distributions, Īn, for all 41 waveguides is plotted at the bottom of each panel with
the red line showing the result of a numerical simulation with C0 and ∆ as fitting parameters.
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The resulting averages are shown in Fig. 2.4 for the short and long periodic arrays. This procedure

is justified since the characteristics of the array are shift invariant. This necessitates excluding

edge effects which occur if the ends of the array are excited, as investigated by Szameit et al. [26].

Therefore, we excite the input waveguides no = 31...71, which guarantee that the output intensity

distribution does not extend to the edges of the arrays. A best-fit for these distributions to the

theoretical expectation |Jn(2C0z)|2 allows us to evaluate the coupling coefficient to be C0 ≈ 1.79

cm−1) and 1.80 cm−1) for the short and long arrays, respectively, defined by numerical simula-

tion fittings. Further confirmation of our results comes from verifying that the separation of the

lobes in the ballistic expansion increases linearly with sample length. We have evaluated the root-

mean-square (RMS) width of the experimental distributions ¯mathscrIn, and fitted them with the

coupling coefficient C0 as the only free parameter, as shown in Fig. 2.4.

Anderson Localization in Waveguide Arrays with Off-Diagonal Disorder

We next proceed to examine wave propagation through waveguide arrays with off-diagonal disor-

der. The coupling coefficients between adjacent waveguides in a single array were chosen such

that they belong to a uniform probability distribution function having mean value C0. The width

of the distribution 2∆ increases from one array to the next, corresponding to increasing disorder.

The values of C0 and ∆ have been determined by fitting the experimental data with numerical sim-

ulations: C0 (≈ 1.79 cm−1 and 1.50 cm−1 for the short and long arrays, respectively) defines the

distance between the lobes of the ballistic expansion, which is still visible in Fig. 2.5a and 2.5d,

while ∆ defines the central exponential peak. The disorder parameters for our arrays are found to

be ∆ ≈ 0.44, 0.69 and 0.91 for the short sample, and 0.51, 0.70 and 0.87 for the long sample. The

experimental setup and data analysis procedure used with the disordered arrays were identical to

those described above for the periodic arrays (see Fig. 2) after accounting for the random locations

of the waveguides in these off-diagonal disordered arrays. We have also used here the same post-
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processing data analysis to obtain the displaced distributions In+no,no and the average displaced

distribution Īn for each array.

Figure 2.6: Single-frame excerpts from video recordings. On the left we display the recorded intensity
distribution at the output of the short waveguide array when the middle 41 input waveguides are illuminated
one at a time, while on the right the cumulative averaged discrete intensity distribution is updated. (a)
Periodic array ; (b) array with disorder parameter ∆/C0 ≈ 0.44; (c) array with ∆/C0 ≈ 0.69; (c) array with
∆/C0 ≈ 0.91.

As we repeat the experiment in arrays with progressively larger off-diagonal coupling disorder,

shortening the localization length with respect to the ballistic spreading, we observe at the array

outputs a clear enhancement of the exponentially localized (Anderson-localized) optical states for

both samples [31]. As shown in Fig. 5, we observe that the ballistic expansion in the periodic

array evolves, with increasing disorder, into an intermediate regime at ∆/C0 ∼ 0.5 that exhibits

characteristics of both extended and localized states (Fig. 5a,d). Finally Anderson localization is

clearly evident at ∆/C0 ∼ 0.9 (Fig. 5c,f).
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It is worth noting that as we scan the beam injected into individual waveguides across a disordered

array, besides the shift due to the scanned input, the output intensity distribution changes. This

results from the fact that the spreading optical field encounters a random coupling environment

as we move across the array. In contrast, the individual realizations at the output of the periodic

array are almost all identical (modulo the shift). Anderson localization is then established for the

disordered array by averaging the different realizations resulting from spatial scanning the input

beam. These features are brought together in the movies in Fig. 2.6. On the left we depict

the individual output intensity distributions resulting from scanning the excited waveguides at the

input, and in the right we display an updated cumulative average. In the case of the periodic array,

averaging has little effect.

The localized states observed by averaging over multiple realizations of the gradually increased

disorder is demonstrated in Fig. 2.7. The RMS-widths of the output intensity distribution measured

for the two arrays with different length are compared to numerical simulations for two methods

of statistical averaging over the waveguide disorder. We note that our results demonstrate that en-

semble statistical averaging, achieved by coupling into a single waveguide in a set of independent

disordered arrays (sampling average) is equivalent to spatial scanning through multiple waveguides

in the same off-diagonally disordered array (shifted average). Finally to highlight the exponential

decay of the Anderson-localized state away from its center, we plot in log-scale the average dis-

placed distribution In for short and long samples in the inset of Fig. 2.7. The exponential decay

fits until we reach the noise level of the data.

18



Figure 2.7: RMS width as function of the disorder parameter ∆/C0 for the short (red-circle symbols) and
long array (blue-square symbols). The colored bands represent the range of values of the RMS-width a
standard deviation around the mean value. For each value of the disorder parameter, RMS-width and its
standard deviation have been evaluated by averaging over 21×40 disorder realizations for the sampling
average approach (dashed lines), while 21 disorder realizations and 40 shifted input waveguides have been
considered for the shifting average approach (solid lines). Inset: average displaced distribution, Īn for short
and long arrays with disorder parameter ∆/C0 ≈ 0.9. The log-scale plot highlights the exponential decay
of the Anderson-localized states. The dotted-lines are a guide for the eye.

Conclusion

We have observed the gradual passage from extended to Anderson-localized states in near infrared

light propagation through waveguide arrays of different lengths having a uniformly distributed

off-diagonal coupling disorder. Precise fabrication techniques have allowed us to control the disor-

der parameter and enabled us to obtain experimental measurements confirming theoretical predic-

tions with good accuracy, including the exponential behavior of the Anderson localized state.We

have supported the experimental results with numerical simulations for both shifting and sampling
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statistical averaging methods and shown that both methods yield equivalent results of the same

precision.
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CHAPTER 3: ENTANGLED PHOTON PAIRS IN PHOTONIC

LATTICES: PART I

Introductory Remarks on Experiment Two

The following paper was originally published in Physical Review Letters [14]. It details research

I performed coupling spatially correlated, entangled photon pairs into periodic and disordered

photonic lattices and measuring the second order correlation function G(2)(x1, x2) at the output

of the array. In this report, I first show simulation and measurement of Anderson localization

on the single photon level. As discussed, this result does not address new physics beyond that

of classical light and again requires shifting and averaging to obtain the localization signature.

However, the results become markedly different once I proceed onto spatially extended, entangled

two photon states. The input optical system, which lies between the nonlinear crystal generating

the entangled photon pair and the input face of the waveguide array, is an imaging system, meaning

the two photons which are generated at the same point in the nonlinear crystal are imaged to the

same waveguide. The correlated photon pair then traverses the array. In the periodic array, the

two dimensional ballistic distribution is seen oriented along the x1 = x2 axis. We note that the

ballistic distribution corresponding to classical propagation beginning in a single waveguide can

be recovered observing the diagonal marginal, obtained by summing along the G(2)(x1, x2) along

the x1 = x2 axis. The resulting marginal ballistic distribution corresponds to propagation of

classical light in an array of twice the length. In the weakly and strongly disordered arrays, I

observed a new phenomenon termed Anderson co-localization, in which the two photons localize

in correlation space along the x1 = x2 axis. The exponential signature of Anderson localization is

observed when examining the positive marginal distribution, which is again obtained by summing

the G(2)(x1, x2) along the x1 = x2 axis. Obtaining this does not require the shift and averaging
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procedure that is required in the classical case. In this way, we reveal that the entangled two

photon state has its correlations largely preserved after propagation in the disordered array, which

may be unexpected, as strong environmental disorder is usually considered to be detrimental to

any expression of entanglement.

Einstein-Podolsky-Rosen Spatial Entanglement in Ordered and Anderson Photonic Lattices

G. Di Giuseppe, L. Martin, A. Perez-Leija, R. Keil, F. Dreisow, S. Nolte, A. Szameit, A.F. Abouraddy,

D.N. Christodoulides and B.E.A. Saleh, Physical Review Letters, 110, 150503, 2013. ”Copyright

2013 by the American Physical Society.”

Introduction

Quantum information processing promises exponential speedup of intractable computational prob-

lems, secure cryptographic key distribution, and exotic communications protocols such as tele-

portation [6]. Manipulating entangled multipartite quantum states on a chip is now paving the

way towards scalable platforms for quantum information processing and quantum communica-

tions [32, 33, 34, 35]. Among the potential physical platforms, photonic realizations offer benefits

in terms of simplicity of generating and transforming entangled quantum states [36]. Advances

in micro- and nanofabrication have recently enabled a new generation of on-chip quantum pho-

tonic devices that may enable largescale linear quantum computation [37] and the observation of

fundamental processes such as quantum walks [38, 22]. To fully exploit the information-carrying

capacity of any physical system, all relevant degrees of freedom, whether spin, frequency, or spa-

tial, must be utilized. Thus far, photon polarization [39] or two-path realizations [35] have been the

preferred on-chip qubit embodiment. The quest for increasing the information-carrying capacity
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of a single photon necessitates the use of other degrees of freedom that offer higher dimension-

ality. It is thus important to explore new classes of integrated photonic configurations capable of

harnessing such high-dimensional degrees of freedom. Clearly, the benefits accrued will be even

greater if entanglement is utilized in such large-dimensional systems. In particular, spatially en-

tangled photon pairs [40] whose counterintuitive properties were the starting point of the Einstein-

Podolsky-Rosen (EPR) gedankenexperiment [1]naturally inhabit a high-dimensional Hilbert space

[41, 42]. To date, realizations of integrated photonic quantum circuits first project the spatial de-

gree of freedom onto a single mode, thereby stripping the spatial entanglement, in order to couple

into on-chip waveguide systems [35, 39, 43]. Quite recently, the study of the evolution of two-

photon states in one-dimensional waveguide lattices was suggested by Bromberg et al. [44]. Here

we experimentally demonstrate large-scale quantum walks using two-photon spatially extended

EPR states launched into on-chip multiport lattice circuits with and without disorder. In one con-

figuration, quantum walks through a periodic waveguide array convert spatially correlated EPR

pairs into anticorrelated pairsa spatially extended inverse of Hong-Ou-Mandel interference [45].

In a different configuration, a lattice with controllable disorder halts the spreading of each photon

of a pair in a separable stateleading to the first demonstration of Anderson localization (AL) [13]

at the single-photon level. When entangled EPR photons are launched into this array, we observe a

new disordermediated two-photon interference effect. The extended EPR photons do not localize.

In this case, their spatial correlations unexpectedly survive the disordered quantum random walk,

resulting in localization in fourth-order correlation space, or colocalization [46, 47]. In our experi-

ment (Fig. 1-i) we produce EPR photon pairs by optical spontaneous parametric down-conversion

from a nonlinear crystal (NLC)[40]. These entangled photon pairs are then imaged to the input

plane of an integrated multiport photonic lattice. Entangled quantum walk experiments were car-

ried out in three different lattices, each consisting of a large array of 101 evanescently coupled,

parallel, identical, single-mode, low-loss optical waveguides inscribed in silica glass [30]. In this

setting, the waveguides have identical propagation constants, and the inter-waveguide coupling is
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determined by their separation (Fig. 3.1-ii and Fig. 3.1-iii).

The evolution along z of the quantized-field operators a†n in the nth waveguide in this tight-

binding lattice is determined by the Heisenberg equation of motion in the interaction picture

[44], −ida
†
n

dz
= κn,n−1a

†
n−1 + κn,n+1a

†
n+1 where κn,n−1 is the coupling coefficient between adja-

cent sites. Integration of this equation yields A†(z) = Û(z)Â†(0) where Â†(z) =
[
a†n(z)

]N
n=1

,

Û(z) = expiĤz, and Ĥ represents the coupling-coefficient matrix. In experiments using two-

photon states, this transformation applies to the quantized field operators of each photon.
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Figure 3.1: (i) Experimental setup. A pump laser incident on a NLC generates spatially entangled photon
pairs that are coupled into a waveguide array using a lens L1 (an achromatic doublet, focal length 30 mm)
in an imaging configuration. The distance from the nonlinear crystal to L1 and the distance from L1 to the
waveguide array were chosen to demagnify the spatial extent of the photon pairs by a factor of 4. A lens
L2 (an achromatic doublet, focal length 40 mm) images the photon pairs emerging from the array with a
magnification factor of 6.5 to two identical planes x1 and x2 separated using a beam splitter (BS), and are
collected by two scanning fibers coupled to detectors SPCM1 and SPCM2. A coincidence circuit provides
the correlation function G(2)(x1, x2). The pump beam is removed after the NLC using a polarizing beam
splitter (PBS). Inset: Photograph of the waveguide array sample (left), a phase-contrast microscope image
of a section of the periodic array taken from the top of the array showing the waveguides along z (top
right), and an optical micrograph of white light emerging from the periodic array output (bottom right). (ii)
Phase-contrast microscope images of a section of each waveguide array. (iii) Values of the nearest-neighbor
coupling coefficients for each array. (iv) Calculated evolution of a one-photon state along each waveguide
array when a single waveguide is excited. Distances L = 5 cm (the physical length of the arrays) and 2L are
highlighted. Columns: (a) periodic, (b) weakly disordered, and (c) highly disordered arrays.

In our work we consider three such arrays of length L = 5 cm: a periodic array κn,n−1 = κo, ∀n
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(Fig. 3.1-ii-a); a weakly disordered array with coupling constants chosen from a uniform random

distribution κ ∈ [κo −∆, κo + ∆] with mean κo and normalized width ∆/κo = 0.5 (Fig. 3.1-ii-b);

and a strongly disordered array with ∆/κo = 0.9 (Fig. 3.1-ii-c). The array output plane is imaged

to two identical planes, x1 and x2 (Fig. 3.1-i). Two fibers connected to single-photon-sensitive

detectors are scanned in these planes to collect the emerging photons at the imaged waveguide

locations in order to register the coincidence rate G(2)(x1, x2) [48]. The dynamics of onephoton

states when launched into a single waveguide are depicted in Fig. 3.1-iv for these three cases. The

entangled photon pairs produced in our experiment are in a quantum-correlated two-photon state

as previously demonstrated [40, 49]. Each pair is always injected together into a waveguide. This

waveguide can be any of the N = 101 sites covered by the spatial extent M of the state. The

two-photon EPR state, or multipath entangled state, covering M discrete lattice points takes the

form

|ΨEPR〉 =
1√
M
{|21, 02, · · · , 0M〉+ |01, 22, · · · , 0M〉+ · · ·+ |01, 02, · · · , 2M〉} (3.1)

where the indices refer to the sites. The quantum correlations in this spatially extended state

|ΨEPR〉 are such that the two photons are always on the same lattice site, but with equal probability

1
M

of being at any of the M excited sites. In our experiments, M = 20 and the uniform probability

distribution is approximated by a truncated broad Gaussian distribution. In contrast, a separable

two-photon state is excited if they are both launched into a single waveguide k

|Ψsep〉 = |01, 02, · · · , 0k−1, 2k, 0k+1, · · · , 0M〉 . (3.2)

In this separable state, the two photons are independent. We stress that current experimental ap-

proaches that make use of integrated devices have so far relied on first coupling the photon pairs
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into a single-mode fiber, which destroys their spatial correlations. Here we obviate this limitation

through free-space imaging of the EPR state from the NLC to the chip, thereby loading spatial en-

tanglement into the photonic circuit. This scheme allows the high dimensionality of the EPR state

in Eq. (3.1) to be exploited in an integrated quantum photonic arrangement to observe entangled

quantum walks.

The propagation dynamics of a two-photon state along the three arrays depends on the initial

state. If |Ψsep〉 is injected into a single waveguide in any of the arrays, the output coincidence

rate separates into a product G(2)(x1, x2) = G(1)(x1, x1)G(1)(x2, x2) of single-photon distributions

G(1)(x1, x1) and G(1)(x2, x2) [11,24]. When light in the state |ΨEPR〉 is coupled into the array,

G(2)(x1, x2) no longer factorizes and the dynamics are altogether different.

Experiment

The experimental setup is illustrated in Fig. 1. Photon pairs are produced via collinear degenerate

type-I optical spontaneous parametric down conversion from a LiIO3, 1.5-mm thick nonlinear crys-

tal excited with a pump laser (CW Coherent Cube laser diode, 80-mW power, 404-nm wavelength,

vertically polarized). The photon pairs (horizontally polarized, centered at 808 nm) are coupled

into the waveguide array using an achromatic doublet lens of 30-mm focal length in a telescopic

imaging arrangement. The pump beam is removed after the NLC using a Glan-Thompson polar-

izing beam splitter and a red long-pass filter after the array. This arrangement is similar to that

previously used in Ref. [49] where we demonstrated a violation of Bells inequality, thereby ensur-

ing the high degree of entanglement of the state produced here. The photon pairs emerging from the

array are imaged using an achromatic doublet lens of 40-mm focal length to two identical planes x1

and x2 separated using a nonpolarizing BS and are collected by two fibers (multimode, 62.5-µm

core diameter) coupled to single-photon-sensitive detectors SPCM1 and SPCM2 (Perkin-Elmer,
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SPCM-AQR-15-FC). A coincidence circuit measures the correlation function G(2)(x1, x2) using a

3-ns window. The waveguide elements, which are inscribed in silica glass, are all identical and

single mode (width 4 µm, height 11 µm, NA 0.045, length 5 cm). In the periodic array, the center-

to-center waveguide separation is 17µm and the measured coupling coefficient κ0 ≈ 1.7cm−1.

The disordered arrays are implemented by varying the distance between adjacent guides such that

a uniform distribution of the coupling κ is obtained [46, 9]. In analyzing the data from these finite

arrays, we have carried out simulations using the actual distribution of coupling coefficients. A

more complete statistical analysis was carried out in Refs. [47, 9].

Periodic array

We first investigate the evolution of |ΨEPR〉 and |Ψsep〉 along the periodic array (Fig. 3.2): (i) When

the |Ψsep〉 state is excited, the measured coincidence rate G(2)(x1, x2) features four symmetric

peaks (Fig. 3.2-iii-a) and is separable into the product of two pairs of ballistic peaks for each

photon (Fig. 3.1-iv-a). These peaks signify that if a photon is detected on one side of the array,

then its twin is equally likely to be detected on the same side (the diagonal peaks) or at its mirror

symmetric location with respect to the input site (the off-diagonal peaks). As in the case of a beam

splitter with a two-photon state at one input port, the two photons are equally likely to emerge from

the same or different ports. Here the array plays the role of a spatially extended beam-splitting

photonic circuit.
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Figure 3.2: Observation of the correlation function G(2)(x1, x2) in a periodic lattice. Column (a) corre-
sponds to the separable state |Ψsep〉 and column (b) to the entangled state |ΨEPR〉. (i) ExpectedG(2)(x1, x2)
at the input. (ii) Theoretical and (iii) measured coincidence rate at the output. (iv) Calculated and measured
singles distribution G(1)(x1, x1) at the output. (v) Calculated and measured diagonals distribution at the
output for|ΨEPR〉. The width of the horizontal axis for x1 in (v) is twice that in the rest of the figure.

Consequently, the singles distributions are identical to the single-photon (or classical) outcome
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G(1)(x1, x1) for the same array (Fig. 3.2-iv-a). This arrangement corresponds to a two-photon

continuous quantum random walk [50, 51], where each photon in the pair evolves independently.

(ii) The two-photon dynamics are dramatically altered when |ΨEPR〉 is excited instead. The two di-

agonal peaks that appear in the separable case are here suppressed (Fig. 3.2-ii-b and Fig. 3.2-iii-b),

leaving only two prominent off-diagonal peaks, as predicted theoretically in Ref. [47]. Surpris-

ingly, even though the two photons at the input are always in the same lattice site, at the end of the

quantum walk they emerge from opposite sides of the array with respect to the center. Furthermore,

G(2)(x1, x2) is not factorizable and the singles correspond to the evolution of a spatially extended

mixed one-photon state (Fig. 3.2-iv-b). Nevertheless, examining the diagonal marginal distribu-

tion (diagonals), resulting from integrating G(2) along x1 = x2 [19], brings forth an unexpected

result (Fig. 3.2-v-b). In general, the diagonals reveal the distribution of separations between the

two photons emerging from the array. Here the diagonals distribution equals that resulting from

the evolution of a one-photon state that is coupled into a single lattice site and after propagating

for a distance 2Ltwice the length of the physical array [47]. The two off-diagonal peaks, along

the x1 = −x2 axis, in the periodic array signify that the two photons always emerge on opposite

sides of the array, although the pairs are coupled into the same waveguides at the input. In essence,

this observation corresponds to the reverse of the usual two-photon Hong- Ou-Mandel interference

effect [45] where two photons enter different ports of a beam splitter and emerge together from

one of the output ports. Our arrangement realizes the inverse of this effect in a spatially extended

configuration across the waveguide array.

30



Figure 3.3: Same as in Fig. 3.2 for the disordered Anderson lattice (∆/κ0 = 0.9).

Disordered array

We now investigate how the two photon quantum walk is affected in the extreme limit of a strongly

disordered lattice that is expected to halt the spreading of single-photon states. In this regime,

transverse photonic AL has been observed using classical states of light [12, 9, 7, 11, 26]. Using

such a random array, we study quantum walks using both|Ψsep〉 and |ΨEPR〉. (i) In the separable

case [Fig. 3.3(a)] we observe for the first time AL at the single-photon level. Both photons in this

separable state undergo independently the localization process (Fig. 3.3-ii-a and Fig. 3.3-iii-a). (ii)

In the spatially entangled case, neither of the spatially extended EPR photons localizes (as observed
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in the singles shown in Fig. 3.3-iii-b). In factG(2)(x1, x2) in this regime resembles that of the input

EPR state (Fig. 3.2-i-b). In other words, the spatial correlations inherent in |ΨEPR〉 survive even

in the presence of such extreme disorder. This two-photon disorder-mediated interference effect

leads to localization in correlation space as seen clearly in the diagonal distribution (Fig. 3.3-iv-b).

The exponential localization in the latter figure is evident from the linear slope (triangular shape)

in the logarithmic scale we used in plotting. Whether this newly observed absence of diffusion in

correlation space is a form of AL remains an open question. The hot-spotobserved in the data in

Fig. 3.3-ii-b is due to the deviation between the assumed flat distribution of the random coupling

coefficients in theory and the actual values in the fabricated sample.

Figure 3.4: Same as in Fig. 3.2 for the weakly disordered Anderson lattice (∆/κ0 = 0.5).
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Weakly disordered array

We have also performed similar measurements in an array with coupling coefficients (Fig. 3.1-

iii-b) chosen such that a one-photon state coupled into a single waveguide will exhibit an output

distributionG(1)(x1, x1) that combines both ballistic propagation and AL features after propagating

the physical distance L, but demonstrates a strong AL signature after twice the distance 2L. The

measurements ofG(2)(x1, x2) for this array are shown in Fig. 3.4. For excitation in the state |Ψsep〉,

G(2)(x1, x2) does not localize as occurs in the case of the strongly disordered array [Fig. 3.3(a)].

The singles G(1)(x1, x1) in Fig. 3.4-iii-a reveal ballistic and AL features as is expected from the

calculation of the evolution shown in Fig. 3.1-iv-b. When the photon pairs are coupled into 20

adjacent waveguides, and hence|ΨEPR〉 is excited, the measured G(2)(x1, x2) is shown in Fig. 3.4-

ii-b. The singles G(1)(x1, x1), Fig. 3.4-iii-b, reveal an extended distribution of both photons with

no sign of localization. On the other hand, when the diagonals are examined (Fig. 3.4-iv-b, shown

in logarithmic scale), we observe the localized state distribution that results from exciting a single

waveguide in this array after propagating a distance 2L, and hence exhibits a clear AL signature.

Conclusion

We have demonstrated deterministic and disordered quantum walks on large-scale on-chip lattices

implemented on a spatially extended two-photon EPR state. Other entangled states besides |ΨEPR〉

may also be launched into such multiport structures by manipulating the relative complex weights

of the two-photon basis functions either at the NLC or using the imaging system. In the process, we

observed AL at the single-photon level and also a new form of localization in correlation space re-

sulting from the quantum random walk of an EPR photon pair on a disordered lattice. In principle,

these systems may be adapted to incorporate other optical degrees of freedom, such as polarization

and frequency, further expanding the dimensionality of the Hilbert space. Moreover, two dimen-
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sional realizations of such networks, permanent or reconfigurable [52], can also be utilized for

implementing more sophisticated operations and quantum random walks.
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CHAPTER 4: ENTANGLED PHOTON PAIRS IN PHOTONIC

LATTICES: PART II

Introductory Remarks on Experiment Three

The following paper is pre-press [15] and slated to be submitted to a peer-reviewed journal. As

such, the paper as it is shown here may not be in its final published form. This paper continues

and expands upon the work begun in the previous chapter. Here, I address through experiment

and simulation the evolution of entangled photon pairs in disordered photonic lattices, where the

entanglement is manifested through different types of correlations. The type of entanglement em-

bodied by the photon pair is controlled by altering the input optical system. As before, if the input

optical system is in an imaging configuration, photons generated at the same point in the crystal

are imaged to the same point at the input face of the waveguide array, yielding a strongly correlated

input state. Once this input state traverses the array, it again shows Anderson co-localization. In

this case, I demonstrate AcL for a larger input state covering more waveguides and for more levels

of disorder. If the input optical system is arranged in a 2−f Fourier transforming system, it is each

photon’s transverse momentum that determines which waveguide it enters, rather than its position.

As such, each photon in the pair will enter a waveguide opposite a central point, yielding a spa-

tially anti-correlated input state. The resulting G(2)(x1, x2) at the output reveals the phenomenon

of Anderson anti-localization. The photons emerge from the array opposite or nearly opposite each

other, again maintaining the correlations present in the input state. The localization signature is

now revealed in the negative marginal, found by summing along the x1 = −x2 axis.

Next, I altered the correlations of the input state by modifying the input optical system. The ex-

tremes of imaging and Fourier transforming optical system produce input states with well defined
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spatial correlations, where knowledge of the position of one photon absolutely gives the position

of the other. Between these two extremes, the optical input system generates states in which the

spatial correlations are not as extreme, but the two photons are still entangled. In these configu-

rations, the entanglement is expressed via a combination of spatial and phase correlations. In my

experiments, I show a transition between the extremes of correlated and anti-correlated input states

and their corresponding output states by measuring the function G(2)(x1, x2). I observe the transi-

tion from Anderson anti-localization, to an intermediate state in with no strong spatial correlations,

to an Anderson co-localized state.

Anderson Co-localization to Anti-localization of Entangled Photon Pairs in Disordered Photonic

Lattices

Introduction

Quantum entanglement lies at the heart of a variety of fascinating phenomena and enables tech-

nologies that are beyond the bounds of classical physics. Quantum teleportation [53, 54], quantum

computing [6] and secure quantum key distribution [4, 5] are a few of the profound and promising

applications for which entanglement is essential. The degree and type of quantum entanglement

present in a system is determined by measurement of multi-particle correlations in some degree of

freedom. Interestingly, it has been shown that entanglement can migrate in the joint Hilbert space,

causing entanglement to be expressed via correlations in a different degrees of freedom depending

on how the particles have evolved [55, 56, 57].

Usually any non-intrinsic source of randomness or disorder is considered detrimental to fragile

entangled systems. However, recent research into entanglement in disordered environments has

revealed new and interesting physics that has potential far beyond mitigating undesirable effects.
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For example, quantum random networks show markedly different properties than their classical

counterparts [58], multiple scattering media may open new avenues for manipulating entangled

states of light [59] and Anderson localization has been demonstrated for entangled photons in

integrated photonic devices [60, 14]. Regarding the latter, experimental research into entangled

photon propagation in disordered photonic systems has proven particularly fruitful, largely due

to the ready source of entangled photon pairs through SPDC and advances in the fabrication of

photonic lattices.

Photonic lattices are integrated multiport interferometers, consisting of arrays of waveguides in

which light may evanescently couple from one waveguide to another. Due to their inherent cus-

tomizability and stability, these devices serve as an ideal platform on which to test and demonstrate

a variety of classical and quantum optical phenomena. In classical optics, they have been used to

demonstrate transverse Anderson localization [7, 12, 8, 11] and study random walks of light [22].

In quantum optics, these arrays have been used to realize correlated quantum walks of photon

pairs [50], and study non-classical correlations of photons in Anderson localizing media [27, 46].

We have previously used these arrays to demonstrate Anderson co-localization, a phenomenon in

which two entangled photons localize in correlations space even though neither photon localizes

on its own [14, 47].

In this report we investigate the spatial correlations of entangled photon pairs in Anderson local-

izing photonic lattices as entanglement of the input state is migrated between the extremes of cor-

relation and anti-correlation. We begin by producing spatially entangled photon pairs via SPDC,

then couple into a photonic lattice endowed with spatial disorder. We induce entanglement migra-

tion through the use of a fractional Fourier transform (fFT) [61, 62] optical system, which allows

the entanglement of the photon pair to expressed jointly in spatial and phase correlations. After

propagation through the array, the spatial correlations of the emerging photon pairs are measured

via coincidence counting to recover the second order intensity correlation function G(2)(x1, x2).
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In addition, we provide the first experimental evidence for Anderson anti-localization (AaL), in

which photons pairs emerging from the array are anti-localized in correlation space.

Figure 4.1: Schematic for input optical system in classical (C) and quantum (Q) regimes. The right column
illustrates the evolution of the generated input states in the array. (a) (left) Imaging input configuration.
(C) Each point in the object plane in imaged to a point in the image plane. (Q) A pair of photons created
together in the NLC plane will be imaged to the same point at the input of the array, thus entering the same
waveguide. (right) The correlated input evolves in the array and exits with the correlations largely intact,
hence co-localization occurs. (b) (left) Fractional Fourier transform configuration. (C) A point in the object
plane is a blur spot in the detection plane. (Q) Two photons created at the same point in the NLC plane
are found within a certain distance of each other in the array input plane. Knowledge of the position of
one photon does not yield complete information about the position of the other. Similarly, it will yield
incomplete information about the possible transverse momentum of the photons. (right) The input state,
which is neither fully correlated or anti-correlated (yet still fully entangled), evolves in the array and does
not show any strong correlations at the exit of the array. (c) (left) Fourier transforming configuration. (C)
Plane waves with different transverse momentum components are focused to different points in the detection
plane. (Q) Photons in the pair generated by SPDC necessarily have opposite transverse momentum, such
that they are always found in the detection plane on opposite sides of a central point. This results in an anti-
correlated input state. (right) As the anti-correlated state evolves in the waveguide array, the anti-correlations
are preserved, leading to AaL.
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Theory

The propagation of light through a photonic waveguide array is characterized by the hermitian

coupling matrix,

H =



. . . . . . 0 . . . 0

. . . βn−1 Cn−1,n
. . . ...

0 Cn−1,n βn Cn,n+1 0

... . . . Cn,n+1 βn+1
. . .

0 . . . 0
. . . . . .


(4.1)

where βn is the propagation constant of waveguide n, and Cn,n±1 is the coupling coefficient be-

tween adjacent waveguides n and n± 1, where n = [−N, ...,−1, 0, 1, ..., N ] is the position of the

waveguide and 2N+1 is the size of the array [44]. For an array of length L, elements of the matrix

eiHL determine the the discrete point spread function h(x, x′) of the linear system that relates the

output at waveguide x to the input at waveguide x′. For waveguides with off-diagonal disorder,

as used in our experiment, βn = βo are fixed and Cn,n±1 are random parameters, so that the point

spread function h(x, x′) has random components.

A single-photon wave function ψi(x′) at the input of the array generates a wave function

ψo(x1) =
∑
x

h(x1, x
′)ψi(x

′) (4.2)

at its output. For an initial wave function localized at x′ = 0, i.e., ψi(x′) = δx′,0, where δx,0 is the

Kronecker delta, ψo(x) = h(x, 0). The probability of detecting the photon at waveguide x is then

〈|ψo(x)|2〉 = 〈|h(x, 0)|2〉, where 〈.〉 represents the classical ensemble average. Conventional AL is

exhibited since the width of this function is reduced as the level of disorder increases.
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Figure 4.2: (a) Diagram of the experimental setup. From the left, a pump beam incident on a nonlinear
crystal (NLC) produces spatially entangled photon pairs through type-I SPDC. A glan-thomposon polarizer
(not pictured) removes the pump beam. A positive achromatic doublet (L1) couples the photon pairs to the
waveguide array. The relation between d1,d2 and the focal length of L1 determines the type of spatial corre-
lation embodied by the photon pair as it enters the array. After propagation through the array, the photons are
imaged to a planes scanned by a pair of multimode fibers, separated by a nonpolarizing beamsplitter (NPBS).
These fibers lead to a pair of single photon counting modules (SPCMs), which connect to a coincidence cir-
cuit. This enables us to produce the coincidence map G(2)(x1, x2). (b) A sample G(2)(x1, x2) showing
how to derive the singles (red) and marginals M+ (green) and M− (blue) (c) Simulated (left) and measured
(right) G(2)(x1, x2)’s for periodic array when input is correlated (top) and anti-correlated (bottom).
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Similarly, a two-photon wave function ψi(x′, x′′) at the input of the array becomes

ψo(x1, x2) =
∑
x′,x′′

h(x1, x
′)h(x2, x

′′)ψi(x
′, x′′) (4.3)

at the output. The probability of two-photon coincidence at positions x1 and x2 for light emerging

from the array is G(2)(x1, x2) = 〈|ψo(x1, x2)|2〉. This is the quantity measured by our apparatus.

We are interested in the effect of the disordered medium on the spatial correlation of the initial

function Ψi(x
′, x′′). The two special cases are fully correlated and fully anti-correlated, which

are represented by Ψi(x
′, x′′) = δ(x′ − x′′) and Ψi(x

′, x′′) = δ(x′ + x′′)′, respectively. These

cases represent the cases of extreme spatial correlation, where knowledge of the position of photon

one means knowing the position of photon two absolutely. In the correlated case, both photons

will be found at the same waveguide site. In the anti-correlated case, the photons will be found

in waveguides opposite a central point. In both cases, neither photon position is known before

measurement, but their spatial correlations are strictly defined.

Between these two extremes, we have access to a continuum of intermediate input states in which

the entanglement is expressed via a combination of spatial and phase correlations. Ideal versions

of these states may be calculated by performing a fFT on the function Ψi(x
′, x′′) = δ(x′ − x′′).

Depending on the order fFT, the magnitude |Ψi(x
′, x′′) | may become separable, though the phase

prevents the state itself from being separable. The implementation of the fFT is described in the

experimental section and the method for simulating the non-ideal intermediate states is outlined in

the supplement.
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Experiment

Our experimental apparatus, shown in Fig. 4.2, consists of three parts: input state generation, the

photonic waveguide array and coincidence measurement. A pump laser beam (vertically polarized,

403-nm, CW, 80-mW) is incident on a lithium iodate nonlinear crystal (NLC) (1.5-mm thick),

cut to generate horizontally polarized, spatially entangled photon pairs via type-I spontaneous

parametric down conversion. These photons are coupled to the input face of the waveguide array

by a single positive lens of focal length f = 30-mm. The pump beam is removed by a polarizer.

The specific configuration composed by the NLC, lens and input face of the array determines the

type of spatial correlations embodied by the entangled photon pair. A 4f imaging system will yield

spatially correlated photons, as photons created at the same point in the NLC are imaged to the

same waveguide. A 2f Fourier transforming system will yield spatially anti-correlated photons, as

the Fourier transforming lens translates the photons’ opposing transverse momentum into position.

Between the imaging and Fourier transforming systems, we have access to a continuum of states

with a combination of spatial and phase correlations. In these cases, knowing the position of

photon one yields a broad range of positions for photon two. In our experiments, we implement an

optical FRFT via a balanced (2α)f optical system, where 1 ≤ α ≤ 2.

The waveguide arrays used in this experiment are inscribed in silica glass by use of femtosecond

laser pulses [30]. Each array is made of 101 evanescently coupled, parallel, identical, single-

mode, low-loss optical waveguides (width 4 µm, height 11 µm, NA 0.045, length L= 5 cm). In our

work we consider four such arrays endowed with off-diagonal disorder. The disordered arrays are

implemented by varying the separation between adjacent guides such that the coupling coefficients

Cn are independent and uniformly distributed in the range [Co − ∆, Co + ∆] with mean Co and

width 2∆. The disorder level for our four disordered arrays are ∆Co = 0.35, 0.51, 0.70, 0.87.

After propagation through the array, the photons are imaged to the planes of a pair of scanning
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multi-mode fibers (62.5-µm diameter) separated by a non-polarizing beam splitter. The magnifi-

cation of this imaging system is such that the imaged height of each waveguide is matched to the

diameter of the multi-mode fiber. The fibers, which are mounted to motorized linear stages, can

be scanned and collect light from each waveguide independently. The fibers each lead to a single

photon counting module, which are connected to a circuit that measures coincidence counts. In

this way, we retrieve the coincidence map, or function G(2)(x1, x2).
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Figure 4.3: The simulated and observed correlation functions G(2)(x1, x2) at output of waveguide array
for correlated and anti-correlated input states at various disorder levels. All of the coincidence maps span
100×100 waveguides. The inset graphs show the singles (blue) and marginals M+(red) and M− (green).
The two rows in (a) correspond to input states that are spatially correlated, with the output coincidence maps
demonstrating AcL. The two rows in (b) correspond to input states that are spatially anti-correlated and the
output coincidence maps exhibit AaL.

Simulation

We have calculated the wave function ψo(x1, x2) and its associated 2-photon coincidence function

G(2)(x1, x2) at the output of the array for each of the disordered arrays used in the experiment, when
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the wave function at the array input ψi(x1, x2) is generated by the 4f and the 2f optical systems

connecting the NLC to the array input. For degenerate, collinear SPDC and crystal thickness `, the

wave function ψ(x1, x2) at the face of the NLC is the two-dimensional Fourier transform of the

function

Ψ(q1, q2) =

∫
dqpE(qp)ξ(qp, q1, q2)δ(qp − q1 − q2), (4.4)

where E(qp) is the Fourier transform of the spatial profile of the pump beam electric field,

ξ(qp, q1, q2) = l sinc (`∆kz/2π) exp(−i`∆kz/2) , (4.5)

∆kz = −λ
2

(
q2
p/np − q2

1/n− q2
2/n
)
, (4.6)

and np and n are the crystal refractive indexes at the pump and signal/idler wavelengths, respec-

tively [63, 64].

For a perfect lens L1 with infinite aperture, the 4f configuration is a perfect imaging system, so

that ψi(x1, x2) = ψ(x1, x2). The 2f configuration implements a Fourier transform, so that

ψi(x1, x2) = Ψ(x1/λf, x2/λf), (4.7)

where Ψ(q1, q2) is given by Eq.(4.4).

Given ψi(x1, x2), we have computed ψo(x1, x2) by use of Eq.(4.3), where h(x, x′) are elements of

the matrix eiHL, and H is given by Eq.(4.1).
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Figure 4.4: Simulated and observed coincidence maps showing a transition between anti-correlated and
correlated two-photon states at the (a) input and (b) output of the disordered waveguide array. From left
to right, the coincidence maps correspond to an optical input system in the (2α)f configuration, such that
(i) corresponds to a Fourier transforming configuration and (v) corresponds to an imaging system. Due
to space constraints the experiment row in part (a) was obtained using a lens with focal length of 6-cm.
For these measurements, the pump beam diameter and the scanned range were doubled to compensate for
the increased focal length; this setup is predicted to yield G(2)(x1, x2)’s with nearly the exact same spatial
correlations as the setup with f=3-cm.

Results

The experiment and simulation results are displayed in Figs. 4.3 and 4.4 in the form of coincidence

maps G(2)(x1, x2). Each coincidence map is characterized by three one-dimensional projections

given in the sideplots. The first is the singles distribution S(x2) =
∑

x1
G(2)(x1, x2),which is

the distribution of a single photon regardless of the other photon. The function S(x2) is pro-

portional to the intensity distribution, and thus contains no information on the relationship be-

tween the photons. Projections along the diagonal and off-diagonal directions x2 = x1 and

x2 = −x1 provide the marginal distributions functions M+(x+) =
∑

xG
(2)(x, x+ − x) and

M−(x−) =
∑

xG
(2)(x, x + x−), which portray the two-photon correlation and anti-correlation,

respectively. These three projections are useful tools for quantifying the type and strength of the

two-photon spatial correlations.
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For the spatially correlated initial two-photon wave function, the output photon coincidence maps

and their projections are shown in Fig. 4.3(a,b), with the off-diagonal disorder increasing from

i − iv. This input state is generated by imaging the plane of the NLC to the input face of the

waveguide array. This entangled input state extends over about 70 waveguides, with both photons

entering the same or nearby waveguides. Because of the extended nature of the input, the marginal

distribution S(x2) remains extended and flat for all disorder levels, indicating that neither photon

localizes on its own. However, as the disorder level increases the diagonal projection M+(x+) is

sharpened so that the coincidence distribution is localized along the x1 = x2 axis, meaning that

while neither photon localizes on its own, the two photons will exit the array from the same or

nearby waveguides. As predicted by the theory and simulation, the photon correlation present at

the input of the array is preserved at its output in the presence of strong disorder. This confirms the

AcL results obtained earlier in [14], though here we present results over more disorder levels and

for an input state that covers significantly more waveguide sites.

Fully anti-correlated input states are generated by an 2f Fourier transforming input optical sys-

tem; these input states correspond to the output coincidence maps shown in Fig. 4.3(c,d), with

the disorder level increasing from i− iv. The Fourier transforming optical system translates each

photon’s transverse momentum to position. As each photon in the pair possesses opposite trans-

verse momentum, the photons enter waveguides on opposite sides of the array, though which pair

of waveguides is unknown. As the disorder level increases the projection M−(x−) is sharpened

so that the coincidence distribution is localized along the x1 = −x2 axis. Again, for all disorder

levels the singles distribution S(x2) remains flat. As predicted by the theory and simulation, the

photon anti-correlation present at the input of the array is preserved at its output in the presence of

strong disorder; while neither photon localizes on its own, the photons are most likely to emerge

on opposite sides of the central waveguide. This experimental result confirms for the first time the

AaL predicted theoretically in [47].
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The output coincidence maps for five input states, one correlated, one anti-correlated and three

intermediate, are given in Fig. 4.4 (a,i-iv). From the simulation and input measurements prior

to propagation through the array, a gradual transition between the anti-correlated and correlated

cases is clearly observed. We note that even when there are almost no spatial correlations, the

two photons remain fully entangled. In this case, the entanglement is expressed in the phase

relations between the photons, rather than through their spatial correlations. We observe, in both

the simulation and experiment, that the spatial correlations present at the input of the the array

are again preserved by the disordered system.This is made especially clear by the distributions

M+(x+) and M−(x−), which closely match for the input and output coincidence maps for the

intermediate states.

Conclusion

We have used a set of disordered photonic waveguide array to provide experimental evidence for

the assertion that strongly disordered photonic waveguide arrays that induce classical transverse

Anderson localization preserve the spatial correlations of entangled, spatially extended two photon

states. Initial two photon wavefunction initially confined to the sum/difference axis that are prop-

agated through these disordered photonic waveguide arrays have their spatial correlations largely

preserved, phenomena we term Anderson co-localization (AcL) and Anderson anti-co-localization

(AaL). In this report, we provide the first experimental evidence for AaL. In addition, we have pro-

vided evidence that even when the spatial correlations are not localized on the sum or difference

coordinate, as with states generated by an optical system that performs a fractional Fourier trans-

form, the type and strength of the spatial correlation present at the input of the array is preserved

in the output coincidence map.

The great appeal and surprise of AL is that a counterintuitive effect, disorder in a system leading to
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localization instead of accelerated diffusion, arises out of a simple model with simple assumptions,

and yet is applicable in fields far outside its original scope. Although our experiments and anal-

ysis are currently confined to a designed and manufactured photonic device, we believe that the

fundamental ideas espoused here may be applicable to variety of areas in which quantum particles

interact with disordered systems. This is particularly important as new techniques and technolo-

gies seek to take advantage of multi-particle quantum interference effects in complex systems or

networks.

Supplementary

Two-Photon State at Nonlinear Crystal

The two photon state at the nonlinear crystal (NLC), prior to any propagation, is given in terms of

the transverse momentum by the following equation:

Ψ(2)(q1, q2) =

∫
dqpE(qp)ξ(qp, q1, q2)δ(qp − q1 − q2), (4.8)

where E(qp) is the Fourier transform of the spatial profile of the pump beam, ξ(qp, q1, q2) is the

longitudinal phase matching condition and the delta function indicated perfect phase matching in

the transverse direction. The phase matching function ξ(qp, qq, q2) is given by:

ξ(qp, q1, q2) = sinc (`∆kz/2π) exp(−i`∆kz/2) , (4.9)

where l is the longitudinal thickness of the NLC and ∆kz, the longitudinal component of the the
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wavevector, is:

∆kz =

√
n2
p

λ2
p

− q2
p −

√
n2

1

λ2
1

− q2
1 −

√
n2

2

λ2
2

− q2
2. (4.10)

Equation 4.10 may be simplified by applying the paraxial approximation terms in the square roots,

assuming the generated photons are degenerate in wavelength (2λp = λ1 = λ2) and assuming the

generated photons are collinear (np = n1 = n2). This results in the following:

∆kz = −λ
2

(
q2
p/np − q2

1/n− q2
2/n
)
. (4.11)

Combining equations 4.8, 4.9 and 4.11 yields the two-photon state at the NLC in terms of the

transverse momentum of each photon. The Fourier transform of this quantity yields the state

equation in terms of the position of each photon. For a thin NLC, the two photons will always be

found at the same location as they are created at the same point in the NLC.

Propagation from NLC plane to array plane

A single photon in the state ψ(1)
i (x′) will evolve according to the following equation:

ψ(1)
o (xi) =

∫
dxh(xi, x1)ψ

(1)
i (x1), (4.12)

where h(x1, x
′) is the impulse response function corresponding to propagation from the plane x′

to x1. In our experiments, the photons each propagate in the same environment. We may then

determine how the two-photon state ψ(2)
i (x′, x′′) evolves using the same impulse response function
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for each photon:

ψ(2)
o (xi, xs)=

∫
dx1 dx2h(xi, x1)h(xs, x2)ψ

(2)
i (x1, x2). (4.13)

We may write a similar equation for evolving the state in terms of the transverse momentum instead

of the spatial coordinate:

ψ(2)
o (xi, xs)=

∫
dq1 dq2H(xi, q1)H(xs, q2)ψ

(2)
i (q1, q2). (4.14)

The impulse response functions h(x, x′) and H(x, q) are related through the Fourier transform,

Hi(xi, q1) =

∫
dx1h(x1, xi) exp(−iq1x1) . (4.15)

We explore three simple optical configuration consisting of a single lens: an imaging system, a

Fourier transforming system and an intermediate system. The spatial impulse response function

for evolving a single photon through the system in Fig. (A1) is, assuming an infinite lens aperture,

given by the following equation:

hi(xi, x1) = A exp

[
i
ki
2

(
x2
i

z1

+
x2

1

z2

)]
×
∫ ∞
∞

dx exp

[
i
ki
2

(
1

z1

+
1

z2

− 1

f

)
x2 − iki

(
x1

z2

+
xi
z1

)
x

]
(4.16)
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Fourier Transforming Configuration

If the input plane, lens and output plane are in a Fourier transforming configuration (z1 = z2 = f ),

evaluating the integral in equation 4.16 and Fourier transforming the result according to equation

4.15 yields:

Hi(xi, q1) = A δ

(
2πxi
λf
− q1

)
. (4.17)

This is the expected result, as it indicates a plane wave with transverse momentum q in the object

plane becomes a point at position x = λfq
2π

in the Fourier plane.

Imaging Configuration

If the input plane, lens and output plane are in an imaging configuration ( 1
z1

+ 1
z2

= 1
f

), evaluating

the integral in equation 4.16 and Fourier transforming the result according to equation 4.15 yields:

Hi(xi, q1) = A exp

[
i
πx2

i

λz2

(
1 +

z1

z2

)]
exp

[
i
z1

z2

xiq1

]
. (4.18)

This equation is a Fourier transform accompanied by a quadratic phase factor. In most treatments

this phase factor is neglected; however, in our experiments we are coupling the two-photon state

into a multiport interferometric device, meaning the additional phase should be accounted for.
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Intermediate Input Configuration

Lastly, if the input optical configuration is neither imaging nor Fourier transforming, but an inter-

mediate state (z1 = z2 < f ), equations 4.16 and 4.15 yield the equation:

Hi(xi, q1) = A

[
iπ

z1λi

(
1− ∆

z1

)]− 1
2

exp
[
iΛ1x

2
i

]
exp

[
−iΛ2q

2
1

]
exp [iΛ3xiq1] , (4.19)

where ∆ = 1
f
− 1

z2
− 1

z1
and

Λ1 =
π

λiz1

[
1− ∆

z2

− ∆2

z2(z1 −∆)

]
; Λ2 =

z1λi

4π
(

1− ∆
z1

) ; Λ3 =
∆

z2

(
1− ∆

z1

) . (4.20)

Propagation through the Array

Once the state at the face of the waveguide array is known, it can be discretized and propagated

through the array. In our experiments, we judged that the wave function fluctuates slowly over

the size of our waveguide array, and thus the discretization procedure consists only of sampling

from the continuous field at the appropriate locations. The two photon state may then be evolved

through the array by use of the discrete analogy of equation 4.13. The discrete impulse response

function hx,x′ for a given propagation distance L is simply the elements of the evolution operator

U = exp(−iHL), where H is the coupling matrix given in the paper.
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CHAPTER 5: SPATIAL FREQUENCY IN PHOTONIC LATTICES

Introductory Remarks on Experiment Four

The following paper is pre-press [65] and slated to be submitted to a peer-reviewed journal. As

such, the paper as it is shown here may not be in its final published form. In this chapter, I address,

through simulation and experiment, the action of the periodic and disordered photonic lattices in

terms of spatial frequency (SF). Photonic lattices have been extensively studied and used to show

novel phenomena in discrete optics and photonic analogies of phenomena from different fields.

However, very limited work has been done on how photonic lattices affect the spatial frequency

spectrum of light. Here, I examine the spatial and SF impulse response functions of the periodic

and disordered arrays, uncovering surprising results.

First, I overview the theory of classical light propagation in one dimensional photonic lattices

using impulse response functions and show how one may evolve the electric field in terms of

spatial frequencies instead of the spatial distribution. I then show the relation between the spatial

frequency of the electric field and a plane wave incidence on the array from a given angle. Using

this understanding, I elaborate on how the various impulse response functions can be measured in

the experiment. In the periodic arrays, I find that the impulse response function that links a spatial

impulse input and a spatial frequency output has an intricate structure in areas where the array

must be considered spatially invariant.

In the disordered arrays, I find the surprising results that spatial frequency inputs (plane waves

with a given transverse momentum) are not completely scrambled as they evolve in the disordered

waveguide arrays. Instead the plane wave is broken into two components with the same magnitude

but opposite sign, similar to reflection and transmission. This effects leads to a spatial frequency
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impulse response function that has an X-shape. This result illustrates the very different nature of

light propagation is discrete vs. continuous random media.

Spatial Frequency in Periodic and Anderson Disordered Photonic Lattices

Introduction

Photonic lattices, which are arrays of evanescently coupled waveguides, are well studied and pow-

erful tools for the study of novel phenomena in linear and nonlinear discrete optics. These devices

are integrated, customizable multi-port interferometers that allow for extremely precise control of

the flow of light. Photonic lattices can be designed to realize optical analogies of phenomena native

to other physics systems [66], such as quantum walks [22], Anderson localization [12, 9, 11] and

Bloch waves [19, 20]. In this report, we investigate the spatial frequency (SF) spectrum of periodic

and Anderson disordered photonic lattices and uncover some surprising insights.

We briefly review the theory governing the propagation of light in one-dimensional photonic lat-

tices and how each it be characterized by the discrete, spatial impulse response function (IRF). We

show how these equations may be recast in terms of SF and explore their structure for both the

periodic and disordered arrays. As we examine each IRF, we discuss how the array does or does

not alter the input SF spectrum. We culminate this report by revealing the unexpected shape of the

IRF that relates the input and output SF for disordered photonic lattices; we find that instead of

scrambling the input SF as might be expected by propagation in a highly disordered medium, the

input light is split into two components with equal SF magnitude, but opposite sign. This result

reinforces the dramatic difference between light propagation in discrete and continuous random

media.
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Theory

Given an input electric field Ex, the electric field Ex′ at the output plane of a discrete linear optical

system may be determined though use of the discrete spatial impulse response function hx′,x as

follows:

Ex′ =
∑
x

hx′,xEx. (5.1)
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Figure 5.1: Schematic demonstrating the method of measuring the various impulse response functions (left
column) and simulations of the corresponding results for a set of inputs. The results are shown for the (a-b)
periodic and (c-d) weakly disordered regimes. The features of these graphs are discussed extensively in the
text.

We will consistently use the prime notation to designate the output plane. In photonic waveguide

arrays, the calculation of hx′,x is straightforward. The propagation of light in a photonic waveguide

array with N waveguides and only nearest neighbor coupling is governed by a set of N linear
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differential equations

i
dEn
dz

= βnEn + Cn,n−1En−1 + Cn,n+1En+1 (5.2)

where En is the electric field in waveguide n, βn is the propagation constant for waveguide n, and

Cn,n±1 is the coupling constant between waveguide n and n± 1. Rewriting this set of equations in

matrix form yields

d

dz
[E] = −i [H] [E] (5.3)

where the coupling matrix [H] is written in terms of the parameters of the lattice, as follows:

[H] =



. . . . . . 0 . . . 0

. . . βn−1 Cn−1,n
. . . ...

0 Cn−1,n βn Cn,n+1 0

... . . . Cn,n+1 βn+1
. . .

0 . . . 0
. . . . . .


. (5.4)

The solution to this differential matrix equation is [E] = e−i[H]z [E(0)]. Comparing this solution

to Eqn. 5.1 reveals hx′,x =
[
e−i[H]z

]
x′,x

.

It follows that any initial electric field defined at each waveguide n ∈ N may be propagated a

distance z for any array defined by Eqn. 5.2. The simplest case is a periodic array with an infinite

number of waveguides, in which each waveguide has identical propagation constants and coupling

coefficients. The impulse response function hx′,x = ix−x
′
Jx−x′(2Cz), where Jl is lth order Bessel
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function of the first kind. If E(z = 0) = δx,n, i.e. light is coupled into a single waveguide n, the

output intensity distribution will be I(x′) = |Jx′−n(2Cz) |2, with most of the energy confined to

two ballistic lobes. The distance between these lobes increases linearly with Cz.

Figure 5.2: Simulations and experimental results corresponding to the periodic photonic lattice. (a) Color
plots of |hx′x|2 from simulation (top) and experiment (bottom). In this experiment, light is coupled into a
single waveguide at a time and the intensity at the output is directly recorded. The input waveguide is shifted
and the process repeated. The final results are then compiled and plotted. (b) Color plots of |Hx,q′ |2 from
simulation (top) and experiment (bottom). Here, light is coupled into a single waveguide and the output is
Fourier transformed. In this plot, the primary interest is when the input is near the edge of the array and
reflections can occur, as the Fourier transform of the unreflected Bessel function yields a uniform intensity
distribution. (c) Color plots of |Hq,q′ |2 from simulation (top) and experiment (bottom). Here, a plane wave
input at some angle corresponding to spatial frequency q traverses the array and its intensity in the Fourier
plane is measured. For the periodic array this results in a single focused point whose position is proportional
to q.

We also consider the case of off-diagonal disorder, in which either the coupling coefficients are

selected from a uniform random distribution in a range C = C0 ±∆. At high disorder levels, the

ballistic propagation characteristic of the periodic array is fully arrested and, upon averaging over

59



many realizations of disorder, transverse Anderson localization is observed. Anderson localization

in photonic lattices has been extensively studied.

In this treatment we have thus far consider the action of the array in the spatial basis. This is the

natural course, as Eqn. 5.2 can be written compactly and directly in terms of the propagation con-

stants and coupling coefficients. Of course, the electric field in the array may also be defined in

terms the transverse momentum or spatial frequency (SF). One may translate between the spatial

and SF bases through the discrete Fourier transform, yielding the new equation of propagation

[Eq] = Uq(z) [Eq(0)], where Uq(z) = De−i[H]zD† and D is the discrete Fourier transform oper-

ator. With this in mind, we rewrite eqn. 5.1 for SF as

Eq′ =
∑
q

Hq′,qEq. (5.5)

Whereas hx′,n describes how an electric field originating at a single waveguide n evolves in the lat-

tice, its SF counterpart Hq′,k describes the propagation of an electric field Eq = δq,k with uniform

amplitude in every waveguide and a constant phase difference, proportional to k, between neigh-

boring waveguides. In an experimental setting, such an electric field corresponds to a plane wave

traveling at some angle θ relative to the optic axis. The distance between the waveguide arrays, θ

and the wavelength of the plane wave determine the SF Eq.

Additionally, we may define hybrid impulse response functions that relate the SF input to a spatial

output (Hq′,x) or vice versa (Hx′,q). Heretofore photonic lattices have not been examined from

this SF perspective. The exception is the magnitude square of the hybrid impulse response func-

tion Hx′,q, which has been experimentally observed for periodic lattices [18], as it has interesting

properties related to the band structure of the array.
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Figure 5.3: Simulated and experimental results for the (a) weakly disordered and (b) strongly disordered
photonic lattices. Each set shows, from left to right, the functions |hx′,x|2, |Hq′,x|2 and Hq,q′ .

Periodic Array

The experimental procedure for obtaining the magnitude squared of the impulse response functions

is straightforward and illustrated in Fig. 5.1. We note that the complexed valued impulse response

function cannot be obtained without phase measurements, as only the intensity, and not the field,

can be measured. As shown there are four impulse response functions (for each photonic lattice)

that may be obtained. In Fig. 5.1-(a), a spatial impulse Ex(z = 0) = δx,n is generated at the input,

i.e., light is coupled into a single waveguide located at x = n. This impulse, according to equation

5.1, evolves to Ex′ = hx′,n, with corresponding intensity Ix′ ∝ |hx′,n|2. This means the measured

intensity is a lateral slice of the function |h′x,x|2 that we wish to recover; five of these slices for

different n are shown in the left plot of Fig. 5.1-(a). For the inputs far from the array edges, the

intensity distribution is the Bessel function described earlier. Closer to the edges, reflections from

the edges of the array lead to more complicated distributions that have been studied in [26]. The

full simulation and experimental results are shown in Fig. 5.2-(a) and show excellent agreement.

To obtain the hybrid impulse response function |Hq′,x|2 we take the Fourier transform of the field
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Ex′ = hx′,n with respect to the output coordinate x′, which in the experiment is implemented

by an optical Fourier transforming lens between the output face of the photonic lattice and the

detection plane. The measured intensity distribution is now a lateral slice of |Hq′,x|2. When the

input waveguide n is far from the edges, the intensity distribution is uniform in the Fourier plane, as

indicated by middle slice of |Hq′,x|2 in Fig. 5.1-(a). In this region, the periodic array is locally shift

invariant, and thus cannot alter the SF spectrum of the input state. As a spatial impulseEx = δx′,n at

the input contains the full SF spectrum uniformly, the SF at the output is also necessarily uniform.

Once the input waveguide is close enough to the edge of the array for reflections to occur, the array

is shift invariant, and a finely detailed structure is observed in the detection plane. The full result

can be seen is Fig. 5.2-(b), which shows simulation and measurement.

The previous two impulse response functions relate a spatial impulse input to spatial and SF out-

puts; the next two, illustrated in Fig. 5.1-(b), relate a SF impulse input to the spatial and SF out-

puts. As mentioned above, the SF impulse is experimentally generated by a plane wave coupled

uniformly into all the waveguides at some angle, so as to produce a constant phase step between

neighboring waveguides. As shown in the drawing, varying the input direction of the beam varies

q. In our experiments, we approximate the plane wave with a broad Gaussian beam covering most

of the array. Thus, the resulting measured intensity distribution is only an approximation of the

impulse response function corresponding to the set of illuminated waveguides. The left plot of Fig.

5.1-(b) shows the spatial intensity distribution for varying plane wave inputs. We do not reproduce

this result in the experiment, as it has been well studied. It was shown that Gaussian input beams

may, at certain spatial frequencies, traverse the array without diffracting [67].

The SF distribution for varying plane wave inputs, however, has not been previously examined.

As can be seen in the right plot of Fig. 5.1-(b), the broad Gaussian beam is Fourier transformed

into a single, tightly focused Gaussian peak that translates across the Fourier plane as the input

angle is varied. Again, if we consider the array to be shift invariant over the illuminated section of
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waveguides, the SF spectrum of the input is not altered. The output in the Fourier plane is thus a

sharp peak at a position proportional to the input SF q, forming a diagonal line on the q = q′ axis.

The simulation and experimental results are shown in Fig. 5.2-(c). In the experimental results, we

attribute the small amount of signal off the diagonal to reflections from the edge of the array.

Disordered Arrays

The impulse response functions for the disordered array are wholly different. In left plot of Fig.

5.1-(c), we see the ballistic diffraction present in the periodic array is arrested and the intensity dis-

tribution begins to localize. This onset of transverse Anderson localization has been theoretically

and experimentally studied in other works [8, 9, 11, 12]. In the right graph, the Fourier transform

does not appear to have a definite structure. However, referencing the graphs |Hq′,x|2 in Fig. 5.3,

we observe for both disordered arrays, points with higher intensity tend fall on or near the lines

where q = ±π
2
. These spatial frequencies are of special importance; when light travels from a

waveguide to its neighbor it will acquire a phase shift of±π
2
, depending on the separation between

the waveguides. It is also at these spatial frequencies that Gaussian beams traverse the periodic

array without diffraction [67]. The full simulations and experimental results for |hx′,x| and |Hq′,x|2

are shown in Fig. 5.3 for the (a) weakly and (b) strongly disordered arrays. We note particularly

good agreement between simulation and experiment for the weakly disordered array.

The plots in Fig. 5.1-(d) show lateral slices of the functions (left) |Hx′,q|2 and (right) |Hq′,q|2 for

selected values of q. The impulse response function Hx′,q, which is not measured in our experi-

ment, shows an intensity profile with broad envelope and random peaks. This result is expected, as

any diffraction that might take place is halted by the disorder in the array. As in the periodic array,

this result was not experimentally measured.

Finally, we come to the most surprising result of this report, the structure of |Hq′,q|2. It might be
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Figure 5.4: Diagram of the experimental setup with two types of inputs (point and plane wave) and the
ability to measure the output intensity and the Fourier transform in concert. Details of the setup are in the
text.

expected that, in the disordered array, the initial SF q of a plane wave or broad Gaussian input

would be completely obscured by the highly disordered medium. However, we find that the SF

spectrum at the output of the array is confined to peaks centered at the values of±q. When multiple

input q’s are scanned over, the resulting |Hq′,q|2 is seen to have an X-shape, which is shown in its

entirety in Fig. 5.3. If we consider the SF to be the direction of a plane wave, we see from this

plot that the disordered array breaks the incoming beam into transmitted and reflected components.

The simulation and results, plotted in the rightmost columns in Fig. 5.3 (a) and (b), show good

agreement and verify this surprising result.

Experiment

The experimental setup is shown in Fig. 5.4. The measurements performed with this system allow

us to recover absolute value squared of the spatial and SF impulse response functions, i.e. |hx,x′ |2,

|Hx,q′|2 and |Hq,q′ |2. The setup has two input configurations. In both, a laser beam (780-nm
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collimated LightPath fiber laser) enters from the left and reflects off two alignment mirrors M1 and

M2. For the plane wave input configuration, the laser is passed through two lenses L1 and L2 with

focal lengths f1 and f2, respectively, that are a distance d = f1 +f2 apart. This setup simply works

as a beam expander/compressor when L1 and L2 are aligned along the optic axis. In our setup, we

move L1 in the x-direction to induce a tilt in the beam after L2. In this way, we control the angle

at which the beam impinges upon the waveguide array, effectively selecting different values of q.

After L2, but before the array, the laser is focused in the y-direction a cylindrical lens CL1. This is

to maximize the light that is coupled into the waveguides. For the single waveguide input, the laser

is simply coupled into a single waveguide via a microscope objective (30x). Then the waveguide

array may be translated in the x-direction to couple into different waveguides.

The waveguide array itself was made by femtosecond laser pulses focused into a glass substrate, as

prescribed by Szameit et. al. [30]. The array is made up of identical, parallel waveguides. Each set

is composed of 101 waveguides; disorder is induced by varying the intra-waveguide spacing, which

alters the coupling coefficients between waveguides. In this experiment, we use three different

arrays: periodic, weakly disordered (∆/C0 = 0.4), and strongly disordered (∆/Co = 0.9).After

propagation through the array, the light travels through a non-polarizing beam splitter (NPBS).

In the reflected direction, the lens L3 (f = 4-cm) images the output face of the array to CCD1

and the image is recorded; the intensity at the output of every waveguide can then be obtained via

simple image processing. In the transmitted direction, a cylindrical lens CL2 (f = 4-cm) images

the output face of the waveguide array in the y-direction, while CL3 (f = 10-cm) performs a

Fourier transform in the x-direction. The result is recorded by CCD2. In both cases, imaging

processing is used to extract the intensity distributions by vertically integrating a small number of

pixels spanning the area of interest.
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Conclusion

In this report we have examined periodic and Anderson disordered photonic lattices in the spatial

and SF regimes through both simulation and experiment. We have demonstrated the unexpected

effects that arise when considering the SF component, such as the detailed structure of |Hq′,x|2 and

the X-shape of |Hq′,q|2. Though photonic lattices have been used extensively to study novel optical

phenomena, we are the first to elucidate the action of one dimensional periodic and disordered

arrays in terms of SF. In this report, we utilized two of the simplest realizations of these devices;

many other configurations have been designed and used to demonstrate a wide variety of effects.

It is our hope that this work will lead to the exploration of SF spectrum for related devices and the

discovery of more interested optical phenomena.
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CHAPTER 6: CONCLUSION

In this dissertation I have, through the papers pre-published and republished here, reviewed the

research I have performed as a part of the Quantum Optics Group in the College of Optics and

Photonics at the University of Central Florida. In the course of my research, I have utilized pho-

tonic waveguide arrays for the study of classical and quantum light when the equations governing

its evolution are discretized. This work is of fundamental and practical importance. Firstly, dis-

crete optics in general is a fascinating field full of rich physics. There is a dramatic difference

between the propagation of light in continuous and discrete systems, such that even diffraction oc-

curs in an unfamiliar and interesting way. Secondly, thanks to major advancements in fabrication

techniques, these devices are highly customizable and can be tailored to mimic a host of novel

phenomena from many areas of physics. They are essentially a toy model that can be utilized for

exploring complicated effects from other disciplines or creating entirely new phenomena. When

these interesting devices are used in conjunction with quantum light, it opens up a whole new area

of physics and optics to explore. In this dissertation, I have reviewed the research I have performed

on periodic and disordered photonic waveguide arrays in both the classical and quantum regimes.

I have explored their use in modeling effects from other fields and discovered entirely new effects

in both classical and quantum discrete optics.

In the first paper [9], I demonstrated through both numerical simulation and experiment the tran-

sition from ballistic propagation to transverse Anderson localization in off-diagonal disordered

waveguide arrays. This was the first time Anderson localization has been shown in waveguide ar-

rays with off-diagonal disorder. In addition, we demonstrated through simulation the equivalence

of shifting the array then averaging and averaging over independent realizations of disorder.

The the second paper [14] I reported, through simulation and experiment, the propagation of spa-
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tially extended, entangled photon pairs in both the periodic and disordered photonic waveguide

arrays. In this experiment, I generated entangled photon pairs through spontaneous parametric

down conversion and imaged them to the input face of the waveguide array, meaning the photons

entered the same waveguide, but which waveguide was unknown. After propagation in the array,

the positions of each photon pair were measured in coincidence, allowing the generation of the

coincidence map. In the course of this research, I experimentally verified the phenomenon of An-

derson co-localization, in which the entangled photon pair, initially spatially correlated, traverses

the disordered array and localizes in correlation space, even though neither photon localizes on its

own. The signal of Anderson localization, the exponentially localized envelope, is seen upon inte-

grating the coincidence map along the x1 = x2 axis. Also, I demonstrated Anderson localization

at the single photon level.

In the third paper [15], which is pre-press, I expanded significantly upon the second paper. I

again verified the phenomenon of Anderson co-localization, but for more extended input states.

I also revealed and experimentally verified the sister phenomenon of Anderson anti-localization,

in which an initially anti-correlated input state traverses a disordered array and emerges with its

correlations intact. In this report, I exercise control over the correlations at the input by altering the

input optical configuration. The correlated state is generated by an imaging system, and the anti-

correlated state is generated by a Fourier transforming system. There is of course, a continuum

of optical systems between these two extremes; these systems may be described by the fractional

Fourier transform. I use these intermediate optical systems to generate two-photon states in which

entanglement is not expressed strictly in position, but through a combination of position and phase.

I couple these states into the disordered photonic waveguide arrays and show a transition from a

correlated state leading to Anderson co-localization to an anti-correlated state leading to Anderson

anti-localization.

In the final paper [65], I perform experiments using classical light that explore the action of the
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periodic and disordered photonic waveguide arrays in terms of spatial frequency. While many

experiments have examined the arrays in terms of their spatial impulse response functions, little

work has been done to show the effect on spatial frequency. In this paper, I illustrate the effect

of periodic and disordered arrays on four impulse response functions: those that related spatial

coordinate or spatial frequency at the input to spatial coordinate or spatial frequency at the output.

I also experimentally measure three out of the four impulse response functions for each array. In

the periodic array, I show the surprisingly intricate structure of the impulse response function that

relates a spatial impulse input to a spatial frequency output. In the disordered array, I reveal the

unexpected X-shape present in the impulse response function relating a spatial frequency input to

the spatial frequency output. This shape indicates that a plane wave input in the disordered array

is not obscured by the disorder as might be expected, but is instead separated into ”reflected” and

”transmitted” components.

The research I have performed and reviewed here has advanced the sciences of discrete optical

systems, particularly at the boundary of quantum and discrete optics. These advancements will

ideally lead to further research on extended, entangled quantum states in other types of discrete

optical systems. Also, my research on impulse response functions in terms of spatial frequency

will hopefully lead other researchers to consider the spatial frequency domain in the search for new

and interesting physics in novel types of photonic lattices.
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The papers from Chapters 2 and 3 were published prior to this dissertation and require release of

copyright to be used here. The paper from Chapter 2, ”Anderson localization in optical waveguide

arrays with off-diagonal coupling disorder” was published in Optics Express, and permission was

granted to reproduce the material as shown in the email and reply below. The second paper,

”Einstein-Podolsky-Rosen Spatial Entanglement in Ordered and Anderson Photonic Lattices” was

published in Physical Review Letters, a journal of the American Physical Society. Their policy

is explicitly stated on the following website: ”https://journals.aps.org/copyrightFAQ.html”, and

allows the use of my work for this dissertation.

Dear Lane Martin,

Thank you for contacting The Optical Society.

Because you are the author of the source paper from which you wish to reproduce material, OSA

considers your requested use of its copyrighted materials to be permissible within the author rights

granted in the Copyright Transfer Agreement submitted by the requester on acceptance for pub-

lication of his/her manuscript. It is requested that a complete citation of the original material be

included in any publication. This permission assumes that the material was not reproduced from

another source when published in the original publication.

Please let me know if you have any questions.

Kind Regards,

Susannah Lehman

Susannah Lehman August 26, 2014 Authorized Agent, The Optical Society

From: Lane Martin [mailto:lanem@creol.ucf.edu] Sent: Tuesday, August 26, 2014 11:59 AM To:

pubscopyright Subject: Copyright Permission for Inclusion of Opt. Exp. Paper in Dissertation
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I am completing my doctoral dissertation at CREOL, the College of Optics and Photonics at the

University of Central Florida. I would like your permission to reprint in my dissertation the fol-

lowing publication, of which I am a co-author:

Anderson localization in optical waveguide arrays with off-diagonal coupling disorder Optics Ex-

press, Vol. 19, Issue 14, pp. 13636-13646 (2011) http://dx.doi.org/10.1364/OE.19.013636

The requested permission extends to any future revisions and editions of my dissertation, including

non-exclusive world rights in all languages. These rights will in no way restrict republication of

the material in any other form by you or others authorized by you. Your granted permission will

also confirm that Optics Express owns the copyright to the above-described material.

If these arrangements meet with your approval, please reply to this email granting permission to

reprint this work. Thank you for your attention in this matter.

Sincerely,

Lane A. Martin CREOL - The College of Optics and Photonics University of Central Florida
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